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Abstract. We establish results on unique continuation at the
boundary for the solutions of elliptic, partial differential operators
of any order with real analytic coefficients. The second order case
settles a conjecture of M. S. Baouendi and L. P. Rothschild in
[6] and has new applications to boundary unique continuation for
holomorphic functions of several variables. The work is motivated
by the results of X. Huang et al in [34] and [35], and M.S. Baouendi
and L.P. Rothschild in [6].

1. Introduction

A harmonic function on the upper half-space Rn
+ which is smooth

up to the boundary and vanishing to infinite order at the origin may

not be constant. In [6] Baouendi and Rothschild (see also [35]) proved

that if a harmonic function u in a half ball

B+
r = {x = (x′, xn) ∈ Rn : |x| < r, xn > 0}

vanishes to infinite order at the origin and u(x′, 0) ≥ 0, then u ≡ 0. In

the same paper, they conjectured that similar results will hold for any

real analytic second order elliptic differential operator on a domain

with real analytic boundary. This paper provides a positive answer

to the conjecture and a generalization for operators of higher order.

Our result for general second order operators has an application to

unique continuation for CR functions. These uniqueness phenomena

extend the classical Hopf lemma about the nonvanishing of the normal

derivative at a boundary point where a nonconstant solution attains an
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extremum: the assumption is local in nature and imposes conditions

only at the boundary.

For holomorphic functions of one variable with nonnegative real part

on a piece of the boundary, unique continuation and local forms of

Hopf’s lemma were proved in [8], [34], [35], and [37]. The results were

applied to establish unique continuation for CR mappings for certain

classes of CR manifolds.

Results along this line appeared also in the works [3], [4], [5], [11],

[25], and [29]. Further extensions of the results of Baouendi and Roth-

schild were proved in [40] and [41].

In the article [42], N. Suzuki established a local Hopf lemma in the

spirit of [6] for the one-dimensional heat equation.

In our recent work ([24]) results on unique continuation at the bound-

ary were proved at the flat piece of the boundary of the half ball B+
r for

the class of real analytic second order operators whose principal part

is the Laplacian. That work used the ideas and methods of Hadamard

for the construction of a fundamental solution in ([31]). This article

uses the pseudodifferential calculus developed by Boutet de Monvel for

studying boundary value problems.

The article is organized as follows: Section 2 contains the statements

of the results in this work. Section 3 is devoted to a brief description of

an algebra of boundary pseudodifferential operators due to Boutet de

Monvel ([27]). In sections 4 and 5 we present the proofs of our results.

The author is very grateful to Jorge Hounie for providing many helpful

suggestions.

2. Statements of the results

We will say that a continuous function u defined on a domain D ⊂ Rn

is flat at a boundary point p ∈ ∂D if for every positive integer N , there

is a constant CN > 0 such that

|u(x)| ≤ CN |x− p|N .

We also say u vanishes to infinite order (or is flat) at p on a non-

singular smooth curve γ = γ(t) in D passing through p = γ(0) ∈ ∂D
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and transversal to ∂D if for every N there is CN > 0 such that

|u(γ(t))| ≤ CN t
N .

Clearly, this property is independent of the parametrization.

We recall the main result of [6]:

Theorem 2.1. Let u be harmonic on the half ball B+
r = {x = (x′, xn) ∈

Rn : |x| < r, xn > 0}, continuous on the closure. Suppose

(i) u(x′, 0) ≥ 0 for |x′| ≤ r, x′ ∈ Rn−1;

(ii) the function xn 7→ u(0′, xn) is flat at xn = 0;

Then u(x′, 0) ≡ 0 for x′ near the origin in Rn−1.

A somewhat similar but weaker result under the stronger hypothesis

that u is harmonic in the upper half plane and decays exponentially

along the y−axis was obtained in [38].

The theorem of Baouendi and Rothschild has the following immedi-

ate consequence on boundary unique continuation for harmonic func-

tions (see also [35]):

Corollary 2.1. Let u be harmonic in B+
r , continuous on the closure

of B+
r . Assume that

(i) u(x′, 0) ≥ 0 for |x′| ≤ r;

(ii) u is flat at 0.

Then u ≡ 0.

In [6] it was conjectured that similar results are valid for general

second order elliptic operators with real analytic coefficients. Our first

main result which confirms this conjecture is as follows:

Theorem 2.2. Let u be a solution of

Lu =
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
k=1

bk(x)
∂u

∂xk
+ c(x)u = 0

on the half ball B+
r , C2 on B+

r . Suppose L is elliptic and the coefficients

are real analytic on B+
r . Let γ(t) be a real analytic curve transversal

to the flat piece of B+
r , γ(0) = 0, γ(t) ⊆ B+

r for t > 0. Assume

(i) u(x′, 0) ≥ 0 for |x′| ≤ r;
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(ii) the function t 7→ u(γ(t)), t ≥ 0 is flat at t = 0;

(iii) for every positive integer N , the function

|x′|−Nu(x′, 0)

is integrable on |x′| ≤ r.

Then u(x′, 0) ≡ 0 for x′ small.

Observe that by the results in [39], u then extends as a solution,

hence as a real analytic function in a neighborhood of the origin in Rn.

We note that the results in [6] and [35] do not apply to the Laplace

operator on a general domain in Rn with a real analytic boundary.

In general, the examples in [41] for harmonic functions on a general

domain with a real analytic boundary show that Theorem 2.2 may not

be valid if hypothesis (iii) is dropped.

Theorem 2.2 has the following consequence on boundary unique con-

tinuation:

Corollary 2.2. Let u be a solution of Lu = 0 on a domain D, C2 on

D. Suppose Σ ⊆ ∂D is a real analytic hypersurface of Rn, p ∈ Σ and

u satisfies:

(i) u ≥ 0 on Σ;

(ii) u is flat at p.

Then u ≡ 0.

