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Abstract. We establish sharp pointwise kernel estimates and disper-
sive properties for the wave equation on noncompact symmetric spaces
of general rank. This is achieved by combining the stationary phase
method and the Hadamard parametrix, and in particular, by intro-
ducing a subtle spectral decomposition, which allows us to overcome
a well-known difficulty in higher rank analysis, namely the fact that the
Plancherel density is not a differential symbol in general. Consequently,
we deduce the Strichartz inequality for a large family of admissible pairs
and prove global well-posedness results for the corresponding semi-linear
equation with low regularity data as on hyperbolic spaces.
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1. Introduction

This paper is devoted to prove sharp-in-time kernel estimates and dis-
persive properties for the wave equation on noncompact symmetric spaces
of higher rank. Consequently, we prove the Strichartz inequality and study
their applications to associated semi-linear Cauchy problems. Relevant the-
ories are well established on Euclidean spaces, see for instance [23, 27, 14,
25, 11], and the references therein.
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Given the rich Euclidean results, several works have been made in other
settings. We are interested in Riemannian symmetric spaces of noncompact
type, where relevant questions are now well answered in rank one, see for in-
stance [12, 21, 36, 28, 29, 5, 3] on hyperbolic spaces, and [6] on Damek-Ricci
spaces. A first study of the wave equation on general symmetric spaces of
higher rank was carried out in [17], where some non optimal estimates were
obtained under a strong smoothness assumption. Recently, sharp-in-time
kernel estimates and dispersive properties have been proven in [38] on non-
compact symmetric spaces G/K, with G complex. In this case, the Harish-
Chandra c-function and the spherical function have elementary expressions,
which is not the case in general.

In this paper, we establish pointwise wave kernel estimates and dispersive
properties for the wave equation on general noncompact symmetric spaces,
which are sharp in time and extend previous results obtained on real hyper-
bolic spaces [5, 3] to higher rank. The main challenge is that the Plancherel
density involved in the wave kernel is not a polynomial, nor even a differ-
ential symbol in general. To bypass this problem, we consider barycentric
decompositions of the Weyl chambers into subcones and differentiate in each
subcone along a well chosen direction.

For suitable σ ∈ C, we consider the wave operator W σ
t = (−∆)−

σ
2 eit
√
−∆

associated to the Laplace-Beltrami operator ∆ on a d-dimensional non-
compact symmetric space X = G/K. To avoid possible singularities (see
Sect. 3.2), we consider actually the analytic family of operators

W̃ σ
t =

eσ
2

Γ(d+1
2 − σ)

(−∆)−
σ
2 eit
√
−∆ (1.1)

in the vertical strip 0 ≤ Reσ ≤ d+1
2 . Let us denote by ω̃σt its K-bi-invariant

convolution kernel. Our first main result is the following pointwise estimate,
which summarizes Theorem 3.3, Theorem 3.7 and Theorem 3.10 proved in
Sect. 3.

Theorem 1.1 (Pointwise kernel estimates). Let d ≥ 3 and σ ∈ C with
Reσ = d+1

2 . There exist C > 0 and N ∈ N such that the following estimates
hold for all t ∈ R∗ and x ∈ X:

|ω̃σt (x)| ≤ C(1 + |x+|)Ne−〈ρ,x+〉

{
|t|−

d−1
2 if 0 < |t| < 1,

|t|−
D
2 if |t| ≥ 1,

where x+ ∈ a+ denotes the radial component of x in the Cartan decomposi-
tion, and D = `+ 2|Σ+

r | is the so-called dimension at infinity of X.

Remark 1.2. These kernel estimates are sharp in time and similar results
hold obviously in the easier case where Reσ > d+1

2 . The value of N will be
specified in Sect. 3. However, the polynomial (1 + |x+|)N is not crucial for
further computations because of the exponential decay e−〈ρ,x+〉.

By interpolation arguments, we deduce our second main result.
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Theorem 1.3 (Dispersive property). Assume that d ≥ 3, 2 < q, q̃ < +∞
and σ ≥ (d+ 1) max(1

2 −
1
q ,

1
2 −

1
q̃ ). Then there exists a constant C > 0 such

that following dispersive estimates hold:

‖W σ
t ‖Lq̃′ (X)→Lq(X) ≤ C

{
|t|−(d−1) max( 1

2
− 1
q
, 1
2
− 1
q̃

) if 0 < |t| < 1,

|t|−
D
2 if |t| ≥ 1.

Remark 1.4. At the endpoint q = q̃ = 2, t 7→ eit
√
−∆ is a one-parameter

group of unitary operators on L2(X).

Remark 1.5. Theorem 1.1 and Theorem 1.3 generalize earlier results ob-
tained for real hyperbolic spaces [5, 3] (which extend straightforwardly to all
noncompact symmetric spaces of rank one), or for noncompact symmetric
spaces G/K with G complex [38]. Notice that D = 3 in rank one and that
D = d if G is complex.

Remark 1.6. For simplicity, we omit the 2-dimensional case where the small
time bounds in Theorem 1.1 and Theorem 1.3 involve an additional logarith-
mic factor, see [3, Theorem 3.2 and 4.2]. Notice that d ≥ 4 in higher rank,
see (2.1).

Let us sketch the proofs of our main results. We prove the dispersive
properties of W σ

t by using interpolation arguments based on pointwise es-
timates of ω̃σt , which are sharp in time. By the way, let us point out that
the kernel analysis carried out on hyperbolic spaces [3] can not be extend
straightforwardly in higher rank, since the Plancherel density is not a dif-
ferential symbol in general. Consider the Poisson operator Pτ = e−τ

√
−∆,

for all τ ∈ C with Re τ ≥ 0. Along the lines of [31, 15, 10], we can write
formally our wave operator (1.1) as

W̃ σ
t =

eσ
2

Γ(d+1
2 − σ)

1

Γ(σ)

∫ +∞

0
ds sσ−1Ps−it.

Our analysis is focused on kernel estimates of the Poisson operator Ps−it
where s ∈ R+ and t ∈ R∗. We adopt different methods depending whether
s, |t| and |x||t| (x ∈ X) are small or large. Specifically,

• If s is bounded from above and |x||t| is sufficiently small with |t| large, we
develop an effective stationary phase method based on barycentric decom-
positions of Weyl chambers described in Sect. 2.3. In each subdivision,
the Plancherel density becomes a differential symbol for a well chosen di-
rectional derivative, see Sect. 3.1.
• If s is bounded from above but |x||t| is large (with |t| small or large), we es-
timate the kernel along the lines of [9], where Cowling, Guilini and Meda
have studied the Poisson operator Pτ for τ ∈ C with Re τ ≥ 0. Unfortu-
nately, their estimates are not sharp when τ is large and nearly imaginary,
which happens in our context when s is small and |t| is large. To deal
with this case, we resume and improve slightly their method by writing
down more explicitly the Hadamard parametrix on noncompact symmetric
spaces along the lines of [7], see Sect. 3.2.
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• If s is large, the kernel is estimated by using the standard stationary phase
method, which is similar to the rank one analysis, see Sect. 3.3.
This paper is organized as follows. We recall spherical Fourier analysis on

noncompact symmetric spaces and introduce the barycentric decomposition
of Weyl chambers in Sect. 2. Next, we derive pointwise wave kernel esti-
mates in Sect. 3. By using interpolation arguments, we prove in Sect. 4 the
dispersive property for the wave operator. As consequences, we establish the
Strichartz inequality for a large family of admissible pairs and obtain well-
posedness results for the associated semi-linear wave equation in Sect. 5. We
give further results about the Klein-Gordon equation in Sect. 6. Finally, we
collect in the appendices some useful results: in Appendix A, we study by
the stationary phase method an oscillatory integral occurring in the wave
kernel analysis; next we describe in Appendix B the Hadamard parametrix
on noncompact symmetric spaces and consider its application to the Poisson
operator in Appendix C.

2. Preliminaries

In this section, we first review briefly spherical Fourier analysis on noncom-
pact symmetric spaces. Next we introduce a barycentric decomposition for
Weyl chambers, which will be crucial for the forthcoming kernel estimates.

2.1. Notations. We adopt the standard notation and refer to [18, 19] for
more details. Let G be a semisimple Lie group, connected, noncompact, with
finite center, andK be a maximal compact subgroup of G. The homogeneous
space X = G/K is a Riemannian symmetric space of noncompact type. Let
g = k ⊕ p be the Cartan decomposition of the Lie algebra of G. There is
a natural identification between p and the tangent space of X at the origin.
The Killing form of g induces a K-invariant inner product on p, hence a
G-invariant Riemannian metric on X.

Fix a maximal abelian subspace a in p. The rank of X is the dimension `
of a. Let Σ ⊂ a be the root system of (g, a) and denote byW the Weyl group
associated to Σ. Once a positive Weyl chamber a+ ⊂ a has been selected,
Σ+ (resp. Σ+

r or Σ+
s ) denotes the corresponding set of positive roots (resp.

positive reduced roots or simple roots). Let d be the dimension of X and D
be the dimension at infinity of X:

d = `+
∑

α∈Σ+ mα and D = `+ 2|Σ+
r |, (2.1)

where mα is the dimension of the positive root subspace gα. Notice that one
cannot compare d and D without specifying the geometric structure of X.
For example, when G is complex, we have d = D; but when X has normal
real form, we have d = ` + |Σ+

r | which is strictly smaller than D. Since we
focus on the higher rank analysis, we may assume that d ≥ 3.

Let n be the nilpotent Lie subalgebra of g associated to Σ+ and let N =
exp n be the corresponding Lie subgroup of G. We have the decompositions{

G = N (exp a)K (Iwasawa),
G = K(exp a+)K (Cartan).



WAVE EQUATION ON GENERAL NONCOMPACT SYMMETRIC SPACES 5

In the Cartan decomposition, the Haar measure on G writes∫
G
f(x)dx = const.

∫
K
dk1

∫
a+

dx+ δ(x+)

∫
K
dk2 f(k1(expx+)k2),

with

δ(x+) =
∏
α∈Σ+

(
sinhα(x+)

)mα � { ∏
α∈Σ+

〈α, x+〉
1 + 〈α, x+〉

}mα
e〈2ρ,x

+〉 ∀x+∈ a+.

Here ρ ∈ a+ denotes the half sum of all positive roots α ∈ Σ+ counted with
their multiplicities mα:

ρ = 1
2

∑
α∈Σ+ mαα.

2.2. Spherical Fourier analysis on X. Let S(K\G/K) be the Schwartz
space of K-bi-invariant functions on G. The spherical Fourier transform H
is defined by

Hf(λ) =

∫
G
dx ϕ−λ(x)f(x) ∀λ ∈ a, ∀ f ∈ S(K\G/K),

where ϕλ ∈ C∞(K\G/K) denotes the spherical function of index λ ∈ aC,
which is a smooth K-bi-invariant eigenfunction for all invariant differential
operators on X, in particular for the Laplace-Beltrami operator:

−∆ϕλ(x) =
(
|λ|2 + |ρ|2

)
ϕλ(x).

In the noncompact case, spherical functions have the integral representation

ϕλ(x) =

∫
K
dk e〈iλ+ρ,A(kx)〉 ∀λ ∈ aC, (2.2)

where A(kx) denotes the a-component in the Iwasawa decomposition of kx.
It satisfies the basic estimate

|ϕλ(x)| ≤ ϕ0(x) ∀λ ∈ a, ∀x ∈ G,

where

ϕ0(expx+) �
{ ∏
α∈Σ+

r

1 + 〈α, x+〉
}
e−〈ρ,x

+〉 ∀x+ ∈ a+.

Denote by S(a)W the subspace of W -invariant functions in the Schwartz
space S(a). Then H is an isomorphism between S(K\G/K) and S(a)W .
The inverse spherical Fourier transform is given by

f(x) = C0

∫
a
dλ |c(λ)|−2ϕλ(x)Hf(λ) ∀x ∈ G, ∀ f ∈ S(a)W ,

where C0 > 0 is a constant depending only on the geometric structure of
X, and which has been computed explicitly for instance in [2, Theorem
2.2.2]. By using the Gindikin & Karpelevič formula of the Harish-Chandra
c-function (see [19] or [13]), we can write the Plancherel density as

|c(λ)|−2 =
∏
α∈Σ+

r

|cα(〈α, λ〉)|−2, (2.3)
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with

cα(v) =
Γ(
〈α,ρ〉
〈α,α〉+

1
2
mα)

Γ(
〈α,ρ〉
〈α,α〉 )

Γ( 1
2
〈α,ρ〉
〈α,α〉+

1
4
mα+ 1

2
m2α)

Γ( 1
2
〈α,ρ〉
〈α,α〉+

1
4
mα)

Γ(iv)

Γ(iv+ 1
2
mα)

Γ( i
2
v+ 1

4
mα)

Γ( i
2
v+ 1

4
mα+ 1

2
m2α)

.

Since |cα|−2 is a homogeneous symbol on R of order mα + m2α for every
α ∈ Σ+

r , then |c(λ)|−2 is a product of one-dimensional symbols, but not a
symbol on a in general. The Plancherel density satisfies

|c(λ)|−2 �
∏
α∈Σ+

r

〈α, λ〉2(1 + |〈α, λ〉|)mα+m2α−2 .

{
|λ|D−` if |λ| ≤ 1,

|λ|d−` if |λ| ≥ 1,

together with all its derivatives.

