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ABSTRACT. We show that, under certain specific hypotheses, the Taylor-Wiles
method can be applied to the cohomology of a Shimura variety S of PEL type
attached to a unitary similitude group G, with coefficients in the coherent sheaf
attached to an automorphic vector bundle F , when S has a smooth model over
a p-adic integer ring. As an application, we show that, when the hypotheses are
satisfied, the congruence ideal attached to a coherent cohomological realization
of an automorphic Galois representation is independent of the signatures of the
hermitian form to which G is attached. We also show that the Gorenstein hypoth-
esis used to construct p-adic L-functions in [15], as elements of Hida’s ordinary
Hecke algebra, is valid rather generally.

The present paper generalizes the main results of the article [28], which
treated the case when S is compact. As in the previous article, the starting point
is a theorem of Lan and Suh that proves the vanishing of torsion in the cohomol-
ogy under certain conditions on the parameters of the bundle F and the prime p.
Most of the additional difficulty in the non-compact case is related to showing
that the contributions of boundary cohomology are all of Eisenstein type. We
also need to show that the coverings giving rise to the diamond operators can be
extended to étale coverings of appropriate toroidal compactifications.

The research leading to these results has received funding from the European Research Council
under the European Community’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant
agreement no. 290766 (AAMOT). The second author was partially supported by NSF grants DMS-
1404769 and DMS-2001369.
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INTRODUCTION

The Taylor-Wiles method was introduced as a way of proving automorphy lift-
ing theorems, and it has been applied in a variety of situations to show, under
appropriate technical hypotheses, that all liftings to characteristic zero of an n-
dimensional Galois representation ρ̄ with coefficients in a finite field are attached
to automorphic forms, provided one knows that one of the liftings is automorphic.
As a by-product of the method, one finds – in the minimal case – that the local-
ization of the relevant Hecke algebra at the maximal ideal attached to ρ̄ is a local
complete intersection, and that the module of automorphic forms is free over the
localized Hecke algebra T. These properties of the Hecke algebra and its module
of automorphic forms are of independent interest. They are used, for example, in
the construction of p-adic L-functions in [15].

The primary aim of the present paper, like its predecessor [28], is to prove that
these properties are satisfied, in some generality, by the coherent cohomology of
the Shimura varieties attached to unitary similitude groups. To this end we develop
the Taylor-Wiles method in this situation and indicate some of the applications of
the local complete intersection property to automorphic forms.

The reader should understand that, in contrast to most papers on the Taylor-
Wiles method, our aim is not to show that certain Galois representations are au-
tomorphic (or potentially automorphic). This is already known for the kinds of
Galois representations that arise in the cohomology of the PEL Shimura varieties
that are the subject of these papers. In contrast, the primary purpose of the present
paper, as well as its predecessor [28], is to obtain results about the structure of
the localized Hecke algebra T, with a view to applications to arithmetic problems.
Thus the main results of the paper are those contained in §4 and §5. Thus, let F
be a CM field in which every prime dividing p splits over the maximal totally real
subfield F+ of F , and let π be a cuspidal cohomological automorphic representa-
tion of GL(n)F . We assume the contragredient of π is isomorphic to πc, where c
is the non-trivial element of Gal(F/F+). When V is an n-dimensional hermitian
space over F , and G its unitary similitude group, we consider the L-packet ΠV (π)
of automorphic representations of discrete series type that base change to π, and
we assume ΠV (π) is non-empty; the conjugate duality hypothesis is a necessary
condition for this, but there may also be local conditions at places where G is not
quasi-split (see [42]). We temporarily denote by SV the corresponding Shimura
variety. We specifically prove – under the hypotheses that allow us to apply the
Taylor-Wiles method – that

• The exterior power relation between the Qp-valued cohomology spaces of
SV , for V of different signatures, attached to a given cuspidal automorphic
π, is in fact integral over the Hecke algebra localized at the maximal ideal
corresponding to π (Proposition 44);
• The congruence ideals for the localized Hecke algebras attached to ΠV (π)

coincide for different V (Proposition 45);
• If π is ordinary at p and π0

V ∈ ΠV (π) is the holomorphic member, then the
Gorenstein hypothesis of [15] is valid for the Hida family through π0

V ; in
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particular, the p-adic L-function attached to this Hida family in [15] takes
values in the localized (big) Hecke algebra.

These results are all obtained as consequences of the Taylor-Wiles method for co-
herent cohomology.

In the article [28], the vanishing theorem [49] of Lan and Suh was used to show
that the Taylor-Wiles method can be applied to the (coherent) cohomology of a
compact Shimura variety S, attached to a reductive algebraic group G/Q, with
coefficients in an automorphic vector bundle F . Assuming

(i) the parameter of F is in the range to which the vanishing theorem applies;
(ii) S has a smooth model SK over a p-adic integer ring O; here the subscript

K denotes a level subgroup, and
(iii) there is a theory of Galois representations attached to cohomological auto-

morphic forms on S,

the cohomology H•(SK ,F), with coefficients in O is concentrated in a single
degree q and Hq(SK ,F), localized at a maximal ideal as above, is free over the
localized Hecke algebra. The crucial input in the Taylor-Wiles method, applied to
a reductive group G, is the action of a product of groups of the form

∆QN
= (

∏
q∈QN

K0(q)/K1(q))p

where QN is a finite set of Taylor-Wiles primes of the base field F (usually to-
tally real or a CM field), with Nq ≡ 1 (mod p)N , K0(q) and K1(q) are open
compact subgroups of G(Fq)–This doesn’t literally make sense unless F = Q,
but we ignore this in the present exposition – that generalize the classical congru-
ence subgroups Γ0(q) and Γ1(q) respectively, so that K0(q)/K1(q) is isomorphic
to the multiplicative group of the residue field k(q), and the subscript p denotes
the maximal quotient of exponent pN . Let CQN denote the kernel of the map∏

q∈QN
K0(q)/K1(q) → ∆QN

, and let SK(QN ) denote the quotient by CQN of
the Shimura variety at level K(Q), which is the subgroup obtained by replacing
the local component of K at a prime q ∈ Q by K1(q). Provided the original level
K is sufficiently deep, the action of ∆QN

on SK(QN ) is free. A theorem of S.
Nakajima [51], combined with the Lan-Suh vanishing theorem, then implies that
Hq(SK(QN ),F) is a free O[∆QN

]-module. This, together with item (iii) above,
allows us to prove (under favorable hypotheses on ρ̄) that the original Hq(SK ,F)
is free over the localized Hecke algebra T.

The present paper is a sequel to [28]; its purpose is to extend these results to non-
compact Shimura varieties, specifically those attached to unitary similitude groups
of hermitian vector spaces over CM fields. To this end we apply the vanishing
theorem of a different Lan-Suh paper [50], which extends their previous results to
non-compact Shimura varieties.

The project faces two immediate difficulties. In the first place, coherent coho-
mology in the non-compact case is computed on toroidal compactifications, not
on the open Shimura variety. In order to apply Nakajima’s result, we need to
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show that the action of the group denoted ∆QN
above on some toroidal compact-

ification SK(QN )tor of SK(QN ) is still free; in other words, the SK(QN )tor is
an étale cover of its quotient by ∆QN

. This is certainly not true for an arbitrary
toroidal compactification, and one of the main objectives of the present paper is to
construct toroidal compactifications of the integral models constructed in [44] on
which ∆QN

acts freely. In the classical case of elliptic modular curves, the fact that
the complete modular curve X1(q) is (usually) étale over X0(q) is a well known
special feature of this particular pair of congruence subgroups. The constructions
in the present paper make extensive use of the results of [44] and [45].

The second difficulty is that the Lan-Suh vanishing theorem in the non-compact
case applies only to interior coherent cohomology, in other words the image H•

! (SK ,F)
of the cohomology of StorK with coefficients in the subcanonical extension Fsub in
the cohomology of the canonical extension Fcan. Thus, although Nakajima’s re-
sult applies to the canonical extension, one cannot apply it directly to the problem
at hand. The freeness of the action allows us to represent H•(StorK ,Fcan) as the
cohomology of a perfect complex RΓ• of O[∆QN

]-modules with an action of the
(non-localized) Hecke algebra T , which we define, following Khare and Thorne
[39], as an algebra of endomorphisms of the object RΓ• in an appropriate derived
category. Thus, even though our final results concern a Hecke algebra module that
occurs in a single degree of cohomology, we find ourselves obliged to work, at least
in the first stages, with the extension of the Taylor-Wiles method to cohomological
complexes introduced by Calegari and Geraghty [10], and pursued by Hansen [20]
as well as Khare-Thorne.

We then localize T at a non-Eisenstein maximal ideal m, and write T = Tm.
Using the results of [30] and the fact, due to Scholze, Boxer, Pilloni-Stroh, and
Goldring-Koskivirta [57, 6, 54, 18], that there is a theory of Galois representations
attached to torsion cohomology classes as well, we conclude that the localization
at m of H•(StorK ,Fcan) coincides with the localization of H•

! (SK ,F). Thus it is
concentrated in a single degree q, and is p-torsion free, when the Lan-Suh results
apply. It then follows easily that the localized cohomology is free over O[∆QN

],
and we conclude the argument as in [28].

This material occupies the first three sections of the paper. Sections 5 and 6 de-
velop applications of these results. In Section 5, we apply the results for coherent
cohomology in order to prove that the interior de Rham and p-adic étale coho-
mology are also free over the Hecke algebra, after localization at a non-Eisenstein
prime, and again in the range to which the results of [50] apply. As V varies among
hermitian spaces of a fixed dimension n, the Galois representations on the corre-
sponding p-adic étale cohomology groups are related by a formula conjectured by
Langlands that has essentially been proved [58] using the methods of Kottwitz and
the stable trace formula. Roughly speaking, up to twist by an explicit character,
all of the cohomology groups can be obtained from a few of them by tensor opera-
tions. We show that the analogous relations hold over the localized Hecke algebra.
We also observe that the congruence ideal for the automorphic representations re-
alized on the unitary Shimura varieties attached to varying V depends only on the
associated Galois representation and not on V . These results are only proved, of
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course, when the Taylor-Wiles hypotheses are valid and assuming the parameters
are in the range of the Lan-Suh vanishing theorem.

In section 6 we specialize to degree 0 but apply the results to holomorphic mod-
ular forms varying in ordinary Hida families. We prove that, when the Taylor-Wiles
hypotheses apply to residual representation of a Hida family, then the family sat-
isfies the Gorenstein hypotheses used in [15] to construct p-adic L-functions as
elements of Hecke algebras.

The last two sections are devoted to the proof that the contribution of the bound-
ary cohomology is purely Eisenstein. This roughly follows the pattern of the anal-
ysis of boundary coherent cohomology in [32, 33, 34]. However, some of the
arguments in those papers are analytic in nature, or are only valid for cohomology
with characteristic zero coefficients, and there is no reason to suppose that the re-
sults are as clean as in the analytic setting. Fortunately, for our purposes we can
be satisfied with qualitative results. To prove these we make extensive use of Lan’s
study of the geometry of integral models of Kuga varieties in [44, 45, 46]. We also
borrow some ideas of Newton and Thorne from [52].

An appendix explains the translation between the boundary cohomology of con-
nected Shimura varieties, as developed in [32, 33], which is more convenient for
the local study of the boundary, and the adelic theory of [34], which simplifies
level-raising arguments.

Conventions. Let F be a CM field, quadratic over a totally real field F+ and con-
tained in a fixed algebraic closure Q of Q, d = [F+ : Q] We let ΓF = Gal(Q/F ),
ΓF+ = Gal(Q/F+). Let S∞, resp. S+

∞ denote the set of complex embeddings of
F , respectively real places of F+, and let S̃∞ denote a CM type for F , i.e. a choice
for each v ∈ S+

∞ of a complex place ṽ ∈ S∞. Let S(F+) denote the set of primes
of F+ that ramify in F .

Our modular forms and deformation problems will be defined over a p-adic
integer ring O, with maximal ideal mO. It will always be taken big enough to
contain the rings of definition of all local deformation problems.

1. SHIMURA VARIETIES ATTACHED TO UNITARY GROUPS

1.1. Notation for automorphic vector bundles. Let V be an n-dimensional space
over F with nondegenerate hermitian form (•, •), let U = U(V ) be its unitary
group, and define the reductive group G over Q by its values on Q-algebras R:

(1) G(R) = {g ∈ GL(V ⊗Q R) | (g(u1), g(u2)) = ν(g)(u1, u2)}

for all u1, u2 ∈ V ⊗QR for some ν(g) ∈ R×. As in [29] we extend G to a Shimura
datum (G,X) so that

S(G,X)(C) := lim←−
K⊂G(Af )

G(Q)\X ×G(Af )/K = lim←−
K⊂G(Af )

SK(G,X)(C),

where K varies over open compact subgroups of G(Af ), is the set of complex
points of a Shimura variety S(G,X) = lim←−SK(G,X) of PEL type, with reflex
field E = E(G,X). We let dV = dimSK(G,X). The CM type S̃∞ is part of the
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data defining X . For each v ∈ S+
∞, there is a partition rv + sv = n such that the

hermitian space V ⊗F,ṽ C has signature (rv, sv); then U(F+
v )

∼−→U(rv, sv), with
the ambiguity between U(rv, sv) and U(sv, rv) resolved by the choice of ṽ.

In what follows we always assume K =
∏

q Kq, where q runs over rational
prime numbers and Kq ⊂ G(Qq) is open compact. We fix an odd prime p for the
remainder of this paper and assume p is not in the set S = S(K) of bad primes for
K, defined in §1.1.1 below; this can be weakened slightly, but we do not bother to
treat the more general situation.

For any q, we break up the set of primes D(q) of F+ dividing q into the subsets
D+(q)

∐
D−(q), where v ∈ D+(q) if and only if v is split in F/F+. For each v ∈

D(q) choose a prime w(v) of F dividing v. Then there is a natural isomorphism

(2) Gq := G(Qq)
∼−→

∏
v∈D+(q)

GL(n, Fw(v))×G−,q

where we set V− =
∏

v∈D−(q) V ⊗Q F+
v and

G−,q = {g ∈ GL(V−) | (g(u1), g(u2)) = ν(g)(u1, u2) for some ν(g) ∈ Qq
×},

where u1, u2 vary over vectors in V−. For all q we assume Kq admits a factoriza-
tion

(3) Kq =
∏

v∈D+(q)

Kv ×K−,q

where Kv ⊂ GL(n, Fw(v)) and K−,q ⊂ G−,q are open compact subgroups.

