
ZERO DISTRIBUTION OF POWER SERIES AND BINARY

CORRELATION OF COEFFICIENTS

JACQUES BENATAR, ALEXANDER BORICHEV, AND MIKHAIL SODIN

Abstract. We study the distribution of zeroes of power series with
infinite radius of convergence. The coefficients of the series have the
form ξ(n)a(n), where a is a smooth sequence of positive numbers, and
ξ is a sequence of complex-valued multipliers having binary correlations
and no gaps in the spectrum. We show that under certain assumptions
on the smoothness of the sequence a and on the binary correlations of
the multipliers ξ, the zeroes of the power series are equidistributed with
respect to a radial measure defined by the sequence a.

We apply our approach to several examples of the sequence ξ: (i)
IID sequences, (ii) sequences e(αn2) with Diophantine α, (iii) random
multiplicative sequences, (iv) the Golay–Rudin–Shapiro sequence, (v)
the indicator function of the square-free integers, (vi) the Thue–Morse
sequence.

1. Introduction and main results

In this work, we study the following problem: how does the sequence of
multipliers ξ : Z+ → C affect the zero distribution of the entire function
represented by the power series Fξ(z) =

∑
n≥0 ξ(n)a(n)zn? The theory of

entire functions has no general results pertaining to this classical question,
there are only several case studies initiated by Lévy, Littlewood, Offord, and
others. The most studied and the only relatively well understood instances
are the cases of IID sequences ξ (see Littlewood–Offord [22], Offord [32, 35],
Kabluchko–Zaporozhets [14], Nazarov–Nishry–Sodin [28]) and of lacunary
sequences a (see Hayman [10], Hayman–Rossi [12], and Offord [33, 34]), in
which case the sequence of multipliers ξ plays no essential role.

A new approach to this problem, which is based on spectral properties of
the sequence ξ, was launched in [1, 2]. It appears that certain estimates for
the autocorrelations

1

B −A
∑

A≤n<B
ξ(n)ξ̄(n+ h), h ∈ Z+ ,

yield the angular equidistribution of zeroes of the entire functions of expo-
nential type

(1.1) Fξ(z) =
∑
n≥0

ξ(n)
zn

n!
.
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More precisely,

nFξ(r; θ1, θ2) =
θ2 − θ1 + o(1)

2π
r , r →∞,

where nFξ(r; θ1, θ2) is the number of zeroes of Fξ (counted with multiplici-
ties) in the closed sector {z : 0 ≤ |z| ≤ r, θ1 ≤ arg z ≤ θ2}. In [1] the authors
proved that the same angular equidistribution holds under the assumption
that ξ is a Wiener sequence without lacunas in its spectrum. Recall that
the sequence ξ is called a Wiener sequence, if for every h ∈ Z+, the limit

r(h) = lim
N→∞

1

N

∑
0≤n<N

ξ(n)ξ̄(n+ h)

exists. Extending the sequence r to Z by setting r(−h) = r̄(h), we get
a positive-definite sequence, which is, therefore, given by the sequence of
Fourier coefficients of a non-negative measure χξ on the unit circle T, r = χ̂ξ,
χξ ∈ M+(T). The measure χξ is called the spectral measure of the Wiener
sequence ξ, and the closed support of χξ is called the spectrum of ξ. This
approach permitted us to prove the angular equidistribution of zeroes of the
function Fξ defined in (1.1) for many sequences ξ that were intractable using
the previously known techniques.

In this work, we advance in several directions, studying the zero distribu-
tion of Fξ on local scales and replacing the sequence a(n) = 1

n! by a rather
wide class of “smooth sequences”. The uniform transportation distance pro-
vides a convenient set-up for this study.

It is worth mentioning that our interest in the zero distribution on local
scales was a result of a conversation on some aspects of the work Lester–
Matomäki–Radziwi l l [18], which one of the authors had several years ago
with Steve Lester and Maks Radziwi l l.

1.1. Smooth sequences a. A positive sequence a will be called smooth if

(1.2) a(n) = exp
[
−
∫ n

0
ϕ
]
,

where ϕ is a non-negative, increasing, concave C2-function on [0,∞) satis-
fying

ϕ(0) = 0, lim
t→∞

ϕ(t) =∞, lim
t→∞

ϕ′(t) = 0 ,

with some quantitative bounds on |ϕ′′|. Different sequences ξ will require
different bounds on |ϕ′′|, but the following condition (1.3) will suffice for all
instances of the sequence ξ considered in this work (except for the Thue–
Morse sequence, which requires a stronger restriction):

(1.3) (ϕ′)2+ε .ε |ϕ′′| .ε (ϕ′)2−ε for every ε > 0.

These assumptions are not too restrictive, and the class of entire functions
with smooth Taylor coefficients contains functions of zero and infinite order
of growth.

It is worth mentioning, that some smoothness of the coefficients (a(n)),
likely, is indispensable for our method. On the other hand, it could be that
certain versions of equidistribution of zeroes of Fξ persist for any sequence
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a satisfying | log a(n)| = o(n2) as n → ∞ (the latter condition is needed
in order to exclude entire functions with a very slow growth, which, for
instance, may only have real zeroes independently of the choice of the real-
valued sequence ξ). At least, known results for IID sequences ξ (Offord [33]
[35] and Nazarov–Nishry–Sodin [28]) do not rule this out.

In what follows, we will mostly use the inverse ψ = ϕ−1 rather than ϕ
itself. This is a convex function, which, together with its derivative, grows
to +∞, and satisfies the regularity condition

(1.4) (ψ′)1−ε .ε ψ
′′ .ε (ψ′)1+ε for every ε > 0,

which readily follows from (1.3). In turn, (1.4) yields similar bounds for the
function ψ′:

(1.5) ψ1−ε .ε ψ
′ .ε ψ

1+ε for every ε > 0.

1.2. The reference measure γ. To measure the growth of the entire
function Fξ, we use a slightly smoothed maximal term of the power series∑

n≥0 a(n)zn, letting

µ(R) = max
t≥0

exp
[
t logR−

∫ t

0
ϕ
]
.

Then, assuming that R ≥ 1, we get

logµ(R) =

∫ logR

0
ψ(s) ds =

∫ R

1

ν(r)

r
dr ,

where the function ν = ψ ◦ log is the smoothed central index of the same
power series.

We expect that for Wiener sequences ξ without lacunas in their spectrum,
the subharmonic functions log |Fξ(z)| and logµ(|z|) are sufficiently close to
each other, and therefore, the counting measure of zeroes of Fξ,

nFξ =
∑

λ : Fξ(λ)=0

δλ,

is close to the Riesz measure of logµ

γ = (2π)−1 ∆ logµ(|z|) = σ(r)r−1dr ⊗ dθ, z = re(θ) ,

where σ = ψ′ ◦ log r, and e(θ) = e2πiθ. Here and elsewhere, the Laplacian
is understood in the sense of distributions, i.e., (2π)−1∆u denotes the Riesz
measure of a subharmonic function u. In particular, if f is an analytic
function, then

(2π)−1∆ log |f | =
∑

a : f(a)=0

δa

is the counting measure of zeroes of f (the sum on the RHS takes into
account the multiplicities of zeroes).

Note that we could equally use the functions µ1(R) =
∑

n≥0 a(n)Rn or

µ2(R) =
(∑

n≥0 a(n)2R2n
)1/2

, and the corresponding Riesz measures γi =

(2π)−1∆ logµi(|z|), i = 1, 2. The difference between the measures γ, γ1, and
γ2 is inessential for our purposes.
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1.3. (γ, ρ)-equidistribution. To measure the proximity of nFξ and γ, we
use a classical lattice-point-counting idea usually attributed to Gauss: for
every compact set K ⊂ C,

m(K−) ≤ #(Z2 ∩K) ≤ m(K+) ,

where m is the planar Lebesgue measure, K+ is the
√

2-Euclidean neigh-
bourhood of K, and K− is a subset of K, which consists of points that
are
√

2-separated from the boundary of K. Thus, |#(Z2 ∩ K) − m(K)|
is bounded by the Lebesgue measure of the

√
2-neighbourhood of the the

boundary of K.
Equivalently, the uniform transportation distance between the counting

measure
∑

a∈Z2 δa and the Lebesgue measure m does not exceed
√

2. In
our setting, the zeroes of Fξ play the role of lattice points, the measure γ,
defined above, replaces the Lebesgue measure m, and the Euclidean metric
is replaced by a slowly varying metric, which locally looks Euclidean.

We introduce a distance dρ on C, letting

dρ(z1, z2) = inf
`

∫
`

|dw|
ρ(w)

, z1, z2 ∈ C,

where the infimum is taken over all C1-curves ` connecting the points z1

and z2. Here and elsewhere, ρ is a positive C1-smooth radial function on
C such that ρ′(R) = o(1) for R → ∞. We will call the function ρ a radial
gauge. For any set X ⊂ C, we denote by

X+τ = {z ∈ C : dρ(z,X) < τ}

the τ -neighbourhood of X.

Definition 1. The counting measure nFξ is said to be (γ, ρ)-equidistributed
if there exist positive constants C and τ such that, for any compact set
K ⊂ C,

|nFξ(K)− γ(K)| ≤ Cγ((∂K)+τ ) .

Note that (γ, ρ)-equidistribution is an asymptotic characteristic of zeroes
of Fξ, which is not affected by multiplying the gauge ρ by a positive constant.

It is worth mentioning that, under our assumptions, (γ, ρ)-equidistribu-
tion of zeroes of Fξ is equivalent to the seemingly stronger finiteness of the
uniform transportation distance, Tradρ(nFξ , γ) < ∞. We will not be using
the transportation distance Tradρ in the bulk of this work, so we recall its
definition and prove the aforementioned equivalence in Appendix A.

1.3.1. . . . and how to use it. First, we consider the disks RD̄ = {|z| ≤ R}.
Recalling that µ(R) vanishes on [0, 1], we get

γ(RD̄) =

∫ R

1

σ(r)

r
dr = ν(R) .
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Furthermore, it is easy to see that if R is large enough, (RT)+τ ⊂
{
R −

2τρ(R) ≤ |z| ≤ R+ 2τρ(R)
}

. Hence,

γ((RT)+τ ) ≤
∫ R+2τρ(R)

R−2τρ(R)

σ(r)

r
dr

' σ(R)ρ(R)/R ,

whenever σ stays nearly constant on the intervals [R−O(ρ(R)), R+O(ρ(R))],
which will be always the case in this work. Under our regularity assumptions,
the functions ν = ψ◦log and σ = ψ′◦log have almost the same rate of growth
(see (1.5)), while for the most part, in this work, (except of the case when
ξ is the Thue–Morse sequence) we may take ρ ' Rσ(R)−κ with 0 < κ < 1

2 .
Hence, in these cases, we get

|nFξ(RD̄)− ν(R)| = o(ν(R)1−κ′), R→∞ ,

for any κ′ < κ. In the Thue–Morse case, our estimate becomes worse but
still meaningful:

|nFξ(RD̄)− ν(R)| = o
(
ν(R)e−c

√
log ν(R)

)
, R→∞ ,

with some c > 0.
Now we turn to estimates on local scales and consider the disks D̄(z; r) =

{w : |w − z| ≤ r}. If r is comparable to ρ(|z|), then (γ, ρ)-equidistribution
yields the upper bound

nFξ(D̄(z; r)) . γ(D̄(z; r))

' σ(|z|)
(ρ(|z|)
|z|

)2
.

When r becomes much larger than ρ(|z|) but in such a way that σ remains
nearly constant on D̄(z; r), the main term is

γ(D̄(z; r)) ' σ(|z|)
|z|2

· r2 ,

while the error term is bounded by

γ((∂D(z; r))+τ ) .
σ(|z|)
|z|2

· ρ(|z|)r ,

which is much smaller than the main term. Hence, in such disks, the num-
ber of zeroes nFξ(D̄(z; r)) approximately equals γ(D̄(z; r)), with an explicit
control of the o(1) term, namely

|nFξ(D(z, r))− γ(D(z, r))| . γ(D(z, r)) · ρ(|z|)
r

.

1.4. Main results. We prove that under certain assumptions on the smooth-
ness of the sequence a and on the binary correlations of ξ, the zeroes of the
entire function Fξ are (γ, ρ)-equidistributed for some explicitly computed
radial gauge ρ (Theorems 3 and 7). These results are somewhat technical,
so here, we present only their applications to several instances of sequences ξ
having different origins. Note that the case of the IID sequences ξ presented
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in Theorem 1a, does not need the full strength of our method and uses a
recent result of Nguyen and Vu [31].

Recall that the measure γ has the density (2π)−1σ(R)/R2, where σ =
ψ′ ◦ log, with respect to the area measure on C. Hence, the gauge ρ
has to be at least & R(σ(R))−1/2. Our technique needs slightly more:

ρ(R) & R(log σ(R)/σ(R))1/2, and in two instances (the IID sequences ξ,
and ξ(n) = e(αn2) with irrational α badly approximated by rationals), we
achieve that scale. In most other instances, our method stops at the scale
ρ(R) = R(σ(R))−c with some 0 < c < 1

2 , which we will estimate. It is
worth mentioning that we lack examples which would clarify whether these
estimates reflect the correct order of discrepancy of zeroes of Fξ.

To better digest the precision of our results, it is instructive to consider the
special case a(n) = (n!)−1/2, when the smoothed central index of the Taylor
series is ν(R) = ψ(logR) = R2 +O(R), and σ(R) = ψ′(logR) = 2R2 +O(1),

and, up to an inessential correction, γ =
1

π
× area measure.

In order to simplify the statements, in this section we give our results
in a somewhat weaker form than what will be proven afterwards. For this
reason, we enumerate them in accordance with their numeration in the bulk
of the paper, adding the letter “a”. For instance, Theorem 1a is a simplified
version of the more general result given in Theorem 1.

In this section, we always tacitly assume that the sequence of smooth coef-
ficients a(n) is defined by (1.2), with the function ϕ satisfying the regularity
condition (1.3).

1.4.1. Non-degenerate IID sequence.

Theorem 1a. Suppose that ξ is a non-degenerate IID sequence satisfying

E
[
|ξ(0)|ε

]
<∞, with some ε > 0.

Then, almost surely, the zeroes of Fξ are (γ, ρ)-equidistributed, provided that

(1.6) ρ(R) ' R

√
log σ(R)

σ(R)
.

In the case a(n) = (n!)−1/2 the radial gauge ρ boils down to ρ(R) '√
logR. Interestingly, this estimate cannot be essentially improved. Theo-

rem 2 shows that if ξ is a sequence of complex Gaussian independent random
variables and if δ is sufficiently small, then, a.s., the function Fξ does not

vanish on infinitely many disks of the form {|z − j2| ≤ δ(log j)1/4}, j ≥ 2.

Note, in passing that, in general, IID sequences are not Wiener sequences,
unless ξ(0) has a finite second moment.

1.4.2. The sequence ξ(n) = e(αn2) with irrational α. This is a Wiener se-
quence whose spectral measure is the Lebesgue measure. For a(n) = 1/n!
the angular equidistribution of the zeroes of the corresponding entire func-
tion (1.1) was proven by Eremenko and Ostrovskii in [6]. A more general

result, pertaining to the sequences ξ(n) = e(Q(n)), where Q(x) =
∑d

j=2 qjx
j
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is a polynomial of degree d ≥ 2 with real coefficients at least one of which is
irrational, was proven in [2, Theorem 1]. Here, we will consider the case of
an irrational α, and our estimates will depend on the Diophantine properties
of α.

Let ‖t‖ denote the distance from t to the closest integer.

Theorem 4a. Let α be an irrational number. Let ξ(n) = e(αn2).

(i) Suppose that for any positive integer q ≥ 2,

‖qα‖ ≥ c(α)

q(log q)a
, with some a ≥ 0 and c(α) > 0.

Then the zeroes of the entire function Fξ are (γ, ρ)-equidistributed with the

radial gauge ρ = Rσ−1/2(log σ)(a+1)/2.

(ii) Suppose that for any positive integer q ≥ 2,

‖qα‖ ≥ c(α)

q1+b
, with some b > 0 .

Then, for every b′ > b, the zeroes of Fξ are (γ, ρ)-equidistributed with the

radial gauge ρ = Rσ−1/(2+b′).

Note that Nassif [26] studied the case α =
√

2 and, using a technique
developed by Hardy and Littlewood in [8], got a rather precise information
about the zero distribution of Fξ (later, Littlewood [20, 21] returned to this
study for other smooth sequences a). Tims [40] showed that Nassif results
yield that the zeroes of the function Fξ form a “slowly varying lattice”.

1.4.3. Random multiplicative and completely multiplicative functions. Ran-
dom multiplicative functions we deal with here are sequences ξ defined by

ξ(n) =

{∏k
j=1Xpj , if n =

∏k
j=1 pj ,

0 if n is not square− free,

in the multiplicative case, and

ξ(n) =

k∏
j=1

(Xpj )
mj , if n =

k∏
j=1

p
mj
j ,

in the completely multiplicative case. Here Xp are symmetric and unimodu-
lar IIDs parameterized by the primes. A.s., the sequence ξ a Wiener sequence
whose spectral measure is the Lebesgue measure.

Theorem 5a. Let ξ be a random multiplicative function. Then, a.s., the
zeroes of Fξ are (γ, ρ)-equidistributed with the radial gauge ρ = Rσ−c, for
any c < 1/6.

The proof of this theorem uses a randomized version of the binary Chowla
conjecture (Lemma 6.7), which might be of independent interest.
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1.4.4. The Golay–Rudin–Shapiro sequence. Here we consider the sequence
ξ : Z+ → {±1}, which at each n ∈ Z+ equals the parity of the number of
(possibly overlapping) pairs of consecutive ones in the binary expansion of

n, i.e., if n =
∑

`≥0 r`(n)2` is a binary expansion of n, then ξ(n) = (−1)τ(n),

where τ(n) =
∑

`≥0 rl(n)r`+1(n). Equivalently, this sequence can be defined

by ξ(0) = 1, ξ(2n) = ξ(n), ξ(2n+ 1) = (−1)nξ(n), n ≥ 0. This is a Wiener
sequence, and, as in the previous cases, its spectral measure is the Lebesgue
measure.