2.3. Barycentric decomposition of the Weyl chamber. Let Σ+
s =

{α1, . . . , α`} be the set of positive simple roots, and let {Λ1, . . . ,Λ`} be
the dual basis of a, which is defined by

〈αj ,Λk〉 = δjk ∀ 1 ≤ j, k ≤ `. (2.4)

Notice that a+ = R+Λ1 + · · ·+ R+Λ` and recall that{
〈αj , αk〉 ≤ 0 ∀ 1 ≤ j 6= k ≤ `

〈Λj ,Λk〉 ≥ 0 ∀ 1 ≤ j, k ≤ `
(2.5)

(see [18, Chap.VII, Lemmas 2.18 and 2.25], see also [26, p.590]). Let B be
the convex hull of W.Λ1 t · · · tW.Λ`, and let S be its polyhedral boundary.
Notice that B∩a+ is the `-simplex with vertices 0,Λ1, . . . ,Λ`, and S∩a+ is
the (`− 1)-simplex with vertices Λ1, . . . ,Λ`. The following tiling is obtained
by regrouping the barycentric subdivisions of the simplices S ∩ w.a+:

S =
⋃
w∈W

⋃
1≤j≤`

w.Sj (2.6)

where

Sj = {λ ∈ S ∩ a+ | 〈αj , λ〉 = max
1≤j≤`

〈αk, λ〉}.

O

a+

α2

α1

Λ2

Λ1

S1

S2
B O

Λ2

Λ1

Λ3

B

S1

S2

S3

a+

Figure 1. Examples of barycentric subdivisions in A2 and in A3.
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Remark 2.1. Sj is the convex hull of the points

Λk1 + · · ·+ Λkr
r

where {Λk1 , . . . ,Λkr} runs through all subsets of {Λ1, . . . ,Λ`} containing Λj.

Lemma 2.2. Let w ∈W and 1 ≤ j ≤ `. Then
(i) a root α ∈ Σ is orthogonal to some vectors in the tile w.Sj if and only

if α is orthogonal to its vertex w.λj.

(ii) 〈w.Λj , λ〉 ≥ 1
` |Λj |

2 for every λ ∈ w.Sj.

Proof. (i) Let us show that 〈α,w.Λj〉 = 0 if there exists λ ∈ w.Sj such that
〈α, λ〉 = 0. By symmetry, we may assume that w = id and that α is a
positive root. On the one hand, since α is spanned by the positive simple
roots α1, . . . , α`, we have

α =
∑

1≤k≤`
〈α,Λk〉αk

with 〈α,Λk〉 ∈ N. On the other hand, since 〈α1, λ〉, . . . , 〈α`, λ〉 are the
barycentric coordinates of λ ∈ S ∩ a+, we have

λ =
∑

1≤k≤`
〈αk, λ〉Λk (2.7)

which is a convex combination. In particular, 〈αj , λ〉 > 0 for all λ ∈ Sj .
Hence the inner product

〈α, λ〉 =
∑

1≤k≤`
〈α,Λk〉︸ ︷︷ ︸
≥0

〈αk, λ〉︸ ︷︷ ︸
≥0

〈αk,Λk〉︸ ︷︷ ︸
=1

cannot vanish unless 〈α,Λj〉 = 0.

(ii) By symmetry, we may assume again that w = id. By taking the inner
product of Λj with (2.7), we obtain

〈Λj , λ〉 =
∑

1≤k≤`
〈Λj ,Λk〉〈αk, λ〉 = |Λj |2 〈αj , λ〉︸ ︷︷ ︸

≥ 1
`

+
∑
k 6=j
〈Λj ,Λk〉︸ ︷︷ ︸
≥0

〈αk, λ〉︸ ︷︷ ︸
≥0

≥ 1

`
|Λj |2,

according to the property (2.5), and the fact that 〈αj , λ〉 is the largest
barycentric coordinates for λ ∈ Sj . �

Now, consider the tiling of the unit sphere obtained by projecting (2.6):

S(a) =
⋃
w∈W

⋃
1≤j≤`

w.Sj

where Sj are the projections of the barycentric subdivisions Sj on the unit
sphere.

We establish next a smooth version of the partition of unity∑
w∈W

∑
1≤j≤`

1w.Sj
(
λ
|λ|
)

= 1 a.e..
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O

Λ2

Λ1

Λ3

S1

S2

S3

S1

S2
S3

Figure 2. Example of the projection in A3

Let χ : R→ [0, 1] be a smooth cut-off function such that χ(r) = 1 when r ≥ 0
and χ(r) = 0 when r ≤ −c1, where c1 > 0 will be specified in Remark 2.5.
For every w ∈W and 1 ≤ j ≤ `, we define

χ̃w.Sj (λ) =
∏

1≤k≤`,k 6=j
χ
(〈w.αk, λ〉

|λ|

)
χ
(〈w.αj , λ〉 − 〈w.αk, λ〉

|λ|

)
∀λ ∈ ar {0},

and

χ̃ =
∑
w∈W

∑
1≤j≤`

χ̃w.Sj ,

which satisfy the following properties.

Proposition 2.3. Let w ∈W and 1 ≤ j ≤ `. For all λ ∈ ar {0}, we have
(i) χ̃w.Sj (w.λ) = χ̃Sj (λ) and χ̃ is W -invariant.

(ii) χ̃w.Sj = 1 on w.Sj and χ̃ ≥ 1 on ar {0}.
(iii) χ̃w.Sj and χ̃ are homogeneous symbols of order 0.

Proof. (i) follows from immediately from the definitions. In order to prove
(ii), we may assume that w = id by symmetry. For all λ ∈ Sj , we have

〈αk, λ〉 ≥ 0 and 〈αj , λ〉 ≥ 〈αk, λ〉
for every 1 ≤ k ≤ ` with k 6= j, hence χ̃Sj (λ) = 1. We deduce straight-
forwardly that χ̃ ≥ 1 on a r {0}. (iii) is obvious, since χ

( 〈w.αk,λ〉
|λ|

)
and

χ
( 〈w.αj ,λ〉−〈w.αk,λ〉

|λ|
)
are homogeneous symbols of order 0 for all λ ∈ a r {0}

and 1 ≤ k ≤ `. �

For every w ∈W and 1 ≤ j ≤ `, we set

χw.Sj =
χ̃w.Sj
χ̃

on a r {0}. It follows from Proposition 2.3 that χw.Sj (w.λ) = χSj (λ) and
that χw.Sj is a homogeneous symbol of order 0. In particular, we have∑

w∈W

∑
1≤j≤`

χw.Sj = 1 on ar {0}. (2.8)



WAVE EQUATION ON GENERAL NONCOMPACT SYMMETRIC SPACES 9

In addition, the vectors in the support of χw.Sj satisfy further properties,
which require some preliminaries.

Lemma 2.4. There exists c2 > 0 such that, if λ ∈ a satisfies

−c2|λ| ≤ 〈αk, λ〉 ≤ 〈αj , λ〉+ c2|λ| ∀ k ∈ {1, . . . , `}r {j},

for some 1 ≤ j ≤ `, then 〈αj , λ〉 ≥ c2|λ|.

Proof. By homogeneity, we may reduce to |λ| = 1. Since all norms are
equivalent on a, there exists c3 > 0 such that∑

1≤j≤`
|〈αk, λ〉| ≥ c3 ∀λ ∈ S(a). (2.9)

Set c2 = c3
2` . On the one hand, if

−c2 ≤ 〈αk, λ〉 ≤ 2c2 ∀ k ∈ {1, . . . , `}r {j},

then 〈αj , λ〉 ≥ 2c2. Otherwise,∑
1≤j≤`

|〈αk, λ〉| = |〈αj , λ〉|︸ ︷︷ ︸
<2c2

+
∑
k 6=j
|〈αk, λ〉|︸ ︷︷ ︸
≤2c2

< 2`c2 = c3,

which contradicts (2.9). On the other hand, if

2c2 ≤ 〈αk, λ〉 ≤ 〈αj , λ〉+ c2

for some k ∈ {1, . . . , `}r {j}, then 〈αj , λ〉 ≥ c2 is obvious. �

Remark 2.5. We clarify in this remark all constants appearing in this sub-
section. Denote by L1 the highest root length and by L2 the sum of lengths
of the dual basis

L1 = max
α∈Σ+

∑
1≤k≤`

〈α,Λk〉 and L2 =
∑

1≤k≤`
|Λk|.

In addition, we denote by M1 and M2 the shortest and the longest generators

M1 = min
1≤k≤`

|Λk| and M2 = max
1≤k≤`

|Λk|.

Then we choose c1 > 0 such that c1 < c2 min{ 1
L1
,
M2

1
M2L2

}, where c2 = c3
2` with

c3 defined in (2.9). Let c4 = c2 − L1c1 and c5 = M2
1 c2 −M2L2c1. Notice

that L1 ∈ N∗, c1 < c2, c4 > 0 and c5 > 0. All these constants depend only
on the geometric structure of the roots system corresponding to X.

The following result is an analog of Lemma 2.2 for the wider regions
suppχω.Sj .

Proposition 2.6. Let w ∈W and 1 ≤ j ≤ `. Then
(i) a root α ∈ Σ satisfies either 〈α,w.λj〉 = 0 or

|〈α, λ〉| ≥ c4|λ| ∀λ ∈ suppχw.Sj , (2.10)

(ii) |〈w.Λj , λ〉| ≥ c5|λ| for every λ ∈ suppχw.Sj .
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Proof. (i) By symmetry, we may assume that w = id and that α is a positive
root. Notice that 〈α,Λj〉 is a nonnegative integer, we suppose that 〈α,Λj〉 >
0 and let us prove (2.10). As

−c1|λ| ≤ 〈αk, λ〉 ≤ 〈αj , λ〉+ c1|λ| ∀λ ∈ suppχSj , ∀ k ∈ {1, . . . , `}r {j},
we have indeed

〈α, λ〉 =
∑

1≤k≤`
〈α,Λk〉〈αk, λ〉

= 〈α,Λj〉︸ ︷︷ ︸
≥1

〈αj , λ〉︸ ︷︷ ︸
≥c2|λ|

+
∑
k 6=j
〈α,Λk〉 〈αk, λ〉︸ ︷︷ ︸

≥−c1|λ|

≥ (c2 − L1c1)|λ| = c4|λ|,

according to Lemma 2.4 since c1 < c2.

(ii) By symmetry, we assume again w = id. By taking the inner product
of Λj with (2.7), we obtain, for every λ ∈ suppχSj ,

〈Λj , λ〉 =
∑

1≤k≤`
〈Λj ,Λk〉〈αk, λ〉 = |Λj |2︸ ︷︷ ︸

≥M2
1

〈αj , λ〉︸ ︷︷ ︸
≥c2|λ|

+
∑
k 6=j
〈Λj ,Λk〉︸ ︷︷ ︸
≤|Λj ||Λk|

〈αk, λ〉︸ ︷︷ ︸
≥−c1|λ|

≥ (M2
1 c2 −M2L2c1)|λ| = c5|λ|.

�

Remark 2.7. The partition of unity (2.8) plays an important role in the
kernel analysis carried out in Sect. 3. It allows us to overcome a well-known
problem in spherical Fourier analysis in higher rank, namely the fact that the
Plancherel density is not a symbol in general. This new tool should certainly
help solving other problems.

3. Pointwise estimates of the wave kernel

In this section, we derive pointwise estimates for the K-bi-invariant con-
volution kernel ωσt of the operator W σ

t = (−∆)−
σ
2 eit
√
−∆ on the symmetric

space X:

W σ
t f(x) = f ∗ ωσt (x) =

∫
G
dy ωσt (y−1x)f(y)

for suitable exponents σ ∈ C. By using the inverse formula of the spherical
Fourier transform, we have

ωσt (x) = C0

∫
a
dλ |c(λ)|−2ϕλ(x)(|λ|2 + |ρ|2)−

σ
2 eit
√
|λ|2+|ρ|2

Let us point out that the analysis of this oscillatory integral carried out on
hyperbolic spaces or on symmetric spaces G/K with G complex (see [3, 38])
does not hold in general since the Plancherel density |c(λ)|−2 is no more a
differential symbol. We write

ωσt (x) =
1

Γ(σ)

∫ +∞

0
ds sσ−1C0

∫
a
dλ |c(λ)|−2ϕλ(x)e−(s−it)

√
|λ|2+|ρ|2︸ ︷︷ ︸

ps−it(x)

.
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according to the formula

r−σ =
1

Γ(σ)

∫ +∞

0

ds

s
sσe−sr ∀ r > 0.

Here ps−it is the K-bi-invariant convolution kernel of the Poisson operator
Ps−it. Let us split up ωσt (x) = ωσ,0t (x) + ωσ,∞t (x) with

ωσ,0t (x) =
1

Γ(σ)

∫ 1

0
ds sσ−1ps−it(x)

and

ωσ,∞t (x) =
1

Γ(σ)

∫ +∞

1
ds sσ−1ps−it(x).

We shall see in Sect. 3.2 that the kernel ωσ,0t (x) has a logarithmic sin-
gularity on the sphere |x| = t when σ = d+1

2 . To bypass this problem, we
consider the analytic family of operators

W̃ σ,0
t =

eσ
2

Γ(d+1
2 − σ)Γ(σ)︸ ︷︷ ︸

Cσ,d

∫ 1

0
ds sσ−1Ps−it (3.1)

in the vertical strip 0 ≤ Reσ ≤ d+1
2 and the corresponding kernels

ω̃σ,0t (x) = Cσ,d

∫ 1

0
ds sσ−1ps−it(x) ∀x ∈ X.

Notice that the Gamma function Γ(d+1
2 −σ) allows us to deal with the bound-

ary point σ = d+1
2 , while the exponential function ensures boundedness at

infinity in the vertical strip. More precisely, by using the inequality

|Γ(z)| ≥ Γ(Re z)
(

cosh(π Im z)
)− 1

2 ∀ z ∈ C with Re z ≥ 1
2

(see for instance [30, Eq. 5.6.7]), we can estimate

|Cσ,d| . |σ| |σ − d+1
2 | e

π | Imσ|−(Imσ)2 (3.2)

for all σ ∈ C with 0 ≤ Reσ ≤ d+1
2 .

