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Abstract. Assuming the weak Bombieri-Lang conjecture, we prove that a
generalization of Hilbert’s irreducibility theorem holds for families of geomet-
rically mordellic varieties (for instance, families of hyperbolic curves). As an
application we prove that, assuming Bombieri-Lang, there are no polynomial
bijections Q× Q → Q, completing a strategy originally suggested by T. Tao.

Serre reformulated Hilbert’s irreducibility theorem as follows [Ser97, Chapter 9].

Theorem (Hilbert’s irreducibility, Serre’s form). Let X be a scheme of finite type
over a field k finitely generated over Q and U ⊆ P1 a non-empty open subset. If
f : X → U is a generically finite morphism with no generic sections Spec k(P1) → X,
then X(k) → U(k) is not surjective.

Recall that a variety X over a field k is geometrically mordellic, or GeM, if every
subvariety of Xk̄ is of general type. For instance, a subvariety of a product of curves
of genus at least 2 is GeM. The geometric Lang conjecture predicts that every
variety of general type contains an open subset which is GeM. Let us generalize
GeM varieties by defining a scheme X as geometrically mordellic, or GeM, if it is of
finite type over k and every subvariety of Xk̄ is of general type.

Recall that the weak Bombieri-Lang conjecture states that, if X is a positive
dimensional variety of general type over a field k finitely generated over Q, then X(k)
is not dense in X. If X is a GeM scheme and the weak Bombieri-Lang conjecture
holds, then X(k) is finite, since its Zariski closure cannot have positive dimension.

Assuming Bombieri-Lang, we prove that Hilbert’s irreducibility theorem general-
izes to morphisms with GeM fibers.

Theorem A. Let X be a scheme of finite type over a field k finitely generated over
Q and U ⊆ P1 a non-empty open subset. Let f : X → U be a morphism with GeM
fibers and no generic sections Spec k(P1) → X.

Assume either that the weak Bombieri-Lang conjecture holds over k in every
dimension, or that it holds up to dimension equal to dimX and that there exists an
N such that |Xv(k)| ≤ N for every rational point v ∈ U(k). Then X(k) → U(k) is
not surjective.

Theorem A has an application to Grothendieck’s section conjecture, see [Bre23].
Theorem A uses the weak Bombieri-Lang conjecture for a field k finitely generated
over Q: if we assume the geometric Lang conjecture, it is actually enough to know
the conjecture over Q, see [Bre22]. In the particular case in which X is an open
subset of an abelian variety, P. Corvaja and U. Zannier have proved the statement
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of Theorem A unconditionally [CZ18, Theorem 3.47], and without the assumption
that the generic fiber is GeM.

It is natural to ask whether it is possible to strengthen Theorem A and prove that
f(X(k)) ⊂ P1(k) is thin in the sense of Serre. The following is a crucial ingredient
of our proof: if S ⊂ P1(k) is thin, for a generic finite map c : P1 → P1 the inverse
image c−1(S) is thin as well, see Lemma 2.2. If one could show that non-thin sets
satify a similar property, then it would be possible to modify our proof and obtain
that f(X(k)) is thin. We do not know whether non-thin sets satisfy such a property.

The proof of Theorem A relies on two unconditional geometric results we prove,
let us briefly discuss them. First, in Corollary 1.12 we prove that if f : X → P1 is a
morphism of smooth projective varieties whose generic fiber is of general type and X
is not birational to a product F × P1, then there exists an injective homomorphism
OP1(1) → f∗ω

m
f for some m > 0. Kollár and Viehweg proved this in the case

in which two generic fibers are not birational one to another, we complete the
analysis by treating the isotrivial case. Second, in Proposition 1.13 we prove that
for f : X → P1 as above X is of general type if and only if there exists an injective
homomorphism OP1(1) → f∗ω

m
X for some m > 0, or equivalently an injective

homomorphism OP1(2m+1) → f∗ω
m
f . Half of the paper is devoted to proving these

geometric results.
As an application of Theorem A we give a conditional answer to a long-standing

Mathoverflow question [ZH11] which asks whether there exists a polynomial bijection
Q×Q → Q.

Theorem B. Assume that the weak Bombieri-Lang conjecture for surfaces holds,
and let k be a field finitely generated over Q. There are no polynomial bijections
k × k → k.