Theorem 6a. Let ξ be the Golay–Rudin–Shapiro sequence. Then, the zeroes
of Fξ are (γ, ρ)-equidistributed with the radial gauge ρ = Rσ−c for any c <
1/3.

1.4.5. The indicator-function of the square-free integers. Next we consider
the sequence ξ = µ2, where µ is the Möbius function,

µ(n) =

{
(−1)k if n = p1 . . . pk,

0 if n is not square-free.

It follows from classical elementary number-theoretic estimates, due to Mir-
sky [25], that µ2 is a Wiener sequence whose spectral measure is discrete
and has a dense support.

It is worth mentioning that the spectral properties of the sequence µ2

have been studied in detail by Cellarosi and Sinai in [3].

Theorem 8a. Let ξ be the indicator function of the square-free integers.
Then, the zeroes of Fξ are (γ, ρ)-equidistributed with the radial gauge ρ =
Rσ−c for any c < 2/21.

The proof uses Mirsky’s estimates. Possibly, the bound for the exponent
c can be improved using more advanced tools.

1.4.6. The Thue–Morse sequence. The Thue–Morse sequence ξ : Z+ → {±1}
is defined by ξ(0) = 1, ξ(2n) = ξ(n), ξ(2n+1) = −ξ(n), n ≥ 0. Equivalently,

ξ(n) = (−1)ω(n), where ω(n) is the number of ones in the binary expansion
of n. It is well-known since the works by Mahler [23] and Kakutani [15],
that this is a Wiener sequence with a singular continuous spectral measure
having no gaps in its support.

Theorem 9a. Let ξ be the Thue–Morse sequence. Let the function ϕ,
which defines the smooth coefficients a, in addition to the regularity as-
sumption (1.3), satisfy the estimate ϕ′(t) . (log t)−C with some C > 1.
Then, the zeroes of Fξ are (γ, ρ)-equidistributed with the radial gauge ρ =
R exp(−c

√
log σ ), provided that the constant c is sufficiently small.

This corresponds to ρ(R) = R exp(−c
√

logR ) in the case a(n) = (n!)−1/2.

Notation. Throughout the paper, we will be using the following notation.

• e(t) = e2πit.

• Fξ(z) =
∑
n≥0

ξ(n)a(n)zn the entire function.
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• a(n) = exp
[
−
∫ n

0
ϕ
]

“smooth coefficients”.

• ψ = ϕ−1 the inverse of ϕ.

• µ = max
t≥0

exp
[
t logR−

∫ t

0
ϕ
]

the smoothed maximal term.

• ν = ψ ◦ log the smoothed central index.
• σ = ψ′ ◦ log.
• γ = (2π)−1∆ logµ(|z|) = σ(r)r−1 dr ⊗ dθ, z = re(θ), the reference

measure.
• ρ the radial gauge on C.

• dρ(z1, z2) = inf
`

∫
`

|dw|
ρ(w)

, the infimum is taken over all C1 curves `

connecting z1 with z2, the distance in C.
• U+τ = {z ∈ C : dρ(z, U) < τ} the τ -neighbourhood of the set U ⊂ C.

• WR(θ) =
∑

|n−ν|≤N

ξ(n)e(nθ)e−(n−ν)2/(2σ), N = A
√
σ log σ with suffi-

ciently large positive A, the Weyl-type exponential sum.
• A . B means that A ≤ CB with a positive constant C, A & B

means A ≥ cB with a constant c > 0, and A ' B means that A . B
and A & B simultaneously.
• The sign � means “sufficiently smaller than” and � means “suffi-

ciently large than”. For instance, the assumption “ given A and B
such that A � B” means that there exists c ∈ (0, 1) such that the
corresponding conclusion holds for every positive A and B satisfying
A ≤ cB.

2. The reader’s guide

In Section 3 we will develop a subharmonic technique, which will help
us prove (γ, ρ)-equidistribution of the counting measure nFξ . A familiar
heuristic suggests that, since the subharmonic function V (z) = logµ(|z|)
nearly majorizes log |Fξ(z)|, in order to check that their Riesz measures
are (γ, ρ)-equidistributed it suffices to verify the opposite inequality on a
sufficiently dense set of points in C.

Given a radial gauge ρ, set Dw = {z : |z − w| < ρ(w)}.

Definition 2. We call a set W ⊂ C ρ-dense if the collection of disks
{Dw : w ∈W} covers every point in C outside a bounded set.

Proposition 1 will yield that if

log |Fξ| ≤ V +O(1 + log+ V )

everywhere in C, while the opposite inequality

(2.1) log |Fξ| ≥ V −O(1 + log+ V )

holds on a ρ-dense subset of C, then the measure nFξ is (γ, ρ)-equidistributed.

Thus, our task boils down to proving the lower bound (2.1) on a suffi-
ciently dense set of points in C. The denser this set is, the smaller we may
take ρ, that is, on a smaller scale we will get the equidistribution of zeroes.
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As a first application, in Section 5, we consider a sequence ξ of non-
degenerate IID random variables having a finite moment of some positive
order. Using an idea from Nguyen and Vu [31], we apply Halász’s anti-
concentration estimate [7] to the exponential sum

S =
∑

|n−ν|≤
√
σ

ξ(n)a(n)Rne(nθ)

on short intervals of θ. Using the independence of the random variables S
and Fξ−S, after some computation, we get an almost sure lower bound (2.1)
on a ρ-dense subset of C with V (z) = log µ(|z|) and with the function ρ as
in (1.6).

In Section 4, using our smoothness assumptions on the coefficients (a(n)),
we replace the power series Fξ(z) by an exponential sum concentrated around
the central term, that is, around n = ν(|z|). This exponential sum has “an

effective size” slightly larger than
√
σ(|z|). We introduce a Weyl-type sum

WR(θ)
def
=

∑
|n−ν|≤N

ξ(n)e(nθ)ER(n) , N �
√
σ log σ,

where ER(n) = exp
[
−1

2 (n − ν)2/σ
]

is a Gaussian cut-off function of ef-
fective width

√
σ concentrated around the smoothed central index ν. In

Proposition 2, using a Laplace-type estimate, we prove the lower bound

|Fξ(Re(θ))| ≥ µ(R)
[
WR(θ)−Oε(σ(R)ε)

]
,

valid for any ε > 0. Thus, we need to show that on a sufficiently dense set
of points Re(θ), we have

(2.2) |WR(θ)| & σ(R)c

with some c > 0. This is where the spectral properties of the Wiener se-
quence ξ enter.

To get some intuition for the next step, we replace the smooth cut-off ER
by the sharp one. We are thus led to the sum

W̃R(θ) =
∑

|n−ν|≤
√
σ

ξ(n)e(nθ) ,

which we will try estimate pointwise from below. We have

(2.3) |W̃R(θ)|2 ≈
∑
|h|≤2

√
σ

e(−hθ)
∑

|n−ν|≤
√
σ

ξ(n)ξ̄(n+ h) .

Since ξ is a Wiener sequence, we expect that the inner sum is ≈ 2
√
σ χ̂ξ(h),

where χξ is the spectral measure of the sequence ξ, and χ̂ξ(h) is its h-th
Fourier coefficient. This raises some hope for the estimate

|W̃R(θ)|2 ≈ 2
√
σ
∑
h∈Z

χ̂ξ(h)e(−hθ) .

If the spectral measure χξ has a nice positive density χ′ξ, then the series on

the RHS converges to χ′ξ(−θ) > 0, which would yield estimate (2.2) with

c = 1
4 .
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To make this heuristic rigorous, we fix a C∞-smooth non-negative even

function g with support on [−1
2 ,

1
2 ], such that

∫
R
g = 1, and consider the

average

X = X(R,ϑ) =

∫ R+βR

R

∫ 1/2

−1/2
|Ws(θ)|2g(β−1(ϑ− θ)) dν(s)dθ ,

where β = β(R) = ρ(R)/R.
In the case of the Lebesgue spectral measure, we start with a version

of (2.3), integrate with respect to θ, and show that the non-diagonal terms
are negligible, while the diagonal terms give us estimate (2.2). This will be
done in Proposition 5. In the rest of Section 6 we demonstrate how to apply
these estimates to the Wiener sequences ξ(n) = e(αn2) with Diophantine α,
random multiplicative sequences, and the Golay–Rudin–Shapiro sequence.

In Section 7 we turn to Wiener sequences with arbitrary spectral measures
χξ having no gaps in their supports. In Proposition 6 we furnish a lower
bound for X, which can be viewed as a quantitative version of [1, Lemma 5].
Then we will illustrate our method with two examples of Wiener sequences
with singular spectral measures, having no gaps. We consider the indicator
function of the square-free integers, that is, ξ = µ2, where µ is the Möbius
function, and the Thue–Morse sequence.

3. A subharmonic lemma

Let ρ : C→ (0,∞) be a radial gauge, that is, a positive radial C1-smooth
function such that ρ′(r) → 0 as r → ∞. We set Dw = {z : |z − w| < ρ(w)}
and tDw = {z : |z − w| < tρ(w)}.

The following lemma is the main result of this section.

Proposition 1. Let V be a radial C2-smooth subharmonic function with
the Riesz measure γ = Γ dm, and let ρ be a radial gauge satisfying

(3.1) Γ(r)ρ2(r)→∞ ,

and

(3.2) sup
{∣∣∣Γ(r′)

Γ(r)
− 1
∣∣∣ : |r′ − r| ≤ ρ(r)

}
→ 0 ,

as r →∞. Let V1 be a subharmonic function in C satisfying

(3.3) V1 ≤ V +O(1 + Γρ2) everywhere in C .

Let γ = 1
2π ∆V and γ1 = 1

2π ∆V1 be the Riesz measures of the functions V
and V1. Suppose that there exists a ρ-dense set W ⊂ C such that

(3.4) V1 ≥ V −O(1 + Γρ2) everywhere on W .

Then, for every compact set K ⊂ C,

(3.5)
∣∣γ(K)− γ1(K)

∣∣ . γ((∂K)+C

)
.
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Example 1. V (z) = |z|2, Γ = 2π−1. In this case, we can take any radial
gauge ρ satisfying ρ(r) → ∞ as r → ∞. More generally, if V (z) = |z|λ,
λ > 0, then Γ(z) = (2π)−1λ2 |z|λ−2, and the radial gauge ρ should satisfy

the condition rλ/2−1ρ(r)→∞, as r →∞.

We prove Proposition 1 in several steps. We start with a simple lemma,
which shows that the metric ρ(ζ)−1|dζ| and the distance dρ locally behave
like the Euclidean metric. In the next step we show that∫

2Dw

|V − V1|dm . γ(2Dw)m(2Dw), w ∈W,

provided that |w| is sufficiently large. From there, we deduce estimate (3.5).

3.1. Local estimates. Given ε > 0, we choose r(ε) large enough that, for
r ≥ r(ε), we have

(3.6) |ρ′(r)| ≤ ε
and

(3.7) ρ(r) ≤ εr .

Lemma 3.1. Let |w| ≥ 2r(ε), and let z ∈ CD̄w with Cε ≤ 1
2 . Then,

(3.8) |z| ≥ r(ε),
and

(3.9) (1− Cε)ρ(w) ≤ ρ(z) ≤ (1 + Cε)ρ(w).

Moreover, for z, z′ ∈ CD̄w with Cε ≤ 1
6 , we have

(3.10)
1

1 + 3Cε

|z − z′|
ρ(w)

≤ dρ(z, z′) ≤
1

1− Cε
|z − z′|
ρ(w)

.

Proof. Bound (3.8) follows from (3.7) combined with the triangle inequality.
Bounds (3.9) are straightforward consequences of (3.6) and (3.8). To get
the upper bound in (3.10), we note that

dρ(z, z
′) ≤

∫
[z,z′]

|dζ|
ρ(ζ)

≤ 1

1− Cε
|z − z′|
ρ(w)

.

To get the lower bound in (3.10), we observe that if a curve ` joins z and
z′, and exits the disk 3CDw, then it traverses the annulus 3CD̄w \ CDw at
least twice, and therefore, the corresponding integral is at least∫

`∩(3CD̄w\CDw)

|dζ|
ρ(ζ)

(3.9)

≥ Length(` ∩ (3CD̄w \ CDw))

(1 + 3Cε)ρ(w)
≥ 4C

1 + 3Cε
,

while∫
[z,z′]

|dζ|
ρ(ζ)

(3.9)

≤ 1

1− Cε
|z − z′|
ρ(w)

≤ 2C

1− Cε

Cε≤ 1
6

≤ 4C

1 + 3Cε
≤
∫
`

|dζ|
ρ(ζ)

.

Thus, estimating from below the distance dρ(z, z
′) we can assume that the

curve ` does not exit the closed disk 3D̄w, in which case,∫
`

|dζ|
ρ(ζ)

(3.9)

≥ 1

1 + 3Cε

Length(`)

ρ(w)
≥ 1

1 + 3Cε

|z − z′|
ρ(w)

,
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proving the lower bound in (3.10). �

3.2. Rarefying the set W . Let W be a ρ-dense set, and let W̃ be a max-

imal subset of W such that the closed disks 1
2D̄w, w ∈ W̃ , are pairwise

disjoint.

Lemma 3.2. Let 0 < ε < 1
20 , and let min{|w| : w ∈ W} ≥ 2r(ε). Then,

the set W̃ is 2.5ρ-dense, while the disks {10D̄w : w ∈ W̃} have a bounded
multiplicity of covering.

Proof. To prove the first statement, we show that
⋃
W Dw ⊂

⋃
W̃

2.5Dw̃.

Suppose that z ∈ Dw with w ∈W . Then, by maximality of W̃ , there exists

w̃ ∈ W̃ such that 1
2D̄w ∩ 1

2D̄w̃ 6= ∅, whence

|z − w̃| ≤ |z − w|+ |w̃ − w| ≤ ρ(w) + 1
2(ρ(w) + ρ(w̃))

(3.9)

≤ 1
2

[
3(1 + ε/2)(1− ε/2)−1 + 1

]
ρ(w̃) < 2.5ρ(w̃) .

That is, Dw ⊂ 2.5Dw̃, which yields the first part of the lemma.
To prove the second part, we assume that z ∈ 10D̄wj with disjoint wj ∈

W̃ , 1 ≤ j ≤ N . Then, by (3.9), ρ(wj) ≤ (1 − 10ε)−1ρ(z) < 2ρ(z), whence,
for any ζ ∈ 1

2D̄wj , we have

|ζ − z| ≤ |ζ − wj |+ |wj − z| ≤ 10.5 ρ(wj) < 21ρ(z).

That is, all the disks 1
2D̄wj are contained in 21Dz. Since the disks 1

2D̄wj are
disjoint, comparing the areas, we get

1

4

N∑
j=1

ρ(wj)
2 ≤ 212ρ(z)2 .

Recalling that, for each j, ρ(wj)
(3.9)

≥ (1 + 10ε)−1ρ(z) > 2
3ρ(z), we see that

N ≤ 32 · 212, completing the proof. �

3.3. L1-bound for V − V1. To simplify our writing, we replace the radial

gauge ρ by 2.5ρ and will use notation W for W̃ . That is, from now on,
we assume that the disks {Dw : w ∈ W} cover the complex plane C, save
for a bounded set, and that four times larger disks {4D̄w : w ∈ W} have a
bounded multiplicity of covering.

Lemma 3.3. Under the assumptions (3.1)–(3.4) of Proposition 1, we have∫
2Dw

|V − V1|dm . γ(2Dw)m(2Dw) ,

provided that w ∈W , and |w| is sufficiently large.

Proof. Fix w ∈W , and let

(3.11) V1 − V = P −Gγ1 +Gγ

be the Poisson–Jensen representation of the function V1−V in the disk 3Dw,
see, for instance, [11, Theorem 3.14]). Here P is the Poisson integral of V1−V
in 3Dw, and Gγ , Gγ1 are Green’s potentials in 3Dw of the Riesz measures
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γ and γ1. For the reader’s convenience, we recall the expressions for the
Poisson integral and the Green potential in the disk D = {z : |z − w| < R}:

P (z) =
1

2π

∫ π

−π
(V1 − V )(Reiη)

R2 − r2

R2 − 2Rr cos(θ − η) + r2
dη,

where z = w + reiθ, and

Gγ(z) =

∫
D

log
∣∣∣R2 − (z − w)(ζ̄ − w̄)

R(z − ζ)

∣∣∣dγ(ζ) .

We estimate separately each of the three terms on the RHS of (3.11). We
have

0 ≤ Gγ(z) =

∫
3Dw

log
∣∣∣(3ρ(w))2 − (z − w)(ζ̄ − w̄)

3ρ(w)(z − ζ)

∣∣∣dγ(ζ) .

Using that |(3ρ(w))2 − (z − w)(ζ̄ − w̄)| ≤ 18ρ(w)2 everywhere in 3Dw, we
estimate the integral on the RHS by

≤
∫

3Dw

log
6ρ(w)

|z − ζ|
dγ(ζ)

<

∫
3Dw

(
log+

ρ(w)

|z − ζ|
+ 2
)

Γ(ζ) dm(ζ)

' Γ(w)
(∫ ρ(w)

0
log

ρ(w)

t
· tdt+m(3Dw)

)
' Γ(w)ρ2(w)

' γ(2Dw), z ∈ 3Dw .

Furthermore, by (3.3), everywhere on ∂(3Dw) we have

P . 1 + Γρ2 ' Γ(w)ρ2(w) ' γ(2Dw) .

Thus, by the maximum principle, P . γ(2Dw) everywhere on 3D̄w. Besides,

−P (w) = (V − V1)(w) +Gγ(w)−Gγ1(w)

. 1 + Γ(w)ρ2(w) + γ(2Dw)

' γ(2Dw) .

Then, by Harnack’s inequality (applied to the positive harmonic function
−P + Cγ(2Dw) in 3Dw), we have |P | . γ(2Dw) everywhere on 2D̄w.

