ALMOST SURE SCATTERING FOR THE ENERGY CRITICAL NONLINEAR
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WAVE EQUATION

BJOERN BRINGMANN

ABSTRACT. We study the defocusing energy critical nonlinear wave equation in four dimensions. Our
main result proves the stability of the scattering mechanism under random perturbations of the initial
data. The random perturbation is defined through a microlocal randomization, which is based on a unit-
scale decomposition in physical and frequency space. In contrast to the previous literature, we do not
require the spherical symmetry of the perturbation.

The main novelty lies in a wave packet decomposition of the random linear evolution. Through this
decomposition, we can adaptively estimate the interaction between the rough and regular components of
the solution. Our argument relies on techniques from restriction theory, such as Bourgain’s bush argument
and Wolff’s induction on scales.
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1. INTRODUCTION

We consider the defocusing cubic nonlinear wave equation in four space dimensions, that is,

(1)

—Oyu + Au = u? (t,z) e R x R* |
ul—o = up € H5(RY),  dpuli—o = up € HL(RY) .
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If w is a regular solution of (1), then it conserves the energy

u(t, z)|? wul(t, )2 u(t, o)
2) Elu](t) = fw v <;, I <; D <t4>

From the Sobolev embedding H'(R?*) — L*(R%), it follows that the initial data has finite energy if and
only if (ug,u1) € H'(R*) x L2(R*). Thus, we also refer to H'(RY) x L2(R%) as the energy space. In
addition to the energy conservation law, (1) obeys the scaling symmetry u(t, z) — uy(t,z) = Au(\t, \x).
Since the scaling leaves the energy invariant, the equation is called energy critical. Due to the positive
sign in front of the potential term u*, we call (1) defocusing. There also exists analogues of (1) with a
power-type nonlinearity in any dimension d = 3.

dx .

The Cauchy problem for (deterministic) initial data in the energy space is well-understood. We summarize
the relevant results in the following theorem.
Theorem 1.1 (Global well-posedness and scattering [1, 28, 29, 45, 47, 48, 49, 50, 52]).
Let (ug,u1) € H*(R*) x L2(R*). Then, there exists a maximal time interval of existence I and a unique
solution u: I x R* — R of (1) such that u e COH(I x RY) n L3, LE8(I x RY) and dpu € CPL2(I x RY).
Furthermore, we have that 7

(i) w is global, i.e., I = R.

(ii) u obeys a global space-time bound of the form

lull Lz s mxrey < C(Eluo, ur]) -

(i) u scatters to a solution of the linear wave equation. Thus, there exist scattering states (ug,ui) €
H'(R*) x L?(R*) s.t.
i [[(u(t) = W () (ug , up), du(t) — W (8) (ug s ui ) e =0 -

Here, W (t)(ug,ui) = cos(t|V|)ug + (sin(¢t[V])/|V])ui denotes the solution to the linear wave
equation with initial data (ug,uy).
Global well-posedness and scattering results such as Theorem 1.1 are known for many defocusing dispersive
partial differential equations, and hold for the energy critical nonlinear Schrédinger equation [9, 17, 46, 55],
the mass-critical nonlinear Schrédinger equation [20, 21, 22, 33, 34], the mass-critical generalized KdV

23], and the H 2-critical radial nonlinear wave equation [24].

Since Theorem 1.1 provides a complete description of the Cauchy problem with initial data in the energy
space, we now seek a similar result for initial data in a rough Sobolev space H? x HS 1, where s € [0, 1).
However, since this leads to a scaling super-critical problem, all of the above properties can fail. In fact,
[16] proved that (1) exhibits norm inflation, which means that arbitrarily small data in H* x H*~! can grow
arbitrarily fast. More precisely, we have for all € > 0 that there exists Schwartz initial data (ug,u;) and
a time 0 < ¢, < e such that ||(uo, u1)|gsxgo—1 < € and |[(u(te), Opu(te))|| s gs—1 > €~ L. Using finite speed
of propagation, one may then also construct solutions whose H* x H* !-norm blows up instantaneously.

1.1. The random data Cauchy problem. Many researchers in dispersive partial differential equations
have recently examined whether blow-up behaviour, such as the norm-inflation described above, occurs
for generic or only exceptional sets of rough initial data. To quantify this, one is quickly lead to random
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initial data. Indeed, one natural form of rough initial data is (uo + f§, w1 + fy’), where the functions
(ug,u1) € H' x L2 are regular and deterministic, while the functions (f$, f¢) € H® x H5~! are rough and
random. An analogue of Theorem 1.1 in this case would imply the stability of the scattering mechanism
under a perturbation by noise.

The literature on random dispersive partial differential equations is vast. We refer the interested reader
to the survey [5], and mention the related works [2, 4, 7, 8, 10, 11, 13, 14, 15, 37, 38, 40, 41, 44]. In
the following discussion, we focus on the Wiener randomization [3, 37] of a function f € H*(R?). Let
¢ € C*(R%) be a smooth and symmetric function satisfying Pli—s/g3/s1¢ = 1. @lray—s/8,5/57¢ = 0, and
Dreza P —k)=1forall £ e R?. We then define the associated operator P;, by

Pof(€) := o€ — k) f(€) .

Since the translates {¢(- — k)} form a partition of unity, we have that

(3) f=> Pf,

kezd
which is called the Wiener decomposition of f. The Wiener randomization is obtained by randomizing
the coefficients in (3). Let I € Z¢ by an index set such that Z¢ = I U {0} U (—1I). Let {Xk}rerogoy be
a sequence of symmetric, independent, and uniformly sub-gaussian random variables (see Definition 2.1).
We set X_j, := X}, for all k € I, and assume that X is real-valued. Then, the Wiener randomization f"
is defined as

(4) W= ) X Pt

kezd

The reason for introducing the set I is to preserve the real-valuedness of f. The Wiener randomization f"V
is a random linear combination of functions with unit-scale frequency uncertainty, and therefore resembles
a random Fourier series. We then examine the random data Cauchy problem

(5) {—6ttu + Au = u3 (t,x) e R x R*

uli—o = ug + £V,  Owuli—o = us + f}V

We now seek an almost sure version of Theorem 1.1 for (5). Before we summarize the recent results, let
us sketch the overall strategy, which was developed by Pocovnicu in [44]. We let F := cos(t|V|)f}V +
(sin(¢|V|)/IV])f{V be the solution of the linear wave equation with the rough and random initial data.
We then define the nonlinear component v by v := u — F', and obtain the forced nonlinear wave equation

(6) —0pv + Av = (v + F)3 (t,x) e R x R* |
V|¢=0 = uo, Opv|t—0 = u1.

At the cost of introducing a rough forcing term, we have therefore removed the rough part of the initial
data. This transformation is related to the Da Prato-Debussche trick [19]. Due to the smoothing effect
of the Duhamel integral, we hope to control the nonlinear component v in the energy space. The local
well-posedness of (6) follows readily from probabilistic Strichartz estimates (cf. [3, 37]) and a contraction
mapping argument. Thus our main interest lies in the global well-posedness and the long-time behaviour
of the solution. Using the deterministic well-posedness theorem and stability theory, it can be shown (cf.
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[26, 44]) that the solution to (6) exists as long as the energy of v remains bounded. Of course, due to
the forcing term in (6), the energy is no longer conserved. In addition, a global bound on the energy of v
implies a global bound on the L3L%-norm, and hence also implies scattering. A short calculation shows
that

d
(7) 4 B = f W3 — (v + F)»)ow do ~ —3 J Pu2ouda |

dt R4 R4
In the formula above, we have neglected terms that contain more than a single factor of F', since they are
simpler to estimate. Therefore, the remaining obstacle lies in the control of the right-hand side of (7).
With this overall strategy in mind, we summarize the recent literature.

In [44], Pocovnicu proved the almost sure global existence of solutions for all s > 0. Using a Gronwall-type
argument and a probabilistic Strichartz estimate, (7) leads (at top order) to the growth estimate

(8) E[](T) < E[6](0) exp(ClF | 13 pp oy mey) < E[0](0) exp(CLT?) .

Since this prevents the finite time blow-up of the energy, this yields an analogue of Theorem 1.1.(i).
Similar theorems are also known in dimension five [44], dimension three [43], and for the high-dimensional
energy critical nonlinear Schréodinger equation [42].

The bound (8), however, is not sufficient to obtain global control on the energy of v, and hence does not
prove almost sure scattering. Assuming the regularity condition s > % and that the (deterministic) data
(fo, f1) is spherically symmetric, Dodson, Lithrmann, and Mendelson proved almost sure scattering in
[26]. In their argument, the energy increment is estimated by

T . B
(9) UO JW Fu*dpdadt| S 1212 Fl ape oy ey 121730030 1 o mpemey 100 2 sy

The first factor is controlled using Khintchine’s inequality and a square-function estimate, and heavily
relies on the spherical symmetry of fy and fi. The main novelty lies in the control of the second factor,
and involves a double bootstrap argument in the energy and a Morawetz term. Under the bootstrap
hypothesis, one can then control the second factor in (9) by the square-root of the energy, and this
eventually leads to a global bound.

The method of [26] has since been used in several related works. In [25], Dodson, Lithrmann, and
Mendelson used local energy decay to improve the regularity condition to s > 0. After replacing the
cubes in the Wiener randomization by thin annuli, the author proved almost sure scattering for radial
data in dimension three [12]. The main new ingredient is an interaction flux estimate between the linear
and nonlinear components of the solution. Finally, the almost sure scattering for the radial energy critical
nonlinear Schrédinger equation in four dimensions has been obtained in [25, 32].

1.2. Main result and ideas. The remaining open question is concerned with almost sure scattering for
non-radial data. In order to state the main result of this paper, we first need to introduce a microlocal
randomization. While the Wiener randomization is based on a unit-scale decomposition in frequency
space, the microlocal randomization is based on a unit-scale decomposition in phase space (see Figure 1).
Definition 1.2 (Microlocal randomization).

Let { Xk} kero(oy, ez be a sequence of symmetric, independent, and uniformly sub-gaussian random vari-

ables. We set X_j; := Xj,; for all k € I, and assume that Xy, is real-valued. For any f € H*(R?), we
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We display a partition of the phase space R? x R? into horizontal strips, which forms the basis
of the Wiener randomization, and a partition into cubes, which forms the basis of the microlocal
randomization. A similar figure has been used in the author’s previous work [12, Figure 1].

FIGURE 1. Partions of phase space

define its microlocal randomization f“ by

(10) @)= S XePule( — DF)()

k,leZd
The microlocal randomization is inspired by [39], which used a randomization in physical space.
Theorem 1.3 (Almost sure scattering for the microlocal randomization).
Let (ug,u1) € HY(R?) x L2(RY), and let (fo, f1) € H5(RY) x H5 1(R%), where s > 1. Then, there exists
a random maximal time interval of existence I and a solution u: I x R* — R of (5) such that

we W) (fs, £) + (CYHLI x RY M) L 1o LS (I x RY)) and dpu e oW () (5, f) + CPL2(I x RY) .

t,loc
Furthermore, we have that
(i) w is almost surely global, i.e., I = R.
(ii) w almost surely satisfies the global space-time bound [u 1316 mxray < % .
(iii) w almost surely scatters to a solution of the linear wave equation. Thus, there exist random
scattering states (ug,ui) € H'(R*) x L2(R?) s.t.

