A LOCAL NONCOLLAPSING ESTIMATE FOR MEAN CURVATURE FLOW

SIMON BRENDLE AND KEATON NAFF

Abstract

We prove a local version of the noncollapsing estimate for mean curvature flow. By combining our result with earlier work of X.-J. Wang, it follows that certain ancient convex solutions that sweep out the entire space are noncollapsed.

1. Introduction

A crucial property of mean curvature flow is that embeddedness is preserved under the evolution, and this property is especially consequential in the class of mean-convex flows. Indeed, White [6, 7] proved several important results on singularities of embedded, mean-convex flows. Among other things, White showed certain "collapsed" singularity models, like the grim reaper or the multiplicity-two hyperplane, cannot arise as blow-up limits of embedded mean-convex flows.

In [4], Sheng and Wang introduced a quantitative version of the concept of embeddedness. Let M_{t} be a family of embedded, mean-convex hypersurfaces evolving by mean curvature flow. We say that the flow M_{t} is α-noncollapsed if

$$
\frac{1}{2} \alpha^{-1} H(x, t)|x-y|^{2}-\langle x-y, \nu(x, t)\rangle \geq 0
$$

for all points $x, y \in M_{t}$. This concept has a natural geometric interpretation. A flow is α-noncollapsed if, for every point $x \in M_{t}$, there exists a ball of radius $\alpha H(x, t)^{-1}$ which lies in the inside of M_{t} and which touches M_{t} at x.

It is a consequence of White's work that every compact, embedded, meanconvex solution of mean curvature flow is α-noncollapsed, for some $\alpha>0$, up to the first singular time. Alternative proofs of this result were given by Sheng and Wang [4] and by Andrews [1]. In [2], the first author proved a sharp version of this noncollapsing estimate. More precisely, if we start from a closed, embedded, mean-convex solution of mean curvature flow, then every blow-up limit is 1-noncollapsed.

In this note, we prove a local version of the noncollapsing estimate for the mean curvature flow.

Theorem 1. Let us fix radii R and r such that $R \geq \sqrt{1+3 n} r$. Moreover, let Λ be a positive real number. Let $M_{t}, t \in\left[-r^{2}, 0\right]$, be an embedded solution

[^0]of mean curvature flow in the ball $B_{3 R}(0)$ satisfying $R^{-1} \leq \Lambda H$ and $|A| \leq$ ΛH for all $t \in\left[-r^{2}, 0\right]$ and all $x \in M_{t} \cap B_{\sqrt{1+3 n} r}(0)$. Moreover, suppose that
$$
\frac{1}{2} \Lambda H\left(x,-r^{2}\right)|x-y|^{2}-\left\langle x-y, \nu\left(x,-r^{2}\right)\right\rangle \geq 0
$$
for all $x \in M_{-r^{2}} \cap B_{\sqrt{1+3 n} r}(0)$ and all $y \in M_{-r^{2}} \cap B_{3 R}(0)$. Then
$$
\Lambda(2+6 n)^{4} H(x, t)|x-y|^{2}-\langle x-y, \nu(x, t)\rangle \geq 0
$$
for all $t \in\left[-r^{2}, 0\right]$, all $x \in M_{t} \cap B_{\frac{r}{2}}(0)$, and all $y \in M_{t} \cap B_{3 R}(0)$.
The proof of Theorem 1 relies on two main ingredients. The first is the evolution equation from [2] for the reciprocal of the inscribed radius. The second is a particular choice of cutoff function inspired in part by the work of Ecker and Huisken [3]. The argument can be readily adapted to fully nonlinear flows given by speeds $G=G\left(h_{i j}\right)>0$ which are homogeneous of degree one, concave, and satisfy $0<\frac{\partial G}{\partial h_{i j}} \leq K g_{i j}$ for a uniform constant K.

