GLOBAL L-PACKETS OF QUASISPLIT GSp(2n) AND GO(2n)
BIN XU

ABSTRACT. This is a sequel to [Xul8] on the L-packets of quasisplit general symplectic and even orthogonal
groups. We show the existence of global L-packets and establish the functoriality of endoscopic transfer
for them in many cases.

1. INTRODUCTION

Let F' be a number field and G be a quasisplit symplectic or special even orthogonal group over F.
Let Ar be the adéle ring of F'. We fix an automorphism 6y of G preserving an F-splitting. It induces a
dual automorphism @\0 on the dual group G. When G is symplectic, 0 is trivial. When G is special even
orthogonal, we require 6y to be the unique nontrivial outer automorphism induced from the conjugation
of the full orthogonal group. We say two irreducible admissible representations of G(Ap) are §y-conjugate
if they are fp-conjugate at every place. In [ArtI3] Arthur proved the discrete automorphic spectrum of
G(Ap) can be decomposed

Ldzsc( (FN\G(AF)) @ Ldzscz/; (FN\G(AF))
YeT2(G)

according to the set U5 (G) of %-conjugacy classes of discrete Arthur parameters of G. For each 1) € U5(G),
Arthur associated a multi-set II,, of isomorphism classes of irreducible admissible representations of G(Ap)
modulo fyp-conjugacy, and proved that

2
Ldisc,d}( ( )\G AF @ My T
[w]€lLy,
(-, m)=¢€y
modulo fp-conjugacy, where €, is a character of certain two-group Sy associated with ¢ and there is a
map
My — Sy, ] = ().

Let G be the group of symplectic or orthogonal similitudes over F', whose derived group is G. We can
extend 6 to G. Let ¢ be a character of Z G(Ap)/Z5(F) and ¢ be the restriction to Zg(Ap). Then we
have

MAZE) L am Flise CNG(A7). €)= L (GF)\G (), )

(cf. [Xul8, Lemma 5.3]). So we can decompose

Ldzsc( (F)\é(AF)v E) = @ Lizsc,zb(é(F)\é(AF)a Z)

we‘iIQ (G,C)

where Wy (G, ) C Wo(G) is associated with the central character ¢ and

Lioes GUNG(AR),C) = Ind §0r) i oGNG4 ), )
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2 BIN XU

In this paper, we will focus on the subset of generic parameters ®3(G, () = ¥o(G,¢) N ®(G). Let ﬁ¢ ¢

be the set of isomorphism classes of irreducible admissible representations of é(A r) modulo fy-conjugacy
with central character ¢, whose restriction to G(Ar) have irreducible constituents contained in II,. Let

Y = Hom(G(Ar)/G(F) Z5(Ar)G(Ap),C*), X = Hom(G(Ar)/Zg(Ar)G(AF),C*),

There is a natural group homomorphism « : Sy — Y (cf. (2.19)), so that 7 ® w = 7 for any w € «(Sy)
and ] € l:[¢ ¢ Define S5 := Ker o, and

by
<‘7 ﬁ) = <'77T>|3q;

where 7 is any irreducible constituent in the restriction of 7 to G(Ap). By [Xul8| Proposition 5.11],

(1.1) Liise o GIENG(AR), () =mg > Y Touw,
weY/ealSs)  [r]el, 7/ X
<77~1'>=1

modulo fyp-conjugacy, where 7 are taken to be the representatives of 1| 8 E/ X in the discrete automorphic

spectrum of G(Ar). Our first main result gives a refined decomposition of (T.1)).

Theorem 1.1. For any ¢ € ®o(G), there exists a global packet l:I(z; of isomorphism classes of irreducible

admissible representations for é(AF) modulo 0y-conjugacy, unique up to twisting by Y, such that
- A
I3 = @1,

where f[q;u is defined in [Xul8, Theorem 4.6], and

Liioeg(GUNG(AR).O) =my D D 7
weY/a(Sy) [7]€ll j0w
<-,77I'>=1
modulo 0p-conjugacy.

This result was originally announced in the author’s thesis [Xul4, Theorem 5.3.1], but there is an error
in the proof. It is due to the application of a comparison formula (cf. [Xuld, Lemma 5.4.5], [Xul8|
Lemma 5.25]) in the induction argument, whose validity depends on the assumption of Conjecture
This conjecture was only proved in certain cases (cf. [Xul4l Theorem 5.3.5], [Xul8, Theorem 5.21]). In
[Xul§|, we reproduce the proof of Theorem in the stable case, i.e., S<Z> = 1. In the current work, we
are able to prove this in all cases by establishing a weak form of this conjecture (cf. Theorem [4.8§]).

When G is special even orthogonal, Theorem only construct the global L-packets of G modulo
some equivalence relation. In this case, let G* := G x (fy), which is isomorphic to the even orthogonal
similitude group. Inspired by the works of Atobe-Gan [AG17] for even orthogonal groups, we can define
the local L-packet Hgo of G¥0(F,) to be the set of irreducible representations, whose restrictions to G(F,)

are contained in II 3y Then the global L-packets of G can be defined to be H?O = ®;H§° and they are
expected to appear in some version of Arthur’s multiplicity formula for the automorphic rvepresentations
of G%o (cf. [AGIT, Theorem 7.1]). This means that IT 3 determines a global L-packet for G and hence
justifies our title.

Our second main result is on the functoriality of endoscopic transfer. Let H be an elliptic endoscopic
group of G. Then the derived group H of H is an elliptic endoscopic group of G and it is isomorphic to
G1 x G9, where G; is a quasisplit symplectic or special even orthogonal group. Here we also allow G; to
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be trivial. Let G; be the corresponding group of similitudes and \; the similitude character. In case G;
is trivial, let G; = G, and A\; = id. Then

H = {(gl,gg) € Gy x Ga| M(g1) = /\2(92)}-

For ¢; € ®o(G;), let ¢y := ¢1 X ¢ and we define a global L-packet l:Iq;H of H to be the restriction of
II (}3]13® 11 do- Let ¢ := ¢1 B 2 € Uo(G) (cf. (2.15))). Then we define the global endoscopic transfer of II du
to be

Tran f[q;H := ® Tran ﬁzfm,v

where Tran IT By = II 3, 18 the local L-packet transfered from IT . through the local character relation
(cf. [Xul8, Theorem 4.6]). It follows from Theorem [1.1| that

Traan;H = Hqg R w

for some w € X. The functoriality of endoscopic transfer in this case means that w can be chosen in Y.
We prove this under certain technical assumption.

Theorem 1.2. Suppose either ¢1 or ¢o does not contain GL-type orthogonal simple parameters (cf.
Definition , then

Traan;H = H(f) Qw
for somew €Y.

This result strengthens [Xul4, Theorem 7.4.3] and [Xul8, Lemma 6.27]. To give a few examples, the
assumption in this theorem is always satisfied in the following cases:

) é = GSp(4),GSp(6), GSO(4,n), GSO(6,n), where n is a quadratic idele class character;
e G=GSO(8,n) for n#1;
e G =GSp(2n) and H = GSO(2n).

At the request of the referee, we make a remark on the non-generic case. One of the main difficulties
for extending these theorems to the non-generic case is the construction of local Arthur packets. This has
been solved in the nonarchimedean case in the author’s recent work [Xu21]. The solution requires fine
structural information of the local Arthur packets for the classical groups, which is still not available in
the archimedean case. We also expect certain knowledge of the residual spectrum would be helpful.

This paper is organized as follows. In Section [2] we review our earlier work [Xul8] on both the local
and global theory about G. In Section [3| we review the relevant stabilized twisted trace formulas. In
Section [4] we formulate the main results of this paper in their most general forms. In particular, we also
consider the twisted version of Theorem In Section [b] we formulate some comparison formulas. In
Section [6], we prove the main results for parameters consisting of orthogonal simple parameters of G L-type
(cf. Definition . In Section (7| we prove the comparison formulas following the same strategy as that
of [Xul8, Lemma 5.25]. In Section [8) we show that the global L-packets of G has compatible lifting to G
(cf. Corollary [8.8). The notion of compatible lifting has been introduced in [Xul4, Section 7.3]. It has
the following implication. Let 1 ﬁé be endoscopic groups of G. If H” is an endoscopic group for both
H 1, I;Té such that the following diagram of endoscopic embeddings commutes.
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Then
(1.2) Trang, o Tran,, II $yn = Trang, o Tran,, I By

for any global L-packet IT Segr of H”. This is essentially a local statement. It is not trivial since one can not
compose the geometric endoscopic transfer maps. It provides a reduction for the proof of Theorem [I.2] As
another application, we construct a bijection between local Langlands parameters and local L-packets for
G in the nonarchimedean case such that it is compatible with the endoscopic transfers (cf. Theorem
and [Xul4, Theorem 7.3.5]). This construction depends on certain choices, so it is not canonical. Never-
theless, it will suffice for our construction of the local Arthur packets for Gina forthcoming work. It is
also necessary to consider for the twisted endoscopic groups. To do so, we have claimed incorrectly
in [Xuldl Section 7.3] that there is a canonical lift of endoscopic embedding from an endoscopic group of
G to a twisted endoscopic group of G. In fact, that construction has an obstruction by a 2-cycle of the
Galois group in the central torus D of the dual group in the case when G = GSO(2n n) for n # 1. In
the current paper, we fix this error by introducing a 1-cochain of the Weil group in D which splits the
2-cocycle. It is the fact that we can not make a canonical choice for the twisted endoscopic embedding for
G makes the discussion in this section complicated. In the last section, we prove the main results in the
cases left by Section[6] The proof of Theorem is similar to that of [Xul8, Theorem 5.21]. In the proof
of Theorem we introduce some auxiliary global parameters by doubling certain simple parameter.
This is motivated by some arguments in [Art13]. The proof is similar to that of [Xul4, Theorem 7.4.3].

2. L-PACKETS

Let F be a local or global field of characteristic zero and F be its algebraic closure. When F is global,
let us denote the adeéle ring of F' by Ag, the idele group by Ir. Let I'r or I' be the absolute Galois group
of F' and Wr the Weil group. For any quasisplit connected reductive group G over F', we denote by Zg
its center, by A the split connected component of Zg, by G its complex dual group, by Z (G) the centre
of G and by LG its L-group, which is a semidirect product of G with the Weil group Wg, i.e., G Wr.
Let X*(G) be the group of algebraic characters of G over F' and ag = Homgz(X*(G),R).

Let G C G be two quasisplit connected reductive groups over F' such that they have the same derived
group. Then G /G is a torus, denoted by D. There is an exact sequence

(2.1) 1 G G-—25D 1
On the dual side, we have
1 D G—5G 1,

where all the homomorphisms can be extended to L-homomorphisms of L-groups. Let X be a finite
abelian group of F-automorphisms of G preserving a fixed F-splitting of G. We will always assume that

A is Y-invariant. This 1mphes that ¥ also acts on G. Let G= = G x ¥ and G* = G x X. Since ¥ induces
Sy

dual automorphisms on G and G we denote this group by S and define G =G x % and G® =G x 3.

As in [Xul§| we are mainly concerned with the case that G is a quasisplit symplectic or special even
orthogonal group and G is the corresponding similitude group. We denote the split symplectic and special
even orthogonal group of rank n by Sp(2n) and SO(2n) respectively. We also denote the outer twist of
SO(2n) with respect to a quadratic extension E/F by SO(2n,ng/r), where ng/p is the quadratic (idele
class) character associated to E/F by the local (global) class field theory. Denote ng = ng,p. The
corresponding similitude groups can be defined as follows.

GSp(2n) = (G x Sp(2n))/(Z/2Z) and GSO(2n,ng/r) = (Gm x SO(2n,ng/r))/(Z/2L),

where 7 /27 is embedded diagonally into the centre of each factor. The similitude character A is square
on G,, and trivial on the other factor. We fix an automorphism 6y of G preserving an F-splitting. When
G is symplectic, we require 6y to be trivial. When G is special even orthogonal, we require 6y to be the
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unique nontrivial outer automorphism induced from the conjugation of the full orthogonal group. Clearly,
0(2) =1, 6y extends to G by acting trivially on Z~, and A is fp-invariant. Let 3¢ = (6p). For our induction
arguments in the proofs, we will also need to consider

(2.2) G=G1 x--xGy
where G; is a quasisplit symplectic or special even orthogonal group. We define

G = (G x Gy X G X -+ x Gy)/(Z)27.),

where Z/27 is embedded diagonally into the center of each factor. We also define a character A of G,
which is square on Gy, and trivial on the other factors. We define a group of automorphisms of G' by
taking the product of ¥ on each factor, and we denote this group again by Y. We can extend X to G
by the trivial action on Zx. We can also view G asa subgroup of Gi X% G by

G2 {(g) € [ IMlon) = = Alan) .

For admissible representations 7; of C:’z(F) in the local case (or él(AF) in the global case), we define the
restriction of ®; 7; to G by ®; 7.

2.1. Local theory. Suppose F' is local. The local Langlands group is defined as follows

[ Wr if F'is archimedean,
e Wg x SL(2,C) if F is nonarchimedean.

Let G be a quasisplit connected reductive group over F'. A local Langlands parameter ¢ is a @—conjugacy
class of admissible homomorphisms from Lx to G (cf. [Bor79]). Let ®(G) be the set of local Langlands
parameters and ®pq(G) be the subset of bounded parameters, i.e., the closure of ¢(Wp) is compact.
Let II(G(F')) be the set of isomorphism classes of irreducible admissible representations of G(F') and
iemp(G(F)) be the subset of tempered representations. If x is a quasicharacter of a closed subgroup Zp
of Zg(F), we define H (G, x) to be the space of x~!-equivariant smooth functions on G(F) with compact
support modulo Zg.

For G C G as in (2.1), the projection p mduces a surjection ®(G) — ®(G) (cf. [Xul8, Section 2.2]).

For ¢ € ®(G), let Ly act on D GZ, and G by conjugation through ¢. We denote the corresponding
group cohomology by Hj(LF,-). Then Hg(LF,D) = D' and Hé(LF,D) = H(Wp, D). We define

Sg = Cent(Im¢, G¥) = H)(Lp.G*), S —Cent(Imgb, ) =Hy(Lp,G ).

The short exact sequence

~ 2 ~
1 D G G 1
induces a long exact sequence
11— D' —— 8% —— 57— H'(Wp, D),
and hence we get
(2.3) 1 —— S¥/DF —— 5% —°  HY(Wp, D).
Taking the quotient of (2.3) by Z ((A?)F, we get
(2.4) 1 52— 5% S B (Wp, D),
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where 5% = S(%/Z(@)F, S5 = 83/2(G)F and HY(Wp, D) = HY(Wp,D)/3(Z(G)'). Since Im4 is finite
(cf. [Xul8, Lemma 2.1]), then 5’2 = Sg, which are the identity components. After taking the quotient of
(2.4) by the identity components, we get

(2.5) 1 5% —— 8§ ' HY(Wg, D),

where Sg = SE/SO and SE SZ/SO There are natural maps from S’g, 5’%, and Sf to fl, and for 6 € X,
we denote the preimages of hes by 59 e Sg and Sg respectively. To understand H*(Wp, ﬁ), we also take

~
o~ ~

1——D——Z(G) — Z(G) —— 1

and it induces

~
~

Z(G — HY(Wp, D) —— H (Wp, Z(G)) —— HY (W, Z(G)) — H2(Wp, D) = 1.