1.1.1. Type data. It was pointed out in [28, Remark 6.9] that the hypotheses of
that paper restricted ramification of the residual representation ρ̄ at places of F+

not dividing p. In this paper those restrictions are somewhat relaxed, although
we only consider deformation problems that involve minimal ramification. Let
S = S(K) be the set of primes q where either Kv, for some v ∈ D+(q), or
K−,q, is not hyperspecial maximal; we call S the set of ramified primes for K.
The set S contains the set S(G) of primes q at which the group G is ramified, and
in particular contains the rational primes divisible by (the set) S(F+) of primes
of F+ that ramify in F/F+. At primes q ∈ S(G) we take K−,q to be special
maximal. If q ∈ S \S(G) we assume K−,q is a hyperspecial maximal subgroup of
G−,q. For v ∈ D+(q), whether or not q ∈ S(G), we will choose a set of type data,
namely quadruples (K+

v ,Kv,юv,Λюv), with Kv ⊂ K+
v a pair of open compact

subgroups, Λюv a finite free O-module and

(4) юv : K+
v /Kv → Aut(Λюv)

a representation that determines the inertial type of the corresponding representa-
tion of GL(n, F+

v ), as in [BK99].
We will also use S to denote the set of v dividing primes q ∈ S(K) where the

factor Kv of Kq is not hyperspecial maximal; this in particular allows us to use the
same notation even when q is ramified in F+.
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Our level subgroups K will always be assumed to be neat, as in [25, 55], so that
the Shimura variety SK(G,X) is smooth and we can choose toroidal compactifica-
tions that are smooth and projective. The set S will be assumed to contain a prime
r all of whose divisors in F+ split in F/F+. We will choose one such divisor r0 so
that Kr0 is the subgroup of a standard maximal compact subgroup of GL(n, F+

r0 )
defined by

(5) Kr0 = {k ∈ GL(n,Or0) | k ≡ u (mod m)r0},

where mr0 is the maximal ideal in the integer ring and u is upper triangular unipo-
tent. This suffices to guarantee that K is neat, and r0 will be chosen so that the
deformation problems to be studied below are minimal and unrestricted at r. In the
statement of [28, Theorem 6.8] this set is called Sa.

Remark 6. Erratum for [28]: In the published version of [28] the set Sa was
mentioned appropriately in the statement of its main theorem but its definition was
inadvertently omitted. As already mentioned, this condition is required in order to
guarantee smoothness. Theorem 37 requires as well that the deformation condition
at such an r be unrestricted and minimal. We choose r as on [11, p. 111] (where
it is called Sa) or as on [62, p. 893] (where it is called v1). The hypothesis on r –
that [F (ζr) : F ] > n – guarantees that r satisfies condition (1) of Theorem 37.

We recall the standard constructions of automorphic vector bundles. The points
x ∈ X are identified with homomorphisms

hx : S = RC/RGm,C→ GR

satisfying Deligne’s list of axioms [De, 2.1.1]. The centralizer in G(R) of hx
is a reductive group Kx whose intersection with the derived subgroup Gder(R)
of G(R) is a maximal compact connected subgroup. Deligne’s axiom (2.1.1.1)
concerns the adjoint action

Ad ◦ hx : S→ GL(Lie(G)C)

that yields an eigenspace decomposition (the Harish-Chandra decomposition)

(7) Lie(G)C = p−x ⊕ Lie(Kx)C ⊕ p+x .

Here z ∈ S(R) ∼−→C× acts trivially on Lie(Kx) and as (z/z̄) (resp. z̄/z) on p+x
(resp. p−x ). The Lie subalgebras p−x and p+x are naturally identified, respectively,
with the anti-holomorphic and holomorphic tangent spaces of X at x.

Let X̌ denote the compact dual of X , and X ↪→ X̌ the Borel embedding.
Concretely, X̌ is a flag variety of maximal parabolic subgroups of GC and the
image in X̌ of x ∈ X is a maximal parabolic Px with Levi subgroup Kx. In
[H85] it is explained how to define a canonical E = E(G,X)-rational structure
on the flag variety X̌ , following Deligne, and how to define a functor V 7→ [V]
from G-equivariant vector bundles on X to G(Ap

f )-equivariant vector bundles on
SK(G,X). The latter are called automorphic vector bundles. The functor is com-
patible with the E-structure in the sense that, if V is defined as G-equivariant vector
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bundle over a field E(V) (which can always be taken to be a number field), then
for any σ ∈ Gal(Ē/E), we have

(8) σ[V] = [σ(V)].
The bracket notation in the previous paragraph was introduced in order to make

reference to the functor. Automorphic vector bundles will in general be denoted
F , and we let E(F) denote a field of definition for the corresponding equivariant
vector bundle over X̌ .

Fix a point x ∈ X with stabilizer Px ⊂ GC; thus

(9) Lie(Px) = Lie(Kx)C ⊕ p+x

in the Harish-Chandra decomposition. There is a natural equivalence of categories
between G-equivariant vector bundles V on X and finite-dimensional representa-
tions (τ,Wτ ) of Px; Wτ is the fiber of V at x, and τ is the isotropy representation.
In particular, the natural representation of Px

ad+ : Px→Kx→ Aut(p+x ),

where the second arrow is the adjoint representation, defines an automorphic vector
bundle canonically isomorphic to the tangent bundle TS(G,X). Likewise∧top(ad+)∨,
the dual of the top exterior power of the adjoint action on p+x , defines the canonical
bundle Ωtop

S(G,X) as an automorphic vector bundle.
A representation (τ,Wτ ) of Kx extends trivially to a representation of Px and

thus defines an automorphic vector bundle F = Fτ on SKp(G,X) whose fiber
at a point beneath x × g for any g ∈ G(Af ) can be identified with Wτ . The
automorphic vector bundle F can also be identified with the family of bundles
FK on SK(G,X). If the family FK extends to a G(Ap

f )-equivariant family of
vector bundles on a family of O-integral models SK of SK(G,X), where O is
some p-adic integer ring, we denote the extension FK,S. In the applications SK is
a moduli space for abelian varieties with PEL structure and natural extensions will
be specified in terms of this identification.

1.1.2. Notation for highest weights. Notation is as in [28, §2]. We choose a max-
imal torus T ⊂ Kx; then T is also a maximal torus in G. Let Φ = Φ(G,T )
denote the set of roots of G relative to T , and let Φ+ be a system of positive roots
compatible with Px, i.e. containing the roots of p−x ; let X+(T ) (resp. X+

x (T ))
denote the set of dominant weights for G (resp. for Kx) relative to this choice. Let
W = W (G,T ) be the absolute Weyl group and let W x ⊂W be the set of Kostant
representatives.

Definition 10. (cf. [49, 2.32]) Let µ ∈ X+(T ). Say µ is p-small, resp. p-small
relative to x, if

⟨µ+ ρ, α∨⟩ ≤ p,∀ α ∈ X+(T ) (resp. ∀ α ∈ X+
x (T ))

and if p > |µ|L, where if we write µ = (µσ, σ ∈ S̃∞),

|µ|L =
∑
σ∈S̃∞

|µσ|
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in the notation of [49, Definition 3.2]. (In [49] this is called “p-small for the geo-
metric realization of Weyl’s construction.”)

1.2. Integral models. The Shimura datum (G,X) is of PEL type and G is of type
A, so by [41] we may consider integral models of the Shimura variety SK(G,X)
over p-adic integer rings, at least when p is unramified for G and K. Let g =
n · [F+ : Q].

Proposition 11. Let p be a prime at which G is unramified, and fix a hyperspecial
maximal compact Kp ⊆ G(Qp). Then the Shimura variety SK(G,X) admits a
smooth model SK over a p-adic integer ring O for all neat K ⊃ Kp. More pre-
cisely, if K is neat and contains Kp, then up to replacing K by a normal subgroup
K ′ of finite index, for any prime v in E(G,X) above p there exists a smooth moduli
scheme SK′ over Spec(Ov) of abelian varieties of dimension g, with PEL struc-
ture defined in terms of the hermitian space V , whose generic fiber is isomorphic
to SK′(G,X). The quotient SK′ by K/K ′ supplies the integral model SK .

Remark 12. It is well known that SK(G,X) is a subvariety of the moduli space
parametrizing all quadruples (A, i, λ, κ) where A is an abelian variety of dimen-
sion g with endomorphisms by (a subring of) F determined by i : F ↪→ End(A),
polarization λ, and level structure κ, all satisfying the usual hypotheses adapted
to the signatures of V at archimedean places of F . We denote this moduli space
MK(G,X); it is a union of a finite number of copies of SK(G,X), corresponding
to the number of global forms of G that are locally isomorphic everywhere. The
moduli space MK(G,X) plays no separate role in the theory developed in this
paper.

1.3. Terminology for toroidal compactifications. For any level subgroup K, the
Shimura variety SK(G,X) has a family of toroidal compactifications, each one at-
tached to a collection Σ of combinatorial data adapted to K. The precise definition
of Σ is recalled below. The corresponding toroidal compactification is denoted
SK(G,X)Σ, or SK(G,X)tor when we don’t need to specify Σ. When K is al-
lowed to vary through a collection B of open compact subgroups of G(Af ) , we
choose Σ(K) adapted to K ∈ B in such a way that, if K ′ ⊂ K with both K ′ and
K in B, the natural covering map SK′(G,X)→ SK(G,X) extends to a map

SK′(G,X)Σ(K′)→ SK(G,X)Σ(K)

of toroidal compactifications.
The combinatorial data Σ = ∪ΣF adapted to the neat level K is a collection of

fans, ΣF , one for each rational boundary component F . (We will make an effort
to use the letter F for boundary components and for number fields in different
paragraphs, so there should be no confusion.) Each F corresponds to its stabilizer
PF , which is a maximal rational parabolic inside G. The fan ΣF gives a polyhedral
cone decomposition of a partial compactification C̄F of a certain cone CF inside
UF (R) that is open, convex, and self-adjoint with respect to a Q-rational positive
definite quadratic form, where UF is the center of the unipotent radical of PF . We
examine the ΣF and the inclusion CF ⊂ C̄F more closely below.
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If Σ is K ∩ G(Q)-admissible in the sense of [2, Definition 5.1], the compact-
ification SK(G,X)Σ is smooth, and if Σ is furthermore defined by cocores then
SK(G,X)Σ is projective by Tai’s theorem [2, IV, §2]. Lastly, we assume that Σ is
such that

∂SK(G,X)Σ := SK(G,X)Σ − SK(G,X)

is a divisor with normal crossings. This is equivalent to the hypothesis that for all
σ ∈ Σ, the semigroup σ ∩ (UF (Q) ∩ K) is generated by a subset of a basis for
the free abelian group UF (Q)∩K. We will always choose Σ that satisfy all of the
above conditions; such Σ exist and are constructed for instance in [25].

Unlike the anisotropic case treated in [28], to apply the vanishing theorem of
Lan-Suh for non-compact Shimura varieties, we need work with a smooth proper
integral model StorK , over a p-adic integer ring O, of the toroidal compactification,
for which SK(G,X) of §1.2 embeds as an open dense subscheme. In the case
when G is a symplectic similitude group this has been constructed in the book
[16] by Faltings-Chai and subsequently extended to all PEL type Shimura varieties
by K.-W. Lan in his thesis [44]. The comparison between the algebraic (moduli)
construction of these compactification and the analytical one presented above is
established in [43]. Below is an abridged summary of the relevant results.

Theorem 13. (Lan) Let p be a prime at which G is unramified, and fix a hyper-
special maximal compact Kp ⊆ G(Qp). Then for all neat K ⊃ Kp, there is a
compatible choice of admissible smooth rational polyhedral data Σ (see [44, Def.
6.3.3.2]) such that the SK(G,X)Σ is a smooth proper scheme over a p-adic integer
ring O which contains SK(G,X) of Proposition 11 as an open dense subscheme.
Furthermore, Σ may be chosen so that SK(G,X)Σ−SK(G,X), viewed as a closed
reduced subscheme, is a divisor with normal crossings. There is a canonical strata-
preserving isomorphism between the basechange to Spec(C) of this integral model
and the classical analytical construction as in [2].

1.3.1. Parabolic strata. The boundary divisor ∂SK(G,X)Σ has a closed covering
indexed by maximal standard rational parabolic subgroups of G, defined as fol-
lows. Let Smin

K denote the minimal compactification of SK over Spec(O), as in
[44, Theorem 7.4.2.1]. The boundary Smin

K \ SK decomposes as a disjoint union
of locally closed strata ∂PSmin

K indexed by standard maximal rational parabolic
subgroups P ⊂ G. Each ∂PSmin

K is a union of certain strata denoted Z[(ΦH,δH)]

in Lan, where P is the stabilizer of the filtration on the hermitian vector space V
concealed in the notation (ΦH, δH) (see [44, §5.4] for an explanation).

There is a canonical morphism [44, Theorem 7.4.2.1, 3]
∮
: SK,Σ→ Smin

K . For
each standard maximal rational parabolic P ⊂ G, we let the P -stratum ∂PSK,Σ

of the toroidal boundary of SK,Σ be the closure of
∮ −1

(∂PSmin
K ). Let R ⊂ G be

a standard rational parabolic, and write R = ∩Qj for a (unique) set of standard
maximal parabolics Qj . We define the R-stratum:

(14) ∂RSK,Σ = ∩j∂QjSK,Σ.
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Under our running hypotheses on Σ, the intersections are componentwise transver-
sal and each ∂RSK,Σ is a union of smooth subvarieties of codimension equal to the
parabolic rank r(R) of R, intersecting transversally.

Suppose R has parabolic rank r. We define the nerve NΣ(R) of the closed
covering of ∂RSK,Σ by irreducible components of codimension r, as in [34, §3.1]
(where the R-stratum was denoted ZΣ(R)). We recall the relation between the
homotopy type of NΣ(R) and Borel-Serre compactifications in §8.2.1.

Let R be a standard rational proper parabolic subgroup of G, and define the
maximal parabolic P (R) as in §A.1; we suppose P (R) = P = PF , as above,
and define F (R) = F . We can write R = ∩r(R)

j=1 Qj uniquely as the intersection
of standard rational maximal parabolics, with Qj < Qj′ , in the total order defined
above, if and only if j < j′. Thus Q1 = P (R); P (R) is the smallest maximal par-
abolic containing R, in the order by size of Gh, but it has the largest Gℓ. The cone
CF is homogeneous under the action of Gℓ,P (R)(R) = GL(m(R),C)d, and can
be identified with the symmetric space attached to the Lie group GL(m(R),C)d.
The partial compactification C̄F is a subset of the topological closure of CF in
UF (R) that is set-theoretically the union of cones of the form CF ′ , where F ′ runs
over boundary components of X such that the stabilizer PF ′ contains Gh,R; al-
ternatively, such that F is a boundary component of F ′. Here it is necessary to
allow PF ′ to be a non-standard maximal parabolic; the construction of the toroidal
compactification involves canonical rational embeddings UF ′ ⊂ UF for all such
F ′. Alternatively, we can take the union of CF ′ for which PF ′ > P (R), together
with their translates under Gℓ,P (R)(Q) ≃ GL(m(R), F ) (here F designates the
CM field!).

Recall that ΣF is a fan in C̄F , and in particular can be written as a disjoint union

(15) ΣF =
∐
F ′

ΣF (F
′)

where ΣF (F
′) is the set of polyhedral cones in ΣF contained in CF ′ . To fix ideas

we assume for the moment that Γℓ,P ⊂ Gℓ,P (Q) is a congruence subgroup and
that ΣF is invariant under Γℓ,P ; this is one of the properties of Σ that is used to
construct classical (non-adelic) toroidal compactifications in [2]. We assume Γℓ,P

is neat. Then the locally symmetric space X(Γℓ,P ) := Γℓ,P \CF has a Borel-Serre
compactification X̄(Γℓ,P ) and the inclusion X(Γℓ,P ) ⊂ X̄(Γℓ,P ) is a homotopy
equivalence.

The relation between toroidal and Borel-Serre compactifications will be needed
for the computations in §8.2; see §8.2.1.