Jim () = W) (g + f5'ui + f1), dult) = AW (0 (ug + f5',ui + )2 =0

While Theorem 1.3 is only proven for the microlocal randomization, the majority of our argument directly
applies to the Wiener randomization.

The main novelty in this paper lies in the application of a wave packet decomposition. To illustrate this
idea, fix some k € Z? with |k|o ~ N, and assume that f,(£) = N=%p(¢ — k). Then, f, will essen-
tially be unaffected by both the Wiener and microlocal randomizations, and hence forms an important
example. From the method of non-stationary phase, it follows for all times ¢ € [0, N] that the evolution
exp(=£it|V]) fr is concentrated in the ball |z + tk/|k|2| < 1, and has amplitude ~ N7%. In space-time, we
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(A) Single wave packet (B) Bush

In (a), we display the evolution exp(+it|V]) fx on the time-interval [0, N]. The space-time support
can be viewed as a tube of length ~ N and width ~ 1. The spatial center travels in a fixed
direction at the speed of light, which has been normalized to 1. Furthermore, the amplitude of
the evolution is given by ~ N5, In (b), we display a so-called bush, which is a collection of wave
packets intersecting at a single point.

FIcURE 2. Wave packet heuristic

can therefore view the evolution as a tube, see Figure 2a. For larger times, the dispersion of the evolution
becomes significant, and the physical localization deteriorates. The wave packet perspective also explains
the effect of the frequency randomization on the evolution. In Figure 2b, we display a bush (cf. [6]),
which is a collection of wave packets intersecting at a single point. If all wave packets in the bush have
comparable amplitudes and the data is deterministic, one expects that the L{®L¥-norm is proportional
to the number of wave packets. For random data, however, the phases of the wave packets are all inde-
pendent, and the central limit theorem predicts that the L;°LX-norm should instead be proportional to
the square-root of the number of wave packets.

The examples in Figure 2 also illustrates an important heuristic: The natural timescale for the randomized
evolution at frequency N is 1" = N. This differs from the natural timescale predicted by the (deterministic)
bump-function heuristic, which is 7= N~!. We therefore decompose the positive time-interval as

[N]

(11) [0,0) = (J [V, (n + D)) U [V, 20)

n=0

where 6 > 0 is a parameter. Our argument then splits into two separate parts.

On the long-time interval [N 10 o0), we use the additional decay obtained through the physical random-
ization. The basic idea is that after such a long time, the linear evolution could only be concentrated
through constructive interference of a large portion of the initial data, which is highly unlikely due to the
physical randomness (see Figure 4). To make this rigorous, we prove an L} L®([N'*?, o0) x R*)-bound on
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Py F, and this is sufficient to control the energy increment. This part of the proof requires the condition
s>1—10/2.

The majority of this paper focusses on time intervals such as [0, N). This part of the argument does not
rely on the physical randomness, and therefore also applies to the Wiener randomization. On this interval,
we decompose the evolution into a family of wave packets, see Figure 3. As can be seen from a single
wave packet, we cannot (always) control the evolution in L} L®. Instead, we use the following dichotomy:
Either F' consists of only a few wave packets, in which case its support lies on a few light-cones, or it
consists of many wave packets, in which case the L{® LY-norm should be small.

We now present a heuristic and simplified version of the main argument. In order to illustrate the ideas,
let us first assume that all wave packets belong to a single frequency k € Z%. After a dyadic decomposition,
we may further assume that all wave packets have amplitudes comparable to 2™. Using the same notation
as in Section 4, we denote the number of wave packets with this amplitude by #., . Due to the L*-
orthogonality of the wave packets, we have that 2m(#,5zfm)% S N5,

In the case of only a few wave packets, we control the contribution on each tube separately. We have that

N
‘f Fyv?dpvdardt| S (#«Qfm)N%Qm( sup H’UHQL;tLg(T))HﬁtUHL;f»‘Lg([o,N)xRél) < N22" 4, sup E](t) .
0 tubes T' te[0,N)
The supremum ranges over all tubes of length ~ N, width ~ 1, and unit-speed direction inside [0, N') x R?.
Using a flux estimate and a bootstrap argument, we controll this supremum by the square-root of the
energy.
In the case of many wave packets (with the same direction), we use that their supports are disjoint, and
obtain that

N
UO Fszatvdl"dt‘ < NIEN] Lz g fo.v)xm) 1017 £ 0,3y <y 1060 L2 L2 (0.3 ety S N2 S[UI;V)E[U](t) :
te[o,

By combining both estimates, it follows that

N
U FNUQé’tvda:dt‘ < min(N22™ 4o/, N2™) sup E[v](t) < Ni2™(#07,)7 sup E[](t) .
0 te[0,N) te[0,N)

We insert the bound 27"(#4271%)% < N—%, sum over N? intervals, and arrive at the condition s > 3/4 + 6.
In order to match the conditions from the intervals [nN, (n + 1)N) and the long-time interval [N19 c0),
we choose 6 = 1/6, and obtain the regularity condition s > 11/12.

In order to remove the restriction to a single frequency, we need to consider both multiple directions
and multiple scales. For this, we rely on techniques from the literature on the Kakeya and restriction
conjectures. In order to control multiple directions, we use Bourgain’s bush argument [6]. The basic idea
is to distinguish points which lie in multiple tubes from points which lie only in a few tubes. To this
end, we group the wave packets into several bushes and a collection of (almost) non-overlapping wave
packets (see Figure 3). We then almost argue as for a single frequency, but also use that each bush lies on
the surface of a light-cone, which is crucial for the flux estimate. In order to control multiple scales, we
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We illustrate the wave packet decomposition of the linear evolution. We partition the wave packets
into three groups: Two separate bushes (red and blue) and a collection of almost non-overlapping
wave packets (green).

FI1GUrRE 3. Wave packet decomposition

rely on Wolff’s induction on scales strategy [57]. To fix ideas, let us try to bound the energy increment
E[v](N) — E[v](0). We have already described the estimates for wave packets of length greater than or
equal to IV, but the space-time region [0, N] x R* also contains many shorter wave packets. By induction
on scales, we can already close the bootstrap argument at these shorter scales, which greatly reduces the
complexity of the proof. We postpone a more detailed discussion to the Sections 4 and 6.
Acknowledgements:

I want to thank my advisor Terence Tao for his invaluable guidance and support. In particular, he
proposed the greedy selection algorithm in Section 4. Furthermore, I want to thank Rowan Killip and
Monica Visan for several interesting discussions. The figures in this paper have been created using TikZ
and GeoGebra.

2. NOTATION AND PRELIMINARIES

For the rest of this paper, the positive integer d denotes the dimension of physical space. In the analysis of
the nonlinear evolution, we will eventually specialize to d = 4. Furthermore, we also fix positive absolute
constants 6, 0, and 7. The parameter § will be used to deal with the spatial tails of the wave packets and
certain summability issues. The parameter 6 is used in the division of time (see (11)). We will eventually
choose 0 = 1/6, but prefer to keep 6 as a free parameter until the end of the argument. Finally, n describes
the size of the frequency truncated data, see Proposition 4.8.

If A, B are positive quantities, we write A < B if and only if there exist a constant C' = C(6,0) such that
A < CB. Furthermore, most capital letters, such as N, M, and R, will denote dyadic numbers greater
than or equal to 1. R

Finally, we define the Fourier transform f of an integrable function f: R? — C by

N 1 ‘
f(§) = (27T)% fRd exp(—iz) f(z)dz .
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We now summarize a few basic results from probability theory, harmonic analysis, and dispersive partial
differential equations.

2.1. Probability theory. We recall a few basic estimates for sub-gaussian random variables. For an
accessible introduction, we refer the reader to [54].

Definition 2.1 (Sub-gaussian random variable).

Let (2, F,P) be a probability space, and let X: (2, F) — R be a random variable. We then define the
sub-gaussian norm by

1
.

(12) X, := sup PITED?

p=1 VP
We call a random variable X sub-gaussian if and only if | X |y, < 0. Furthermore, we call a family of
random variables {X;};er uniformly sub-gaussian if and only if sup;; | X;|w, < 0.
The relationship to the Gaussian distribution may not be obvious from (12). However, it follows from
[54, Proposition 2.52] that (12) implies

22
P(|X|>z) <2exp | —Cig— Vo > 0.

< |X|@2>
Many concentration inequalities for the sums of independent sub-gaussian random variables can be found
in the literature. In the following, we mainly rely on Khintchine’s inequality.
Lemma 2.2 (Khintchine’s inequality, [53, Corollary 5.12] or [54, Proposition 2.6.1 and Exercise 2.6.5]).
Let (X j) j=1,...,7 be a finite sequence of independent sub-gaussian random variables with zero mean. Then,
it holds for all deterministic sequences (a;);j=1,.. s, and all p > 1, that

y Y
(13) (E[|Zajxj|p]> < v (max 151, (Z W)

In particular, the sum ijl a; X is sub-gaussian.

In this paper, Khintchine’s inequality will often be combined with Minkowski’s integral inequality, which
we recall below.

Lemma 2.3 (Minkowski’s integral inequality).

Let (X, ) and (Y,v) be two o-finite measure spaces, and let 1 < p < ¢ < . Then, we have for all
measurable functions f: X x Y — R that

P

117G ) e ol Loy < 11F @ 9) L llzecx) -

The special case p = 1 is the standard Minkowski inequality, and it can be found in most real analysis
books (see e.g. [36, Theorem 2.4]). Since Lemma 2.3 is central to many arguments in this paper, we prove
the general statement from this special case.

Proof. Since q/p > 1, we have that

1 1
17 @ )l e ol Loy = H\If(x,y)pl\um\li%m <IF )l g o 17y = T @ ) el zocxy -
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We will also need a crude bound on the maximum of dependent sub-gaussian random variables
Lemma 2.4 (Suprema of dependent sub-gaussian random variables [54, Exercise 2.5.10]).
Assume that (X;);=1 . are (possibly dependent) sub-gaussian random variables. Then,

(14) E['maxJ|Xj|] <Wlog(2+J) n%ax | Xllw, -

sy ’ ’

Proof. Let 1 < p < co. Using Holder’s inequality, we obtain that

1
Loy A
E Xl < E X P [1X;517] < Jr X; .
[‘maxJ| J|} ( Lzrllaxﬂ ]|]> <Z L1 ) P\/ﬁjgaXJH ilws

Jj=1,.., PERRE) 1
After choosing p = log(2 + J), we arrive at (14). O
2.2. Harmonic analysis. Let N € 2% and k € Z9. As in the introduction, we let ¢ € C*(R?) be a
smooth and symmetric function satisfying <,0|[7§ 0 = 1, (10|]Rd\[—§ 50 = 0, and > cza (- — k) = 1. We
8’8 8’8

also define (&) = p(&) — ©(2€). Then, the re-centered Littlewood-Paley operators are defined as

S _ | VEENFO N >1
PN;kf(f)_{ (fjik)f() N =1

With this choice of v, it holds that Py.x Py = 0if M > 4N or N = 4M. To simplify the notation, we
also set Py := Ppy,0 and P} := Pp,;. Furthermore, we define the fattened Littlewood-Paley operators
(15) Py, = > Pary -

2= 10N M<2I0N
Lemma 2.5 (Bernstein’s inequalities).
Let Ne 2V keZ? and 1 <p < q < . Then, we for all fe LE(R?) that

< NdG—=2)

(16) HPN;k’fHLg(Rd) SNeoa HPN;kaL’;(Rd) )
(17) IIVIPNofllzemey < NI Pwofllemay -

We emphasize that the constant in (16) is independent of k € Z¢, since the phase exp(ikz) does not affect
the LE-norms.