So
H (Wg, D) = Im{H" (Wp,D) = H"(Wg, Z(G))}
and
(2.6) | —— BY(Wg, D) —— HY (W, 2(G)) —— H (W, 2(G)) —— 1.

o~

By the isomorphism H 1(WF, Z(G)) — Hom(G(F),C*) [Xul6, Appendix A], we get an isomorphism
r: HY(Wg,D) — Hom( (F)/G(F),C*) [Xul8, Section 2.2]. Let us denote r o § by a.

Suppose G is (2.2). We denote the set of Zg-orbits in II(G(F)) by II(G(F)) and the set of S3o-orbits
in ®(G) by @(G). Similarly, we can define e, (G(F)), ®paa(G), and analogues of these sets for G. We
denote by H(G, x) (resp. H(G,¥X)) the subspace of Yo-invariant functions in H(G,x) (resp. H(G, X))

By the local Langlands correspondence for classical groups cf. [Art13, Theorem 1.5.1], we can associate
any [¢] € $pqq(G) with a finite subset Iy of Iljep,(G(F')) such that

Y falm),  feHG)
[r]elly

is stable and

(2.7) ﬁtemp(G(F)) = |_| Iy
[¢l€®paa(G)
Moreover, with respect to a fixed ¥p-stable Whittaker datum of G, there is a canonical pairing between
I14 and S, which induces an inclusion of Il4 into the set of irreducible characters Sy of S,
Iy — :S’;, T (-, m)

such that the generlc representation is sent to the trivial character. For [6] € Ppaa(G), the lift qg is unique
up to twists by H (Wp, D) which will be identified with Hom(G(F)/G(F),C*). For any subgroup
3 C Yo, we get from

(2.8) 1 S% — 8 —— Hom(G G(F)/G(F),C*) .

In [Xul8, Theorem 4.6] we have shown that there exists a lift II 3 C ﬁtemp(é (F)) unique up to twisting
by Hom(G(F)/G(F),C*) such that

Yo fa®,  FeH@)

[ﬁ]eﬁqg
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is stable. Moreover, we have shown for w € Hom(G(F)/G(F),C*) and any [7] € II 3

pow =g e [fouw]=[7]eweaS))

As a consequence,

(2.9) ﬁtemp(é(F)) = |_| |_| Hq; Bw.
[¢]€2544(G) weHom(G(F)/G(F),C*)/a(S,°)

We can define
HQB — nga <>7~T> = <'>7T>|S¢;

for any m C 7|g. For [¢] € ®paa(G), 6 € Xy and any semisimple element s € S’g, let G’ := Cent(s, G)°
and it can be equipped with a Galois action given by ¢. This determines a quasisplit connected reductive
group G’, and ¢ will factor through “G’ for some #-twisted endoscopic datum (G’, s, &) of G, and hence
we get a parameter ¢’ € ®(G’). In this way, we call (G’, ¢') corresponds to (¢, s), and denote this relation
by (G',¢') — (¢,5). By [Kulg], (G',s,£) can be lifted to a (0,w)-twisted endoscopic datum (G, 3, €) of
G for some w € Hom(G(F)/G(F),C*). In sum, we have the following diagram

(2.10) Lg =~ L@
LG, 1q,

There is a decomposition G’ = M; x G'_, where M, is a product of general linear groups and G’_ is as .
(cf. [Xul8, Section 2]). Correspondlngly, we can decompose ¢’ = ¢ x ¢ and define Iy = I, ® Oy,

where Il is the singleton L-packet given by the local Langlands correspondence for general linear groups
[HT01] [Hen00] [Schi3]. Let = be the image of s in Sg. Arthur established the following character relation

) = > (@) fee(r), feHG)

[7]elly

(cf. [ArtI3, Theorem 2.2.1 and Theorem 2.2.4]), where f& the Langlands-Shelstad-Kottwitz transfer of
f, fao(m) :=trm(f) o Ar(6) for an intertwining operator A, () between m and 7% of order two. The choice
of A, () determines an extension 7" of 7 to G(F)T := G(F) x (f), which corresponds to the extension
(-,mT) of (-, 7) to Sd'f generated by Sg. We define 1:[(;;, to be Iy, ® l:Iq;, . Then we can choose 1:[(23 such that

(2.11) = Y falmw), feH(G)

[7] €H¢

(cf. [Xul8, Theorem 4.6]), where fég (7,w) = tr(7(f)oAz(0,w)), and Az (,w) is the intertwining operator
between 7 ® w and 7 normalized by
Ax(0,w)|r = (z,7T) A (0)

for any ™ C 7|¢. In this case, we say the transfer of II- ¥ with respect to 5 is H and write Trzm5 I1;, H

Remark 2.1. For any proper Levi subgroup M M’ of G’ there exists a f-stable proper Levi subgroup M of
G and an L- homomorphism & 37 such that the following diagram commutes

LG/ LG
LT / E5rr Ll
M — M
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and (]\7 '3, SM«,) is a (0, w)-twisted endoscopic datum of M. Suppose ¢ factors through Sy € Poaa(M)

for the Levi subgroup M’ := M’ N G’ of G, then the compatibility of twisted endoscopic transfer with
parabolic induction gives

Tran~l:[q~5, = Trané~ Ind%, ﬁq?’M/ = Ind% Trang -,

E él\/I’ M’
If M = M , then Traung~ corresponds to twisting by a character depending on 51\7,, so it also transfers
Ml

representations. In this case, we can still make sense of Trangf[ &

2.2. Global theory. Suppose F' is global and G is a quasisplit symplectic or special even orthogonal
group over F. Arthur [Art13] Theorem 1.5.2] showed the following decomposition

L?lisc( ( )\G AF @ Ldzsc'z/} )\G(AF))
YeT2(G)

where W5 (G) is the set of Eo—conjugacy classes of the discrete global Arthur parameters of G. We will only
consider the subset ®5(G) of generic parameters in this paper. Let N = 2n+1if G = Sp(2n) and N = 2n
if G = SO(2n,ng/r). Then ®2(G) will be defined in terms of automorphic representations of GL(N, Ar)
with respect to the GL(N, C)-conjugacy class of twisted endoscopic embedding &g : “G — GL(N,C)
satisfying

e {clg is the standard representation of @,

e {olwy is trivial if NV is odd, and factors through I'g,p with the nontrivial element sent to a
reflection if NV is even.

We denote by @, (m) the set of isomorphism classes of irreducible unitary cuspidal automorphic rep-
resentations of GL(m,Ap). For ¢ € ®gn(m), we denote its dual by ¢¥. When ¢ = ¢V, we say ¢ is
of orthogonal type (resp. symplectic type) if the symmetric square (resp. skew-symmetric square) L-
function L(s, ¢, S?) (resp. L(s,¢,A?)) has a pole at s = 1. Denote the central character of ¢ by 7.
Suppose ¢ = ¢V € Pgip(m), then ny is quadratic and we denote the associated quadratic extension by
E/F. We associate ¢ with a twisted endoscopic datum (G, ¢, &g) of GL(m) as follows.

SO2n+1,C)xWp i N=2n+1
LG¢, =< 5S0(2n,C) x Wg if N =2n and ¢ is orthogonal type
Sp(2n,C) x Wg if N =2n and ¢ is symplectic type
where the action of Wy factors through I'g /. The twisted endoscopic embedding & : L Gy — GL(m,C)
satisfies:
o &yl Gs is the standard representation,

e &slw, factors through I' sr and the image of the nontrivial element of I'g,p is —I if N is odd,
and is a reflection if N is even.
It should be noted that & is not equivalent to {g, if N is odd and 7, # 1. For any place v, ¢, is an
irreducible admissible representation of GL(m, F,). By the local Langlands correspondence of general
linear groups [HT01] [Hen00] [Sch13], we can associate it with a Langlands parameter of GL(m, F,), still
denoted by ¢,. We will define © Gy, and &g, by restriction. By [Art13, Corollary 6.8.1], ¢, factors through
¢, S0 we have the following diagram.

(212) ¢v : LF@ — LG¢ &) GL(m (C)

~N ]
Gy —2+ GL(m,C)

We denote by ®(N) the set of formal direct sums
(2.13) ¢p=lo1 B Bl
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such that ¢; € ®g;,(N;) and 2;1 I;N; = N. We can assign a family of semisimple conjugacy classes in
GL(N,C) by

c(¢v) = C(¢17v) S R c(¢1,v) DD C(Qbr,v) DD C(anv)
Iy Iy

at unramified places v of ¢, where ¢(¢; ) is the Satake parameter of the local component ¢;,. We define
an involution on ®(N) by

¢ =lLip] B---Bl.0).

Suppose ¢ € ®(N) such that ¢ = ¢V, we also get an involution on the set of indices by requiring ¢;v = ¢.'.
Consequently I; = l;v. This gives a disjoint decomposition of these indices

(2.14) I | | 7o | | 78

where I, indexes the set of self-dual simple parameters. Let Ky = I; U Jy and I o (resp. Iy g) index the
self-dual simple parameters of orthogonal (resp. symplectic) type. For i € Iy, let G; = Gy, and & = &y, .
For j € Jg, let G; = GL(N;) and define ¢; : 'G; — GL(2N;,C) by sending g x w to diag{g,’g~'}.
Then we define a substitute global Langlands group for ¢ following [Art13l Section 1.4] by taking the
fibre product

£¢ = H {LGk — WF}
k€K¢
It is equipped with Wr — L4 and Lr, — Ly by . Let
¢¢ == P & : L5 — GL(N,C).
keK,
We define

(2.15) B(G):={p € ®(N) : ¢ =¢" and ¢° factors through &g}

which substitutes for the set of io-conjugacy classes of global Langlands parameters for G. Write ®(G, ¢)
for the set of G-conjugacy classes of L-homomorphisms ¢g : L5 — L@ such that &g o ¢g is GL(N, C)-
conjugate to ¢€. So the pair (¢, pg) is a substitute for the global Langlands parameter for G. Let

me = |®(G, ¢)|. For ¢ € ®(G) and subgroup ¥ C ¥, we define
S3 = Cent(Im¢e, G¥), SF = S3/2(G)'r, S} =S55/8.
and 5’3), S’g and Sg for 6 € ¥ as in the local case. Let
G (G) = {¢ € B(G): 50 =1}, $2(G) = {p € B(G) : |Sy| < o0}, B(G’) = {9 € (@) : 5] # 0},
Do (GY) = {p € B(GY) : ]S(%S\ < oo for some semisimple s € S*g},
where 6 € ¥y. The following lemma is a direct consequence of the computation of Sy (cf. [XulS8, Lemma

3.2)).

Lemma 2.2.
(1) (i)szm(G) = (I)S_Zm(N) N CI)(G) _
(2) Suppose ¢ € @(Q), then ¢ is in ®2(Q) if and only if Ky = Iy 0 and l; =1 for all i € Ky.
(3) Suppose ¢ is in Poy(G) for 6 € Xo, then Ky =140 and l; <2 for alli € K.
(4) Suppose G is special even orthogonal and ¢ € ®(G), then ¢ is in ®(G%) if and only if there exists
i € Iy 0 such that N; is odd.

At any place v, we define subsets ®yin, (Gy), P2(Gy), B(GY), Pyt (GY) of ®yaa(Gy) as in the global case.
For [¢,] € Ppaq(Gy), we can view ¢, as a representation of Lp, through the composition with &;,. Then
we can decompose it into irreducible subrepresentations

¢v = ll¢v,l S R lrgbv,r‘
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Since ¢, is self-dual, we will get a partition of indices as (2.14). If ¢, ; is self-dual, we say it is of orthogonal
(resp. symplectic) type if it factors through an orthogonal (symplectic) group. Then Lemma is still
valid.

For ¢ € ®(G), we define ¢, through the following diagram

(2.16) L, 251G,
Ly —51La.

The generalized Ramanujan conjecture would imply that [¢,] € ®pqq(Gy). Since we do not have this con-
jecture at the moment, we can only assume that [¢,] € ®/ ..(G,), which is a subset of ®(G,,) characterized
by the property that

G, Oy =01 D Db D (V" Ppp1 DV opy1) D (Vs DU Pris)

where ¢; is unitary for 1 <i<r+sand 0 <a; < 1/2for 1 <j < s (cf. [Xul8, Proposition 3.10]).

For any [¢,] € & . (GY%) with 6 € X9, ¢, factors through ¢as, » := ¢ar, @ (Ao |- |r) for some O-stable
parabolic subgroup P D M, where [pyr,] € Ppag(M?) and A € ajy, lies in the open chamber determined
by P. The normalized parabolic induction induces bijections Il = H¢M » and H~ = H~ oA (cf. [Xuls8,

Proposition 3.11]). Moreover, we have the following diagram

(2.17) 18T 8T Hom(G(F) /G(F), C)
1 3 “ s ST~ Hom(G( ), CX).

Since the parabolic induction preserves stability and is compatible with the twisted endoscopy, the previous
local results for ®pq(G,) extend to (I)'—:nzt(G”) except for .

The diagram gives rise to an inclusion Sy — Sy, at any place v, which induces a homomorphism
Sy —+ Sy, By the local Langlands correspondence for G,, we can associate ¢, with Iy, and define the
global L-packet by taking the restricted tensor product

i, = X 1,
v

and define the global pairing by

(x,m) = H(:z:v,m), x € Sy, [n] €11y,

For ¢ € ®2(G), let L2, co(G(F)\G(AF)) be the subspace of discrete automorphic representations whose

Satake parameters are sent to ¢(¢,) under &g, for almost all places. Let #(G) = ®[H(G,), then there is
a decomposition as ‘H(G)-modules

[w]€lly
(-ym)=1
(cf. [Art13l Theorem 1.5.2]).
Suppose G = G X --- x G4 as in and we define ®(G) to be the set of ¢ = ¢1 X ¢a X - -+ X ¢, such
that ¢; € ®(G;) for 1 < i < g. We also define

q
£¢> = H{£¢i — WF}

i=1
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and
q
¢° =]]¢f
i=1

Then we can de~ﬁne 5’% and ®(G, ¢) as before. Note S, = [[?_; Sy, and my = [["; my,. Then (2.18)
still holds. Let ¢ be a character of Z5(Afr)/Z5(F') and ( its restriction to Zg(Ar). Then we have

G(A ) 2 ~ 72 ~ ~
Indé(FI)UZé(AF)G(AF)Ldisc(G(F)\G(AF)a C) = Ldisc(G(F)\G(AF)y O

(cf. [Xul8, Lemma 5.3]). So we can decompose

Pev2(G Q)

where Uo(G, ) C Wa(G) is associated with the central character ¢ and

2 ~ -~ A — Tnd CAF) 2
Our goal is to decompose the right hand side in terms of global L-packets for ¢ = ¢ € <I>2(Ci, ¢). In parallel
with the local case, we also have (2.5)) and an isomorphism r : H*(Wp, D) — Hom(G(Ar)/G(F)G(Af),C*)
(cf. [Xul8, Lemma 2.11]). Denote 7 o § by a. For any X C ¥, we have

(2.19) 1 3(% — S —— Hom(G(Ar)/G(F)G(AF),C)

|| |

1 S(%v Ly ng Qg Hom(é(Fv)/G(Fv),CX)

Let II 3 be the set of isomorphism classes of irreducible admissible representations of é(AF) as ?:[(é)—

modules with central character E , whose restriction to G(A r) have irreducible constituents contained in
I4. It follows from (2.19) that [# ® w] = [7] for any [7] € II scand w e a(Sgo). Let

X = Hom(G(Ap)/Z5(Ar)G(AF),C*), Y =Hom(G(Ar)/G(F)Zg(Ar)G(AF),C*).