1.4. Level subgroups. We will be working in the following situation. Start with
K as above, and let S = S(K) be its set of ramified primes, as in §1.1. We recall
that S contains a prime r with a divisor r0 and that Kr0 is chosen to guarantee that
K is neat. Choose a finite set Q of primes of F+ that split in F , with the property
that, if v ∈ Q divides the rational prime q, then q /∈ S and q ≡ 1 (mod p). Let
S(Q) be the set of rational primes divided by primes in Q; we assume that each
q ∈ S(Q) is divided by a unique v ∈ Q. For each v ∈ Q let mv ∈ Ov be the
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maximal ideal, k(v) = Ov/mv the residue field, and let

K0,v =
{
k ∈ GL(n,Ov) | k ≡

(
a(k) b
0 d

)
(mod mv)

}
with a(k) ∈ k(v)×, b a 1×(n−1) row matrix over k(v), and d ∈ GL(n−1, k(v)).
Let K1,v ⊂ K0,v denote the kernel of the map k 7→ a(k), and let K∆,v be the
smallest subgroup of K0,v containing K1,v such that ∆v = K0,v/K

∆
v is a p-group.

Let ∆Q =
∏

v∈Q∆v. For q ∈ S(Q) let Ki,q = Ki,v × [
∏

v′∈D+(q)\v Kv′ ]×K−,q,
for i = 0, 1,∆, and let

Ki,Q =
∏

q /∈S(Q)

Kq ×
∏

q∈S(Q)

Ki,q.

Let w /∈ S be a rational prime, fix t ∈ Gw, and let Kw(t) = Kw ∩ tKwt
−1.

Suppose w /∈ S
∐

S(Q), and t ∈ Gw. Define the modification Ki,Q(t) of Ki,Q,
with i = 0, 1,∆, to be the product

Ki,Q(t) =
∏

q /∈S(Q)∪w

Kq ×
∏

q∈S(Q)

Ki,q ×Kw(t).

If Q is empty, one writes K(t) = K0,Q(t) = K1,Q(t).
The following theorem is proved in §A.6 of the first author’s thesis [3].

Theorem 16. Suppose K =
∏

q Kq ⊆ G(Af ) is a neat subgroup, such that Kq

are maximal hyperspecial for almost all q. Suppose further that K ⊃ Kp, a fixed
hyperspecial maximal Kp ⊆ G(Qp). Fix a set Q of primes as above. Let B be
the set of modifications Ki,Q(t) of Ki,Q, with i = 0, 1,∆. Then for every Ki,Q(t)
there is a toroidal datum Σ(Ki,Q(t)) such that

(1) The toroidal compactification SKi,Q(t)(G,X) ↪→ SKi,Q(t)(G,X)Σi,Q(t) is
smooth and projective;

(2) If K ′ ⊂ K is an inclusion in B then the natural covering map

SK′(G,X)→ SK(G,X)

extends to a map

SK′(G,X)Σ(K′)→ SK(G,X)Σ(K)

of toroidal compactifications.
(3) The map

SK∆,Q
(G,X)Σ∆,Q

→ SK0,Q
(G,X)Σ0,Q

is an étale covering with group ∆Q.
(4) Conditions (1)-(3) hold when the SKi,Q

(G,X) are replaced by their inte-
gral models SKi,Q

.

The first two assertions follow from the classical theory of toroidal compactifi-
cations and are used without comment in defining Hecke correspondences in §2.2.
The third one requires more delicate analysis of the analytic construction in [2].
Atanasov uses the observation that the intersection of UF (Qq) with any compact
open subgroup is contained in a pro-q group for each F and each unramified prime
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q ̸= p. Since ∆Q is a p-group, it then suffices to show that K∆,Q and K0,Q re-
strict to the same subgroup of UF (Q), and this is a simple calculation. The last
claim follows by purity of the branch locus applied to each irreducible boundary
component, which reduces it to the characteristic zero statement in (3).

1.5. Automorphic vector bundles over toroidal compactifications. In the next
few sections we will develop the theory of coherent cohomology and Hecke al-
gebras without controlling ramification at the places in S \ S(G), in the notation
of §1.1, in order to avoid unnecessary complications. Sections 2.3 and 1.1.1 will
indicate the adjustments that are needed in order to accommodate ramification.

Fix an automorphic vector bundle F = Fτ on SKp(G,X), and identify F with
the family of FK , as in 1.1. For each open compact K ⊃ Kp, let ΣK be a cone
decomposition defining a toroidal compactification SK(G,X) ↪→ SK(G,X)ΣK

.
Provided K is neat, eachFK admits a canonical extensionFcan

K over SK(G,X)ΣK
,

constructed in [25] following Mumford. The canonical extensions are functorial
with respect to pullback and direct image: if K ′ ⊂ K is an open subgroup, and
if ΣK′ is a cone decomposition for SK′(G,X) compatible with ΣK , so that the
natural finite covering map

πK,K′ : SK′(G,X)→ SK(G,X)

extends to a morphism of toroidal compactifications

πtor
K,K′ : SK′(G,X)ΣK′ → SK(G,X)ΣK′

then there are canonical isomorphisms

πtor,∗
K,K′(Fcan

K )
∼−→Fcan

K′ and (πtor
K,K′)∗(Fcan

K′ )
∼−→Fcan

K ,

and moreover
Ri(πtor

K,K′)∗(Fcan
K′ ) = 0, i > 0.

Note that this applies in particular when K ′ = K but ΣK′ is a refinement of
ΣK .

Similarly, suppose the complement of SK(G,X) in SK(G,X)ΣK
is a divisor

DΣK
with normal crossings. Let IΣK

be the ideal sheaf of DΣK
– it is a line bundle

on SK(G,X)ΣK
– and let Fsub

K = Fcan
K ⊗ IΣK

be the subcanonical extension of
FK . Then, under the hypotheses above, there is a canonical isomorphism

(πtor
K,K′)∗(Fsub

K′ )
∼−→Fsub

K , Ri(πtor
K,K′)∗(Fsub

K′ ) = 0, i > 0.

Moreover,

(17) if πtor
K,K′ is étale, then one also has πtor,∗

K,K′(Fsub
K )

∼−→Fsub
K′ .

Except in a few low-dimensional cases, the action of G(Ap
f ) only extends to

the family SK,Σ(G,X) if the Σ are also allowed to vary along with K, and in
particular the algebra HK of Hecke operators of level K do not act geometrically
on Fcan

K . However, it is explained in [26] that HK does act canonically on the
finite-dimensional vector space H i(SK,Σ,Fcan

K ), for each i. We reformulate the
result of [26], and the integral version proved in [46], in a version better adapted to
localization of Hecke algebras at maximal ideals. Let E(F) denote an extension of
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the reflex field E(G,X) over which the automorphic vector bundleF has a rational
model. Most of the following Proposition is a consequence of the properties of
canonical and subcanonical extensions recalled above.

Proposition 18. (i) Let (G,X), K, and ΣK be as above. Let Σ′
K be a refine-

ment of ΣK . Then the morphism

πΣ,Σ′ : SK(G,X)Σ′
K
→ SK(G,X)ΣK

induces (by pushforward) a canonical quasiisomorphism

RπΣ,Σ′,∗ : RΓ(SK(G,X)Σ′
K
,Fcan

K ) ≃ RΓ(SK(G,X)ΣK
,Fcan

K )

in the bounded derived category Db(E(F)) of complexes of E(F)-vector
spaces. (Here the superscript can is used to designate the canonical exten-
sion for any toroidal compactification.) Similarly, πΣ,Σ′ induces a canoni-
cal quasiisomorphism

RπΣ,Σ′,∗ : RΓ(SK(G,X)Σ′
K
,Fsub

K ) ≃ RΓ(SK(G,X)ΣK
,Fsub

K )

In particular, the objects

RΓ(SK(G,X)ΣK
,Fcan

K ), RΓ(SK(G,X)ΣK
,Fsub

K )

of Db(E(F)) are well-defined and independent of the choice of ΣK; we
denote them RΓcan(SK(G,X),FK) and RΓsub(SK(G,X),FK), respec-
tively.

(ii) Let t ∈ G(Af ). For any K as above, and for any F , the natural isomor-
phism

∗t−1 : SK(G,X)→ StKt−1(G,X)

defines an isomorphism in Db(E(F)) by pullback:

∗t−1 : RΓcan(StKt−1(G,X),Ft−1Kt) ≃ RΓcan(SK(G,X),FK).

There are analogous isomorphisms when can is replaced by sub.
(iii) Let K ′ ⊂ K be an open subgroup. The pullback and direct image functors

define canonical morphisms in Db(E(F)):
π∗
K,K′RΓcan(SK(G,X),FK)→ RΓcan(SK′(G,X),FK′);

π∗
K,K′RΓsub(SK(G,X),FK)→ RΓsub(SK′(G,X),FK′);

πK,K′,∗RΓcan(SK′(G,X),FK′)→ RΓcan(SK(G,X),FK)

πK,K′,∗RΓsub(SK′(G,X),FK′)→ RΓsub(SK(G,X),FK)

(iv) Let O ⊂ E(G,X) denote the localization at a prime above p of the in-
tegers of E(G,X). With K and K ′ as above, both assumed unramified
at p, suppose SK(G,X), FK , SK′(G,X), FK′ , and their toroidal com-
pactifications all admit compatible integral models over O, in the sense
of Proposition 13. Denote these models SK , SK,ΣK

, FK (no change),
etc. Then the object RΓ(SK,ΣK

,Fcan
K ) of Db(O) is a well-defined perfect

complex of O-modules and independent of the choice of ΣK; we denote it
RH(FK), or when necessary, RH(Fcan

K ). The conclusions of (iii) hold for
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the corresponding elements of Db(O). If t ∈ G(Ap
f ), then the conclusions

of (ii) holds for the corresponding elements of Db(O).
The analogous statements hold when can is replaced by sub.

Proof. Items (i)-(iii) are proved in [26]; item (iv) is due to Lan and is proved in
Proposition 1.4.3 of [46]. □

2. HECKE ALGEBRAS

2.1. Adelic representations and fixed vectors. Let K = Kp ×Kp, where Kp is
a fixed hyperspecial maximal compact subgroup of G(Qp) as before and Kp is an
open compact subgroup of G(Ap

f ). We define

RH(FKp) = RH(Fcan
Kp

) = lim−→
Kp

RH(Fcan
Kp×Kp)

where the limit is taken as Kp shrinks to the identity. This is a well-defined object
of the bounded derived category of O-modules, and since the colimit is exact on
this category we have

(19) H i(RH(Fcan
Kp

))
∼−→ lim−→

Kp

H i(RH(Fcan
Kp×Kp)

for all i ∈ Z.
We define RH(Fsub

Kp
) similarly and note that the analogue of (19) is valid with

can replaced by sub.
Proposition 18 (ii) and (iv) have the following Corollary:

Corollary 20. The objects RH(Fcan
Kp

), RH(Fsub
Kp

) have canonical compatible ac-
tions of G(Ap

f ). Moreover, the actions are smooth in the sense that any element
of H i(RH(F?

Kp
)), where ? = can, sub and i ∈ Z, is fixed by an open compact

subgroup of G(Af ).

The last sentence follows from (19). However, it is important to note that, for a
given open K ⊃ Kp, it is not obviously the case that the canonical map

(21) H i(SK,ΣK
,F?

K)→ H i(RH(F?
Kp

))K

is an isomorphism, or even necessarily injective. Instead there is a Hochschild-
Serre spectral sequence

(22) Er,s
2 = Hr(K,RsH(F?

Kp
))⇒ Hr+s(SK,ΣK

,F?
K),

again with ? = can, sub. However, we have the following result:

Proposition 23. [7] With notation as above, Hr(K,RsH(F?
Kp

)) = 0 for all r > 0,
? = can, sub. Thus the canonical map

RH(F?
K)→ RHomKp(1, RH(F?

Kp
)),

where 1 denotes O with the trivial action of Ko
Ψ, is a quasi-isomorphism for ? =

can, sub.
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The Proposition is proved in [7] by verifying that the stabilizers in Kp of points
in the toroidal boundary have order prime to p.

Let S = S(K) be the set of primes where K does not contain a hyperspecial
maximal compact subgroup, plus the prime p, and let G(AS

f ) be the set of adèles
of G with entry 1 at primes in S; let KS = K ∩ G(AS

f ). Let O be as above and
define the Hecke algebra HK,O to be the O-algebra of compactly-supported KS-
biinvariant functions on G(AS

f ), with multiplication given by convolution. Since
KS contains a hyperspecial maximal compact subgroup at each prime, HK,O is a
commutative algebra. Corollary 20 and Proposition 23 thus imply that HK,O acts
on RH(F?

K)) for ? = can, sub. We le TS,K = TS,K,F denote theO-subalgebra of
End(RH(FK)) generated by this action.

Since [7] is not yet available, we give an alternative construction of TS,K in the
next section.

2.2. Hecke operators. Notation is as in Proposition 18. Fix K hyperspecial at
p and let S = S(K) be as above. For t ∈ G(AS

f ), a Hecke operator T (t) ∈
End(RH(F?

K)), denoted TΣ
t , is defined in [18, §8.1.5], for ? = can, sub. An

alternative definition is given in [8, §4.2], where it is also proved that the subalge-
bra TS,K of End(RH(F?

K)) generated by the T (t) is commutative. The algebra
TS,K naturally maps to End(⊕iH

i(RH(FK))) but the map to its image is not
necessarily an isomorphism. In particular, there is no reason to assume TS,K to be
reduced.

In the setting of (iv) of Proposition 18, the natural inclusion Fsub
K →Fcan

K (the
cone decomposition is implicit and omitted from the notation) determines a mor-
phism in Db(O)

(24) RΓsub(SK ,FK)→ RΓcan(SK ,FK)

Let RΓ∂(SK ,FK) denote the cone on the morphism (24).
The following theorem summarizes the state of the art:

Theorem 25. (i) Let κ be an algebraically closed field and let ν : TS,K,F → κ
be a continuous homomorphism. Then there is a semisimple n-dimensional rep-
resentation ρν : ΓF → GL(n, κ) that is characterized, up to equivalence, by the
following property: If v is a prime of F not in S ∪ {p}, then ρν is unramified
at v. Let Γv ⊂ ΓF be a decomposition group at v; then the semisimplification
of the restriction ρν,v of ρν to Γv corresponds to the restriction to ν to the image
of the Hecke operators at v by the unramified Langlands correspondence, in the
following sense: there is an equality of polynomials in κ[X]

(26) det(1− ρν(Frobv)X) = 1 +

n∑
i=1

(−1)iν(q
(n+1)i

2 Ti,v)X
i

where the Ti,v are the standard Hecke operators at v, normalized as in [57].
(ii) Suppose κ is of characteristic zero and ν is the homomorphism attached to

a cuspidal automorphic representation of G. Then there is a homomorphism

rν : ΓF+ → Gn(κ)



THE TAYLOR-WILES METHOD FOR COHERENT COHOMOLOGY, II 17

where Gn is the disconnected algebraic group defined in ([11], §2.1) that corre-
sponds to the pair (ρν , β), for some character β of ΓF , under the correspondence
of Lemma 2.1.1 of [11]. In particular, the identity component G0n is isomorphic to
GL(n)×GL(1), and the restriction of rν to ΓF ⊂ ΓF+ is given by (ρν , β).

(iii) Write RΓ∂(FK) := RΓ∂(SK(G,X),FK). Suppose ν occurs in the repre-
sentation on some subquotient of RΓ∂(FK); we say that ν occurs in the support
of RΓ∂ (for some FK). Then ρν is reducible.

Part (ii) is the familiar association of Galois representations to polarized coho-
mological cuspidal automorphic representations of GL(n). Part (i) includes the
results of [30] and the extension to torsion cohomology by Scholze, Boxer, Pilloni-
Stroh, and Goldring-Koskivirta [57, 6, 54, 18].

It remains to prove Part (iii), which follows from part (i) and an analysis of the
non-cuspidal coherent cohomology of SK(G,X), based primarily on the consider-
ations of [32], [50], and [45]. The details are postponed until section 7; the proof
will be particularly long, because it requires a review of the structure of the toroidal
boundary.

