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ABSTRACT. We prove a local version of the noncollapsing estimate for
mean curvature flow. By combining our result with earlier work of X.-J.
Wang, it follows that certain ancient convex solutions that sweep out
the entire space are noncollapsed.

1. INTRODUCTION

A crucial property of mean curvature flow is that embeddedness is pre-
served under the evolution, and this property is especially consequential in
the class of mean-convex flows. Indeed, White [6, 7] proved several impor-
tant results on singularities of embedded, mean-convex flows. Among other
things, White showed certain “collapsed” singularity models, like the grim
reaper or the multiplicity-two hyperplane, cannot arise as blow-up limits of
embedded mean-convex flows.

In [4], Sheng and Wang introduced a quantitative version of the concept of
embeddedness. Let M; be a family of embedded, mean-convex hypersurfaces
evolving by mean curvature flow. We say that the flow M, is a-noncollapsed
if )

5 ail H(wvt) ‘.%' - y‘Q - <.%' - Y V((IZ,t)> >0

for all points x,y € M;. This concept has a natural geometric interpretation.
A flow is a-noncollapsed if, for every point x € M;, there exists a ball of
radius aH (x,t)~! which lies in the inside of M; and which touches M; at x.

It is a consequence of White’s work that every compact, embedded, mean-
convex solution of mean curvature flow is a-noncollapsed, for some « > 0,
up to the first singular time. Alternative proofs of this result were given
by Sheng and Wang [4] and by Andrews [1]. In [2], the first author proved
a sharp version of this noncollapsing estimate. More precisely, if we start
from a closed, embedded, mean-convex solution of mean curvature flow, then
every blow-up limit is 1-noncollapsed.

In this note, we prove a local version of the noncollapsing estimate for the
mean curvature flow.

Theorem 1. Let us fix radii R and r such that R > /1 + 3nr. Moreover,
let A be a positive real number. Let My, t € [—12,0], be an embedded solution
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of mean curvature flow in the ball B3g(0) satisfying R~' < AH and |A] <
AH for all t € [-r2,0] and all x € M; N B /i737,(0). Moreover, suppose
that

éAH(.ﬁC, —r?) |z —y]? = (& —y,v(z,—r?)) >0
forallz € M_,2 N B 73,,(0) and all y € M_,> N B3g(0). Then

A2+ 6n) H(z,t) |z —y|> — (x — y,v(x,t)) >0
for all t € [—r2,0], all z € M; N B:(0), and all y € M; N B3g(0).

The proof of Theorem 1 relies on two main ingredients. The first is the
evolution equation from [2] for the reciprocal of the inscribed radius. The
second is a particular choice of cutoff function inspired in part by the work
of Ecker and Huisken [3]. The argument can be readily adapted to fully

nonlinear flows given by speeds G = G(h;;) > 0 which are homogeneous of
degree one, concave, and satisfy 0 < %GU < Kg;; for a uniform constant K.

Let us now discuss an application of the main theorem.

Corollary 2. Let A be a positive real number. Let My, t € (—o0,0], be an
embedded ancient solution of mean curvature flow in R™ such that H > 0
and |A| < AH at each point in space-time. Suppose that there exists a
sequence of times t; — —oo such that

1
LA H ) -yl — (@ -yl ) 20
for all x € My; N B\/W(O) and all y € My,. Then

A(2+6n) H(z,t) |z —y* — (x —y,v(z,1)) > 0
for allt € (—o0,0], all x € My, and all y € M.

To deduce Corollary 2 from Theorem 1, we put r; = /—%;. Moreover,
for each j, we choose R; large enough so that R; > /—(1+ 3n)t; and
R;' < AH for all t € [t;,0] and all z € M; N B —7m;(0)- If we apply

Theorem 1 and take the limit as j — oo, the assertion follows.