Then a(S(fO) C Y. We define the global pairing as

(2, 7) = [[(@o. ), 2 €8 [Flell,z

v

By [Xul8, Corollary 5.6], we can always choose a representative 7 in the discrete automorphic spectrum
of G(Af) for [7] € TT 4 g/X with (-,7) = 1. Moreover, we have shown the following decomposition as

H(G)-modules

(2.20) Dol GENGBR,O=my Y Y Few
weY/alSy)  [7leM, z/X
(-, 7)=1

where 7 are taken to be the representatives of i $ Z/X in the discrete automorphic spectrum of G(Ap)
(cf. [Xul8, Proposition 5.11]).
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3. STABLE TRACE FORMULA
Suppose F' is global and G is (2.2). Let ZAF = [, ZFU be a closed subgroup of Zz(Ar) such that
ZnpZa(Ar) = Zz(AF). Let Zp = Zp, N Z5(F) and X a character of Z,/Zp. Let Zy, = Zp, N Za(AF)
and Zrp = Zp N Zg(F'). We denote the restriction of X to Z,, by x. Let § € ¥y and w € Y, the discrete
part of the (6, w)-twisted trace formula for G takes the form
(3.1)

G"w - ~ Wi~ § r ~ ~
1020 = 3w > det(w = 1) g0 | r(Mpp, (0, DIEIR ), T € HEGR).
(31} WEWO (M) req Y

We give the explanation of this formula below. The outer sum is taken over G (F)-conjugacy classes of
Levi subgroups M of GG, and the inner sum is taken over elements w in the Weyl set

WO(M) := Norm(A;, G x 6)/M

such that |det(w — 1)u%9 |71 # 0. Here aAG:; is the kernel of the canonical projection of a3z — az — age

for aze == az/{X — 0(X) : X € az}. For any Levi subgroup M of G, we take

@ Ldzsct \M(AF) EM)
CM

where the central character Z]\? extends X and is invariant under some element of WQ(M )reg, and the
archimedean infinitesimal characters of the irreducible constituents have norm ¢ on their imaginary parts.
Then

I5.,(3% ) = /Z o, [0,

defines an operator on the space Hp t(f() of the corresponding normalized induced representation. Let
R(0) : Hpp ,(X) = Hp ,(X) be induced by the action of § on G(Ar) and R(w) : Hp,(X) = Mp,(X) induced

by multiplying w. Finally I%‘:()“{, f) is the composition R(6)~! o R(w) olp, (X, f) and MP|9Pt( X) is the

standard intertwining operator between H,5 ,(X) and Hp,(x). For the term corresponding to M =G,
we denote

R os(F) =I5, (. ). RC9(f) = R(6) ™" 0 Rw) 0 R (F).

The stabilization of (3.1]) results from the works of Arthur in the ordinary case [Art01] [Art02] [Art03]
and the works of Moeglin-Waldspurger in the twisted case [MW16a] [MW16b]. To describe it, let us

denote by £(G?,w) (E.i(G?,w)) the set of equivalence classes of twisted (elliptic) endoscopic data for
(G,0,w). Then the stabilization takes the following form

(32) GG = Y uG.E)SGFY), Fen@G.R)
'€ (GO w)
where fé/ is the Langlands-Shelstad-Kottwitz transfer of f . The coefficients L(C~¥, e ) are given as follows
(3.3) (G, 0" = 1Z(C)F | Out (G|
(cf. [Xul8, (5.13)]), where

~

20N = 2(G) 2G)/Z(G), Outg(G') = Auts(G) /G Z(G)Y.
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For ¢ € ®(G), we choose Y such that y matches the restriction of the central character of IL;. Then
we define the ¢-component of (3.1]) to be

ée7w 3 6970.) s v —_ -~ o~
IC(liSC@)(f) = Z Ic(iisc,t()sb),g(f)’ feH(G,X)
c—c(¢)
which is contributed from automorphic representations 7 of é(A r), whose central characters match x by

restriction and Satake parameters ¢, projected to c¢(¢,) and t(¢) is the norm of of the imaginary part
of the archimedean infinitesimal character determined by ¢. It follows from [Xul8 Lemma 5.1] that the

stabilization of the ¢-component of the twisted stable trace formula (3.2]) for G is

GO w), 7 4 5 =y~

(3.4) 1 (D= Y UG.E)SG (7). FERER)
é'egeu(ég,w)

where

dzscd) fG, Z Sdzsct fG/)

& —c(9)

can be defined recursively by using the ordinary stable trace formula.

4. STATEMENTS OF MAIN RESULTS

Let F be a global field of characteristic zero and G be (2.2]). The following theorem proves [Xul8|,
Conjecture 5.16], which concerns the existence of global L-packets of G(Ar).
Theorem 4.1.
(1) For ¢ € ®(G), there exists a global packet I:I of H(G)-modules of irreducible admissible represen-

tations of G(AF) satisfies the following pmpertzes
(a) H~ = H¢ , whereH is some lift of Iy, ;

(b) there exists ] € H¢> zsomm‘phzc to an automorphic representation of G as H(G)-modules.
Moreover, 1:[(;5 is unique up to twisting by characters of G(Ap)/G(F)G(AF).
(2) Suppose ¢ € Bo(G), we have the following decomposition as H(G)-module
(4.1) Liises(GIFNG(AR),C) =my €D .

weY/a(Sy) [fr}el:[q-b@w
(-, m)=1

where Z is an extension of the central character of f[¢.
The next theorem proves [Xul8, Conjecture 5.19], which describes the discrete spectrum under the
twists by an outer automorphism 6 € ¥y and a character w € Y.
Theorem 4.2. Suppose ¢ € P2(G) and x € Sz with a(z) = w for § € Xy and some character w of
G(Ar)/G(F)G(AF). For [7] € I_Tq; with (-, %) = 1, the intertwining operator R(0)~! o R(w) restricted to

the T-isotypic component I(T) in the discrete spectrum is equal to the product of the multiplicity m(7)
and the local intertwining operators Az, (0,w,) normalized by x,, i.e.

ée,w 3 3 ~ r 7~
(42) Lindy (D=ms D> 3 Ja@w). feH(@R).
Ww'eY/a(Sy) [ﬁ}el:ld;@)w'
<'7'fr>:1
where fég (m,w) =11, fég (v, wy), and it does not depend on the choice of x in the S-coset.

Both theorems have been proved in [Xul8] for ¢ = ¢1 X ¢ x - -+ x ¢, € P(G) with ¢; € $2(G;) such
that S 3, = 1 for all . The next result concerns the functoriality of twisted endoscopic transfer, which can
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be formulated as follows. For ¢ € ®(G), § € X and any semisimple element s € 5’2, we can define the
relation (G', ¢') — (¢, s) as in the local case. Define
Tran l:[q;), = ® Tranlz[~/v
to be the transfer of a global L-packet II & with respect to the endoscopic embedding & (cf. )
Conjecture 4.3. There exists a global L-packet I_Iq; such that
TranII = I pe

We are not able to prove this conjecture in all cases. This is due to the occurrence of what we call
G L-type orthogonal simple parameters. They are defined as follows.

Definition 4.4. For ¢ € @y, (N) such that ¢ = ¢V, we call ¢ is of GL-type if N is even and at every
place v, ¢, factors through the L-group of a Levi subgroup of G ,, which is a product of general linear
groups.

Remark 4.5. For GL-type ¢, it is necessary that 74 = 1 by definition. As a result, there is no G L-type
orthogonal simple parameters when N = 2.

Suppose G is symplectic or special even orthogonal and ¢ € ®(G), we will decompose the parameter as
¢ = ¢o &8 ¢b
where ¢y consists of all GL-type orthogonal simple parameters in ¢. The parameter ¢ factors through
o = ¢o X ¢p for the endoscopic group
H := Go X Gb-
The embedding “H < LG induces an isomorphism
S50 x Sy, = S50
Theorem 4.6. For ¢ € ®(GY%) and semisimple s € (Sgo x Z(Gy))/Z(G)T, let (G, ¢)) — (¢,s) and
G e E(GG,w) be the lift of G', then there exist global packets fl(z;, and f[(j; such that
TranII ¢~" =11 ¢~7
This result is closely related to the stable multiplicity formula conjectured by Arthur.
Conjecture 4.7 (Stable multiplicity formula). Suppose ¢ € ®(G), then

(4.3) SN =ms S 1S5 0(5NC(dow),  feRE.T),
weY/a(Sy)

where J(S’g) is some constant defined through (5.1)) and fé((;; @w) = [, fo(Po @ wy).

In this paper, we will only consider the case that ¢, € ®3(G}). For any unordered m-partition

Oy = ¢p1 BBy m, Pbi € Pa(Gh ;)

the parameter ¢, factors through ¢, = ¢p1 X --+ X ¢, for G’ := Gpq X -+ X Gy by a sequence of
endoscopic embeddings

We can lift each endoscopic embedding to that of similitude groups. For fixed II Goa? let us define II 5=
Héb,1®'”® H(;b,m and
(pp1,- - s Pom) = Trang o---o Trang II-,.
We also define
T(Go; Pt -, Pom) := TranTly & TPy, , Pm)
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and
f(d)O; ¢b,17 T 7¢b,m) = Z f(ﬁ')
FEM(Go3b,1,+ Pb,m)
F(bos db1s  Poan) = Z Z f(7Fow).
weY freﬁ(‘go;‘z’b,l,"' )é;b,m)

At last, we need to define some constants by the recursive formula

1m—l m
a1:1, am:ZZ <k>akam_k (m>1)

k=1
Theorem 4.8. Suppose ¢ € ®(G) and ¢, € P2(Gy).
(1) If ¢ = ¢», then

(4.4) 1S, () = mg, f(en),  FeHE),
(4.5) SG (D =ms S () g f(Guse o)y T € HER),
Db,15 1P, m

where the sum is over unordered partition of ¢.
(2) If ¢ contains at most one GL-type orthogonal simple parameter, then

(4.6) SGenN=mg Y 15108 (G ow), feHE.T).
weY/a(Sy)

(3) If¢ # ¢0a ¢b7 then

= 1
(47) Sgsc,qb - 4 Tran (Sdzsc o ® dec ¢b)

where

(48) Sizc7$b (f) = Mg, Z (_1)m_1am f(a)b,la e 7@35,771)7 f 7_2( )
b,157 sPb,m

We can generalize Theoremfor G=G1x - xGgand ¢ = g1 x - x ¢y € B(G) with ¢, € P2(Gyp).
The parameter ¢ factors through ¢p := ¢, X ¢ for the endoscopic group H := G, x Gy, where

Go =G XX Ggo, Gy =G1p X x Ggp,
and
Po = P10 X+ + X Pg,0, b= P1,p X -+ X Pgp.
Theorem 4.9. Suppose G =Gy x -+ x Gq as 2.2)), ¢ € (G) and ¢y, € P2(Gy).
(1) If ¢ = ¢, then

(49) Ifli'gc’@; (f~) = m¢bf(¢b)7 f € ﬁ(év %)7
and
(4.10) SGises = (Bir1 S5 )@ SGt e

where SCC;; 3 is defined as in (4.6) and (4.7)) by dropping the sum over w.

5P
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(2) If each ¢; contains at most one GL-type orthogonal simple parameter, then

(4.11) S =ms S 1S5 0(SNC(bow), feHE.T).
weY/a(Sy)

(3) If ¢ # ¢o, dv, then

~ 1 éo - é
(4.12) Sgsc’(ﬁ — (Z)l Tran (Sdisc’% ® Sdizc,<f;b)7
where | = {1 < < q| ¢i # Pi0, Pin} and
Gy 5 éi,b
(4.13) Siiseds = 1 diserdiy

4.1. GSp(4) and GSO(6). At the suggestion of the referee, we will compare our results in the case of
GSp(4) with those in [Art04], [GT19]. Arthur [Art04] formulated a series of conjectures on the classifi-
cation of automorphic representations of GSp(4). They have been proved recently by Gee-Taibi [GT19],
which is independent of the our previous work [Xul8]. Their approach is to use the twisted endoscopic
transfer from G\Sp(4) to GL(4) x GL(1). We observe that this is almost the same as the twisted endoscopic
transfer from GSp(4) to GSO(6) studied in [Xul8] and this paper. Therefore, it is possible to reprove
their results based on our works. Since it is a bit long to give all the details in this direction, we will only
show that our results are compatible with those in [GT19] and leave it for another project.
Let F' be local or global. There is a short exact sequence

1—— GL(1) —— GL(4) x GL(1) —— GSO(6) —— 1
(g,2) ————— N2g -z

t ————— (tIy,172).

Let us denote the image of GL(1) by Z. It follows that GSO(6, F) = (GL(4,F) x GL(1,F))/Z(F). We
can also lift §p to an automorphism of GL(4) x GL(1):

0o : (g,2) — (6(g), det(g)x),

where 6 is inner to taking transpose inverse and fixes a splitting compatible with that on GSO(6). On
the dual side, we have

1—— GSpin(6,C) —— GL(4,C) x GL(1,C) —— GL(1,C) —— 1

(g, z) —————— det(g) - 2.

In this paper, we primarily view GSp(4) as a €p-twisted endoscopic group of GSO(6). As in [Art04],
[GT19], it can also be viewed as a fp-twisted endoscopic group of GL(4) x GL(1). The two twisted
endoscopic embeddings can be related by the following diagram

GSpin(5,C) —— GSpin(6,C)

l (std,\) l

GSp(4,C) 22 GL(4,C) x GL(1,C).
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When F is local, there is a bijection
(4.14) I(GSO(6,F)) — {IIK x € II(GL(4, F) x GL(1, F)) |wn = x*},

where wry is the central character of II. By [Xul8, Proposition 4.4], the L-packets of GSO(6, F) are all
singletons and this matches the results for GL(4, F'). Inverse to (4.14]), we have a surjection

H(GL(4,F) x GL(1, F)) — H(GSO(6,F)), fwf

defined by integrating over Z(F'). One can check by definition that for any f € H(GL(4, F) x GL(1, F)),
f, f will have the same transfer to GSp(4,F). By , a tempered L-packet of GSp(4,F) can be
transferred to a twisted character of an irreducible tempered representation of GSO(6, F'), hence also to
the twisted character of the corresponding representation of GL(4, F)) x GL(1, F'). This shows that the
local L-packets of GSp(4, F) defined in [Xulg| are the same as in [GT19].

When F is global, we fix a central character ¢ for GSO(6,Ar) and pull it back to a central character
for GL(4,Ap) x GL(1,Ar), which is just (2 X (. Then

L3:.(GSO(6, F\GSO(6, Ar),C) = Ly, (GL(4, F) x GL(1, F\GL(4, Ar) x GL(1, Ar),(* B ()
~ 2 (GL(4, F)\GL(4, Ar), (?),

disc

where the irreducible subrepresentations of GSO(6, Ar) and GL(4, Ar) are in bijection with each other.
Note the global L-packet of GSO(6,Ar) are also singletons, since they are restricted tensor products of
local L-packets by construction. This matches the results for GL(4, Ar).

For ¢ € ®5(Sp(4)), the global L-packet IT; of GSp(4, Ap) with central character ¢ can be characterized

by its transfer to GSO(6, Ar), which is some global L-packet IT e with central character f , where ¢ =

18 ¢ € ®(SO(6)). As we have seen, II 3y consists of a single automorphic representation. Depending on
whether ¢ is discrete or not, we can divide into two cases:

(1) ¢4 € ®2(SO(6)): This case has the following two equivalent characterizations.
(a) ¢ does not contain a summand of trivial representation of GL(1,Ap);
(b) II; is not endoscopic.
By [JL16] II b consists of a cuspidal automorphic representation, which also corresponds to a

cuspidal automorphic representation IT X ¢ of GL(4,Ar) x GL(1,AFp). It follows from our local
discussion that II; also transfers to IIKC. Hence II; is the same as the global L-packet in [GT19].