Let ν be as in Theorem 25, with k a field of characteristic p. Let m = ker ν; we
write m = mν or m = mρ with ρ = ρν . Let Tν be the localization of TS,K at mν ,
and let

RH(FK)ν = RH(FK)⊗TS,K
Tν

denote the localization of RH(FK) at mν . Recall that (τ,Wτ ) is the representation
of the parabolic Px corresponding to a point x ∈ X̌ . Let µτ ∈ X+

x (T ) denote the
highest weight of τ , and assume

(27) µτ = w · µ,w ∈W x, µ ∈ X+(T ).

Proposition 28. We assume FK is the automorphic vector bundle attached to a
character w · µ, as in (27). Suppose (a) ρν is irreducible; (b) the highest weight
µF of F satisfies the Lan-Suh vanishing conditions:

(i) The character µ of (27) is p-small (Definition 10);
(ii) µ is sufficiently regular in the sense of [49, 7.18]

(iii) µ satisfies the inequality [49, 7.22].
Then the cohomology of RH(FK)ν is concentrated in a single degree i0 =

i0(F) and is torsion-free over O.

Proof. Write S = SK(G,X). For q ≥ 0, define the interior cohomology of FK to
be

Hq
! (RΓ(S,FK)) := Im[Hq(S,Fsub

K )→ Hq(S,Fcan
K )].

It follows from hypothesis (a) and (iii) of Theorem 25 that the localization at mν

of RΓ∂(S,FK) is acyclic. Thus for any q,

Hq(S,Fcan
K )ν = Hq

! (RΓ(S,FK))ν ;

in other words, the localization at mν of the cohomology of the canonical exten-
sion coincides with the localization at mν of the interior cohomology. In view of
hypothesis (b), it follows from Corollary 7.25 and Theorem 8.2 (3) of [50] that
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Hq
! (RΓ(S,FK))ν is concentrated in a single degree i0(F) and is torsion-free over
O. The Proposition is an immediate consequence. □

The Lan-Suh vanishing conditions are written out more explicitly in [28, §6.10].
We write Hq

! (S,FK) instead of Hq
! (RΓ(S,FK)).

2.3. Ramification and types. The modules Hq
! (RΓ(S,FK)) of coherent coho-

mology give rise to Galois representations that may be ramified at places v where
Kv is not hyperspecial maximal. In order to restrict attention to minimal deforma-
tion problems, we introduce spaces of cohomology with coefficients in semisimple
Bushnell-Kutzko types [BK99]. This was explained in the unpublished manuscript
[31], in the case of supercuspidal types, but seems have never been used subse-
quently, although the definition we give below of automorphic forms with coeffi-
cients in Bushnell-Kutzko types is essentially the one that appeared in [31] as well
as [65, 38]; for automorphic forms on GL(2) it has been standard for some time. A
version based on finite-dimensional representations of the multiplicative groups of
local division algebras is developed in [11, p. 97]; this is essentially equivalent for
purposes of proving modularity but it cannot be applied to prove that the coherent
cohomology is free over the localized Hecke algebra, which is our main theorem.

Let S = S(K) be as above, and assume the local groups Kv and K−,q are as in
§1.1. Let (K+

v ,Kv,юv,Λюv) be type data as in §1.1.1.

Definition 29. The pair (K+
v ,юv) is a semisimple type if it determines a compo-

nent of the Bernstein center of GL(n, F+
v ) in the following sense:

(a) For any irreducible representation π of GL(n, F+
v ),

dimHomK+
v
(юv, π) ≤ 1;

(b) If π is an irreducible representation of GL(n, F+
v ) then

HomK+
v
(юv, π) ̸= 0

if and only if there is a parabolic subgroup P ⊂ GL(n, F+
v ) with Levi quo-

tient L, a (fixed) supercuspidal representation σ of L, and an unramified
character α of L, such that π is an irreducible constituent of the induced
representation Ind

GL(n,F+
v )

P [σ ⊗ α].

Let ю = (юv)v∈S , where for all v ∈ S (we are now using S to denote a set of
primes of F+, as in §1.1) we assume

Hypotheses 30. (1) Either юv is the trivial representation of the special maximal
compact subgroup Kv, in which case we set K+

v = Kv, or the pair (K+
v ,юv) is a

semisimple type for the irreducible representation π of GL(n, F+
v ). Let S+ ⊂ S

be the subset for which the second condition holds, and let K+
S =

∏
v∈S K+

v .
(2) For all v ∈ S+, p is a banal prime for GL(n, F+

v ): that is, p does not divide
the pro-order of any compact open subgroup of GL(n, F+

v ).

We let Λю denote the representation ⊗vΛюv of
∏

v∈S K+
v . Hypothesis 30 (2)

implies that the module Λю is the unique
∏

v∈S K+
v -invariant lattice in Λюv ⊗Q,



THE TAYLOR-WILES METHOD FOR COHERENT COHOMOLOGY, II 19

up to scaling. With FK an automorphic vector bundle as above, we let

FK,ю = FK ⊗O Λю
and for any cohomology module H with coefficients in FK,ю we define

(31) Hю := HomK+
S
(Λю,H).

Thus we can define Hq
! (RΓ(S,FK,ю)), Hq(S,Fcan

K,ю)ν,ю, etc.
Theorem 25 (iv) The assertions of Theorem 25 (iii) hold when FK is replaced by
FK,ю.

2.4. Minimality condition. For applications to the Taylor-Wiles method, we add
the following hypotheses on the Galois representations attached to the type data.
For each v, we choose a π in the inertial equivalence class corresponding to the
quadruple (K+

v ,Kv,юv,Λюv) – in other words, HomK+
v
(юv, π) ̸= 0. Let Lv(π)

denote the n-dimensional representation of the Weil-Deligne group Wv of F+
v at-

tached to π by the local Langlands correspondence, with coefficients in the p-
adic integer ring O, and let Lv(π) denote its reduction modulo the maximal ideal
mO. We attach to Lv(π) a deformation problem Dv over O, in the sense of
[11, Definition 2.2.2], by the condition that, Lv(π′) is a deformation of Lv(π)
of type Dv if and only if HomK+

v
(юv, π

′) ̸= 0. To Dv is attached a subspace
Lv ⊂ H1(Wv, ad(Lv(π))), as in [11, §2.2], and we assume that the problem Dv is
minimal in the sense that

(32) dimLv = dimH0(Wv, ad(Lv(π))).
Since we have already assumed in Hypothesis 30 (2) that p is a banal prime for the
local group, some of these hypotheses may be redundant.

3. PERFECT COMPLEXES AND DIAMOND OPERATORS

3.1. Review of the theorem of Nakajima. We begin with a simple generalization
of a special case of the theorem of Nakajima [51, Theorem 2] used in [28].

Theorem 33. Let Γ be a finite abelian p-group. Let k be a field of characteristic p
and let f : X → Y a finite étale Galois covering of projective varieties over k with
Galois group Γ. LetF be a coherent sheaf on Y . Let T be a commutative k-algebra
of endomorphisms of the cohomology complex RΓ(X, f∗(F)) in the derived cat-
egory of k[Γ]-modules, and let m ⊂ T be a maximal ideal with the property that
H i(RΓ(X, f∗(F))m) = 0 for all indices except i = i0, where the subscript m
denotes localization at m. Then H i0(X, f∗(F))m is a free k[Γ]-module.

Proof. Theorem 1 of [51] implies that RΓ(X, f∗(F)) can be represented by a finite
complex of projective k[Γ]-modules C•. The localization C•

m is a direct summand
of C• and is therefore also a finite complex of projective k[Γ] modules. It then
follows, as in the proof of Theorem 2 of [51], that H i0(X, f∗(F))m is a projective
k[Γ]-module, hence free because k[Γ] is a local ring.

□

The following corollary is then proved just as in [28, Corollary 3.5]:
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Corollary 34. Let O be a p-adic integer ring with residue field k, and let f :
X → Y be a finite étale Galois covering of projective O-schemes with Galois
group Γ, a finite abelian p-group. Let T be a commutative O-algebra of endo-
morphisms of the cohomology complex RΓ(X, f∗(F)) in the derived category of
O[Γ]-modules, and let m ⊂ T be a maximal ideal with the property that

H i(RΓ(X, f∗(F))m) = 0

for all indices except i = i0, where the subscript m denotes localization at m.
Assume moreover that H i0(X, f∗(F))m is O-torsion-free. Then H i0(X, f∗(F))m
is a free O[Γ]-module.

3.2. . We apply this to the situation of Proposition 28. Fix a neat level subgroup
K and let Q be a collection of primes of F+, split in F/F+, at which K is hyper-
special maximal. Choose toroidal data Σi,Q as in Theorem 16, and write

Si,Q,Σ = SKi,Q(t)(G,X)Σi,Q(t), i = 0, 1,∆.

For µ ∈ X+(T ) and w ∈ W x we write Ew(µ) for the automorphic vector bundle
on Si,Q,Σ (any i) attached to the representation of Kx with highest weight w · µ –
this is the bundle that was denoted Ew(W ) in [28], where W is the representation
of G with highest weight µ. Let Ew(µ)can denote its canonical extension on Si,Q,Σ.
Let i0(w, µ) = i0(Ew(µ)), in the notation of Proposition 28. We let TS,K(w, µ) be
the algebra denoted TS,K,F in §2, for the automorphic bundle FK = Ew(µ).

The following Corollary extends [28, Proposition 3.7] to the noncompact case.

Corollary 35. Let µ ∈ X+(T ) be a character and let m ⊂ TS,K(w, µ) be a
maximal ideal that satisfy the hypotheses of Proposition 28. Then for all w ∈W x,

H i0(w,µ)(S∆,Q,Σ, Ew(µ)can)m

is a free O [∆Q]-module and

H i(S∆,Q,Σ, Ew(µ)can)m = 0 if i ̸= i0(w, µ).

Proof. In view of Theorem 16, we can apply the same proof as in [28, Proposition
3.7]. □

More generally, we introduce a set of type data as in §1.1.1. We let TS,K(w, µ,ю)
be the analogue of TS,K(w, µ) for the automorphic bundleFK,ю = Ew(µ)⊗OΛю.
Then we have

Corollary 36. Let µ ∈ X+(T ) be a character and let m ⊂ TS,K(w, µ) be a
maximal ideal that satisfy the hypotheses of Proposition 28. Then for all w ∈W x,

H i0(w,µ)(S∆(Q), Ew(µ)can ⊗O Λю)m

is a free O [∆Q]-module and

H i(S∆(Q), Ew(µ)can ⊗O Λю)m,ю = 0 if i ̸= i0(w, µ).
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The proof is the same as in the case without type data; we only need to add that
the functor HomK+

S
(Λю, •) is exact because we have assumed that p is a banal

prime for all places in S+.
In the applications we impose the conditions of §2.4 on our choice of type data

to ensure that the local deformation conditions are minimal.

4. APPLICATION OF THE TAYLOR-WILES METHOD

We follow the axiomatic treatment of the Taylor-Wiles method described in §4
of [28]. Fix µ and w ∈ W x as in Corollary 35, and let i0 = i0(w, µ) for the
duration of this section. Fix a neat level subgroup K, define S = S(K) as above,
and consider sets Q and a maximal ideal m as in §3.2.

Let

H∅ = H i0(SK,Σ, Ew(µ)can), H0,Q = H i0(S0,Q,Σ, Ew(µ)can),

H∆,Q = H i0(S∆,Q,Σ, Ew(µ)can).
Note that by Proposition 28, these are torsion-free O-modules. The Hecke

algebras T∅,w,T0,Q,w,T∆,Q,w are defined as in [28, p. 137] with respect to these
modules as the images of the relevant Hecke algebras TS,K(w, µ), initially defined
as endomorphisms of the perfect complex, on the cohomology modules. Given a
homomorphism

ν : T∅,w → Q̄p

we let ρν be the corresponding Galois representation, and let Rρ̄ν ,∅ denote the
corresponding deformation ring when (as we assume below) ρ̄ν is absolutely irre-
ducible.

We have the following analogue of Theorem 6.8 of [28]:

Theorem 37. Assume µ satisfies the inequalities of Proposition 28. Let ν :
T∅,w(µ)→ Q̄p be a non-trivial homomorphism and assume the corresponding Ga-
lois representation ρν satisfies conditions

(1) For all v ∈ S(F+), ρ̄ν is unramified at v and

H0(Gal(F̄v/Fv), (ad ρ̄ν)(1)) = (0);

(2) The Fontaine-Laffaille condition at primes above p.
We also assume the residual representation ρ̄ν to be absolutely irreducible and

adequate in the sense of [62], which requires the absolute irreducibility. Let m =
m(ρ̄ν) ⊂ T∅,w(µ) be the corresponding maximal ideal, and let Hρ̄ν ,∅ and Tρ̄ν ,∅ de-
note the localizations at m. Suppose that the deformation conditions are minimally
ramified at all primes v ∈ S not dividing p. In particular, for v ∈ S, we assume
the deformation condition in S at v is unrestricted and minimal (cf. [28, §6.9]).

Then the classifying map

ϕρ̄ν ,∅ : Rρ̄ν ,∅→ Tρ̄ν ,∅

is an isomorphism, and Hρ̄ν ,∅ is a free module over Tρ̄ν ,∅, which is a local complete
intersection.
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More generally, suppose we replace FK by FK,ю, for type data as in §1.1.1.
Let T∅,w,ю(µ) be the corresponding Hecke algebra, let ν : T∅,w,ю(µ)→ Q̄p be
a homomorphism satisfying the conditions above, plus the minimality condition of
(32) at places in S. Define Tρ̄ν ,∅ and Rρ̄ν ,∅ with respect to this homomorphism ν.
Then the conclusions of the theorem stated above remain true.

Remark 38. The reader can check that, since p is odd, the condition on v ∈ S(F+)
is not strictly necessary; this is the point of [11, Lemma 2.3.3], whose application
is buried at the end of the proof of Lemma 2.3.4 of the same paper. In order to
avoid distraction we add this as an extra condition.

Proof. We show that the relevant hypotheses in §4 of [28] are satisfied with the
necessary adjustment to account for the assumption that our residual representa-
tions are adequate. The treatment of [28] follows the Diamond-Fujiwara extension
to the Taylor-Wiles method as applied in [11], while we use a modification as in
Theorem 3.6.1 in [4].

The Galois Hypothesis 4.3 follows as in the proofs of Corollaries 5.3 and 5.4
in [28] in light of our Theorem 25 (ii). Hypothesis 4.4.8 is verified in Lemma 6.1
therein. It remains to check the correct analog of Hypothesis 4.4.9 for adequate
residual representations.

The conditions (4.4.9.1) and (4.4.9.2) in Part (a) of Hypothesis 4.4.9 follow from
the constructions of sets of Taylor-Wiles QM satisfying the conditions (6.6.1) and
(6.6.2) from the beginning of §6.6 in [28]; such a set QM is shown to exist in
Proposition 4.4, [62]. The hypotheses of § 4.4.5 and § 4.4.7 as well as Hypothesis
4.4.9 (b) are verified for the set QM in the proof of Theorem 6.8 in [62]. In the
same proof one can find the verification of the local condition in § 4.4.4. as a con-
sequence of Proposition 5.12 in [62]. The modified version of Condition 4.4.9.3,
now concerning nonvanishing of trace of Frobenius along projection, is embedded
in the construction of QM in Proposition 4.4. The claim now follows since under
our assumptions (i), (ii) and (iii) in the proof of Theorem 6.8 [62] hold.