At last,∫
2Dw

Gγ1 dm ≤
∫

2Dw

(∫
3Dw

(
log+

ρ(w)

|z − ζ|
+ 2
)

dγ1(ζ)
)

dm(z)

=

∫
3Dw

(∫
2Dw

(
log+

ρ(w)

|z − ζ|
+ 2
)

dm(z)
)

dγ1(ζ)

. m(2Dw)γ1(3D̄w) ,
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and it remains to bound γ1(3D̄w), which can be readily done using Jensen’s
formula:

γ1(3D̄w) .
∫ 4

0

γ1(tD̄w)

t
dt

=

∫ π

−π
V1(w + 4ρ(w)eiθ)

dθ

2π
− V1(w)

≤
∫ π

−π
V (w + 4ρ(w)eiθ)

dθ

2π
− V (w) +O

(
Γ(w)ρ2(w)

)
=

∫ 4

0

γ(tDw)

t
dt+O

(
Γ(w)ρ2(w)

)
' Γ(w)ρ2(w) ' γ(2Dw) ,

completing the proof of Lemma 3.3. �

3.4. Bounding the difference γ − γ1. Now, we estimate the difference
γ − γ1 = 1

2π∆(V − V1) of the Riesz measures.

Lemma 3.4. Let W ⊂ C be a set such that the disks {Dw : w ∈ W} cover
the complex plane C, save for a bounded set, and suppose that the disks
{4D̄w : w ∈ W} have bounded multiplicity of covering. Let V and V1 be
subharmonic functions in C with Riesz measures γ and γ1, such that∫

2Dw

|V − V1|dm . γ(2Dw)m(2Dw), w ∈W,

provided that |w| is sufficiently large. Then, for every compact set K ⊂ C,
estimate (3.5) holds.

Proof. We will prove estimate (3.5) assuming that K ⊂ {|z| ≥ r0} with
sufficiently large r0. Clearly, this yields the general case.

We will be using a smooth partition of unity associated with the set W .
For every w ∈W , we choose a C2-function ϕw : C→ [0, 1] so that ϕw

∣∣
Dw

= 1,

supp(ϕw) ⊂ 2D̄w, ‖∆φw‖∞ . ρ(w)−2, and set ϕ =
∑

w∈W ϕw ' 1, ψw =

ϕw/ϕ. Then, |ψw| ' 1 on D̄w, supp(ψw) ⊂ 2Dw, ‖∆ψw‖∞ . ρ(w)−2, and,
outside a bounded set,

∑
w∈W ψw = 1.

Given a closed set X ⊂ {|z| ≥ r0} with sufficiently large r0, we let

ΨX =
∑

w∈W : Dw⊂X+4

ψw .

Then ΨX : C→ [0, 1] is a C2-smooth function with the following properties:

(3.12) ΨX

∣∣
X

= 1

and

(3.13) supp(ΨX) ⊂ X+8 .

To verify (3.12), we take any z ∈ X and note that if z ∈ supp(ψw), w ∈W ,
then z ∈ 2Dw, and therefore, dρ(z, w) ≤ 5

2 , whence, Dw ⊂ X+4. Thus,

ΨX(z) =
∑

w∈W : ψw(z)>0

ψw(z) =
∑
w∈W

ψw(z) = 1 .
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To check (3.13), we note that if w ∈W , Dw ⊂ X+4, and z ∈ supp(ψw), then
dρ(z, w) ≤ 3, and therefore, z ∈ X+8.

Now, we proceed with the proof of (3.5). We let

K−C = {z ∈ C : dρ(z,C \K) ≥ C}.

Then, (∂K)+C = K+C \K−C .
First, we show that

(3.14) (γ − γ1)(K) . γ(K \K−14) .

We assume that K−8 6= ∅ (otherwise, there is nothing to prove) and let
Ψ = ΨK−8 . Then, Ψ = 1 on K−8, supp(Ψ) ⊂ (K−8)+8 ⊂ K, and

(γ − γ1)(K) =

∫
K

Ψ d(γ − γ1) +

∫
K

(1−Ψ) d(γ − γ1).

Estimate of the second integral on the RHS is straightforward:∫
K

(1−Ψ) d(γ − γ1) =

∫
K\K−8

(1−Ψ) d(γ − γ1) ≤ γ(K \K−8).

Next, by Green’s identity, we get∫
K

Ψ d(γ − γ1) =
1

2π

∫
K

∆Ψ · (V − V1) dm

=
1

2π

∫
K\K−8

∆Ψ · (V − V1) dm

≤ 1

2π

∫
K\K−8

|∆Ψ| · |V − V1|dm

≤
∑

w∈W∩(K−4\K−11)

1

2π

∫
C
|∆ψw| · |V − V1| dm

.
∑

w∈W∩(K−4\K−11)

ρ(w)−2

∫
2Dw

|V − V1| dm.

By Lemma 3.3, the RHS is

.
∑

w∈W∩(K−4\K−11)

γ(2Dw) . γ(K−1 \K−14),

proving (3.14).
Now, we verify the opposite bound

(3.15) (γ1 − γ)(K) . γ(K+8 \K−8).

Set Ψ = ΨK . Since Ψ
∣∣
K

= 1 and supp(Ψ) ⊂ K+8, we have

(γ1 − γ)(K) =

∫
C

Ψ d(γ1 − γ) +

∫
K+8\K

Ψ d(γ − γ1).

The second integral on the RHS is

≤
∫
K+8\K

Ψ dγ ≤ γ(K+8 \K).



ZERO DISTRIBUTION OF POWER SERIES 17

At last, arguing as above, we see that∫
C

Ψ d(γ1 − γ) =
1

2π

∫
C

∆Ψ · (V1 − V ) dm

=
1

2π

∫
K+8\K

∆Ψ · (V1 − V ) dm

≤ 1

2π

∫
K+8\K

|∆Ψ| · |V1 − V | dm

≤
∑

w∈W∩(K+4\K−4)

1

2π

∫
2Dw

|∆ψw| · |V1 − V | dm

.
∑

w∈W∩(K+4\K−4)

ρ(w)−2

∫
2Dw

|V1 − V |dm

.
∑

w∈W∩(K+4\K−4)

γ(2Dw)

. γ(K+8 \K−8),

proving (3.15). Clearly, estimates (3.14) and (3.15) together yield esti-
mate (3.5), completing the proof of Lemma 3.4, and hence, of Proposition 1
as well. �

4. From the power series Fξ(z) to Weyl-type sums WR(θ)

In view of Proposition 1, we are after a lower bound for |F | on a sufficiently
dense set of points in C. The main result of this section, Proposition 2,
reduces this question to the problem of obtaining lower bounds for certain
Weyl-type exponential sum.

4.1. Regularity of ϕ and ψ.

Definition 3 (∆-regularity). Let ∆: (0,∞) → (0,∞) be a non-decreasing

function satisfying ∆(2s) ' ∆(s) and ∆(s) = o(
√
s (log s)−3/2) as s → ∞.

The function ϕ will be called ∆-regular, if it is a non-negative, increasing,
concave C2-function on [0,∞), satisfying

ϕ(0) = 0, lim
t→∞

ϕ(t) =∞, lim
t→∞

ϕ′(t) = 0 ,

with

(4.1) |ϕ′′| ≤ (ϕ′)2 ∆(1/ϕ′) .

By ψ = ϕ−1 we denote the inverse function to ϕ. This is a convex function,
which, together with its derivative, grows to +∞.

We start with some simple estimates for ∆-regular functions ϕ and their
inverses ψ, which will be used throughout this work.

Lemma 4.1. Suppose that the function ϕ is ∆-regular. Then,

(a) ψ′′ ≤ ψ′∆(ψ′);
(b) ϕ′(t) = (1+o(1))ϕ′(τ), for τ →∞ and |t−τ |ϕ′(τ)∆(1/ϕ′(τ)) = o(1);
(c) ψ′(u) = (1 + o(1))ψ′(v), for v →∞ and |u− v|∆(ψ′(v)) = o(1);
(d) ϕ′(t)∆(1/ϕ′(t)) & 1/t;
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(e) ψ′/∆(ψ′) . ψ.

Proof. Estimate (a) follows from (4.1) combined with the formulas

ψ′ =
1

ϕ′(ψ)
, ψ′′ =

|ϕ′′(ψ)|
(ϕ′(ψ))3

.

Suppose that estimate (b) does not hold, i.e., that there exists a function
ε(τ)→ 0 as τ →∞, such that

lim sup
τ→∞

max{|ϕ′(t)/ϕ′(τ)− 1| : |t− τ |ϕ′(τ)∆(1/ϕ′(τ)) ≤ ε(τ)} > 0.

Then, for some δ ∈ (0, 1
2), there exist an arbitrarily large τ and a ϑ such

that |ϕ′(ϑ)/ϕ′(τ) − 1| = δ, while |ϕ′(t)/ϕ′(τ) − 1| < δ everywhere on the
open interval I with endpoints τ and ϑ and with |I|ϕ′(τ)∆(1/ϕ′(τ)) ≤ ε(τ).
Then,

δ .
∣∣∣log

ϕ′(ϑ)

ϕ′(τ)

∣∣∣ ≤ ∫
I

∣∣∣ ϕ′′
ϕ′

∣∣∣ ≤ |I| ·max
I

∣∣∣ ϕ′′
ϕ′

∣∣∣ ≤ |I| ·max
I
ϕ′∆(1/ϕ′).

Since δ was chosen less than 1
2 , everywhere on I we have ϕ′ ≤ 2ϕ′(τ). Hence,

maxI ϕ
′∆(1/ϕ′) . ϕ′(τ)∆(1/ϕ′(τ)), and therefore,

δ . |I| · ϕ′(τ)∆(1/ϕ′(τ)) . ε(τ) ,

arriving at a contradiction as τ → ∞, which proves (b). The proof of
estimate (c) follows the same pattern, so we skip it.

Estimate (d) easily follows from (b). Indeed, assume that (d) does not
hold. That is, there is a sequence τj ↑ ∞ such that τjϕ

′(τj)∆(1/ϕ′(τj))→ 0.
Consider the intervals [0, τj ]. By (b), |ϕ′(+0)/ϕ′(τj)−1| → 0. Since ϕ′(τj)→
0, we get ϕ′(+0) = 0, which is impossible since ϕ′(τ) monotonically decreases
to 0 as τ grows. At last, estimate (e) is just a restatement of (d). �

4.2. The central group of terms of the power series Fξ. Let

Fξ(z) =
∑
n≥0

ξ(n)a(n)zn,

with a(n) = exp
[
−
∫ n

0
ϕ
]
, and let

µ = µ(R) = max
t≥0

exp
[
t logR−

∫ t

0
ϕ
]
.

Then, for R ≥ 1,

logµ(R) =

∫ logR

0
ψ =

∫ R

1

ν(r)

r
dr ,

where ν = ν(R) = ψ(logR). We also let σ = σ(R) = ψ′(logR). Set

ω(t) = ωR(t) = t logR−
∫ t

0
ϕ.

Then akR
k = eω(k), ω(ν) = logµ, ω′(ν) = 0, and ω′′(ν) = −ϕ′(ν) = −1/σ.

We will need simple estimates for the function ω.

Lemma 4.2. Suppose that the function ϕ is ∆-regular. Then, we have
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(i)
∣∣ω(ν + t)− ω(ν)− 1

2ω
′′(ν)t2

∣∣ . σ−2∆(σ) |t|3, |t| .
√
σ log σ;

(ii)
∣∣ω(ν + t)− ω(ν)

∣∣ = (1 + o(1))σ−1 t2, |t| '
√
σ log σ;

(iii)
∣∣ω′(ν + t)

∣∣ = (1 + o(1))σ−1 |t|, |t| '
√
σ log σ.

Proof. To prove (i), we note that, by Taylor’s formula,

ω(ν + t)− ω(ν)− 1
2ω
′′(ν)t2 = 1

6 ω
′′′(ν + x)t3 = 1

6 |ϕ
′′(ν + x)| t3,

with some x, |x| .
√
σ log σ. Therefore, applying first estimate (4.1) and

then Lemma 4.1(b), we see that the LHS of (i) is

≤ (ϕ′(ν + x))2∆(1/ϕ′(ν + x)) |t|3 ' σ−2∆(σ) |t|3 ,

which gives us (i).
Estimate (ii) follows from (i): for |t| '

√
σ log σ, we have |ω′′(ν)|t2 ' log σ,

while σ−2∆(σ) |t|3 = o(1).
To prove (iii), we again apply Taylor’s formula: ω′(ν + t) = ω′′(ν + x) t =

|ϕ′(ν+x)|t with some x, |x| .
√
σ log σ. By Lemma 4.1(b), we get (iii). �

Next, we observe that, by ∆-regularity of ϕ, for large R, we have ν �√
σ log σ (indeed, by Lemma 4.1(e),

√
σ log σ ≤ ν ·∆(σ)

√
σ−1 log σ = o(ν)).

We choose N = A
√
σ log σ with A� 1, and define the Weyl-type sum

WR(θ) =
∑

|k−ν|≤N

ξ(k)e(kθ)e−(k−ν)2/(2σ) .

Proposition 2. Let Fξ(z) =
∑

n≥0 ξ(n)a(n)zn be an entire function with
smooth coefficients a and with bounded coefficients ξ. Suppose that the func-
tion ϕ is ∆-regular. Then, for R� 1 and A� 1,

max
θ∈[0,1]

∣∣Fξ(Re(θ))− µWR(θ)
∣∣ . µ∆(σ)(log σ)3/2.

This proof of this Proposition is a simple application of the classical
Laplace method.

Proof. Recalling that µ = eω(ν) and that ω′′(ν) = −1/σ, we have∣∣Fξ(Re(θ))− µWR(θ)
∣∣ . µ( ∑

0≤k<ν−N
+

∑
k>ν+N

)
exp
[
ω(k)− ω(ν)

]
+ µ

∑
|k−ν|≤N

∣∣∣exp
[
ω(k)− ω(ν)

]
− exp

[ 1

2
ω′′(ν)(k − ν)2

]∣∣∣ .
We claim that the first two sums on the RHS tend to zero as R→∞.

Indeed, for 0 ≤ k < ν − N , using concavity of ω and Lemma 4.2(ii)
and (iii), we get

ω(k)− ω(ν) = ω(k)− ω(ν −N) + ω(ν −N)− ω(ν)

≤ −(ν −N − k)|ω′(ν −N)| − c1σ
−1N2

≤ −c2(ν −N − k)σ−1N − c1σ
−1N2

= −c2(ν −N − k)A
√
σ−1 log σ − c1A

2 log σ .
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Then, ∑
0≤k<ν−N

eω(k)−ω(ν) < e−c1A
2 log σ

∑
`≥0

e−c2`A
√
σ−1 log σ

. σ−c1A
2 ·A−1

√
σ/ log σ

= o(1) ,

provided that A is large enough that c1A
2 > 1

2 . The case k > ν +N follows
by almost the same argument and we skip it.

Finally, by Lemma 4.2(i), for |k − ν| ≤ N , we have∣∣∣exp
[
ω(k)− ω(ν)

]
− exp

[1
2
ω′′(ν)(k − ν)2

]∣∣∣
= exp

[
−(k − ν)2/(2σ)

] ∣∣∣exp
[
ω(k)− ω(ν)− 1

2
ω′′(ν)(k − ν)2

]
− 1
∣∣∣

. σ−2∆(σ)N3 exp
[
−(k − ν)2/(2σ)

]
= A3σ−1/2∆(σ)(log σ)3/2 exp

[
−(k − ν)2/(2σ)

]
.

Hence,∑
|k−ν|≤N

∣∣∣exp
[
ω(k)− ω(ν)

]
− exp

[1
2
ω′′(ν)(k − ν)2

]∣∣∣
. σ−1/2∆(σ)(log σ)3/2

∑
`≥0

exp
[
−`2/(2σ)

]
. ∆(σ)(log σ)3/2 ,

proving Proposition 2. �

The following modification of Proposition 2 will be used in the next sec-
tion, when we will deal with random independent coefficients ξ.

Proposition 3. Let Fξ be an entire function with smooth coefficients a.
Suppose that the function ϕ is ∆-regular and that the sequence ξ has at
most power growth: |ξ(k)| . (k + 1)B. Then, for R� 1,∣∣Fξ(Re(θ))∣∣ . νBσ1/2 µ .

Proof. As in the proof of the previous lemma, we write

|Fξ(Re(θ))| ≤ µ
( ∑

0≤k<v−N
+

∑
|k−ν|≤N

+
∑

k>ν+N

)
|ξ(k)| exp

[
ω(k)− ω(ν)

]
.

Arguing as in the proof of that lemma, we see that the first sum on the RHS
is bounded by o(1)νB, while the second sum is. νB(∆(σ)(log σ)3/2+σ1/2) .
νBσ1/2. At last, the third sum is

. νB
∑

k>ν+N

(k
ν

)B
exp
[
−c1A

2 log σ − c2(k − ν −N)A
√
σ−1 log σ

]
. νB σ−c1A

∑
`≥0

max{1, (`/ν)B} e−c2`A
√
σ−1 log σ = o(νB),

proving the lemma. �
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5. IID sequences ξ

Our first station is the case of IID sequences ξ. In this well-studied setting
the result on equidistribution of zeroes on local scales appears to be new.

5.1. Equidistribution of zeroes on local scales. The main result of this
section is the following

Theorem 1. Let ξ be a sequence of independent identically distributed
complex-valued random variables with a non-degenerate distribution satis-
fying the moment condition

(5.1) ∃δ > 0, E
[
|ξ(0)|δ

]
<∞,

and let Fξ(z) =
∑
n≥0

ξ(n)a(n)zn be a random entire function with smooth

coefficients a(n) = exp
[
−
∫ n

0
ϕ
]
. Suppose that the function ϕ is ∆-regular

and that

(5.2) ϕ′(t) . t−c

with some c > 0. Let σ = ψ′ ◦ log, where ψ = ϕ−1 is the inverse function to
ϕ.

Then, almost surely, the zeroes of Fξ are (γ, ρ)-equidistributed with the
gauge

(5.3) ρ(R) = R
√
σ−1 log σ .

Note that condition (5.2) is equivalent to the bound ψ′ & ψc (i.e., to
σ & νc). By convexity of ψ, this yields ψ′(s) & sc, that is, σ(R) & (logR)c.