We remark that B. Poonen has proved that, assuming the weak Bombieri-Lang
conjecture for surfaces, there are polynomials giving injective maps Q×Q → Q, see
[Poo10].

In 2019, T. Tao suggested on his blog [Tao19] a strategy to try to solve the
problem of polynomial bijections Q×Q → Q conditional on Bombieri-Lang, let us
summarize it. Given a morphism A2 → A1 and a cover c : A1 99K A1, denote by Pc

the pullback of A2. If Pc is of general type, by Bombieri-Lang Pc(Q) is not dense in
Pc and hence by Hilbert irreducibility a generic section A1 99K Pc exists. If Pc is
of general type for "many" covers c, one might expect this to force the existence a
generic section A1 99K A2, which would be in contradiction with the injectivity of
A2(Q) → A1(Q).

The strategy had some gaps, though. There were no results showing that the
pullback Pc is of general type for "many" covers c, and it was not clear how this
would force a generic section of A2 → A1. Tao started a so-called "polymath project"
in order to crowdsource a formalization. The project was active for roughly one
week in the comments section of the blog but did not reach a conclusion. Partial
progress was made, we cite the two most important contributions. W. Sawin showed
that A2(Q) → A1(Q) cannot be bijective if the generic fiber has genus 0 or 1. H.
Pasten showed that, for some morphisms A2 → A1 with generic fiber of genus at
least 2, the base change of A2 along the cover z2 − b : A1 → A1 is of general type
for a generic b.

Theorem A is far more general than Theorem B, but it is possible to extract
from the proof of the former the minimal arguments needed in order to prove the
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latter. These minimal arguments are a formalization of the ideas described above,
hence as far as Theorem B is concerned we have essentially filled in the gaps in
Tao’s strategy.

Acknowledgements. I would like to thank Hélène Esnault for reading an earlier
draft of the paper and giving me a lot of valuable feedback, and Daniel Loughran for
bringing to my attention the problem of polynomial bijections Q×Q → Q. Finally,
I would like to thank an anonymous referee for providing a lot of valuable comments.

Conventions. A variety over k is a geometrically integral scheme of finite type
over k. A smooth, projective variety is of general type if its Kodaira dimension is
equal to its dimension: in particular, a point is a variety of general type.

We say that a variety is of general type if it is birational to a smooth, projective
variety of general type. More generally, we define the Kodaira dimension of any
variety X as the Kodaira dimension of any smooth projective variety birational to
X.

Curves are assumed to be smooth, projective and geometrically connected. Given
a variety X (resp. a scheme of finite type X) and C a curve, a morphism X → C
is a family of varieties of general type (resp. of GeM schemes) if a generic fiber is
a variety of general type (resp. a GeM scheme). Given a morphism f : X → C, a
generic section of f is a morphism s : Spec k(C) → X (equivalently, a rational map
s : C 99K X) such that f ◦ s is the natural morphism Spec k(C) → C (equivalently,
the identity C 99K C).

1. The Kodaira dimension of a family of varieties of general type

This section is of purely geometric nature, thus we may assume that k is al-
gebraically closed of characteristic 0 for simplicity. The results then descend to
non-algebraically closed fields with standard arguments.

Given a family f : X → P1 of varieties of general type and c : P1 → P1 a finite
covering, let fc : Xc → P1 be the fiber product and, by abuse of notation, c : Xc → X
the base change of c. The goal of this section is to obtain sufficient conditions on c
such that Xc is of general type. This goal will be reached in Corollary 1.15, which
contains all the geometry we need for arithmetic applications.

Let us say that X → P1 is birationally trivial if there exists a birational morphism
X 99K F × P1 which commutes with the projection to P1. If f is birationally trivial,
then clearly our goal is unreachable, since Xc will have Kodaira dimension −∞ no
matter which cover c : P1 → P1 we choose. We will show that this is in fact the only
exception.

Assume that X is smooth and projective (we can always reduce to this case),
then the relative dualizing sheaf ωf exists [Kle80, Corollary 24]. First, we show that
for every non-birationally trivial family there exists an integer m such that f∗ωm

f

has some positivity 1.12. Second, we show that if f∗ωm
f has enough positivity, then

X is of general type 1.13. We then pass from "some" to "enough" positivity by
base changing along a cover c : P1 → P1.