We divide the argument into three parts depending whether |t| and |x||t|
are small or large. When |t| is large but |x||t| is sufficiently small, we estimate

ω̃σ,0t in Theorem 3.3 by combining the method of stationary phase with our
barycentric decomposition of Weyl chambers; when |x||t| is large, we estimate

ω̃σ,0t in Theorem 3.7 by using the Hadamard parametrix along the lines of
[9]; ωσ,∞t (x) is easily handled by a standard stationary phase argument, see
Theorem 3.10.
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3.1. Estimates of ω̃σ,0t (x) when |t| is large and |x||t| is sufficiently small.
According to the integral expression (2.2) of the spherical functions, we write

ω̃σ,0t (x) = Cσ,dC0

∫
K
dk e〈ρ,A(kx)〉

∫ 1

0
ds sσ−1I(s, t, x),

where

I(s, t, x) =

∫
a
dλ |c(λ)|−2e−s

√
|λ|2+|ρ|2eitψt(λ)

is an oscillatory integral with phase

ψt(λ) =
√
|λ|2 + |ρ|2 + 〈A(kx)

t , λ〉. (3.3)

Let us split up

I(s, t, x) = I−(s, t, x) + I+(s, t, x) =

∫
a
dλ χρ0(λ) · · · +

∫
a
dλ χρ∞(λ) · · ·

by using smooth radial cut-off functions χρ0 and χρ∞ = 1 − χρ0, where χ
ρ
0(λ)

equals 1 when |λ| ≤ |ρ| and vanishes if |λ| ≥ 2|ρ|. Then we have the following
estimates for I− and I+.

Proposition 3.1. There exists 0 < CΣ ≤ 1
2 such that the following estimates

hold when 0 < s < 1, |t| ≥ 1 and |x||t| ≤ CΣ:

|I−(s, t, x)| . |t|−
D
2 (1 + |x|)

D−`
2 , (3.4)

and

|I+(s, t, x)| . |t|−N , (3.5)

for every N ∈ N.

Remark 3.2. CΣ is a small constant depending only on the geometric struc-
ture of the root system Σ, which will be specified later in the proof of (3.5).
Notice that the upper bounds (3.4) of I− and (3.5) of I+ hold uniformly in
s ∈ (0, 1).

Proof of the estimate (3.4). Recall that

I−(s, t, x) =

∫
a
dλ a0(s, λ)eitψt(λ)

is an oscillatory integral with amplitude

a0(s, λ) = χρ0(λ)|c(λ)|−2e−s
√
|λ|2+|ρ|2

and phase ψt(λ) which is defined by (3.3). The amplitude a0(s, λ) is com-
pactly supported for |λ| ≤ 2|ρ|, and the phase ψt has, in the support of χρ0,
a single nondegenerate critical point λ0 which is given by

(|λ0|2 + |ρ|2)−
1
2λ0 = −A

t (3.6)

where A = A(kx), and which satisfies

|λ0| = |ρ| |A||t| (1−
|A|2
t2

)−
1
2 ≤ |ρ| |x|t (1− |x|

2

t2
)−

1
2 < |ρ|√

3
, (3.7)
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as |A| ≤ |x| and |x|t ≤ CΣ < 1
2 . We conclude by resuming straightforwardly

the computations carried out in the proof of [38, Theorem 3.1]. For the sake
of completeness and for the reader’s convenience, we include a detailed study
of the oscillatory integral I− in Appendix A (see Lemma A.1). �

Let us turn to the oscillatory integral

I+(s, t, x) =

∫
a
dλ χρ∞(λ)|c(λ)|−2e−s

√
|λ|2+|ρ|2eitψt(λ),

which vanishes unless |λ| > |ρ|. According to (3.7), ψt has no critical point
in the support of χρ∞. In rank one or in higher rank with G complex, one
can handle this integral by performing several integrations by parts. This
approach fails in general since the Plancherel density |c(λ)|−2 is not a dif-
ferential symbol. To get around this problem, we split up the Weyl chamber
according to the barycentric decomposition carried out in Sect. 2.3, and per-
form integrations by parts based along a well chosen directional derivative
in each component.

Proof of the estimate (3.5). According to the partition of unity (2.8), we
split up

I+(s, t, x) =
∑
w∈W

∑
1≤j≤`

Iw.Sj (iτ, x)

with τ = s− it, and we estimate

Iw.Sj (iτ, x) =

∫
a
dλχw.Sj (λ)χρ∞(λ) |c(λ)|−2 e−τψiτ (λ) (3.8)

by performing integrations by parts based on

e−τψiτ (λ) = − 1
τ

1
∂w.Λjψiτ (λ) ∂w.Λje

−τψiτ (λ). (3.9)

Notice that

∂w.Λjψiτ (λ) = 〈w.Λj , λ√
|λ|2+|ρ|2

− iA(kx)
τ 〉

is a symbol of order 0, which satisfies in addition

|∂w.Λjψiτ (λ)| ≥ |〈w.Λj ,λ〉|√
|λ|2+|ρ|2

−
∣∣〈w.Λj , A(kx)

τ 〉
∣∣

≥ c5
|λ|√
|λ|2+|ρ|2

− |Λj | |A(kx)|
|τ | ≥

c5√
2
−M2

|x|
|t|

on (suppχw.Sj ) ∩ (suppχρ∞) according to Proposition (2.6), where the con-
stants c5 andM2 are specified in Remark 2.5. By choosing CΣ = min{ c5

2M2
, 1

2}
, we obtain

|∂w.Λjψiτ (λ)| ≥
√

2−1
2 c5 > 0.

Let us return to (3.8), which becomes

Iw.Sj (iτ, x) = τ−N
∫
a
dλ e−τψiτ (λ)

×
{
∂w.Λj ◦ 1

∂w.Λjψiτ (λ)

}N{
χw.Sj (λ)χρ∞(λ)|c(λ)|−2

}
,
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after N integrations by parts based on (3.9). If some derivatives hit χρ∞(λ),
the above integral is reduced to the spherical shell |λ| � |ρ| and thus con-
verges. Assume that no derivative is applied to χρ∞(λ) and that

• N1 derivatives are applied to the factors 1
∂w.Λjψiτ (λ) ,

• N2 derivatives are applied to χw.Sj (λ),

• N3 derivatives are applied to |c(λ)|−2,

with N = N1 +N2 +N3. The contribution of the first item is O(|λ|−N1), as
∂w.Λjψiτ (λ) is a symbol or order 0, which stays away from 0. Similarly, the
contribution of the second item is O(|λ|−N2), as χw.Sj (λ) is a symbol of order
0 according to Proposition 2.3. As far as the third item is concerned, the
derivatives (∂w.Λj )

N3 are applied to the various factors in (2.3). According to
Proposition 2.6, for every λ in the support of χw.Sj , any root α ∈ Σ satisfies
either 〈α,w.Λj〉 = 0 or |〈α, λ〉| & |λ|. On the one hand, if 〈α,w.Λj〉 = 0, all
derivatives

(∂w.Λj )
Nα |cα(〈α, λ〉)|−2 ∀Nα ∈ N∗

vanish. On the other hand, if 〈α,w.Λj〉 6= 0, we use the fact that |cα|−2 is a
symbol on R of order mα +m2α, together with (2.10), in order to estimate∣∣(∂w.Λj )Nα |cα(〈α, λ〉)|−2

∣∣ . |〈α, λ〉|mα+m2α−Nα � |λ|mα+m2α−Nα ∀Nα ∈ N∗

for λ ∈ (suppχw.Sj ) ∩ (suppχρ∞). Hence

(∂w.Λj )
N3 |c(λ)|−2 = O(|λ|d−`−N3) ∀λ ∈ (suppχw.Sj ) ∩ (suppχρ∞).

In conclusion,

|Iw.Sj (iτ, x)| . |τ |−N
∫
a
dλ |λ|d−`−N1−N2−N3 . |t|−N

provided that N > d, and consequently

I+(s, t, x) = O(|t|−N ).

�

We deduce from (3.4) and (3.5) that, for all 0 < s < 1, |t| ≥ 1 and
|x|
|t| ≤ CΣ,

|I(s, t, x)| . |t|−
D
2 (1 + |x|)

D−`
2 (3.10)

uniformly in s. Notice that
∂

∂s
I(s, t, x) = −

∫
a
dλ |c(λ)|−2

√
|λ|2 + |ρ|2 e−s

√
|λ|2+|ρ|2 eitψt(λ)

has the same phase as I(s, t, x). Hence the estimate (3.10) holds for ∂
∂sI(s, t, x)

by similar computations. Since∫ 1

0
ds sσ−1I(s, t, x) =

[
1
σ s

σ I(s, t, x)
]1
0
− 1

σ

∫ 1

0
ds sσ ∂

∂s I(s, t, x),
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we deduce that∣∣∣Cσ,d ∫ 1

0
ds sσ−1I(s, t, x)

∣∣∣ . |t|−D2 (1 + |x|)
D−`

2

according to (3.2). Then we obtain the following kernel estimate of ω̃σ,0t .

Theorem 3.3. There exists 0 < CΣ ≤ 1
2 such that the following estimate

holds, when |t| ≥ 1 and |x||t| ≤ CΣ, uniformly in the vertical strip 0 ≤ Reσ ≤
d+1

2 :

|ω̃σ,0t (x)| . |t|−
D
2 (1 + |x|)

D−`
2 ϕ0(x). (3.11)

3.2. Estimates of ω̃σ,0t (x) in the remaining range. Recall that τ = s−it
with t ∈ R∗ and s ∈ (0, 1) throughout this subsection. We are looking for
pointwise estimates of

ω̃σ,0t (x) = Cσ,d

∫ 1

0
ds sσ−1C0

∫
a
dλ |c(λ)|−2ϕλ(x)

p̃τ (λ)︷ ︸︸ ︷
e−τ
√
|λ|2+|ρ|2︸ ︷︷ ︸

pτ (x)

∀x ∈ X,

where pτ (x) is the Poisson kernel and p̃τ (λ) denotes its spherical Fourier
transform. This subsection focuses on pointwise estimates of pτ along the
lines of [9, pp.1054-1063].

Remark 3.4. Notice that the Gaussian factor ensures the convergence of the
integral defining pτ , but yields a large negative power s−d. Then ω̃σ,0t con-
verges under the strong smoothness assumption Reσ ≥ d. We will sharpen
it to Reσ = d+1

2 . Notice that the stationary phase method carried out in the
previous subsection fails since the critical point can be very large when |x||t| is
not bounded from above.

As in [9], let us denote by pRτ (v) = τ
π(τ2+v2)

the Poisson kernel on R. We
may write

p̃τ (λ) = e−τ
√
|λ|2+|ρ|2 =

∫
R
dv pRτ (v) cos(v

√
|λ|2 + |ρ|2) ∀λ ∈ a.

Consider a smooth even cut-off function χ : R → [0, 1], which is supported
in [−

√
2,
√

2], and equals 1 on [−1, 1]. Denote by χT = χ( ·2T ) with T =
√

2

(uniformly in t) when |t| ≤ 1 or T =
√

2|t| when |t| ≥ 1. Then χT is
supported in [−2

√
2T, 2

√
2T ] ⊂ (−3T, 3T ). We denote by aτ and bτ the

K-bi-invariant kernels of operators

Aτ =

∫ +∞

∞
dv χT (v) pRτ (v) cos(v

√
−∆)

and

Bτ =

∫ ∞
−∞

dv {1− χT (v)} pRτ (v) cos(v
√
−∆).

Then pτ = aτ + bτ and aτ is supported in a ball of radius 3T in X by finite
propagation speed. bτ is easily estimated by straightforward computations,
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see Proposition 3.6. In order to analyze aτ , we will expand cos(v
√
−∆) by

using Hadamard parametrix.
Let {Rz+ | z ∈ C} be the analytic family of Riesz distributions on R defined

by

Rz+(r) =

{
Γ(z)−1rz−1 if r > 0,

0 if r ≤ 0,

for Re z > 0. The K-bi-invariant convolution kernel Φv of the operator
cos(v

√
−∆) has the asymptotic expansion

Φv(expH) = J(H)−
1
2

[d/2]∑
k=0

4−k |v|Uk(H)R
k− d−1

2
+ (v2 − |H|2)

+ EΦ(v,H)

(3.12)

where

J(H) =
∏
α∈Σ+

(sinh〈α,H〉
〈α,H〉

)mα
denotes the Jacobian of the exponential map from p equipped with Lebesgue
measure to X equipped with Riemannian measure. Moreover, the coefficients
satisfy

∇npUk = O(1) (3.13)

for every k, n ∈ N, and the remainder is estimated as

|EΦ(v,H)| . (1 + v)3( d
2

+1)e−〈ρ,H〉. (3.14)

The Hadamard parametrix has been described and applied in various set-
tings, see for instance [7, 20, 9]. For the reader’s convenience, we give in
Appendix B some details about this construction in the particular case of
noncompact symmetric spaces. By resuming the proof of Lemma 3.3 in
[9] (see Appendix C for details), we deduce the following expansion of the
K-bi-invariant convolution kernel aτ of the operator Aτ :

aτ (expH) =
τ

π
J(H)−

1
2

[d/2]∑
k=0

4−k Uk(H) Γ
(
d+1

2 − k
)

(|H|2 + τ2)k−
d+1

2

+E(τ,H) (3.15)

where

|E(τ,H)| . |T |3( d
2

+1) (log T − log s) e−〈ρ,H〉 ∀H ∈ a+. (3.16)

Remark 3.5. As a consequence, we may deduce that

|aτ (expH)| . s−
d+1

2 e−〈ρ,H〉

|t|
− d−1

2 if |t| is small,

|t|3( d
2

+1) log |t| if |t| is large,

for all H ∈ a+. However, we cannot apply straightforwardly such estimates
to study the kernel ωσt , since it kills the imaginary part of σ and yields a
logarithmic singularity on the sphere |x| = t when σ ∈ C with Reσ = d+1

2 .
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The following proposition concerning the estimate of bτ will be proved by
straightforward computations.

Proposition 3.6. Let N > d be an even integer. Then

|bτ (x)| . (1 + |t|)−N ϕ0(x) (3.17)

for every x ∈ X and for every τ = s− it with s ∈ (0, 1] and t ∈ R∗.