Proof. We will show that, a.s., the subharmonic functions V (z) = log µ(|z|)
and V1(z) = log |Fξ(z)| satisfy the assumptions of Proposition 1, provided
that the radial gauge ρ is chosen according to (5.3) (note that the function
ρ defined by (5.3) satisfies ρ′(R) = o(1) as R → ∞, that is, ρ is indeed a
radial gauge).

Recall that the Riesz measure γ = (2π)−1 ∆V equals dγ = σ(R)R−1dR⊗
dθ, z = Re(θ), so its density Γ equals (2π)−1σ(R)R−2, and therefore,
Γ(R)ρ2(R) = (2π)−1 log σ(R) satisfies condition (3.1).

The verification of condition (3.2) is also straightforward. We have

Γ(R)

Γ(R′)
=
(R′
R

)2
· ψ
′(logR)

ψ′(logR′)
.

Both factors on the RHS tend to 1 uniformly in |R′ − R| ≤ ρ(R). For the
first factor this holds since ρ(R) = o(R), while for the second factor this
follows from Lemma 4.1(c).

The upper bound (3.3) follows from (5.1). Indeed, the moment condition
yields that

P
[
|ξ(k)| ≥ (k + 1)2/δ

]
≤ (k + 1)−2 E

[
|ξ(k)|δ

]
≤ C(k + 1)−2,
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whence, by the Borel–Cantelli lemma, a.s., we have |ξ(k)| . (k + 1)2/δ,
k ≥ 0. Then, by Proposition 3,

log |Fξ(z)| ≤ logµ(|z|) +O(log σ(|z|))
= V (z) +O((Γρ2)(|z|)) ,

which gives us (3.3).
The proof of the lower bound (3.4) relies on a version of the Nguyen-Vu

anti-concentration estimate for trigonometric sums.

Proposition 4 (Nguyen–Vu). Let

S(θ) =
∑
λ∈Λ

ξλcλe(λθ), Λ ⊂ Z, |Λ| = n,

be a random trigonometric sum with complex-valued IID coefficients ξλ hav-
ing a non-degenerate distribution, and with non-random coefficients (cλ) ⊂
C such that |cλ| ≥ κ. Then, for any α ≥ 1, there exists β < ∞ such that,
for any interval I ⊂ R of length |I| & 1/n, we have

inf
θ∈I

sup
Z∈C

P
[
|S(θ)− Z| < κn−β

]
. n−α .

The proof of this lemma is an almost verbatim repetition of the original
one [31, Lemma 9.2], so we relegate it to Appendix B, proceeding with the
proof of Theorem 1.

Fix R ≥ 1. Note that, by Lemma 4.2(i), for |k − ν| ≤
√
σ, we have

|ω(k) − ω(ν)| . 1, whence akR
k/µ(R) = exp

[
ω(k) − ω(ν)

]
' 1, so we can

apply Proposition 4 with ck = akR
k/µ(R). Fix θ ∈ R. Since the random

variables Fξ(Re(θ))−µ(R)S(θ) and µ(R)S(θ) are independent, we conclude
that there exists ϑ so that |ϑ− θ| . 1/

√
σ, and

P
[
|Fξ(Re(ϑ))| < µ(R)σ−β/2

]
. σ−α/2

with α to be chosen later, and β = β(α). We take the sequence (Rj) such

that Rj+1 = Rj + 1
2 ρ(Rj), split the circle RjT into '

√
σ(Rj) arcs RjIj,k of

the angular size |Ij,k| ' 1/
√
σ(Rj), and denote by ζj,k the centers of these

arcs. Then the union of the disks Dj,k = {|z − ζj,k| ≤ ρ(Rj)} covers the
whole complex plane, except for a bounded set. Rarefying the set {ζj,k} (cf.
Section 3.2), we assume that the disks Dj,k have bounded multiplicity of
covering.

Consider the events

Xj,k =
{

max
Dj,k

log |Fξ| ≤ logµ(Rj)− 1
2 β log σ(Rj)

}
.

Our next step is to show the convergence of the series

(5.4)
∑
j, k

P
[
Xj,k

]
<∞ .

By construction, P
[
Xj,k

]
. σ(|ζj,k|)−α/2, that is,∑

j, k

P
[
Xj,k

]
.
∑
j, k

σ(ζj,k)
−α/2 .
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To conclude that the series on the RHS converges, we observe that∫∫
Dj,k

dm(z)

|z|2 log2 |z|
&

ρ2(ζj,k)

|ζj,k|2 log2 |ζj,k|

=
log σ(|ζj,k|)
σ(|ζj,k|)

· 1

log2 |ζj,k|

(5.2)

& σ(|ζj,k|)−α/2 ,

provided that α was chosen sufficiently large. That is, condition (5.4) holds.
Then, by the Borel–Cantelli lemma, a.s., only finitely many events Xj,k may
occur, that is, a.s., all but finitely many disks Dj,k contain a point wj,k such
that

log |Fξ(wj,k)| ≥ logµ(|wj,k|)− 1
2 β log σ(|wj,k|)

= V (wj,k)−O((Γρ2)(wj,k)).

It remains to take the set W = (wj,k), to observe that the union of the
disks {|z − wj,k| ≤ 6ρ(wj,k)} covers all but finitely many of the disks Dj,k,
so applying Proposition 1 with the radial gauge 6ρ, we complete the proof
of Theorem 1. �

5.2. A Gaussian example. In this section we will provide an example,
which shows that the result of Theorem 1 cannot be essentially improved
with respect to the size of the local scale. We consider the case when a(n) =

1/
√
n! and ξ is a sequence of independent standard complex-valued Gaussian

random variables, and let

F (z) =
∑
n≥0

ξ(n)
zn√
n!
.

This function is called the Gaussian Entire Function, GEF, for short. It
is distinguished from other Gaussian entire functions by the remarkable
distribution invariance of its zero set with respect to isometries of the plane,
see [13, Ch. 2] or [29].

In this case, a straightforward computation shows that the function ϕ
satisfies ϕ(t) = 1

2 log t+O(t−1), and ϕ′(t) = (2t)−1 +O(t−2). Then, ψ(s) =

e2s +O(1), and ψ′(s) = 2e2s +O(1), whence, for large |z|,

V (z) = logµ(|z|) =

∫ log |z|

0
ψ = 1

2 |z|
2 +O(log |z|),

and σ(R) = ψ′(logR) = 2R2 +O(1). Furthermore, the density of the Riesz
measure of the function V equals (2π)−1σ(R)/R2 = π−1 +O(R−2). Hence,
by Theorem 1, a.s., the number of zeroes of the GEF F in any disk of radius
r and center z, with sufficiently large |z| and with r &

√
log |z|, is close to

r2.
The following theorem shows that this local equidistribution breaks down

at the scale log1/4 t.

Theorem 2. Let F be a GEF, and let Dj = D(j2, κ log1/4 j), j ≥ 2, with a
sufficiently small parameter κ > 0. Then a.s. F does not vanish on infinitely
many disks from the collection (Dj).
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Proof. We will be using the asymptotic independence property of the zero
set of the GEF F . For w ∈ C, set

TwF (z) = F (z + w)e−zw̄−
1
2
|w|2 .

Let rj = κ log1/4 j. Then, by Lemma 5 in [30], there exist independent GEFs
Fj , j ≥ 2, such that Tj2F = Fj +Hj and

P
[

sup
D(0,rj)

|Hj(z)|e−|z|
2/2 ≥ e−j2

]
≤ 2e−j

2/2.

By the Borel–Cantelli lemma, a.s., there exists j0 so that, for j ≥ j0,
sup

D(0,rj)
|Hj | ≤ 1

2 .

Now we argue as in [38, Section 1]. Let

Fj(z) =
∑
n≥0

ξj(n)
zn√
n!
.

For every j, we consider the event Yj that |ξj(0)| ≥ 2, |ξj(n)| ≤ e−r
2
j for

1 ≤ n ≤ 16r2
j , and |ξj(n)| ≤ 2n for n > 16r2

j . Then P[Yj ] ≥ Ce−cr
4
j & j−1,

provided that κ is such that cκ4 ≤ 1. Denote by J the set of js such that the
events Yj occur. Since

∑
j P[Yj ] = +∞, and the events Yj are independent,

by the Borel–Cantelli lemma, a.s., card J =∞.
Finally, if j ∈ J and j ≥ j1, then, by a straightforward computation [38,

Section 1], inf
D(0,rj)

|Fj | ≥ 1, and therefore, for j ≥ max(j0, j1), we have

inf
D(0,rj)

|Tj2F (z)| ≥ 1
2 . Thus, F does not vanish on Dj for j ∈ J , j ≥

max(j0, j1), and we are done. �

It might be interesting to construct similar examples for other distribu-
tions of the IID sequence ξ (for instance, Rademacher or Steinhaus ones),

at least, for the same choice a(n) = 1/
√
n!.

6. Wiener sequences ξ with the Lebesgue spectral measure

In Proposition 5 we give a lower bound for the Weyl-type sum WR(θ) on
a sufficiently dense set of points (R, θ). The crucial role in this bound will
be played by a quantitative smallness of autocorrelations

1

B −A
∑

A≤k<B
ξ(k)ξ̄(k + h), h 6= 0.

Combined with Proposition 2 and Proposition 1, it will guarantee (γ, ρ)-
equidistribution of zeroes of Fξ with an appropriate radial gauge ρ (The-
orem 3). We will demonstrate how this approach works for three differ-
ent instances of Wiener sequences ξ with Lebesgue spectral measure: (i)
ξ(n) = e(αn2) with irrational non-Liouville α, (ii) random multiplicative
sequences, and (iii) the Golay–Rudin–Shapiro sequence.
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6.1. Auxiliary estimates. Here, we collect estimates of the function
VR(k;h), which will be defined momentarily. These estimates will be used
in the proofs of Proposition 5 and Proposition 6.

Throughout this section we assume that the function ϕ is ∆-regular. As
above, ν = ν(R) and σ = σ(R). Let β = β(R) be a small parameter
satisfying

σ−1/2 = o(β), β∆(σ) = o(1) ,

as R→∞. Set

VR(k;h) =

∫ R(1+β)

R
exp
[
−(k − ν(s))2 + (k + h− ν(s))2

2σ(s)

]
dν(s)

=

∫ ν(R(1+β))

ν(R)
exp
[
−(k − t)2 + (k + h− t)2

2σ(ν−1(t))

]
dt .

A simple and useful observation is that the function σ = ψ′ ◦ log stays
approximately constant on the integration interval [R,R(1 + β)]:

Lemma 6.1. We have

(i) σ(s) = (1 + o(1))σ everywhere on [R,R(1 + β)];
(ii) ν(R(1 + β))− ν(R) = (1 + o(1))βσ.

Proof. Since | log(R(1 + β)) − logR | ≤ β = o(1/∆(σ)), relation (i) readily
follows from Lemma 4.1(c). To prove (ii), we recall that ν ′(r) = σ(r)/r.
Hence, (ii) follows from (i). �

The next lemma provides us with crude upper and lower bounds on VR.

Lemma 6.2. We have

(i) VR(k;h) .
√
σ;

(ii) VR(k; 0) &
√
σ, provided that ν(R) ≤ k ≤ ν(R(1 + β)).

Proof. By Lemma 6.1(i),

VR(k;h) ≤
∫ ν(R(1+β))

ν(R)
exp
[
−(1 + o(1)) (k − t)2/(2σ)

]
dt

<

∫
R

exp
[
−(1 + o(1))u2/2σ

]
du

.
√
σ ,

proving (i).
The proof of (ii) is also straightforward. By Lemma 6.1(i),

VR(k; 0) =

∫ ν(R(1+β))

ν(R)
exp
[
−(1 + o(1))(k − t)2/(2σ)

]
dt

=

∫ ν(R(1+β))−k

ν(R)−k
exp
[
−(1 + o(1))u2/(2σ)

]
du .

Observe that either ν(R) − k ≤ −1
2 L, or ν(R(1 + β)) − k ≥ 1

2 L, where
L = ν(R(1 + β)) − ν(R). By Lemma 6.1(ii), L = (1 + o(1))βσ, which is
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�
√
σ. Thus, ∫ 1

2
L

0
exp
[
−(1 + o(1))u2/(2σ)

]
du &

√
σ ,

proving the lemma. �

The next lemma gives us more accurate upper bounds.

Lemma 6.3.

(i) VR(k;h) . e−ch
2/σ√σ;

(ii)

VR(k;h) .

{
e−c(ν(R)−k)2/σ√σ, k < ν(R),

e−c(k−ν(R(1+β)))2/σ√σ, k > ν(R(1 + β)) .

Proof. We have

VR(k;h) =

∫ ν(R(1+β))−k−h
2

ν(R)−k−h
2

exp
[
−1 + o(1)

2σ

(
(u− 1

2h)2 + (u+ 1
2h)2

)]
du

=

∫ ν(R(1+β))−k−h
2

ν(R)−k−h
2

exp
[
−(1 + o(1))(u2 + 1

4h
2)/σ

]
du

< e−(1+o(1))h2/(4σ)

∫
R
e−(1+o(1))u2/σ du

. e−ch
2/σ√σ .

To prove the second estimate, we note that, for k < ν(R), we have

VR(k;h) <

∫ ν(R(1+β))

ν(R)
exp
[
−1 + o(1)

2σ
(t− k)2

]
dt

<

∫ ∞
ν(R)−k

e−(1+o(1))u2/(2σ) du

< e−(1+o(1))(ν(R)−k)2/(2σ)√σ .

The case k > ν(R(1 + β)) is very similar and we skip it. �

The next lemma estimates the oscillation of the function k 7→ VR(k;h)
along Z.

Lemma 6.4.
∑
k∈Z
|VR(k;h)− VR(k − 1;h)| .

√
σ.

Proof. Set m1 = ν(R) − A
√
σ log σ, m2 = ν(R(1 + β)) + A

√
σ log σ with

sufficiently large A. By Lemma 6.3(ii), the sums over k < m1 and k > m2

are o(1) if the constant A was chosen big enough. Hence, we need to show
that ∑

m1≤k≤m2

|VR(k;h)− VR(k − 1;h)| .
√
σ .
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We will represent the function VR(k;h) as a difference of two increasing
functions in k. Recalling that σ(ν−1(t)) = 1/ϕ′(t)), we get

VR(k;h) =

∫ ν(R(1+β))

ν(R)
exp
[
−(k − t)2 + (k + h− t)2

2σ(ν−1(t))

]
dt

=

∫ ν(R(1+β))

ν(R)
exp
[
−1

2 ϕ
′(t)((k − t)2 + (k + h− t)2)

]
dt

=

∫ ν(R(1+β))−k− 1
2
h

ν(R)−k− 1
2
h

exp
[
−1

2 ϕ
′(x+ k + 1

2 h)(x2 + 1
4 h

2)
]

dx

=
(∫ ν(R(1+β))−m1−h2

ν(R)−k− 1
2
h

−
∫ ν(R(1+β))−m1−h2

ν(R(1+β))−k− 1
2
h

)
exp
[
−1

2 ϕ
′(x+ k + 1

2 h)(x2 + 1
4 h

2)
]

dx

= V1,R(k;h)− V2,R(k;h).

First, observe that both functions V1,R and V2,R have uniform upper
bounds

(6.1) V1,R, V2,R .
√
σ .

Indeed, in the integration range, ν(R) ≤ x+ k+ 1
2 h ≤ ν(R(1 + β)) + (m2−

m1) = ν + O(βσ). Since βσ∆(σ)ϕ′(ν) = β∆(σ) = o(1), by Lemma 4.1(b),
in this range, ϕ′(x + k + 1

2 h) = (1 + o(1))ϕ′(ν) = (1 + o(1))σ−1, which
yields (6.1).

Next, we observe that since the function t 7→ ϕ′(t) decreases, the functions
V1,R and V2,R are increasing functions in k.

The rest is straightforward:∑
m1≤k≤m2

|VR(k;h)− VR(k − 1;h)|

≤
∑

1≤j≤2

∑
m1≤k≤m2

|Vj,R(k;h)− Vj,R(k − 1;h)|

=
∑

1≤j≤2

∑
m1≤k≤m2

[
Vj,R(k − 1;h)− Vj,R(k;h)

]
<
∑

1≤j≤2

Vj,R(m1;h)

.
√
σ ,

proving the lemma. �

Set

VR(h) =
∑
k∈Z

VR(k;h) .

Lemma 6.5. We have

VR(0) ' βσ3/2 .
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Proof. To prove the lower bound, we write

VR(0) ≥
∑

ν(R)≤k≤ν(R(1+β))

VR(k; 0)

and note that by Lemma 6.1(ii) and Lemma 6.2, the RHS is

'
√
σ
[
ν(R(1 + β))− ν(R)

]
' βσ3/2.

To prove the upper bound, we split the sum into three parts:

VR(0) =
( ∑
k<ν(R)

+
∑

ν(R)≤k≤ν(R(1+β))

+
∑

k>ν(R(1+β))

)
VR(k; 0) .

By Lemma 6.3(ii), the first and the third sums are O(σ) = o(βσ3/2), while,

by the above, the middle sum is ' βσ3/2. �

Lemma 6.6. For h2 . σ, we have

|VR(h)− VR(0)| . (1 + h2β)
√
σ .

Proof. First, we observe that∣∣∣VR(h)−
∫
R
VR(κ;h) dκ

∣∣∣ . √σ .
Indeed, as in the proof of Lemma 6.4, we set m1 = ν(R)−A

√
σ log σ, m2 =

ν(R(1 + β)) +A
√
σ log σ with sufficiently large A. Then, by Lemma 6.3(ii),

VR(h)−
∫
R
VR(κ;h) dκ =

∑
m1≤k≤m2

[
VR(k;h)−

∫ k+1

k
VR(κ;h) dκ

]
+ o(1) ,

provided that the constant A was chosen sufficiently big. It remains to recall
that, as we have shown in the proof of Lemma 6.4, the total variation of the
function k 7→ VR(k;h) on [m1,m2] is .

√
σ.

Thus, we need to bound the difference of the integrals∣∣∣∫
R
VR(κ;h) dκ−

∫
R
VR(κ; 0) dκ

∣∣∣ ≤ ∫ m2

m1

∣∣VR(κ;h)−VR(κ− 1
2 h; 0)

∣∣dκ+o(1) .