Corollary 3. Let My, t € (—00,0], be a conver ancient solution of mean

curvature flow in R"TY with H > 0. Suppose that there exists a sequence
1
tj — —o0 such that the rescaled hypersurfaces (—t;)~2 My, converge in Cfy,

to a cylinder S"% x RF with multiplicity 1, where k € {0,1,...,n — 1}.
Then there exists a constant A(n) such that

A(n) H(z,t) |z = y* = (2 — y,v(2,1)) > 0

for allt € (—o00,0], all x € My, and all y € M,.
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In [5], X.-J. Wang considered ancient solutions to mean curvature flow
that can be expressed as level sets M; = {u = —t}, where u is a convex
function which is defined on the entire space R™*! and satisfies

n+1

DZ"U, Dju
> (3= ) D=1
ij=1

Wang showed that such ancient solutions admit a blow-down limit which
is a cylinder S" % x R* with multiplicity 1, where k € {0,1,...,n — 1}
(see [5], Theorem 1.3). By Corollary 3, such an ancient solution must be
noncollapsed.

2. PROOF OF THEOREM 1

By scaling, it suffices to prove the assertion for » = 1. Let us fix a
radius R > +/1 4+ 3n. Moreover, we fix a positive real number A. Let M;,
t € [-1,0], be an embedded solution of mean curvature flow in the ball
Bsr(0) satisfying R™! < AH and |A|] < AH for all t € [-1,0] and all
x € My N B /773,(0). Moreover, we assume that

1
iAH(wa_l) ’.I'—y|2 - <$—y,l/($,—l)> > 0

for all z € M_1 N B /73;(0) and all y € M_y N B3g(0).
We define a function ¢ by
o(z,t) == (2A) 71 (1+3n)L (1 — |22 - 3nt)
for all t € [~1,0] and all z € M; N B, 7—3,;(0). Moreover, we define
®(z,t) == @z, t) 4 H(x, 1)

for all t € [-1,0] and all z € My N B 7=5;7(0). In the following, let A\; <
... < )\, denote the eigenvalues of the second fundamental form.

Lemma 4. We have ® > 2AH for all t € [-1,0] and all x € M; N
B\/m(O). Moreover, the eigenvalues of the second fundamental form sat-

isfy [ \i] < % for allt € [-1,0] and all x € My N B, 7=5;;1(0).

Proof. By definition, ¢ < (2A)_% and ® > 2AH for all t € [-1,0] and
all z € My N B, 7=3,7(0). This proves the first statement.
To prove the second statement, we observe that |A| < AH < % for all

t € [-1,0] and all z € M;N B 7=5,;(0). This completes the proof of Lemma
4.

Lemma 5. The function ¢ satisfies

e
X Ap<0
ot~ °¥ S

for allt € [-1,0] and all z € M N B /7=5,#(0).
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Proof. We compute
Oy
ot

for all t € [-1,0] and all z € M; N B\/m(o)‘

—Ap=—(2A)"T(143n)'n<0

Lemma 6. The function ® satisfies

0P " (D;®)?
— — AP — |A]? D
o5~ A0 |4 +2;¢_Ai>o

for allt € [-1,0] and all x € My N B, ;7=5;;1(0).

Proof. Using Lemma 5, we obtain

9% gyt (a*H ~AH) 4 H (?% A)

ot ot
_§@4H‘V;[_4V;2+§¢HV;J_V;2
>\A|2¢_4H §¢_4H)Z{—4v(f2
4 |VO|?
_jape- i1

for all ¢ € [-1,0] and all x € M; N B ;7=3;;(0). Moreover, it follows from
Lemma 4 that 3 < ®—); < 3 forallt € [-1,0] and all z € MiNB /7=57(0).
Consequently,

o 4 |veP (D;®)?
AP A2 > A2 ® — 2
or ~ A% APe -5 2 lAPe Z@ ¥

for all t € [—1,0] and all € My N B, ;7=5;;3(0). This completes the proof of
Lemma 6.