We also record the following standard consequence of Bernstein’s inequality and the uncertainty principle.
Lemma 2.6.

Let N > 1, let a,b € R, and assume that b > a + 1/N. Then, we have for all f € L2(R%), all 1 < ¢ < 0,
and all 1 < p < oo, that

|l exp(2at|V )Py fll 2 22 (fap] xRy S < N exp(£it| V) P fll 2o 12 ([a,0] xra) -

The argument is essentially taken from [12].
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Proof. Pick tg € [a,b], and let I be any interval such that to € I < [a,b]. For all t € I, it holds that

t,

0
exp(Lito|V|) Py f¢ = exp(zit|V|) Py f¢ + ZJ |V | exp(Lit'|V]) Py f<dt
t

From Bernstein’s inequality, we obtain that
J exp(:£ito|V[) P f] z ey < | exp(Eit| V)P | gy + 110 1[V] exp(£it| V) Prf* | a1z cra)
< | exp(£at| V) Py | Lo ey + NI 1_%H exp(Lit| V)P [ Lape (rxrey
Taking the ¢-th power and averaging over all ¢ € I, we obtain that
| exp(itol V1) P fzqgny S (11170 + NII™0 ) | exp(£it VD Py S| oz e -
By choosing |I| = N~!, and taking the supremum over all tq € [a, b], it follows that

. w 1 . w
lexp(£it| V) Pn [ L2 12 (jap) xrey S N @[ exp(£it| V) Py f“ 198 ([a4) xRy
O

The following estimate, which appeared in the almost sure scattering problem for the nonlinear Schrédinger
equation [32], is useful in combination with Khintchine’s inequality.

Lemma 2.7 (Square function estimate [32, Lemma 2.8]).

Let f € L2(R?) and let ¢ be as above. Then, it holds that

(18) D0 B @) < (18] = 1) () -
kezd

In addition to the dyadic decomposition in frequency, we also need a dyadic decomposition in physical
space. To avoid confusion, we denote the cut-off function in physical space by x. More precisely, we set
x1(z) := p(x) and xp(z) := ¥(x/L), where L > 2.

Lemma 2.8 (Mismatch estimates).

Let 1 < p<ooand M,N,L > 1. We further assume the mismatch conditions max(M /N, N/M) > 8 and
L = 8. Then, it holds for all absolute constants D > 0 that

(19) IxiPrxelpe e <p (ML)~
(20) |Pnx1Prrlpp_re <p (NM) P

Proof. The inequality (19) can be found in [25, Lemma 5.10]. An inequality similar to (20) can be found
in [25, Lemma 5.11], and we present a different argument.

Using duality and (Pyx1Pum)* = Pyx1Pn, we can assume that N > M. From the mismatch condition,
it then follows that N > 8 M. Thus, we obtain for all f € LL(R?) that

1P (1 Prr ) e = 1PN (Ponjsx1) Pr f)lze < 1Ponsxiloz | Puflle < N 2P| fllpe -

The following auxiliary lemma will be helpful in the proof of probabilistic Strichartz estimates.
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Lemma 2.9 (/ j-estimate).
Let s € R and let f € H(R?). For any 2 < p < 00, we have that

(21) HP’“(‘PZf)Hzl?eng’(de{keZd; Ikle(v /2N )y S 1PN Fllz ey + N7 £ e ay

Remark 2.10.

The error term N—57104| f| Hs(rdy 18 a result of the non-compact support of ¢, but may essentially be
ignored. On a heuristic level, each Py(¢;f) is supported on a spatial region of volume ~ 1, and thus
(21) should follow from Holder’s inequality. To make this argument rigorous, we use the square-function
estimate and the mismatch estimates above.

Proof. Let IBN be the fattened Littlewood-Paley operator as in (15). We write M « N if either M < 270N
or M > 2'°N. In the following, we implicitly assume that ||k||, € (N/2, N]. We then estimate

(22) P gy < IR P iy + 3 IPPs gy -
P

We begin by controlling the first summand in (22). Using Minkowski’s integral inequality and the square-
function estimate (Lemma 2.7), we obtain that

| Pe(0rPN N 2o 7o = 00 Pl@iPN ) 20 1 70 S 00 Pr(@iPN ) 20200 12 < v Pi(@iPn )l 262 202
Ll Ly Klfkﬁl,Lz 1k e 1Pzt

@) = v (181 lorPr s )’

(e Ls

Using simple support considerations, we have that
1.2
~ jad 2 ~ ~ — s
ev (121« leePrf2)? |, < Jow (181 loiPus?) || < 0= D7) @y D2y
S =D @ Prf|7 -
Inserting this back into (23), we obtain that

HPk(SOlPNf)HZ?Eng' < K- l>_5d90lPNf\|e$ell,Lg <SP fllzz -

Thus, this yields the first term in (21). We now control the second summand in (22). First, note that
Py =Y s y<nr<osn Pnr Py Since there exist only ~ N frequencies of magnitude ~ N, we have that

d
|Pe(@iPr )] 2o < N2 > [P (orPrr ) o -
e 25 N<N/<25N !

It now suffices to prove for all g € S(RY), all M % N, and all absolute constants D > 0 that

(24) [P (rPrrg)l <o (NM)™P|<e = )Pyl rz -
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Using spatial translation invariance, we may set [ = 0. Let {x}1r>1 denote the dyadic decomposition in
physical space. Using the mismatch estimates (Lemma 2.8), we obtain

HPN'(SDOPMQ)HLg' <), [P (poPrrxeg)l < > | PrrooPrrxell v, o IXLGI 0
L=1 L>1

(l"lﬂ L~ 2 ”XLgH[P ~ (N‘IM) H<l’> 9HL2 :
T
L>1
|:|

As a direction consequence of (2.9), we also obtain the following estimate on the H*-norm of the microlocal
randomization.

Lemma 2.11 (Hj-norm of f¥).

Let f € H3(RY) and let f* be its microlocal randomization. We further set

(25) f2= 00 Xoabolef)  and  fyi= Y, XeiPleuf), where N >2.
lezd k,lezd
[kl0€(N/2,N]

Then, we have for all 2 < r < oo that
(26) | ey ms = IN*fRlLpez 2 < vVl fllag -

Proof. The first equivalence in (26) is a direct consequence of the definition of the Hj-norm. Now, we
prove the bound in (26). From Minkowski’s integral inequality, Khintchine’s inequality, and Lemma 2.9,
we have for all N > 2 that

IN*FfRler e < IN® > XpaPrloif)lrzrr,
[£]c€(N/2,N]
S VIN?| Pz vl e(v /2,

<V (NSHPNfHLg(Rd) + N_md”fHH;(Rd))
The same argument also applies to N = 1. After taking the K?V—norm, this completes the proof. O

2.3. Strichartz estimates. The individual blocks in the microlocal randomization or the Wiener ran-
domization have frequency support inside a unit-sized cube (at a large distance from the origin). Since
this rules out the Knapp example, one expects a refined dispersive estimate. The following lemma is due
to Klainerman and Tataru [35], and it has first been used in the probabilistic context by [26].

Lemma 2.12 (Refined dispersive estimate by Klainerman-Tataru [35]).

Let f e L'(RY), let k € Z% satisfy |k|o € (N/2,N], and let M < N. Then it holds for all ¢ € R and
2 < p < o that

Md(lfp
(1 + 2@

As stated, the inequality (27) essentially follows from [35]. For the sake of completeness, we present the
modification below.

(27) | exp(£it| V) Parflpmay S ||fHLp (RY)
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Proof. By interpolation against the energy estimate | exp(+it|V|) Parg |2 (ray < 1 f] 12 (rays it suffices to
prove (27) for p = co. The inequality [35, (A.66)], where u = M /N, and a scaling argument yield

MNd-1
1 f ey -
2

(14 N|t))

We now distinguish two cases. If [t| < N/M?, then Bernstein’s inequality (Lemma 2.5) yields that

(28) | exp(it| V) Parnefl Lz ray S

. d . d
[ eXP(J—”tWDPM;kaLg‘(Rd) < Mz eXP(iZﬂVDPM;kf”Lg(Rd) = M> HPM;kaLg(Rd) < MdHPM;kaL;(Rd) :

If [t| < N/M?, then (28) yields that

, MN?-1 M M
[ eXP(iZtWDPM;kaL;ﬁ(Rd) S ——= HfHL}E(]Rd) = e a1t ||fHL;(Rd) S —— % 7 HfHL}D(]Rd) :
M M
(Nt]) = (1) 2 (14 1) 2

0

In this paper, we are mainly concerned with the case M = 1. Then, (27) describes the linear evolution
on short time intervals more accurately than (28). As a corollary of the refined dispersive estimate, we
obtain the following refined Strichartz estimate.
Let 2 < ¢,p < 0. We call the pair (g, p) wave-admissible if

1 d-1 d-1

-+ — < — and (g,p,d) # (2,00,3) .

q 2p 4
Corollary 2.13 (Refined Strichartz estimates [35]).
Let f € L2(R%), let k € Z% satisfy ||k||s € (N/2, N], and let M < N. Then, we have for all wave-admissible
pairs (g, p) that

d_2

1
(29) | exp(Lit| V) Parsw fll o rxray S M27 97 P Na | Pagge f| 12 (e

The derivation of the refined Strichartz estimate from Lemma 2.12 follows from a standard 7T7T™*-argument,
and we therefore omit the proof. For the endpoint (2,2(d — 1)/(d — 3)), we also refer to [31]. Let us
d_1_d

1
obtain the factor N <, which does not depend on p.

3. PROBABILISTIC STRICHARTZ ESTIMATES

In this section, we derive probabilistic Strichartz estimates (cf. [3, 26, 37]) and a probabilistic long-time
decay estimate (cf. [39]). To keep the exposition self-contained, we include the (short) proofs. Recall
from (25) that

f(l'u = Z X071P0(<plf) and f;’{; : Z XkylPk(golf) , Where N 2 2.

lezd k,lez?
[&lloe(N/2,N]
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Lemma 3.1 (Probabilistic Strichartz estimate).
Let f € H3(R?Y) and let f* be its microlocal randomization. Then, it holds for all N > 1, all wave-
admissible exponent pairs (g, p), and all 1 < r < oo that

- w < l_5+
(30) lexp(Lit| V) [Nl Lo @xrxray S VN7 fll s may -
This estimate has previously appeared for the Wiener randomization in [26].