Proof. Let is study

Bτ (λ) =
2τ

π

∫ +∞

0
dv {1− χT (v)} 1

τ2 + v2
cos(v

√
|λ|2 + |ρ|2),

which vanishes unless v > 2T . By performing N integrations by parts based
on

cos(v
√
|λ|2 + |ρ|2) = − 1

|λ|2 + |ρ|2
∂2

∂v2
cos(v

√
|λ|2 + |ρ|2),

we obtain

Bτ (λ) =
2τ

π
(−1)−

N
2 (|λ|2 + |ρ|2)−

N
2

×
∫ +∞

0
dv cos(v

√
|λ|2 + |ρ|2)

(
∂
∂v )N (1−χT (v)

τ2+v2

)
.

Since v > 2T , we have |τ2 + v2| & v2 uniformly in τ = s− it. Hence

Bτ (λ) . |τ | (|λ|2 + |ρ|2)−
N
2

∫ +∞

2T
dv v−2−N . |T |−N (|λ|2 + |ρ|2)−

N
2 .

By the inverse formula of the spherical Fourier transform, we deduce

|bτ (x)| =
∣∣∣ ∫

a
dλ |c(λ)|−2 ϕλ(x)Bτ (λ)

∣∣∣
. |T |−N ϕ0(x)

∫
a
dλ |c(λ)|−2 (|λ|2 + |ρ|2)−

N
2

where the last integral converges provided that N > d. �

According to the asymptotic expansion (3.15) of aτ and to the estimate
(3.17) of bτ , we establish the pointwise estimates of ω̃σ,0t in the case where
|x|
|t| is bounded from below.

Theorem 3.7. Let σ ∈ C with Reσ = d+1
2 . The following estimates hold

for all t ∈ R∗ and x ∈ X.
(i) If 0 < |t| < 1, then

|ω̃σ,0t (x)| . |t|−
d−1

2 (1 + |x+|)
max{d,D}−`

2 e−〈ρ,x
+〉.

(ii) If |t| ≥ 1 and |x||t| > CΣ, then

|ω̃σ,0t (x)| . |t|−N1 (1 + |x+|)N2 e−〈ρ,x
+〉,

for every N1 ∈ N and N2 ≥ N1 + 2(d+ 1) + max{d,D}−`
2 .



18 JEAN-PHILIPPE ANKER & HONG-WEI ZHANG

Proof. Recall that we are looking for a pointwise estimate of the kernel

ω̃σ,0t (x) = Cσ,d

∫ 1

0
ds sσ−1 pτ (x),

where τ = s − it with s ∈ (0, 1) and t ∈ R∗. According to the Cartan
decomposition, for every x ∈ X, there exist k1, k2 ∈ K and x+ ∈ a+ such
that x = k1(expx+)k2. Then

pτ (x) = aτ (expx+) + bτ (expx+)

by the K-bi-invariance. According to the expansion (3.15), we split up

ω̃σ,0t (x) = I1(t, x+) + I2(t, x+) + I3(t, x+)

=
1

π
J(x+)−1/2

[d/2]∑
k=0

4−k Uk(x
+) Γ

(
d+1

2 − k
)
I1,k(t, x

+)

+ Cσ,d

∫ 1

0
ds sσ−1E(τ, x+) + Cσ,d

∫ 1

0
ds sσ−1bτ (expx+)

where

I1,k(t, x
+) = Cσ,d

∫ 1

0
ds sσ−1 τ(|x+|2 + τ2)k−

d+1
2

satisfies

|I1,k(t, x
+)| . 1 + |t|−

d−1
2

according to next lemma. Hence

I1(t, x+) . (
√
|t|+ |t|−

d−1
2 ) J(x+)−1/2 ∀ t ∈ R∗. (3.18)

The last two terms I2(t, x+) and I3(t, x+) are easily handled: on the one
hand, we have

|I2(t, x+)| .
∫ 1

0
ds sReσ−1 |E(τ, x+)|

. (1 + |t|)3( d
2

+1) log (2 + |t|) e−〈ρ,x+〉,

(3.19)

according to (3.16); on the other hand, (3.17) yields

|I3(t, x+)| .
∫ 1

0
ds sReσ−1 |bτ (expx+)| . (1 + |t|)−N ϕ0(expx+) (3.20)

for all σ ∈ C with Reσ = d+1
2 . By summing up the estimates (3.18), (3.19)

and (3.20), we deduce, on the one hand,

|ω̃σ,0t (x)| . |t|−
d−1

2 (1 + |x+|)
max{d,D}−`

2 e−〈ρ,x
+〉

if |t| < 1, and on the other hand,

|ω̃σ,0t (x)| . |t|3( d
2

+1) log (2 + |t|) (1 + |x+|)
max{d,D}−`

2 e−〈ρ,x
+〉

if |t| ≥ 1. Since |x||t| is bounded from below, we obtain finally

|ω̃σ,0t (x)| . |t|−N1 (1 + |x+|)N2 e−〈ρ,x
+〉 ∀ |t| ≥ 1
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for every N1 ∈ N and N2 ≥ N1 + 2(d+ 1) + max{d,D}−`
2 . �

Remark 3.8. Notice that the above method works only in small time, or in
large time under the assumption that |x||t| is bounded from below. The large
polynomial growth in |x+| appearing in the estimate is not crucial for further
computations because of the exponential decay e−〈ρ,x+〉.

Lemma 3.9. For every integer 0 ≤ k < d+1
2 , the integral

I1,k(t, x
+) = Cσ,d

∫ 1

0
ds sσ−1 τ(|x+|2 + τ2)k−

d+1
2

satisfies

|I1,k(t, x
+)| . 1 + |t|k−

d−1
2 ∀ t ∈ R∗, ∀x ∈ a+

uniformly in σ ∈ C with Reσ = d+1
2 .

Proof. Since τ = s− it, we write I1,k(t, x
+) = P1 + P2 with

P1 = Cσ,d

∫ 1

0
ds sσ (s2 + |x+|2 − t2 − 2sti)k−

d+1
2

and

P2 = Cσ,d (−it)
∫ 1

0
ds sσ−1 (s2 + |x+|2 − t2 − 2sti)k−

d+1
2 .

As ∣∣s2 + |x+|2 − t2 − 2sti
∣∣ =

√
s4 + 2s2(|x+|2 + t2) + (|x+|2 − t2)2,

notice that

∣∣s2 + |x+|2 − t2 − 2sti
∣∣ ≥


s2 (3.21)

s|t| (3.22)∣∣|x+|2 − t2
∣∣ (3.23)

P1 is easily estimated. By using (3.22), we obtain first

|P1| . |t|k−
d+1

2

∫ 1

0
ds sk ≤ |t|k−

d+1
2 ∀ t ∈ R∗.

By using in addition (3.21), we obtain next, for |t| < 1,

|P1| . |t|k−
d+1

2

∫ |t|
0

ds sk +

∫ 1

|t|
ds s2k− d+1

2 . 1 + |t|2k−
d−1

2

We deduce that

|P1| .

1 + |t|2k−
d−1

2 if |t| < 1,

|t|k−
d+1

2 if |t| ≥ 1.
(3.24)
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Let us turn to P2. Consider first the easy case where 1 ≤ k < d+1
2 . By

using (3.22) again, we get

|P2| . |t| · |t|k−
d+1

2

∫ 1

0
ds sReσ−1+k− d+1

2 . |t|k−
d−1

2 (3.25)

for all σ ∈ C with Reσ = d+1
2 . In order to estimate P2 in the remaining case

where k = 0, we write

P2 = Cσ,d (−it)
∫ 1

0
ds si Imσ−1

(
s

s2+|x+|2−t2−2sti

) d+1
2 .

By performing an integration by parts, P2 becomes the sum of P−2 and P+
2

where

P−2 =
[Cσ,d

Imσ (−it) sImσ
(

s
s2+|x+|2−t2−2sti

) d+1
2
]1
0

and

P+
2 =

Cσ,d
Imσ (it)

∫ 1

0
ds sImσ ∂

∂s

{(
s

s2+|x+|2−t2−2sti

) d+1
2
}
.

By using (3.2) together with (3.21) in small time and (3.22) in large time,
we obtain

|P−2 | .

1 if |t| < 1,

|t|−
d−1

2 if |t| ≥ 1.
(3.26)

Since

∂
∂s

{(
s

s2+|x+|2−t2−2sti

) d+1
2
}

= d+1
2

(
s

s2+|x+|2−t2−2sti

) d−1
2︸ ︷︷ ︸

O(|t|−
d−1

2 )

|x+|2−t2−s2
(s2+|x+|2−t2−2sti)2 ,

we have

|P+
2 | . |t|

− d−1
2 |t|

∫ 1

0
ds

∣∣|x+|2−t2−s2
∣∣∣∣s2+|x+|2−t2−2sti
∣∣2︸ ︷︷ ︸

Q

. (3.27)

It remains for us to estimate Q, which is bounded by the sum of

Q1 = |t|
∫ 1

0
ds s2∣∣s2+|x+|2−t2−2sti

∣∣2 and Q2 = |t|
∫ 1

0
ds

∣∣|x+|2−t2
∣∣∣∣s2+|x+|2−t2−2sti
∣∣2 .

Q1 is estimated as P1. According to (3.22) and (3.21), we have

Q1 .

|t|
∫ 1

0 ds |t|
−2 = |t|−1 ≤ 1 if |t| ≥ 1,

|t|
∫ |t|

0 ds |t|−2 + |t|
∫ 1
|t| ds s

−2 ≤ 2 if |t| < 1.

Let us finally estimate Q2. On the one hand, if
∣∣|x+|2 − t2

∣∣ ≥ |t|, by using
(3.23), we get

|Q2| . |t|
∫ 1

0
ds
∣∣|x+|2 − t2

∣∣−1
. 1.
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On the other hand, if
∣∣|x+|2 − t2

∣∣ ≤ |t|, we have Q2 = O(1) since∣∣∣|t|∫
0≤s≤ ||x

+|2−t2|
|t|

ds

∣∣|x+|2−t2
∣∣∣∣s2+|x+|2−t2−2sti
∣∣2 ∣∣∣ . |t|

∫
0≤s≤ ||x

+|2−t2|
|t|

ds
∣∣|x+|2 − t2

∣∣−1

≤ 1

according to (3.23), and∣∣∣|t|∫
||x+|2−t2|
|t| ≤s≤1

ds

∣∣|x+|2−t2
∣∣∣∣s2+|x+|2−t2−2sti
∣∣2 ∣∣∣ . ||x+|2−t2|

|t|

∫
||x+|2−t2|
|t| ≤s≤1

ds s−2

≤ 2

according to (3.22). Hence Q = O(1) and we deduce from (3.27) that |P+
2 | .

|t|−
d−1

2 for all t ∈ R∗. By combining with (3.26) and (3.25), we obtain

|P2| . |t|k−
d−1

2 ∀ t ∈ R∗.

Together with (3.24), this concludes the proof. �

3.3. Estimates of ωσ,∞t . We establish in this last subsection the pointwise
estimates of ωσ,∞t . Recall that

ωσ,∞t (x) =
1

Γ(σ)

∫ +∞

1
ds sσ−1 ps−it(x) ∀x ∈ X, ∀ t ∈ R∗.

According to the integral expression (2.2) of the spherical function, we may
write

ωσ,∞t (x) =
C0

Γ(σ)

∫
K
dk e〈ρ,A(kx)〉

∫ +∞

1
ds sσ−1 I(s, t, x),

where, let us recall,

I(s, t, x) =

∫
a
dλ |c(λ)|−2 e−s

√
|λ|2+|ρ|2 eitψt(λ).

We have considered this oscillatory integral in the case where s ∈ (0, 1).For
s ≥ 1, the factor e−s

√
|λ|2+|ρ|2 plays an important role. On the one hand, for

λ close to the critical point of ψt(λ), this Gaussian produces an exponential
decay in s, which ensures the convergence of the integral over s ∈ (1,+∞).
For λ away from the critical point, it produces an exponential decay in |λ|,
which ensures the convergence of the integral over λ ∈ a. Let us elaborate.

Theorem 3.10. The following estimate holds, uniformly in the strip 0 ≤
Reσ ≤ d+1

2 , for all t ∈ R∗ and x ∈ X:

|ωσ,∞t (x)| . ϕ0(x). (3.28)

Moreover, if |t| ≥ 1,

|ωσ,∞t (x)| . |t|−
D
2 (1 + |x|)

D
2 ϕ0(x). (3.29)
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Proof. The global estimate (3.28) is obtained by a straightforward compu-
tation. On the one hand,∫

|λ|≤1
dλ |c(λ)|−2 e−s

√
|λ|2+|ρ|2 ≤ e−s|ρ|

∫
|λ|≤1

dλ |λ|D−`︸ ︷︷ ︸
<+∞

.

On the other hand,∫
|λ|≥1

dλ |c(λ)|−2 e−s
√
|λ|2+|ρ|2 ≤ e−

s
2
|ρ|
∫
|λ|≥1

dλ |λ|d−` e−
s
2
|λ|

︸ ︷︷ ︸
<+∞

.

Hence

|ωσ,∞t (x)| . ϕ0(x)

∫ +∞

1
ds sReσ−1 e−

s
2
|ρ|︸ ︷︷ ︸

<+∞

. (3.30)

The estimate (3.29) follows from (3.28) if |x||t| is bounded from below. Let

us prove it if |x||t| is bounded from above, let say by 1
2 . We study the oscillatory

integral I along the lines of Sect. 3.1. Let split up again

I(s, t, x) = I−(s, t, x) + I+(s, t, x) =

∫
a
dλχρ0(λ) · · · +

∫
a
dλχρ∞(λ) · · ·

according to cut-off functions χρ0 and χρ∞ = 1−χρ0, which have been defined
in Sect. 3.1. Recall that χρ0(λ) = 1 when |λ| ≤ |ρ| and vanishes if |λ| ≥ 2|ρ|.