Finally, the modifications necessary for incorporating the type data are the same
as in the proof of [11, Theorem 3.5.1], which specifically comes down to the use
of the minimality hypothesis in [11, Proposition 2.5.9]. □

5. CONSEQUENCES FOR COHOMOLOGY MODULES OVER THE HECKE
ALGEBRA

5.1. Topological and de Rham cohomology. Theorem 37 asserts that the co-
herent cohomology module H i0(SK,Σ, Ew(µ)can) localized at the maximal ideal
m = m(ρ̄ν) is free over the localized Hecke algebra Tρ̄ν ,∅, provided p and the
weight µ satisfy the stated inequalities. As in [28, §7], this implies that analo-
gous localized modules in p-adic étale and de Rham cohomology are also free over
Tρ̄ν ,∅. The proofs are identical, so we merely state the results.

Let now W = Wµ be the finite-dimensional irreducible representation of G
with highest weight µ. As in [28, (7.1.2)] we always assume µ to be p-small. Let
the p-adic place v, the p-adic integer ring O, the hyperspecial maximal compact
subgroup Kp ⊂ G(Qp), and the Kp-invariant lattice Wµ(O) ⊂ W (Frac(O)) be
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as in [28, §7.1]. Let W̃µ,B(O) denote the topological local system in O-modules
on SK(G,X)(C), as in [28, §7.3]. Topological cohomology is computed by the
complex

RΓ(SK(G,X)(C), W̃µ,B(O)).
We let

T∅,B(µ) ⊂ End
(
RΓ(SK(G,X)(C), W̃µ,B(O)

)
denote theO-subalgebra generated by the topological Hecke correspondences T (t)
introduced in §2.

The de Rham version T∅,dR(µ) of T∅,B(µ) requires a bit more work to define.
Let EG,O be the exact monoidal functor defined in [49, Lemma 1.20] from the
tensor category of representations of the group scheme GZp overO to the category
of locally free coherent sheaves on SK with integrable connection and compatible
G(Ap

f ) action covering the natural action on the family SK×Kp . Let Wµ,O denote
the representation of GZp introduced in [28, §7.1], so that the O-lattice Wµ(O) is
just Wµ,O(O). We let

(39) RΓdR,log(SK ,WO) = RΓ(SK,Σ,Ω
•
SK,Σ,log

⊗ EG,O(Wµ,O)
can);

see [50, §4.3], or [50, §7.4] for a reformulation in terms of dual BGG complexes.
We define T∅,dR(µ) ⊂ End (RΓdR,log(SK ,WO))) again to be the O-subalgebra
generated by the algebraic Hecke correspondences T (t).

We let νB : T∅,B(µ)→ Q̄p (resp. νdR : T∅,dR(µ)→ Q̄p) be a non-trivial ho-
momorphism satisfying the hypotheses of Theorem 37. Define mB = m(ρ̄ν) ⊂
T∅,B(µ) (resp. mdR = m(ρ̄ν) ⊂ T∅,dR(µ) as in the statement of that theorem, and
let Tρ̄ν ,∅,B(µ), Tρ̄ν ,∅,dR(µ) denote the respective localizations. We let

RΓdR,log(SK ,WO))ρ̄ν , RΓ(SK(G,X)(C), W̃µ,B(O))ρ̄ν
denote the localizations of the cohomology complexes at the respective ideals.

Hypotheses 40. In what follows, we assume
(a) µ satisfies the inequalities of Proposition 28;
(b) ρ̄ν satisfies the hypotheses of Theorem 37.

Recall that dV = dimSK(G,X).

Corollary 41. Under Hypotheses 40 we have (i)

RΓdR,log(SK ,WO)ρ̄ν

is concentrated in degree dV , and

HdV
dR,log(SK ,WO)ρ̄ν := HdV (RΓdR,log(SK ,WO)ρ̄ν )

is a free O-module of finite rank. Moreover, there is a natural decreasing (Hodge)
filtration F •HdV

dR,log(SK ,WO))ρ̄ν by O-direct summands satisfying the analogue
of [28, Theorem 7.2.2].

(ii) Assume in addition the inequality |µcomp| ≤ p − 2, as in the statement of
[28, Theorem 7.3.3]. Then

RΓ(SK(G,X)(C), W̃µ,B(O))ρ̄ν
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is concentrated in degree dV . Moreover HdV (SK(G,X)(C), W̃µ,B(O))ρ̄ν is a
free O-module of finite rank (the same as in (ii)).

Proof. This follows from the earlier results in the same way as in [28], except that
here we need to localize at the non-Eisenstein maximal ideal m(ρ̄ν). □

The next two theorems are then proved exactly as in [28, §7.2, §7.3].

Theorem 42. Assume Hypotheses 40 and the inequality |µcomp| ≤ p− 2, as in the
statement of [28, Theorem 7.3.3]. Then there is an isomorphism

ϕρ̄ν ,∅,B : Rρ̄ν ,∅→ Tρ̄ν ,∅,B(µ)

of local complete intersections, and HdV (SK(G,X)(C), W̃µ,B(O))ρ̄ν is a free
module of finite rank over Tρ̄ν ,∅,B .

We remind the reader that the inequality |µcomp| ≤ p − 2 is needed in order to
apply a comparison theorem for integral p-adic cohomology.

Theorem 43. Assume µ satisfies the inequalities of Proposition 28. Then there is
an isomorphism

ϕρ̄ν ,∅,dR : Rρ̄ν ,∅→ Tρ̄ν ,∅,dR(µ)

of local complete intersections, and HdV
dR,log(SK ,WO))ρ̄ν is a free module of finite

rank over Tρ̄ν ,∅,dR(µ).

5.2. Assumptions. Let T be a finite free reduced local O-algebra, M a finite free
O-module, with T action defined by a faithful homomorphism ı : T ↪→ EndO(M).
Then TQ = T⊗Zp Qp is a product of finite extensions of Qp that acts faithfully on
MQ = M ⊗Zp Qp. We assume MQ is free over TQ of rank m. For 0 ≤ i ≤ m we
consider

∧iMQ = ∧iTQMQ;

this is naturally a free TQ-module of rank m!
i!·(m−i)! .

In what follows we assume p > m, in order to avoid ambiguity regarding the
presence or not of factorials in the definition of exterior powers over O-algebras.

5.2.1. Multiplicity one. With a bit more work we can show that we can take m = n
when M = Hn−1

dR,log(SK ,WO)ρ̄ν , as in the next section. It would be convenient to
assume that cuspidal automorphic representations of G occur that are spherical out-
side primes that split in F/F+ satisfy strong multiplicity one: they are determined
uniquely, as subspaces of the space of cusp forms, by their local components at all
unramified places. Because the ramification is limited to places where G is iso-
morphic (up to the similitude factor) to GL(n), this follows – almost – from the
multiplicity one theorem for L-packets of unitary groups proved in [37] (condi-
tionally on unpublished results of Arthur).

The “almost” refers to the structure of unramified L-packets at primes that ram-
ify in F/F+. There the L-packets can have several members, distinguished by the
choice of local maximal compact Kq; so we recover multiplicity one, though not
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necessarily strong multiplicity one. This, together with the properties of Bushnell-
Kutzko types recalled in Definition 29, is enough to obtain m = n in the situation
considered after Proposition 44.

5.3. Exterior powers of modules over Hecke algebras.
Proposition 44. With notation as in §5.2, assume M is free over T. Let Mi ⊂
∧iMQ be a free T-submodule of rank m!

i!·(m−i)! . Then Mi and ∧iTM are isomorphic
as T-modules.

Proof. Since M is a free T-module of rank m, then ∧iTM is also a free T-module
of rank

(
m
i

)
(see Theorem 4.2 in [12]). Now, Mi and ∧iTM are finite free modules

of the same rank, hence isomorphic. □

We apply this when M = Hn−1
dR,log(SK ,WO)ρ̄ν in the notation of Corollary

41, with SK an integral model of the Shimura variety Sh(Vσ) attached to an n-
dimensional hermitian space Vσ over F with signature (n − 1, 1) at one place
σ ∈ S̃∞, and definite at the remaining places, and with T = Tρ̄ν ,∅,dR(µ) the cor-
responding localized Hecke algebra. (If F is not imaginary quadratic the subscript
log is irrelevant.) We also write M = Mσ and T = Tσ and allow σ to vary over
S̃∞; we write Gσ for the similitude group of Vσ and (Gσ, Xσ) for the correspond-
ing Shimura datum.

The algebra Tσ is the localization of the full Hecke algebra T∅,dR(µ) at the max-
imal ideal containing the kernel of the homomorphism νdR; we use the same nota-
tion to denote the restriction νdR : Tσ → Q̄p to the localized Hecke algebra. This
homomorphism corresponds to the action of Tσ on the K-fixed vectors in an auto-
morphic representation π = πν of Gσ(A) that is realized in Hn−1

dR,log(SK(Gσ, Xσ),Wµ).
Now let V be any n-dimensional (non-degenerate) hermitian space over F ,

(GV , XV ) the corresponding Shimura datum, KV ⊂ GV (Af ) a neat level sub-
group that is hyperspecial maximal at p, ShKV

(V ) the corresponding Shimura
variety, SKV ,V a smooth model over O (we may have to take O sufficiently large
to include the integer rings in all relevant reflex fields). We let T∅,dR,V (µ) denote
the O-algebra generated by Hecke operators at places split in F/F+ acting on
HdV

dR,log(SKV ,V ,WO), with W = Wµ; the index KV is omitted from the notation
for the Hecke algebra. We can discard the Hecke operators at a finite number of
places without changing T∅,dR,V (µ), and thus we can define ν : T∅,dR,V (µ)→ Q̄p

and the localization
TV := Tρ̄ν ,∅,dR,V (µ)

for any V such that the representation πν transfers to GV (A).
The congruence ideal C(ν,TV ) = C(πν ,TV ) ⊂ TV is defined as in [15, Defi-

nition 6.7.2]. More precisely, it is the annihilator of

TV /(TV [πν ] + TV [πν ]
⊥).

Here π̄ν is the dual of πν , TV [πν ] is the localization of TV at the prime ideal that
is the kernel of the action of the Hecke algebra on the πν-isotypic subspace in
TV ⊗ Q, and TV [πν ]

⊥ is the intersection of TV with the orthogonal complement
of TV [π̄ν ] in TV ⊗Q with respect to Poincaré duality.
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Proposition 45. Let V and V ′ be two hermitian spaces of dimension n such that
the representation πν transfers to GV (A) and GV ′(A). Then we can identify the
Hecke algebras TV

∼−→TV ′ in such a way that the Hecke operators at places v
such that both GV and GV ′ are split at v correspond. Moreover, suppose µ and p
satisfy the inequalities of Proposition 28 for both dV and dV ′ . Then with respect to
the identification of TV with TV ′ , the congruence ideals C(ν,TV ) and C(ν,TV ′)
coincide.

Proof. The first assertion is clear. The claim about the congruence ideals is then
a consequence of Theorem 43, which identifies both TV and TV ′ with the same
O-algebra Rρ̄ν ,∅. □

In the same way, we see that the congruence ideals defined with respect to the
integral structure on de Rham cohomology coincide with the ideals defined with
respect to the graded pieces with respect to the Hodge filtration, which are defined
with respect to the integral structure on coherent cohomology. We leave it to the
reader to formulate the statement.

Remark 46. It suffices to say that all the results of this section remain valid when
the coefficients Wµ,O are replaced by Wµ,O ⊗ Λю for type data satisfying the
minimality conditions, and the (de Rham or p-adic étale) cohomology modules
• = RΓdR,log(SK ,WO), . . . are replaced by HomK+

S
(Λю, •).

6. ORDINARY MODULAR FORMS

The article [15] constructs p-adic L-functions as elements of Hida’s ordinary
Hecke algebra when the latter, localized at an appropriate maximal ideal, is known
to satisfy a Gorenstein hypothesis [15, §6.7.8, §7.3.2]. Here we show how to derive
this hypothesis from Theorem 37, when p is sufficiently large and the maximal
ideal is as in the statement of that theorem. The first results of this type are due to
Hida [35] and Tilouine [64]; our method is essentially the same as Tilouine’s.

We make use of the notation of [15] without comment. Thus π is an anti-
holomorphic cuspidal automorphic representation of the unitary similitude group
G (denoted G1 in loc. cit.) and T = Tπ is the localization of Hida’s ordinary Hecke
algebra at the corresponding maximal ideal mπ. This ideal determines a connected
component of weight space, which includes the weight κ(π) of the holomorphic
modular form corresponding to π (more conventionally, to the contragredient of
π, a holomorphic cuspidal automorphic representation), which we are allowed to
vary. Theorem 37 can be applied provided π can be chosen of a weight that satisfies
the inequalities in Proposition 28 as well as those of Hida’s Control Theorem, cited
as [15, Theorem 7.2.1]. We make these conditions more precise in the following
Theorem. We say two weights µ, µ′ are congruent modulo p if they define the same
characters on the (finite group of) points of the special fiber of the torus T over the
residue field k of O.

Theorem 47. Let κ(π) be a weight such that the O-module Mκ(π)(K) of holo-
morphic modular forms of weight κ(π), in the notation of [15], is the module
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H i0(w,µ)(SK,Σ, Ew(µ)can), in the notation of Corollary 35, with i0(w, µ) = 0.
Suppose µ is congruent modulo p to a character µ′ of T that satisfies the regu-
larity condition (ii) of Proposition 28. Suppose the residual Galois representation
ρ̄π attached to the maximal ideal mπ satisfies the hypotheses of Theorem 37. Then
the localized ordinary Hecke algebra T = Tπ is a local complete intersection and
satisfies the Gorenstein Hypothesis 7.3.2 of [15].

Proof. The notation ρ̄π corresponds to the notation ρ̄ν in the statement of Theo-
rem 37. Applying that theorem, the hypotheses imply that the localized module
Sκ(π)(K)π is free over the localized Hecke algebra, which is a local complete in-
tersection. We claim that it suffices to show that Hida’s Control Theorem, as stated
in [36, Theorem 7.1], applies to Sκ(π)(K)π. Indeed, the Hecke algebra Tρ̄ν ,∅ in
weight κ(π) is the quotient of Tπ by the regular sequence corresponding to the
weight κ(π). Moreover, we are concerned with coherent cohomology in degree
0, so by Koecher’s principle the reduced localization hypothesis in Theorem 37 is
superfluous.

Now it remains to verify that Hida’s Control Theorem does apply to weight κ(π)
when µ′ satisfies the regularity condition (ii) of Proposition 28. In fact, Boxer and
Pilloni have proved a classicality theorem for overconvergent modular forms of
small slope [8, Theorem 1.0.15 (3)] that asserts that overconvergent modular forms
of weight µ on Shimura varieties of abelian type are classical if they satisfy a small
slope condition and if µ′ satisfies the regularity condition (ii) of Proposition 28.
Since ordinary modular forms automatically satisfy the small slope condition (see
[8, Remark 1.0.6]), this completes the proof.

□

Remark 48. It is important to note that Theorem 47 is really a statement about ρ̄π
and the prime p, and not about µ. If p is not too small relative to the group G, then
every µ is congruent to a µ′ satisfying the regularity condition.

Remark 49. Once again, it suffices to say that all the results of this section remain
valid when the coefficients Ew(µ)can are replaced by Ew(µ)can⊗Λю for type data
satisfying the minimality conditions and the cohomology modules are modified ac-
cordingly. We leave the details to the reader.