Proof. In the following, we implicitly assume that k € Z¢ always satisfies |k|oo € (N/2, N]. First, we
assume that 2 < p,q < o0, and that max(p,q) < r < . Using Minkowski’s integral inequality (Lemma
2.3), Khintchine’s inequality (Lemma 2.2), and the refined dispersive estimate (Lemma 2.12), we have
that

[ exp(£it| V) [y pone < lexp(£itl VRl grary S Vrlexp(£it| V) Pre(eif) | poree
1 1
< Vrlexp(£it| V) Pl pore S VNPl r2 S VN[ flag -

In the last inequality, we have also used Lemma 2.9. The estimate for 1 < r < max(p, q) then follows from
Holder’s inequality. Thus, it remains to treat the cases ¢ = o0 and/or p = co. This is a know technical
issue, see [12, Remark 3.8] for a discussion. Both cases can be reduced to the previous estimate by using
Lemma 2.6 and Bernstein’s inequality. O

Lemma 3.2 (Probabilistic long-time decay).
Let f e L2(RY) and let f¥ be its microlocal randomization. Furthermore, let 1 < ¢ < o0 and 2 < p < @
be such that
1 d-—1 d-1
(31) —t— < —.
q p 2
Then, we have for all 1 < r < o that

l1,d-1 d-1

1 q P 2
32) eV o cpsnntrass Sap VNG (14 3) 1713 ety
Lemma 3.2 has previously been used for a physical space randomization in [39, Proposition 3.1]. In contrast
to the standard Strichartz estimates, which are time-translation invariant, (32) provides a quantitative
decay rate. The motivation behind this estimate is illustrated in Figure 4. In this paper, we only require
the following special case.
Corollary 3.3.
Let f € L2(R*) and let f“ be its microlocal randomization. Then, we have for all § > 0 that

. o )
(33) lexp(£it| V) f¥] L 1 o (@x[N1+0 00y xR S VIN'T2E | 2 ray -

Remark 3.4.
Due to (31), the L} L®-estimate fails logarithmically in three dimensions.

Proof of Lemma 3.2. We essentially follow the argument in [39]. Let us first assume that 2 < ¢,p < 0.
We further assume that r > max(q, p), the corresponding estimate for 1 < r < max(q, p) then follows from
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This figure illustrates the effect of the physical randomization on the linear evolution. At the point
(to,xo), the linear evolution depends on the initial data in a large region of space. Due to the
physical randomization, the initial data in different spatial regions cannot constructively interfere,
and hence we expect an improved decay.

FI1GURE 4. Effect of physical randomization

Holder’s inequality. Using Minkowski’s integral inequality (Lemma 2.3), Khintchine’s inequality (Lemma
2.2), and the refined dispersive estimate (Lemma 2.12), we have that

lexp(£it| V) N Ly Lore@x[1,00) xRY)

< |l exp(it V) X | Lo 22 Ly (17,00) xR x )

S Vrl exp(£it|V) Pe(euf)l parne ([7,0) xR x Z4+4)

S Vrlexp(£it| V) Pe(if)ez  norn@araxirm)«re)
»)

1

t\ —(@d-D(E-1)
(1+ I p

oty

Using condition (31), we obtain

‘ <1 N M)—(d—l)(é—;)
N

2, LI(Zd+d X [T,00))

”Pk((plf)Hgi!ng’(Zdhide) :

L{([T,0))

Finally, from Lemma 2.9 we have that
”Pk(@lf)Hp Lp (Zd+d><Rd) SHfHHs .

This finishes the proof in the case 2 < ¢,p < . Using Bernstein’s inequality, we can reduce the case
p = o0 to p < 0. Thus, it remains to treat the range 1 < ¢ < 2. Using a dyadic decomposition in time,
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we have for all 7' > N that
lexp(it|V]) f¥ | Ly, L322 ([ T,00) x R4

0
< 2 lexp(+at|V ) ¥ | Lace @xemT2m+17)x RY)

0
11 ,
2 (2"T) a2 | exp(+it|V]) fR ] 1, L2 L8 (0 [2m 2m417) xR

m=0
o +——@
1.1 1 2mT
< Y @T)i 2Nz ( < ) e
m=0

d—1_d-—1

1
1 T\Na" » 2
SN« (=
~ a (]V{) Hf“kh

In the second last line, we used condition (31). For T < N, we also have that

1 1 1
. _-—= . = +
| exp(it| V) fN | Lo cnox vy xray S N2l exp(£it| V) fR ] 1r 202 @xjo,nyxray S Ne 7| fllag -

Definition 3.5 (Auxiliary norm).
Let 0 < s < 1, let (fo, f1) € H*(R*) x H*~'(R*), and let Ny > 1. We then define

21— s1n t|\V
1(fos f) z(ve) = 2 NS+3—1-0 cos(t|V) fo (V| |)f1
NZ=Ng | | L%L%“([N1+‘9,oo)xR4)
- sin(t|V
> N8 eos(t v foy + AV g
N> Vi LE LE([0.00)x )

From Proposition 3.1 and Corollary 3.3, it follows that

16 F e 2y < VI Fos Sl s s -

4. WAVE PACKET DECOMPOSITION

17

In this section, we use a wave packet decomposition to better understand the (random) linear evolution.
This part of the argument does not rely on the additional randomization in physical space. We therefore
phrase all results in a way that applies to both the microlocal and the Wiener randomization, and hope
that this facilitates future applications. With this in mind, we now rewrite the microlocal randomization

in a form that resembles the Wiener randomization.

Let the random variables {Xy i}y ez« be as in Definition 1.2, let {ex}rero oy be a family of independent
random signs, and set e_; = ¢ for all £ € I. We can then define Y;; := €, X} ;. For a sequence of
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multi-indices k, 11, ...,1; € Z% and any sequence of Borel-measurable sets A1,..., Ay € R, we have that

P(Ek = 17Yk,l1 EAl,...,YkJJ EAJ) :P(ek = 1>Xl~c,l1 EAl,...,Xk,lJ EAJ)

J J
=Pl = 1) [ [P(Xpy, € Aj) = Pley, = 1) [ [P(Yiy, € 4;) -
j=1 j=1

In the last equality, we have used that the random variables X} ; are symmetric. Therefore, for a fixed
ke Z%, the family {e;} U {Yk.1}1eza is independent. From this, it then easily follows that the whole family
{extrerooy U {Yk1}kerofoy,ieze is independent. We then rewrite the microlocal randomization as

(34) = ), XpiPularf) = D, enP( ), Yiorf) = D) enfr,  where  fii= Po( Y] Yiupif) -

k,leZd keZd lezd kezd lezd

Due to the independence properties discussed above, we can regard the functions {fx} as deterministic
by conditioning on the random variables {Y};}x;, and only utilize the randomness through the random
signs {ex}r. Note that (34) closely resembles the Wiener randomization.

To motivate the wave packet decomposition below, we now rewrite the linear evolution with initial data
(f&, ft’). Using the notation from (34), we first introduce the half-wave operators by writing

w . sin(t|V]) ..
cos(t|V]) f5 + Mfl
VI
in(t|V
= 3 e (coste Ve + N s )
kezd | |
(%) o + 91 o o — V11
= Z €k [exp(it|V|)< Oik 5 1’k) +exp(—it|V|)( Dik 5 1;’{)]
kezd
=: Z €k [exp(it|V|)fk+ + exp(—it|V|)fkf] .
kezd
As in (25), we also decompose dyadically in frequency space, and write
(36) Fy = Z e exp(it| V) fir and Fy:=Fy +Fy .
IEllcE(N/2,N]
Let k € Z% with ||k|e € (N/2, N], and let [ € Z%. We define the tubes T,fl by
(37) kal = {(t,x) € [0, N] x RY: le—(IFt-k/|kl2)]2 < 1} .

Here, the superscripts + are chosen so that the tubes correspond to the operators exp(+it|V|). The
dimensions and the shape of the tubes are illustrated in the introduction, see Figure 2. Motivated by the
Doppler effect, the tubes T,j ; are sometimes called red tubes, and the tubes T} ; are sometimes called blue
tubes. 7 7

Proposition 4.1 (Spatial wave packet decomposition).

Let k € Z with |k|« € (N/2, N]. Let f, € L2(R%) be a function such that supp fx  k + [~1,1]%. Then,
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there exists a decomposition

fe=>" fau

lezd
such that

(i) supp foy € k + [~4,4]7 for all L € Z,
(ii) the family {f;};cze satisfies the almost-orthogonality condition

(38) 21(Rd) S HfH%g(]Rd) ’
lezd
(iii) and for any D > 1, any [ € Z%, and all (¢,z) € [0, N] x R?, it holds that
(39) |exp(£it V) fii(2)] Sp (1 + dist((t ), Ti)) ™1 full Lz ey -

Wave packet decomposition as in Proposition 4.1 have been used extensively in the literature, see e.g.
[6, 18, 27, 30, 57] and the survey [51]. We present the details below, but encourage the expert reader to
skip ahead to the end of the proof.

Proof. We define the fattened projection
ﬁ’k = 2 Pk’ .
1" =k o <2
Then, it holds that
f=Puf =3 Ploif) = fri -

lezd lezd

The frequency support condition (i) directly follows from the definition of ]Bk Furthermore, the almost
orthogonality (ii) follows from

Z < Z H‘Plfk“%%(]}gd) < ka”%?z(Rd) .

lezd lezd

Thus, it remains to prove the decay estimate (iii). We only treat the operator exp(it|V|), since the proof
for exp(—it|V]) is similar. If N < 1, the estimate is trivial. Thus, we may assume that N » 1. The
argument is based on the method of non-stationary phase. For all t € [0, N] and = € R?, we have that

exp(it|V)) fr(x)

1

:(277)% f exp(izt + it|€) (€ — k)(@r+ F)(€)de

~

27T J}Rd JRdJ exp(iz€ + it|€])P(€ — k) exp(—iy(§ — n))e(y — 1) F (n)dydnds

~

= (2 T exp(zxk+zt|k| J K(n;t,x)exp(—il(k —n))f(n)dn ,

where the kernel K(n;t,x) is given by

Knstia) = || explite =€ +it(€ + bl = [K) exp(=in(€ + k= m)F(€)plu)dsdy
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Since suppy < [—1,1]%, the function a(&;y,n) 1= exp(—iy(¢ + k — 1)) (€)¢(y) has uniformly bounded
derivatives in &, i.e, we have for all o € N¢ that |8°‘ (&y,m)| <a 1. Using the support conditions in the

variables y and ), it thus suffices to prove for all a € C®([—2,2]%) that

(40)

[[ explite = g+ il + 1 - 1o dg‘ <or (L Jo— 14tk JR2) ™

Due to the compact support of a(§), we restrict to |£| < 2. The bound for |z — [ + ¢ - k/|k|2| < 1 is trivial.
Thus, we may assume that |z — [+t - k/|k|2] » 1. We define the phase function

D4(§) = ®u(&it, 1) = iw — DE +it(|§ + k[ = [K]) .
Then, we have that

Ve (&) = Ve( (@ — D¢ + t(1¢ + k| — |k]))
E+k
=z -1+t
IE + k|
|k — 1€ — Kl 3
S S k+ .
14 ( € + Kl|k| |§+k|)
From the assumption [t| < N, it follows that V@), = 2 — 1 + tk/|k| + O(1). We also write
k &\ k
V@k(f):x—l—i-t + tUy
5 Rl
where | K
1—|v—k/k v
Uy (v) = + .
v+ k/IRIL R/ IR] + v
From rotation invariance, it follows easily that |V (v)| <o 1 for all |v| < 1/10, uniformly in k. This
leads to
[VE@L(§)] <a |k‘||i||—1 <1 forall o] >2

We then rewrite the integral in (40) as

fR exp(i(a — )& + it(|€ + k| — [K]))a(€)de

i M
_ JRd <<( |)§£I‘€P(2()§|2V£> exp(iq)k(f))> Ca()de

B . iVedr(&)\M
= JRd exp(i®(§)) (Vg . W> a(§)d¢ .

The inequality (40) then follows from the bounds on the phase function above.

g

The wave packet decomposition in Proposition 4.1 is valid on the time interval [0, N], and the physical
localization deteriorates for larger times. When analyzing the linear evolution on an interval of the form
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[to,to + N), with tg € NNp, we therefore use the wave packet decomposition of exp(=+ity|V]) fr. To state
the result, we set

Tyt = {(t,x) € [to,to + N] x RY: o = (LF (t —to) - k/|k]2) |2 < 1} .