Let us now discuss an application of the main theorem.
Corollary 2. Let Λ be a positive real number. Let $M_{t}, t \in(-\infty, 0]$, be an embedded ancient solution of mean curvature flow in \mathbb{R}^{n+1} such that $H>0$ and $|A| \leq \Lambda H$ at each point in space-time. Suppose that there exists a sequence of times $t_{j} \rightarrow-\infty$ such that

$$
\frac{1}{2} \Lambda H\left(x, t_{j}\right)|x-y|^{2}-\left\langle x-y, \nu\left(x, t_{j}\right)\right\rangle \geq 0
$$

for all $x \in M_{t_{j}} \cap B \sqrt{-(1+3 n) t_{j}}(0)$ and all $y \in M_{t_{j}}$. Then

$$
\Lambda(2+6 n)^{4} H(x, t)|x-y|^{2}-\langle x-y, \nu(x, t)\rangle \geq 0
$$

for all $t \in(-\infty, 0]$, all $x \in M_{t}$, and all $y \in M_{t}$.
To deduce Corollary 2 from Theorem 1 , we put $r_{j}=\sqrt{-t_{j}}$. Moreover, for each j, we choose R_{j} large enough so that $R_{j} \geq \sqrt{-(1+3 n) t_{j}}$ and $R_{j}^{-1} \leq \Lambda H$ for all $t \in\left[t_{j}, 0\right]$ and all $x \in M_{t} \cap B \sqrt{-(1+3 n) t_{j}}(0)$. If we apply Theorem 1 and take the limit as $j \rightarrow \infty$, the assertion follows.

Corollary 3. Let $M_{t}, t \in(-\infty, 0]$, be a convex ancient solution of mean curvature flow in \mathbb{R}^{n+1} with $H>0$. Suppose that there exists a sequence $t_{j} \rightarrow-\infty$ such that the rescaled hypersurfaces $\left(-t_{j}\right)^{-\frac{1}{2}} M_{t_{j}}$ converge in $C_{\mathrm{loc}}^{\infty}$ to a cylinder $S^{n-k} \times \mathbb{R}^{k}$ with multiplicity 1 , where $k \in\{0,1, \ldots, n-1\}$. Then there exists a constant $\Lambda(n)$ such that

$$
\Lambda(n) H(x, t)|x-y|^{2}-\langle x-y, \nu(x, t)\rangle \geq 0
$$

for all $t \in(-\infty, 0]$, all $x \in M_{t}$, and all $y \in M_{t}$.

In [5], X.-J. Wang considered ancient solutions to mean curvature flow that can be expressed as level sets $M_{t}=\{u=-t\}$, where u is a convex function which is defined on the entire space \mathbb{R}^{n+1} and satisfies

$$
\sum_{i, j=1}^{n+1}\left(\delta_{i j}-\frac{D_{i} u D_{j} u}{|\nabla u|^{2}}\right) D_{i} D_{j} u=1 .
$$

Wang showed that such ancient solutions admit a blow-down limit which is a cylinder $S^{n-k} \times \mathbb{R}^{k}$ with multiplicity 1 , where $k \in\{0,1, \ldots, n-1\}$ (see [5], Theorem 1.3). By Corollary 3, such an ancient solution must be noncollapsed.

2. Proof of Theorem 1

By scaling, it suffices to prove the assertion for $r=1$. Let us fix a radius $R \geq \sqrt{1+3 n}$. Moreover, we fix a positive real number Λ. Let M_{t}, $t \in[-1,0]$, be an embedded solution of mean curvature flow in the ball $B_{3 R}(0)$ satisfying $R^{-1} \leq \Lambda H$ and $|A| \leq \Lambda H$ for all $t \in[-1,0]$ and all $x \in M_{t} \cap B_{\sqrt{1+3 n}}(0)$. Moreover, we assume that

$$
\frac{1}{2} \Lambda H(x,-1)|x-y|^{2}-\langle x-y, \nu(x,-1)\rangle \geq 0
$$

for all $x \in M_{-1} \cap B_{\sqrt{1+3 n}}(0)$ and all $y \in M_{-1} \cap B_{3 R}(0)$.
We define a function φ by

$$
\varphi(x, t):=(2 \Lambda)^{-\frac{1}{4}}(1+3 n)^{-1}\left(1-|x|^{2}-3 n t\right)
$$

for all $t \in[-1,0]$ and all $x \in M_{t} \cap B_{\sqrt{1-3 n t}}(0)$. Moreover, we define

$$
\Phi(x, t):=\varphi(x, t)^{-4} H(x, t)
$$

for all $t \in[-1,0]$ and all $x \in M_{t} \cap B_{\sqrt{1-3 n t}}(0)$. In the following, let $\lambda_{1} \leq$ $\ldots \leq \lambda_{n}$ denote the eigenvalues of the second fundamental form.