To describe our results for operators of higher order, given a domain

D ⊆ Rn with a real analytic hypersurface Σ ⊆ ∂D, and given an

operator P (x, ∂x) of order 2m on D, consider linear partial differential

operators with real analytic coefficients on Σ:

Bj(x, ∂x) =
∑
|α|≤µj

bj,α(x)∂αx , j = 1, . . . ,m,

where the µj are the orders of Bj, µj < 2m and and we denote the prin-

cipal symbols of the Bj by Qj(x, ξ) =
∑
|α|=µj bj,α(x)ξα. For each x ∈

∂D and each pair of vectors τ 6= 0 tangent to ∂D at x and ν 6= 0 normal

to D at x, the polynomials in z, Qj(z) = Qj(x, τ+zν), j = 1, . . . ,m are

linearly independent modulo the polynomial
∏m

k=1(τ −λk(τ, ν)), where

λ1(τ, ν), . . . , λm(τ, ν) are the roots of the principal symbol p2m(x, ξ) of
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P (x, ∂x) with positive imaginary parts. In what follows, we will assume

that B1w(x) = w(x) for x ∈ Σ.

Theorem 2.3. Let u be a solution of

Pu =
∑
|α|≤4

aα(x)∂αu = 0

on the half ball B+
r , C4 on B+

r . Suppose P is elliptic and the coefficients

are real analytic on B+
r . Let γ(t) be a real analytic curve transversal

to the flat piece of B+
r , γ(0) = 0, γ(t) ⊆ B+

r for t > 0. Assume that

(i) the function t 7→ u(γ(t)), t ≥ 0 is flat at t = 0;

(ii) Fix 1 < j ≤ m. Assume that for every positive integer N , the

functions |x′|−Nu(x′, 0) and |x′|−NBju(x′, 0) are locally integrable.

Then there exists ε > 0 such that if u(x′, 0) ≥ 0 then u(x′, 0) ≡ 0 for

|x′| ≤ ε and if Bju(x′, 0) ≥ 0, Bju(x′, 0) ≡ 0 for |x′| ≤ ε. In particular,

if u(x′, 0) ≥ 0 and Bju(x′, 0) ≥ 0, then u extends as a solution to a

neighborhood of the origin.

In the following corollary, P is of order 4 as above:

Corollary 2.3. Let u be a solution of Pu = 0 on a domain D, C4 on

D. Suppose Σ ⊆ ∂D is a real analytic hypersurface of Rn, p ∈ Σ and

u satisfies:

(i) u ≥ 0 and the normal derivative ∂νu ≥ 0 on Σ; assume also that

for every N , |x− p|−N∂νu(x) is integrable on Σ.

(ii) u is flat at p.

Then u ≡ 0.

The unique continuation results of [6] and [35] as well as Theorem 2.2

were motivated by the unique continuation problem for CR functions.

Theorem 2.2 in turn leads to the following application to CR func-

tions and holomorphic functions:

Corollary 2.4. Let h be a CR function on a connected real analytic

hypersurface M in Cn that is the boundary value of a holomorphic

function f = u + iv defined on a connected side M+ of M . Let p ∈
M . Let γ(t) be a real analytic curve transversal to M with γ(0) = p,

γ(t) ⊂ M+ for t > 0. If <(h) ≥ 0, <h(z)d(z, p)N ∈ L1
loc(M), ∀N , and
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u(γ(t)) is flat at t = 0, then <(h) ≡ 0 near p. If in addition M is not

Levi flat, then f is constant on M+.

Example 2.1: The preceding corollary applies to the following exam-

ples: consider the hypersurfaces

M = {(z′, s+ iϕ(z′, s) : z′ ∈ Cn−1, s ∈ R},

where z′, s vary near the origin in Cn−1 and R and ϕ is a real-valued,

real analytic function near the origin, ϕ(0) = 0, and dϕ(0) = 0. Sup-

pose M is not Levi flat. Taking γ(t) = (0, . . . , it), the corollary leads

to: if <(h) ≥ 0, <h(z)d(z, p)N ∈ L1
loc(M), ∀N and u(γ(t)) is flat at

t = 0, then f is constant on M+ = {z : =(zn) > ϕ(z′, s)}.

We remark that unlike previous works, the preceding unique contin-

uation result on unique continuation for CR functions doesn’t follow

from the boundary unique continuation result for holomorphic func-

tions of one variable in [35] or [4].

For operators of arbitrary order, we have:

Theorem 2.4. Let u be a solution of

Pu =
∑
|α|≤2m

aα(x)∂αu = 0

on the half ball B+
r , C2m on B+

r . Suppose P is elliptic and real ana-

lytic on B+
r and Bj, 1 ≤ j ≤ m with B1h(x′, 0) = h(x′, 0) satisfy the

complementing boundary conditions on the flat piece of ∂B+
r . Let γ(t)

be a real analytic curve transversal to the flat piece of B+
r , γ(0) = 0,

γ(t) ⊆ B+
r for t > 0. Assume that

(i) the function t 7→ u((γ(t)) is flat at t = 0;

(ii) for every positive integer N , the functions |x′|−NBju(x′, 0) are lo-

cally integrable for 1 ≤ j ≤ m;

(iii) B1u(x′, 0) = u(x′, 0) ≥ 0, B2u(x′, 0) ≥ 0 and Bju(x′, 0) ≡ 0 for

3 ≤ j ≤ m.

Then there exists ε > 0 such that u(x′, 0) ≡ B2u(x′, 0) ≡ 0 for |x′| ≤ ε,

and u extends as a solution to a neighborhood of the origin.

Corollary 2.5. Let u be a solution of Pu = 0 on a domain D, C2m

on D. Suppose Σ ⊆ ∂D is a real analytic hypersurface, p ∈ Σ and u
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satisfies:

(i) u ≥ 0, ∂νu ≥ 0, ∂jνu ≡ 0 for 2 ≤ j ≤ m− 1 on Σ;

(ii) for every positive integer N , ∂jνu(x)|x − p|−N is locally integrable

on Σ for 1 ≤ j ≤ m− 1.

(iii) u is flat at p.

Then u ≡ 0 on D.

3. Boutet de Monvel’s Boundary Pseudodifferential

operators

It is well known that for an elliptic operator

Lu =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
k=1

bk(x)
∂u

∂xk
+ c(x)u = 0

with smooth coefficients on the closure of a smoothly bounded domain

D ⊆ Rn, a Green’s function, and hence a Poisson kernel exists if the

zeroth order term c(x) ≤ 0. When the coefficients of L are real analytic,

without any sign assumption on c(x), we will exhibit a local Poisson

kernel K(x, y) on a neighborhood p ∈ Σ ⊆ ∂D where Σ is a real

analytic hypersurface. The local Poisson kernel will have the form:

K(x, y) = d(x)
A(x, y)

|x− y|n
+ d(x)B(x, y) log |x− y|

where x ∈ D near p, y ∈ Σ, d(x) denotes distance to ∂D, A and B are

real analytic functions.