7. PROOF OF THEOREM 25 (III) AND (IV)

The proof that the Galois representations attached to the boundary cohomology
group RΓ∂(FK) := RΓ∂(SK(G,X),FK), or to its generalization

RΓ∂(SK(G,X),FK,ю),

are reducible is based on a lengthy analysis of the toroidal boundary, to show that
the Galois representations attached to any piece of the complex that computes the
cohomology of the toroidal boundary breaks up as a sum of representations at-
tached to the cohomology of smaller groups. This is a geometric argument and it
is identical with or without the introduction of a K-type indicated by the subscript
ю. Thus we will write down the proof, which is long enough as it is, in the case
where the type data are trivial.
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In what follows, R denotes a standard rational proper parabolic subgroup of G.
We let r(R) denote the parabolic rank of R; thus r(R) = 1 if and only if R is a
maximal proper parabolic. Let LR denote the Levi quotient of R. It is a connected
reductive group that admits a factorization

LR = Gh,R ·Gℓ,R

where Gh,R = G(VR) is the similitude group of a hermitian vector space VR over
F , of dimension n− 2m(R), for some 1 ≤ m(R) ≤ n

2 , and

Gℓ,R =

r(R)∏
i=1

GL(mi(R))F ,
∑
i

mi(R) = m(R).

The factorization is defined by choosing a flag

0 = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Ar(R)

of totally isotropic subspaces of V , all assumed to be defined over O. Then
GL(mi(R)) is identified with the group scheme GL(Ai/Ai−1). over Spec(O).
In particular, there is a surjective homomorphism

(50) ℓR : LR → Gℓ,R

whose kernel is isomorphic to the unitary similitude group G(VR), where VR is the
quotient of V/Ar(R) by the null space of the induced hermitian form.

There is a Shimura datum (Gh,R, X(R)) attached to R, of the same kind as the
pair (G,X) with which we began. As noted in the Appendix, this is not quite the
boundary Shimura datum that corresponds to R in the theory of [55] or [32, 34]. In
those references the group Gh,R contains an additional split torus, here relegated
to Gℓ,R, that is needed in order to define the correct mixed Hodge structure on
the boundary cohomology. For the purposes of this paper this precision will not
be necessary. The absence of this extra factor is compensated by the Tate twists
in (67). (Pink’s theory of mixed Shimura data (G,X) allows for the possibility
that X is a union of a finite set of copies of hermitian symmetric domains in a
flag variety attached to G. Taking this into account requires adjustments that are
discussed in [34, §1.1.7], and that will be irrelevant for our purposes.) We note for
future reference that

(51) (Gh,R, X(R)) = (Gh,P (R), X(P (R))),

where, as usual, P (R) is the maximal parabolic subgroup to which R is subordi-
nate, as in §A.1.

Let Kh,R ⊂ Gh,R(R) be the stabilizer of a point hR ∈ X(R) – we may as
well assume hR to be a CM point, though this makes no difference – and let Kℓ,R

be a maximal connected subgroup of Gℓ,R(R) that is compact modulo the center.
Define KR,∞ = Kh,R ×Kℓ,R. For any compact open subgroup KR ⊂ LR(Af ),
we let KR

Y (R) denote the locally symmetric space LR(Q)\LR(A)/KR,∞×KR.
We always assume KR to be neat, so that KR

Y (R) is smooth and its Borel-Serre
compactification is a smooth manifold with corners.
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We always assume KR to have the property that Kf
h,R := KR ∩ Gh,R(Af )

contains a hyperspecial maximal compact subgroup of Gh,R(Qp). Let KR
Yℓ(R)

denote the locally symmetric space

Gℓ,R(Q)\Gℓ,R(A)/Kℓ,R × ℓR(K
f
R),

with ℓR as in (90). We let SKR
(Gh,R, X(R)) denote the smooth integral model

over O of the Shimura variety for (Gh,R, X(R)) of level Kf
h,R.

The locally symmetric space KR
Yℓ(R) has a family of local coefficient systems

attached to finite-dimensional (algebraic) representations of Gℓ,R, with coefficients
in any O-algebra. Letting rW : Gℓ,R → Aut(W) be such a representation, taken
with coefficients in the O-algebra A, we denote by W̃ the corresponding local
system with coefficients in A:

W̃ = Gℓ,R(Q)\Gℓ,R(A)×W(A)/Kℓ,R ×Kℓ(R).

Fix KR unramified at p and let t ∈ Gℓ,R(Af ). Let S = S(KR) temporarily
denote the set of ramified places for KR. If t = (tw) with tw ∈ Gw, set KR,w(t) =
KR,w ∩ tKR,wt

−1, and consider

KR(t) :=
∏
w

KR,w(t).

Since W̃ is algebraic, it is defined over a finite extension E(W̃), and under our
assumption admits a model over any O-algebra A. For an open subgroup K ′

R ⊆
KR, we have a natural finite covering map

πR
KR,K′

R
: K′

R
Yℓ(R)→ KR

Yℓ(R).

Let RΓ(KR
Yℓ(R), W̃) be a complex in Db(O) computing H∗(KR

Yℓ(R), W̃). The
map πR

KR,K′
R

induces canonical pullback and direct image functors in Db(O),
while the isomorphism ∗t−1 induces quasiisomorphism in Db(O) via pullback.
Denote by TS,K(R),W(t) ∈ End(RΓ(KR

Yℓ(R), W̃KR
)) the element given by the

composition

(52) RΓ(KR
Yℓ(R), W̃KR

)
π∗
KR,KR(t)−→ RΓ(KR(t)Yℓ(R), W̃KR(t))

πt−1KRt,KR(t),∗−→ RΓ(t−1KRtYℓ(R), W̃t−1KRt)
∗t−1

−→ RΓ(KR
Yℓ(R), W̃KR

).

Denote by TS,K(R),W the algebra End(RΓ(KR
Yℓ(R), W̃KR

)) spanned by the
above operators with t ∈ Gq with w ̸∈ S(K) ∪ {p} and with the further stipu-
lation that all w|q in F+ split in F/F+. Recall that Gℓ,R =

∏r(R)
i=1 GL(mi(R))F

with
∑

imi(R) = m(R). The action of the classical Hecke operator Ti,j,v for i =
1, . . . , r(R), j = 1, . . . ,mi(R) at unramified place v is recovered by TS,K(R),W(ti,j,v)
with

ti,j,v = diag(ϖv, . . . , ϖv︸ ︷︷ ︸
j times

, 1, . . . , 1)×
∏
k ̸=i

Idmk(R) ∈ Gℓ,R,v,
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where ϖv is the uniformizer and Idk is the identity k × k matrix. The following is
a consequence of the main theorem of [57].

Theorem 53. Let κ be an algebraically closed field and let ν : TS,K(R),W → κ be
a continuous homomorphism. Then there are semisimple representations

ρi,ν : ΓF → GL(mi(R), κ), i = 1, . . . , r(R)

that are characterized, up to equivalence, by the following property: If v is a prime
of F not in S ∪ {p}, then ρi,ν is unramified at v. Let Γv ⊂ ΓF be a decompo-
sition group at v; then the semisimplification of the restriction ρi,ν,v of ρi,ν to Γv

corresponds to the restriction to ν to the image of the Hecke operators at v by the
unramified Langlands correspondence, in the following sense: there is an equality
of polynomials in κ[X]

(54) det(1− ρν(Frobv)X) = 1 +

mi(R)∑
j=1

(−1)iν(q
(mi(R)+1)j

2 Ti,j,v)X
j

where the Ti,j,v are the standard Hecke operators at v for GL(mi), normalized as
in [57].

7.1. Eisenstein classes. The boundary cohomology

lim−→
K

H∗(RΓ∂(SK(G,X),FK))

is expressed in [34] by means of a spectral sequence – the nerve spectral sequence
– whose E1 terms correspond to contributions of the boundary strata corresponding
to various standard rational parabolic subgroups. The result in [34] is as follows:

Proposition 55. [34, Corollary 3.2.9] There is a spectral sequence abutting to the
boundary cohomology in characteristic zero of the automorphic vector bundle F:

(56) Er,s
1 ⇒ lim−→

K

Hr+s(RΓ∂(SK(G,X),FK)).

The E1 term has a natural decomposition Er,s
1 =

⊕
r(R)=r+1E

r,s
1 (R), where R

runs over standard rational parabolic subgroups of G, and

Er,s
1 (R) = Ind

G(Af )

R(Af )

⊕
i

⊕
w∈WR

Er,s
1 (R)i,w,

where
Er,s

1 (R)i,w = H̃s−i−ℓ(w)([Fλ(h,w)])⊗H i(Yℓ(R), F̃λ(ℓ,w)).

(The operation IR that appears in [34] is the identity, because the groups ∆0,R

and ∆1,R are trivial in this case, for the reasons explained in A.2.)

Here Yℓ(R) = lim←−K(R) K(R)Yℓ(R) is the adelic locally symmetric space at-

tached to the group Gℓ,R, and H̃•([Fλ(h,w)]) denotes coherent cohomology of the
Shimura variety attached to (Gh,R, X(R)) with coefficients in an automorphic vec-
tor bundle [Fλ(h,w)].
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Unfortunately, this spectral sequence is not adequate to study the cohomology
with Zp coefficients at fixed level K. First of all, the decomposition over Weyl
group elements WR is based on Kostant’s formula for Lie algebra cohomology,
which in general fails in mixed characteristic. Moreover, torsion classes at level K
cannot in general be identified with the K-invariants in the G(Af )-representations
lim−→K

H∗(S,Fcan
K ). So we have to replace Proposition 55 with a calculation of the

boundary cohomology at level K, and we have to find a less precise expression for
the individual terms Er,s

1 (R) that does not depend on Kostant’s formula. This is
not more difficult but it does require additional notation. Our approach is roughly
analogous to the study of boundary cohomology in [52, §§3,4], with the additional
complication that we are working with coherent rather than topological cohomol-
ogy, and thus the Levi factor of each parabolic R breaks up into hermitian and
linear parts that behave differently.

Denote by
iR : ∂RSK,Σ→ SK,Σ

the closed immersion of the R-stratum. Then we have the nerve spectral sequence

(57) Er,s
1 =

⊕
r(R)=r+1

Hs(∂RSK,Σ, i
∗
R(Fcan

K ))⇒ lim−→
K

Hr+s(RΓ∂(SK,Σ,FK))

Each term in (57) is a module over the Hecke algebra TS,K , and the differentials
in the spectral sequence are all morphisms of TS,K-modules. We can also let the
open compact subgroup Kp ⊂ G(Ap

f ) shrink to the identity, letting K = Kp×Kp

with Kp fixed hyperspecial maximal compact, and take the limit over the sequences
(57), while letting Σ vary with K as necessary. Define

RΓ∂
∞(FK) = lim−→

Kp

RΓ∂(SK,Σ,FK)

and the R-component as

RΓR
∞(FK) = lim−→

Kp,Σ

RΓ(∂RSK,Σ, i
∗
R(Fcan

K ))

We then obtain a spectral sequence of O[G(Ap
f )]-modules at the limit:

(58) Er,s
1 =

⊕
r(R)=r+1

Hs(RΓR
∞(FK))⇒ Hr+s(RΓ∂

∞(FK)).

For any finite set T ⊃ S we let TT,K denote the subalgebra of TS,K generated
by the Hecke operators at primes outside T . We let G(AT

f ) ⊂ G(Ap
f ) denote the

subgroup of elements with trivial entries at primes in T , and let K(T ) = K ∩
G(AT

f ). The proof of part (iii) of Theorem 25 then comes down to verifying the
following three claims:

Claim 59. Let S′ be a finite set of primes containing S and let ν : TS′,K → k be a
character realized on a subquotient of Hs(RΓ∂

∞(FK))⊗O k for some s ≥ 0. Then
there is a proper standard rational parabolic subgroup R ⊂ G, a finite T ⊃ S′, an
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s′ ≤ s, and a character ν ′ : TT,K → k that coincides with the restriction of ν and
is realized on a subquotient of the space of K(T )-invariants of

lim−→
Kp,Σ

Hs′(∂RSK,Σ, i
∗
R(Fcan

K ))⊗O k.

In what follows T ′ ⊃ S is a finite set as in Claim 59. Assume K(R, T ′) =

K(T ′)∩LR(A
T ′
f ) is hyperspecial maximal compact at all primes not in T ′. We let

T (R)T ′,K denote the product of the unramified Hecke algebras of LR(Qv) relative
to K(R, T ′) for v not in T ′ and split in F/F+, and let

(60) sR : TT ′,K → T (R)T ′,K

be the (unnormalized) partial Satake transform [52, §2.2.6]. Here “unnormalized”
means the result of integration along the unipotent radical of R, but without multi-
plication by the modulus factor δ−1/2

R .

Claim 61. Let ν ′ be a character of TT,K as in Claim 59. Then there is an automor-
phic vector bundle FR on SKR

(Gh,R, X(R)), a finite-dimensional representation
W of Gℓ,R with coefficients in a finite extension k′/k, a finite set T ′ ⊃ T as above
such that K(T ′) ∩ LR(A

T ′
f ) is hyperspecial maximal at all primes not in T ′, and

a character ν ′R : T (R)T ′,K → k′ such that
(a) ν ′R is realized on a subquotient of

H i(SKR
(Gh,R, X(R))ΣR

,FR,can)k ⊗Hj(K(R)Yℓ(R), W̃)

for some i, j ≥ 0;
(b) ν ′R ◦ sR coincides with the restriction of ν ′ to TT ′,K .

Claim 62. Notation is as in Claim 61. Let ν ′ be a character of TT,K with values
in a finite extension k′ of k. Suppose R, T ′, and ν ′R are as in Claim 61. Then the
residual Galois representation r̄ν′ attached to ν ′ by Theorem 25 (i) is reducible.

7.1.1. Proof of Claim 62. The proofs of Claims 59 and 61 are postponed until
the next section. Assuming both of these Claims, 62 can now be proved right
away. The bulk of the work is already contained in §4 of [52]. We introduce
some additional notation. By Claim 59 we may assume K(R, T ′) factors as a
product Kh,R,T ′ × Kℓ,R,T ′ with Kh,R,T ′ = K(R, T ′) ∩ Gh,R(A

T ′
f ), Kℓ,R,T ′ =

K(R, T ′) ∩Gℓ,R(A
T ′
f ). Let

T (R)h,T ′,K (resp. T (R)ℓ,T ′,K)

denote the product of the unramified Hecke algebras of Gh,R(Qv) (resp. Gℓ,R(Qv))
relative to Kh,R,T ′ (resp. Kℓ,R,T ′) for v not in T ′ and split in F/F+. The product
map Gh,R ×Gℓ,R

∼−→LR defines a canonical isomorphism

(63) φR : T (R)T ′,K
∼−→T (R)h,T ′,K ⊗ T (R)ℓ,T ′,K .

Let T i
h,K(R),T ′,FR,k

(resp. T j
ℓ,K(R),T ′,W ) denote the image of the natural map

T (R)h,T ′,K → End(H i(SKR
(Gh,R, X(R))ΣR

,FR,can)k)
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(resp.
T (R)ℓ,T ′,K → End(Hj(K(R)Yℓ(R), W̃)).

Then (possibly replacing k′ by a finite extension) there are characters

ν ′h : T i
h,K(R),T ′,FR → k′; ν ′ℓ→ k′ : T j

ℓ,K(R),T ′,W

such that

(64) ν ′ = ν ′h ⊗ ν ′ℓ ◦ (φR ⊗ k′).