On the one hand, I− is estimated by studying the oscillatory integral

I−(s, t, x) =

∫
a
dλ χρ0(λ) |c(λ)|−2 e−s

√
|λ|2+|ρ|2︸ ︷︷ ︸

a0(s,λ)

eitψt(λ)

where the amplitude a0 is compactly supported for |λ| ≤ 2|ρ|, and in this
range, the phase ψt, defined by (3.3), has a single critical point, which is
nondegenerate and small if |x||t| ≤

1
2 . According to Lemma A.1, we obtain

|I−(s, t, x)| . |t|−
D
2 (1 + |x|)

D−`
2 e−

|ρ|
2
s. (3.31)

On the other hand,

I+(s, t, x) =

∫
a
dλχρ∞(λ) |c(λ)|−2 e−s

√
|λ|2+|ρ|2 eitψt(λ)

is easily estimated with no barycentric decomposition. Let

ψ̃∞(λ) = |λ|2√
|λ|2+|ρ|2

+ 〈A(kx)
t , λ〉 ∀λ ∈ suppχρ∞.
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Then ψ̃∞ is a symbol of order 1, and satisfies

|ψ̃∞(λ)| = |λ|2√
|λ|2 + |ρ|2︸ ︷︷ ︸
≥ |λ|√

2

− 〈λ0, λ〉√
|λ0|2 + |ρ|2︸ ︷︷ ︸
≤ |λ|√

3

≥ ( 1√
2
− 1√

3
)|ρ| > 0

on suppχρ∞ according to (3.6) and (3.7). By performing N integrations by
parts based on

eitψt(λ) = 1
it ψ̃∞(λ)−1

∑`
j=1 λj

∂
∂λj

eitψt(λ),

we write

I+
∞(s, t, x) = (it)−N

∫
a
dλ eitψt(λ)

×
{
−
∑`

j=1
∂
∂λj
◦ λj

ψ̃∞(λ)

}N{
χρ∞(λ) |c(λ)|−2 e−s

√
|λ|2+|ρ|2}.

If some derivatives hit χρ∞(λ), the range of the above integral is reduced to
a spherical shell where |λ| � |ρ|, and

I+(s, t, x) � |t|−Ne−s|ρ|.

Assume next that no derivative is applied to χρ∞ and
• N1 derivatives are applied to the factors λj/ψ̃∞(λ), which are inhomoge-
neous symbols of order 0, producing contributions which are O(|λ|−N1),

• N2 derivatives are applied to the factor |c(λ)|−2 which is not a symbol in
general, producing a contribution which is O(|λ|d−`),

• N3 derivatives are applied to the factor e−s
√
|λ|2+|ρ|2 , producing a contri-

bution which is O(sN3e−s
√
|λ|2+|ρ|2),

with N1 +N2 +N3 = N . Then we get the upper bound

|t|−N sN3

∫
|λ|>|ρ|

dλ |λ|d−`−N1 e−s
√
|λ|2+|ρ|2 ,

which yields

|I+(s, t, x)| . |t|−N sN e−
s
2
|ρ|
∫
|λ|>|ρ|

dλ |λ|d−` e−
s
2
|λ|

︸ ︷︷ ︸
<+∞

.

Together with (3.31), we obtain

|I(s, t, x)| . |t|−
D
2 (1 + |x|)

D−`
2 sNe−

s
2
|ρ|.

for all s ≥ 1 and for N ≥ D
2 . We deduce

|ωσ,∞t (x)| . |t|−
D
2 (1 + |x|)

D−`
2 ϕ0(x)

∫ +∞

1
ds sReσ−1+N e−

|ρ|
2
s︸ ︷︷ ︸

<+∞

for all x ∈ X and |t| ≥ 1. �
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4. Dispersive estimates

In this section, we prove our second main result about the Lq′ → Lq

estimates for the operatorW σ
t = (−∆)−

σ
2 eit
√
−∆. We introduce the following

criterion based on the Kunze-Stein phenomenon, which is crucial for the
proof of dispersive estimates.

Lemma 4.1. Let κ be a reasonable K-bi-invariant function on G. Then

‖ · ∗ κ‖Lq′ (X)→Lq(X) ≤
{∫

G
dxϕ0(x) |κ(x)|

q
2

} 2
q

for every q ∈ [2,+∞). In the limit case q =∞,

‖ · ∗ κ‖L1(X)→L∞(X) = supx∈G |κ(x)|.

Remark 4.2. This lemma has been proved in several contexts. For q = 2, it
is the so-called Herz’s criterion, see for instance [8]. For q > 2, the proof car-
ried out on Damek-Ricci spaces [4, Theorem 4.2] is adapted straightforwardly
in the higher rank case.

Theorem 4.3 (Small time dispersive estimate). Let d ≥ 3 and 0 < |t| < 1.
Then

‖(−∆)−
σ
2 eit
√
−∆‖Lq′ (X)→Lq(X) . |t|

−(d−1)( 1
2
− 1
q

)

for all 2 < q < +∞ and σ ≥ (d+ 1)(1
2 −

1
q ).

Proof. We divide the proof into two parts, corresponding to the kernel de-
composition ωσt = ωσ,0t +ωσ,∞t . According to Lemma 4.1 and to the pointwise
estimate Theorem 3.10, we obtain on one hand

‖ · ∗ ωσ,∞t ‖Lq′ (X)→Lq(X) ≤
{∫

G
dxϕ0(x) |ωσ,∞t (x)|

q
2

} 2
q

.
{∫

a+

dx+ |ϕ0(x+)|
q
2

+1 δ(x+)
} 2
q

.
{∫

a+

dx+ (1 + |x+|)
D−`

2
( q

2
+1) e−( q

2
−1)〈ρ,x+〉

} 2
q

< +∞

for all q > 2. On the other hand, we use an analytic interpolation between
L2 → L2 and L1 → L∞ estimates for the family of operators W̃ σ,0

t defined
by (3.1) in the vertical strip 0 ≤ Reσ ≤ d+1

2 . When Reσ = 0, the spectral
theorem yields

‖W̃ σ,0
t ‖L2(X)→L2(X) = ‖eit

√
−∆‖L2(X)→L2(X) = 1

for all t ∈ R∗. According to Theorem 3.7, when Reσ = d+1
2 ,

‖W̃ σ,0
t ‖L1(X)→L∞(X) . ‖ω̃

σ,0
t ‖L∞(X) . |t|−

d−1
2 .
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By Stein’s interpolation theorem applied to the analytic family of operators
W̃ σ,0
t , we conclude for σ = (d+ 1)(1

2 −
1
q ) that

‖W σ
t ‖Lq′ (X)→Lq(X) . |t|

−(d−1)( 1
2
− 1
q

)
,

for all 0 < |t| < 1 and 2 < q < +∞. �

Theorem 4.4 (Large time dispersive estimate). Assume that |t| ≥ 1, 2 <
q < +∞ and σ ≥ (d+ 1)(1

2 −
1
q ). Then

‖(−∆)−
σ
2 eit
√
−∆‖Lq′ (X)→Lq(X) . |t|

−D
2 .

Proof. We divide the proof into three parts, corresponding to the kernel
decomposition

ωσt = 1B(0,CΣ|t|) ω
σ,0
t + 1X\B(0,CΣ|t|)ω

σ,0
t + ωσ,∞t

where the constant CΣ has been specified in the proof of Theorem 3.3. The
first and the last terms are estimated by straightforward computations. By
combining Lemma 4.1 with the pointwise kernel estimates in Theorem 3.3
and Theorem 3.10, we obtain

‖ · ∗ {1B(0,CΣ|t|) ω
σ,0
t }‖Lq′ (X)→Lq(X)

.
{∫

G
dxϕ0(x) |1B(0,CΣ|t|)(x)ωσ,0t (x)|

q
2

} 2
q

. |t|−
D
2

{∫
|x+|<CΣ|t|

dx+ (1 + |x+|)
D−`

2
(q+1) e−( q

2
−1)〈ρ,x+〉

} 2
q

︸ ︷︷ ︸
<+∞

and

‖ · ∗ ωσ,∞t ‖Lq′ (X)→Lq(X)

.
{∫

G
dxϕ0(x) |ωσ,∞t (x)|

q
2

} 2
q

. |t|−
D
2

{∫
a+

dx+ (1 + |x+|)
D−`

2
+(D− `

2
) q

2 e−( q
2
−1)〈ρ,x+〉

} 2
q

︸ ︷︷ ︸
<+∞

.

Here q ≤ 2 <∞ and the above estimates are uniform in the strip 0 ≤ Reσ ≤
d+1

2 . As far as the middle term is concerned, we use again the analytic
interpolation for the family of operators associated with the convolution
kernel 1X\B(0,CΣ|t|) ω̃

σ,0
t . On the one hand, if Reσ = 0, then

‖ · ∗ 1X\B(0,CΣ|t|) ω̃
σ,0
t ‖L2(X)→L2(X)

≤ ‖ · ∗ ω̃σ,0t ‖L2(X)→L2(X) + ‖ · ∗ 1B(0,CΣ|t|) ω̃
σ,0
t ‖L2(X)→L2(X) . 1.

On the other hand, if Reσ = d+1
2 , we deduce from Theorem 3.7 that

‖ · ∗ 1X\B(0,CΣ|t|) ω̃
σ,0
t ‖L1(X)→L∞(X) = sup

x∈X
|1X\B(0,CΣ|t|)(x) ω̃σ,0t (x)| . |t|−N
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for any N ∈ N. By using Stein’s interpolation theorem between above L2 →
L2 and L1 → L∞ estimates, we obtain

‖ · ∗ 1X\B(0,CΣ|t|)ω
σ,0
t ‖Lq′ (X)→Lq(X) . |t|

−N ,

for all |t| ≥ 1, 2 < q < +∞ and for any N ∈ N. This concludes the proof. �

Remark 4.5. The standard TT ∗ method used to prove the Strichartz inequal-
ity breaks down in the critical case. In order to take care of these endpoints,
we need the dyadic decomposition method carried out in [25] and the following
stronger dispersive property, which is obtained by interpolation arguments.

Corollary 4.6. Let d ≥ 3, 2 < q, q̃ < +∞ and σ ≥ (d+ 1) max(1
2 −

1
q ,

1
2 −

1
q̃ ). Then there exists a constant C > 0 such that the following dispersive
estimates hold:

‖(−∆)−
σ
2 eit
√
−∆‖Lq̃′ (X)→Lq(X) ≤ C

|t|
−(d−1) max( 1

2
− 1
q
, 1
2
− 1
q̃

) if 0 < |t| < 1,

|t|−
D
2 if |t| ≥ 1.

5. Strichartz inequality and applications

In this section, we use the dispersive properties proved in the previous
section to establish the Strichartz inequality. This inequality serves as a tool
for finding minimal regularity conditions on the initial data ensuring well-
posedness of related semi-linear wave equations. Such results were previously
known to hold for real hyperbolic spaces [3] (actually for all noncompact
symmetric spaces of rank one) and for noncompact symmetric spaces G/K
with G complex [38]. For simplicity, we may assume that ` ≥ 2 throughout
this section, thus d ≥ 4.

Let σ ∈ R and 1 < q < ∞. Recall that the Sobolev space Hσ,q(X) is the
image of Lq(X) under the operator (−∆)−

σ
2 , equipped with the norm

‖f‖Hσ,q(X) = ‖(−∆)
σ
2 f‖Lq(X).

If σ = N is a nonnegative integer, then Hσ,q(X) coincides with the classical
Sobolev space

WN,q(X) = {f ∈ Lq(X) | ∇jf ∈ Lq(X)∀ 1 ≤ j ≤ N},
defined by means of covariant derivatives. We refer to [37] for more details
about function spaces on Riemannian manifolds. Let us state the Strichartz
inequality and some applications. The proofs are adapted straightforwardly
from [5, 3] and are therefore omitted.

5.1. Strichartz inequality. We study the linear inhomogeneous wave equa-
tion on X {

∂2
t u(t, x)−∆u(t, x) = F (t, x),

u(0, x) = f(x), ∂t|t=0u(t, x) = g(x)
(5.1)

whose solution is given by Duhamel’s formula:

u(t, x) = (cos t
√
−∆)f(x) + sin t

√
−∆√
−∆

g(x) +

∫ t

0
ds sin(t−s)

√
−∆√

−∆
F (s, x).
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Figure 3. Admissibility in dimension d ≥ 4.

Recall that a couple (p, q) is called admissible if (1
p ,

1
q ) belongs to the triangle{(

1
p ,

1
q

)
∈
(

0, 1
2

]
×
(

0, 1
2

) ∣∣∣ 1
p ≥

d−1
2

(
1
2 −

1
q

)}⋃{(
0, 1

2

)}
.

Theorem 5.1. Let (p, q) and (p̃, q̃) be two admissible couples, and let

σ ≥ d+1
2

(
1
2 −

1
q

)
and σ̃ ≥ d+1

2

(
1
2 −

1
q̃

)
.

Then all solutions u to the Cauchy problem (5.1) satisfy the following Stri-
chartz inequality:

‖∇R×Xu‖Lp(I;H−σ,q(X)) . ‖f‖H1(X) + ‖g‖L2(X) + ‖F‖Lp̃′ (I;Hσ̃,q̃′ (X)). (5.2)

Remark 5.2. As have already been observed on hyperbolic spaces, the ad-
missible set for X is much larger than the admissible set for Rd, which cor-
responds only to the lower edge of the triangle. This is due to large scale
dispersive effects in negative curvature.

The admissible range in (5.2) can be widened by using the Sobolev em-
bedding theorem.

Corollary 5.3. Assume that (p, q) and (p̃, q̃) are two couples corresponding
to the square [

0, 1
2

]
×
(

0, 1
2

)⋃{(
0, 1

2

)}
,

Let σ, σ̃ ∈ R such that σ ≥ σ(p, q), where

σ(p, q) = d+1
2

(
1
2 −

1
q

)
+ max

{
0, d−1

2

(
1
2 −

1
q

)
− 1

p

}
,

and similarly σ̃ ≥ σ(p̃, q̃). Then the Strichartz inequality (5.2) holds for all
solutions to the Cauchy problem (5.1).
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Figure 4. Extended admissibility in dimension d ≥ 4.