In this connection, we mention that we were inspired by S. Bell’s works

(see [12], [13], [14], [15], [16], [17]) for example) on expressing Poisson

kernels for domains in the plane in terms of the Szego kernel and the

Bergman kernel. We were also inspired by S. Bergman (and S. Bergman

and M. Schiffer) who in a series of works (see for example [18], [19], [20],

[21]) established a link between the Bergman kernel (or its analogue)

and the Poisson kernel of second order operators of the type

L = ∆u+ c(x)u, c(x) real analytic and c(x) < 0.

Our strategy will be to give an explicit representation of the kernels

in [36] by employing certain boundary operators developed by Boutet



8 S. BERHANU

de Monvel in [27]. In this section we present the basic ingredients of

Boutet de Monvel’s calculus (see [27] and [30]).

The operators to be defined are invariant under coordinate changes

in Rn
+ preserving the boundary {xn = 0} and so we will work in Rn

+.

S+ will denote the restriction to [0,∞) of functions in the Schwartz

space S(R) of rapidly decaying functions.

Let d ∈ R and Ω ⊂ Rn−1 open. The space Sd1,0(Ω,Rn−1,S+) consists of

the functions f̃(x′, xn, ξ
′) ∈ C∞(Ω×R+,Rn−1) lying in S+ with respect

to xn, such that for all α, β, k, k′ and x in a compact set,

sup
xn>0

∣∣∣∣xknDk′

xnD
β
x′D

α
ξ′ f̃(x′, xn, ξ

′)

∣∣∣∣ ≤ C〈ξ′〉d+1−k+k′−|α|

where 〈ξ′〉 = (1+|ξ′|2) 1
2 . The subspace Sd(Ω,Rn−1,S+) of polyhomoge-

nous elements consists of the functions f̃ ∈ Sd1,0(Ω,Rn−1,S+) that have

asymptotic expansion f̃ ∼
∑∞

l=0 f̃d−l where the functions f̃d−l have the

quasi-homogeneity property

f̃d−l

(
x′,

xn
λ
, λξ′

)
= λd+1−lf̃d−l(x

′, xn, ξ
′).

The functions in Sd1,0(Ω,Rn−1,S+) are called symbol-kernels.

If P is a pseudodifferential operator on Rn, its restriction to Rn
+ is

defined by

P+u = r+Pe+u,

where r+ restricts D′(Rn) to D′(Rn
+) and e+ extends locally integrable

functions on Rn
+ by zero on Rn

−.

P is said to have the transmission property with respect to Rn
+ when P+

preserves smoothness up to the boundary, that is, P+ maps C∞0 (Rn
+)

into C∞(Rn
+). Such operators are one of the ingredients in the calculus

of Boutet de Monvel.

In addition to P+, which operates on Rn
+, there are four other oper-

ators G, T,K, S forming the matrix

A =

(
P+ +G K
T S

)
:
C∞0 (Rn

+)N

×
C∞0 (Rn−1

+ )M
→

C∞0 (Rn
+)N

′

×
C∞0 (Rn−1

+ )M
′
.

T is called a trace operator, going from Rn
+ to Rn−1; K is called a

Poisson operator (or a potential operator), going from Rn−1 to Rn
+; S



9

is a pseudodifferential operator on Rn−1; and G is an operator on Rn
+

called a singular Green operator, a non-pseudodifferential term that

has to be added in order to have adequate composition rules. The

system A form an algebra and their adjoints are in the algebra.

The trace operators include the operators γj : h 7→ Dj
xnu|xn=0 com-

posed with pseudodifferential operators on Rn−1.

A Poisson operator of order d is an operator defined by

Kv(x′, xn) =

∫
Rn−1

eix·ξ
′
k̃(x′, xn, ξ

′)v̂(ξ′)dξ′

where the symbol-kernel k̃ ∈ Sd−11,0 (Rn−1,Rn−1,S+). The symbol corre-

sponding to k̃(x, ξ′) is

k(x′, ξ) = Fxn→ξne+k̃(x, ξ′), F the Fourier transform.

4. Proof of Theorem 2.2

For elliptic differential operators of any order with constant coeffi-

cients, Poisson kernels for the upper half-space of Rn were constructed

by Agmon, Douglis and Nirenberg in the work [2]. For elliptic op-

erators with real analytic coefficients, the existence of local Poisson

kernels was proved in [36]. However, this latter kernel is not explicit

since it was defined by using Lax-Milgram’s theorem. Our goal here is

to express the local kernels Kj of [36] more explicitly in terms of the

potential operators of Boutet de Monvel. We stress that we make no

assumptions on the lower order terms of our operators. In particular,

for L as in Theorem 2.2, we don’t require that the zeroth order term

c(x) is nonpositive. To prove Theorem 2.2, after a real analytic diffeo-

morphism, we may assume that the real analytic curve γ(t) is given by

γ(t) = (0, . . . , 0, t).

Let K(x, y), x ∈ Rn, y ∈ Rn−1 be the Poisson kernel of [36] for the

second order operator L. Then there is a neighborhood Σ of 0 in Rn−1

such that for any ψ ∈ C∞0 (Rn−1), the function h defined by

h(x) =

∫
Rn−1

K(x, y)ψ(y)dy

satisfies

Lh = 0 in B+
r (r small enough)



10 S. BERHANU

and

h = ψ on Σ.

Define

K̃(x, y) =

{
K(x, y), xn > 0

0, xn < 0.

K̃ ∈ L1
loc and LK̃ (L acting in x) is supported in the hyperplane

{xn = 0}. We wish to determine the distribution LK̃. Let ψ = ψ(xn) ∈
C∞0 (R), ψ(xn) ≡ 1 for |xn| ≤ 1 and ψ supported in (−2, 2).

For δ > 0, let ψδ(xn) = ψ(xn
δ

). Let ϕ(x) ∈ C∞0 (Rn), f(y) ∈ C∞0 (Rn−1).