Corollary 4.2 (Time-translated spatial wave packet decomposition).
Let k € Z¢ with |k|e € (N/2,N], and let ty € NNg. Let fi € L2(R%) be a function satisfying supp fx <
k+[-1, l]d. Then, there exists a decomposition

exp(Fito| V) fi = D) fifie
lez
such that
(i) supp f]fl;to Ck+[-2,2]forallleZ,
(ii) the family { fkil,tO }Hieza satisfies the almost-orthogonality condition

(41) S 2ty S 1y
lez
(iii) and for any D > 1, any [ € Z%, and all (¢, z) € [to, to + N] x R%, it holds that
(42) | exp(Fi(t — o) [V i (@) Sp (1 + dist((t,2), T,)) P fall 2 ey -
Proof. We apply Proposition 4.1 to exp(%ito|V|) fi- O

As discussed in the introduction, we now group the wave packets into bushes and a (nearly) non-
overlapping collection (see Figure 3). This argument is inspired by Bourgain’s bush argument from
[6], and we also refer the reader to [56, Proposition 2.2].

Before we state main proposition, we define the truncated and fattened ¢*-cone

(43) KN

to,zo

= {(t.a) € o to + N] x R': | = o]l < 16N = |t = to]} .

The significance of IN(t](\)f’xO will be explained in Section 5.2 and Section 6. For now, we encourage the reader

to treat IN(t]XxO as space-time cube of scale V.

Proposition 4.3 (Wave packet decomposition and bushes).
Let {fi}r € L2(R?) be a family of functions, where ||« € (N/2, N], and supp f;f < k + [—1,1]%. Let

to € NNy, let g € NZ%, and let the wave packets {flfl_to} be as in Corollary 4.2. Furthermore, let Q,{ijo
N

be a collection of disjoint space-time cubes with sidelength ~ N° covering IN(t
packets according to their amplitude by setting

We group the wave

0,20 "

N+ Lt
(W) = = (D) € 2T ) B | e € 27,277, - mole < 3N}
Then, there exists a family of bushes {%;..}; = {‘%%ﬁto,xo }j, where j = 1,..., Jﬁ”;—gwo, and a nearly

N+
m,to,zo’

non-overlapping set Z,, = depending only on the set <, so that the following holds:



22 BJOERN BRINGMANN

(i) The sets form a partition of .27, i.e.,

(45) P = mU( )

(ii) We have the bound on the number of wave packets

(46) Z Z 22m# t;r:ro ~ 2 kaHL2(Rd)

20ENZI MEZL

iii) Each bush 4, ,, contains at least u = u(N, m) := N _%#,Q{m wave packets.
Js
. . . . : '
(iv) For each bush %;,,, all corresponding wave packets intersect in the same region of space-time
More precisely, there exists a cube @ € Qé};xo s.t.

(47) k:lto N2Q#g  Vkl)eBjm .
(v) At p = N_%#szm wave packets in &, overlap, i.e., we have for all cubes Q) € Q%m that
(48) #{(k,1) € Doz T, 2Q # B} < P

The choice of the number of packets/multiplicity u = N 7%#427”1 will be justified in the proof of Proposition
6.1, see (65). The parameter p corresponds to the multiplicity parameter in Bourgain’s bush argument,
see [56, Proposition 2.2].

Remark 4.4.

We will later apply this proposition to a set of random functions {eg fl;i} k- From (44), it follows that the
sets 7, and hence also %; , and Z,,, do not depend on the random signs {e}.

Proof. Let us first prove the inequality in (ii). From Corollary 4.2, it follows that

N,+
am m,to,To N I;i:l;to %2 ~ ki %2 :
27", etz = 1 22

20ENZI MEZL k lGZd ke7d
k] €(N/2,N] Il €(N/2,N]
We now construct the sets 2" and @m io.wo- Lo simplify the expressions, we drop the super- and

J,m,t0,x0
subscripts +, NV, tg, and xg from our notation. The basic idea is to form the bushes through a greedy

selection algorithm. For any Q € QY | . we define

(49) Im(Q) == {(k,1) € Fp: Tiy (| Q # T} -

We further set 755 (Q) := Z(Q). We then choose a cube Q1 € QN such that
#70(@Q) = max #7.0(Q)

€%t0.20
and define the first bush as % ,, := ﬂr,(Ll)(Ql). By setting
Z(Q) = F(QN\Brm
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we remove all of the wave packets in the first bush from the collection. We then iteratively define
B = ﬂr,(f)(@j), where

#70(Q;) = max #79(Q),
Qeef .,

and the collections %,(1])(62) are defined as yéf‘l)(Q)\%j_lm. Once 9,,§]+1)(Qj+1) < p, we no longer
create a new bush, and instead stop the algorithm. Since .7, contains at most ~ N® wave packets, the
greedy selection algorithm terminates after finitely many steps. From the construction, we see that the
sets Bjm < 7 x 74 are disjoint (even though the corresponding tubes may still overlap). Finally, we
define the collection %, by

D = m\U}‘le‘@J}m :

The properties (i), (iii), (iv), and (v) then follow directly from the construction. O

We now prove a probabilistic estimate for the wave packets with random coefficients.

Proposition 4.5 (Square-root cancellation for wave packets).

Let {fi}x € L2(R?) be a deterministic family of functions, where k € Z? satisfies ||l € (IN/2, N], and
assume that Y, | fi H%g(ﬂ{d) < 1. Let 6 > 0 be a parameter, and let C; > 0 be any large absolute constant.
Then, we have for all m € Z satisfying —Cylog(N) < m < Cylog(N) that

, +
H Z(k:l)E%ff,to,xo e exp(i(t — t0)|V|>fk,l;t0 LE (RxRY) .

(50) E sup sup N - ’ <N

tO:m(i]y‘E‘}\l}];jJN jzl,.--v‘]ﬁ:%m:co Qm(#%jvéﬁ;to’zo)g
and

Nt epexp(Fi(t —to)|V]) f

(51)  E|  sup Hz(k’l)egxw OO~ VD kit 1y 1w < N

to=0,...|N?|N QmM%

20eNZ4

Here, u = N 7%#42772[7 ;fi:ro is as in Proposition 4.3. To be perfectly precise, we use the convention 0/0 := 0
in (51).

The expressions in (50) and (51) may seem complicated. To make sense of them, recall that the square
function heuristic predicts that ), exay is roughly of size ~ (3, ai)%. Then, Proposition 4.5 simply states
that the square function heuristic can be justified for all relevant amplitudes, for all relevant times, all
positions, all families of bushes, and all non-overlapping collections.

For instance, let us heuristically motivate (51). By the definition of N

m,t0,T0’

any fixed point in the

space-time region [tg,to + N] x R? is contained in the (moral) support of at most y wave packets. Since

each of the wave packets has amplitude ~ 2™, and they all correspond to different frequencies k € Z¢, the
1

square-function heuristic predicts a contribution of size ~ 2™ 2.
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Proof. In this proof, we make extensive use of Lemma 2.4. First, we prove that the suprema in (50) and
(51) are over at most N O(Cd)—many terms. From (46), it follows for all m > —Cylog(N) that

Z #M to,xo S22 QmZkalHH (R) ~ S2 QmZka HL2 Rd) SN

:t()ENZd

Thus, this bounds the number of all wave packets with amplitude ~ 2™. Since each bush %’]Nnj to 20
contains at least one wave packet, the supremum in (50) is over at most O(N2““) non-zero terms. The
same applies to the non-overlapping families .@nj\{;ﬁx , In (51). From Lemma 2.4, it then suffices to obtain
uniform sub-gaussian bounds on each individual term in (50) and (51).

We start with the contribution of the bushes. To simplify the notation, we write %, ,, = @;VertO 2y From
Bernstein’s inequality and Lemma 2.6, we have for all 2 < p < oo that

|2 eexp(ilt —t0) [V f

(kB LFLE(RxRA)

<N (Hilt — t)|VI) £

= i €k EXpLLUl — 1o klito||rprp :
(k)EB5m L Le(RxRY

Before we utilize the randomness, we observe that for each k € Z? at most O(N°?) tubes T,}l_to can
intersect a space-time cube of sidelength ~ N°. As a result, it follows from (47) that

#{1ez: (k1) e Bjn} <N

For all p < r < o0, we then obtain from Minkowski’s integral inequality, Khintchine’s inequality, and the
refined Strichartz estimate (Corollary 2.13) that

H 2 e exp(ti(t — t0)|v|)f1:l;to
(k,l)egj,m
d+1

SN

L7, L LL (QxRxR4)

2 e exp(Li(t — t0)|v|)fl:l;to

(k,l)eiaﬂj,m
. + 2 %
( 2 ( Z exp(+i(t —t0)|v|)fk,l;to> )
kezd 1 (k1)eBjm

\/7
< SiNTY exp(ii(t—to)WDfl:l;to

LYLELT (RxRIxQ)

LPLE(RxR9)

Lngéi’l(]Rde X Bjm)

< SiNTY exp(i(t —t0)| V) fii 1,

6 LY L3 (B m xRxRE)

SVIrNE TR flj_lﬂfo

6 | L2(%Bj,m xRY)

S VN T o (4, )

By taking p = 2 to be sufficiently large, we then obtain the desired sub-gaussian bound. This completes
the proof of (50).
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+ .
r]rLV:tB,zO- For the technical

aspects of this part, recall that the collection Qg’mo from Proposition 4.3 covers IN(tJX’mO, but due the

We now control the contribution of a single non-overlapping family 2, =

definition of .27, in (44), all the tubes T}, 1, with indices in %, are contained in the region ||z —z¢ s < 6N.
This gives us sufficient room for the following argument.
We let 2 < p < 0. As before, it follows from Bernstein’s inequality and Lemma 2.6 that

LY enn(Eitt— W)V fiby,

N,+
(k7l)6@m,t0,zo

L;[‘ L¥ ([to,to-‘,—N] XRd)

a+1

SNT

2 €k exp(ii(t _t0)|v|)flz_tl;to
(ke

m,tg,zQ

LPLE([to,to+N]xR%)

For all p < r < o0, we then obtain from Minkowski’s integral inequality and Khintchine’s inequality that

Z e exp(Li(t — t0)|v|)fl:_tl;to
(k,l)e.@m

dtl
SN »

L7, L LE(Qx[to,to+N]xR%)

Z €k exp(ii(t _t0)|v|)fl:_tl;to
(k,l)e.@m

(S % ewtic-wvhs,))

kezd i (k,)eDm

‘( 20 2 e"W(t—to>|V|>f;;Z;t0)2)é

keZd 1: (k1)EDm

( 2 ( Z exp(ti(t — to)|V|)f;:l;t0)2> ’

kezd 1: (k1)EDm

LngLL([to,to-‘rN] XRdXQ)

=

d+1
SVIN v
L?Lg([to,to-&-N]XRd)
d+1
SVIN v

LYLE(KN )

d+1

++/rN »

LYLE(([to,to+ NTxRINKN )
Since p = Nfé#szfm > N2, the bound on ([to, to+N] x Rd)\f(tj(\;mo easily follows from the decay estimate

N

(42). Thus, we now control the contribution on IN(tO’xO. From Holder’s inequality, we have that

‘< 2,0, & eXp(ii(t—to>IV|)f,;Z;t0)2>2

kezd 1: (k1)EDm

LYLE(KY 20)

SNT‘( Z ( 2 eXp(ii(t—to)|V|)f;l;to)2)%

kezd 1: (k,)eDm

Now pick any cube Q € Qig’zo. In analogy to (49), we define the collection of “remaining” tubes by

yT:L(Q) = {(kvl) € D T];i:l;to ﬂ 2Q # @} .