This case corresponds to the general type in [Art04]. B
(2) ¢4 ¢ P2(SO(6)): It is necessary that ¢4 = 1H 1H ¢_, where ¢_ € ®3(SO(4)) does not contain

a summand of the trivial representation of GL(1,Ar). By our construction, II 3 is the parabolic
induction of 1 X ﬁ&, on GL(1,Ar) x GSO(4,AF). As in the case of GSO(6), one can further
show that II 3 consists of a single cuspidal automorphic representation with central character { .

Then we can pull back 1 X II 5 toa cuspidal automorphic representation IT; X 115 X 5 of a Levi
subgroup GL(2,Ar) x GL(2,Ar) x GL(1,Ar) of GL(4,Ar) x GL(1,AF) by

GL(2) x GL(2) x GL(1) = GL(1) x GSO(4), (91,92, 1) = (tdet(g1), 191 © g2))

From our local discussion, 11, also transfers to (II; B IIy) X ¢. Hence I; is the same as the
global L-packet in [GT19]. At last, fy restricts on GL(2) x GL(2) x GL(1) as 6y(g1,g2,t) =

(0(g2),0(g1), det(g1g2)t). The condition that ¢_ does not contain a summand of the trivial rep-
resentation of GL(1,Ap) is equivalent to that ﬁ&), is not fp-invariant, i.e., Iy X IIy X ¢ is not

éo—invariant. Since II; has central character C~ and H? = 5 ~1 @ 1I; for i = 1,2, then this condition
is also equivalent to II; 2 II5. This case corresponds to the Yoshida type in [Art04].
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5. COMPARISON FORMULAS

We would like to expand both sides of in terms of local objects. First we need to introduce
some general constructions from [Art13]. Suppose S is a connected complex reductive group with an
automorphism 6, we denote S? = S x #, which can be viewed as a connected component of the complex
reductive group S T:= 8 x (). We fix a maximal torus T of S, and define the Weyl set

W?(S) = Norm(T, S%)/T.

Let W(S),e4 be the set of Weyl elements w such that det(w — 1)|q, # 0. Moreover, let s°(w) denote the
sign (—1)", where n is the number of positive roots of (S,7") mapped by w to negative roots. Now we
can assign to S? a real number

P =W Y sw)ldet(w — 1)),

wGW,?eg(S)

where W (S) is the Weyl group of S. Let us denote the set of semisimple elements of S by S%. And for
any s € SY,, we write S; = Cent(s,S). Let Y, = {s € SY, : |Z(Ss)| < oo} and EY;(S) the S-conjugacy

88

classes in S%,. Arthur proved ([Art13], Proposition 4.1.1) that there exist unique constants o(S;) defined
for all connected complex reductive groups S satisfying

a(S1) = a(S1/21)| 2|7
for any central subgroup Z; of S, such that the following equality holds
(5.1) D mo(So) e ((S6)%) = °(S)
56589”(5)

for any pairs (S, 0).
Let us assume Theorem [4:2] [A.8] A9 hold for the proper Levi subgroups and proper twisted
endoscopic groups of G. For ¢ € ®(G) — ®2(G), let Ty be a maximal torus of S’g. Then ¢ factors

through ¢y € ®2(M) for a Levi subgroup M of G such that M = Cent(T¢,@). For 6§ € Xy, let S(; be
generated by ng and Sg. Define

‘ﬁz)(G):Norm(T¢,gg)/Cent(T(b,S’g)o, NH(G) = Norm(T¢, /Cent(T¢,S¢)

@
and
W =W(Ty S)), Wy =W(T453), RS =WS/wy.
They fit into the following diagram.
(5.2) 1 1
0___ o
Wo =W,
1—8py — NS — W, —1
1— 84, — S, —+ R} — 1
1 1
For [7y/] € T -

o
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defines an operator on the space H5(7ys) of normalized induced representation of 7y;. For w € Y, let
I3 (i @ w™ f) = R(O)™ o Rw) o Tp(im @ w ™", ).

For u € ‘ﬁi, let w, be the image of w in WJ and 6, a representative of w, in G(F') x 0 preserving the

F-splitting of M. Then u gives an element in 89“ . We define

RP|9P(0uv7rM7¢ ® RP |9P uv>7TM a¢v)

to be the normalized intertwining operator between Hg p(’ﬂ']e\/; ) and Hp(mar). After identifying

Hp@ )2 P Hor(nlh)

war CRes s

@ Hp(mar)

WMCRQS ﬁ']w

12

/Hﬁ(ﬁ'M & w_l)

as G(Ar)-representations, we define the normalized intertwining operator between H,, P(7r i Yand H s(Tu®
1) to be

Rﬁwﬁ(u’ﬁ—M?&) = @ <U, W]_\‘;[>RP|0P(0ua7r]—~\;[7¢)'
Ty CRes s
If 7ps is a discrete automorphic representation, then it follows from Theorem and analogous result for
general linear groups (cf. [Art13l Lemma 4.2.3]) that

Ripjgp(u; Tar, ¢) = rp(wy, ¢M)_1M13|913(wu,7~rM)

where
Tp('LU, ¢) = L(07 Thars Pl;lmp)f(()’ Thars ’01\1/)171P|P’ wF)_lL(lv Thars Pi;lP‘P)_l
and pZ;;lP|P is the contragredient of the adjoint representation of ©M over Lie(w;lﬁp) N Lie(]/\\fp)\Lie(’u)Jlj\\fp).

In [Xul8|, 5.4.1] we have incorrectly written the normalizing factor as a product of local normalizing fac-
tors. It should be obtained by analytic continuation of the product. This following lemma is [Xul8|
Lemma 5.22].

Lemma 5.1. Suppose ¢ € ®(G) — ®2(G), § € g and w €Y, then
GO W), & P
(5.3) 590 =c Y Y d@inded.n), feHE )
W' eY/a(Sy) weSg(w)
where Cg = m¢,|5¢~)\*1 and
- e b L
fao(p@w' x) = Z tr(Rpjgp(u, Tar, ) Z (T @ w L),
[7?]»1]61:[(;]\/1(80.)’
and zg(m) = iS(Sg) for any semisimple s € Sg.

For the expansion of the right hand side of (3.4)), we introduce the following notations. Let ¢ =
¢1 X - X ¢pg € D(G) such that ¢, € P2(Gyp). Let

J={1<i<q|di=ip}, K={1<i<q|¢i# dip,bio}

os=11¢  ox=]]0¢

ieJ €K

and

The embedding “H < LG induces an isomorphism
S50 X Sy, = 530
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where
S0 =S X ST Sy =8y, X X S
This gives a projection
(5.4) S — S50
Let B -
(o3 ¢p) = TranIl; ® 115,

For z, € Sgo (w), we define

feo(o @ w0i ) = o (@0, 2) = f9 (¢ @)
for any
€ (53, (w) x Z(Gy))/53,2(G)" € Sj(w)
projecting to z,. Let

.0 . if . 1
(5.5) e (2,) = Zgo@ ) o 71
i, (To) —0(Sy,) ifzo=1

Lemma 5.2. Suppose ¢ € ®(G) such that ¢, € ®2(Gy) and ¢ # ¢p. Let § € g and w €Y.
(1) If 0 =id,w = 1, then there are two cases.

(a) ¢ = QZ)O:
(5.6) Gao) = SGesH=C; S S e@itéod,z), feHET).
Ww'eY/a(Sy) €Sy
(b) ¢ 7£ ¢o-'

(57) Ic%sc@(f) - Scclisc,qﬁ(f) = m(bJCq;O Z Z €¢D :L'O a)o & W s Loy ¢b)
WeY/a(Sy,) €Sy,

~ (Mg, éb _ E‘K‘ éb ) ~ — =
(5.8) —i—TYanSdlscd)@(m% 18 (ST ), FeHER)

where

dzsc,d)b('f) mdn;f(éb)'
(2) If 0 #id or w # 1, then
69 10D =maC, Y Y i n by, eRG ).

Ww'eY/a(Sy,) xOGSgO (w)

This reduces to [Xul8, Lemma 5.25] when each ¢; has at most one G L-type simple orthogonal param—
eter. The remaining case that ¢ = ¢, will be treated in the next section. To compare , with

(5.3), we note that fég(d; ® w', z) only depends on the image z, of x under (5.4 and zi( ) z¢ (:co) So
we can rewrite (5.3) as

(5.10) Iéii:‘;f’(fbm@cq;o > Yo i (o) fmded, x), feHGX)

MIEY/O[(S¢O) IOGSZO (w)

Moreover,

if x, ,
(5.11) ig, (x )—efo(mo)Z{O SRR fl.
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If we further assume Theorem then by the local intertwining relation (cf. [Xul8, Theorem 4.12]) we
get

(5.12) Feo(do @03 B1) = fro(d @ ).

This is the global intertwining relation for G.

6. GL-TYPE ORTHOGONAL PARAMETERS

In this section we would like to prove Theorem for ¢ = ¢ € ®2(G). Theorem is
irrelevant in this case. We can assume G = G| X --- X Gy, where G = SO(2n;). Let ¢ = ¢1 X -+ X ¢,
where ¢; € ®2(G;) and ¢;p = ¢;. Then S5 =8 =121 Sy, = [I{L1 S;,- For z = (z;) € Sj, ¢ factors
through ¢/, for the elliptic endoscopic group G,,. The following lemma treats the remaining case left by
Lemma

Lemma 6.1.

~ - ~ - é/ ~ - _ .
I(%sc,d)(f) - Sg'sc,d)(f) = Z (m¢/m¢§;)2 Sdizgqj; (f/)7 f € H(G> X)'
1#%68&

Proof. We follow the same strategy in [Xul8, Section 5.4.2]. Recall
Igsc,¢>(f) - Sgsc,;zﬁ(f) = Z (G G/)Sdzsc¢>(fGl)7 f € ﬂ(éa X)

G'e€an(G)—{G}

where .
UG, G = |Z(G)" M Outa(@)]
First note e
2G| = |Z(@)F] = my /mg. Outg(@) = Outg(C).

Secondly, we can turn the right hand side into a sum over ¢ € ®(G, ¢) and

{(€.¢):C € £a(@) ~ {G} and ¢/ € #(C,66) |

where ®(G’, ¢¢) is the set G'-conjugacy classes of L-homomorphisms ¢’ : Ly — LG such that ¢ o ¢/ is
G-conjugate to ¢i. The contribution from each ¢g-summand is the same, so we get a constant multiple
|®(G, ¢)| = my. Moreover, the contribution of (G, ¢') only depends on its image under

{(€.6): G € €@ —{C} and ¢/ € B(C,6c) } — S5 — {1},

which is ! dec o (F')- The fiber has size |Outa(GY)[[Ss.0/Spx N GLZ(G)T|71. Since ¢ = ¢y, we have
Spx =S Q va. Hence |Sg./Ss. N GLZ(G)Y| = 1. In sum, we get

Ic%sc,d)(f) - Sdé;sc,qﬁ(f) = Z (m¢/m¢;)2 S§§07¢; (.]E/)

17&163&
g

Before starting the proof of the main theorems, we make the follovving Observations. Theorem

implies (4.4} . So for Theorem |4.8 -, -, it remains to show and (4.10). At last, Theorem
follows from the special case that G = SO(2n). So now we assume Theorem holds for G = SO(2n)

with n < N and ¢ = ¢, € ®2(G). In particular, we will fix H¢. For G = Gy x --- x G4 such that n; < N,
it follows that Theorem and (4.9) holds for G. We define recursively

G s P =18 5N = X (mafmy PSS o (), FeHER).

1#(263({5
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We will show that it admits a tensor product decomposition as (4.13]), and matches (4.8) in case G =
SO(2n). By induction on |Sg|, one can easily show

(6.1) G =85 (fow).
weyY

Lemma 6.2.

G S . @G
(62) Sdzsc N = @i Sdisc,éi
G
(6'3) Sdisc,qb (®Z7ﬂsdzsc ROy ) ® Sdzsc ol

Proof. In view of (6.1)), (6.3) follows from (6.2). We can write the right hand side of (6.2)) as

G S 6’1
®i Sghsqd)2 = ®; Idisc,q~5i — Z (me/my;, ) Tran (®; Sd edh, ).

1#zeS;

By induction on [S;], we can assume

A e A

Sdzsc ¢/ ®Z Sdzsc (Z)’ ’
So it suffices to know _
G - i

Idzsc NGO = @i Idisc,g)i
which follows easily from (|4.9). O
Lemma 6.3. For G = SO(2n),
(6'4) Sfliscd) = Mg Zd) am f(éla 7(5771)7 fG ﬁ(Gv %)a
(65) Sdzscd) m¢> Z lam f~(¢17 e 7¢m)7 f~ € 7-_[(@7 i)

1, :¢m

In both cases, the sum is over unordered partition of ¢.
Proof. In view of (6.1]), (6.5 6.5 follows from (6.4). We will prove by induction on n. By definition,
dzsc ¢(f) dzsc ¢(f) - Z (m¢/m¢§0) dzsc qb’ (f )
17&x€3$

For 1 #x € 8;, let G, = Gy x Gy and ¢, = ¢; X ¢r7. By (6.2) and the induction assumption, we can
write

é; — éi ”Séu
disc,¢~>g - disc,q;i disc,z{)n
:m¢1m¢11< > (=) a fr(dra - ,¢I,z)>
Or1,1, P11

®( Z (—1)*ag frr(brra, - aﬁgn,k))

OI1,1, P11,k

Then B
Sci,zc,({sgc( ~/) = (_l)k—i_lmd)lm(ﬁnakalf((%l,l7 T 7$I,l7 QBH,L s ,(ZB[I,k).
Note 1
me/Mme, = 9 My = Mg Merr-
So

1

—(mg/mg, )" Sfiic,&g(f/) = mg (-1 (Sarar) F@ra brpbrras  brrg).
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At last, the association of x with ¢r, ¢r; gives a bijection between S 3~ {1} and unordered 2-partitions
of ¢. So

€ 3 G 3
Sdisc,(z;(f) o Idisc,(j;(f)
is a sum of distributions
f(@1,-, dm)
over unordered m-partitions of ¢ for m > 1, with coefficients
1
-1
(=™ ) Z @15, | 9] Sy|
51,82
where the sum is over unordered 2-partitions (S1, S2) of {¢1, -+, ¢m}. It is easy to check that
1
2 D Us,[0]s5] = G-
51,52
The rest is clear.

g

Lemma complete the proof of Theorem in case n; < N. To complete the induction
argument, we still need to prove Theorem for G = SO(2N). By Lemma

=~ ~ =~ ~ é/ ~
Ic?ésc,d)(f) - Sgsc@(f) = Z (m¢/m¢ft)2 Sdiﬁc,% (fl)
176165(5

For 1 £z € S;, let G, =Gy x Gy and ¢, = ¢1 x ¢y7. By (6.3) and Lemma we can write

é; _ é[ S 6'11
Sdisc,(béc - Sdisc’(bI@ SdiSC,Q;I[
= m¢>1m¢11( Z (-1t fr(¢ra,- - ,¢I,z)>
D115 P11