5.2. Global well-posedness in Lp(R, Lq(X)). By combining the classical
fixed point scheme with the previous Strichartz inequalities, one obtains the
global well-posedness for the semi-linear equation{

∂2
t u(t, x)−∆u(t, x) = F (u(t, x)),

u(0, x) = f(x), ∂t|t=0u(t, x) = g(x).
(5.3)

on X with small initial data f and g and power-like nonlinearities F satisfying

|F (u)| . |u|γ and |F (u)− F (v)| . (|u|γ−1 + |v|γ−1)|u− v|

where γ > 1. Let γc = 1+ 4
d−1 be the conformal power. The global existence

of solutions to the semi-linear wave equation (5.3) on Rd is related to the
Strauss conjecture: the critical power γ0, i.e., the infimum of all γ ∈ (1, γc]
such that (5.3) has global solutions for small initial data, is the positive root
of the quadratic equation

(d− 1)γ2
0 − (d+ 1)γ0 − 2 = 0 (d ≥ 2).

In other words,

γ0 = 1
2 + 1

d−1 +
√

(1
2 + 1

d−1)2 + 2
d−1 > 1.

We refer to [22, 24, 35, 14, 36] and the references therein for more details
about the Strauss conjecture in the Euclidean setting. In negative curvature,
the global existence for small initial data has been proved, for any γ ∈ (1, γc],
on real hyperbolic spaces of dimension d = 3 [28, 29] and then of any dimen-
sion d ≥ 2 [3]. In other words, there is no phenomenon analogous to Strauss
conjecture on such spaces. Similar results were extended later to Damek-
Ricci spaces, which contain all noncompact symmetric spaces of rank one
[6], and have been established recently on simply connected complete Rie-
mannian manifolds with strictly negative sectional curvature [32], and on
non-trapping asymptotically hyperbolic manifolds [33]. Next theorem shows
that the same phenomenon holds on general noncompact symmetric spaces.
More precisely, we prove that the semi-linear wave equation (5.3) on X is
globally well-posed.
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To state the following theorem, we need to introduce some notation. Con-
sider the following powers

γ1 =1 +
3

d
γ2 = 1 +

2
d−1

2 + 2
d−1

γ3 =

1 + 4
d−2 if d ≤ 5,

d−1
2 + 3

d+1 −
√

(d−3
2 + 3

d+1)2 − 4d−1
d+1 if d ≥ 6,

and the following curves

σ1(γ) =
d+ 1

4
− (d+ 1)(d+ 5)

8d

1

γ − d+1
2d

,

σ2(γ) =
d+ 1

4
− 1

γ − 1
, σ3(γ) =

d

2
− 2

γ − 1
.

Theorem 5.4. The semi-linear Cauchy problem (5.3) is globally well-posed
for small initial data in Hσ,2(X)×Hσ−1,2(X) provided that

σ > 0 if 1 < γ ≤ γ1,

σ ≥ σ1(γ) if γ1 < γ ≤ γ2,

σ ≥ σ2(γ) if γ2 ≤ γ ≤ γc,

σ ≥ σ3(γ) if γc ≤ γ ≤ γ3.

More precisely, in each case, there exists 2 ≤ p, q < ∞ such that for any
small initial data (f, g) in Hσ,2(X) ×Hσ−1,2(X), the Cauchy problem (5.3)
has a unique solution in the Banach space

C(R;Hσ,2(X)) ∩ C1(R;Hσ−1,2(X)) ∩ Lp(R;Lq(X)).

6. Further results for Klein-Gordon equations

The kernel estimates and dispersive estimates proved above for the wave
equation still hold if we replace the operator (−∆)−

σ
2 eit
√
−∆ by D−σeitD,

where

D =
√
−∆− |ρ|2 + κ2 with κ > 0.

Then, for every admissible couple (p, q), the operator

Tf(t, x) = D
−σ

2
x eitDxf(x)

is again bounded from L2(X) to Lp(R;Lq(X)), and its adjoint

T∗F (x) =

∫ +∞

−∞
dsD

−σ
2

x e−isDx F (s, x)

from Lp
′
(R;Lq

′
(X)) to L2(X). While L2 Sobolev spaces may be defined in

terms of D, we need the operator

D̃ =
√
−∆− |ρ|2 + κ̃2 with κ̃ ≥ |ρ|,
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in order to define Lq Sobolev spaces when q gets large. As D̃−
σ
2 ◦D

σ
2 is a

topological automorphism of L2(X), the operator

T̃f(t, x) = D̃
−σ

2
x eitDxf(x)

is also bounded from L2(X) to Lp(R;Lq(X)), and its adjoint

T̃∗F (x) =

∫ +∞

−∞
ds D̃

−σ
2

x e−isDx F (s, x)

from Lp
′
(R;Lq

′
(X)) to L2(X), hence

T̃T̃∗F (t, x) =

∫ +∞

−∞
ds D̃−σx ei(t−s)Dx F (s, x)

from Lp
′
(R;Lq

′
(X)) to Lp̃(R;Lq̃(X)) for all admissible couples (p, q) and

(p̃, q̃). We deduce that Theorem 5.1 and Corollary 5.3 still hold for solutions
to the inhomogeneous Klein-Gordon equation{

∂2
t u(t, x) + D2 u(t, x) = F (t, x),

u(0, x) = f(x), ∂t|t=0u(t, x) = g(x),

and that the corresponding semi-linear equation is globally well-posed with
low regularity data, see Theorem 5.4.

Appendix A. Oscillatory integral on a

In this appendix, we prove the following lemma which is used in the
proofs of Theorem 3.3 and Theorem 3.10. Recall that A = A(kx) is the
a-component of kx ∈ X in the Iwasawa decomposition, and that CΣ ∈ (0, 1

2 ]
is a fixed constant.

Lemma A.1. Let s ∈ R+ and |t| ≥ 1. Consider the oscillatory integral

I−(s, t, x) =

∫
a
dλ a0(s, λ) eitψt(λ)

where the phase is given by

ψt(λ) =
√
|λ|2 + |ρ|2 + 〈At , λ〉

and the amplitude

a0(s, λ) = χρ0(λ) |c(λ)|−2 e−s
√
|λ|2+|ρ|2

vanishes unless |λ| ≤ 2|ρ|. Then, for all x ∈ X such that |x||t| ≤ CΣ,

|I−(s, t, x)| . |t|−
D
2 (1 + |x|)

D−`
2 e−

|ρ|
2
s.

Remark A.2. The proof of this lemma is similar to the proof of [38, Theo-
rem 3.1.(ii)], except that our amplitude involves the general Plancherel den-
sity and in addition a Gaussian factor depending on s.
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Proof. By symmetry, we may assume that t ≥ 1. Recall that the critical
point λ0 of the phase ψ is given by

(|λ0|2 + |ρ|2)−
1
2λ0 = −A

t (A.1)

and satisfies

|λ0| = |ρ| |A||t| (1−
|A|2
t2

)−
1
2 ≤ |ρ| |x|t (1− |x|

2

t2
)−

1
2 < |ρ|√

3
, (A.2)

as |A| ≤ |x| and |x|t ≤
1
2 . Denote by

B(λ0, η) = {λ ∈ a | |λ− λ0| ≤ η}

the ball in a centered at λ0, where the radius η will be specified later. Notice
that |λ| < |ρ| + η for all λ ∈ B(λ0, η). Let Pλ be the projection onto the
vector spanned by λ

|λ| . Then |λ|
2Pλ = λ⊗ λ and the Hessian matrix of ψt is

given by

Hessψt(λ) = (|λ|2 + |ρ|2)−
1
2 I` − (|λ|2 + |ρ|2)−

3
2 λ⊗ λ

= (|λ|2 + |ρ|2)−
3
2 {|ρ|2Pλ + (|λ|2 + |ρ|2)(I` − Pλ)}

= (|λ|2 + |ρ|2)−
3
2


|ρ|2 0

0 (|λ|2 + |ρ|2)I`−1


which is a positive definite symmetric matrix. Hence λ0 is a nondegenerate
critical point. Since ∇aψt(λ0) = 0, we write

ψt(λ)− ψt(λ0)

= (λ− λ0)T
{∫ 1

0
ds (1− s) Hessψt

(
λ0 + s(λ− λ0)

)
︸ ︷︷ ︸

M(λ)

}
(λ− λ0),

where M(λ) belongs, for every λ ∈ B(λ0, η), to a compact subset of the
set of positive definite symmetric matrices. We introduce a new variable
µ = M(λ)

1
2 (λ − λ0), then |µ|2 = ψt(λ) − ψt(λ0) and µ = 0 if and only if

λ = λ0. There exist 0 < η̃1 ≤ η̃2 such that µ ∈ B(0, η̃1) implies λ ∈ B(λ0, η),
and λ ∈ B(λ0, η) implies µ ∈ B(0, η̃2). Notice that for every k ∈ N, there
exists Ck > 0 such that

|∇kaM(λ)
1
2 | ≤ Ck ∀λ ∈ B(λ0, η). (A.3)

Denote by j(λ) the Jacobian matrix such that dµ = det[ j(λ) ]dλ, then we
can choose η > 0 small enough such that

det[ j(λ) ] >
1

2
det[M(λ)

1
2 ] ∀λ ∈ B(λ0, η). (A.4)
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Now, we split up

I−(s, t, x) = I−0 (s, t, x) + I−∞(s, t, x)

=

∫
a
dλχη0(λ) a0(s, λ) eitψt(λ) +

∫
a
dλχη∞(λ) a0(s, λ) eitψt(λ)

where χη0 : a → [0, 1] is a smooth cut-off function which vanishes unless
|λ− λ0| ≤ η

2 , χ
η
0(λ) = 1 if |λ− λ0| ≤ η

4 , and χ
η
∞ = 1− χη0.

Estimate of I−0 . We estimate I−0 by using the stationary phase analysis
described in [34, Chap.VIII 2.3]. Notice that suppχη0 ⊂ B(λ0, η). By sub-
stituting ψt(λ) = |µ|2 + ψt(λ0), we get

I−0 (s, t, x) = eitψt(λ0)

∫
a
dµ ã(s, λ(µ)) eit|µ|

2

where the amplitude

ã(s, λ(µ)) = χη0(λ(µ))χρ0(λ(µ))

× |c(λ(µ))|−2 e−s
√
|λ(µ)|2+|ρ|2 det[ j(λ(µ)) ]−1

(A.5)

is smooth and compactly supported in B(0, η̃2). We deduce, from (A.3)
and (A.4) that ã(s, λ(µ)) is bounded, together with all its derivatives. Let
χη̃2
∈ C∞c (a) be a bump function such that χη̃2

= 1 on B(0, η̃2). Then

I−0 (s, t, x) = eitψt(λ0)

∫
a
dµχη̃2

(µ) eit|µ|
2
e−|µ|

2{e|µ|2 ã(s, λ(µ))}.

Let M = [D2 ] + 1 be the smallest integer > D
2 , the coefficients of the Taylor

expansion

e|µ|
2
ã(s, λ(µ)) =

∑
|k|≤2M

ck µ
k +R2M (µ)

at the origin satisfy

|ck| . |c(λ0)|−2 (1 + s)k e−s
√
|λ0|2+|ρ|2 . ( |x|t )D−` (1 + s)k e−|ρ|s, (A.6)

according to (A.2), and the remainder satisfies

|∇na R2M (µ)| . |µ|2M+1−n (1 + s)2M+1+n e−|ρ|s ∀ 0 ≤ n ≤ 2M + 1. (A.7)

By substituting this expansion in the above integral, I−0 (s, t, x) is the sum
of following three terms:

I1 =
∑
|k|≤2M

ck

∫
a
dµµk eit|µ|

2
e−|µ|

2

I2 =

∫
a
dµχη̃2

(µ)R2M (µ) eit|µ|
2
e−|µ|

2
,

and

I3 =
∑
|k|≤2M

ck

∫
a
dµ {χη̃2

(µ)− 1}µk eit|µ|2 e−|µ|2 .
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To estimate I1, we write

I1 =
∑
|k|≤2M

ck
∏̀
j=1

∫ +∞

−∞
dµj e

itµ2
j e−µ

2
j µ

kj
j

where ∫ +∞

−∞
dµj e

−(1−it)µ2
j µ

kj
j = 0

if kj is odd, while∫ +∞

−∞
dµj e

−(1−it)µ2
j µ

kj
j = 2 (1− it)−

kj+1

2

∫ +∞

0
dzj e

−z2
j z

kj
j

by a change of contour if kj is even. We deduce from (A.6)

|I1| . t−
`
2 ( |x|t )D−` (1 + s)2M e−|ρ|s . t−

D
2 |x|−

D−`
2 e−

|ρ|
2
s

since |x|t ≤ CΣ. Next, we perform M integrations by parts based on

eit|µ|
2

= − i
2t

∑`
j=1

µj
|µ|2

∂
∂µj

eit|µ|
2 (A.8)

and obtain

|I2| . t−M (1 + s)3M+1 e−|ρ|s . t−M e−
|ρ|
2
s

according to (A.7). Finally, as µ 7→ µk e−|µ|
2

(χ̃(µ) − 1) is exponentially
decreasing and vanishes near the origin, we perform N ≥ D

2 integrations by
parts based on (A.8) again and obtain

|I3| . t−N (1 + s)2M e−
|ρ|
2
s.

By summing up the estimates of I1, I2 and I3, we deduce that

|I−0 (s, t, x)| . t−
D
2 (1 + |x|)

D−`
2 (1 + s)2d+3 e−|ρ|s

. t−
D
2 (1 + |x|)

D−`
2 e−

|ρ|
2
s.