From Proposition 4.3, it follows that #.7)(Q) < p. As above, we have for each frequency k € 7% the
bound #{l € Z%: (k,1) € Z7(Q)} < N°?. Using the decay estimate (49) to treat distant wave packets, we
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obtain

1
2

\(Z( D exp(ii(t—t0)|v|)f;:_fl;t0)2>

kezd 1: (k,)eDm

(ST ente-wTi,))

kezd 1: (kDeZn(Q)

LELE(Q)

N

LELE(Q)

N =

+ ‘( > ooy exp<ii<t—to)IVI)f;;—fl;mf)

kezd 1: (kDEIm\T}(Q) LELE(Q)
sd
S N2 eXp(iZ(t — t0)|v|)f/:fl;t0 + N_locd

LYLEG (QxT5(Q))
S NE#T(Q))2 + N1
éd 1
SN22™pu2 .
After taking the supremum over all cubes @) € Q,{ijo, we finally arrive at

Z e, exp(Fi(t — t0)|v|)fki7l;to
(k,l)e.@m

éd

)

Ly, LE LY (2 [to,to+N]x R4

By choosing p > 2 sufficiently large, we arrive at the desired sub-gaussian bound. ]

Definition 4.6 (Wave packet “norm”).
Let (fo, f1) € H*(RY) x H*"}(R?) and let f; be defined as in (34) and (35). For any Ny > 1, we then
define the wave packet “norm” of the random data (f§, fi’) by

I8 1) vy =

| Speme, . e explEit = 0V iy,

Z N—20d sup sup J:mito,@0 LY LE (RxRd)
N,+ 1
N=N, t0=0,...[N9JNj:l,...,J}Z::—;@O 2m(#‘@j,m,to,zo) 2
|m|<Cqlog(N) zoENZ
: +
>, N+ egexp(Ei(t —to)|V]) [
+ Z N—20d sup H (BD)ETm 19,20 Rlitoll e Lep (Jto,to+ NTxR%)
1
N=Np to=0,...|N?|N 2M 12
|m|<Cyqlog(N) roeNZ?

While the quantity [|(f§, f1’)llwp(ny) measures the size of the wave packets (over their expected size), it
is certainly far from being an actual norm.
Corollary 4.7.

Let (fo, f1) € H*(R?) x H*~Y(RY) and let fi" be defined as in (34) and (35). Furthermore, we assume
that Nog = No({Y%,}) satisfies
> (Ifox

Ik]loc = No/2

oy + Ll 1za) S1-
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Then, it holds that
Ee”(fﬁjaff)HWP(No) <,
where E, denotes the expectation over the random signs {e}.

Proof. This follows directly from Proposition 4.5 and Definition 4.6. O

For the bootstrap argument in Section 6, it will be convenient to create a small forcing term by truncating
to high frequencies. If Ny; = Npj(w) is a (possibly random) frequency parameter, we set

sin(t|V
(52) Foim 3 (costei¥hiy + )
NZ=Npi

Proposition 4.8 (Truncation to high frequencies).
Let 0 < n < 1 be an absolute constant and let s > %. Let (fo, f1) € Hi(R*) x Hi7H(RY), let (f§, f¢)
be their microlocal randomlzatlons and let {f;7} be as in (34) and (35). Then, there exists a random
frequency parameter Np; > n~ ! such that

| (Po Ny jaf6's Ponyyjad i) s =

IG5 SOz

17 SO we(vy)

INCINCIN N
S SIS 3

| Fhill L3 6 (R xR

Proof. We only need to combine the previous estimates. From Lemma 2.11, it follows that

2 )

N=2 k]| e(N/2,N]

2 )<oo a.s.
xT

From dominated convergence, it then follows that there exists some random frequency Ny; 1, depending
only on the random variables {Y};}, satisfying

>, (NzSHfo;kH%g + NQ(S*l)Hfl;kH%g) <n  as.
NZ=Nyi 1 ||k|ce(N/2,N]
From Corollary 4.7, it then follows that
Ef“(f((ju’ fiu)HWP(Nhl,l) < .
From dominated convergence, it follows that there exists a random frequency Ny;2, depending on the
random variables {e,} and {Y},;}, which satisfies
(5 [ wp(hisn) S0 s,

By similar arguments, it also follows from Proposition 3.1 and Corollary 3.3 that there exists random
frequencies Vy,; 3 and Ny; 4 such that

I8 )z <0 and D5 | cos(tIVI) fiy +

NZ=Npi 4

sin(t|V|)
V|

<
L3LS (RxR%)

e f

For the second inequality, we have used the condition s > %
By choosing Np; := max(4Npi 1, Nhi2, Nhi,3, Nhi 4 n~1), we arrive at the desired conclusion. ]
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5. NONLINEAR EVOLUTION: LOCAL WELL-POSEDNESS, STABILITY THEORY, AND FLUX ESTIMATES

In this section, we first apply to Da Prato-Debussche trick [19] to the nonlinear wave equation with
random initial data. Then, we recall certain properties of the (forced) energy critical nonlinear wave
equation. In our exposition of the local well-posedness and stability theory, we mainly rely on [26]. The
flux estimate already played a major role in the author’s work on almost sure scattering for the radial
energy critical NLW [12], and we loosely follow parts of [12, Section 6].

Let Ny; be as in Proposition 4.8, and let F' = Fj; be as in (52). We then decompose the solution u of (5)
by setting v := u — F'. Then, the nonlinear component v solves the forced nonlinear wave equation

(53) —0uv + Av = (v + F)3 (t,zr) e R x R* |
’U|t=0 ZU()EHl, aﬂ}|t=0 =U1€L2 s
where vo = wo + f5l.n,. and v1 1= w1 + fy’_y, . The randomness in the initial data (vp,v1) is not

important, and we treat it as arbitrary data in the energy space. For the rest of this section, we treat
F as an arbitrary forcing term in L3LS(R x R%), since the finer properties of F' will only be relevant in
Section 6.

5.1. Local well-posedness and stability theory. In this section, we recall the local well-posedness of
(53). Using stability theory, we recall the reduction of Theorem 1.3 to an a-priori energy bound. These
results are well-known in the literature, see e.g. [26, 44].

Lemma 5.1 (Local well-posedness [26, Lemma 3.1]).

Let (vo,v1) € HY(RY) x L2(R*) and F € L}L5([0,0) x R*). Then, there exists a time 7' > 0 and a unique
solution v: [0,T) x R* — R satisfying

ve CYHL[0,T) x R N L3LE([0,T) x RY)  and Qe COLA([0,T) x R?Y) .

Using stability theory, [26] proved the following proposition.

Proposition 5.2 (Reduction to an a-priori energy bound [26, Theorem 1.3]).

Let (vo, v1) € HY(RY) x L2(R*) and F € L} LS (R x R?). Let v be a solution of (53), and let T, > 0 be its
maximal time of existence. Furthermore, assume the a-priori energy bound

sup Elv](t) < o .
tE[O,T+)

Then, v is a global solution and satisfies the global space-time bound |v|| L3L8([0,00)xRY) < - As a result,
there exist a scattering states (vq,v]) € HY(R*) x L2(R*) such that

lim [(v(t) — W(t) (v, vi), dv(t) — W () (vg, v )l w2 =0 -

Using Lemma 5.1 and Proposition 5.2, we have reduced the proof of Theorem 1.3 to an a-priori bound
on the energy of v.
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5.2. Flux estimates. As before, we let v: I x R* — R be a solution to the forced equation (53). Recall
that the (symmetric) energy-momentum tensor for the energy critical nonlinear wave equation is given
by

T = T = ((00)” + V) + 1ot
790 = 7] := —dw - O,
j j d; 5.
T = TM[v] = O 00y ¥ — %(—5& +A)(W?) + %kzﬁ‘ .

The component T% is the energy density, the component 779 is the j-th momentum/energy flux, and the
components T7* are called the momentum flux. If v solves the energy critical nonlinear wave equation
(1), then the energy-momentum tensor is divergence free. This fails for solutions to the forced equation
(53); however, one can still expect that the error terms have lower order. Setting N = (v + F)? — v3, a
short computation shows that

(54) T + 8, T = —Néw ,

; A 1
(55) O + 0n, T = Ndujv — S0, (Nv) .

As in earlier work on almost sure scattering for radial data [12, 26, 25, 32], the main goal of this paper is
to bound the energy of v. In terms of the energy-momentum tensor, the (total) energy can be written as

E[](t) = f T 5)d |

R4
For future use, we record the following consequence of (54).
Lemma 5.3 (Total energy increment).
Let v: I x R* - R be a solution of (53), and let a,b € I with a < b. Then, we have that

b b b
(56)  E(b) - E(a) = —f Nowdudt < esf J |F|[o2l6pwlded + 3J f PP |apwldedt .
a JR% a JR% a JR4

We will later see that the second summand on the right-hand side of (56) can be bounded directly using
Holder’s inequality and probabilistic Strichartz estimates. In contrast, no such estimate is available for
the first summand, and we need the wave packet decomposition to control this term.

Once we employ the wave packet decomposition, it will be natural to study the energy on a time and
length scale ~ N > 1. We fix ty € NNy and x9 € NZ*, and define the local energy

(57) Eﬁm [v](t) := f T%(t, z)dz, where t € [to,to + N] .

Hat—l‘oHr_‘SQN—‘t—to‘

Thus, this definition is adapted to the truncated ¢*-cone K}\ . , which is given by

0,207
(58) K = {(t.z) € [to,to + N] x R*: |z — 20 < 2N — [t —to|} .

It might be more appropriate to call Kﬁm a pyramid (see Figure 5); unfortunately, the letter P is already
heavily used in our notation, so that we decided to use the letter K. Our reason for using the £*-norm,
instead of the more common #?-norm, lies in the induction on scales argument (Proposition 56). Then, it

will be an advantage to write Kt](\)f,:lto as the union of finitely overlapping smaller cones K%, oo Which are
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In this figure, we illustrate the truncated £*-cone, and its decomposition into smaller cones. The
blue lines are the edges of a large ¢*-cone. The red and green squares are the tops of smaller
truncated cones. In the lower left corner, we have drawn a single one of these smaller cones. As
can be seen from this figure, no smaller cone has to exit the large cone.

FIGURE 5. Decomposition of the £*-cone

. . N
contained in Kjj . .

Using finite speed of propagation and the inequality | - |y (g1) < | - [l2(r4), one can
still meaningfully restrict the nonlinear wave equation to Ktjg,zo-

Lemma 5.4 (Local energy increment).