1.1. Positivity of f∗ωm
f for non-trivial families. There are two cases: either

there exists some finite cover c : C → P1 such that Xd → C is birationally trivial,
or not. Let us say that f : X → P1 is birationally isotrivial in the first case, and
non-birationally isotrivial in the second case.
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The non-birationally isotrivial case has been extensively studied by Viehweg and
Kollár, we do not need to do any additional work.

Proposition 1.1 (Kollár, Viehweg [Kol87, Theorem p.363]). Let f : X → P1 be
a non-birationally isotrivial family of varieties of general type, with X smooth and
projective. There exists an m > 0 such that, in the decomposition of f∗ωm

f in a
direct sum of line bundles, each factor has positive degree. □

We are thus left with studying the positivity of f∗ωm
f in the birationally isotrivial,

non-birationally trivial case. We’ll have to deal with various equivalent birational
models of families, not always smooth, so let us first compare their relative pluri-
canonical sheaves.

1.1.1. Morphisms of pluricanonical sheaves. In this subsection, fix a base scheme S.
If a morphism to S is given, it is tacitly assumed to be flat, locally projective, finitely
presentable, with Cohen-Macauley equidimensional fibers of dimension n. For such
a morphism f : X → S, the relative dualizing sheaf ωf exists and is coherent, see
[Kle80, Theorem 21]. Recall that ωf satisfies the functorial isomorphism

f∗HomX(F, ωf ⊗X f∗N) ≃ HomS(R
nf∗F,N)

for every quasi-coherent sheaf F on X and every quasi-coherent sheaf N on S. Write
ω⊗m
f for the m-th tensor power, we may drop the superscript _⊗ and just write
ωm
f if ωf is a line bundle.
Every flat, projective map f : X → S of smooth varieties over k satisfies the above,

see [Kle80, Corollary 24], and in this case we can compute ωf as ωX ⊗ f∗ω−1
S , where

ωX and ωS are the usual canonical bundles. Moreover, the relative dualizing sheaf
behaves well under base change along morphisms S′ → S, see [Kle80, Proposition
9.iii].

Given a morphism g : Y → X over S and a quasi-coherent sheaf F over Y ,
then Rnf∗(g∗F ) is the En,0

2 term of the Grothendieck spectral sequence (Rpf∗ ◦
Rqg∗)(F ) ⇒ Rp+q(f ◦ g)∗(F ), thus there is a natural morphism Rnf∗(g∗F ) →
Rn(fg)∗F . This induces a natural map

HomY (F, ωfg) = HomS(R
n(fg)∗F,OS) → HomS(R

nf∗(g∗F ),OS) = HomX(g∗F, ωf ).

Definition 1.2. If g : Y → X is a morphism over S, define g△,f : g∗(ωfg) → ωf as
the sheaf homomorphism induced by the identity of ωfg via the homomorphism

HomY (ωfg, ωfg) → HomX(g∗ωfg, ωf )

given above for F = ωfg. With an abuse of notation, call g△,f the induced sheaf
homomorphism g∗(ω

⊗m
fg ) → ω⊗m

f for every m ≥ 0. If there is no risk of confusion,
we may drop the subscript _f and just write g△.

The following facts are formal consequences of the definition of g△, we omit
proofs.

Lemma 1.3. Let g : Y → X be a morphism over S and s : S′ → S any morphism,
f ′ : X ′ → S′, g′ : Y ′ → X ′ the pullbacks to S′. By abuse of notation, call s the
morphisms Y ′ → Y , X ′ → X, too. Then

g′△ = g△|X′ ∈ HomX′(g′∗ωf ′g′ , ωf ′) = HomX′(s∗g∗ωfg, s
∗ωf ). □
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Lemma 1.4. For every quasi-coherent sheaf F on Y , the natural map

HomY (F, ωfg) → HomX(g∗F, ωf )

constructed above is given by

φ 7→ g△ ◦ g∗φ : g∗F → g∗ωfg → ωf . □

Corollary 1.5. Let h : Z → Y , g : Y → X be morphisms over S. Then, for every
m ≥ 0,

g△ ◦ g∗h△ = (gh)△ : gh∗ω
⊗m
fgh → g∗ω

⊗m
fg → ω⊗m

f . □

Corollary 1.6. Let g : Y → X be a morphism over S. Suppose that a group H
acts on Y,X, S and g, f are H-equivariant. Then g∗ω

⊗m
fg , ω⊗m

f are H-equivariant
sheaves and g△ : g∗ω

⊗m
fg → ω⊗m

f is H-equivariant. □

Lemma 1.7. Let g : Y → X be a morphism over S. Assume that Y,X are smooth
varieties over a field k, and that g is birational. Then g△ is an isomorphism.