Since LK̃(x, y) is supported in {xn = 0}, for any δ > 0,

〈LK̃, ϕ(x)f(y)〉 = 〈LK̃, ψδ(xn)ϕ(x)f(y)〉

= 〈K̃, tL(ψδϕ)f(y)〉

=

∫
Rn−1

∫
Rn−1

∫ ∞
0

K(x, y) tL(ψδϕ)(x)f(y)dxdy

= lim
ε→0+

∫
Rn−1

∫
Dε

K(x, y) tL(ψδϕ)(x)f(y)dxdy

where Dε = Rn−1 × (ε, 2δ).

Recall that

L =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
k=1

bk(x)
∂

∂xk
+ c(x).

We have:

(K, tL(ψδϕ)f)Dε = (LK,ψδϕf)Dε −
n∑
k=1

∫
Dε

∫
Rn−1

∂

∂xk

(
bkKψδϕ

)
fdxdy

−
∑
j

∑
i

∫
Dε

∫
Rn−1

∂

∂xi

(
aij
∂K

∂xj
ψδϕ

)
fdxdy

+
∑
j

∑
i

∫
Dε

∫
Rn−1

∂

∂xi

(
aijK

∂

∂xi
(ψδϕ)

)
fdxdy.

Note that (LK,ψδϕf)Dε = 0. We consider each integral above:

When 1 ≤ k < n,

(4.1)

∫
Rn−1

∫
Dε

∂

∂xk

(
bk(x)K(x, y)ψδ(xn)ϕ(x)

)
f(y)dxdy = 0
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since ϕ(x) is of compact support.

When k = n,∫
Rn−1

∫
Dε

∂

∂xn

(
bn(x)K(x, y)ψδ(xn)ϕ(x)

)
f(y)dxdy

=

∫
Rn−1

∫
Rn−1

(∫ 2δ

ε

∂

∂xn

(
bnKψδϕ

)
dxn

)
f(y)dx′dy

= −
∫
Rn−1

∫
Rn−1

bn(x′, ε)K(x′, ε, y)ϕ(x′, ε)ψδ(ε)f(y)dydx′

= −
∫
Rn−1

∫
Rn−1

bn(x′, ε)K(x′, ε, y)ϕ(x′, ε)f(y)dydx′ (for ε < δ)

which as ε→ 0+, converges to

(4.2) −
∫
Rn−1

bn(x′, 0)ϕ(x′, 0)f(x′)dx′.

For i < n,

(4.3)

∫
Rn−1

∫
Dε

∂

∂xi

(
aij(x)

∂K

∂xj
(x, y)ϕ(x)ψδ(xn)

)
f(y)dxdy = 0

since ϕ(x) has compact support.

When i = n and j < n, we get∫
Rn−1

∫
Dε

∂

∂xn

(
anj(x)

∂K

∂xj
(x, y)ψδ(xn)ϕ(x)

)
f(y)dxdy

= −
∫
Rn−1

∫
Rn−1

anj(x
′, ε))

∂K

∂xj
(x′, ε, y)ϕ(x′, ε)f(y)dx′dy (ε < δ)

=

∫
Rn−1

∫
Rn−1

∂

∂xj

(
anj(x

′, ε)ϕ(x′, ε)
)
K(x′, ε, y)f(y)dydx′

which as ε→ 0+, converges to

(4.4)

∫
Rn−1

anj(x
′, 0)ϕ(x′, 0)

∂f

∂xj
(x′)dx′

If i = n, j = n∫
Rn−1

∫
Dε

∂

∂xn

(
ann(x)

∂K

∂xn
(x, y)ψδ(xn)ϕ(x)

)
f(y)dxdy

=

∫
Rn−1

∫
Rn−1

ann(x′, ε)
∂K

∂xn
(x′, ε, y)ϕ(x′, ε)f(y)dydx′

which as ε→ 0+, converges to

(4.5) −
∫
Rn−1

ann(x′, 0)ϕ(x′, 0)Af(x′)dx′
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where Af comes from the Dirichlet to Neumann map.

For 1 ≤ i < n, taking 0 < ε < δ, we clearly get

(4.6)

∫
Rn−1

∫
Dε

∂

∂xi

(
aij(x)K(x, y)

∂

∂xi

(
ψδϕ

)
(x)

)
f(y)dxdy = 0.

When i = n,∫
Rn−1

∫
Dε

∂

∂xn

(
anj(x)K(x, y)

∂

∂xn
(ψδϕ)(x)

)
f(y)dxdy

= −
∫
Rn−1

∫
Rn−1

anj(x
′, ε)K(x′, ε, y)

∂ϕ

∂xn
(x′, ε)f(y)dx′dy

since ψ′(t) ≡ 0 when |t| ≤ 1.

As ε→ 0+, the latter integral converges to

(4.7) = −
∫
Rn−1

anj(x
′, 0)

∂ϕ

∂xn
(x′, 0)f(x′)dx′.

Then from (4.1)-(4.7), we see that

〈LK̃, ϕ(x)f(y)〉 =

∫
Rn−1

bn(x′, 0)ϕ(x′, 0)f(x′)dx′

−
n−1∑
j=1

∫
Rn−1

anj(x
′, 0)ϕ(x′, 0)

∂f

∂xj
(x′)dx′

−
∫
Rn−1

ann(x′, 0)ϕ(x′, 0)Af(x′)dx′

+
n∑
j=1

∫
Rn−1

anj(x
′, 0)

∂ϕ

∂xn
(x′, 0)f(x′)dx′

=

(
h(x′)

∂ϕ

∂xn
(x′, 0), f(x′)

)
+

(
ϕ(x′, 0), V f(x′)

)
=

(
h(x′)f(x′)⊗ δ′(xn)

)
(ϕ) +

(
V f(x′)⊗ δ(xn)

)
(ϕ)

+

(
Af ⊗ δ(xn)

)
(ϕ),

where h is real analytic and V is a first order tangential differential

operator.

It is well known that the operator A is a first order pseudodifferential

operator. This is well known when the underlying Dirichlet problem

is uniquely solvable. The map is also known to be a pseudodifferential
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operator in the absence of uniqueness (see for example [9] and [10]).

Let

A1(f) = Af + V f.

Then

〈LK̃, ϕ(x)f(y)〉 =

(
h(x′)f(x′)⊗ δ′(xn)

)
(ϕ) +

(
A1f ⊗ δ(xn)

)
(ϕ)

= (hf, γ1ϕ) + (A1f, γ0ϕ)

= (γ∗1(hf), ϕ) + (γ∗0(A1f), ϕ)(4.8)

where γ0 and γ1 are the trace operators γ0ϕ(x′, 0) = ϕ(x′, 0) and

γ1ϕ(x′, 0) = ∂xnϕ(x′, 0). Let Q be a parametrix of L in a neighbor-

hood of B+
r . Then

QL = Id+R

where R is an analytic regularizing operator.