Estimating the integrand on the RHS, we get∣∣VR(κ;h)− VR(κ− 1
2 h; 0)

∣∣
=
∣∣∣∫ ν(R(1+β))−κ− 1

2
h

ν(R)−κ− 1
2
h

[
exp
(
−ϕ′(u+ κ+ 1

2 h)(u2 + 1
4 h

2)
)

− exp
(
−ϕ′(u+ κ+ 1

2 h)u2
]

du
∣∣∣

≤
∫ ν(R(1+β))−κ− 1

2
h

ν(R)−κ− 1
2
h

exp
(
−(1 + o(1))u2/σ

)
×
∣∣exp

(
−(1 + o(1))h2/(4σ)

)
− 1
∣∣du

. (h2/σ) ·
√
σ = h2/

√
σ ,
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Thus,∣∣∣∫
R
VR(κ;h) dκ−

∫
R
VR(κ; 0) dκ

∣∣∣ . (m2 −m1)h2/
√
σ + o(1)

. (βσ +
√
σ log σ)h2/

√
σ . h2β

√
σ ,

completing the proof. �

6.2. Lower bound for Weyl-type sums WR. Throughout this section we
assume that the function ϕ is ∆-regular. As above, ν = ν(R) and σ = σ(R).
Let β = β(R) be a small parameter satisfying

(6.2)

√
log σ

σ
� β, β∆(σ) = o(1)

(later, in applications, we set ρ(R) = Rβ(R)). We aim to estimate from
below the exponential sum

WR(θ) =
∑

|k−ν|≤N

ξ(k)e(kθ)e(k−ν)2/(2σ) , N �
√
σ log σ ,

on a sufficiently dense set of points (R, θ).
For M1 < ν(R) and M2 > ν(R(1 + β)), we set

S∗(M1,M2;h) = max
M1≤k≤M2

∣∣∣ ∑
k≤s≤M2

ξ(s)ξ̄(s+ h)
∣∣∣ .

Proposition 5. Suppose that

(6.3)
∑

ν≤k≤ν+ 1
2
βσ

|ξ(k)|2 & βσ ,

and that, for some p > 1,

(6.4)
∑
h≥1

(1 + βh)−pS∗(M1,M2;h)� βσ,

with

M1 = ν(R)− βσ, M2 = ν(R(1 + β)) + βσ .

Then, for every ϑ ∈ [−1
2 ,

1
2 ], there exist

R′ ∈ [R,R(1 + β)], θ′ ∈ (ϑ− β, ϑ+ β),

such that

|WR′(θ
′)| & σ1/4 .

Note that, by Lemma 6.1(ii), M2 − M1 . βσ, and therefore, we have
S∗(M1,M2;h) . βσ. Hence, for 1 < q < p/(p− 1), the terms in the sum on
the LHS of (6.4) with h ≥ β−q can be discarded. Lemma 6.3(i) implies that
the terms with h�

√
σ log σ can be discarded as well.

Furthermore, the ∆-regularity of ϕ and our conditions (6.2) on β yield
that M1,M2 ' ν(R).
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Proof. To simplify our notation, we extend the sequence ξ, letting ξ equal 0
on negative integers, and set

W̃R(θ) =
∑
k∈Z

ξ(k)e(kθ) exp
[
−(k − ν)2

2σ

]
.

It’s easy to see that, for N = A
√
σ log σ with sufficiently large positive A

(used in the definition of the sum WR), we have∑
|k−ν|≥N

exp
[
−(k − ν)2

2σ

]
.
∫ ∞
N

e−x
2/(2σ) dx = o(1),

so that, in order to prove Proposition 5, it will be enough to estimate the

sum W̃R, rather than WR, from below.
We fix a non-negative function g ∈ C∞0 (R), such that supp(g) ⊂ (−1

2 ,
1
2),

and

∫
R
g = 1, fix ϑ ∈ [−1

2 ,
1
2 ], and set

X̃ =

∫ R(1+β)

R

∫ 1/2

−1/2
|W̃s(θ)|2 g(β−1(ϑ− θ)) dθ dν(s) .

By Lemma 6.1(ii), ν(R(1 + β))− ν(R) = (1 + o(1))βσ, so, to prove Propo-

sition 5, we need to show that X̃ & β2σ3/2.

First, we rewrite X̃ as a Fourier series

X̃ =

∫ R(1+β)

R

∑∑
k1,k2∈Z

ξ(k1)ξ̄(k2)
[∫ 1/2

−1/2
e((k1 − k2)θ)g(β−1(ϑ− θ)) dθ

]
· exp

[
−(k1 − ν(s))2 + (k2 − ν(s))2

2σ(s)

]
dν(s)

= β

∫ R(1+β)

R

∑∑
k1,k2∈Z

e((k1 − k2)ϑ)ĝ(β(k2 − k1)) ξ(k1)ξ̄(k2)

· exp
[
−(k1 − ν(s))2 + (k2 − ν(s))2

2σ(s)

]
dν(s)

= β
∑
h∈Z

ĝ(βh)e(−hϑ)
∑
k∈Z

ξ(k)ξ̄(k + h)VR(k;h) ,

where

VR(k;h) =

∫ R(1+β)

R
exp
[
−(k − ν(s))2 + (k + h− ν(s))2

2σ(s)

]
dν(s)

=

∫ ν(R(1+β))

ν(R)
exp
[
−(k − t)2 + (k + h− t)2

2σ(ν−1(t))

]
dt .

Then, we apply a usual strategy: in order to estimate the sum

X̃ = β
∑
h∈Z

ĝ(βh)e(−hϑ)
∑
k∈Z

ξ(k)ξ̄(k + h)VR(k;h) ,



ZERO DISTRIBUTION OF POWER SERIES 31

from below, we split it into two parts, estimate the diagonal terms (h = 0)
from below, and the non-diagonal terms (|h| ≥ 1) from above:

|X̃| ≥ β
∑
k∈Z
|ξ(k)|2VR(k; 0)− β

∑
|h|≥1

|ĝ(βh)|
∣∣∣∑
k∈Z

ξ(k)ξ̄(k + h)VR(k;h)
∣∣∣

= DT−NDT .

By Lemma 6.2(ii),

DT & β
√
σ

∑
ν≤k≤ν+ 1

2
βσ

|ξ(k)|2
(6.3)

& β2σ3/2 ,

so it remains to show that the non-diagonal terms are � β2σ3/2.
Next, we cut the non-diagonal sums. Recalling that the Fourier transform

ĝ(λ) decays faster than any negative power of λ, and using Lemma 6.3, given
p > 1, we get

NDT . β
∑

1≤h≤A
√
σ log σ

1

(1 + βh)p

∣∣∣ ∑
M1≤k≤M2

ξ(k)ξ̄(k + h)VR(k;h)
∣∣∣+O(1) .

Applying first summation by parts and then Lemma 6.2(i) and Lemma 6.4,
we estimate the inner sum by∣∣∣ ∑
M1≤k≤M2

ξ(k)ξ̄(k + h)VR(k;h)
∣∣∣

≤
(
VR(M1;h) +

∑
M1<k≤M2

|VR(k;h)− VR(k − 1;h)|
)
· S∗(M1,M2;h)

.
√
σS∗(M1,M2;h) ,

where, as before,

S∗(M1,M2;h) = max
M1≤k≤M2

∣∣∣ ∑
k≤s≤M2

ξ(s)ξ̄(s+ h)
∣∣∣ .

Hence,

NDT . β
√
σ

∑
1≤h≤A

√
σ log σ

(1 + βh)−p S∗(M1,M2;h) +O(1)
(6.4)
� β2σ3/2 ,

completing the proof of Proposition 5. �

6.3. Tying the loose ends together. Combining Proposition 5 with Pro-
position 2 and Proposition 1, we arrive at the following result.

Theorem 3. Let Fξ(z) =
∑

n≥0 ξ(n)a(n)zn be an entire function with

smooth coefficients a(n) = exp
[
−
∫ n

0
ϕ
]

with a ∆-regular function ϕ. Let

σ = ψ′ ◦ log, where ψ is the function inverse to ϕ. Let β be equal to
Aσ−1/2 log σ with A � 1, or to σ−1/2 loga σ with a > 1

2 , or to σ−c with

0 < c < 1
2 , and let β∆(σ) = o(1) as R → ∞. Suppose that ξ is a bounded

sequence satisfying conditions (6.3) and (6.4) in Proposition 5. Then, the
zero set of Fξ is (γ, ρ)-equidistributed with the radial gauge ρ = Rβ.
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Proof. First, we observe that the radial function ρ = Rβ is a gauge. In-
deed, β′ = o(R−1) because of the bound σ′ . σ∆(σ)/R, which follows from
Lemma 4.1(a) and of the condition β∆(σ) = o(1). Hence, ρ′(R) = o(1).

Since maxθ |WR(θ)| .
∑

k∈Z e
(k−ν)2/(2σ) .

√
σ, Proposition 2 yields the

upper bound log |Fξ(z)| ≤ logµ(|z|) +O(log σ(|z|)).
Next, we note that Proposition 5 combined with Proposition 2 produce

a set W such that, at each w ∈ W , we have the matching lower bound
log |Fξ(w)| ≥ logµ(|w|)−O(log σ(|w|)), and that, for some positive constant
C, the union of the disks

⋃
w∈W {|z−w| ≤ Cρ(w)} covers the complex plane,

maybe, except of a bounded set.
We apply Proposition 1 to the subharmonic functions V (z) = logµ(|z|)

and V1(z) = log |Fξ(z)| with the radial gauge Cρ. Recall that the density Γ
of the Riesz measure of V equals (2π)−1R−2σ, so that, Γρ2 = (2π)−1β2σ &
log2 σ. Since the equidistributions with radial gauges ρ and Cρ are equiva-
lent, we are done. �

We proceed with application of Theorem 3. In each of the instances we’ll
need to check conditions (6.3) and (6.4).

6.4. The sequence ξ(n) = e(αn2) with Diophantine α. Given α ∈ R/Z,
set ξ(n) = e(αn2). In this case, our result depends on the diophantine
properties of α. We let ‖t‖ be the distance from t to the closest integer, and
assume that, for some non-decreasing function f : [1,∞) → [1,∞) and for
any positive integer q, we have

(6.5) ‖qα‖ ≥ c(α)

qf(q)
.

Theorem 4. Let Fξ(z) =
∑

n≥0 e(αn
2)a(n)zn be an entire function with

smooth coefficients a(n) = exp
[
−
∫ n

0
ϕ
]

with ∆-regular function ϕ, and let

σ = ψ′ ◦ log, where ψ is the function inverse to ϕ.

(i) Suppose that α satisfies the diophantine condition (6.5) with f(q) = 1 +
loga q, a ≥ 0. Then the zero set of Fξ is (γ, ρ)-equidistributed with the radial

gauge ρ = Rσ−1/2(log σ)(a+1)/2, provided that ∆(s) = o(
√
s (log s)−(a+1)/2),

as s→∞.

(ii) Suppose that α satisfies the diophantine condition (6.5) with f(q) = qb,
b > 0. Then, for any b′ > b, the zero set of Fξ is (γ, ρ)-equidistributed

with the radial gauge ρ = Rσ−1/(2+b′), provided that ∆(s) = o(s1/(2+b′)), as
s→∞.

It is worth mentioning here, that the case a = 0 (i.e., f(q) = 1) cor-
responds to αs whose continuous fraction expansion has bounded partial
quotients (for example, quadratic irrationalities belong to this class), and
that, by Khinchin’s classical theorem [16, §14], given a > 1, almost every α
satisfies the diophantine condition (6.5) with f(q) = 1 + loga q.
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Proof. Given A ≤ B, h ∈ Z, we have∣∣∣ ∑
A≤s≤B

ξ(s)ξ̄(s+ h)
∣∣∣ =

∣∣∣ ∑
A≤s≤B

e(−2αh)
∣∣∣ ≤ 2

|1− e(−2αh)|
.

Hence, S∗(M1,M2;h) ≤ 2|1 − e(−2αh)|−1, so, in order to satisfy condi-
tion (6.4), we will choose β so that, for some positive p,

(6.6)
∑
h≥1

(1 + βh)−p |1− e(−2αh)|−1 � βσ .

We let Sk,H = {1 ≤ h ≤ H : |1 − e(−2αh)| ≤ 2−k} and estimate the
cardinality of Sk,H by showing that any two distinct integers in Sk,H are
well-separated. If h1, h2 ∈ Sk,H , h1 6= h2, then |1 − e(−2α(h1 − h2))| ≤
|1−e(−2αh1)|+ |1−e(−2αh2)| ≤ 21−k. On the other hand, |1−e(−2α(h1−
h2))| ≥ 4‖2α(h1 − h2)‖. Thus, ‖2α(h1 − h2)‖ ≤ 2−k−1. Then,

1

|h1 − h2|f(|h1 − h2|)
≤ C(α)2−k ,

and therefore, |h1 − h2| & 2k/f(2H), whence, |Sk,H | . Hf(2H)2−k.
Estimating the sum on the LHS of (6.6), we split it into the blocks of the

length β−12`, ` ≥ 0. Summing over the `th block, we take H` = β−12`. We
get

LHS of (6.6) .
∑
`≥0

2−p`
∑

0≤k.log(β−12`)

2k · |Sk,H` |

.
∑
`≥0

2−p`
∑

0≤k.log(β−12`)

2k ·H`f(2H`)2
−k

.
1

β

∑
`≥0

2(1−p)`f
( 1

β
21+`

)
· log

( 1

β
2`
)
.

First, we assume that α satisfies (6.5) with f(q) = 1+loga q. In this case,

LHS of (6.6) .
1

β

∑
`≥0

2(1−p)` · loga+1
( 1

β
2`
)
.

1

β
loga+1

( 1

β

)
,

provided that we took p > 1. To guarantee that β−1 loga+1(β−1)� βσ, we

take β = C (σ−1 loga+1 σ)1/2 with sufficiently large C, proving the theorem
in the case (i).

Similarly, for α satisfying (6.5) with f(q) = qb, we have

LHS of (6.6) .
1

β

∑
`≥0

2(1−p)` ·
( 1

β
2`
)b

log
( 1

β
2`
)
.
( 1

β

)1+b′′

,

provided that we took p > b + 1, b < b′′ < b′. This time, to guarantee
that β−(1+b′′) � βσ, we take β = σ−1/(2+b′), proving the theorem in the
case (ii). �



34 JACQUES BENATAR, ALEXANDER BORICHEV, AND MIKHAIL SODIN

6.5. Random multiplicative and completely multiplicative sequen-
ces. Denote by P the set of primes. Let (Xp)p∈P be a sequence of in-
dependent identically distributed unimodular random variables. Suppose
that they are symmetric (that is, Xp and −Xp are equidistributed), for in-
stance, the Rademacher or the Steinhaus random variables will do. Then
E [Xn

p X̄
m
p ] = 0 if n−m is odd.

Consider two random multiplicative functions:

ξ1(n) =

{∏
p|nXp, n is square− free,

0, otherwise,

ξ2(n) =
∏
pa||n

Xa
p .

The function ξ1 is a random counterpart of the Möbius function, the function
ξ2 is completely multiplicative.

Theorem 5. Let ξ be a random multiplicative sequence ξ1 or ξ2. Let
Fξ(z) =

∑
n≥0 ξ(n)a(n)zn be an entire function with smooth coefficients

a(n) = exp
[
−
∫ n

0
ϕ
]
, with a ∆-regular function ϕ, such that, for every

ε > 0,

(6.7) ϕ′(t) = o(t−1+ε), t→∞.
Let σ = ψ′ ◦ log, where ψ is the function inverse to ϕ. Then, almost surely,
the zero set of Fξ is (γ, ρ)-equidistributed with the radial gauge ρ = Rσ−c

with any 0 < c < 1/6, provided that ∆(s) = o(sc) as s→∞.

The proof will use the following estimate for the binary correlations of ξ,
which improves Lemma 9 in [1] and, probably, is of independent interest.

Lemma 6.7. Let a ∈ (0, 1), b > 0. Then

E
[ ∣∣∣ ∑

x≤k<(1+η)x

ξ(k)ξ̄(k + h)
∣∣∣2 ] . ηx1+b,

provided that 0 < h . ηx1−a and xa−1 ≤ η ≤ 1.

Proof. Let h > 0. We have

Y
def
= E

[ ∣∣∣ ∑
x≤k<(1+η)x

ξ(k)ξ̄(k + h)
∣∣∣2]

=
∑∑

n1,n2∈[x,(1+η)x]

E
[
ξ(n1)ξ̄(n1 + h)ξ̄(n2)ξ(n2 + h)

]
.

Observe that if

(6.8) E
[
ξ(n1)ξ̄(n1 + h)ξ̄(n2)ξ(n2 + h)

]
6= 0,

then n1(n1 + h)n2(n2 + h) is a square.
Denote d1 = gcd(n1, n1+h), d2 = gcd(n2, n2+h), k1 = n1/d1, k2 = n2/d2.

Since d1 and d2 divide h, the number of possible pairs (d1, d2) is bounded
by τ2(h) .ε xε, where τ is the divisor function. Fix d1 and d2.
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Case 1: ξ = ξ1. Under condition (6.8) we have

k1

(
k1 +

h

d1

)
= k2

(
k2 +

h

d2

)
.

Therefore, for every k1, there exists at most two possible values for k2 and,
hence, Y .ε ηx1+ε.

Case 2: ξ = ξ2. Let e2
1, f

2
1 , e

2
2, f

2
2 be the largest square divisors of, corre-

spondingly, k1, k1 + h
d1

, k2, k2 + h
d2

. Under condition (6.8) we have

(6.9)
k1(k1 + h

d1
)

e2
1f

2
1

=
k2(k2 + h

d2
)

e2
2f

2
2

.

First, the left hand side of (6.9) is determined by n1 and, hence, takes at
most ηx possible square-free values m. For every such value m and for every
triple (k2, e2, f2) satisfying (6.9) there are m′ and m′′ verifying the equations

m = m′m′′,

k2 = m′e2
2,

k2 + h
d2

= m′′f2
2 .