(A.9)

Estimate of I−∞. Since the phase ψt has a unique critical point λ0 which
is defined by (A.1) and satisfies (A.2), then for all λ ∈ suppχη∞, we have
∇aψt(λ) 6= 0. In order to get large time decay, we estimate

I−∞(s, t, x) =

∫
a
dλχη∞(λ) a0(s, λ) eitψt(λ)

by using several integrations by parts based on

eitψt(λ) = 1
it ψ̃0(λ)−1

∑`
j=1

( λj√
|λ|2+|ρ|2

+
Aj
t

)
∂
∂λj

eitψt(λ),

where

ψ̃0(λ) =
∣∣ λ√
|λ|2+|ρ|2

+ A
t

∣∣2
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is a smooth function, which is bounded from below on the compact set
(suppχη∞)∩(suppχρ0), uniformly in A

t . After performing N such integrations
by parts, I−∞(s, t, x) becomes

const. (it)−N
∫
a
dλ eitψt(λ)

×
{
−
∑̀
j=1

∂

∂λj
◦
[
ψ̃0(λ)−1

( λj√
|λ|2+|ρ|2

+
Aj
t

)]}N{
χη∞(λ) a0(s, λ)

}
where the last integral is bounded from above by (1 + s)N e−|ρ|s . e−

|ρ|
2
s.

Hence

|I−∞(s, t, x)| . t−N e−
|ρ|
2
s (A.10)

for every N ∈ N. By combining (A.9) and (A.10), we conclude that

|I−(s, t, x)| . t−
D
2 (1 + |x|)

D−`
2 e−

|ρ|
2
s.

�

Appendix B. Hadamard parametrix on symmetric spaces

Let Φv be theK-bi-invariant convolution kernel of the operator cos(v
√
−∆)

whose spherical Fourier transform is given by Φ̃v(λ) = cos(v
√
|λ|2 + |ρ|2).

Then Φv(x) solves the following Cauchy problem{
∂2
v U(v, x)−∆x U(v, x) = 0,

U(0, x) = δ0(x), ∂v|v=0U(v, x) = 0.

We are looking for the asymptotic expansion of the kernel Φv. Recall that J
denotes the Jacobian of the exponential map from p equipped with Lebesgue
measure to X equipped with Riemannian measure. It satisfies

J(H)−
1
2 =

∏
α∈Σ+

( 〈α,H〉
sinh〈α,H〉

)mα
2

�
{ ∏
α∈Σ+

(1 + 〈α,H〉)
mα
2

}
e−〈ρ,H〉 ∀H ∈ a+.

Let f be a K-bi-invariant function on G, then f is also AdK-invariant on
p and W -invariant on a. Recall that ∆p and ∆a denote the usual Laplacian
on the Euclidean spaces p and a ⊂ p. The radial part of the Laplacian ∆ on
X is defined by

∆radf(H) = ∆af(H) +
∑
α∈Σ+

mα coth〈α,H〉∂αf(H) ∀H ∈ a+,

and that of ∆p is given by

∆rad
p f(H) = ∆af(H) +

∑
α∈Σ+

mα〈α,H〉−1∂αf(H) ∀H ∈ a+,
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see [19, Propositions 3.9 and 3.11]. The following proposition provides a
relation between ∆rad and ∆rad

p , it allows us to simplify the computations
about the parametrix.

Proposition B.1. Let f ∈ C∞(a) be a W -invariant function. Then[
J(H)

1
2 ◦∆rad ◦ J(H)−

1
2
]
f(H) =

[
∆rad

p + ω(H)
]
f(H) ∀H ∈ a,

where

ω(H) =
∑
α∈Σ+

mα

2

(mα

2
− 1
)
|α|2

{ 1

〈α,H〉
− 1

sinh2〈α,H〉

}

+
∑
α∈Σ+

s.t. 2α∈Σ+

mαm2α

2
|α|2

(mα

2
− 1
)
|α|2

{ 1

〈α,H〉
− 1

sinh2〈α,H〉

}
− |ρ|2

is a smooth W -invariant function, which is uniformly bounded together with
all its derivatives.

Proof. Notice that[
J(H)

1
2 ◦∆rad ◦ J(H)−

1
2
]
f(H) = J(H)

1
2
(
∆radJ−

1
2
)
(H)f(H)

+ ∆radf(H) + 2J(H)
1
2
(
∇aJ

− 1
2
)
(H) · ∇af(H)︸ ︷︷ ︸

∆rad
p f(H)

,

since

J(H)
1
2
(
∇aJ

− 1
2
)
(H) =

∑
α∈Σ+

mα

2

{ 1

〈α,H〉
− coth〈α,H〉

}
α.

We deduce from the next lemma that

J(H)
1
2
(
∆radJ−

1
2
)
(H) = ω(H) ∀H ∈ a,

and this concludes the proof. �

Lemma B.2 (Cancellations). The following equations hold for all H ∈ a:∑
α,β∈Σ+, Rα 6=Rβ

mαmβ
〈α, β〉

〈α,H〉〈β,H〉
= 0

∑
α,β∈Σ+, Rα 6=Rβ

mαmβ〈α, β〉
(

coth〈α,H〉 coth〈β,H〉 − 1
)

= 0

Proof. See [16, Appendix] for a detailed proof of this "folklore" result. �

Recall that {Rz+ | z ∈ C} denotes the analytic family of Riesz distributions
on R defined by

Rz+(r) =

{
Γ(z)−1rz−1 if r > 0,

0 if r ≤ 0.
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Consider the asymptotic expansion

Φv(expH) = J(H)−
1
2

+∞∑
k=0

4−k |v|Uk(H)R
k− d−1

2
+ (v2 − |H|2) (B.1)

where U0 is a constant such that U0 J(H)−
1
2 |v|R−

d−1
2

+ (v2−|H|2)→ δ0(H) as
v → 0 and Uk ∈ C∞(p) are smooth AdK-invariant functions. By expanding

0 = J(H)
1
2
[
∂2
v −∆rad]Φv(expH)

=
+∞∑
k=0

4−k
[
∂2
v −∆rad

p − ω(H)
]{
|v|Uk(H)R

k− d−1
2

+ (v2 − |H|2)
}
,

we deduce [
(k + 1) + ∂H

]
Uk+1(H) =

[
∆rad

p + ω(H)
]
Uk(H), (B.2)

for every k ∈ N. In other words,

Uk+1(H) =

∫ 1

0
ds sk

[
∆rad

p + ω(sH)
]
Uk(sH). (B.3)

As ω and all its derivatives are uniformly bounded, we obtain

∇npUk = O(1) (B.4)

for any k, n ∈ N.

Next, by resuming the proof of [7, Proposition 27] with our asymptotic
expansion (B.1), we deduce that the remainder of the truncated expansion

Φv(expH) = J(H)−
1
2

N∑
k=0

4−k |v|Uk(H)R
k− d−1

2
+ (v2 − |H|2)

+ EN (v, expH)

(B.5)

is a solution to the inhomogeneous Cauchy problem
[
∂2
v −∆rad]EN (v, expH) = J(H)−

1
2 ŨN (v,H),

limv→0EN (v, expH) = 0, limv→0
∂EN
∂v (v, expH) = 0,

where ŨN (v,H) = −4−N |v|UN (H)R
N− d−1

2
+ (v2−|H|2). Hence, by Duhamel’s

formula

EN (v, expH) =

∫ v

0
du

sin(v−u)
√
−∆rad√

−∆rad
{J(H)−

1
2 ŨN (u,H)}.

According to next lemma and by L2 conservation, we have

|EN (v, expH)| . e−〈ρ,H〉 ‖EN (v, ·)‖H2σ+1(X)

. e−〈ρ,H〉
∫ v

0
du ‖ŨN (u, ·)J−

1
2 ‖H2σ(X)
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provided that 2σ + 1 > d
2 , and

‖ŨN (u, ·)J−
1
2 ‖2H2σ(X) = ‖∆σ{ŨN (u, ·)J−

1
2 }‖2L2(X)

= const.

∫
p
dX

∣∣J(X)
1
2 (∆rad)σ{J(X)−

1
2 ŨN (u,X)}

∣∣2
= const. u2

∫
p
dX

∣∣[∆rad
p + ω(X)]σ(ŨN (u,X))

∣∣2
. u2

2σ∑
j=0

∫
{X∈p | |X|<u}

dX
∣∣∇jp(u2 − |X|2)N−

d+1
2

∣∣2
. (1 + u)4N−d,

since ω and UN , together with all their derivatives are uniformly bounded.
Here we assume N > d+1

2 + 2σ to avoid possible singularities on the sphere
|X| = u. We may set 2σ =

[
d
2

]
and N > d. Finally, we obtain

|EN (v, expH)| . e−〈ρ,H〉
∫ v

0
du (1 + u)2N− d

2 . (1 + v)2N− d
2

+1e−〈ρ,H〉.

Lemma B.3 (Sobolev embedding theorem for K-bi-invariant functions on
X). Let σ > d

2 be an integer. Then

|f(expH)| . e−〈ρ,H〉‖f‖Hσ(X) ∀H ∈ a+

for all K-bi-invariant functions f ∈ Hσ(X).

Proof. See [1, Lemma 2.3]. �

Notice that, for all N > d
2 , we have∣∣∣J(H)−

1
2

N∑
k=[d/2]+1

4−k |v|Uk(H)R
k− d−1

2
+ (v2 − |H|2)

∣∣∣ . (1 + v)2N− d+`
2 e−〈ρ,H〉.

Then we deduce the following corollary.

Corollary B.4. The K-bi-invariant convolution kernel Φv has the asymp-
totic expansion

Φv(expH) = J(H)−
1
2

[d/2]∑
k=0

4−k |v|Uk(H)R
k− d−1

2
+ (v2 − |H|2)

+ EΦ(v,H),

(B.6)

where the remainder satisfies

|EΦ(v,H)| . (1 + v)3( d
2

+1)e−〈ρ,H〉 ∀H ∈ a+. (B.7)
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Appendix C. Asymptotic expansion of the Poisson kernel

The Hadamard parametrix described above provides an asymptotic devel-
opment of the kernel of the truncated Poisson operator

Aτ =

∫ +∞

−∞
dv χT (v)pRτ (v) cos (v

√
−∆).

Here τ = s− it with s ∈ (0, 1] and t ∈ R∗,

T =

{√
2 if 0 < |t| ≤ 1,
√

2|t| if |t| ≥ 1,

χ : R→ [0, 1] is a smooth even cut-off function such that χ = 1 on [−1, 1] and
suppχ ⊂ [−2

√
2, 2
√

2], χT (v) = χ( v
2T ) is supported in [−2

√
2T, 2

√
2T ] ⊂

(−3T, 3T ), and pRτ (v) = 1
π

τ
τ2+v2 is the Poisson kernel on R (with complex

time τ). Notice that |τ | ≤ T . By resuming and improving slightly [9, Lemma
3.3], we deduce the following parametrix for the kernel of Aτ .

Proposition C.1. The kernel aτ of the operator Aτ is a smooth K-bi-
invariant function on G, which is supported in the ball of radius 3T in X.
Moreover

aτ (expH) =
τ

π
J(H)−

1
2

[d/2]∑
k=0

4−k Uk(H) Γ
(d+ 1

2
− k
)

(|H|2 + τ2)
d+1

2
−k

+ E(τ,H) (C.1)

where the remainder satisfies

|E(τ,H)| . |T |3( d
2

+1) (log T − log s) e−〈ρ,H〉 ∀H ∈ a+. (C.2)

Here the coefficients Uk are the same as in Corollary B.4 and are uniformly
bounded.

Remark C.2. The proof of Proposition C.1 is similar to the proof of Lemma
3.3 in [9]. Notice that the latter statement contains a minor error in the
Gamma factor and that our estimates contain an additional exponential de-
cay, which is crucial for the dispersive estimates.

Let us state and reprove some technical results borrowed from [9].

Lemma C.3. Let n ≥ 1 and γ ∈ R+. Then

|z|2γ−n
∫ 3T

0
dr rn−1|r2 + z2|−γ �

�



( |z|Re z )γ−1 if γ > 1 and n < 2γ,

( T|z|)
n−2 + log( |z|Re z ) if γ = 1 and n > 2,

1 + log( T
Re z ) if γ = 1 and n = 2,

1 + log( |z|Re z ) if γ = 1 and n < 2.

(C.3)

for every z ∈ C such that Re z > 0 and |z| ≤ T .
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Proof. Write z = |z|eiθ in polar coordinates, with θ ∈ [−π
2 ,

π
2 ]. By perform-

ing the change of variables r = |z|w, the left hand side of (C.3) becomes

I =

∫ 3T
|z|

0
dw wn−1|w2 + ei2θ|−γ .

Notice that 3T
|z| > 2 and that

|w2 − 1| ≤ |w2 + ei2θ| ≤ |w2 + 1|. (C.4)

Let us split up I = I0 + I1 + T∞ according to∫ 3T
|z|

0
dw =

∫ 1
2

0
dw +

∫ 2

1
2

dw +

∫ 3T
|z|

2
dw.

The first and the last integrals are easily estimated. According (C.4),{
3
4 ≤ |w

2 + ei2θ| ≤ 5
4 if 0 < w ≤ 1

2 ,

3
4w

2 ≤ |w2 + ei2θ| ≤ 5
4w

2 if w ≥ 2,

we deduce

I0 =

∫ 1
2

0
dw wn−1 � 1 (C.5)

and

I∞ =

∫ 3T
|z|

2
dw wn−2γ−1 �


1 if n < 2γ,

1 + log T
|z| if n = 2γ,

( T|z|)
n−2γ if n > 2γ.

(C.6)

Let us turn to the remaining integral, where 1
2 ≤ w ≤ 2. In this case we use

the following improvement of (C.4):

|w2 + ei2θ|2 = w2 + 1 + 2w2 cos 2θ = (w2 − 1)2 + 4w2 cos2 θ

�
(
w − 1

w

)2
+ cos2 θ.