〈Q(LK̃), ϕ(x)f(y)〉 = 〈LK̃,Qt(ϕ(x))f(y)〉

(γ∗1(hf), Qt(ϕ)) + (γ∗0(A1f), Qt(ϕ))

Thus we have:∫
Rn−1

Q(LK̃)(x, y)f(y)dy = Q(γ∗1(hf)) +Q(γ∗0(A1f)).

It was proved by Boutet de Monvel in [27] that when T is a pseu-

dodifferential operator of order d satisfying the transmission condition,

then the operator E defined by

Ev(x) = r+T (v(x′)⊗ δ(xn))

is a Poisson operator of order d+ 1 (see Theorem 10.25 in [30]).

It follows that modulo a real analytic regularizing operator, K̃ is given

by (for xn > 0) a Poisson operator which we denote by K.

The operator K is of order 0 and hence by the result just mentioned,

for some real analytic pseudodifferential operator S of degree −1 with
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symbol s(x, ξ),

Kf(x) = S

(
f(x′)⊗ δ(xn)

)
(x)

=

∫
Rn

∫
Rn
ei(x−y)·ξs(x, ξ)f(y′)δ(yn)dydξ

=

∫
Rn−1

(∫
Rn
ei(x

′−y′)·ξ′eixnξns(x, ξ)dξ

)
f(y′)dy′

=

∫
Rn−1

k̃(x, x′ − y′)f(y′)dy′

where for x ∈ Rn, t′ ∈ Rn−1,

k̃(x, t′) =

∫
Rn
ei(t

′·ξ′+xnξn)s(x, ξ)dξ.

The symbol s(x, ξ) is a classical symbol and so

s(x, ξ) =
∞∑
j=0

sj(x, ξ)

where sj is homogeneous in ξ of degree −j − 1, real analytic and for

each compact K, ∃c, A > 0 such that for all j, α, β:

(4.9)

∣∣∣∣∂αx∂βξ sj(x, ξ)∣∣∣∣ ≤ c Aj+|α+β|(j + |α|)!β!|ξ|−1−j−|β| ∀x ∈ K.

See [28] for the definition of real analytic pseudodifferential operators.

For j = 0, 1, 2, . . . define

kj(x, t
′) =

∫
Rn
ei(t

′·ξ′+xnξn)sj(x, ξ)dξ.

We next argue as in [28] with some modifications. Fix an integer m <

−n+ 1 and consider the family

F =

{
A−j

j!
〈z, ξ〉m+jf.p.(sj(x, ξ)) : z ∈ Cn, |z| = 1,m+ j ≥ 0

}
,

where f.p. denotes the finite part. For any h ∈ F , from (4.9), we have

the uniform bound

(4.10) |h| ≤ c|ξ|m−1.

Let ϕ1(ξ) ∈ C∞0 (Rn), ϕ1 ≡ 1 for |ξ| ≤ 1, ϕ1 supported in |ξ| ≤ 2. Let

ϕ2 = 1− ϕ1 and for h ∈ F , write

h = ϕ1h+ ϕ2h.
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Inequality (4.10) shows that the Fourier transforms (in the ξ variable)

{ϕ̂2h(x, η) : h ∈ F}

are uniformly bounded since

(4.11) |ϕ̂2h(x, η)| ≤ ||ϕ2h||L1(Rn),

Observe that ϕ1h is understood in the sense of finite parts (see [33]).

We use the results in [33] to estimate the Fourier transform of ϕ1h. We

have:

ϕ̂1h(x, η) = 〈ϕ1(y)h(x, y), e−iy·η〉

= 〈h(x, y), ϕ1(y)e−iy·η〉

= 〈h(x, y), ψ(y)Rm−1(ϕ1(y)e−iy·η)〉(4.12)

where ψ ∈ C∞0 (Rn \ 0) such that∫ ∞
0

ψ(ty0)

t
dt = 1 for some y0 6= 0,

and

Rm−1

(
ϕ1(y)e−iy·η

)
= 〈tm+n−2

+ , ϕ1(ty)e−ity·η〉

=
−1

(N − 1)!

∫ ∞
0

(log t)

(
ϕ1(ty)e−ity·η

)(N)

(t)dt(4.13)

+
(ϕ1(ty)e−ity·η)(N)(0)

(N − 1)!

(N−1∑
j=1

1

j

)
(4.14)

with N = −m− n+ 2, and the N th derivative(
ϕ1(ty)e−ity·η

)(N)

(t) =
N∑
l=0

(
N

l

)( ∑
|α|=N−l

ϕα(ty)yα
)

(−iy · η)le−ity·η.

Let ψ(y) be supported in |y| ≥M . Then on the support of ψ,

|h(y)| ≤ c

|y|1−m

and when y ∈ supp(ψ), and ty ∈ supp(ϕ1),

|t| ≤ 2

|y|
≤ 2

M
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and so when y ∈ supp(ψ),∣∣∣∣Rm−1
(
ϕ1(y)e−iy·η

)∣∣∣∣ ≤ c1

(∫ 2
M

0

| log t|dt
)
|y|N

N∑
j=0

|η|j

≤ c2|y|N
N∑
j=0

|η|j(4.15)

for some constants c1 and c2 > 0.

It follows from (4.12) and (4.15) that for x in a compact set,{
ϕ̂1h(x, η) : h ∈ F

}
are uniformly bounded on {η ∈ Cε| : |η| ≤ ε} if ε is small enough. Here

Cε = {z ∈ Cn : |= z| < ε|< z|}.

Let

kj(x, z) =

∫
Rn
eiz·ξsj(x, ξ)dξ, j = 0, 1, 2, . . .

and set

K(x, y′) =
∞∑
j=0

kj(x, x
′ − y′, xn).