®< Z (—1)*Yay, frr(drra, - KZHI,k))-

Or1,15 P11,k

Then we see Sdéi% e (f') is stable. It follows that Igsc’ o f) is stable. Then one can argue by stability
to show Theorem The arguement is as follows. We define ﬁ(;) = @11 o such that it contains a
discrete automorphic representation #°. Since Igsq ¢( f) is stable, it is stable at every place. So we can
take f = ®y fu and fix @y, fu for any place v, then by [Xul8, Corollary 4.8] the coefficient of f,(7,)
in Igs N qz5( f) must be the same for all 7, € II 3o By varying ®u-£y fu and the linear independence of

characters of ®qyH(Gw, Xw)-modules, we have that
[ﬁ-o] = [ﬁg] ® (®w7ﬁv [77(2)])

contributes to I(?is ol f) if and only if all elements in

ﬁ¢~>v &® (®w7ﬁv [77(2)])

also contribute to IESC’ ¢( f) By repeating this argument, one can show all elements in II 3 contribute
to 15, s f). Then Theorem will follow from (2.20) immediately. This finishes the proof of Theo-
remu in the case ¢ = ¢y, € P2(G).
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7. PROOF OF LEMMA

In this section we will prove Lemma by assuming Theorem for the proper Levi
subgroups and proper twisted endoscopic groups of G. We follow the same strategy as in [Xul8l Section
5.4.2]. The goal is to expand the right hand sides of

Igsc,d)(f) - Sgsc,qﬁ(f) = Z (G G/)Sdzsc ¢>(fG/),
G'€€en(G)—{G}
and -
I = > UG GG (T
G'E€€e (GO w)
in case 6 # id or w # 1. We can turn the right hand side into a sum over ¢g € ®(G, ¢) and

{(G¢): G € £a(G®) ~ (G} and ¢/ € &(C, 66) }

where ®(G', ¢) is the set G'-conjugacy classes of L-homomorphisms ¢’ : Ly — LG’ such that ¢ o ¢/ is
G-conjugate to ¢g. The contribution from each ¢g-summand is the same, so we get a constant multiple
|®(G, ¢)| = mg. Moreover, the contribution of (G, ¢') only depends on its image under

{(G,0): G € eu(@) — (G} and ¢' € B(G, 66) | — Tp\(Sua(w) = {1}),

which is (GS =) dec o (f'). Here S¢ sw)={se 5’9785 : a(s) = w} and the fiber has size |Outg(G%,)|[S¢,z/S¢2N

G 2@,
Suppose G is Sp(2n) or SO(2n,n) and ¢ # ¢,, ¢p. We have my = mg, and Sfo = S(?f X Sg,, which
induces
1= Sy, = 55° = 830 — 1.

Moreover, we have

(7.1) So\ (84 s (w) = {1}) — 5p,\85, (w) @ =,
Note
n_ Jloute, (GO it ¢ # o
Outal@)1 = {2|OutGO<G;)| it ¢, = 0o

and [Sy2/Ss.c N GLZ(G)| = |Sp, .00/ Speme NGy, Z(Go)T| for Sy, C Sy N G'Z(G)F. At last

~ AN L(Goa G/o) if gb:) # bo
L(GaG) - {}Ll/(éo’ég) lf d); — ¢O

I RULA if ¢/o # 9o
md)/ N {de)/ if ¢/ :(b
o 0 o
and ) N B
Sy = () Tran (Sgi2, 5 &S5 ),
where
2 if ¢ # ¢o, O # Dy
I=490 if ¢ = o, ¢, = b
1 otherwise.
By the compatibility of parabolic induction with endoscopic transfer, we have

~ 1 el ~
Tran Sgsw/ = (Z)Z Tran (Tran Sg':c,% ® Tran S d,’;c qu)
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Here the distribution in the bracket may not be stable, so its transfer is in the sense of Remark We
separate the coefficients for (G,, G),) and sum over the fibers of (7.1). Since Sy, is in the center of SQ%O,
the fiber of

S\ s (w) — 85,\55, ., ()

is an Sy, -torsor. Note Tran S el remains the same over the fiber and Tran S b only depends on the

7¢/
image under Sy, — Sy, = Sj , whose kernel is Z(Gy) = Z,/27. First we sum over the fiber of z, # 1, in
which case ¢ # ¢, and the result is
a, e Lo Gha | e
Tran (Tran (Sj, ) ©12Go)|- (D2 () Tran (S0 )+ 755 - )
175:1363(1;1) ’

@ =1la
= Tran (Tran (Sdisc,qﬁg) ® §IdiZc,<13b> )

Next we sum over the fiber of z, = 1, in which case ¢/, = gbo and the result is
=~ -1 ~ ~
Go x G
Tran (Tran (Sgice.s,) ® 1 (yZ(Gb)| > 1 L - (S dzic £ x) +S éb))

~ /1.~ 1 ¢
— Go —_ Gb - = Gb
=Tran Sdisc,¢o ® ( 2 Idisc,(i;b 4 SdiSC#gb) .

In both cases we have used Lemma [6.1]

In general, recall
¢s=1[¢: ¢x=]]¢
ieJ ieK
and - - -
1= Sy, X Sg,, = S50 = S50 =1
which induces

Q\ Qb Q Qo
S¢\S¢7ss(w) — S¢o\S¢O,55 (U.)) T o
where the fiber is a Sy, , X 5'¢ sp-torsor. By the decomposition
S¢K,b X Sdu,b = H S¢>k,b X H §¢j,b
keK jeJ

we could sum over Sy, , and 5’¢ij respectively. Note
mg =[mo.  my =]]mg
i i

Outa(G)| =[] lOute, (Gl «(G.G") = H (G, GY)

i

and
- Ly 5G 5%
dzsc,d)’ - (Z) an( disc,qy, ® disc ¢b)
where &
(})l 6’;} . ® ( )lkS kb ®® S /
4 disc,qﬁ' keK disc J’k b Jes dzsc ¢J b
and

2 if @), # Do Phpy # Phb
le=140 if ¢}, = bros by = brp
1  otherwise.
By the compatibility of parabolic induction with endoscopic transfer,

~ 1 "l ~
Tran SC%SC’¢/ = (Z)l Tran <Tran Sdﬁ?c,(b@ @ Tran Sdch qb’ )
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= Tran (Tran Sdzsc " ® (®keKTran( )lksdzzcbqy )® (é@jeJTran Sd Jscb¢>/ ))

We again separate the coefficients for (Go, G/)) and sum over the fibers of
So\(56 s (@) = {1}) — 84,\55, ,, (@) 2 = o,

llék,b

Hgised, So the result is

For z, # 1, the sum over 5’¢,j,b gives Iéjybdésc, qgj,b and the sum over S, , gives

Tran (Tran (Sg,gc%) ® (®keK I G >® (@j.GJIGj,bdisc, Q;jj)))

2 disc,dk,p
=Tran (Tran (Séi’ )® Moy o )
disc,d), Mg, disc,pp)
For x, = 1, we obtain the same result after adding Tran Sg;c b @( )] Sg’;c¢ At last, the sum over

S¢O\(Sgo ..(w) = {1}) reduces to the case for ¢,, which has been treated in [Xul8, Lemma 5.25].

8. COMPATIBLE LIFTING OF L-PACKETS

8.1. Factorization of local and global parameters. Let F' be a local (resp. global) field of character-

istic zero. Let G be a quasisplit symplectic or special even orthogonal group over F, and [¢] € @ . (G)

(resp. ®(G)). We choose & : G — GL(V), whose image is contained in an orthogonal group O(V') for
some nondegenerate symmetric bilinear form B. We choose a decomposition of V' into subrepresentations
(not necessarily irreducible) of Lr (resp. L) as follows

(8.1) ¢ = Bicrdi ® Bjes(bar; ® dbr;), V = ®ietVi @ Bjes(W; @ W)

such that the restriction of B to V; is nondegenerate and to W; is zero, and ij is dual to W; under B.
Let N; =dimV; (i € I) and N; = dimW; (j € J). Let n; := ny, (i € I) associated with an extension
E;/F of degree at most two. We would like to factorize ¢ through a sequence of proper twisted endoscopic
groups and proper Levi subgroups

(n) (n—1) (n—2) ()
(8.2) ¢ : Lp (resp. Lg) S L) & Lokl & Ly

according to the decomposition (8.1). By this we mean
Y =TI sow™) < [T erw)
l m

where

k k 1/2
v = D 0 Vi® O (Wi & Wi, W) = @z‘esﬁff)/<o>vﬁg(i) D, Wi

for Il(k) S(k) C I and J(k) 7%) C J, and o is an involution on ng) without fixed points such that
bi = dg (i), and V. 1/2 (i) C Vi®V,q isan Lp (resp. Ly)-subrepresentation qu / , on which B vanishes. The
composition of LG( ) — L@ with &g factors through

B TTowv™) x [TGLwP
l m
Let %) : L (resp. Ly) — YG® and ¢(0) = ¢. We write
(8.3) ¢(/~€):H¢ XH¢GLm
!

Then
k k 3 k
01" = (B,0,000: © B0 (B6L; © 0ny)) €0 € Dy (GL) (resp. 2(GY))
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for some quadratic character nl(k). We require that qﬁl(") = ® nl(n) for some i € I such that N; # 1, or
qﬁl(n) = (1®n')n for some quadratic characters n,n’. We also require & (k) to be given by the fiber product

Ley(k+1) s (k)
O(V}Ek—l—l)) y O(Vlgkﬂ)) O(Vl(k))

for some [ or
Ley(k+1) s L(k)

GLWi ™) x 0V ) — o)

for some [ or

Ly(k+1) L(k)

J J

GLWSEDy s gLw )y — qarwi)

for some m.

8.2. Lifting local and global parameters. When F' is global, we will only consider the restriction of
the global parameter from Ly to Ly := W and denote it still by ¢. We will give two lifts of ¢. First of
all, we would like to choose lifts of ¢; for even N; and ¢; ® n; for odd N; # 1. Then we would like to lift
@i to GPin(V;). When N is even, we just take the chosen lift &;. When N is odd, we take

—_—

b ® s ® 7]
where 7 : L, r — Pin(V;)isalift of n; : T'g,/p — O(Vi), 7 = —1. Then we get a lift ggﬁ) of o := [Lics ¢4
through the multiplication in the Clifford algebra Cl(&;erV;):
m: [ [ GPin(V;) — GPin(®iciVi).
el
Let ¢f := II JRTR qz;%) be a lift of ¢ through the natural embedding
[1 GLW)) x GPin(®iciVi) = GPin(V).
JjeJ
Note QNSu is not a homomorphism.
Next, we want to lift ¢ through that of ¢ and ¢®). To lift ¢(™, we first lift d)(on) =1 (bl(n) through
that of gbl(”) (cf. (8.3)). There are three cases.

(1) gbl(n) = ¢; @ n; for odd N; # 1. Then we can take the chosen lift q{é/m
(2) gbl(n) = ¢; ® n for even N; and some quadratic character n. We can take the chosen lift of ¢;

¢i: Lp — GSpin(V;) x g, /p
and twist it by a lift of n
77 : Tgyp — Spin(Vy),
where E/F' is the quadratic extension associated with 7. Note gEl ® f7 is not a homomorphism.
The obstruction is given by a 2-cocycle bl(n) € ZQ(FEEi/F,Z/2Z), which splits in ZQ(WF,ﬁ) (cf.

[Lan79, Lemma 4]). In particular, we can choose a 1-cochain cl(n) : Wp — D such that ¢; ® ﬁDcl(n)
becomes a homomorphism.



28 BIN XU

(3) gzﬁl(n) = (1®n')n. Note Gl(n) = SO(2,7) and 1 @1 € Ppgq(G™ corresponds to the trivial
——~—triv _ ~

representation of Gl(”) (F) (resp. Gl(”) (Ap)). We take the trivial lift 1 @7/ € ®pgq(G}), ie., it

corresponds to the trivial representation of él(") (F) (resp. (Nil(n) (Ar)), and twist it by 7 as in the

triv
second case. To make ( ®n' ) ®n~ a homomorphism, we need to further choose a 1-cochain
A" Wp — D.

Let us denote the resulting lift of ngO by qﬁ (m)0

. Then [],, d)GLm X quL)D is a lift of (™. In order to
compare it with qﬁﬁ, we need to twist it further according to (bG 7.m- Lhere are two cases. For ¢gr; @n

in qﬁgg,m, we need to introduce a twist by

(8.4) (bGr; x 1) @77/ (dar; @n) x 1.

For ¢1/2 ®n in d)GLm, let us take @; () = ¢i ® Po(;) as a parameter of SO(V; @ V,(;)). Then we need

to mtroduce a twist by

—
(8.5) (Gio(t) @) /(055 ® 1) ¥ 1.

Denote the product of twists from QSGL m by @(,TLL). Then we define ¢(5 := ] qbg%m X (qb(on)D @[, By(ff)).

We can calculate the twists (8.4), (8.5) explicitly. First, we compute (d)zl/a 2(Z.) ®n) x 1. Let V; ;) =

VR @ (Vi)Y and o GL(Vl.l(f(Qi)) — O(Vion)x = (2, '71), where 'o™! € GL((V;\/{)¥) is defined
by
B(v,'z7 1Y) = B(z71v,vY), vE Vllé(z)’ vY € (VZIU/(QZ))V

Since qbllfy 2(2.) @ (gbllé 2(2)) preserves V;, the image of qb / hes in an orthogonal group C' such that

O(V;) & U(C) = (GLVL2)) N (O(Vi) x O(V)) = O(Vigy))-
The isomorphism O(V;) = O(V,(;)) determines an isometry V; = V,;) up to multiplication by —1. We fix
an isometry and it induces an isomorphism Pin(V;) = Pin(V, ;). We choose sections z + Z so that the
diagram commutes

PZn(V;) *N> PZn(Vg(Z))
sz—ﬁfc TJ}»—):E
O(Vi) —— O(Vy3))-
Let CY be the identity component of C. We would like to describe the image of the composition

1:C = GL(V3)) = GLVIE) x © = GSpin(V o(:)-
Note

GSpin(V; (i) —— C

T g:t)—det(g)t?
GL(V;[2)) x €
So the image of CV is in Spin(V o(i))-
Lemma 8.1.
(1) Forz € C°, I(x) = «(x)|y, U |V, -
(2) Forx € C\CY, I(z) = \/le@\)er -L(ac/)\\\:(i) mod {+1}.
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Proof. We first show C — Spin(V; 5)), — u(x)|y; - t(x)]v,,, defines a group homomorphism. Let
bi € Z*(C°ZJ2Z) (resp. by € Z*(C°,Z/2Z)) be the obstruction of t(z)ly, (resp. Uz)|v,,) from

being a group homomorphism. Since b; = by(;) and L(x)‘vi,b(x)‘va(i) commute, then it defines a group

homomorphism. It differs from I by a group homomorphism C? — D. Since C° is semisimple, then this
must be trivial. The second part follows from the fact that A\(c(x)) = —1.

]

Lemma 8.2. (1) The twist (8.4) is equal to

~ V=1 N; odd
8.6 :Tp/p — D, — J
(8.6) S B/E ’ {1 N; even

up to Hom(I'g /g, Z/27)-twists.
(2) The twist (8.5) is equal to

(8.7) Xi Wi - ¢ - ¢y mod Hom(I' g, p, Z/27)

where x; = \; o (@/Efm) (resp. xi = \i o (;31),
(i @) @ wi = (o) @m)  (resp. ¢ @ wi = o))
for N; odd (resp. N even), and ¢; : U'g,/p — D, /—1.