By performing the change of variables u = w − 1
w and noticing that du

dw =

1 + 1
w2 � 1, we get

I1 �
∫ 3

2

− 3
2

du (u2 + cos2 θ)−
γ
2 �

∫ 3
2

0
du (u+ cos θ)−γ

�


(cos θ)−γ−1 if γ > 1,

1− log(cos θ) if γ = 1,

1 if γ < 1.

(C.7)

In conclusion, (C.3) is obtained by combining (C.5), (C.6) and (C.7). �
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Lemma C.4. Let z ∈ C with Re z > 0 and u ∈ R. Then∫ +∞

0
d(w2) R1−ε

+ (w2 − u2)
1

π

τ

w2 + z2
=


1
π

z
u2+z2 if ε = 1,

1√
π

z√
u2+z2

if ε = 1
2 .

(C.8)

Proof. The case ε = 1 follows immediately from the fact the distribution R0
+

is equal to the Dirac measure at the origin. In the case ε = 1
2 , the formula

is proved first for z > 0 and then extended straightforwardly by analytic
continuation to all z ∈ C with Re z > 0. Specifically, the left hand side of
(C.8) becomes

π−
3
2

∫ +∞

0

d(w2)

w

z

w2 + u2 + z2
= 2π−

3
2

∫ +∞

0

dr

r2 + 1︸ ︷︷ ︸
1√
π

z√
u2 + z2

after performing the change of variables w =
√
u2 + z2r. �

Proof of Proposition C.1. According to the asymptotic expansion (B.6), we
write

aτ (expH) = J(H)−
1
2

[d/2]∑
k=0

4−k Uk(H) Ik(τ,H) + E(τ,H)

with

Ik(τ,H) =

∫ +∞

0
d(v2) pRτ (v)R

k− d−1
2

+ (v2 − |H|2)

and

E(τ,H) = J(H)−
1
2

[d/2]∑
k=0

4−k Uk(H)

×
∫ +∞

0
d(v2) {χT (v)− 1} pRτ (v)R

k− d−1
2

+ (v2 − |H|2)

+ 2

∫ +∞

0
dv χT (v) pRτ (v)EΦ(v,H)

Let ε = 1 if d is even and ε = 1
2 if d odd. Then

Ik(τ,H) =
(
− ∂

∂(|H|2)

)[ d
2

]−k ∫ +∞
0 d(v2) pRτ (v)R1−ε

+ (v2 − |H|2)

where ∫ +∞

0
d(v2) pRτ (v)R1−ε

+ (v2 − |H|2) =


1
π

τ
|H|2+τ2 if ε = 1,

1√
π

τ√
|H|2+τ2

if ε = 1
2 ,

according to (C.8). Then we obtain

Ik(τ,H) =
τ

π

Γ( d+1
2
−k)

(|H|2+τ2)
d+1

2 −k
.
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Next, we estimate the remainder E(τ,H) whose second part is easily handled.
By using (B.7), we have

|E2(τ,H)| ≤ 2

∫ +∞

0
dv χT (v) |pRτ (v)| |EΦ(v,H)|

. e−〈ρ,H〉
∫ 3T

0
dv

|τ |
|v2 + τ2|

(1 + v3( d
2

+1)).

where

|τ |
∫ 3T

0
dv |v2 + τ2|−1 . 1 + log |τ |

Re τ

and

|τ |
∫ 3T

0
dv |v2 + τ2|−1 v3( d

2
+1) . |τ |3( d

2
+1)
{(

T
|τ |
) 3d+1

2 + log |τ |
Re τ

}
according to the formulas in (C.3). We deduce

|E2(τ,H)| . T 3( d
2

+1)(log T − log s)e−〈ρ,H〉. (C.9)

It remains to estimate

E1(τ,H) = J(H)−
1
2

[d/2]∑
k=0

4−k Uk(H)

×
∫ +∞

0
d(v2) {χT (v)− 1}pRτ (v)R

k− d−1
2

+ (v2 − |H|2)︸ ︷︷ ︸
Ĩk(τ,H)

.

By repeating the previous calculations for Ik,

Ĩ(τ,H) =
τ

π

(
− ∂

∂(|H|2)

)[ d
2

]−k

∫ +∞

0
d(v2) {χT (

√
v2 + |H|2)− 1} 1

v2 + |H|2 + τ2
R1−ε

+ (v2).

Let’s first consider the case where ε = 1, i.e., d is odd. Then

Ĩk(τ,H) =
τ

π

(
− ∂

∂(|H|2)

) d−1
2
−k
{(
χT (|H|)− 1

)
1

|H|2+τ2

}
=
τ

π

∑
j+j′= d−1

2
−k

( d−1
2
−k)!

j!j′!

(
− ∂

∂(|H|2)

)j(
χT (|H|)− 1

) (
− ∂

∂(|H|2)

)j′ 1
|H|2+τ2 .

On the one hand, the expression
(
− ∂

∂(|H|2)

)j(
χT (|H|) − 1

)
vanishes when

|H| ≤ 2T . In addition, it is O(T−2j). On the other hand,(
− ∂

∂(|H|2)

)j′ 1
|H|2+τ2 = j′!

(|H|2+τ2)j′+1 = O(T−2j′−2)

when |H| ≥ 2T . We deduce that

|Ĩk(τ,H)| = O(T 2k−d).
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Let’s then consider the case where ε = 1
2 , i.e., d is even. Then

Ĩk(τ,H) =
2τ

π

∑
j+j′= d

2
−k

( d
2
−k)!

j!

×
∫ +∞

0
dv
(
− ∂

∂(|H|2)

)j{χT (
√
v2 + |H|2)− 1} (v2 + |H|2 + τ2)−j

′−1.

Again, the expression
(
− ∂

∂(|H|2)

)j{χT (
√
v2 + |H|2)− 1} is O(T−2j), which

vanishes when v2 + |H|2 ≤ 4T 2, as well as v2 + |H|2 ≥ 9T 2 if j > 0. It follows
that the integral above is O(T 2k−d−1) if j > 0, and that it is estimated by∫

v2+|H|2≥4T 2

dv
∣∣v2 + |H|2 + τ2

∣∣k− d2−1
.
∫
v+|H|≥2T

dv (v + |H|)2k−d−2

�T 2k−d−1

if j = 0. In any case, we obtain

|Ĩk(τ,H)| . T 2k−d . 1

and therefore

|E1(τ,H)| . J(H)−
1
2

since the coefficients Uk are bounded. By combining with (C.9), we conclude
that

|E(τ,H)| . |E1(τ,H)|+ |E1(τ,H)| . T 3( d
2

+1) (log T − log s) e−〈ρ,H〉

for all H ∈ a+. �

References

[1] J.-Ph. Anker, Sharp estimates for some functions of the Laplacian on
noncompact symmetric spaces, Duke Math. J. 65 (1992), 257–297.

[2] J.-Ph. Anker and L. Ji, Heat kernel and Green function estimates on
noncompact symmetric spaces, Geom. Funct. Anal. 9 (1999), 1035–
1091.

[3] J.-Ph. Anker and V. Pierfelice, Wave and Klein-Gordon equations on
hyperbolic spaces, Anal. PDE 7 (2014), 953–995.

[4] J.-Ph. Anker, V. Pierfelice, and M. Vallarino, Schrödinger equations on
Damek-Ricci spaces, Comm. Partial Differential Equations 36 (2011),
976–997.

[5] J.-Ph. Anker, V. Pierfelice, and M. Vallarino, The wave equation on
hyperbolic spaces, J. Differential Equations 252 (2012), 5613–5661.

[6] J.-Ph. Anker, V. Pierfelice, and M. Vallarino, The wave equation on
Damek-Ricci spaces, Ann. Mat. Pura Appl. (4) 194 (2015), 731–758.

[7] P. H. Bérard, On the wave equation on a compact Riemannian manifold
without conjugate points, Math. Z. 155 (1977), 249–276.



REFERENCES 43

[8] M. G. Cowling, Herz’s “principe de majoration” and the Kunze-Stein
phenomenon, in: "Harmonic analysis and number theory (Montreal,
PQ, 1996)", 73–88, CMS Conf. Proc., 21, Amer. Math. Soc., Provi-
dence, RI (1997).

[9] M. G. Cowling, S. Giulini, and S. Meda, Lp–Lq estimates for functions
of the Laplace-Beltrami operator on noncompact symmetric spaces.
III, Ann. Inst. Fourier (Grenoble) 51 (2001), 1047–1069.

[10] M. G. Cowling, S. Giulini, and S. Meda, Oscillatory multipliers re-
lated to the wave equation on noncompact symmetric spaces, J. London
Math. Soc. (2) 66 (2002), 691–709.

[11] P. D’Ancona, V. Georgiev, and H. Kubo, Weighted decay estimates for
the wave equation, J. Differential Equations 177 (2001), 146–208.

[12] J. Fontaine, A semi-linear wave equation on hyperbolic spaces, Comm.
Partial Differential Equations 22 (1997), 633–659.

[13] R. Gangolli and V. S. Varadarajan, Harmonic analysis of spherical
functions on real reductive groups, Ergebnisse der Mathematik und
ihrer Grenzgebiete 101, Springer-Verlag, Berlin, 1988.

[14] V. Georgiev, H. Lindblad, and C. D. Sogge, Weighted Strichartz es-
timates and global existence for semi-linear wave equations, Amer. J.
Math. 119 (1997), 1291–1319.

[15] S. Giulini and S. Meda, Oscillating multipliers on noncompact sym-
metric spaces, J. Reine Angew. Math. 409 (1990), 93–105.

[16] B. C. Hall and M. B. Stenzel, Sharp bounds for the heat kernel on
certain symmetric spaces of non-compact type, in Finite and infinite
dimensional analysis in honor of Leonard Gross (New Orleans, LA,
2001), 117–135, Contemp. Math. 317, Amer. Math. Soc., Providence,
RI (2003).

[17] A. Hassani, Wave equation on Riemannian symmetric spaces, J. Math.
Phys. 52 (2011), 043514.

[18] S. Helgason, Differential geometry, Lie groups, and symmetric spaces,
Pure and Applied Mathematics 80, Academic Press, New York-London,
1978.

[19] S. Helgason, Groups and geometric analysis: integral geometry, invari-
ant differential operators, and spherical functions (corrected reprint of
the 1984 original), Mathematical Surveys and Monographs 83, Ameri-
can Mathematical Society, Providence, RI, 2000.

[20] L. Hörmander, The analysis of linear partial differential operators III,
Grundlehren der MathematischenWissenschaften 274, Springer-Verlag,
Berlin, 1994.

[21] A. D. Ionescu, Fourier integral operators on noncompact symmetric
spaces of real rank one, J. Funct. Anal. 174 (2000), 274–300.

[22] F. John, Blow-up of solutions of nonlinear wave equations in three
space dimensions, Manuscripta Math. 28 (1979), 235–268.

[23] L. Kapitanski, Weak and yet weaker solutions of semi-linear wave equa-
tions, Comm. Partial Differential Equations 19 (1994), 1629–1676.

[24] T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations,
Comm. Pure Appl. Math. 33 (1980), 501–505.



44 REFERENCES

[25] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math.
120 (1998), 955–980.

[26] A. Korányi, Spectral properties of the Cartan matrices, Acta Sci. Math.
(Szeged) 57 (1993), 587–592.

[27] H. Lindblad and C. D. Sogge, On existence and scattering with minimal
regularity for semi-linear wave equations, J. Funct. Anal. 130 (1995),
357–426.

[28] J. Metcalfe and M. E. Taylor, Nonlinear waves on 3D hyperbolic space,
Trans. Amer. Math. Soc. 363 (2011), 3489–3529.

[29] J. Metcalfe and M. E. Taylor, Dispersive wave estimates on 3D hyper-
bolic space, Proc. Amer. Math. Soc. 140 (2012), 3861–3866.

[30] NIST Digital Library of Mathematical Functions, Release 1.0.28 of
2020-09-15, F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders,
H. S. Cohl, and M. A. McClain (eds.) url: https://dlmf.nist.gov/
5.6#ii.

[31] T. P. Schonbek, Lp-multipliers: a new proof of an old theorem, Proc.
Amer. Math. Soc. 102 (1988), 361–364.

[32] Y. Sire, C. D. Sogge, and C. Wang, The Strauss conjecture on neg-
atively curved backgrounds, Discrete Contin. Dyn. Syst. 39 (2019),
7081–7099.

[33] Y. Sire, C. D. Sogge, C. Wang, and J. Zhang, Strichartz estimates and
Strauss conjecture on non-trapping asymptotically hyperbolic mani-
folds, Trans. Amer. Math. Soc. 373 (2020), 7639–7668.

[34] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality,
and oscillatory integrals, Princeton Mathematical Series 43, Princeton
University Press, Princeton, NJ, 1993.

[35] W. A. Strauss, Nonlinear scattering theory at low energy, J. Functional
Analysis 41 (1981), 110–133.

[36] D. Tataru, Strichartz estimates in the hyperbolic space and global ex-
istence for the semi-linear wave equation, Trans. Amer. Math. Soc. 353
(2001), 795–807.

[37] H. Triebel, Theory of function spaces II, Monographs in Mathematics
84, Birkhäuser Verlag, Basel, 1992.

[38] H.-W. Zhang, Wave equation on certain noncompact symmetric spaces,
Pure Appl. Anal. 3 (2021), 363–386.

JEAN-PHILIPPE ANKER: anker@univ-orleans.fr
Institut Denis Poisson (UMR 7013), Université d’Orléans, Université de
Tours & CNRS, Bâtiment de mathématiques - Rue de Chartres, B.P. 6759 -
45067 Orléans cedex 2 - France

HONG-WEI ZHANG: hongwei.zhang@ugent.be
Ghent University, Department of Mathematics, Analysis, Logic and Discrete
Mathematics - Krijgslaan 281, Building S8 - B9000 Ghent - Belgium
and
Institut Denis Poisson (UMR 7013), Université d’Orléans, Université de



REFERENCES 45

Tours & CNRS, Bâtiment de mathématiques - Rue de Chartres, B.P. 6759 -
45067 Orléans cedex 2 - France