Let v be a solution to the forced equation (53), let N > 1, let tg € NNy, and let g € NZ*. Then, we

have that

(59) sup Eg’xo [v](¢) < Eg’zo [v](to) + 6J |F||v]|?|dv|dadt + 3J |F|3|0pv|dadt .
tefto,to+N] %,10 Kt]\(gazo
Proof. Using (54), we have that
d N 00 00
aEto,mo [v](t) = — T"do(x) + o dx
lz—o [0 |lz—zo]l0
=2N—|t—to| <2N—|t—to|
= (=T% + TYv;)do (x) — f Nowdzx
|z—zol|c lz—zollc
=2N—‘t—t0‘ <2N—|t—t0|

Here, v is the outward unit normal to the cube. From Cauchy-Schwarz, it follows that |T%y;| <
|0||Vv|2 < T, After integrating in time, this completes the proof. O
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To simplify the notation, we now write

(60) Emaolv] = sup B [v]() .

te[to,to-i—N]
In the following, we want to deduce a flux estimate for the solution v of the forced NLW (53). Here, we
encounter a minor technical problem. Let (¢, 2") € Kt];/ =, De a point in the truncated £*-cone. We then
want to control the potential |v[*

Cila := {(t,2) € [to, to + N] x RY: [t — '] = |lo — a'|l2} .

on the truncated light-cone

Unfortunately, cy v May not be contained in Kt and hence we cannot expect to bound this solely

0,207
to zolv]- Since the flux estimate is derived through a monotonicity formula for the local energy, this

issue persists even if we are only interested in the portion of C' v iNntersecting Kto 2o+ Lo solve this
problem, while still keeping the same energy increment as in (59), we introduce the notion of a locally
forced solution.

Definition 5.5 (Locally forced solution).

Let tg € NNy and g € NZ* Wecallw: RxR* >R a Ktjg’mo—locally forced solution if it solves

—Oyw + Aw = (1pn  F+w)? (t,x) e R x R*
(61) . 1 tgl,zo ) A
w|t=to = wp € H (R ), 6tw|t=t0 = w1 € L (R )

We also require that the functions (wo,w:) agree with (v(tp), dv(tg)) on the cube |z — x| < 2N.
Remark 5.6.

From finite speed of propagation, it follows that w| KN, = =] KN -
0,70 0,70
For the same reasons as described in the last paragraph, we also use the energy on a slightly larger region.

To this end, we define

ngo [w](t) := J T%w)(t, x)dz, where t € [to,to + N] .
’ |z—a0| o0 ST6N—[t—to|
Thus, this definition is adapted to the fattened cone Kto o> Which is defined in (43). We also set
(62) Stjg’xo [w] :=  sup Eto’x0 [w](t) .
te[to,to+N]

Lemma 5.7 (Local flux estimate).
Let tg € NNy, let 29 € NZ*, and let w be a Kﬁzo—locally forced solution. Then, we have that

4
(63) sup U do(t, ) < 48N 5, +12 f IF|(jw] + | F))|dsw]ddt .
t'e[to,to+N]
|2/ —zo|| g0 <8N llz—2'|l2=[t—t'| K 2

te[to,to+N]

We emphasize that, even though the energy Eto o 18 measured on a truncated (*-cone, the flux is still
controlled on a light cone. The estimate (63), however, only controls w on a lower-dimensional surface in
space-time, and thus cannot directly be used to bound the energy increment. In our main argument, we

rely on the following averaged version.



32 BJOERN BRINGMANN

Lemma 5.8 (Averaged local flux estimate).
Let N > Ny, let tg € NNy, let 29 € NZ*, and let w be a K£7x0—locally forced solution. Then, we have
that

(64) ftol\imo = sup J — dazdt
t'G[to,to+N] 4
|2’ ~zo||l o <4N [lz—a|l2—|t—t'|| SN0
te[to,to+N]

< N409 &](\foo + J |F|(|w] + | F])?|0pw|dadt

N
Kto,zo

The appearecance of N9 is for technical reasons only, and the reader is encouraged to mentally replaced
it by 1. This will later help us to deal with the spatial tails of the wave packets.

Proof of Lemma 5.7. For the duration of this proof, we define

e(t) = f T, )z
———

From finite speed of propagation, we expect e(t) to be (nearly) non-increasing on [tg, '] and non-decreasing
on [t',tg + N]. From the assumptions above, it follows that ||z — 2/||2 < |t — ¢/| implies

|z = 2olloo < |2 — 2 oo + |2 — 20]oo < & — 2|2 + 8N < |t = /| + 8N < 10N — |t —to] .
Thus, we obtain that e(t) < gg% for all t € [to, to + N]. Using (54), we obtain for all ¢ € [t/, {9 + N] that

die(t) _ J OTO(t, 2)dz + f T, 2)do ()
t le—a’o<|t—|

lz—a’[|2=[t=t'|

= —J Nowdz — J 0z, T dx + J T%(t, z)do(z)
lo—a"|2<[t—¥'| |lz—a|2<[t—t/|

|lz—a'|2=[t—'|

=— J Nowdzx + J (T(t, z) + T% ) do ()
lo—a'la<[t—'| |lz—a'la=t—'|
4

> —GJ F|(|F| + |v|)2|8tv|daz+J Y do(z)
P l

o—a/lo=|t—| 4
Integrating this inequality in time, we obtain the result on [/, tg+ N]. The bound on [tg, '] is similar. O
Proof of Lemma 5.8. Since N > Ny; = 1~ ', we have that N'% « N. We then simply integrate (63) over
a spatial ball of radius ~ N9 around z'. O

6. THE ENERGY INCREMENT AND INDUCTION ON SCALES

We are now ready to finally bound the energy increment of the nonlinear component v. The argument
roughly splits into two parts: A single scale analysis and induction on scales.
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For technical reasons, we define a flux-term involving a thinner neighborhood of the cone. More precisely,
we let

wh
]:t];[xo [w] := sup J — dadt
’ (t' 2" )e[to,to+ N x R4 4
I’ —zollo<aN  lz—a'|2—[t—t'|[<N®?

te [to 7to—i—]\f]

Recall that the light-cone in .}N'ggf 2o[w], as defined in (64), has width N19°,

Proposition 6.1 (Single-scale energy increment).

Let N > 1. Let tg € NNy, where 0 < to/N < |[N?|, and let 29 € NZ*. Furthermore, let wy,wy €
LPLI(R x R*) and w3 € LPL2(R x R*). Then,

| 1Bl wal s doa
to,T0
35488 4 N 1 4 N 1
SNt (HWIHL}“L‘;(RXW) + Figaolwi])? (HUJ?HL;f-Lg(Rxw) + Figaolw2]) Hw3HL;‘L§.(RxR4) .
We have two separate reasons for introducing the auxiliary functions wi, we, and ws. First, it emphasizes
that the proof does not depend on the evolution equation of the nonlinear component. Second, it allows
us to pass to smaller spatial scales than N with minimal notational effort, see Corollary 6.2.

Proof. If 1 < N < Ny, there is nothing to show. Thus, we may assume that N > Ny;.
Step 1: Wave packet decomposition. Recall from (35) and (36) that

Fy = erexp(it| V) i + > enexp(—it| V) f; -
k k

We only control the contribution of ), € exp(it|V|]) f;7, the other estimate is nearly identical. Then, we
may also drop the superscript + from our notation. We now apply Proposition 4.1 and Proposition 4.3 to
the family {ej fi}r, and let the sets @7, &}, and Z,, be as in Proposition 4.3. As before, we implicitly
restrict to |k e € (IN/2, N]. We also write fi; = fi 1.4,

Step 2: Distant wave packets and extreme amplitudes. On a heuristic level, the wave packets whose tubes
T}, do not intersect Kig,mo should not contribute to the integral. We now make this precise using the
decay estimate (42). Indeed,

Y, ewexp(i(t = t0)|V]) fi
(k,1)eZ* x 7+
l1—o ]l >3N
SN Y aexplilt—10) [V i

(k,1)eZ* x 74
[ll—20 oo >3N

|w1||wa ||ws|dzdt

N
Kto,a:O

Le Lo (KN )le |z La@xra)|wel L La@xr) |ws] L2 2 R xRY)
t x t0,T(

< N( Z N—100(1 + [zo — l\|2)_100\|fk”Lg(R4)> Hw1HL}“Lg(RxR‘l)Hw2\|L}‘Lg(RxR4)Hw3\|L;’~‘L§(RxR4)
(k,1)ez* x7*:
ll—zo e >3N
1
< N_99+2( > kaH%g(W)) llwil pe pa gy lwel 22 23 @ xray | wsl 2 2 R xR
keZA
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3
< N wi | e Lo rxray [w2] L2 Lo @ xr9) 1w L2 L2 (R xRY) -

Thus, this contribution is acceptable. It remains to control the wave packets with indices in U,z %,. We
now use crude estimates to reduce to ~ log(N) amplitude scales. Let m < —201log(N). Since #.7, < N,
we have that

| o | cwexplitt = ) VD el sl dac
K w0 (k)edm

S N( 2 [l exp(i( 75—t0)|v|)fkl”Lfo(RxR4))Hw1|\LfL4(RxR4 lwe| L L4 rxr) W3] L2 L2 (RxRAY
(k0)Em
< N2" 4t |wi ||z paxry)lwz]| 2 Lo mxrey (w3l L L2 R xR
< 27N wi | e parcry lwell L2 s mxry w3l L 2 R xray -
Summing this inequality over all m < —20log(V), we obtain that
. > D1 erexp(it — to)| V) fr||wr|[wo|ws|dzdt
Kiywo  m<—20log(N) (k,)edm
S N7 wi | pe pamxra) lwall Ly 1 (rxray 1w e £2 R xra)
3_
S N7 |lwi| e parurey |wal Lz La@xray [ws | Lz 2w xre) -
Finally, if 7, # J, then #.7,, > 1. This implies that

1

2™ < V()2 X/

~

For a sufficiently small absolute constant 1 > 0, this implies that m < 0. This completes the crude part
of the argument. Step 3: Bushes. First, we define the fattened tubes by

fk,l = {(t,z) € [to,to + N] x R%: |z — (I —t - k/|k|2)| < NQ‘S} .
Furthermore, we define the collection of fattened tubes corresponding to a bush by
T(Bjm) == Uwnes, . Tri -

With these definitions in hand, we now write

J Z Z ex exp(i(t — to)|V|) fkl‘|w1||w2||w3|d$dt

tO zg =1 (k l)Eﬂ] m

-2,

e exp(i(t = t0)| V) | [wn [Jwa st
(%5, m) (k1) eg

) Do e explit = 10) [V S| ]z [wsldadt
=1 VKR o \T(Bj.m) (k))EB; m
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Using that all tubes in %;,, pass through the same space-time cube of size ~ N 5 we obtain from
Proposition 4.8 that

Zﬁ | cexpi(t — )|V i fon] s

§=1T(Bm) " (k 1)eB;

Y, aexp(i(t — )|V fu,

j=1 (k,z)egaj m

2 x| Ot @, 102, ey o | 08l L3y

1 m L 1 1
< pNES ( 2 (#Bjm) ) T[] T g [102] s o 3 ey

1 _1 1 1
< 77N2+852m< 2 o U BT g [01] TN o w2 my

1 1 1
< 77N5+852m(#£fm)/f§ftﬁxo [11]7 T oo [wa] | ws o r2 mxray -
Here, p denotes the minimum number of packets inside a single bush, see Proposition 4.3. Using the
decay estimate (42), we control the contributions outside the T'(%;,,) by

1

3 ekexp(i(t—t0)|V|)fk7l‘|w1||w2||w3|d:cdt
tO zO\T(L@J m (k,l)e%],m

< NZ H exexpli(t = to)| V) fri

i Fa (K g (B m)

w1 HL;“ LA(RxR4) lw2 HL;“ LA(RxR4) |lws] LY L2(RxR4)

< NlN*lOO?m( 2 #f%j,m) 1wt ]|z Lo rxrey w2l L La xR [W3ll L7 L2 (R < RY)
j=1

3_
S N 70 ||lw| Le paurey [wal L2 La@xray [wsll Lz L2 (R xr2) -
In the last line, we have used that 2m(#mfm)% < n and #,, < N8.