Proof. For (1) it suffices to to compute the composition of (8.4) with the similitude character A. For (2)
we also get ¢; for the same reason. So let us assume n = 1. Let ¢; ,(;)(w) = ¢(x) for some x € C. Then

(¢1/2 ) X 1)(w) = I(x). Let qu(w) = u(w) Lm and qgg(i)(w) = wj(w) uw(w) 1(2)]v,, for u(w) € D. Then

1,0(1

#
(Di0(i)) (w) = u(w)?wilz) @)y, - e(2)lv, -
Note xi(w) = Aj o ¢i(w) = u(w)?. So it follows from Lemma that

(Do) (w) = ci(w)xi (w)wi(w)(6}%, % 1)(w) mod Hom(T', /. 2,/27).

Now we want to lift £€) which is given by a twisted elliptic endoscopic embedding
(8.8) LH = SO(V™) x Wp

for some [, or embedding of maximal Levi subgroup of SO(Vl(k)) or GL(I/VT(r{f )). In the case of Levi
subgroups, there is a natural lifting. So we focus on the endoscopic case. Suppose H= SO(VZEHU) X
SO (Vlék+l) )

(1) dim VEUfH) is odd, dim V}Ufﬂ) is even: (8.8) factors through

1 2
SOV ) x SOVE™) Ty &5 SOV, 7 2

where 7 is the nontrivial element of I'p;)p. We choose a lift by requiring E E T ZE sz'n(Vl(k)).

The obstruction is a 2-cocycle b € ZQ(I‘E/F, 7./27), which splits in ZQ(FE/F, B)
(2) dim Vl(kﬂ) and dim Vlékﬂ) are both even or odd: (8.8) factors through

1
SO(VlEkH)) X SO(Vzng)) XTg g, F S, SO(Vg(k)) XLg/p, T 2
where 7; is the nontrivial element of I'g, /p (i = I,1I). We choose a lift by requiring EE DT
Zi € Spin(Vl(k)) X I'g/p. The obstruction is a 2-cocycle by, € ZQ(FEIE”/F, 7./27.), which splits in
Z2(Wp, D).
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Let us denote the resulting lift by £*) : LGR+1) 5 LGK) | Now we can define a lift of ¢
o =00 6. ..o MO

To get to a homomorphism, we still need to choose 1-cochains ™ k)W — D for <;~5(")D and E(W
Take ¢ := (M@ and £F) .= KR Then we define

d=E006...04M
Let c=[[}_oc® and L =[[,.; E;
Lemma 8.3. ¢f = w - ¢= for some 1-cochain u € CI(FL/F,Z/QZ).

Proof. To use induction in the proof, we define

7 (k k/-\_/ ~(k)O
1= @ oy o
and define le(k)m as gED. By induction, we can assume for £ > 0
“(k (k)3
S = 37 mod CH(T ) p, 2/27).
Suppose G is a twisted elliptic endoscopic group of G as in case (1). We have

Lp

~§1)|:|><q~s;1)|:|

(¢(1)ﬁ®~(1 )X(i)(l)ﬂ Qg(l)[j

GSpin(V, ( ) ) X GSpm(V(l)) xTg/p

\

GP’m(Vl(l)) x GPin(Vx G(Spin(Vl(l)) X Spin(\/é(l))) xTg/p

3
GPin(V
Here ngl) is associated with E/F. Since
~(1 ~(1)O
" = 3% mod CN(T'y/p, Z/22),
then the left diagram commutes up to twists by Cl(FL/F, Z/2Z). Note that

& =mo (0" @ 1") x $%) mod CH(Typ, Z/2Z).

Hence
¢* = ¢~ mod C'(T'pp, Z/2Z).

The argument for case (2) is similar.
Now let us suppose G(!) is a maximal Levi subgroup of G, then by definition

o) ¢GL1 X (Gggl)m ® ﬁp)‘

We can let ¢~)(1)D factor through the Levi subgroup

[T ceovyx [ Lz ())XGSpm(V( Y % Ty
jertt iest /(o)
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Note this is also the Levi subgroup of
LH:=G( [[ spinwjew))x T Spin(Vie Vo) x Spin(Vi))  Tgp
jertV i€sM /(o)

onto which we have a projection from

LH .= H GSpin(W; & W}') x H GSpin(Vi ® V,)) X GSpin(Vl(l)) xTg/p.
jery) iesV /(o)
Note
$=mo( [] GarsxD)x J[ ¢ ,q x ") mod C'(0y p,2/22).
jerV ies(V /(o)
By induction, we may assume
07 = ¢V mod CY(T'y,/p, Z/22).
Since
1) _ 7t 1/2
P = H ¢i,a(i)/¢i,a(i) x 1,
iestM /(o)

then the result follows from the commutative diagram

Lp Lg GPin(V)
NA
LH,

As a direct consequence, we have

Proposition 8.4. Suppose we get two lifts QED and ’éDmem diﬁier@nt factorizations of ¢ as (8.2). Then
there exists a 1-cochain u € Cl(FL/F, 7.)27.) such that ¢V = u -'p".

Suppose we construct two lifts ¢, ’d by choosing 1-cochains {c®)} and {®)} respectively. We would like
to define a homomorphism x*¢ : Wp — D such that y¢ = u-'c/c for some 1-cochain u € CH(I'y /g, Z/27).
The existence of XC’IC follows from Proposition From this definition, we also see that XC’/C is uniquely
determined up to twists by Hom(I'z /., Z/2Z). Note c, ‘c split two cocycles b,’b of T'y / in Z /27 respectively
by our construction. So the existence of xY“° is also equivalent to b = ‘b in H 21y, /F> L/2Z). Since
Hom(T'y,p, Z/2Z) C a(SfO) (cf. [Xul8l Lemma 6.9]), we can draw the following consequence.

Corollary 8.5. Suppose F' is local and let qz~5, ’¢~) be two lifts of ¢ € i)jmt(G) obtained by choosing 1-cochains
{c®Y and {®)} respectively, then ¢ @ ¢ ="¢ in &) (G).

unit
8.3. Lifting local and global L-packets. Let F' be local (resp. glolzal), we would like to state the
representation theoretic analogue of Corollary The idea is to lift Hyn and ¢®). The strategy is
parallel with the case of parameters. First of all, we would like to choose lifts of 1:[¢i for even IN; and

ﬁ@.@m for odd N; # 1. We will fix them no matter of the factorization of ¢. To lift II o(n), Let qbgL) =1J (;Sl(n).

We first lift II (. through that of IT (.). There are three cases.
l

3%

(1) gzﬁl(n) = ¢; @ n; for odd N; # 1. Then we can take the chosen lift IZIM_.
(2) d)l(n) = ¢; ® n for even N;. We can take the chosen lift of ﬂq% and twist it by 1 := ﬁDcl(n) for some

1-cochain cl(n) of Wg in D.



32 BIN XU

(3) gzﬁl(n) = (1®7n)®n. We take the trivial lift ﬁﬁ/mv and twist it by 77 := ﬁjcl(n) for some 1-cochain
U
cl(n) of Wg in D.

_ ¢GL,m (g(On
of HQWL). For the purpose of comparison, we also need to introduce some twists and 1-cochains according

Let us denote the resulting lift by II ) with 1-cochain cO =11 cl . Then X, 7 y is a lift

to d)(Gngm There are two cases.

e For qﬁGL] ®nin (bglg m» We introduce a 1-cochain ¢, of I'g/r in D (cf. .
e For gb
(resp. H(m), and

®n in qbg’g m» We introduce a twist by x; w;, where y; is the central character of I o

’LU(

I— Quw =1, — (resp.ﬁq;i®wi:ﬁ

i@ ! Po (i) DM Do (i) )

for N; odd (resp. even). We also introduce a 1-cochain ¢;¢; of T'gg,/p in D (cf. (8.7))).

We define ¢(™ to be the product of c(on) with these 1-cochains. Denote the product of twists from qﬁ(g gm

(ﬁq;go ® H X))

by ng). Then we define
I:IQB(") = ‘Xmﬂ'

¢GL m
We lift £*) as before. Then we can define

Hd; = Tl"ané(o) o-.--0 Trané(n_l)ﬁdg(n)

with respect to some 1-cochains {¢®)}. Let II g and 1_1,(5 be two lifts obtained by choosing 1-cochains {c(*)}
and {’c(k) } respectively. Then ¢, e split two cocycles b,’b of 'y, /FpInZ /27 respectively by our construction.

Lemma 8.6. b="b in H*(T'p,p, Z/2Z).

Proof. The 1-cochains {¢®)} and {®)} can be taken to be the same as for the lifting of ¢. Then the
result follows from Proposition and the discussion after that. O

As a consequence, we can define a homomorphism XC’/C :Wp — D such that XC’/C = u - ¢/c for some
1-cochain u € C’l(FL/F, Z/2Z). 1t is uniquely determined up to twists by Hom(I'y,p, Z/27Z).

Proposition 8.7. Let ﬁq; and f[,(z; be two lifts obtained by 1-cochains {c¢®} and {c®)} respectively, then

1 ~ C7/c — 1 ~
(8.9) M5 @y = I;.
We say H¢ has compatible lifting with respect to the decomposition (8.1)) if ( . ) holds. We can
generalize this notion to G = G(n1) x G(ng) x --- x G(ng), which is an 1mmed1ate consequence of
Proposition [8.7}

Corollary 8.8. Compatible lifting of L-packets holds for G.

Proof. For [¢] € @ . (G) (resp. ®(Q)), we write ¢ = ¢ X ¢2 X -+ X ¢, such that [¢;] € ® . (G(n;))

(resp. ®(G(n;))) for 1 < i < g. Note

G C G(ny) x G(ng) x -+ x é(nq).

Any factorization of ¢ gives rise to a factorization of ¢; for 1 < q, which determines the packets
II 30 and the Correspondmg packet H will be the restriction of ®Z i . to G. By Proposition

H ®XC“CZ— ] B . Since x&© =11 Xc“cl then H¢®ch H~ O
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8.4. Proof of Proposition In this section we shall give the proof of Proposition[8.7] First we observe
that the local case implies the global case. In the archimedean case, the Local Langlands correspondence
is known and is compatible with twisted endoscopic transfer and parabolic induction [Lan89] [SheOS§]
[Mez13]. So the result follows from that for lifting parameters (cf. Corollary [3.5)).

Now let us assume F' is nonarchimedean. Note if any ¢; or ¢gr, ; in is not irreducible, we can
always factorize them further. This means that we can reduce to the case that they are all irreducible and
¢qr,; are not of orthogonal types. Moreover, when ¢ is unramified, the fundamental lemma for spherical
Hecke algebras [Hal95] [LMWI1S§| implies the compatibility of the local Langlands correspondence for
unramified representations with the twisted endoscopic transfer. We should point out that the twisted
case has been shown only for sufficiently large residue characteristic. The compatibility with parabolic
induction is clear. So the result would follow from the same argument as in the archimedean case.

After these reductions, the proof of compatible lifting of L-packets proceeds in the same way as our
proof of the main local theorem in [Xulg|]. We assume that it holds for G = GSp(2n) and GSO(2n+2,7),
when n < N. When n = N, we first show that the case of non-elliptic parameters follows immediately
from this assumption.

Lemma 8.9. Suppose [¢] € @ (G) — ®eyy(G), then the packet I, has compatible lifting.

Proof. For the decomposition of ¢ in , we can assume J # () or ¢1 = ¢o = ¢p3. The idea is to compare
any factorization of ¢ to certain fixed ones. For a given factorization, we will assume that G() is a twisted
elliptic endoscopic group of G such that dim Vl(l) is odd and dim V2(1) is even, and ¢qr1 (resp. ¢; @ ¢; for
{i,7} € {1,2,3}) is in qbgl). We will add superscripts to the left of ¢ to indicate different factorizations.
The arguments for the other cases are similar, so we do not include them here.

If J # 0, we factorize ¢ in the following four ways. From top to bottom, the first is the given
factorization and the last is the fixed one.
l()g(l)
le()

—— 1987 x ((6gra @) x 1o)== 16 x 16 = 19 = 00

160 _0¢(0)
Tl e

¢

|

|

|

|

|

|

| \\\

: 2£(0) =3¢(0)

20 (dara 026Dy 0 s > ¢gl> = 24(1) = 341

Tiig(l)

By our assumptlon we have 1¢(1) gb 2¢>2 , 1¢)1 2¢)1 and 7 = 177%” = 177§2). By induction and
Corollary [8.8] we can assume II, o1 has Compatlble hftmg, then

Next we would like to show
_ 1.2 _

(8.11) ILyox @ =1y
where 2¢ is chosen according to ¢ as follows. The factorization of 1¢(2) gives rise to a factorization of 2¢(2).
We will choose Le(®) = 20(F) if 9 <k <n, and La(n) — 24(n ) . It follows H1¢<2) = H% @) ®(7yodet GLOW (2>))
By the compatibility of twisted endoscopic transfer with parabohc induction,

1:[1(5 - TraDQg(o) Tl"an,g(l) f[l(g(?)
Moreover,

Le(0) ¢,y 261

Tl“aHQg(l) 1:.[2(2)(2) = Tl"an,g(l) ].:.[1(;;(2) ® X
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Since

M /160, = 2¢ (1) /1001 6n) — 2071,
then

160 ¢, 2e(M) _ 1

X ¢ mod Hom(T'y,p, Z/27).

This proves . By induction, we can also assume I, s has compatible lifting, then
(8.12) Moy @ x @ =11,
So the result follows from , and .

If ¢1 = o =2 ¢3, we factorize ¢ in the following four ways. From top to bottom, the first is the given
factorization and the last is one of the three fixed ones indexed by {i,j} C {1,2,3}.

J{%(l)

1¢>§2) % <(¢i%j ®n) X 1¢(2 ) Lo (1) 1¢§1) — (1) — 0(D)

1£(0) _0¢(0)
T e

¢

!

!

!

!

!

!

I S~

B ‘\\} 2¢(0) =3¢(0)

2¢1 ) 2 ¢2 2¢g1) — 2¢(1) — 3¢(1)

Ti’)g(l)

By our assumption, lqﬁg) = <Z>(2) 2gz§2 , 1¢1 2¢§2) and n = 1779) = 11752). Here {i,7} depends on

041, As in the previous case, we can show

1)

2 ,(2) 3
— %oy x (97

]j()(;; ® Xoc’gc - ].:13(; .

It remains to compare the three fixed factorizations.

*nbz >4¢>1

X(O)

¢

e

— ¢2k %9}

~ 1
Note GV ’G(l) are Levi subgroups of G conjugate under Sy, and we have (;52 = Zk and d)ll) ~ ’d)l under
the conjugation. It follows that there exists g € G(F) such that g(GM)g~! = — GW and H¢(1> = H,¢(1).