Proof. We have ωf = ωX ⊗ f∗ω−1
S and ωfg = ωY ⊗ (fg)∗ω−1

S . Moreover, ωY =
g∗ωX ⊗OY (R) where R is some effective divisor whose irreducible components are
contracted by g, hence ωfg = g∗ωf ⊗OY (R). Since g∗OY (mR) ≃ OX , we have a
natural isomorphism g∗(ω

m
fg) ≃ ωm

f by projection formula. This can be checked to
correspond to g△, which is then an isomorphism. □

1.1.2. Birationally isotrivial families. Let C be a smooth projective curve and
f : X → C a birationally isotrivial family of varieties of general type, and let F/k
be a smooth projective variety such that the generic fiber of f is birational to F .

Since the family is birationally isotrivial, there exists a ramified Galois cover
φ : C ′ → C with Galois group Γ and a rational map ψ : F × C ′ 99K X such that
the induced map F × C ′ 99K XC′ is birational. Denote by H the finite group of
birational automorphisms of F .

Lemma 1.8. For every g ∈ Γ and generic p, q ∈ C ′, we have

ψ−1
p ◦ ψg(p) = ψ−1

q ◦ ψg(q) ∈ H.

Proof. Denote by ψg the composition ψ ◦ (idF , g) : F × C ′ → F × C ′ 99K X, it
satisfies

ψg,p = ψg(p) : F 99K Xφ(p).

Consider the composition

π ◦ ψ−1
g,C′ ◦ ψC′ : F × C ′ 99K XC′ 99K F × C ′ → F,

it is sufficient to prove that this rational map is the composition of the projection
F × C ′ → F and a birational automorphism of F . Let us show that this is true for
any rational map τ : F × C ′ 99K F which is birational on the generic fibers.

Up to a birational transformation, we may assume that H acts with isomorphisms
on F . For a generic point x ∈ F , all the points h(x) for h ∈ H are different, and

the composition C ′ (x,id)−−−→ F ×C ′ 99K F is well defined. By construction, the image
of this composition is contained in the set {h(x)}h∈H , because for a generic c ∈ C ′

the restriction τc is an element of h. Since the set {h(x)}h∈H is finite, then the

composition C ′ (x,id)−−−→ F × C ′ 99K F is constantly equal to h0(x) for some h0 ∈ H.
Since h(x) ̸= h′(x) for h ̸= h′, it follows that the restriction of τ to a generic fiber
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is equal to h0, and hence the rational map F × C ′ 99K F is the composition of the
projection to F with h0. □

Corollary 1.9. The map Γ → H defined by g 7→ ψ−1
p ◦ ψg−1(p) for generic p is a

homomorphism.

Proof. First, the map is well-defined thanks to Lemma 1.8. To check that it is a
homomorphism, it is sufficient to prove that

ψ−1
c ◦ ψg′−1(c) = ψ−1

g−1(c) ◦ ψg′−1(g−1(c)),

and this follows again from Lemma 1.8. □

Let Γ′ ⊂ Γ be the kernel of the homomorphism Γ → H; notice that it coincides
with the subgroup of elements g ∈ Γ such that ψ ◦ (idF , g) = ψ. Write Bf = C ′/Γ′

and Gf = Γ/Γ′; by descent, we get a rational map F × Bf 99K X such that
F ×Bf 99K XBf

is birational, and an injective homomorphism Gf ↪→ H. Denote
by fb the base change XBf

→ Bf of f .
Since the homomorphism Gf → H has the form given in the statement of Corol-

lary 1.9 (we may repeat everything after replacing C ′ with Bf ), it is straightforward
to check that the rational map F ×Bf 99K X is Gf -invariant with respect to the
diagonal action of Gf on F ×Bf ; it follows that X is birational to (F ×Bf )/Gf .

Definition 1.10. We callBf → C andGf the monodromy cover and the monodromy
group of f respectively.

It is possible to characterize Bf (and thus Gf ) by the following universal property,
so that Bf does not depend on the choice of C ′: ifD is a smooth projective curve with
a finite morphism D → C, then XD → D is birationally trivial if and only if there
exists a factorization D → Bf → C. However, we do not need this characterization
nor the unicity of the monodromy cover, so we do not prove it.