For fixed m, the number of such couples (m′,m′′) is .ε xε. Given m′ and
m′′, it remains to solve the equation

(6.10) m′′f2
2 −m′e2

2 =
h

d2
.

Now, [4, Proposition 1] shows (the discriminant 4m′m′′ = 4m is not a square)
that the number of solutions (e2, f2) to (6.10) is .ε xε. Finally, Y .ε ηx1+ε,
proving the lemma. �

The next lemma is a simple corollary to the previous one.

Lemma 6.8. Let 0 < a < 1, A > 1/(1 − a), b′ > 0, and H = H(m) .
mA(1−a)−1. Then, almost surely,

1

H

∑
1≤h≤H

∣∣∣ ∑
mA≤k<(m+1)A

ξ(k)ξ̄(k + h)
∣∣∣ ≤ m 1

2
A(1+b′) ,

provided that m is sufficiently large.

Proof. Applying the Cauchy–Schwarz inequality, we have( ∑
1≤h≤H

∣∣∣ ∑
mA≤k<(m+1)A

ξ(k)ξ̄(k + h)
∣∣∣)2

≤ H
∑

1≤h≤H

∣∣∣ ∑
mA≤k<(m+1)A

ξ(k)ξ̄(k + h)
∣∣∣2.
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Set λ = Hm
1
2
A(1+b′). Applying Lemma 6.7 with x = mA, η = (m +

1)A/mA − 1 ' m−1, and with 0 < b < b′, we obtain

P
[ ∑

1≤h≤H

∣∣∣ ∑
mA≤k<(m+1)A

ξ(k)ξ̄(k + h)
∣∣∣ ≥ λ]

≤ P
[ ∑

1≤h≤H

∣∣∣ ∑
mA≤k<(m+1)A

ξ(k)ξ̄(k + h)
∣∣∣2 ≥ H−1λ2

]
≤ Hλ−2 E

[ ∑
1≤h≤H

∣∣∣ ∑
mA≤k≤(m+1)A

ξ(k)ξ̄(k + h)
∣∣∣2]

. H2λ−2mA(1+b)−1 .

This application of Lemma 6.7 is legal since H was chosen . mA(1−a)−1 '
ηx1−a. The convergence of the series∑

m

H2λ−2mA(1+b)−1 =
∑
m

mA(b−b′)−1 <∞

allows us to apply the Borel–Cantelli lemma, which shows that, almost
surely, we have ∑

1≤h≤H

∣∣∣ ∑
mA≤k≤(m+1)A

ξ(k)ξ̄(k + h)
∣∣∣ ≤ λ ,

provided that m is sufficiently large. �

Proof of Theorem 5. First, we note that∑
ν≤k≤ν+ 1

2
βσ

|ξ(k)|2 & βσ .

This is obvious in the completely multiplicative case, when ξ = ξ2. In the
random Möbius case, ξ = ξ1, this follows from the classical estimate [9,
Theorem 333], which states that the number of the square-free integers in
[1, x] equals κx+ O(

√
x) with κ = 6/π2 (recall that β = σ−c with c < 1/6,

so βσ � ν1/2). Thus, we need to show that, for some p,∑
h≥1

(1 + βh)−p S∗(M1,M2;h)� βσ ,

with [M1,M2] = [ν − βσ, ν + (2 + o(1))βσ].
Next, observe that, for q > 1 and p > q/(q − 1),∑

h≥β−q
(1 + βh)−p S∗(M1,M2;h)� βσ

∑
h≥β−q

(1 + βh)−p � βσ ,

so our task boils down to∑
1≤h≤β−q

max
|k−ν|≤3βσ

∣∣∣ ∑
k≤s≤ν+3βσ

ξ(s)ξ̄(s+ h)
∣∣∣� βσ .

Given A, a, b′ as in Lemma 6.8, let R be sufficiently large, and let m '
ν1/A. We divide the interval [ν − 3βσ, ν + 3βσ] into L ' βσ/mA−1 '
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βσν−(A−1)/A intervals [(m+s)A, (m+s+1)A] of length ' mA−1. Assuming
that

(6.11) β−q . mA(1−a)−1

and applying Lemma 6.8 with H = β−q, almost surely, we have∑
1≤h≤β−q

max
|k−ν|≤3βσ

∣∣∣ ∑
k≤s≤ν+3βσ

ξ(s)ξ̄(s+h)
∣∣∣ . β−qm 1

2
A(1+b′) ·L+β−q ·mA−1 .

Plugging in L ' βσν1/A−1, mA−1 ' ν1−1/A, and recalling that by assump-
tion (6.7), σ � ν1−ε), we see that the RHS is

. βσ
(
β−qν(1+b′)/2+1/A−1 + β−q−1νε−1/A

)
� βσ

(
νq(c+ε)+(1+b′)/2+1/A−1 + ν(q+1)(c+ε)+ε−1/A

)
,

provided that β = σ−c � ν−c−ε. Since we can take q sufficiently close to 1,
and a, b′ and ε sufficiently small, we conclude that the parameters A and c
need to satisfy two conditions{

1/A < 1/2− c,
1/A > 2c

(condition (6.11) boils down to c < 1 − a − 1/A and, since a can be taken
arbitrarily small, is weaker than the first one). It remains to choose A = 3
together with any c < 1/6, completing the proof of Theorem 5. �

6.6. The Golay–Rudin–Shapiro sequence. Let ξ be the Golay–Rudin–
Shapiro sequence, that is, ξ(0) = 1, ξ(2n) = ξ(n), and ξ(2n+1) = (−1)nξ(n).

Theorem 6. Let Fξ(z) =
∑

n≥0 ξ(n)a(n)zn be an entire function with

smooth coefficients a(n) = exp
[
−
∫ n

0
ϕ
]
, and with the Golay–Rudin–Shapiro

sequence ξ. Let σ = ψ′ ◦ log, where ψ is the function inverse to ϕ. Then, for
any 0 < c < 1/3, the zero set of Fξ is (γ, ρ)-equidistributed with the radial
gauge ρ = Rσ−c, provided that the function ϕ is ∆-regular with ∆(s) = o(sc),
as s→∞.

Proof. As in the two previous instances, we will apply Theorem 3. We use
the estimate for the binary correlations of ξ due to Mauduit and Sárközy [24,
Theorem 4]: ∣∣∣ ∑

1≤s≤M
ξ(s)ξ(s+ h)

∣∣∣ . h(1 + logM) , h ≥ 1 .

This immediately yields S∗(M1,M2;h) . h log σ. Splitting the sum below
into the blocks of length β−12`, ` ≥ 0, and taking p > 2, we get∑

h≥1

(1 + βh)−pS∗(M1,M2;h) . log σ
∑
`≥0

2−p`
(2`

β

)2
.

log σ

β2
.

To satisfy condition (6.4), we take β = σ−c with any c < 1/3. Then,
obviously, β−2 log σ � βσ, and we are done. �
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7. Wiener sequences ξ whose spectral measures have no gaps

Throughout this section we assume that

(7.1)
∣∣∣ 1

X

∑
0≤s<X

ξ(s)ξ̄(s+ h)− χ̂(h)
∣∣∣ . ε1(X;h), 0 ≤ h ≤ H = H(X),

with X 7→ ε1(X;h) decreasing to 0 and X 7→ H(X) increasing to ∞, as
X →∞, and that

(7.2) inf
{
χ(J) : J ⊂ [−1

2 ,
1
2 ] an interval, |J | = 1

2 η
}
& ε2(η),

with a positive non-decreasing function ε2. The first condition quantifies
the fact that χ is a spectral measure of the Wiener sequence ξ, while the
second condition is a quantitative version of the statement that χ has no
gaps in its support.

In Proposition 6 we provide a set of conditions which will yield a lower
bound on the Weyl-type sum WR(θ) on a sufficiently dense set of points
(R, θ). Then, we combine Proposition 6 with Proposition 1 and Proposi-
tion 2 and show (in Theorem 7) that these conditions guarantee equidistri-
bution of zeroes of Fξ on appropriate local scales. This set of conditions looks
somewhat cumbersome, but then, to demonstrate how neatly it works, we
consider two instances of Wiener sequences ξ with singular spectral measures
having no gaps in their support: the indicator-function of the square-free
integers and the Thue–Morse sequence.

7.1. Another lower bound for Weyl-type sums. Denote by G the class
of non-negative test-functions g ∈ C∞0 (R) such that supp(g) ⊂

(
−1

2 ,
1
2

)
,∫

R
g = 1, and g = 1 on

[
−1

4 ,
1
4

]
. As before, we assume that ϕ is a ∆-regular

function, and that ν = ψ ◦ log, σ = ψ′ ◦ log, where ψ = ϕ−1 is the inverse
function.

Proposition 6. Let R � 1. Suppose that there exist q > 1, β = β(R) �
1/∆(σ), and g ∈ G, satisfying the following set of conditions:

(a) β−q ≤ min
{√

σ,H(1
2 ν)

}
;

(b) β−(1+2q) � σε2(β);

(c) ν
∑

0≤h≤β−q
ε1(1

2 ν;h)� βσε2(β);

(d)
∑
h>β−q

|ĝ(βh)| � ε2(β).

Then, for every ϑ ∈
[
−1

2 ,
1
2

]
, there exist

R′ ∈ [R,R(1 + β)], θ′ ∈ (ϑ− β, ϑ+ β),

such that

|WR′(θ
′)| & σ1/4

√
ε2(β) .



ZERO DISTRIBUTION OF POWER SERIES 39

Proof. As in the proof of Proposition 5, we estimate from below the average

X̃ =

∫ R(1+β)

R

∫ 1/2

−1/2
|W̃s(θ)|2 g(β−1(ϑ− θ)) dθ dν(s) ,

where

W̃R(θ) =
∑
k∈Z

ξ(k)e(kθ) exp
[ (k − ν)2

2σ

]
.

By Lemma 6.1(ii), ν(R(1 + β))− ν(R) = (1 + o(1))βσ, so, to prove Propo-

sition 6 we need to show that X̃ & β2σ3/2ε2(β). As before, we rewrite X̃ as
a Fourier series

X̃ = β
∑
h∈Z

ĝ(βh)e(−hϑ)
∑
k∈Z

ξ(k)ξ̄(k + h)VR(k;h) .

Recalling the notation VR(h) =
∑
k∈Z

VR(k;h), we split the RHS into three

parts:

X̃ = βVR(0)
∑
h∈Z

ĝ(βh)χ̂(h)e(−hϑ)

+ β
∑
h∈Z

ĝ(βh)e(−hϑ)
∑
k∈Z

(
ξ(k)ξ̄(k + h)− χ̂(h)

)
VR(k;h)

+ β
∑
h∈Z

ĝ(βh)χ̂(h)e(−hϑ) (VR(h)− VR(0))

= I + II + III .

We will show that I & β2σ3/2ε2(β), while the terms |II| and |III| are

� β2σ3/2ε2(β).

Lower bound of I: We set gβ(θ) = β−1g(β−1θ), and denote by (χ ∗ gβ)′ the
density of the convolution of χ with gβ. Then,

I = βVR(0)(χ ∗ gβ)′(−ϑ).

By Lemma 6.5, VR(0) & βσ3/2. Since gβ = β−1 on
[
−1

4 β,
1
4 β
]
, we have

(χ ∗ gβ)′(−ϑ) & χ
[
−ϑ− 1

4 β,−ϑ+ 1
4 β
]
& ε2(β).

Thus, I & β2σ3/2ε2(β).

Upper bound of II: Recalling that βσ
(a)
�
√
σ log σ and using Lemma 6.3(ii),

we cut the sum in k, getting

|II| . β
∑
h∈Z
|ĝ(βh)| ·

∣∣ ∑
|k−ν|≤2βσ

(
ξ(k)ξ̄(k + h)− χ̂(h)

)
VR(k;h)

∣∣+ o(1)

= β
( ∑
|h|≤β−q

+
∑
|h|>β−q

)
|ĝ(βh)|

×
∣∣ ∑
|k−ν|≤2βσ

(
ξ(k)ξ̄(k + h)− χ̂(h)

)
VR(k;h)

∣∣+ o(1) .
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For |h| > β−q, using the crude estimate∣∣ ∑
|k−ν|≤2βσ

(
ξ(k)ξ̄(k + h)− χ̂(h)

)
VR(k;h)

∣∣ . βσ · √σ = βσ3/2 ,

we get

β
∑
|h|>β−q

|ĝ(βh)| ·
∣∣ ∑
|k−ν|≤2βσ

(
ξ(k)ξ̄(k + h)− χ̂(h)

)
VR(k;h)

∣∣
. β2σ3/2

∑
|h|>β−q

|ĝ(βh)| ,

which is � β2σ3/2ε2(β) by assumption (d).
Now, we consider the sum over |h| ≤ β−q. Applying summation by parts

and using Lemma 6.4, we have∣∣∣ ∑
|k−ν|≤2βσ

(
ξ(k)ξ̄(k + h)− χ̂(h)

)
VR(k;h)

∣∣∣
.
(

max
|k−ν|≤2βσ

VR(k;h) +
∑

|k−ν|≤2βσ

|VR(k;h)− VR(k − 1;h)|
)

× max
|k−ν|≤2β

∣∣ ∑
k≤s≤ν+2βσ

(
ξ(s)ξ̄(s+ h)− χ̂(h)

) ∣∣
.
√
σ max
|k−ν|≤2β

∣∣ ∑
k≤s≤ν+2βσ

(
ξ(s)ξ̄(s+ h)− χ̂(h)

) ∣∣ .
First, we assume that 0 ≤ h ≤ β−q. Then, by estimate (7.1), the maximum
on the RHS is . (ν + 2βσ)ε1(ν − 2βσ;h). Since βσ � σ/∆(σ) . ν, the
latter expression is . νε1(1

2 ν;h). The application of estimate (7.1) was

legal since, β−q
(a)

≤ H(1
2 ν)

βσ�ν
≤ H(ν − 2βσ). Thus,

β
∑

0≤h≤β−q
|ĝ(βh)| ·

∣∣ ∑
|k−ν|≤2βσ

(
ξ(k)ξ̄(k + h)− χ̂(h)

)
VR(k;h)

∣∣
. β
√
σ · ν

∑
0≤h≤β−q

ε1(1
2 ν, h) ,

which is � β2σ3/2ε2(β) by assumption (c).
The sum over −β−q ≤ h ≤ −1 needs only a minor modification. In this

case we have∣∣ ∑
k≤s≤ν+2βσ

(
ξ(s)ξ̄(s+ h)− χ̂(h)

) ∣∣
=
∣∣ ∑
k−|h|≤s≤ν+2βσ−|h|

(
ξ(s)ξ̄(s+ |h|)− χ̂(|h|)

) ∣∣
=
∣∣ ∑
k≤s≤ν+2βσ

(
ξ(s)ξ̄(s+ |h|)− χ̂(|h|)

) ∣∣+O(|h|) .



ZERO DISTRIBUTION OF POWER SERIES 41

Therefore,

β
∑

−β−q≤h≤−1

|ĝ(βh)| ·
∣∣ ∑
|k−ν|≤2βσ

(
ξ(k)ξ̄(k + h)− χ̂(h)

)
VR(k;h)

∣∣
. β
√
σ
(
ν

∑
0≤h′≤β−q

ε1(1
2 ν, h

′) + β−2q
)
,

and, by assumptions (c) and (b), both terms on the RHS are� β2σ3/2ε2(β).

Upper bound of III: We have

|III| . β
( ∑
|h|≤
√
σ

+
∑
|h|>
√
σ

)
|ĝ(βh)| · |(VR(h)− VR(0))| .

To estimate the first sum, we apply Lemma 6.6 and use that the Fourier
transform of g decays faster than any negative power. We get

β
∑
|h|≤
√
σ

|ĝ(βh)| · |(VR(h)− VR(0))| . β
√
σ
∑
|h|≤
√
σ

|ĝ(βh)|(1 + h2β)

. β
√
σ · β−2 =

√
σ

β
.

To estimate the second sum, we use the crude bound VR(h) . βσ3/2, which
follows from Lemma 6.2(i) and Lemma 6.3(ii). Using again that the Fourier
transform of g decays faster than any negative power, we get

β
∑
|h|>
√
σ

|ĝ(βh)| · |(VR(h)− VR(0))| . β2σ3/2
∑
|h|>
√
σ

|ĝ(βh)|

. β2σ3/2 · 1

β

∑
`≥β
√
σ

1

`3
.

√
σ

β
.

It remains to recall that condition (b) guarantees that

β−1√σ � β2σ3/2 ε2(β).

This completes the proof of Proposition 6. �

7.2. Making the ends meet. Now, combining Proposition 6 with Propo-
sition 1 and Proposition 2, we obtain

Theorem 7. Let Fξ(z) =
∑
n≥0

ξ(n)a(n)zn be an entire function with smooth

coefficients a(n) = exp
[
−
∫ n

0
ϕ
]

with a ∆-regular function ϕ. Let σ =

ψ′ ◦ log, where ψ = ϕ−1 is the inverse to ϕ. Let β = β(R) � 1/∆(σ) be a
small parameter satisfying

β′(R) = o(1/R), R→∞ .

Suppose that ξ is a bounded sequence, for which conditions (7.1) and (7.2)
hold with functions ε1 and ε2 satisfying assumptions (a), (b), (c), and (d)
in Proposition 6. Suppose, in addition, that

(7.3) σ−1/4∆(σ)(log σ)3/2 �
√
ε2(β) .
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Then the zero set of Fξ is (γ, ρ)-equidistributed with the radial gauge ρ = Rβ.

We skip the proof this theorem, which is rather straightforward and close
to the proof of Theorem 3. The only difference is that now, instead of
Proposition 5, we will use Proposition 6. We mention that the purpose of
the additional restriction (7.3) is to guarantee that the lower bound on the
Weyl-type sum WR, provided by Proposition 6, can be combined with the
approximation error in Proposition 2.

7.3. The indicator-function of square-free integers. Here, we consider
ξ(n) = µ2(n), where µ is the Möbius function. The main result of this
section is Theorem 8 below. The key ingredient in its proof is Mirsky’s
classical estimate for binary correlations. Set

D =
∏
p

(
1− 2

p2

)
.