Now it follows from Theorem 25 (i), applied to ν ′h, that there exists an nh :=
n − 2m(R)-dimensional representation r̄(ν ′h) of ΓF such that, for all v split in
F/F+ and outside T ′,

(65) det(1− r̄(ν ′h)(Frobv)X) = 1 +

nh∑
j=1

(−1)jν(q
(nh+1)j

2 Tj,v)X
j

Similarly, with notation as in Theorem 53, there are mi(R)-dimensional represen-
tations r̄i(ν

′
ℓ) of ΓF with coefficients in k′, i = 1, . . . , r(R), such that, for all v

split in F/F+ and outside T ′,

(66) det(1− r̄i(ν
′
ℓ)(Frobv)X) = 1 +

mi∑
j=1

(−1)jν(q
(mi+1)j

2 Ti,j,v)X
j .

Let r̄di (ν
′
ℓ) = r̄i(ν

′
ℓ)

∨(1−mi(R)) (Tate twist). It then follows from identity (b)
of Claim 61, as in the discussion following [52, Lemma 4.6], that there are integers
µ0 and µ±

1 , µ
±
2 , . . . , µ

±
r(R) such that ν ′R and

r̄(ν ′h)(µ0)⊕
r(R)∑
i=1

r̄i(ν
′
R)(µ

+
i )⊕ r̄di (ν

′
R)(µ

−
i ),

(where (µ±
i ) denote Tate twist) have the same Frobenius eigenvalues outside of T ′.

More precisely, these are given by µ0 = nh − n = −2m(R) and

(67) µ+
i = −mi(R)− 2

∑
j>i

mj(R), µ−
i = 2

∑
j>i

mj(R)

for i = 1, . . . , r(R). By Chebotarev density, this completes the proof.

7.1.2. Eisenstein characters. Let k be an algebraically closed field (of any char-
acteristic). Let R ⊂ G be a rational parabolic subgroup. Let S be a finite set of
primes of F+, and let T S

R be the restricted tensor product of the local Hecke alge-
bras of LR, with coefficients in k, at all primes of F+ outside S that split in F ; let
T S = T S

G . Here by restricted we mean that the local component is the identity at
all but finitely many places. Choose a maximal split torus Tv ⊂ LR for each prime
v of F+ that splits in F , and let TTv denote its Hecke algebra over k. The Satake
homomorphism is an injective map

(68) sG : T S → ⊗′
v/∈S TTv
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(again, v runs only over primes that split in F ). Similarly, we have a Satake homo-
morphism for LR

(69) sR : T S
R → ⊗′

v/∈S TTv

Corresponding to the factorization LR
∼−→Gh,R×Gℓ,R, we write T S

R = T S
h,R⊗

T S
ℓ,R. The character β : T S

R → k is called cohomological if it is the tensor prod-
uct of characters βh of T S

h,R and βℓ of T S
ℓ,R, where βh occurs as a subquotient of

the coherent cohomology of a (smooth projective) toroidal compactification of the
integral model SKR

(Gh,R, X(R)) with coefficients in some canonically extended
automorphic vector bundle, for some level subgroup KR that is hyperspecial max-
imal compact at split primes not in S , and where βℓ occurs as a subquotient of the
cohomology (with some coefficients) of the locally symmetric space attached to
Gℓ,R, with full level at split primes not in S .

Definition 70. Let ν : T S → k be a character of T S . We say ν is Eisenstein if,
viewing it via (68) as a character of sG(T S) ⊂ ⊗′

v/∈STTv , it extends to a character
β′ : sR(T S

R )→ k so that β = β′ ◦ sR is cohomological in the sense just defined.

Let Kf ⊂ G(Af ) be a (neat) level subgroup, and let KR ⊂ Kf ∩ LR(Af ) be a
compact open subgroup.

7.2. Proof of Claim 59. Let K ′ ⊂ K ⊂ G(Af ), with K ′
p = Kp our fixed hyper-

special maximal compact and K ′ normal in K. Then for any fixed toroidal datum
Σ, we have a finite morphism

SK′,Σ→ SK,Σ

of normal schemes. We assume SK,Σ to be smooth and projective for convenience.
The proof of [25, Lemma 2.6] applies in the mixed characteristic situation and
implies that

Lemma 71. The above map defines a canonical isomorphism

SK′,Σ/(K/K ′)
∼−→SK,Σ.

In particular, for any automorphic vector bundle F• there are canonical isomor-
phisms (Hochschild-Serre spectral sequence) in the derived category ofO-modules

RHomK/K′(O, RΓ(SK′,Σ,Fcan
K′ ))

∼−→RΓ(SK,Σ,Fcan
K );

RHomK/K′(O, RΓ(SK′,Σ,F sub
K′ ))

∼−→RΓ(SK,Σ,F sub
K );

RHomK/K′(O, RΓ∂(SK′,Σ,Fcan
K′ ))

∼−→RΓ∂(SK,Σ,Fcan
K ).

Proof. The first claim, as noted, follows as in the proof of [25, Lemma 2.6]. The
first two spectral sequences then follow from Proposition 18 (iii), and the third
from the definition of RΓ∂ . □
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7.2.1. Proof of Claim 59. Passing to the limit over K ′ (containing Kp), the last
isomorphism yields a Hochschild-Serre spectral sequence of O-modules:

(72) Ea,b
2 = Ha(Kp, Hb(RΓ∂

∞(FK)))⇒ Ha+b(RΓ∂(SK,Σ,Fcan
K )).

For T as in the statement of Claim 59, let Kp
T denote the subgroup of elements

of Kp whose entries at each prime v in T belongs to the principal congruence
subgroup K(v) ⊂ Kv of elements congruent to the identity modulo v, KT =
Kp

T ×Kp. Since K(v) has pro-order prime to p, we can rewrite

(73) Ha(Kp, Hb(RΓ∂
∞(FK))) = lim−→

T⊃S′
Ha(Kp/Kp

T , H
b(RΓ∂

∞(FK))KT )

(compare [52, Lemma 4.2]). For each T , the Hecke algebra TT,KT
acts on the KT -

invariants on the left-hand side compatibly with the action on H•(RΓ∂
∞(FK))KT

on the right hand side. Claim 59 now follows by combining (73) with (58).

8. AUTOMORPHIC VECTOR BUNDLES ON THE TOROIDAL BOUNDARY

The calculation of the boundary coherent cohomology in [32, 34] uses a com-
bination of algebraic, analytic, and representation-theoretic arguments that do not
apply to the integral models studied in this paper. In fact, some of the arguments
probably fail in small characteristic. For example, if f : A→ S is the canonical
morphism of a universal abelian scheme A (with some level structure) to a Shimura
variety S of PEL type, the computation in [32] of the higher direct images Rif∗ of
an automorphic vector bundle on A as automorphic vector bundles on S is based
on Kostant’s theorem on Lie algebra cohomology of unipotent radicals of parabolic
subalgebras of a reductive Lie algebra, and this just breaks down in general.

Fortunately, most of what we need has been worked out by Kai-Wen Lan for
the toroidal compactifications of [44]. As in [32, 34], the calculation is carried
out for individual closed strata of the boundary, which gives coherent cohomology
of the boundary strata attached to a Shimura datum (Gh,R, X(R)) in the minimal
compactification; these are then put together according to the configuration of the
strata, which introduces the topological cohomology of the factor Gℓ,R. The first
important observation is that canonical extensions of automorphic vector bundles
behave well under restriction to boundary strata: this corresponds to the discussion
around Corollary 3.4.3 of [32] and the first part of Proposition 5.6 of [47].

8.1. The algebraic part. To begin, we write SK,Σ for the integral model of the
toroidal compactification, previously denoted SK(G,X)Σ. We always choose Σ as
in Theorem 13, so that the compactification is proper and smooth and the boundary
divisor is a divisor with smooth normal crossings. Fix a rational boundary compo-
nent F as in §1.3 – we may assume it corresponds to (a component of) a Shimura
datum (Gh,R, X(R)) with R = PF , its stabilizer; in other words F ⊂ X(R) – let
σ ∈ ΣF be a cone and let

iσ : Zσ ↪→ SK,Σ

denote the inclusion of the corresponding locally closed stratum of the toroidal
boundary, Z̄σ its closure in SK(G,X)Σ. Then we have a diagram as in [32, (1.2.5)],
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[47, (4.4),(4.5)] of smooth schemes over Spec(O):

(74) Zσ
π2→ AF

π1→MF ⊂ SK′(Gh,R, X(R))

for some appropriate level subgroup K ′ ⊂ Gh,R(Af ), where π2 is a torus fibration
and π1 is an abelian scheme over a connected component MF of SK′(Gh,R, X(R)).

Now let Fcan
K be a canonically extended automorphic vector bundle over SK,Σ.

Proposition 75. [47, Proposition 5.6] (i) There is a canonically determined locally
free coherent sheaf FA

K over AF and a canonical isomorphism

i∗σ(Fcan
K )

∼−→π∗
2(FA

K)

compatible with the action of G(Ap
f ) (see below for explanation).

(ii) The vector bundle FA
K is endowed with an increasing PF (A

p
f )-invariant

filtration by vector bundles

· · · ⊂ FA,j
K ⊂ FA,j+1

K ⊂ . . .

such that each associated graded piece grj(FA,j
K ) is isomorphic to the pullback via

π1 of an automorphic vector bundle on SK′(Gh,R, X(R)):

grj(FA,j
K )

∼−→π∗
1(F

j
K′,R).

Remark 76. (i) The group G(Ap
f ) acts on the set of toroidal compactifications

SK,Σ by acting on the group K as well as the toroidal datum Σ. The subgroup
PF (A

p
f ) ⊂ G(Ap

f ) fixes the set of toroidal boundary components, as K and Σ
vary, over the rational boundary component F , and the isomorphisms are compat-
ible with diagrams (74) and thus with the morphisms π1, π2 (which can be labelled
with σ). Detail are left to the reader, but see the discussion on pp. 310-11 of [32]
and p. 89 of [34].

(ii) Part (ii) of Proposition 75 corresponds to the discussion on pp. 325-6 of
[32]. In [47] it is not stated explicitly that the graded pieces correspond to au-
tomorphic vector bundles on the base MF , but the proof makes it clear that the
“coherent sheaves over Z” of the statement of Lan’s Proposition 5.6 are indeed
the automorphic vector bundles as constructed by Lan in [45].

The PF (A
p
f )-invariance of the filtration follows from the fact that the construc-

tion of automorphic vector bundles in [45, Definition 6.7] is a functor from locally
freeO-representations of PF to PF (A

p
f )-equivariant vector bundles over AF . The

PF (A
p
f )-action is not mentioned explicitly in [45] but the construction is exactly

analogous to that in [46, Proposition 8.1.4.1].

Proposition 77. After replacing Σ by a refinement if necessary, the morphism π2
of (74) extends to a morphism

π̄2 = π̄2,σ : Z̄σ → AF,Σ′

where AF,Σ′ is an appropriate (smooth projective) toroidal compactification of AF .
Moreover, letting īσ : Z̄σ ↪→ SK,Σ denote the inclusion of the closed boundary
stratum, the isomorphism of Proposition 75 extends to a canonical isomorphism

ī∗σ(Fcan
K )

∼−→π̄∗
2(F

A,can
K ).
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Proof. The first part is implicit in [46]; a complete proof will appear in future work
of Lan. To prove the second part, note that ī∗σ(Fcan

K ) and π̄∗
2(F

A,can
K ) are both vec-

tor bundles on the regular scheme Z̄σ that are known to be canonically isomorphic
away from a subscheme of codimension 2 by Proposition 75 and by Proposition
3.12.2 of [32], together with the results of [43]. Thus there is a canonical isomor-
phism over Z̄σ. □

Proposition 78. [45] Let AF ↪→ AF,Σ′ be the smooth projective toroidal compact-
ification of AF of Proposition 77. After possibly replacing Σ′ by a refinement, say
Σ′′, the map π1 of (74) extends to a morphism

π̄1 : AF,Σ′′ → M̄F ⊂ SK′(Gh,R, X(R))ΣF

where SK′(Gh,R, X(R))ΣF
is a smooth projective toroidal compactification of

SK′(Gh,R, X(R)) and M̄F is the Zariski closure of MF .

Proof. The main reference for this fact is Theorem 2.15 of [45]. Since the notation
AF,Σ′ is not quite justified there, Lan advises us to add a reference to Section
1.3.4 of [46]. Although the title of [46, §1.3] is “Algebraic compactifications in
characteristic zero,” the constructions in the relevant section are valid in mixed
characteristic. □

We use the same notation FA,can
K to denote the canonical extension of FA

K on
AF,Σ′′ .

Proposition 79. [45] (i) The filtration {FA,j
K } of FA

K of Proposition 75 (ii) extends
to a filtration {FA,j

K,Σ′} of FA,can
K by vector bundles such that each grj(FA,can

K ) is

the pullback via π̄1 of the canonical extension of F j
K′,R.

(ii) The higher direct images Rkπ̄1gr
j(FA,can

K ), k ≥ 0, are canonical extensions
of the automorphic vector bundles Rkπ1gr

j(FA
K) on MF .

Proof. (i) We thank Lan for the following argument. The point is that the con-
struction in §3.B of [45] defines the canonical extensions algebraically in terms
of the relative differentials on semiabelian schemes over MF . More precisely, the
semi-abelian scheme over the toroidal compactification AF,Σ′ , denoted G̃ in loc.
cit., admits a split subtorus T and hence a quotient semi-abelian scheme Ḡ. It is
explained in loc. cit. that this Ḡ is the pullback via π̄1 from a semi-abelian scheme
(denoted G in loc. cit. over M̄F . In particular, since Lan shows that the canonical
extension of a given automorphic vector bundle on AF,Σ′ arises as a subquotient of
some tensor power of the relative Lie algebra of G̃, it admits an extension structure
coming from the short exact sequence

1→ T → G̃→ Ḡ→ 1

of group schemes over AF,Σ′ . This structure induces filtrations on all the canonical
extensions in such as way as to guarantee that the graded pieces are defined by the
relative Lie algebras of T and Ḡ; but each of these is a pullback from the toroidal
compactification M̄F .
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(ii) We first observe that each Rkπ̄1gr
j(FA,can

K ) is a locally free sheaf on M̄F .
Indeed, by (i), each grj(FA,can

K ) is a pullback via π̄1, so by the projection formula
the claim reduces to the corresponding assertion for the structure sheaf of AF,Σ′′ ,
where it follows from [45, Theorem 2.15]. The same result of Lan implies that our
statement is true outside a divisor on the special fiber, and we know by the results
of [32] that the statement is true on the generic fiber, and is true outside a divisor
on the special fiber by results of Lan. Thus, as in the proof of Proposition 77, it is
true globally, since M̄F is a regular scheme. □

8.2. The topological part. In order to derive Claim 61 from Claim 59 we need
to understand Hs′(∂RSK,Σ, i

∗
R(Fcan

K )) ⊗O k as Kp and Σ vary. We need to fix Σ
(and therefore Kp) in order to state the next Proposition.

Proposition 80. (i) For each b ⩾ 0, the assignment

σ 7−→ Hb
(
Z̄σ, i

∗
σ(FK)can

)
defines a locally constant sheaf Lb(·,FK) of O-modules on the simplicial
complex NΣ(R), and an associated spectral sequence

Ea,b
1 = Ha

(
NΣ(R),Lb(·,FK)

)
=⇒ Ha+b

(
∂RSK,Σ, i

∗
R(FK)can

)
.