Proposition 1.11. Let f : X → C be a birationally isotrivial family of varieties
of general type, with X smooth and projective. If p ∈ Bf is a ramification point of
the monodromy cover b : Bf → C, then for some m there exists an injective sheaf
homomorphism OBf

(p) → fb∗ω
m
fb

.

Proof. The statement is equivalent to the existence of a non-trivial section of ωm
fb

which vanishes on the fiber Xb,p. Let F be as above, Gf acts faithfully with
birational maps on F . By equivariant resolution of singularities, we may assume
that Gf acts faithfully by isomorphisms on F . We have that X is birational to
(F ×Bf )/Gf where Gf acts diagonally.

By resolution of singularities, let X ′ be a smooth projective variety with birational
morphisms X ′ → X, X ′ → (F × Bf )/Gf : thanks to Lemma 1.7 we may replace
X with X ′ and assume we have a birational morphism X → (F × Bf )/Gf . By
equivariant resolution of singularities again, we may find a smooth projective variety
Y with an action of Gf , a birational morphism g : Y → Xb and a birational,
Gf -equivariant morphism y : Y → F ×Bf . Call π : F ×Bf → Bf the projection.
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Y Xb X

F ×Bf (F ×Bf )/Gf

Bf C

y

g b

π
b

πy
fb

Recall that we are trying to find a global section of ωm
fb

that vanishes on Xb,p,
where p is a ramification point of b. Thanks to Lemma 1.7, we have that πy∗ωm

πy ≃
π∗ω

m
π ≃ OBf

⊗H0(F, ωm
F ), thus H0(Y, ωm

πy) = H0(F, ωm
F ) = H0(Yp, ω

m
Yp
).

The sheaf homomorphism g△ = g△,fb : g∗ω
m
πy → ωm

fb
induces a linear map

g△(p) : H
0(Yp, ω

m
Yp
) = H0(Y, ωm

πy)
g△−−→ H0(Xb, ω

m
fb
)

•|p−−→ H0(Xb,p, ω
m
Xb,p

)

where the last map is the restriction to the fiber. Let V ⊆ Bf be the étale locus of
b : Bf → C. Since Xb|V is smooth, then g△ restricts to an isomorphism on Xb|V
thanks to Lemma 1.7 and thus the map H0(Y, ωm

πy) → H0(Xb, ω
m
fb
) is injective.

We want to show that the restriction map H0(Xb, ω
m
fb
) → H0(Xb,p, ω

m
Xb,p

) is not
injective for some m, it is enough to show that g△(p) is not injective. Thanks to
Lemma 1.3, we have that g△(p) = gp,△ : H0(Yp, ω

m
Yp
) → H0(Xb,p, ω

m
Xb,p

).
Recall now that Gf acts on Y . Let Gf,p be the stabilizer of p ∈ Bf , it is a

non-trivial group since p is a ramification point. Thanks to Corollary 1.6, the
stabilizer Gf,p acts naturally on H0(Yp, ω

m
Yp
), H0(F, ωm

F ), H0(Xb,p, ω
m
Xb,p

), and the
maps yp,△ : H0(Yp, ω

m
Yp
) ≃ H0(F, ωm

F ), gp,△ : H0(Yp, ω
m
Yp
) → H0(Xb,p, ω

m
Xb,p

) are
Gf,p-equivariant. Moreover, the action on H0(Xb,p, ω

m
Xb,p

) is trivial since the action
on Xb,p is trivial. It follows that g△(p) is Gf,p-invariant, and hence to show that
it is not injective for some m it is enough to show that the action of Gf,p on
H0(F, ωm

F )) = H0(Yp, ω
m
Yp
) is not trivial for some m.

Since F is of general type, F 99K P(H0(F, ωm
F )) is generically injective for some m,

fix such an integer m. Since the action of Gf,p on F is faithful, for every non-trivial
g ∈ Gf,p there exists a section s ∈ H0(F, ωm

F ) and a point v ∈ F such that s(v) = 0

and s(g(v)) ̸= 0, in particular the action of Gf,p on H0(F, ωm
F ) is not trivial and we

conclude. □

Corollary 1.12. Let f : X → P1 be a non-birationally trivial family of varieties of
general type, with X smooth and projective. Then there exists an m > 0 with an
injective homomorphism OP1(1) → f∗ω

m
f .