Lemma 4. We have $\Phi \geq 2 \Lambda H$ for all $t \in[-1,0]$ and all $x \in M_{t} \cap$ $B_{\sqrt{1-3 n t}}(0)$. Moreover, the eigenvalues of the second fundamental form satisfy $\left|\lambda_{i}\right| \leq \frac{\Phi}{2}$ for all $t \in[-1,0]$ and all $x \in M_{t} \cap B_{\sqrt{1-3 n t}}(0)$.

Proof. By definition, $\varphi \leq(2 \Lambda)^{-\frac{1}{4}}$ and $\Phi \geq 2 \Lambda H$ for all $t \in[-1,0]$ and all $x \in M_{t} \cap B_{\sqrt{1-3 n t}}(0)$. This proves the first statement.

To prove the second statement, we observe that $|A| \leq \Lambda H \leq \frac{\Phi}{2}$ for all $t \in[-1,0]$ and all $x \in M_{t} \cap B_{\sqrt{1-3 n t}}(0)$. This completes the proof of Lemma 4.

Lemma 5. The function φ satisfies

$$
\frac{\partial \varphi}{\partial t}-\Delta \varphi<0
$$

for all $t \in[-1,0]$ and all $x \in M_{t} \cap B_{\sqrt{1-3 n t}}(0)$.

Proof. We compute

$$
\frac{\partial \varphi}{\partial t}-\Delta \varphi=-(2 \Lambda)^{-\frac{1}{4}}(1+3 n)^{-1} n<0
$$

for all $t \in[-1,0]$ and all $x \in M_{t} \cap B_{\sqrt{1-3 n t}}(0)$.

Lemma 6. The function Φ satisfies

$$
\frac{\partial \Phi}{\partial t}-\Delta \Phi-|A|^{2} \Phi+2 \sum_{i=1}^{n} \frac{\left(D_{i} \Phi\right)^{2}}{\Phi-\lambda_{i}}>0
$$

for all $t \in[-1,0]$ and all $x \in M_{t} \cap B_{\sqrt{1-3 n t}}(0)$.
Proof. Using Lemma 5, we obtain

$$
\begin{aligned}
\frac{\partial \Phi}{\partial t}-\Delta \Phi & =\varphi^{-4}\left(\frac{\partial H}{\partial t}-\Delta H\right)-4 \varphi^{-5} H\left(\frac{\partial \varphi}{\partial t}-\Delta \varphi\right) \\
& -\frac{4}{3} \varphi^{-4} H\left|\frac{\nabla H}{H}-4 \frac{\nabla \varphi}{\varphi}\right|^{2}+\frac{4}{3} \varphi^{-4} H\left|\frac{\nabla H}{H}-\frac{\nabla \varphi}{\varphi}\right|^{2} \\
& >|A|^{2} \varphi^{-4} H-\frac{4}{3} \varphi^{-4} H\left|\frac{\nabla H}{H}-4 \frac{\nabla \varphi}{\varphi}\right|^{2} \\
& =|A|^{2} \Phi-\frac{4}{3} \frac{|\nabla \Phi|^{2}}{\Phi}
\end{aligned}
$$

for all $t \in[-1,0]$ and all $x \in M_{t} \cap B_{\sqrt{1-3 n t}}(0)$. Moreover, it follows from Lemma 4 that $\frac{\Phi}{2} \leq \Phi-\lambda_{i} \leq \frac{3 \Phi}{2}$ for all $t \in[-1,0]$ and all $x \in M_{t} \cap B_{\sqrt{1-3 n t}}(0)$. Consequently,

$$
\frac{\partial \Phi}{\partial t}-\Delta \Phi>|A|^{2} \Phi-\frac{4}{3} \frac{|\nabla \Phi|^{2}}{\Phi} \geq|A|^{2} \Phi-2 \sum_{i=1}^{n} \frac{\left(D_{i} \Phi\right)^{2}}{\Phi-\lambda_{i}}
$$

for all $t \in[-1,0]$ and all $x \in M_{t} \cap B_{\sqrt{1-3 n t}}(0)$. This completes the proof of Lemma 6.