Lemma 7.1 (Mirsky [25]). For ε > 0, we have∣∣∣ ∑
0≤k≤x

µ2(k)µ2(k + h)−D(h)x
∣∣∣ ≤ Cεx2/3+ε, 0 ≤ h ≤ x,

where D(0) = 6π−2, and for h 6= 0,

D(h) = D
∏
p2|h

(
1 +

1

p2 − 2

)
.

The only difference with Mirsky’s result is he did not specify the depen-
dence of the constant on the shift h. For the reader’s convenience, we give
the proof in Appendix C. We will follow Mirsky’s work very closely.

Having Lemma 7.1 at hand, it is not difficult to compute the spectral
measure χ of the sequence µ2.

Lemma 7.2. The spectral measure of the sequence µ2 equals

χ = D
∑

µ2(d)=1

( 1

d2

∏
p|d

1

p2 − 2

) d2−1∑
j=0

δe(j/d2).

Since the proof is only a few lines, we give it here:

Proof. We need to check that χ̂(h) = D(h). For h = 0 this is obvious. For
h ≥ 1, we have

χ̂(h) = D
∑

µ2(d)=1

( 1

d2

∏
p|d

1

p2 − 2

) d2−1∑
j=0

e(jh/d2).

Since
m−1∑
j=0

e(jk/m) =

{
m, m | k,
0, m6 | k,

we obtain that

χ̂(h) = D
∑

µ2(d)=1, d2|h

∏
p|d

1

p2 − 2
= D

∏
p2|h

(
1 +

1

p2 − 2

)
= D(h),
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completing the proof. �

The next lemma tells us how thin the measure χ can be, i.e, how esti-
mate (7.2) looks in this case:

Lemma 7.3. For any interval I ⊂
[
−1

2 ,
1
2 ], we have χ(I) & |I|3/2.

Proof. We have

χ(I) &
∑

µ2(d)=1,
d2|I|>1

( 1

d2

∏
p|d

1

p2 − 2

)
d2|I|

= |I|
∑

µ2(d)=1,
d2|I|>1

∏
p|d

1

p2 − 2
& |I|

∑
µ2(d)=1,
d2|I|>1

1

d2
& |I|

∑
`>|I|−1

1

`2
& |I|3/2,

where in the inequality before last, we used that the square-free numbers
have positive density. �

Combining Theorem 7 with Lemma 7.1 and Lemma 7.3, we arrive at

Theorem 8. Let

F (z) =
∑

µ2(n)=1

a(n)zn

be an entire function with smooth coefficients a(n) = exp
[
−
∫ n

0
ϕ
]

with a

∆-regular function ϕ, such that, for every ε > 0, ϕ′(t) = o(t−1+ε) as t→∞.
Let σ = ψ′ ◦ log, where ψ = ϕ−1 is the inverse function to ϕ. Then the zero
set of F is (γ, ρ)-equidistributed with ρ = Rσ−c, provided that 0 < c < 2

21
and ∆(s) = o(sc) as s→∞.

Proof. By Lemma 7.1, condition (7.1) holds with ε1(X) = X−
1
3

+ε and

H(X) = X. By Lemma 7.3, condition (7.2) holds with ε2(β) = β
3
2 . We take

β = σ−c and verify that, for c < 2
21 , the assumptions of Theorem 7 hold,

provided that q > 1 is chosen sufficiently close to 1.
The verification is quite straightforward. SinceH(1

2 ν) = 1
2 ν & σ/∆(σ)�

σ1−c, assumption (a) boils down to cq < min
(

1
2 , 1 − c

)
, that is, to c < 1

2 .

Assumption (b) holds for c(1 + 2q) < 1− 3
2 c, that is, for c < 2

9 .

Assumption (c) is true when ν
2
3

+ε � β1+ 3
2

+qσ = σ1−( 5
2

+q)c. Since we are
assuming that ν = o(σ1+ε), this boils down to 7

2 c <
1
3 , that is, to c < 2

21 .
Since the Fourier transform ĝ decays faster than any negative power, as-

sumption (d) holds for any choice of c > 0. At last, to satisfy condition (7.3),
we need −1

4 + c < −3
4 c, i.e., c < 1

7 . �

Likely, using more advanced analytic number theory techniques, one can
improve the exponent 2

21 .
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7.4. The Thue–Morse sequences. The Thue–Morse sequence is defined
in an inductive way by the relations ξ(0) = 1, ξ(2n) = ξ(n), ξ(2n + 1) =
−ξ(n), n ≥ 0. The Thue–Morse sequence is a Wiener sequence with purely
singular continuous spectral measure. This fact goes back to Mahler [23].
In that work Mahler proved that the Thue–Morse sequence is a Wiener
sequence, computed its spectral measure, and proved that it has no discrete
component and has a non-trivial singular continuous component. The fact
that the spectral measure is purely absolutely continuous was proven later
by Kakutani [15]. Curiously, Mahler published his result in 1927, as a follow-
up to Winer’s celebrated work [41], in which Wiener introduced the class of
sequences, which today bears his name.

Lemma 7.4 (Mahler [23]). Let ξ be the Thue–Morse sequence. Then,∣∣∣ ∑
0≤k<x

ξ(k)ξ(k + h)− σ(h)x
∣∣∣ ≤ Ch log(x+ 1), 0 ≤ h < x,

where the even sequence σ : Z→ [−1, 1] is defined by the recurrence relations
σ(0) = 1, and σ(2h) = ξ(h), σ(2h+ 1) = −1

2(σ(h) + σ(h+ 1)).

Our formulation is slightly different from the original one, since Mahler
did not specify the rate of convergence of binary correlations. We give the
proof, which follows Mahler’s one mutatis mutandis, in Appendix D.

Let χ be the spectral measure of the Thue–Morse sequence, that is, χ̂(h) =
σ(h), h ∈ Z. The following lemma is probably well-known to experts. Its
proof exploits the identity for the generating function of ξ:∑

n≥0

ξ(n)zn =
∏
`≥0

(
1− z2`

)
.

Lemma 7.5. For any interval I ⊂ [−1
2 ,

1
2 ],

(7.4) χ(I) & exp(−c(log |I|2)).

Proof. Given N ≥ 1, we define

PN (t) =
∑

0≤k<N
ξ(k)e(kt),

dχN (t) =
1

N
|PN (t)|2 dt.

Then χN ([0, 1]) = 1 and for h ∈ Z we have

χ̂N (h) =
1

N

∑
0≤k<N

ξ(k)ξ(k + h)→ σ(h), N →∞.

Hence, the measures χN tend to χ weakly, and to verify (7.4), it suffices to
check that for any interval I = [p2−m, (p+ 1)2−m] with integer p we have

χ2n(I) ≥ exp(−Cm2), n > m.
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Since P1(t) = 1 and

P2n+1(t) =
∑

0≤k<2n+1

ξ(k)e(kt)

=
∑

0≤k<2n

ξ(2k)e(2kt) +
∑

0≤k<2n

ξ(2k + 1)e((2k + 1)t)

=
∑

0≤k<2n

ξ(k)e(2kt)−
∑

0≤k<2n

ξ(k)e((2k + 1)t) = (1− e(t))P2n(2t),

we obtain that

P2n(t) =
∏

0≤j<n

(
1− e(2jt)

)
.

Therefore,

dχ2n(t) =
( ∏

0≤j<n

(
2 sin2(2jπt)

))
dt.

Set I ′ = [(p+ 1
4)2−m, (p+ 3

4)2−m]. We have

| sin(2jπt)| ≥ c2j−m, 0 ≤ j ≤ m, t ∈ I ′.
Hence, ∏

0≤j≤m

(
2 sin2(2jπt)

)
≥ 2−m

2−Cm, t ∈ I ′.

Furthermore, for n > m, the measure

dγm,n(t) =
( ∏
m<j<n

(
2 sin2(2jπt)

))
dt

is 2−(m+1)-periodic, and γm,n([0, 1]) = 1. Hence, γm,n(J) = 2−(m+1) for any

interval J of length 2−(m+1). In particular, γm,n(I ′) = 2−(m+1), and, finally,

χ2n(I ′) ≥ 2−m
2−Cm, n > m.

This gives us (7.4). �

Theorem 9. Let ξ be the Thue–Morse sequence, and let

F (z) =
∑
n≥0

ξ(n)a(n)zn

be an entire function with smooth coefficients a(n) = exp
[
−
∫ n

0
ϕ
]

with a

∆-regular function ϕ such that, for some C > 1, ϕ′(t) . (log t)−C . Let
σ = ψ′ ◦ log, where ψ = ϕ−1 is the inverse function to ϕ. Then the zero set

of F is (γ, ρ)-equidistributed with ρ = Re−c
√

log σ, provided that the constant

c is sufficiently small and that ∆(s) = ec1
√

log σ with c1 < c.

Proof. The proof will be a straightforward inspection of assumptions of The-
orem 7. By Lemma 7.4, ε1(X;h) = (h logX)/X, H(X) = X, and, by

Lemma 7.5, ε2(β) = e−c0| log β|2 . We take q = 2, and choose β so that
ε2(β) = σ−κ with some κ ∈ (0, 1), i.e., | log β| '

√
log σ. The ∆-regularity

condition on ϕ yields that β′ = o(1/R).
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Since β in any negative power grows much slower than σ in any positive
power, condition (a) implies no restriction, while condition (b) requires that
κ < 1. Condition (c) is met provided that log ν � β5σ1−κ. Since ϕ′(t) .
(log t)−C , we have log ν . σ1/C , that is, condition (c) boils down to κ <
1− 1

C .
To satisfy condition (d), we choose the function g ∈ G so that ĝ(λ) .

e−
√
|λ|. Then,∑

h>β−2

|ĝ(βh)| . 1

β

∫ ∞
1/β

e−
√
|λ| dλ .

( 1

β

)3/2
e−β

−1/2
,

which is much smaller than ε2(β) = e−c| log β|2 .
Finally, it is easy to see that condition (7.3) holds for any κ < 1

2 . Hence,

choosing κ < min(1
2 , 1−

1
C ), we complete the proof. �

Appendix A: (γ, ρ)-equidistribution and the uniform
transportation

The idea to measure the proximity between nFξ and γ by the uniform
transportation distance was used in Sodin–Tsirelson [37] in the case a(n) =

(n!)−1/2 when ξ is a complex Gaussian IID sequence (see also [39]). In a
somewhat different set-up, a similar idea was used by Sjöstrand, see [36,
Ch 12] and references therein.

A.1 The uniform transportation distance and its dual version. Let
γ and γ1 be locally finite Borel measures on C. We call a non-negative
locally finite measure n on C × C a transportation from γ1 to γ, if n has
marginals γ1 and γ, that is,∫∫

C×C
h(x) dn(x, y) =

∫
C
h(x) dγ1(x) ,

and ∫∫
C×C

h(y) dn(x, y) =

∫
C
h(y) dγ(y) ,

for all compactly supported continuous functions h : C → C. Note that if
there exists a map T : C→ C that pushes forward the measure γ1 to γ, then
the corresponding transportation n is defined by∫∫

C×C
H(x, y) dn(x, y) =

∫
C
H(x, Tx) dγ1(x)

for an arbitrary compactly supported continuous function H : C× C→ C.
The better n is concentrated near the diagonal of C × C, the closer the

measures γ1 and γ are to each other. We shall measure such a concentration
in the L∞-sense, and set

Tra d(γ1, γ) = inf sup{d(x, y) : x, y ∈ supp(n)} ,
where d : C×C→ R+ is a distance function on C, and the infimum is taken
over all transportations n from γ1 to γ. Note that the distance Tra d might
be infinite.
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There exists a dual version of the transportation distance, which measures
the discrepancy between the measures γ1 and γ. The distance Di d(γ1, γ) is
defined to be the infimum of τ > 0 such that, for each bounded Borel set
U ⊂ C,

(A.1) γ1(U) ≤ γ(U+τ ) and γ(U) ≤ γ1(U+τ ),

where U+τ = {z ∈ C : d(z, U) < τ} is a τ -neighbourhood of U . The equality
Tra = Di is classical (Strassen, Sudakov, Laczkovich); its proof can be found,
for instance, in [39, Appendix A-1].

A.2 Equivalence of two notions. Clearly, for any Borel set U ⊂ C,
we have |γ1(U) − γ2(U)| ≤ 2γ1((∂U)+2τ ) with τ = 2Di d(γ1, γ). Thus, the
measures nFξ and γ are (γ, ρ)-equidistributed provided that Di dρ(nFξ , γ) <
∞. The converse is less obvious:

Lemma A.1. Suppose that we are given the measure γ = Γm, where m is
the area measure, and the radial gauge ρ satisfies estimates (3.1) and (3.2)
in Proposition 1, and let γ1 be a locally finite Borel measure on C. Suppose
that there exist positive constants τ and C such that, for any compact set
K ⊂ C,

(A.2) |γ1(K)− γ(K)| ≤ Cγ((∂K)+τ ).

Then Di dρ(γ1, γ) <∞.

A.2.1 Proof of estimate (A.1) for compact sets which are far from the origin.

Lemma A.2. Under conditions of Lemma A.1, there exist positive values
r1 and τ1 such that, for any compact set K ⊂ {|z| ≥ r1},

γ(K) ≤ γ1(K+τ1) and γ1(K) ≤ γ(K+τ1)

The idea of the proof of this lemma is borrowed from Laczkovich [17] (see
also [39, Lemma 2.1]).

Proof of Lemma A.2. Set R1 = 1, Rj+1 = Rj + Mρ(Rj), where M is a
large parameter to be fixed. Clearly, Rj ↑ ∞ (otherwise, limj ρ(Rj) =
ρ(limj Rj) > 0, which would lead us to a contradiction). Set Aj = {z : Rj ≤
|z| ≤ Rj+1}. We partition the annulus Aj into equal closed sectors of size '
Mρ(Rj), and denote these sectors by Q = Qjk = {z : Rj ≤ |z| ≤ Rj+1, θk ≤
arg(z) ≤ θk+1}. We denote the “center” of the sector Q by w(Q), w(Q) =√
RjRj+1 e

i(θk+θk+1)/2. We say that the sectors Q and Q′ are neighbours if

Q ∩Q′ 6= ∅, we denote this relation by Q ∼ Q′, and set Q̃ =
⋃
Q′∼QQ

′.

Next, we note that, since ρ′(r)→ 0 for r →∞, we have

(A.3) ρ(Rj+1)/ρ(Rj)→ 1, j →∞ ,

and that, by our assumption (3.2), we have

(A.4) Γ(R)/Γ(Rj)→ 1, Rj−1 ≤ R ≤ Rj+1, j →∞ .

Furthermore, by (A.3) and (A.4), for j ≥ j0 and for any sector Q ⊂ Aj , the
hollowing holds:

• there are at most 9 neighbouring sectors Q′ ∼ Q;
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• diamρ(Q̃) ≤ 10M (as usual, diamρ(X) = sup{dρ(z1, z2) : z1, z2 ∈
X});
• 1

2 ≤ Γ(z1)/Γ(z2) ≤ 2, z1, z2 ∈ Q̃+τ , where τ is the constant from
(A.2).

Let r1 = Rj0+1, and let K ⊂ {|z| ≥ r1} be a compact set. Let

A =
⋃

Q∩K 6=∅

Q, B =
⋃

Q∩K 6=∅

Q̃,

and let bA = {Q ⊂ A : ∃Q′ ∼ Q,Q′ ⊂ B \ A} be a collection of “boundary
sectors” in A. Clearly, K ⊂ A ⊂ B ⊂ K+10M . By (A.2) we have

γ(K) ≤ γ(A) ≤ γ1(A) + Cγ
(
(∂A)+τ

)
,

and

γ1(K) ≤ γ1(A) ≤ γ(A) + Cγ
(
(∂A)+τ

)
.

Furthermore, since A is a union of squares Q, we have

(∂A)+τ ⊂
⋃
Q∈bA

(∂Q)+τ ,

and hence,

γ((∂A)+τ ) ≤
∑
Q∈bA

γ
(
(∂Q)+τ

)
.

For each boundary sector Q, we have

γ
(
(∂Q)+τ

)
.Mρ(w)2Γ(w), w = w(Q),

while for the sectors Q′ ∼ Q, Q′ ⊂ B \A, we have

γ(Q′) 'M2ρ(w)2Γ(w),

and (again, by (A.2))

(A.5) γ1(Q′) ≥ γ(Q′)− Cγ
(
(∂Q′)+τ

)
&M2ρ(w)2Γ(w)− C1Mρ(w)2Γ(w) = (M − C1)Mρ(w)2Γ(w).

Recalling that each sector Q′ ⊂ B \ A has at most 9 neighbouring squares
Q ⊂ A, we conclude that the error term Cγ

(
(∂A)+τ

)
is much smaller than

γ(B \ A), as well as γ1(B \ A), provided that the constant M is chosen to
be much bigger than the constant C1 in (A.5). Thence,

γ(K) ≤ γ1(A) + γ1(B \A) = γ1(B) ≤ γ1(K+10M ),

and similarly, γ1(K) ≤ γ(K+10M ), proving Lemma A.2 with τ1 = 10M . �

A.2.2 Completing the proof of Lemma A.1. Since we deal with Borel mea-
sures in C, it suffices to verify that conditions (A.1) hold for arbitrary com-
pact set K ⊂ C. By Lemma A.2, they hold for any compact set K, which is
sufficiently far from the origin, and it remains to get rid of the latter hurdle.

Let r1, τ1 be the positive parameters from Lemma A.2, and let

m = max(γ(r1D), γ1(r1D)).
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Choose r′1 ≥ r1 in such a way that, for any z with |z| ≥ r′1, we have
min(γ(Dz), γ1(Dz)) ≥ m. Set R1 = r′1, Rj+1 = Rj + 6τ1ρ(Rj), R

′
j =

Rj + 3τ1ρ(Rj), and Aj = {Rj ≤ |z| ≤ Rj+1}.
Consider the disks Dj centered at R′j of radius τ1ρ(R′j), and choose j0 so

large that, for j ≥ j0,

• Dj ⊂ Aj ,
• and moreover, (Aj−1)+τ1

⋂
Dj = ∅ and (Aj+1)+τ1

⋂
Dj = ∅.