Proof. If f is not birationally isotrivial, apply Proposition 1.1. Otherwise, f is
birationally isotrivial and not birationally trivial, thus the monodromy cover b :
Bf → P1 is not trivial. Since P1 has no non-trivial étale covers, we have that
Bf → P1 has at least one ramification point p. Let m be the integer given by
Proposition 1.11, and write f∗ω

m
f =

⊕
i OP1(di). Since OBf

(p) ⊆ fb∗ω
m
fb

and
ωfb = b∗ωf , see [Kle80, Proposition 9.iii], there exists an i with di > 0. □

1.2. Pulling families to maximal Kodaira dimension. Now that we have
established a positivity result for f∗ωm

f of any non-birationally trivial family f :
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X → P1, let us use this to pull families to maximal Kodaira dimension. First, we
characterize which families have maximal Kodaira dimension in terms of f∗ωm

f .

Proposition 1.13. Let f : X → P1 be a family of varieties of general type, with
X smooth and projective. Then X is of general type if and only if there exists an
injective homomorphism OP1(1) → f∗ω

m0

X , or equivalently OP1(2m0 + 1) → f∗ω
m0

f ,
for some m0 > 0.

Proof. By resolution of singularities, there exists a birational morphism g : X ′ → X
with X ′ smooth and projective such that the generic fiber of X ′ → P1 is smooth and
projective. We have ωX′ = g∗ωX ⊗OX′(R) where R is some effective divisor whose
irreducible components are contracted by g, hence g∗ωm

X′ = ωm
X ⊗ g∗O(mR) = ωm

X

for every m ≥ 0. We may thus replace X with X ′ and assume that the generic fiber
is smooth. This guarantees that rank f∗ω

m
X = rank f∗ω

m
f has growth O(mdimX−1).

If there are no injective homomorphisms OP1(1) → f∗ω
m
X for every m > 0, then

h0(ωm
X ) ≤ rank f∗ω

m
X = rank f∗ω

m
f , and this has growth O(mdimX−1).

On the other hand, let OP1(1) → f∗ω
m0

X be an injective homomorphism for some
m0 > 0. In particular, X has Kodaira dimension ≥ 0.

For some m, the closure Y of the image of X 99K P(H0(X,ωmm0

X )) has dimension
equal to the Kodaira dimension of X and k(Y ) is algebraically closed in k(X), see
[Iit71, §3]. If X ′ is a smooth projective variety birational to X, then there is a
natural isomorphism H0(X,ωmm0

X ) = H0(X ′, ωmm0

X′ ), see [Har77, Ch. 2, Theorem
8.19]. Thus, up to replacing X with some other smooth, projective variety birational
to X, we may assume that X 99K Y ⊆ P(H0(X,ωmm0

X )) is defined everywhere and
has smooth, projective generic fiber Z by resolution of singularities. Iitaka has then
shown that Z has Kodaira dimension 0, see [Iit71, Theorem 5]. This is easy to see
in the case in which ωmm0

X is base point free, since then ωmm0

X is the pullback of
O(1) and thus ωmm0

Z = ωmm0

X |Z is trivial.
Let us recall briefly Grothendieck’s convention that, if V is a vector bundle,

then P(V ) is the set (or scheme) of linear quotients V → k up to a scalar. A
non-trivial linear map W → V thus induces a rational map P(V ) 99K P(W ) by
restriction. If L is a line bundle with non-trivial global sections, the rational map
X 99K P(H0(X,L)) is defined by sending a point x ∈ X outside the base locus to
the quotient H0(X,L) → Lx ≃ k. If L embeds in another line bundle M , then there
is a natural factorization X 99K P(H0(X,M)) 99K P(H0(X,L)), and any point of X
outside the support of M/L and outside the base locus of L maps to the locus of
definition of P(H0(X,M)) 99K P(H0(X,L)).