We can identify d)g and ’qb , and take the same factorization and 1-cochains for them. Recall that for
1 1
? . (resp. ¢7,), we need to introduce a twist by w; jx; (resp. w;ix;), where x; is the central character of

andfl(;i®wl7j—ﬂ H ®wlk—ﬁ¢~) (resp. HN®ww H¢j®nj H@@?7 Q wik = HN)forN

77:’.7'
s,
even (resp. odd). Then

and it follows that B ) B
I =11; ®@wj ® (wijXi/wikxi) = 1.
So we have for the three fixed factorizations. This finishes the proof. O
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At last, we can treat the elliptic parameters. Suppose
P=01® D dgD20g11© D20 € Pey(G).
Lemma 8.10. If ¢; = n;, and r < 3 (or r < 4 when G is symplectic), then I1, has compatible lifting.
The proof is similar to the general case with one difference. So we will consider the general case first.
Lemma 8.11. Suppose [¢] € ®oy(G), then the packet Iy has compatible lifting.
Proof. By applying [Xul8 Lemma 6.18] to ¢, we get a global lift
=1 B D g 241 G- B 20, € Bet(C)
satisfying the following properties.
(1) u=19,S,=35s S;=1.
(2) At nonarchimedean place v # u, ¢, is a direct sum of quasicharacters of F,* with at most one
ramified quasicharacter counted without multiplicities modulo the unramified quasicharacters.
(3) EO-Nstrong multiplicity one holds for ¢ at the place u, i.e., for any automorphic representation 7

of G such that [1,] € ﬁ; for all v # u, [7] must be also in ﬁg.
Suppose 1:[; and f[/g are obtained from two different factorizations of ¢ as in (8.2) with 1-cochains ¢ and

e respectively, then they are global L-packets of G by the functoriality of twisted endoscopic transfer (cf.
[Xul8, Lemma 6.28]). By Lemma and Lemma [8.10] ﬁ;'s Qxy - = 1:[/; for all v # u. By Yg-strong

multiplicity one at the place u, we have 1:1; ® xé’/é = 1:1/;5 and hence 1:1; ® ij% = ﬁ,g . At last, one just

needs to notice that the factorizations of qb one-to-one correspond to the factorizations of ¢. O

To apply this proof to Lemma [8.10] one notes qBv may be elliptic at nonarchimedean place v # wu.

Nevertheless, we have ﬁg} ® ij’/é = f[/; for almost all places by the fundamental lemma for spherical

v

Hecke algebras. By [Xulf, Lemma 6.13]), we know that Yg-strong multiplicity one holds for ¢, i.e., for

any automorphic representation 7 of G such that [7,] € ﬁ; for almost all places v, [a must be also in

v

ﬁg. Hence ﬁg Q x&¢ = fI/;. This completes the proof of Lemma |8.10

8.5. Towards local Langlands correspondence for similitude groups. Suppose F'is nonarchimedean,
and G is a quasisplit symplectic or special even orthogonal group over F'. We would like to show

Theorem 8.12. One can associate any g?) € @bdd(é) with an L-packet fI(z; such that

-~

(1) fId;@w = fI(z; ®w for any w € HY(Wp, Z(G)) = Hom(G(F),C*);

(2) the central character of 1:[¢~) is X which is associated with the composition ofqg and G — Z\é;
(3) it is compatible with twisted endoscopic transfer and parabolic induction.

For the compatibility with twisted endoscopic transfer, we first need to construct the correspondence
for the twisted endoscopic groups. It suffices to consider G = Gy X --- X G (2.2) and ¢ = ¢1 X - -+ X ¢
for ¢; € ®2(G;). We define

¢:po(¢1 X e X ¢q> HH$:H$1®®H$(1
where p : Z(T]L, G;) — LG is dual to the inclusion G < 1T, Gi.
Proof. The proof is by construction, which depends on our choices for simple parameters.

e For N # 1 and ¢ € &, (G), we fix a correspondence ¢ — I_Iq; such that (1) and (2) hold. Here (1)

can be achieved by [Xul8, Corollary 4.2] and Theorem and (2) is due to [Xul6l Proposition
6.27].



36 BIN XU

e Associate (@7)“1" ® w with ﬁ@;]mv ® w.

For ¢ € ®p44(G), we take a decomposition of ¢ as (8.1]) such that all ¢;, ¢G 1,; are irreducible and ¢qr, ;
are not of orthogonal type. Then we also take a factorization of ¢ as . We can construct a lift ¢

with respect to any choice of lifts ¢; for even N; (resp. ¢; @ n; for odd N; # 1) and 1-cochains {c ).

Correspondingly, we will construct H with respect to the same factorization of ¢, II & (resp. II m)

associated with qbi (resp. ¢; ® ni), and the same 1-cochains. Then we define
qz~5 Qw11 q; & w
forwe H 1(WF, D) = Hom(G(F)/G(F),C*). Tt is not hard to see that this is independent of choices of

lifts ¢; (resp. (ﬁl ® n; if Nj is odd) and {c )}. Tt is also independent of the factorization by Corollary |8 .
and Proposition 8.7} At last, it is independent of the decomposition of ¢, since any two decompositions
are conjugate under Sy.

To show (3), note b= E(O) o oM and l:Iq; = Trang(o) ﬁq;<1). So it remains to show that ¢() is associated
with Iy, which is clear by our construction and choices for simple parameters. Finally, (1) and (2
)

follow from (3) by extending the arguments of [Xul6, Lemma 5.2 and Lemma 4.1] to the twisted case,
which is straightforward. 0

As a consequence of Theorem (1), we have

Corollary 8.13. For ¢ € ®,44(G) and w € H (Wp, Z(G)) = Hom(G(F), C*),
[0 ® w] = [@] if and only ifﬁg) Qw = ﬁ(;;.

This corollary is an enhancement of [Xul8 Corollary 4.2] when G is orthogonal. It generalizes Theo-

rem [A.T]

9. PROOF OF MAIN THEOREMS

Let F be global. We denote G(n) := Sp(2n), SO(2n+2,1) and G(n) := GSp(2n), GSO(2n+ 2, 1) over
F. Let G = G(n1) x G(n2) x --- x G(ng). We assume Theorem hold when n; < N
for all 1 < ¢ < ¢. In the proof, we will always treat the symplectic case first, and then take the results to
enhance the induction assumptions.

9.1. Proof of theorem [4.11

9.1.1. Discrete parameters. Let G = G(N), ¢ = ¢1B---B ¢, € ®2(G) and ¢ # ¢,. Suppose ¢ # ¢, then

by (6.7)
1§D = SSaes(D=0C5, 3 S TG0 201 )

D

WEY/a(Ss,) 10€S;, ~{1}
1 Gb 1 éb ~ — o~
+ Tran S disc,¢o ® (QIdzsc b ZSd’iSC,(f;b)7 f < H(G’ X)'
We add

2:C, > > ) JdFew

wEY/a(Sy,) €85 —{1} [7]€ll(¢o;dp)

(zo,m)=—1
to both sides, then the right hand side becomes stable. It follows that
(9.1) Ises(H+2-C5 Y > Y. fgFew)

weY/a(Sy,) o€S5, —{1} [#]€l(¢o;hp)

(zo,m)=—1
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is also stable. Then we can argue by stability as follows. We define II 3= @I B such that it contains a

discrete automorphic representation 79, Since is stable, it is stable at every place. So we can take
f = ®ufuw and fix Qutv fu for any place v, then by [Xu18 Corollary 4.8] the coefficient of f,(7,) in
must be the same for all 7, € H 3o By varying ®q4, fu and the linear independence of characters of

®w¢v7-_[(éw, Xw)-modules, we have that
[7°] = 73] @ (Suzolia)
contributes to if and only if all elements in
I, ® (Qugo[Tn))
also contribute to (9.1]). By repeating this kind of argument, one can show all elements in II 3 contribute

to (9.1). Note for any [7] € l:Iq; such that (-,7) = 1, it can only contribute to Igi-sc,qs(f), which means
it belongs to the discrete automorphic spectrum. Then (4.1)) follows from this observation and (2.20]).
Moreover, we get I:Iq; = T1(¢o; ¢p), if there exists x, € Sy, —{1} and [7] € I(¢o; ¢p) such that (z,,7) = —1,
ie.,

(9.2) S; — HS

is not trivial. Suppose ¢ = ¢,, then by (5.6
Igsc,¢(f) - Sflisc,d)(f) - CQE Z Z ¢ ® w .’E), fN € 7:“6755)
Ww'eY/a(Sy) zeS; —{1}
We add
20, YY Y Jrew

weY/a(Sy) z€S;—{1} [r]ell;
(z,77)=—1

to both sides, where II e is a global packet transferred from II & forxz e S 5~ {1}. By the argument on
stability again, we get the global L-packet II §» with which (4.1)) holds. Moreover,

(9.3) f; =1,

if there exists [7] € H such that (x,7) = —1, i.e., x has nontrivial i 1mage in ], Sz, . By Proposition
. ) holds for all = ;é 1 if it holds for one. So it suﬂices to know that ( is not tr1v1al

9.1.2. General case. Suppose ¢ € ®(G) — ®o(G), then ¢ factors through ¢y € ®o(M) for some proper
Levi subgroup M of G. Then by our induction assumption, we have a global L-packet IT b for M, and
we can define IT s to be the set of irreducible constituents induced from IT P At last, let

G =G(n) x G(n2) x -+ x G(ng),

with n; < NV for 1 < i < ¢ and <Z> € <I>( ). The global L-packet is the restriction of the global L-packet
r 1:[(131_ of G(ny) x G(ng) - X G(nq) with which (4.1)) holds.
9.2. Proof of theorem Next, we consider Theorem for G. For ¢ € ®5(G),
G, - e Y-
Iéiscy(;) (f) - t Rd’LSC (b z 2 m(ﬂ-7 9’ w)fé@ (7T7 w)? f € H(G7 X)
w’ €H¢®w
(m)=1

Here the sum of w' is taken over Y/ [[*" oz(S(io) with % a(Sin) ={weY:w, € a(vao) for all v}, and

m(7, 0, w) is some integer, whose absolute value is less than or equal to m(e) := mg | [[*“ oa(ngO)\ la(Sy) |1
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By (5.9), we have

dzscqﬁ ‘S o| IZ Z m(&)fée(qgo(g)w/al‘i);éb):

w' oz GSGO(w)
where the sum of ' is again over Y/ [[** o (320). Therefore

SN Y mE 0w faEw) =185 7Y Y m(d) (G ® W2l ).

w’ W]EH¢®w Wz 6390( w)
(7)=1

There are two cases. If ¢ # ¢,, then

Z Z m(ﬁ-79’w)f§9 (ﬁvw) = ‘S(fsorl Z Z m(&) Z <y77?>f§9(7~r7w)

w’ [ﬂeﬁ(;@w’ w' YoE€S5, [#]€M(do;dp) R0’

(7)=1
:’I?’LCZ) Z Z fée(ﬁ-’w)v

W' [7)€ll($oidp)Qw

Ly=1
where fée (7,w) is normalized by z. By the linear independence of twisted characters of H(G, X) modules,
we get ﬁ¢~) = T1(¢o; ). If ¢ = ¢, we define a global packet H¢ , transferred from H¢, for any 2’ € S¢( w).
Note Sg(w) =z - Sy, then

(94) Z m(ﬁ.79aw).fé9 (7~T7w) = ‘855’71 Z Z m(é) Z <y7ﬁ'>‘f@9 <7~T7w)7

! [fr}<€1:1>d3®w’ w' yeS; [ﬁ}eﬁéwy@)w'
L=1

where fég (7r,w) is normalized by z. This implies

YooY mE bW faEmw) =S Y md) D fa(Fw).

w’ [ﬁ]elj[(;@w’ W’ yes& Fr]eﬁ(;zy ®w'
b= (-)=1

It follows from the linear independence of twisted characters of 7-:[(G X)-modules that we can choose
II; =1l for all S Sg(w). In both cases, we have

Z m(7, 0 w)fge(” w) Z fGe

So m(#,6,w) = m(¢). Hence
9P =my Y falrw)

W' eY/a(Sy) [ﬁ]eﬁq;@w’
<'7ﬁ->:1
As a consequence, we have shown the functoriality for

s € (S50 x Z(Gy))/Z(G)" = (S5, x Z(Gy)/Z(G)".

By the compatlble lifting of global L- packets again (cf. Corollary [8.8 - this implies the functoriality for
all s € (S}° x Z(Gy))/Z(G)', whenever SJ° # 5 ie. SJ°#S; .

9.3. Proof of Theorem For Theorem it remains to show part (2) and (3) (cf.
Section [6)), which are direct consequences of Theorem and the comparison formulas (cf. Section [5).
So we will mainly focus on Theorem [4.6]
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9.3.1. Non-discrete parameters.
Lemma 9.1. Suppose G = G(N) and ¢ € ®(G) — ®2(G), then Theorem holds for ¢.

Proof. Suppose ¢, € CID(QO) — ®5(G,), then ¢ factors through ¢ for a Levi subgroup M of G such
that ¢prp = ¢p. Note H is obtained by parabolic induction of H&M. So the theorem follows from

compatible hftlng of L- packets (cf.  Proposition . Suppose ¢ € ®(Gp) — P2(Gy), then for any
s € (59 x Z(Gy))/Z(G)T we have Py € <I>(G’s’ ) — <I>2(Gs’b). So ¢!, factors through a Levi subgroup
of G7.. Then the theorem follows from the compatibility of parabolic induction with twisted endoscopic
transfer. g

To treat the discrete case, we need to strengthen our induction assumptions as follows.
Lemma 9.2. Suppose G = G(n) and
¢=¢1 8- BB (20,41 B B2¢,) € dey(G?)
for some 0 € g such thaty ;| N; < N, then Theor@m hold for (;;

Proof. The case of discrete parameters follows from our induction assumption. For non-discrete param-
eters, we can construct the global L-packets by parabolic induction, which shows Theorem By

repeating the argument in Lemma we can reduce Theorem [4.6] to the discrete case. O
Corollary 9.3. Suppose G = G(n1) x --- x G(n,) and ¢ = ¢1 X -+ x g € ®(G <I>2(G) such that

¢; € ®(G(ny)) satisfies the condition in Lemma9.4, then Theorem. . . . 4.9 hold for ¢.

Proof. For Theorem we can construct the L-packets by parabolic induction. Next we show Theo-
rem Since the restriction of global L-packet @7_,; f[q;i of G(ny) x G(n2)~>< -+ X G(ng) to G is a1~so
a global L-packet, then the functoriality of twisted endoscopic transfer for ¢ follows from that for ¢;.

At last we prove Theorem 4 - by induction on Zq . It remains to show part (2) and (3), which
follows from the comparison of with usmg (5.11) and (5.12)). O

9.3.2. Discrete parameters.
Lemma 9.4. Suppose G = G(N) and ¢ € ®o(G), then Theorem holds for ¢.

Suppose ¢ = ¢1 B --- B ¢, € P2(G) and ¢ # ¢,. From the discussions in the end of Section and
Section it remains to consider the case that (9.2)) is trivial and 8500 =S 3o Without loss of generality,
we can make the following assumptions.

(1) If G is symplectic, then N; is odd and n; = 1 for all i.
(2) If G is special even orthogonal and ng # 1, then N; is even for all ¢ and n; = ng.
(3) If G is special even orthogonal and ng = 1, then N; is even and 7, = 1 for all 4, and ¢ is not of
G L-type (cf. Definition [4.4).
In all cases we take an auxiliary parameter as follows
¢ =20 BB B, € B(GT).