Observe next that for j ≥ n− 1, since kj(x, z) is the Fourier transform

of the finite part of sj(x, ξ), by the results in [33],

kj(x, z) = Uj−n+1(x, z) +Qj−n+1(x, z) log |z|

where Uj−n+1(x, z) is homogeneous in z (away from z = 0) of degree

j − n + 1 and Qj−n+1(x, z) is homogeneous polynomial in z of degree

j − n + 1. It follows that for j ≥ n + 1, kj(x, z) and its derivatives of

order < j − n + 1 are continuous and zero at the origin. Therefore,

integrating j − n times on the segment from the origin to z in Cε for

j ≥ n+ 1, we get

|kj(x, z)| ≤
cAjj!

(j − n)!
|z|j−n

for z ∈ Cε, |z| < ε.

Thus
∑∞

j=n+1 kj(x, z) converges uniformly and has the form

(4.16)
∞∑

j=n+1

kj(x, z) = |z| E(x, z), z ∈ Cε, |z| < ε
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where E(x, z) is holomorphic in z.

When 0 ≤ j ≤ n−2, kj(x, z) is homogeneous in z of degree j−n+1.

The terms kn−1 and kn have the form

kn−1(x, z) = U0(x, z) +Q0(x) log |z|,

kn(x, z) = U1(x, z) +Q1(x, z) log |z|,

The functions U0, U1 are homogeneous in z (away from z = 0) of degree

0 and 1 respectively, Q0(x) is real analytic and Q1(x, z) is a homoge-

neous polynomial in z of degree 1.

Since

lim
xn→0+

K(x, y′) = δ(x′ − y′),

we have kj(x
′, 0, z) = 0 for all j and so using the homogeneity in z, we

can write

k0(x, z) =
xnA0(x, z)

|z|n
, k1(x, y) =

xnA1(x, z)

|z|n−1
, . . . , kn−2(x, z) =

xnAn−2(x, z)

|z|2
.

It is easy to see that for any f ∈ C∞0 (Rn−1) and 1 ≤ j ≤ n− 2,

lim
xn→0+

∫
Rn−1

xnAj(x, x
′ − y′, xn)

(|x′ − y′|2 + x2n)
n−j
2

g(y′)dy′ = 0

while

lim
xn→0+

∫
Rn−1

xnA0(x, x
′ − y′, xn)

(|x′ − y′|2 + x2n)
n
2

g(y′)dy′ = g(x′).

It follows that

(4.17) A0(x
′, 0, 0, 0) ≡ 1 for x′ near 0 ∈ Rn−1.

We will next estimate the derivatives ∂kxnk0(0, xn,−y
′, xn) of arbitrary

order at xn = 0, y′ 6= 0.

Observe that for any N ,

∂N+1
xn

{
xn(|y′|2 + x2n)

−n
2

}
= N∂Nxn(|y′|2 + x2n)

−n
2 .

To compute the latter derivative, we use Faá di Bruno’s formula:

dN

dtN
Q(f(t)) =

∑ N !

N1! . . . NN !
Q(N1+...+NN )(f(t))

N∏
j=1

(
f (j)(t)

j!

)Nj
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where the sum is taken over all N−tuples of nonnegative integers

(N1, . . . , NN) that satisfy the constraint

N1 + 2N2 + . . .+NNN = N.

Let f(t) = |y′|2 + t2 and Q(s) = s
−n
2 .

At t = 0 all the terms in the preceding formula are zero except when

N = 2N2 in which case we get

N !

N2!
Q(N2)

(
f(0)

)
.

Hence at xn = 0, y′ 6= 0, if N = 2N2,

(4.18)

∂N+1
xn

{
xn(|y′|2 + x2n)

−n
2

}
=

(−1)N2N(N !)

N2!

n
2
(n
2

+ 1) . . . (n
2

+N2 − 1)

|y′|N+n

while when N is even, at xn = 0, y′ 6= 0,

(4.19) ∂Nxn

{
xn(|y′|2 + x2n)

−n
2

}
= 0.

With A0 = A0(0,−y′, xn), consider

∂Nxn

{
xnA0

(|y′|2 + x2n)
n
2

}
=

N∑
k=0

(
N

k

)
∂kxn

(
xn(|y′|2 + x2n)

−n
2

)
· ∂N−kxn A0.

On a given compact set, by real analyticity, ∃C > 0 such that

|∂jxnA0| ≤ Cj+1j!.

We thus have

∂Nxn

{
xnA0

(|y′|2 + x2n)
n
2

}

= A0∂
N
xn

(
xn
(
|y′|2 + x2n)

−n
2

))
+

N−1∑
k=0

∂kxn

(
xn
(
|y′|2 + x2n

)−n
2

)
· ∂N−kxn A0.

(4.20)
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Note that∣∣∣∣N−1∑
k=0

(
N

k

)
∂kxn

(
xn
(
|y′|2 + x2n

)−n
2

)
∂N−kxn A0

∣∣∣∣
≤ N !

∑
k=0,k odd

CN−k+1

k!

∣∣∣∣∂kxn(xn(|y′|2 + x2n
)−n

2

)∣∣∣∣
= N !

N2−1∑
m=0

CN−2m

(2m+ 1)!

∣∣∣∣∂2m+1
xn

(
xn
(
|y′|2 + x2n

)−n
2

)∣∣∣∣
= N !

N2−1∑
m=0

CN−2m

(2m+ 1)!

(2m+ 1)((2m+ 1)!)(n
2
(n
2

+ 1) . . . (n
2

+m− 1))

m!|y′|2m+1+n

=
N !

|y′|N+n−1

N2−1∑
m=0

(
C|y′|

)N−2m+2

m!

n

2
(
n

2
+ 1) . . . (

n

2
+m− 1)

≤ N ! C2

|y′|N+n−1

N2−1∑
m=0

C1

2m
(
c|y′|

)N−2m+2
(for some C1 > 0)

≤ N ! C2

|y′|N+n−1

(4.21)

where in the last inequality we chose |y′| < 1
2C
.

From (4.18) and (4.21), when N = 2k+ 1, for some constants C1, C2 >

0:

(4.22) C1
N !

|y′|N+n
≤ |∂Nxnk0| ≤ C2

N !

|y′|N+n
.

Consider next k1(x, z) . . . kn(x, z) and
∑∞

j=n+1 kj(x, z).

From (4.18) and (4.19), at xn = 0, y′ 6= 0, if N = 2N2,

(4.23)

∂N+1
xn

{
xn
(
|y′|2+x2n

)−(n−1)
2

}
=

(−1)N2N(N !)

N2!