Let F ⊆ X be the fiber over any rational point of P1. The injective homomor-
phism OP1(1) → f∗ω

m0

X induces an injective homomorphism OP1(m) → f∗ω
mm0

X ,
choose any embedding OP1(1) → OP1(m), these induce an injective homomorphism
OX(F ) → ωmm0

X . Since OX(F ) induces the morphism f : X → P1, the composition

X → Y ⊆ P(H0(X,ωmm0

X )) 99K P1

coincides with f . Observe that the right arrow depends on the choice of the
embedding OX(F ) → ωmm0

X , but the composition does not.
Let ξ be the generic point of P1, U ⊆ Y an open subset such that U → P1 is

defined, Yξ the closure of Uξ in Y . Then the generic fiber Z of X → Y is the generic
fiber of Xξ → Yξ, too. By hypothesis, Xξ is of general type, thus by adjunction
ωXξ

|Z = ωZ is big and hence Z is of general type.
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Since Z is a variety of general type of Kodaira dimension 0 over Spec k(Y ), then
Z = Spec k(Y ), the morphism X → Y is generically injective and thus X is of
general type. □

Remark 1.14. We do not need the precision of Proposition 1.13: for our purposes
it is enough to show that, if f∗ωm0

X has a positive enough sub-line bundle for some
m0, then X is of general type. This weaker fact has a more direct proof, let us
sketch it.

First, let us mention an elementary fact about injective sheaf homomorphisms.
Let P,Q be vector bundles on P1 and M,N vector bundles on X, with P of
rank 1. Suppose we are given injective homomorphisms m ∈ Hom(P, f∗M), n ∈
Hom(Q, f∗N). Then ma ⊗ n ∈ Hom(P⊗a ⊗Q, f∗(M

⊗a ⊗N)) is injective for every
a > 0: this can be checked on the generic point of P1 and thus on the generic fiber
Xk(P1), where the fact that P has rank 1 allows us to reduce to the fact that the
tensor product of non-zero sections of vector bundles is non-zero on an integral
scheme.

Assume we have an injective homomorphism OP1(3m0) → f∗ω
m0

X , or equivalently
OP1(5m0) → f∗ω

m0

f , we want to prove that X is of general type. Let r(m) be the
rank f∗ωmm0

f for every m. Since the generic fiber is of general type, up to replacing
m0 by a multiple m′

0 we may assume that the growth of r(m) is O(mdimX−1). The
induced morphism OP1(5m′

0) → f∗ω
m′

0

f is injective thanks to the above.
Thanks to [Vie83, Theorem III], every line bundle in the factorization of f∗ωmm0

f

has non-negative degree, we may thus choose an injective homomorphism Or(m)
P1 →

f∗ω
mm0

f . Taking the tensor product with the m-th power of the homomorphism
given by hypothesis, we get an homomorphism OP1(5mm0)

r(m) → f∗ω
2mm0

f which
is injective thanks to the above.

Since f∗ω2mm0

X = f∗ω
2mm0

f ⊗OP1(−4mm0), we thus have an injective homomor-
phism

OP1(mm0)
r(m) → f∗ω

2mm0

X .

In particular, we have h0(ω2mm0

X ) ≥ (mm0+1)r(m) which has growth O(mn), hence
X is of general type.

Corollary 1.15. Let f : X → P1 be a non-birationally trivial family of varieties of
general type. Then there exists an integer d0 and a non-empty open subset U ⊆ P1

such that, for every finite cover c : P1 → P1 with deg c ≥ d0 and such that the branch
points of c are contained in U , we have that Xc is of general type. If X is smooth
and projective, U can be chosen as the largest open subset such that f |XU

is smooth.

Proof. By resolution of singularities, we may assume thatX is smooth and projective.
By generic smoothness, there exists an open subset U ⊆ P1 be such that f |XU

is
smooth. We have that Xc is smooth for every c : P1 → P1 whose branch points are
contained in U since each point of Xc is smooth either over X or over P1.

Let m0 be the integer given by Corollary 1.12, we have an injective homomorphism
O(1) → f∗ω

m0

f . Set d0 = 2m0 + 1, for every finite cover c of degree deg c ≥ d0 =

2m0 + 1 we have an induced homomorphism O(2m0 + 1) → fc∗ω
m0

fc
and thus

O(1) → fc∗ω
m0

Xc
. It follows that Xc is of general type thanks to Proposition 1.13. □



10 GIULIO BRESCIANI

2. Higher dimensional HIT

Recall that Serre [Ser97, Chapter 9] defined a subset S of P1(k) as thin if there
exists a morphism f : X → P1 with X of finite type over k, finite generic fiber
and no generic sections Spec k(P1) → X such that S ⊆ f(X(k)). It is immediate
to check that a subset of a thin set is thin, and a finite union of thin sets is thin.
Serre’s form of Hilbert’s irreducibility theorem says that, if k is finitely generated
over Q, then P1(k) is not thin.