Let € € 8§+° such that ¢ factors through
¢ = (p1 BB ---Bo,) x ¢1 € Ba(GY).
LetG:HOincase()and@zllncase()and ). By (5.10),
G+, , - . N
(95) ]élsc ¢+771 ¢+ Z Z 253— (mo)féJr,G (¢0 ® W, To; ¢b)) f ( +)

weY/(n1) :coe$9 (m)

The idea is to compare this with (5.9) in case (1), (2) and with (5.6), (5.7) in case (3). The main problem
is that we can not apply (5.9), (5.6), (5.7) to ¢ dlrectly, since Theorem [4.9|is only applicable for ¢ with

x € S?f —{€,1} by our induction assumption and Corollary So we need to compute them separately
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here. In view of the proof of Lemma it suffices to determine the contribution of Tran SG First,

disc,pd
the coefficient of this term is

(G, GY)

m¢+

€

d = mg |Out g (GH)|Spt o/ Sy« N G Z(GHT|

Next we will give a formula for S’G ot If ¢ # ¢,, we can apply . ) to ¢ and . ) to ¢E 0, and get

Gj 1 Ge o S Gb
. 4+ = = S o + . e
disc,p 4 disc,pé o disc,pp
é;‘r ]‘ é::o S éb )
+ (I disc,T QTran(Idisc,¢;to® Lyeed,)):

If ¢ = ¢y, let us define II g+ to be the packet II 3t of CNJj transferred from the L-packet of endoscopic

group é;fw for any x € S(;Ej — {1}, and we have féj (&fﬁ QW) = N’éj (gi;j ® w',x). Then we can apply
(5-6) to ¢, and get

L -
Sj;c,@(f )=Cor Y far(di_ @)

w'ey’
tmg (Y Fa @) - Y fa @i ow). FeR@ D).
w'ey’ w'ey!

In case (1) and (2), the substitutes for (5.9) can be described as follows. If ¢ # ¢,, then
G0 ; bt i
I((izsc d)J:n Z Z eifj (-'L'o)fé%e (¢3_ X W, To; ¢b)

WEY/(m) :ce<59 ()

1 GF -G L
G - €,0 Gb + +
+d- Tran([ et 2Tran(Idisc’¢io® Idz‘sc,&,))’ feHGT,XT).
If ¢ = ¢, then
G+, . -
Iz(izsc,dfzh ¢+ Z Z eif+ (x)féur,e (¢+ R w, :L')

weY/(m) 2€89 | (m)
Ot e 5 ~
tdomgs (S FEGE el = D FH G ), e HEGHRY),
w'eY’ weY’
where fl@+,e ((5+ ®uw, €) is redefined to be the transfer of l:I¢;+ rather than ﬁgéj- In case (3), the substitutes
for can be described as follows. If ¢ # ¢, then

Idzsc ¢)+(f) Sdzsc ¢)+ ~ ¢+ Z Z ¢+ :EO ¢+ ®(JJ Lo gbb)

weY zeS o
1 Gty - G P
G Ge,o G ~
+d- Tran([ ot §Tran(fdi807¢io® Idi:vc,&b))’ feH(GTXT).
If ¢ = ¢y, then
Lot (D) = SGcor () = C3: 3o Y €@, (6" @w,2)
wEY zES 1
~N4 ~ ~~+  ~ ~ — =~ ~
tdomy (S G es) - Y FEGL o)), FeRE XY
w'eY’ w'eYy’

To make the comparison with (9.5)), we note in all cases

ZZ)O—O- (xO)féJr,Q (Q;(J)r ® w, To; éb) = 6:50_._ (330)]684_,9 (&j ® W, To; éb)a f € ﬂ(éJra %+)
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for all z, € ng(nl). In case (1) and (2), we get

1 Gt - .G
G - €,0 Gb _ —
(9.6) Tran (Idzsc o 2Tran(IdiSC7¢io® Idisc@b)) 0
when ¢ # ¢,, and
(9.7) Y el Y G o) =0, feRGXT)
w'ey’ w'ey’
when ¢ = ¢,. In case (3), we get
Gt Glo =z 4G _ “lear

(9.8) Tran(f oo 2Tran([ o s I ¢3b)> = —SGret
when ¢ # ¢,, and

FCE (0 @ o Gt o) = L @ A Fed(ar vt
(9.9) D @)= Y FUGlew) = S, (), JEHGTX)

w'ey’ w'ey’ Pe

when ¢ = ¢,.

We will further show that and both vanish, hence reduce to (9.6) and (9.7) respectively. By
compatible lifting of L-packets (cf. Proposition , the left hand sides of (9.8) and (9.9) become

(9.10) > (X @afa®m- X (enfa@®)

weY/(m)  [Fell ;1 @w [Flell ;1 ®w

where II &t denotes the packet of G transferred from the L-packet II 3+ of éj By the argument on
stability as in the proof of Theorem we can conclude the coefﬁcie_nts of characters of all [7] € II 4+ must
be the same. Since ¢; is not of GL-type, then there exist [71], [f2] € LI, such that (€, 711) = 1, (e, 72) = —1.
So would not be stable unless it is zero. ) )

At last, we would like to show ;= II(¢o; P) if ¢ # ¢o, and ;=1 forl1#x € S¢3 if ¢ = ¢,. Since
a(Si?) = a(ijv) for all v, then implies that

Ge 1 Glo &Gy
Iclisc,qb;r o iTran(Idisc,qﬁj’o@ Idisc,dgb) =0.
Since 1:1& (resp. l:IQ;:O) is the restriction of ﬁ<i3 ® ﬁél (resp. ﬁ¢~>o ® 1_15)1) and a(Sfﬁv) C a(S(?UO) for all v,

then II 3= ﬁ(ggo; (;NSI,). The other case follows from (9.7)) by the same argument.
Corollary 9.5. Suppose G = G(n1) X --- x G(ng) and ¢ = ¢1 x -+ X ¢4 € ®(G) such that n; < N, then

Theorem @ @ hold for é.

Proof. The proof is the same as Corollaryunder Lemmau 4 except for (2), (3) of T heorem
in the discrete case, where we need to compare (5.6, with (4.1]) instead. O

APPENDIX A.

Let F be a p-adic field and G = SO(2n,7') and ¢ € @4, (G). We would like to show

Theorem A.1. Forw € H'(Wp, Z(G)) = Hom(G(F), C*),
(A1) [0 @ w] = [¢] if and only iff[(z)@w:ﬁq;.

First let us consider n = 1. In this case, we have ' = ny # 1. Let E'/F be the quadratic extension
associated with 7. Then G' = Ug//p(1) and G =~ Resg/pGL(1), both of which are tori. The local
Langlands correspondence for tori is known (cf. [Bor79]) and Theorem is a consequence of that,
provided it is compatible with the one given by Arthur. In other words, we need to show the twisted
endoscopic lifting from Ugr (1, F) to GL(2, F) is compatible with the local Langlands correspondence.
In fact, we can break it up into two steps: standard base change from Ugs/p(1, F') to GL(1, E) followed
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by the automorphic induction from GL(1, E) to GL(2, F'). This is because both the standard base change
and the automorphic induction are special cases of the twisted endoscopy, and one can check that the
geometric endoscopic transfer from GL(2, F') to Ug//p(1, F') is the composition of the other two. The
standard base change is just the pull back along the homomorphism GL(1, E) = Ug/p(1, F),x + &/
for x € E* and it is compatible with the correspondence for tori. For the automorphic induction, the
compatibility follows from [HH95].

Next we assume n > 1. Dual to , we have

1 —— Hom(G(F)/G(F),C*) — Hom(G(F), C*) — Hom(G(F),C*) — 1.

By [Xul8, Corollary 4.2], (A.1]) holds for ¢ € @bdd(g) and w € Hom(G(F)/G(F), C*). Since we have
assumed ¢ € Py (G), then any nontrivial w € Hom(G(F), C*) such that [¢ ®w] = [¢] must be nontrivial
on G(F). In order to describe Hom(G(F),C*), we lift them to characters of GSpin(2n,n")(F).

1

222

1—— Spin(2n,n’) —— GSpin(2n,n') —— G, —— 1

T

SO(2n,n)

1
Let us denote Gy := Spin(2n,n') and Gy := GSpin(2n, 7). Then
Hom(G(F),C*) = Hom(Gse(F)/F* Gye(F),C*) = Hom(F* /F*2,C*).
Lemma A.2. Forn € Hom(F*/F*2,C*), llyg, = s @ 1.

Proof. The packet 1:I¢ is determined by its 05,-twisted endoscopic transfer ﬂgL to GL(2n, F') through the
character relation

FE(0) = faranyoen (7G5), [ € C(GL(2n, F))

(cf. [Art13l Theorem 2.2.1]). Since 71(%477 = WgL ®n and (fn)¢ = f%n, then
This finishes the proof. O

Suppose 1 # 1 € Hom(F*/F>*2,C*) is associated with a quadratic extension E/F and [¢p ® 1] = [¢],
then Iy ® n = I, by Lemma There ex1sts a unique extension 7] € Hom(G( ),C*) of n such that
(¢ ® 7] = [¢]. In order to prove Theorem it suffices to show that H ® i =1I; 3

Note ﬂ'gL is an essential dlscrete series representation of GL(2n, F). We denote its Langlands parameter
again by ¢. Since 7r¢L Qn =G i L there exists an essentlal discrete series representation g of GL(n, E),
which is not I'p/p-conjugation invariant, such that ¢ p L is the automorphic induction of g (cf. [HH95]
[AC89]). Denote the Langlands parameter of g by ¢g. We can also view 7g as a representation of
Resg/p GL(n)(F) and denote the corresponding Langlands parameter by ¢/ p. Since ¢ = Indég ¢p (cf.
[HenO1]), then ¢ factors through ¢ g/ . Moreover,

QS’LE = ¢CE @ op
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where ¢f is the I'p/p-conjugate of ¢p. Since ¢ is self-dual of orthogonal type, then ¢ is either self-dual
of orthogonal type or conjugate orthogonal (cf. [Mok14l Section 2]). It follows that ¢,/ p factors through
¢ € Ppqa(H) for a twisted elliptic endoscopic group H of Resg/r GL(n). It also induces an embedding
of “H into “G, through which we can view H as a twisted elliptic endoscopic group of G.

¢: Lp Lf LGL(2n)
LH —— LResg/p GL(n)

More precisely, we have the following three cases.

o If 95, = ¢}, then H = Ug JF (n) is an n-twisted endoscopic group of G. In this case,

, )1 if nis even,
TV ifnis odd.

o If ¢p = ¢}, and n is even, then H = Resg /FSO(n,ng) is an n-twisted endoscopic group of G.
In this case, ' = g, |px.

o If pp = ¢}, and n is odd, then H = Resg,p Sp(n — 1) is a (0o, n)-twisted endoscopic group of G.
In this case, 1 =1 Ng,|px-

We can lift H to an 7j-twisted (resp. (6o, m)-twisted) elliptic endoscopic group H of G (cf. [Xul6l
Proposition 3.1]). Then [¢ @ 7] = [¢].

Next we can construct a globalization of ¢y, namely gsz € @Sim(ﬂ ) such that ngu = ¢y following
[Art13 Proposition 6.3.1] [Mok14 Proposition 7.3.1]. It gives rise to a self-dual or conjugate self-dual
b, i € Psim(GL(n)j;) such that b B = ¢F for wlu. By automorphic induction [AC89] [Henl2], we obtain
a self-dual qﬁ € Dgim(GL(2n)) such that ¢ ®nN = (;S. Since gzﬁu = ¢ € Pgin(G), then d) € @Slm(G), Where

G = SO(2n,7). Let us lift H to an n-twisted (resp. (g, n)-twisted) elliptic endoscopic group H of a.
The following lemma is the key step of the proof.

Lemma A.3. Ifn is even, then

1ED () =auG st (71, fenGR).

If n is odd and ¢S, = ¢Y,, then

160 (Fy = 2u(C INST . (F1), feHE.R).

disc,¢ dzsc ¢H
If n is odd and ¢p = ¢Y,, then
=00 o o T T _
1€ () = 4G B)ST (), feHED.
disc,¢ disc,¢ g

Proof. By the twisted stable trace formula, we have

1= Y uGE)sE () Fenén
G €€en(G )
~0p -~

0 ~ ~ ~ ~
RN : s x
(resp. 19 0= S w@.8)SG, (P Fenc). )
élegell(éeo 7)
The Eo -conjugacy class of isomorphism classes of 7-twisted (resp (6o, n)-twisted) elliptic endoscopic data

of G can be classified by (G, K/E), where [K : E] <2 and ¢ = UE/F(nl) X Resp i SO(n2, ;) (resp.
UE/F(nl) x Resp - Sp(ng — 1)) for n = ny +ng and ng is even (resp. ng is odd), subject to the conditions
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that 7' = n™ - UK/E’M and if ¢/ = UE/F(n), then K = E. The twisted endoscopic embedding ¢ can be
F
chosen to satisfy the following diagram
La LGL(2n)

| . T

30

Lew BIE LReSE/F(GL(nl) x GL(ng)) — LResE/FGL(n),

where £ JE is given by the fiber product over W, of
§X(_1)n171 : LUE/F(”I) — LResE/FGL(nl)
(cf. [Mok14l Section 2]) and
. L L
$k/i ReSE/FSO(ng,nK/E) — “Resp paring

(resp. $kp LReSE/FSp(n2—1) — LResE/FGL(n2)>.

By [Xul8|, Proposition 2.7]), there is a one to one correspondence

Eau(Gi) = | | Eaul G. i)

77|G 7

<1“eSp Ea(G*0) = | | Ean(C ~90,777 )

Ale=n

It is easy to show that if Sg;c,é # 0, then S’g;c’é5 # 0 (cf. [XulR, Lemma 5.7]). Suppose ¢(¢) is the image
of ¢(¢') for some ¢’ € ®o(G"). Compose ¢’ with the embeddings
Lar — LResE/F(GL(m)XGL(m)) — LReSE/FGL(n)

we get ng | | QSE 2 € ®(GL(n)g), where ng | is conjugate self-dual and QSE - is self-dual. If the image of
¢ in ®9(@Q) is equal to 6, then

Gjp1 Bop, = op or 05,
Hence, it is necessary that G/ = H and d}’ = gZ)H or gﬁq, where <Z>‘;{ is the é}conjugate of qﬁH for an
automorphism 6. of H and it gives rise to d)%.

Ifnisodd and H = U, B/ +(n), the corresponding io—conjugacy class of isomorphism classes of endoscopic

data consists of only one isomorphism class. Moreover, Out~. (H ») =1 and

dzsc qﬁ” (fH) d.zsc ¢H((f90) ) f S H(a, 55)

In other cases, it follows from 6. € Outé (H,) that

St e (P = I (1), fenE.R.
Moreover, the corresponding Eo -conjugacy class of isomorphism classes of endoscopic data consists of two
1somorphlsm classes. We can lift them to twisted endoscopic data of G and denote the transfers by fH
and f FHL respectively. Then ~ B _
fle= ("1, feH(Ex)
and L(é, I} ) remains the same for the two endoscopic data. So in all cases we can conclude the lemma by
restricting to 7-_1(57 X)-
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Remark A.4. We can determine the coefficient +(G, H) in the lemma using (3.3) as follows.
s 1 iy =nand H = Uy p(n),
(G H)=4{1/2 ifiy=1and H = Resp,/j» Sp(n — 1) or Up x(n),
1/4  otherwise.

To finish the proof of Theorem [A.T] we still need to show the distributions in Lemma [A.3] are nonzero.

By the stable trace formula of H, we have

dw%(fH) o - 3 H)Sgsc%(f’) femH R,
B g (I {}

Since ng does not factor through any proper elliptic endoscopic group of H, then Sg;c,ég( f" ) = 0 for

H' # H, which implies that SdH b (f)) = 0 (cf. [XuI8, Lemma 5.7]). Therefore,
18C. Jis

S o (=11 o (fy=trRI . (), feMUr5;)

~90 7

So there exists fe 7:[(&, X) such that SCZ (fH) # 0, hence I( ) ( ) # 0 (resp. I( (f) # 0) by
Lemma [A.3l Tt follows that there exists [7] 6 H. such that 7 = ® 77 (resp. 7% = 7 ® 77). In particular,

Ty &7y @ 1) (resp. 700 2 71, @ 7). HenceH~—H¢®77
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