(n−1
2

)(n−1
2

+ 1) . . . (n−1
2

+N2 − 1)

|y′|N+n−1

while when N is even, at xn = 0, y′ 6= 0,

(4.24) ∂Nxn

{
xn
(
|y′|2 + x2n

)−(n−1)
2

}
= 0.
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It follows from (4.22), (4.23) and (4.24) that when N = 2k + 1, for

xn = 0 and y′ small enough,

|∂Nxnk1| ≤
|∂Nxnk0|

2
.

The same inequality holds for k2, . . . , kn and

∞∑
j=n+1

kj(x, z) = |z|E(x, y).

Thus for some c1, c2 > 0, for y′ 6= 0 and any N = 2k + 1,

(4.25) c1
N !

|y′|N+n
≤
∣∣∂NxnK(0′, xn, y

′)|xn=0

∣∣ ≤ c2
N !

|y′|N+n

Let ψ = ψ(x′) ∈ C∞0 (Rn−1) have support in |x′| < r, ψ(x′) ≡ 1 on

|x′| ≤ r
2

and 0 ≤ ψ ≤ 1, r sufficiently small.

Define the function

v(x) = −
∫
Rn−1

K(x, y′)ψ(y′)u(y′, 0)dy′, x ∈ B+
r

where u is the solution in Theorem 2.2.

Observe that Lv = 0 in B+
r and v(x′, 0) = u(x′, 0) for |x′| ≤ r

2
. Let

w(x) = u(x)−v(x) for x ∈ B+
r . The function w is a solution of Lw = 0

in B+
r and w(x′, 0) ≡ 0 for |x′| ≤ r

2
. By the boundary analyticity result

in [39], w(x) extends to a real analytic function on Bδ(0) for some

0 < δ < r. The integrability of |x′|−Nu(x′, 0) for all N and estimate

(4.25) imply that the function

v(0′, xn) = −
∫
Rn−1

K(0′, xn, y
′)ψ(y′)u(y′, 0)dy′

and hence

u(0′, xn) = v(0′, xn) + w(0′, xn)

are C∞ up to xn = 0. Since u(0, xn) is flat at xn = 0, and u − v = w

is real analytic on Bδ(0), we can find a constant D > 0 such that for

every k,

(4.26) |∂2k+1
xn v(0)| = |∂2k+1

xn (u− v)(0)| ≤ D2k+2(2k + 1)!
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On the other hand, since u(y′, 0) ≥ 0, using (4.25), for ε small,

|∂2k+1
xn v(0)| =

∫
Rn−1

∂2k+1
xn K(0′, xn, y

′)|xn=0ψ(y′)u(y′, 0)dy′

≥ c1(2k + 1)!

∫
Rn−1

ψ(y′)u(y′, 0)

|y′|2k+n+1
dy′

≥ c1(2k + 1)!

∫
|y′|<ε

u(y′, 0)

|y′|2k+n+1
dy′

≥ c1(2k + 1)!

ε2k+n+1

∫
|y′|<ε

u(y′, 0)dy′.(4.27)

The inequalities (4.26) and (4.27) hold for any k. By choosing ε small

enough (depending only on D) taking the (2k+n+1)th root and letting

k →∞, we conclude that u(x′, 0) ≡ 0 for |x′| < ε.

Proof of Corollary 2.2: After flattening ∂D near p by a real analytic

diffeomorphism that maps p to the origin, we are in the context of

Theorem 2.2 with the additional assumption that u is flat at the origin.

By Theorem 2.2, u(x′, 0) ≡ 0 for |x′| small and hence by the result in

[39], u extends as a real analytic function on some ball Bδ(0). Since

it is flat at an interior point, u ≡ 0 in Bδ(0) and hence in B+
r by

analyticity. �

Proof of Corollary 2.4: Let F be a real analytic diffeomorphism from a

neighborhood of p to a neighborhood of 0 that maps p to 0 and flattens

M near p. Since <(h) is the boundary value of the harmonic function

u on M+, in the new coordinates, it is the boundary value of a solution

of an elliptic, real analytic differential operator in B+
r for some r > 0.

By Theorem 2.2, <(h) ≡ 0 near p in M .

Suppose now M is not Levi flat. Let Lj = Xj +
√
−1Yj, 1 ≤ j ≤ n

be a basis of the CR vector fields near p. Pick a point q close to p such

that M is minimal at q. By minimality, there are two neighborhoods

S1, S2, S1 ⊆ S2 of q in M with the property that every q′ ∈ S1 can be

joined to q by a broken path Γ ⊆ S2 consisting of a finite number of

curves Γj where each Γj is an integral curve of Xj or Yj. Since <(h) ≡ 0

on S2, Xj(=(h)) ≡ 0 ≡ Yj(=h) on S2 for all j. It follows that =(h) is
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constant on the Γj and hence it is constant on S1. Thus the boundary

value of f is constant near q and so f is constant M+. �

5. Proofs of Theorem 2.3, Corollary 2.3

Proof of Theorem 2.3: In the work [36], the existence of local Poisson

kernels K0, K1 with the following properties was established: given

ϕ1, ϕ2 ∈ C∞0 (Rn−1), the functions

u0(x) =

∫
Rn−1

K0(x, y
′)ϕ1(y

′)dy′, u1(x) =

∫
Rn−1

K1(x, y
′)ϕ2(y

′)dy′

satisfy

Pu0 = 0, Pu1 = 0 for xn > 0;B1u0(x
′, 0) = u0(x

′, 0) = ϕ1(x
′), Bju0(x

′, 0) = 0;

B1u1(x
′, 0) = u1(x

′, 0) = 0, Bju1(x
′, 0) = ϕ2(x

′)

for x′ in a neighborhood of 0 in Rn−1.

The arguments in Section 4 show that K0 and K1 are Poisson oper-

ators and in particular, there exist P0, P1 real analytic, classical pseu-

dodifferential operators of order −1 and −2 respectively such that for

any h ∈ C∞0 (Rn−1),

K0h(x) = r+P0

(
h(x′)⊗ δ(xn)

)
, and K1h(x) = r+P1

(
h(x′)⊗ δ(xn)

)
,

where r+ is restriction to xn > 0. The argument in Section 4 also show

that K0, K1 have expansions of the form:

K0(x, y
′) =

∞∑
j=0

k0j (x, x
′ − y′, xn) and K1(x, y

′) =
∞∑
j=0

k1j (x, x
′ − y′, xn).