We next define

$$
Z(x, y, t):=\frac{1}{2} \Phi(x, t)|x-y|^{2}-\langle x-y, \nu(x, t)\rangle
$$

for $t \in[-1,0], x \in M_{t}$, and $y \in M_{t}$.
Lemma 7. We have $Z(x, y, t) \geq 0$ for all $t \in[-1,0]$, all $x \in M_{t} \cap$ $B_{\sqrt{1-3 n t}}(0)$, and all $y \in M_{t} \cap B_{3 R}(0)$.

Proof. Suppose that the assertion is false. Let J denote the set of all times $t \in[-1,0]$ with the property that we can find a point $x \in M_{t} \cap$ $B_{\sqrt{1-3 n t}}(0)$ and a point $y \in M_{t} \cap B_{3 R}(0)$ such that $Z(x, y, t)<0$. Moreover, we define $\bar{t}:=\inf J$.

By definition, $Z(x, y, t) \geq 0$ for all $t \in[-1, \bar{t})$, all $x \in M_{t} \cap B_{\sqrt{1-3 n t}}(0)$, and all $y \in M_{t} \cap B_{3 R}(0)$. Moreover, we can find a sequence of times $t_{j} \in J$
such that $t_{j} \rightarrow \bar{t}$. For each j, we can find a point $x_{j} \in M_{t_{j}} \cap B_{\sqrt{1-3 n t_{j}}}(0)$ and a point $y_{j} \in M_{t_{j}} \cap B_{3 R}(0)$ such that $Z\left(x_{j}, y_{j}, t_{j}\right)<0$. Clearly, $x_{j} \neq y_{j}$, and

$$
\frac{2\left\langle x_{j}-y_{j}, \nu\left(x_{j}, t_{j}\right)\right\rangle}{\left|x_{j}-y_{j}\right|^{2}}>\Phi\left(x_{j}, t_{j}\right) .
$$

Using the Cauchy-Schwarz inequality, we obtain

$$
\frac{2}{\left|x_{j}-y_{j}\right|}>\Phi\left(x_{j}, t_{j}\right) \geq 2 \Lambda H\left(x_{j}, t_{j}\right) \geq 2 R^{-1} .
$$

In other words, $\left|x_{j}-y_{j}\right| \leq R$. After passing to a subsequence, the points x_{j} converge to a point $\bar{x} \in M_{\bar{t}}$ satisfying $|\bar{x}| \leq \sqrt{1-3 n \bar{t}}$. Moreover, the points y_{j} converge to a point $\bar{y} \in M_{\bar{t}}$ satisfying $|\bar{x}-\bar{y}| \leq R$. In particular, $|\bar{y}| \leq \sqrt{1+3 n}+R \leq 2 R$.

If $|\bar{x}|=\sqrt{1-3 n \bar{t}}$ and $\bar{x} \neq \bar{y}$, then

$$
\frac{2\langle\bar{x}-\bar{y}, \nu(\bar{x}, \bar{t})\rangle}{|\bar{x}-\bar{y}|^{2}}=\underset{j \rightarrow \infty}{\limsup } \frac{2\left\langle x_{j}-y_{j}, \nu\left(x_{j}, t_{j}\right)\right\rangle}{\left|x_{j}-y_{j}\right|^{2}} \geq \limsup _{j \rightarrow \infty} \Phi\left(x_{j}, t_{j}\right)=\infty,
$$

which is impossible.
If $|\bar{x}|=\sqrt{1-3 n \bar{t}}$ and $\bar{x}=\bar{y}$, then

$$
\lambda_{n}(\bar{x}, \bar{t}) \geq \limsup _{j \rightarrow \infty} \frac{2\left\langle x_{j}-y_{j}, \nu\left(x_{j}, t_{j}\right)\right\rangle}{\left|x_{j}-y_{j}\right|^{2}} \geq \limsup _{j \rightarrow \infty} \Phi\left(x_{j}, t_{j}\right)=\infty,
$$

which is impossible.
If $|\bar{x}|<\sqrt{1-3 n t}$ and $\bar{x}=\bar{y}$, then

$$
\lambda_{n}(\bar{x}, \bar{t}) \geq \limsup _{j \rightarrow \infty} \frac{2\left\langle x_{j}-y_{j}, \nu\left(x_{j}, t_{j}\right)\right\rangle}{\left|x_{j}-y_{j}\right|^{2}} \geq \limsup _{j \rightarrow \infty} \Phi\left(x_{j}, t_{j}\right)=\Phi(\bar{x}, \bar{t}),
$$