Step 4: Disjoint wave packets. We now control the contribution of the almost disjoint family Z,,. If
< 1, then 2, is empty, and there is nothing to prove. If u > 1, it follows from Proposition 4.8 that

JN |3 cexpt — )|V i on] s e
Kipeo ' (k1)eDm

SNH Z erexp(i(t — t0)|V]) fi o N)leHL‘}‘L,‘;(RXR‘l)HWQHL‘}‘L,‘J{.(RXR‘l)Hw3HL‘;f“‘L§,(RxR4)
(k,))EDrm te o

1
S N2 wy || e parcray w2l o pa rxray W3] o £2 (R xRy

Step 5: Finishing the proof.
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In total, we have shown that

| |Jw: ||we|[ws|dadt

t0,T(
65 3_ 1 1 _1 1
(65) S NS (N 4 N2mud 4 NE2™ ()8 ) (lwn I gy + Frnro 1))
N 1
. (Hw2||%;f»Lg(1RxR4) + Figaolw2])3 Hw?’HL;“Lg(RxR‘*) :
Due to our choice p:= N 7%#;2%7” in Proposition 4.3, this completes the proof. 0

Corollary 6.2 (Coarse-scale energy increment).
Let N > 1. Let tg € NNy, with 0 < to/N < |N?], and let 29 € NZ*. Let w be a KN, -locally forced
solution. Then, we have for all M > N that
1

(66) R e T Y AP IR A )

Kto,x‘o
We refer to Corollary 6.2 as a coarse scale estimate since the wave packets in F); are atleast as long as
the length of Kggm (in time).

Proof. As before, we may take M > Np;. We distinguish two different cases. If M > N %7 we obtain from
Proposition 4.8 that

3_s+5 SN
fN|mmwmwma<Nmmg%mwmwg%m%wmmwﬁm%&swmS*%mwy

to,xQ
Next, we let M < N3, Then, there exist 7o € MNg and yg € MZ* s.t. Kt](\;xo c K%{yo‘ Furthermore, since
to/N < |N?|, it holds that 70/M < |[M?|. Set wy = wo := lgn wand wy:=lgy w. Since M < N%,
0-%0 0>%0

we have that
Fdpolwi] = Frlo [wa] < Ff o [w]

70,Y0 70,Y0
Using the single-scale energy increment (Proposition 6.1), we obtain that

f | gl [w[2|dyeo|dadt
N

Kto,a;o

= J " |FM||w1||w2||w3|d:cdt

K"'O »Y0

3_gi§ 4 M 1 4 M 1
SnMaet (leuL;ng(Rszl) + Frowolwi]) (HwQHL;ng(RxR‘l) + Frogolw2l) tws| L L2 mxre)
1
3—s+3 SN 3 (8N =N 2
S 77M4 . gto,:ﬂo ['LU]2 (gt0,$0 [U}] + ‘Fto,{ro [w]) .
O

Due to Proposition 6.1 and Corollary 6.2, we understand the energy increment at a single scale. Unfor-
tunately, the cone Kt](\)f,mo may contain many wave packets on smaller scales. Similar problems are often
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encountered in restriction theory, and can sometimes be solved using Wolff’s induction on scales strategy
[57]. The following argument can be seen as a (simple) implementation of this idea.

Proposition 6.3 (Induction on scales).

Let s > max(1 —6/2,3/4 + 0). Let R > 1 be a dyadic integer, and let F' be as in Proposition 4.8. Let
to € RNy, with to/R < |RY], 29 € RZ*, let w be a Kt}g’xo—locally forced solution. For a large absolute
constant C7 > 1, we have that

(67) ER olw] < 2By _aq<16r[W](t0) + ClHFHGLng(K%zo)
and
(68) ffim [w] < C1R?® (Ex—mo|<16R[w](t0) + |F|?;§L3(Kg§@0)) '

Proof. We use induction on the dyadic integers R > 1.

Step 1: Base case R = 1. We have that

Ehyale] < B agerolilto) +© [ IFlaPloeldzat o [ FPlaulasat
to,zQ to,zQ

< Ejg_go)<16lw](to) + C| Fllpz = (RxR4)|\wHi;Lg(Kgo ZO)HathL;’/‘Li(K,}OJO)

3
+ CHFHLﬁLQ(K,}O,ZO) HathLng(K;O,ZO)

1~ ~ 1
< Bloagietslwl(to) + 38 ao [ + CIF s El gl
1~
< Bl—sofiolw](to) + 585 o0l + CIF ISy 000 -
x 0-T0
Insert this bound into Lemma 5.8, we obtain that
T aolw] S & o w] + f o Flwllonw|dzdt + Cle |F?|0,w|dzdt

Kto,zg to,TQ
S Etlo,xo [w]

6
< By aol<16lw](to) + HFHLng(K,}WO) .
By choosing C sufficiently large, we obtain (67) and (68). This already determines our choice of Cf,
which we now regard as a fixed constant. Let R > 2 be an arbitrary dyadic integer. Using the induction

hypothesis, we can rely on the inequalities (67) and (68) for all scales N < R/2.

Step 2: Splitting the energy increment. From Lemma 5.4, we have that

©9) &[] < Baacronlul o) + C [ |FlloPlowldedt +C | P lauldodt
K K

to,zg tg,zq
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The main term is the second summand in (69). We use a Littlewood-Paley type decomposition of the
linear evolution and write

|F|w]2]0,w|dadt

t0,T(
< Z J | Fn||w]?|6pw|dadt + Z f |En||w|?|0pw|dadt
N>R KLz N<R/2 VK zg

Step 3: High frequencies. The high frequencies can be controlled using the single-scale estimate from
Proposition 6.1. Indeed, we have that

> | Ey||w|?|6yw|dadt
R

N=RVEL] =
1
3 _s1+85SR L (SR >R 2
(70) S Yy NITRER Tw]d (EF [w] + FE, [u])
Nz=R

N

3_ .85 1y ~
S nRITER  Juls (8 [l + FE L lul)
Step 4: Low frequencies. For 7,, = Nn€ NNy and y; = Nj € NZ* | we write

J | | Jw]?|0pw|dadt
R

to,®o
VY]
- ( | |FN||w|2|atw|dxdt> ; | (ol w]?|yuodccl
=0 ([rn,m+NIXRONKS o (IN*+0,0)xRONKE
V]
=Y X |, IvlePlawlded + | Pl fwl2|oywldedt
; N
=0 KN JEZ;{R v ([N1+9700)XR4)HK%,10

In the last line, we have used that

R N
to,xo — Tn,Yj °

(n,j)eNoxZ*

N R
KTn,yj gIftoqaﬂo

We first control the contributions on the time intervals [7,, 7, + N]. To this end, we define w(N"7) as
the Kf.\?{ ’yj—locally forced solution with data

w(N,nJ) (Tn) = 'U)(Tn) and atw(N’an) (TTL) = atw(T”) :

Using finite speed of propagation, w and w¥™J) coincide on KQ]L 2 Applying Proposition 6.1 and the
induction hypothesis to w9 it follows that
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J | ]2l dardt
N

KTnyyj

:J | E [ 2| ™) e
N

™,Yj

Tn,Yj Tn,Yj Tn,Yj

$77N4_S+865N [ (Nn,])]% (5N [ (N,n,j)]% +]_~N [ (N,n,j)])E

3_ ; 2
< N1t (2E|x—yj|<16N[w(N’n’])](Tn) + ClHFHGLng(K;V y_)) i
g mn, 7

1

. N506 (CIE|xfyj|<16N[w(N7n7j)] (Tn) CIH ”%;”LQ(K_, y)> 2
L ns J
3_ N(r,) + | F
< N1 s+60501 (Elﬂc y].|<16N[w(Nv”J)]( n) + | H6L§L§(K£V y.)>
x n->Y5

3
<00 (B aanlul (o) + P S, ) )
n7]

As a consequence, we obtain that

|N?|

Z Z J N | Fn||w]?|@w|dzdt

jez* .Y

N R
K‘rn B Kto x(Q

< Ny Z 2 (Em_ij[w](w|F|ing<K%,yj>)

jez4

K7]'\77L Y= K% o

IN°]

< nN%’“GO‘SCl 2

n=max(0,to/N)

3.0 5 3
(71) §HN4+9 s+605015£710+nN4 S+60501HFH§}2L2(

(EHO@GRHO[ 107) + 1 1G22 (N1 xR) 1 KE. 10>)

R .
Kto Io)

Using the long-time decay estimate, we can control the contribution on the interval [N1+% o) by

|Fy||w]?|0pw|dadt

(IN1+0 a0)xRONKE

2
S HFNHLng-([NH@,oo)xM) HwHth‘L%(K%IO) HathL‘f‘LQ(Kt% 20)

(72) SN HOER
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Combining (71) and (72), it follows that

Z | Fn||w]?|6pw|dadt
N<r/2 VKl
(73) <nCr )] (N%+9_8+56 + Nl_g_s> ER o + ( > Nﬁ_sﬁ%) CIHFHLi”Lﬁ(KR )
N<R/2 N<R/2

< 77015151?;50 + nCIHF”%ng(K%mO) .
Here, we have used that s > max(1 — g, 3 +0), and that § = (s, ) > 0 is sufficiently small.

Step 5: Finishing the proof. At this point, we have proven all the necessary estimates on w. It only
remains to put them together, and use a “kick back” argument. From the energy increment (69), the
high frequency estimate (70), the low-frequency estimate (73), and Holder’s inequality, it follows that

(74) t() xg ['LU] E|x—z‘0‘<16R[w] (t()) + 77015&1(?@0 ['LU] + 77R4 8+85ft0 o [w] + 7701 HF”?,?L?:(K%@O)

Inserting the same bound for the energy increment into (5.8), we also have that

(75) ]:to ﬂco[ ] < R405 (‘i};xo[w] + 77R4 SJr86‘]:750 IBO[ ] + ncl|F|6L§Lg(Kt1§)’wo)>

If the absolute constant n = n(C1,d) > 0 is chosen sufficiently small, then (75) implies that

(76) FE olw] € A (55(? wo[w] +nCi|[F ”%E’Lﬁ(Ktlg,zo)) :

Inserting this into (74), we obtain (67). Finally, (67) and (76) imply (68). This completes the proof of

the induction step.
O

Using Proposition 6.3, we now provide a short proof of the main result.

Proof of Theorem 1.3. Assume that the statements in Proposition 4.8 hold for w € Q. From Lemma 5.1,
it follows that there exists a local solution to (53). From Proposition 6.3, it follows for all R > 1 that

sup J T[v](t, z)dz < 2E[vo, v1] + C4 .
te[0,R] J)z|<2R—t
By letting R — o0, we obtain the a-priori energy bound

sup E[v](t) < 2E[vg,v1] + Cy .

te[0,00)
From Proposition 5.2, this implies the global space-time bound [v] 136 (j0,:0)xr1) < 0 and the existence

of scattering states (vd,v]") € H'(R*) x L%(R%). Since u = F + v, we obtain the global space-time bound
lullL3 8 ([0,00)x R4y < o0 and the scattering states (ug,ui) = (vg —f6 <Ny vy —Jf <n,,;)- This completes the
proof for positive times. By time-reflection symmetry, we obtain the same result for negative times. [
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