Moreover, since
∂K0

∂xn
(x′, 0, y′) = 0,

we get

k00 =
x2nA0(x, z)

|z|n+1
, k01 =

x2nA1(x, z)

|z|n
, . . . , k0n−2 =

x2nAn−2(x, z)

|z|3
,

k0n−1 = U0
0 (x, z) +Q0

0(x) log |z|, k0n = U0
1 (x, z) +Q0

1(x, z) log |z|,

and
∞∑

j=n+1

k0j (x, z) = |z|E0(x, z);
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k10(x, z) =
xnB0(x, z)

|z|n−1
, k11(x, z) =

xnB1(x, z)

|z|n−2
, . . . , k1n−3(x, z) =

xnBn−3(x, z)

|z|2
,

k1n−2(x, z) = U1
0 (x, z) +Q1

0(x, z) log |z|,
k1n−1(x, z) = U1

1 (x, z) +Q1
1(x, z) log |z|,

and
∞∑
j=n

k1j (x, z) = |z|E1(x, z).

Faá di Bruno’s formula this time implies that at xn = 0, y′ 6= 0,

(5.1) ∂kxn

(
x2n(

|y′|2 + x2n
)n−1

2

)
= 0 when k is odd

and

(5.2) ∂2Nxn

(
x2n(

|y′|2 + x2n
)n−1

2

)
=

(2N)!(n− 1)(n+ 1) . . . (n+ 2N − 3)

(N − 1)!2N−1|y′|n+2N−3

and so

(5.3)

∣∣∣∣∂2Nxn ( x2n(
|y′|2 + x2n

)n−1
2

)∣∣∣∣ ≥ (2N)!

|y′|n+2N−3 .

This in turn leads to, when N = 2k,

(5.4) c1
N !

|y′|n+N−3
≤ |∂Nxnk

1
0| ≤ c2

N !

|y′|n+N−3
.

Inequality (5.4) implies that for some c1, c2 > 0 for y′ 6= 0, xn = 0, and

any N = 2k,

(5.5) c1
N !

|y′|n+N−3
≤ |∂NxnK1(0

′, 0, y′)| ≤ c2
N !

|y′|n+N−3
.

Let ψ = ψ(x′) ∈ C∞0 (Rn−1) be supported in |x′| < r, ψ(x′) ≡ 1 on

|x′| ≤ r
2
, 0 ≤ ψ ≤ 1, r small enough.

Define the function

v(x) =

∫
Rn−1

K0(x, y
′)ψ(y′)u(y′, 0)dy′+

∫
Rn−1

K1(x, y
′)ψ(y′)Bju(y′, 0)dy′

where u is the solution in Theorem 2.3.

We have:

Pv = 0 in B+
r , v(x′, 0) = u(x′, 0), Bjv(x′, 0) = Bju(x′, 0) for |x′| ≤ r

2
.

Then by the results in [39], u − v extends to a real analytic function

on Bδ(0) for some δ > 0. We can then argue as in section 4, this
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time taking derivatives of odd order to conclude u(x′, 0) ≡ 0 (near the

origin) and even order to conclude that Bju(x′, 0) ≡ 0 for x′ small. �

Proof of Corollary 2.3: We may assume that D = B+
r , p = 0 and Σ is

the flat piece of ∂B+
r . By Theorem 2.3, for x′ small,

u(x′, 0) ≡ 0 ≡ ∂u

∂xn
(x′, 0).

By the results in [39] u extends as a real analytic function to a neigh-

borhood of the origin. By flatness, u ≡ 0 in B+
r . �

Proofs of Theorem 2.4 and Corollary 2.5: We use the local Poisson ker-

nels of [36] to get Poisson operators Kj, 1 ≤ j ≤ m with the following

properties: given ϕj ∈ C∞0 (Rn−1), 1 ≤ j ≤ m, the functions

uj(x) =

∫
Rn−1

Kj(x, y
′)ϕj(y

′)dy′

satisfy

Puj = 0 for xn > 0; Bjuk(x
′, 0) = δjkϕk(x

′).

The rest of the arguments for both the theorem and corollary are the

same as those for Theorem 2.3 and Corollary 2.3. �

APPENDIX

In this section, we present a simple proof of the following theorem

which can also be proved in the same way for general operators Bj, 0 ≤
j ≤ m−1 which satisfy the complementary boundary conditions of [2]:

Theorem 5.1. Let D ⊆ Rn be a bounded domain with C2m boundary,

p ∈ ∂D. Suppose Σ ⊆ ∂D is a neighborhood of p that is a real analytic

hypersurface. Let P =
∑

α≤2m aα(x)∂αx be a real analytic, elliptic partial

differential operator. Let fj, 0 ≤ j ≤ m − 1 be C2m functions on ∂D.

There is u that is a solution of Pu = 0 near p in D and ∂jνu = fj, 0 ≤
j ≤ m− 1 near p in Σ.

Proof. We begin by showing first that given g ∈ L2(D), there is a

solution w ∈ Hm
0 (D) that solves Pw = g near p in Σ. To see this,

define

V = {h ∈ L2(D) : ∃u ∈ Hm
0 (D), Pu = h}.
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Then from the Fredholm Alternative (see [1]), if N = the subset of

Hm
0 (D) that is in the kernel of the adjoint of P ,

L2(D) = V ⊕N.

We decompose g as g = g1+g2 = P (u1)+g2 with u1 ∈ Hm
0 (D) and g2 ∈

N ∩Hm
0 (D). Since P is elliptic and real analytic, g2 is real analytic in

D. Moreover, since it belongs to Hm
0 (D), by the boundary analyticity

theorem of Morrey and Nirenberg, g2 extends as a real analytic function

to a neighborhood of p. We then use the Cauchy-Kovalevska theorem

to get u2 real analytic on a neighborhood of p that solves: P (u2) = g2,

and u2 extends to a function we still call u2 ∈ Hm
0 (D). Thus w = u1+u2

solves Pw = g near p in D and w ∈ Hm
0 (D). To finish the proof of the

theorem, let F ∈ C2m(D) such that ∂jνF = fj, 0 ≤ j ≤ m − 1 near p

in Σ. By what we just established, there is h that satisfies

Ph = −PF near p ∈ D, h ∈ Hm
0 (D).

Set u = h + F . Then Pu = 0 near p in D and ∂jνu = fj near p in

Σ. �
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