which contradicts Lemma 4.
Therefore, we must have $|\bar{x}|<\sqrt{1-3 n \bar{t}}$ and $\bar{x} \neq \bar{y}$. Moreover,

$$
\frac{2\langle\bar{x}-\bar{y}, \nu(\bar{x}, \bar{t})\rangle}{|\bar{x}-\bar{y}|^{2}}=\limsup _{j \rightarrow \infty} \frac{2\left\langle x_{j}-y_{j}, \nu\left(x_{j}, t_{j}\right)\right\rangle}{\left|x_{j}-y_{j}\right|^{2}} \geq \limsup _{j \rightarrow \infty} \Phi\left(x_{j}, t_{j}\right) \geq \Phi(\bar{x}, \bar{t}) .
$$

We claim that $\bar{t} \in(-1,0]$. Indeed, if $\bar{t}=-1$, then our assumption implies

$$
\frac{2\langle\bar{x}-\bar{y}, \nu(\bar{x}, \bar{t})\rangle}{|\bar{x}-\bar{y}|^{2}} \leq \Lambda H(\bar{x}, \bar{t})<\Phi(\bar{x}, \bar{t}),
$$

which is impossible. Consequently, $\bar{t} \in(-1,0]$.
To summarize, we have shown that $\bar{t} \in(-1,0], Z(\bar{x}, \bar{y}, \bar{t}) \leq 0$, and $Z(x, y, t) \geq 0$ for all $t \in[-1, \bar{t})$, all $x \in M_{t} \cap B_{\sqrt{1-3 n t}}(0)$, and all $y \in$ $M_{t} \cap B_{3 R}(0)$. Arguing as in the proof of Proposition 2.3 in [2], we conclude that

$$
\frac{\partial \Phi}{\partial t}-\Delta \Phi-|A|^{2} \Phi+2 \sum_{i=1}^{n} \frac{\left(D_{i} \Phi\right)^{2}}{\Phi-\lambda_{i}} \leq 0
$$

at the point (\bar{x}, \bar{t}). This contradicts Lemma 6. This completes the proof of Lemma 7.

We now complete the proof of Theorem 1. By definition, $\varphi(x, t) \geq$ $(2 \Lambda)^{-\frac{1}{4}}(2+6 n)^{-1}$ and $\Phi(x, t) \leq 2 \Lambda(2+6 n)^{4} H(x, t)$ for all $t \in[-1,0]$ and all $x \in M_{t} \cap B_{\frac{1}{2}}(0)$. Using Lemma 7 , we conclude that

$$
\Lambda(2+6 n)^{4} H(x, t)|x-y|^{2}-\langle x-y, \nu(x, t)\rangle \geq Z(x, y, t) \geq 0
$$

for all $t \in[-1,0]$, all $x \in M_{t} \cap B_{\frac{1}{2}}(0)$, and all $y \in M_{t} \cap B_{3 R}(0)$. This completes the proof of Theorem 1.

References

[1] B. Andrews, Noncollapsing in mean-convex mean curvature flow, Geom. Topol. 16 (2012), 1413-1418.
[2] S. Brendle, A sharp bound for the inscribed radius under mean curvature flow, Invent. Math. 202 (2015), 217-237.
[3] K. Ecker and G. Huisken, Interior estimates for hypersurfaces moving by mean curvature, Invent. Math. 105 (1991), 547-569.
[4] W. Sheng and X.-J. Wang, Singularity profile in the mean curvature flow, Methods Appl. Anal. 16 (2009), 139-155.
[5] X.-J. Wang Convex solutions to the mean curvature flow, Ann. of Math. (2) $\mathbf{1 7 3}$ (2011), 1185-1239.
[6] B. White, The size of the singular set in the mean curvature flow of mean convex sets, J. Amer. Math. Soc. 13 (2000), 665-695.
[7] B. White, The nature of singularities in mean curvature flow of mean convex sets, J. Amer. Math. Soc. 16 (2003), 123-138.

Department of Mathematics, Columbia University, New York NY 10027
Department of Mathematics, Columbia University, New York NY 10027

[^0]: The first author was supported by the National Science Foundation under grant DMS1806190 and by the Simons Foundation.