(ii) Similarly, for each b ⩾ 0, the assignment

σ 7−→ Hb
(
Z̄σ, π̄

∗
2,σ(F

A,j
K,Σ′)

)
defines a Hecke-equivariant locally constant sheaf Lb(·,F j

K′) ofO-modules,
written σ 7→ Lb(·,F j

K′)(σ) with K ′ as in Propositions 75,78, on the sim-
plicial complex NΣ(R). There is a Hecke-equivariant spectral sequence
derived from the filtration in Proposition 79

Ea′,j
1 = Ha′(NΣ(R),Lb(·,F j

K′))⇒ Ha′+b+j
(
NΣ(R),Lb(·,FK)

)
.

(iii) For each σ there is a canonical Leray spectral sequence

Es,t
2 = Hs(MF , R

tπ̄1,∗OAF,Σ′′ ⊗F
j
K′)⇒ Ls+t(·,F j

K′)(σ)

(iv) Suppose σ is a face of σ′, and let

iσ,σ′ : Z̄σ′ ↪→ Z̄σ

denote the corresponding closed immersion. Then for each j the pullback
map

i∗σ,σ′ : π̄∗
2,σ′(FA,j

K,Σ′)→ π̄∗
2,σ(F

A,j
K,Σ′)

determines isomorphisms on cohomology

Lb(·,F j
K′))(σ)→ Lb(·,F j

K′))(σ
′)

that are the face maps for the local system on NΣ(R).
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Proof. Part (i) is proved as in [32, 34]. We compute the cohomology by the spectral
sequence for the closed cover of ZΣ(R) by the maximal strata Z̄σ as σ runs over the
simplices in NΣ(R). Proposition 77 allows us to apply the proof of [34, Proposition
3.1.1 (i)]. Part (ii) is a consequence Proposition 79. Part (iii) follows from the
projection formula, in view of the isomorphism

(81) Hb
(
Z̄σ, i

∗
σ(FK)can

) ∼−→Hb(AF,Σ′′ ,FA,can
K ),

which is proved as [34, Proposition 3.4.1] in light of the results of this section and

Hb(AF,Σ′′ , grjFA,can
K )

∼−→Hb(AF,Σ′′ , π̄∗
1(F

j,can
K′,R )).

Part (iv) is just a restatement of the fact that the functor σ 7→ Lb(·,F j
K′))(σ)

defines a locally constant sheaf on NΣ(R). □

Combining the three parts of Proposition 80 we find:

Corollary 82. Let ν ′ be a character of TT,K as in Claim 59. In order to prove
Claim 61, it suffices to prove it if ν ′ is realized in the action of TT,K (after possibly
increasing T ) on Ha(NΣ(R), T orOc (L

b(·, π̄∗
1JK′), k)) for an automorphic vector

bundle JK′ on MF and for c = 0, 1, where the cohomology of π̄∗
1JK′ is computed

via (81).

8.2.1. The homotopy type of NΣ(R).

Proposition 83. The nerve NΣ(R) of the R-stratum ∂RSK,Σ is homotopy equiva-
lent to the Gℓ,R-stratum of the Borel-Serre compactification of the locally symmet-
ric space K(R)Yℓ(P (R)).

Proof. This is [33, Proposition 2.6.4]. □

8.2.2. Local systems on adelic and connected locally symmetric spaces. We let H
be a connected reductive algebraic group over Q with center Z, let KH ⊂ H(R)
be a maximal connected subgroup that is compact modulo Z(R), and let Y =
H(R)/KH be the corresponding (possibly disconnected) symmetric space. Let
Kf ⊂ H(Af ) be a compact open subgroup and let

S(Y,Kf ) = H(Q)\Y ×H(Af )/Kf

denote the adelic symmetric space. Write H(Af ) =
∐

j H(Q)αjKf and let Γj =

H(Q) ∩ αjKfα
−1
j , S(Γj) = Γj\Y . Then we can rewrite

(84) S(Y,Kf ) =
∐
j

S(Γj).

Now let M be a finite abelian group, and let λ : Kf → Aut(M) be a homomor-
phism. Consider the local system over S(Y,Kf )

M(Kf ) = H(Q)\Y ×H(Af )×M/Kf

where Kf (resp. H(Q)) acts diagonally on the last two (resp. first two) factors in
the product Y ×H(Af )×M .
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Proposition 85. Under these hypothesis, the restriction M(Kf )j of the local sys-
tem M(Kf ) to the subspace S(Γj) ⊂ S(Y,Kf ) can be written as

Γj\Y ×M,

where Γj acts via q · (y,m) = (qy, λ(α−1
j q−1αj) ·m).

Proof. For αj as above, consider

[y,m] 7→ [y, αj ,m] : Γj\Y ×M → H(Q)\Y ×H(Af )×M/Kf

To assert injectivity note that [y, αj ,m] = [y′, αj ,m
′], then y = qy′, αj = qαjk

and λ(k)m′ = m for some q ∈ H(Q) and k ∈ Kf . From the second equality we
obtain that q ∈ Γj and k = α−1

j q−1αj , so that [y,m] = [y′,m′].

To show that M(Kf ) is the disjoint union of the local systems M(Kf )j , pick
(y, h,m) ∈ Y ×H(Af )×M . Then h = qαjk for some q ∈ H(Q) and k ∈ Kf .
Then [y, h,m] = [q−1y, αj , λ(k)

−1m], which is in the image of M(Kf )j . Lastly,
if [y, αj ,m] = [y′, αi,m

′], then y = qy′, αj = qαik, and m = λ(k)m′. The
second equation implies i = j. □

Let H = Gred
ℓ,R, Yℓ,R be the corresponding symmetric space, and {αj} as above.

Let λ : H →M be an irreducible algebraic representation defined over Spec(Zp).
Fix an H(Zp)-invariant lattice Λ ⊂ M(Qp) and let M = Λ/pΛ. The H(Zp)-
module M may depend on the lattice but by the Brauer-Nesbitt theorem its semisim-
plification does not. Applying Proposition 85 to this situation, we find

Corollary 86. Let M̃ be the local system

M̃ = H(Q)\Yℓ,R ×H(Af )×M(Qp)/Kf .

Then there is a local system of free Zp-modules Λ̃ ⊂ M̃ with the property that, for
each component S(Γj) as above, the restriction of Λ̃/pΛ̃ to S(Γj) is isomorphic to

Γj\(Y × Λ̃/pΛ̃),

with the twisted Γj-action via q · (y, m̃) = (qy, λ(α−1
j q−1αj) · m̃).

Consider a compact open K ⊆ G(Af ) satisfying the properties listed in Appen-
dix A.2. For a standard rational parabolic R with Levi decomposition R = LR ·UR,
let ΓR := R(Af ) ∩K, and Γℓ,R := lR(ΓR) with lR as in (90). Set Γred

ℓ,R to be the
restriction of Γℓ,R to Gred

ℓ,R. Denote by Жℓ,R (resp. Жred
ℓ,R) the set of all Γℓ,R (resp.

Γred
ℓ,R) as we let K vary over the neat compacts with the listed properties.

8.2.3. The local system on X(Γred
ℓ,R). For any congruence subgroup Γred

ℓ,R ∈Жred
ℓ,R

the image of Γred
ℓ,R under the natural map to Gred

ℓ,R(Qp) is contained in Gred
ℓ,R(Zp).

Lemma 87. The action of Γred
ℓ,R on TorOc (L

b(·, π̄∗
1JK′), k) factors through the pro-

jection on Gred
ℓ,R(Fp).
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Proof. Since the tensor category of automorphic vector bundles on MF is gener-
ated by the relative cotangent bundle of AF over MF , this follows directly from
the description of the latter in [46, (1.3.2.8)], given that the action of Γred

ℓ,R is linear
on the factor denoted X in that formula. Although the reference in [46] is asserted
for the compactification in characteristic zero, the statements remain true in mixed
characteristic as long as we are in a situation of good reduction, which is the case
throughout this paper. □

Corollary 88. Every irreducible constituent of the local system

TorOc (L
b(·, π̄∗

1JK′), k)

is a subquotient of the local system attached to an algebraic representation of Gred
ℓ,R.

Proof. This follows from Lemma 87 and Steinberg’s theorem [60] that every ir-
reducible representation of Gred

ℓ,R(Fp) is a subquotient of the restriction to the Fp

points of an algebraic representation. □

8.3. Proof of Claim 61. Let ν ′ : TT,K → k be a character as in Claim 59. It
follows from Corollary 88 that there is an irreducible algebraic representation rW :
Gℓ,R(Fp)→ Aut(W) over Fp, as in the discussion preceding Theorem 53,1 such
that ν ′ is realized in an rW -isotypic subquotient of

Ha(NΣ(R), T orOc (L
b(·, π̄∗

1JK′), k))

for an automorphic vector bundle JK′ on SKR
(Gh,R, X(R)) and for some a, b, c.

Part (a) of Claim 61 then follows by filtering JK′ by irreducible subquotients, one
of which will be the FR of the statement of Claim 61. Part (b) is then standard.
More precisely, it comes down to the following observation. Let ℓ ̸= p be an
unramified prime for K and α be an irreducible spherical representation of LR(Qℓ)
with coefficients in k; let vR ∈ α be a non-zero spherical vector. Let I(α) denote
the unnormalized induction of the pullback of α to R(Qℓ) to G(Qℓ), and let v ∈
I(α) be a (non-zero) spherical vector. Let T (G,Kℓ) and Tℓ(LR,KR,ℓ) denote
the local spherical Hecke algebras of G(Qℓ) and LR(Qℓ), respectively, relative
to the indicated hyperspecial maximal compact subgroups. Then T (G,Kℓ) (resp.
Tℓ(LR,KR,ℓ)) acts on v (resp. on vR) through a character

νI(α) : T (G,Kℓ)→ k(resp. να : Tℓ(LR,KR,ℓ)→ k

and
νI(α) = να ◦ sR,

where sR is the unnormalized partial Satake transform, as above. See [52, Propo-
sition 3.8] for the analogous case of topological cohomology, and see [23, Lemma
2.3.2] for the analogous global argument for holomorphic modular forms.

APPENDIX A. ADELIC BOUNDARY COMPONENTS

A.1. Parabolic subgroups. In what follows, R denotes a standard rational proper
parabolic subgroup of G. We let r(R) denote the parabolic rank of R; thus r(R) =
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1 if and only if R is a maximal proper parabolic. Let LR denote the Levi quotient
of R. It is a connected reductive group that admits a factorization

(89) LR = Gh,R ·Gℓ,R

where Gh,R = G(VR) is the similitude group of a hermitian vector space VR over
F , of dimension n− 2m(R), for some 1 ≤ m(R) ≤ n

2 , and

Gℓ,R =

r(R)∏
i=1

GL(mi(R))F ,
∑
i

mi(R) = m(R).

The factorization is defined by choosing a flag

0 = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Ar(R)

of totally isotropic subspaces of V , all assumed to be defined over O. Then
GL(mi(R)) is identified with the group scheme GL(Ai/Ai−1). over Spec(O).
In particular, there is a surjective homomorphism

(90) ℓR : LR → Gℓ,R

whose kernel is isomorphic to the unitary similitude group G(VR), where VR is the
quotient of V/Ar(R) by the null space of the induced hermitian form.

If P is a standard rational maximal parabolic subgroup then r(P ) = 1, Gℓ,P =
RF/QGL(m(P ))F , and Gh,P is the similitude group of a hermitian vector space
of dimension n − 2m(P ). Intersection with Gℓ,P defines a bijection between the
set of standard rational parabolics R with Gh,R = Gh,P and the set of standard
rational parabolics Rℓ,P ⊂ Gℓ,P . In this way we obtain a canonical map from
the set of all standard rational proper parabolic subgroups to the set of (standard
rational) maximal parabolic subgroups: any R is contained in a unique maximal P
with Gh,R = Gh,P , and we let P (R) denote that P ; we say that R is subordinate
to P .

The (standard rational) maximal parabolic subgroups are totally ordered: P <
P ′ if and only if m(P ) > m(P ′), which is true if and only if dimGh,P <
dimGh,P ′ . Moreover, P < P ′ if and only if the standard boundary component
F of X stabilized by P , as we discuss in §1.3 below, is smaller than (in fact, is a
boundary component of) the boundary component F ′ stabilized by P ′.

A.2. Parametrization of adelic boundary components. The subgroup Gh,P is
defined differently than in [32, 33, 34]. In those references the split component
of Gℓ,P was included as a subgroup of Gh,P in order to account for the mixed
Hodge structure on the boundary cohomology; an extra factor of Gm is needed to
define the appropriate Shimura datum. The twist does not change the algebraic
structure of the Shimura variety attached to Gh,P but it does affect the weights of
the variations of Hodge structure on the local systems, and this is reflected in the
Tate twists that appear in (67).

The factorization (89) is a direct product. This implies that the groups denoted
∆1,R and ∆0,R that appear in the formula [34, (3.2.8)] are trivial. It also implies
that the combinatorial structure of the toroidal boundary bears a simple relation to
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the topology of the Borel-Serre compactifications of the locally symmetric spaces
attached to Gℓ,P , as P varies.

We begin by recalling the Borel-Serre compactifications for

Gℓ,P = RF/QGL(m(P ))F .

Good references for this are [22, §4] (though this only treats totally real fields
the method is general), [56, §1.3.9], and [52], who consider torsion coefficients,
as well as the unpublished book [21]. Fix once and for all a rational minimal
parabolic P0 ⊂ G with Levi decomposition P0 = L0 · U0. We consider open
compact subgroups K ⊂ G(Af ) with the following properties:

• K = Kp × Kp where Kp is a fixed hyperspecial maximal compact sub-
group of G(Qp).
• For any standard rational parabolic R ⊃ P0, with R = LR ·UR, LR ⊃ L0,

we have

Kp ∩R(Ap
f ) = (Kp ∩ LR(A

p
f )) · (K

p ∩ UR(A
p
f );

Let

KR = K ∩R(Af ) = Kp ∩R(Qp)×Kp ∩R(Ap
f ).

• K(LR) := K ∩ LR(Af ) = Kh(R)×Kℓ(R) where

Kh(R) = K(LR) ∩Gh,R(Af );Kℓ(R) = K(R) ∩Gℓ,R(Af ).

• K is neat.
Such Kp are cofinal in the set of all open compact subgroups of G(Ap

f ).
We define the locally symmetric space

XK(Gℓ,P ) = Gℓ,P (Q)\Gℓ,P (Af )/K∞,ℓ,P ·Kℓ(P )

for a subgroup K∞,ℓ,P containing the center ZGℓ,P
(R) of Gℓ,P (R) and maximal

compact modulo ZGℓ,P
(R). We choose maximal compact (mod center) subgroups

K∞,ℓ,R compatibly with a fixed maximal compact (mod center) subgroup K∞ ⊂
G(R).

The inclusion of XK(Gℓ,P ) in its Borel-Serre compactification

XK(Gℓ,P ) ⊂ XK(Gℓ,P )
BS

is a homotopy equivalence. The complement

∂ℓ,P,K = XK(Gℓ,P )
BS \ XK(Gℓ,P )

is the disjoint union of locally closed strata indexed by the rational standard parabol-
ics R of G subordinate to P :

∂ℓ,P,K =
∐

P (R)=P

∂R,K .

For each such R, or equivalently for each standard rational parabolic Rℓ,P ⊂ Gℓ,P ,
we have

∂R,K = Rℓ,P (Q) · URℓ,P
(Af )\Rℓ,P (R)×Gℓ,P (Af )/K∞,ℓ,R ·Kℓ(P ),
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where Rℓ,P (Q) acts diagonally on the product, URℓ,P
(Af ) and Kℓ(P ) act on the

factor Gℓ,P (Af ), and K∞,ℓ,R acts on the right on Rℓ,P (R).
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