Then, choose a sufficiently large d0 so that

• for every z with |z| ≤ r1, Dj0 ⊂ {z}+d0 ,
• for every j ≥ j0, diamρ(Dj ∪Dj+1) < d0.

Now, let K ⊂ C be a compact set, and let K1 = K ∩ {|z| ≤ r1}, K2 =
K ∩ {|z| ≥ r1}. Clearly, γ({|z| = r1}) = 0, and we can always assume that
γ1({|z| = r1}) = 0 (otherwise, we slightly increase the value r1). Then,
γ(K) = γ(K1) + γ(K2), and the same holds for γ1.

The rest is clear. We apply Lemma A.2 to the part of the mass, which lies
in {|z| ≥ r1}, moving it, at most, by τ1, and move the mass from {|z| ≤ r1}
to Dj0 (and then, if needed, from Dj0 to Dj0+1, from Dj0+1 to Dj0+2, . . . ,
from Dj1 to Dj1+1, with j1 = j1(K)) transporting it, at most, by d0.

More formally, if K1 = ∅, then we just use Lemma A.2; if K1 6= ∅ and
(K2)+τ1 ∩ D̄j0 = ∅, then

γ(K) = γ(K1) + γ(K2)

≤ m+ γ(K2)

≤ m+ γ1((K2)+τ1) (by Lemma A.2)

≤ γ1(Dj0) + γ1((K2)+τ1)

= γ1(Dj0 ∪ (K2)+τ1)

≤ γ1(K+(d0+τ1)),

and similarly, γ1(K) ≤ γ(K+(d0+τ1)).

If (K2)+τ1 ∩ D̄j0 6= ∅, we choose j1 = j1(K) ≥ j0 so that (K2)+τ1 ∩ D̄j 6= ∅
for j0 ≤ j ≤ j1, while (K2)+τ1 ∩ D̄j1+1 = ∅. Then, arguing as above, we get

γ(K) ≤ m+ γ1((K2)+τ1)

≤ γ1(Dj1+1) + γ1((K2)+τ1)

= γ1(Dj1+1 ∪ (K2)+τ1)

≤ γ1(K+(d0+τ1)),

together with a similar bound for γ1(K). This completes the proof of
Lemma A.1. �

Appendix B: Proof of Proposition 4

As we have already mentioned, here, we will closely follow the original
proof given by Nguyen and Vu. They work not with the sum of exponen-
tials, as we do, but with the sum of cosines

∑
λ∈Λ ξλcλ cos(2πλθ). Another

difference is that we assume that the independent random variables (ξλ)
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are identically distributed, while Nguyen and Vu only assume their inde-
pendence, but additionally assume that, for some m > 2, the mth central
moment of the ξλs is uniformly bounded.

The proof is carried out in three steps. First, one considers the case when
(ξλ) are Rademacher random variables (rλ), that is, independent random
variables taking the values ±1 with equal probability 1/2. This step is based
on a variant of Halász’ anti-concentration result [31, Lemma 9.3] (we will
recall it below). In the second step, applying Kahane’s reduction principle,
one extends the result to independent symmetric complex-valued random
variables (ξλ). Finally, the general case will be reduced to the symmetric
one using the symmetrization device, that is, taking independent copies ξ′λ
of ξλ and applying the result of the second step to the symmetric random
variables ξλ − ξ′λ.

Fix an integer α ≥ 1. Assume that minλ∈Λ |cλ| = 1.

Step 1. Assuming that (rλ) are Rademacher random variables, and letting
S(θ) =

∑
λ∈Λ rλcλe(λθ), we show that, for every θ ∈ [−1

2 ,
1
2 ], except for a

set of Lebesgue measure at most O(n−β/(4α)+2α+1/4), we have

sup
Z∈C

P
[∣∣S(θ)− Z

∣∣ < n−β
]
. n−α .

Let cλ = c′λ+ic′′λ, minλ∈Λ(|c′λ|2+|c′′λ|2) = 1, and let c(θ) = cos(2πθ), s(θ) =
sin(2πθ), i.e., e(θ) = c(θ)+is(θ). Set aλ = Re

[
cλe(λθ)

]
= c′λc(λθ)−c′′λs(λθ).

Since, for every Z ∈ C,

P
[∣∣S(θ)− Z

∣∣ < n−β
]
≤ P

[∣∣ReS(θ)− ReZ
∣∣ < n−β

]
,

it suffices to estimate the size of the set of θs, for which

(B.1) sup
X∈R

P
[∣∣∣∑
λ∈Λ

rλaλ −X
∣∣ < n−β

]
. n−α .

We will use a Halász-type lemma borrowed from [31, Lemma 9.3]:

Lemma B.1. Let (rj)1≤j≤n be Rademacher’s random variables, and let
(bj)1≤j≤n ⊂ R. Let α ∈ N. Suppose that there exists b > 0 such that, for
any two distinct sets {i1, . . . , iα′} and {j1, . . . jα′′}, α′ + α′′ ≤ 2α, we have∣∣∣ α′∑

t=1

bit −
α′′∑
t=1

bjt

∣∣∣ ≥ b .
Then

sup
X∈R

P
[ ∣∣∣ n∑

j=1

rjbj −X
∣∣∣ < bn−α

]
. n−α .

We call the value θ ∈ [−1
2 ,

1
2 ] normal if, for every two distinct sets

{λ1, . . . , λα′}, {µ1, . . . , µα′′} in Λ with α′ + α′′ ≤ 2α, we have∣∣∣ α′∑
t=1

aλt −
α′′∑
t=1

aµt

∣∣∣ > n−β+α .
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By the Halász-type lemma with b = n−β+α, estimate (B.1) holds for normal
values of θ, so we need to estimate the size of the set of θs that are not
normal.

Fix the sets {λ1, . . . , λα′}, {µ1, . . . , µα′′} in Λ, α′ + α′′ ≤ 2α. To estimate
the size of the set of abnormal θs corresponding to these two sets of indices,
we consider the trigonometric polynomial

P (θ) =

α′∑
t=1

[
c′λtc(λtθ)− c

′′
λts(λtθ)

]
−

α′′∑
t=1

[
c′µtc(µtθ)− c

′′
µts(µtθ)

]
=

α′∑
t=1

aλt −
α′′∑
t=1

aµt

with 2(α′ + α′′) = 4α frequencies, and let E = {θ ∈ [−1
2 ,

1
2 ] : |P (θ)| ≤

n−β+α}. By Nazarov’s version of the classical Turán lemma [27, Section 1.1],

max
[− 1

2
, 1
2

]
|P | ≤

( C
|E|

)4α
sup
E
|P | .

Recalling that (c′λ)2+(c′′λ)2 ≥ 1, we get 1 ≤ ‖P‖L2[− 1
2
, 1
2

] .
(
C/|E|

)4α
n−β+α,

whence, |E| . n−β/(4α)+1/4.

It remains to recall that there are at most nα
′+α′′ = O(n2α) choices

of the distinct sets {λ1, . . . , λα′}, {µ1, . . . , µα′′} in Λ, with α′ + α′′ ≤ 2α,
which yields that the size of the set of abnormal values of θ does not exceed
O(n−β/(4α)+2α+1/4), completing the first step.

Step 2. At this step, assuming that (ξλ) are independent identically dis-
tributed non-degenerate symmetric random variables, we show that, for large
enough β and for every interval I with |I| & 1/n,

1

|I|

∫
I

sup
Z∈C

P
[∣∣S(θ)− Z

∣∣ < n−β
]

dθ . n−α .

We take a collection of Rademacher random variables (ελ) independent of
(ξλ), then the random variables (ξλ) and (ελξλ) are equidistributed. Hence,

1

|I|

∫
I

sup
Z∈C

P(ξλ)
[∣∣S(θ)− Z

∣∣ < n−β
]

dθ

=
1

|I|

∫
I

sup
Z∈C

E(ξλ) P(ελ)
[∣∣S(θ)− Z

∣∣ < n−β
]

dθ

≤ E(ξλ)
[ 1

|I|

∫
I

sup
Z∈C

P(ελ)
[∣∣S(θ)− Z

∣∣ < n−β
]

dθ
]
.(B.2)

To apply Step 1, we need |ξλ| & 1 for a positive proportion of λ ∈ Λ.
To get this, we fix a small δ > 0 so that P[|ξλ| < δ] ≤ 1 − δ. Then,
applying the simplest form of the Bernstein–Chernoff–Hoeffding exponential
concentration to the independent identically distributed random variables

Xλ =

{
1, |ξλ| < δ,

0, |ξλ| ≥ δ,
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we get P
[∑

λ∈Λ(Xλ−E[Xλ]) ≥ nt
]
≤ e−cnt2 . Noting that E[Xλ] ≤ 1−δ and

letting t = 1
2 δ, we see that with probability at least 1−e−cnδ2/4 there are at

least 1
2 n indices λ ∈ Λ for which |ξλ| ≥ δ. On the event that this happens,

denote by Λ1 the set of λ ∈ Λ for which |ξλ| ≥ δ, S1(θ) =
∑

λ∈Λ1
rλcλe(λθ).

Since Λ1 has at least 1
2 n elements, by Step 1, we get

sup
Z∈C

P(ελ)
[∣∣S1(θ)− Z

∣∣ < δn−β
]
. n−α ,

outside a set of θs of Lebesgue measure at most O(n−β/(4α)+2α+1/4). Since
S1(θ) and S(θ) − S1(θ) are independent, we obtain that again with proba-

bility at least 1 − e−cnδ2/4 outside a set of θs of Lebesgue measure at most
O(n−β/(4α)+2α+1/4) we have

sup
Z∈C

P(ελ)
[∣∣S(θ)− Z

∣∣ < δn−β
]
. n−α ,

Therefore,

E(ξλ)
[ 1

|I|

∫
I

sup
Z∈C

P(ελ)
[∣∣S(θ)− Z

∣∣ < δn−β
]

dθ
]

≤ O(n−α) +O
( 1

|I|
· n−β/(4α)+2α+1/4

)
+O(e−cδ

2n/4) = O(n−α) ,

provided that β ≥ 20α2. Finally, we observe that covering the disk centered
at Z of radius n−β by O(δ−2) disks of radius δn−β, we get

sup
Z∈C

P
[
|S(θ)− Z| < n−β

]
≤ O(δ−2) · sup

Z∈C
P
[
|S(θ)− Z| < δn−β

]
,

which, together with (B.2), completes the second step.

In particular, we get a value θ ∈ I such that

P
[
|S(θ)| < n−β

]
. n−α.

Step 3. Here, we consider the general case. Let ξ′λ be independent copies
of ξλ, λ ∈ Λ. Then the random variables ξ′′λ = ξλ − ξ′λ are symmetric and
non-degenerate. Denote by Sξ, Sξ′ and Sξ′′ the corresponding trigonometric

sums, and note that |Sξ′′(θ)| < 2n−β provided that, for some Z ∈ C, |Sξ(θ)−
Z| < n−β and |Sξ′(θ)− Z| < n−β. Therefore,

(
P
[
|Sξ(θ)− Z| < n−β

])2
= P

[
|Sξ(θ)− Z| < n−β

]
· P
[
|Sξ′(θ)− Z| < n−β

]
≤ P

[
|Sξ′′(θ)| < 2n−β

]
.

By Step 2 (applied with 2α instead of α), there exist β and θ ∈ I such that
the RHS is O(n−2α). This completes the proof of Proposition 4. �
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Appendix C: Proof of Lemma 7.1

As we have already mentioned, we will closely follow Mirsky’s paper [25].
Since

µ2(n) =
∑
d2|n

µ(d),

we have∑
k≤x

µ2(k)µ2(k + h) =
∑

a2c−b2d=h,
b2d≤x

µ(a)µ(b)

=
( ∑
a2c−b2d=h,
b2d≤x, ab≤y

+
∑

a2c−b2d=h,
b2d≤x, ab>y

)
µ(a)µ(b) = I1 + I2,

for a large parameter y to be fixed later on.
First,

I1 =
∑

gcd(a2,b2)|h,
ab≤y

µ(a)µ(b)
∑

a2c−b2d=h,
1≤b2d≤x

1.

Set

t = gcd(a, b), a′ =
a2

t2
, a′′ =

a

t
, b′ =

b2

t2
, b′′ =

b

t
, h′ =

h

t2
, x′ =

x

t2
,

and choose c0, d0 so that a′c0 − b′d0 = h′. Then∑
a′c−b′d=h′,
1≤b′d≤x′

1 =
∑

a′(c−c0)=b′(d−d0),
1−b′d0≤b′(d−d0)≤x′−b′d0

1 =
x′

a′b′
+ q

with |q| < 2. Therefore,

I1 =
∑

gcd(a2,b2)|h,
ab≤y

µ(a)µ(b)
(x gcd(a2, b2)

a2b2
+O(1)

)

= x
∑

gcd(a2,b2)|h,
ab≤y

µ(a)µ(b) gcd(a2, b2)

a2b2
+O(y log y).

Since∣∣∣ ∑
gcd(a2,b2)|h,

ab>y

µ(a)µ(b) gcd(a2, b2)

a2b2

∣∣∣ ≤ ∑
gcd(a2,b2)|h,

ab>y

gcd(a2, b2)

a2b2

=
∑
t2|h,

t2a′′b′′>y

1

t2a′′2b′′2
≤

∑
a′′,b′′≥1

1

a′′2b′′2

∑
t>
√
y/(a′′b′′)

1

t2

.
1
√
y

∑
a′′,b′′≥1

1

(a′′b′′)3/2
.

1
√
y
,
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we conclude that

I1 = x
∑

gcd(a2,b2)|h

µ(a)µ(b) gcd(a2, b2)

a2b2
+O

( x
√
y

+ y log y
)
.

Next,∑
gcd(a2,b2)|h

µ(a)µ(b) gcd(a2, b2)

a2b2
=

∑
gcd(a′′,b′′)=1, gcd(a′′,t)=1,

gcd(b′′,t)=1, t2|h

µ(ta′′)µ(tb′′)

t2a′′2b′′2
=: A.

If s2 is the largest square divisor of h, then

A =
∑

µ2(t)=1, t|s

1

t2

∑
gcd(a′′,b′′)=1, gcd(a′′,t)=1,

gcd(b′′,t)=1

µ(a′′)µ(b′′)

a′′2b′′2

=
∑

µ2(t)=1, t|s

1

t2

∑
gcd(d,t)=1

µ(d)τ(d)

d2
,

where τ(d) is the number of the divisors of d. Therefore,

A =
∑

µ2(t)=1, t|s

1

t2

∏
p6 | t

(
1− 2

p2

)
=
∏
p

(
1− 2

p2

) ∑
µ2(t)=1, t|s

1

t2

∏
p|t

(
1− 2

p2

)−1

= D
∏
p|s

(
1 +

1

p2(1− 2/p2)

)
= D

∏
p2|h

(
1 +

1

p2 − 2

)
= D(h).

Thus,

(C.1) I1 = D(h)x+O
( x
√
y

+ y log y
)
.

Next,

|I2| =
∣∣∣ ∑
a2c−b2d=h,
b2d≤x, ab>y

µ(a)µ(b)
∣∣∣ ≤ ∑

cd<x(x+h)/y2

∑
a2c−b2d=h,
b2d≤x

1.

Fix ε > 0. By [4, Lemma 4], the equation a2cd−(bd)2 = hd has at most Cεx
ε

solutions (a, bd) if cd is not a perfect square. If cd = m2, then the equation
(am)2 − (bd)2 = hd has at most Cεx

ε solutions (am, bd). Therefore,

(C.2) |I2| ≤ Cεxε
∑

cd<2x2/y2

1 . Cεx
ε x

2

y2
log(2x2/y2).

Finally, set y = x2/3. Now, (C.1) and (C.2) yield∣∣∣∑
k≤x

µ2(k)µ2(k + h)−D(h)x
∣∣∣ ≤ Cεx(2/3)+2ε, 1 ≤ h ≤ x,

completing the proof. �
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Appendix D: Proof of Lemma 7.4

The following argument reproduces rather closely Mahler’s original proof.
Set

S(x, h) =
∑

0≤k<x
ξ(k)ξ(k + h).

Then

S(x, h) =
∑

0≤k<x/2

ξ(2k)ξ(2k+ h) +
∑

0≤k<x/2

ξ(2k+ 1)ξ(2k+ h+ 1) + ∆(x, h),

where

∆(x, h) =

{
−ξ(x)ξ(x+ h) x is odd;

0 otherwise.

Therefore, we have

S(2x, 2h) = 2S(x, h),

S(2x+ 1, 2h) = 2S(x+ 1, h) + ∆(2x+ 1, 2h),

S(2x, 2h+ 1) = −S(x, h)− S(x, h+ 1),

S(2x+ 1, 2h+ 1) = −S(x+ 1, h)− S(x+ 1, h+ 1) + ∆(2x+ 1, 2h+ 1)

for positive x and h. Since S(x, 0) = x, x ≥ 0, we obtain by induction in h
that ∣∣S(x, h)− σ(h)x

∣∣ ≤ Ch log(x+ 1), x ≥ 1,

for some positive numerical constant C. �
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[19] P. Lévy, Sur la croissance des fonctions entières, Bull. Soc. Math. France, 58 (1930),
29–59, 127–149.

[20] J. E. Littlewood, A “pits effect” for all smooth enough integral functions with a

coefficient factor exp(n2απi), α = 1
2
(
√

5− 1). J. Lond. Math. Soc. 43 (1968), 79–92.
[21] J. E. Littlewood, The “pits effect” for the integral function

f(z) =
∑

exp{−ϑ−1(n logn− n) + πiαn2}zn, α = 1
2

(
√

5− 1), 1969 Number Theory
and Analysis (Papers in Honor of Edmund Landau) pp. 193–215. Plenum, New York.

[22] J. E. Littlewood, A. C. Offord, On the distribution of zeros and a-values of a random
integral function. II, Ann. Math. (2) 49 (1948), 885–952; errata 50 (1949), 990–991.

[23] K. Mahler, The spectrum of an array and its application to the study of the translation
properties of a simple class of arithmetical functions. II: On the translation properties
of a simple class of arithmetical functions, J. Math. Phys. (MIT) 6 (1927), 158–163.
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