We next define
1
Z(l’,y,t) = 5 @(IB,t) ‘x - y‘Q - <:U - Y, V({E,t»
fort € [-1,0], x € My, and y € M,.

Lemma 7. We have Z(x,y,t) > 0 for all t € [-1,0], all x € M; N
B /71_31”(0), and all y e MnN B3R(0)

Proof. Suppose that the assertion is false. Let J denote the set of all
times t € [—1,0] with the property that we can find a point x € M; N
B 7=37(0) and a point y € M; N B3g(0) such that Z(z,y,t) < 0. Moreover,
we define ¢ := inf J.

By definition, Z(x,y,t) > 0 for all t € [~1,7), all z € M; N B ;7—5,;(0),
and all y € M; N B3r(0). Moreover, we can find a sequence of times t; € J
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such that t; — ¢. For each j, we can find a point x; € M;, N BW(O)
J

and a point y; € My; N B3gr(0) such that Z(z;,y;,t;) < 0. Clearly, z; # y;,
and
2 (x; —yj,v(z), t5))

> ®(x;,t5).
) — y;[? Y
Using the Cauchy-Schwarz inequality, we obtain
2
> ®(xj,t;) > 2AH (zj,t;) > 2R
|75 — v

In other words, |z; — y;| < R. After passing to a subsequence, the points
x; converge to a point & € Mj satisfying |Z| < v/1 — 3nt. Moreover, the
points y; converge to a point § € My satisfying |z — y| < R. In particular,
7] < V1+3n+ R <2R.

If |Z| = V1 — 3nt and T # ¥, then

2(z — i, v(z,1 2 (x; — yj, v(x), 1 ,
<l‘ _yay_(j‘v )> — limsup <‘7:J y] V(J;J J)> Z llmsupq)(xj,tj) = 00,
|ZL‘—y| Jj—oo |ZL‘j _yj| j—oo

which is impossible.
If |z| = V1 —3nt and z = ¢, then

2 (xj —yj,v(z),t5))
’2

An (T, 1) > lim sup

> limsup ®(x;,t;) = o
J—00 ]wj—yj (j’ j) ’

Jj—0o0
which is impossible.
If |Z] < V1 —3nt and T = g, then

2 (xj — y;,v(z5,t5))
|2

An(Z,t) > limsup

> limsup ®(z;,t;) = ®(z,1),
j—oo |$j - Y

Jj—o0
which contradicts Lemma 4.
Therefore, we must have |z| < v/1 — 3nt and & # . Moreover,

2 = __ = — t 2 P . . t
@7 Ii(f’” ~ limsup 2% y],u(x;, D> timsup (1) > (7, )
|z — 9| j—o00 |75 — yj] j—o0

We claim that ¢ € (—1,0]. Indeed, if ¢ = —1, then our assumption implies

2<x;zi,2’(2wvﬂ> < AH(Z,t) < ®(z,1),

which is impossible. Consequently, ¢ € (—1,0].

To summarize, we have shown that ¢ € (—1,0], Z(z,y,t) < 0, and
Z(x,y,t) > 0 for all t € [~1,7), all z € My N B, 7—5;(0), and all y €
M; N B3gr(0). Arguing as in the proof of Proposition 2.3 in [2], we conclude
that

0P " (D;®)?
T AD— AP®+2Y) L <
ot ‘ ’ + ;(I)—/\i_
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at the point (Z,t). This contradicts Lemma 6. This completes the proof of
Lemma 7.

We now complete the proof of Theorem 1. By definition, ¢(x,t) >
(2A)_% (24 6n)~! and ®(x,t) < 2A(2 + 6n)* H(z,t) for all t € [—1,0]
and all x € My N B 1 (0). Using Lemma 7, we conclude that

A(2+6n)4H(x7t) ’$_y’2 - <$—y,l/(l‘,t)> > Z(.%’,y,t) >0
for all t € [—1,0], all z € M; N B%(O), and all y € My N Bsr(0). This
completes the proof of Theorem 1.
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