Definition 2.1. A subset S ⊆ P1(k) is fat if the complement P1(k) \ S is thin.
Given a subset S ⊆ P1(k), a finite set of finite morphisms D = {di : Di → P1}i

each of degree > 1 with Di smooth, projective and geometrically connected is a
scale for S if S ∪

⋃
i di(Di(k)) = P1(k). The set of branch points of the scale D is

the union of the sets of branch points of di.

Using the fact that a connected scheme with a rational point is geometrically
connected [Sta24, Lemma 04KV], it is immediate to check that a subset of P1 is
fat if and only if it has a scale. The set of branch points of a scale gives valuable
information about a fat set.

Lemma 2.2. Let S ⊆ P1 be a fat set, and let D = {di : Di → P1}i be a scale for S.
Let c : P1 → P1 be a morphism such that the sets of branch points of c and D are
disjoint. Then c−1(S) is fat.

Proof. Let d′i : D′
i → P1 be the base change of di along c : P1 → P1. By construction,

c−1(S)∪
⋃

i d
′
i(D

′
i(k)) = P1(k). Since the sets of branch points of c and di are disjoint,

we have that D′
i is geometrically connected, see for instance [Str21, Lemma 2.8].

Moreover, D′
i is smooth since each point of D′

i is étale either over P1 or Di. It
follows that d′i has degree > 1 and {d′i : D′

i → P1}i is a scale for c−1(S), which is
thus fat. □

We will spend the rest of the section proving Theorem A.

2.1. Decreasing the fiber dimension. Assuming Bombieri-Lang and using
Hilbert’s irreducibility, it is easy to check that Theorem A is equivalent to the
following statement.

If the fibers of f : X → P1 are GeM and f(X(k)) is fat, there exists a section
Spec k(P1) → X.

We prove this statement by induction on the dimension of the generic fiber. If
the generic fiber has dimension 0, this follows from the definition of fat set. Let us
prove the inductive step.

We define recursively a sequence of closed subschemes Xi+1 ⊆ Xi with X0 = X
and such that f(Xi(k)) ⊆ P1

k is fat.
• Define X ′

i as the closure of Xi(k) with the reduced scheme structure,
f(X ′

i(k)) = f(Xi(k)) ⊆ P1
k is fat.

• Define X ′′
i as the union of the irreducible components of X ′

i which dominate
P1, f(X ′′

i (k)) ⊆ P1
k is fat since f(X ′

i(k)) \ f(X ′′
i (k)) is finite.

• Write X ′′
i =

⋃
j Yi,j as union of irreducible components, Yi,j → P1 is

dominant for every j. Let Ci,j → P1 be the smooth projective curve corre-
sponding to the algebraic closure of k(P1) in k(Yi,j), we have a factorization

https://stacks.math.columbia.edu/tag/04KV
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Yi,j 99K Ci,j → P1 such that Yi,j 99K Ci,j has geometrically irreducible
generic fiber. If Ci,j → P1 is an isomorphism, define Zi,j = Yi,j . Otherwise,
there exists a non-empty open subset Vi,j ⊆ Yi,j such that Yi,j 99K Ci,j is de-
fined on Vi,j . In particular, f(Vi,j(k)) ⊆ P1(k) is thin. Define Zi,j = Yi,j\Vi,j
and Xi+1 =

⋃
j Zi,j ⊆ Xi. By construction, f(Xi+1(k)) ⊆ P1(k) is fat since

f(X ′′
i (k)) \ f(Xi+1(k)) is thin.

Since X is Noetherian, the sequence is eventually stable, let r be such that
Xr+1 = Xr. Since Xr+1 = Xr, then Xr(k) is dense in Xr, thus every irreducible
component is geometrically irreducible, see [Sta24, Lemma 0G69]. Moreover, every
irreducible component of Xr dominates P1 with geometrically irreducible generic
fiber. Replace X with Xr and write X =

⋃
j Yj as union of irreducible components,

we may assume that Yj → P1 is a family of GeM varieties for every j and Yj(k) is
dense in Yj .

If Yj → P1 is birationally trivial for some j, since Yj(k) is dense in Yj and a
generic fiber of Yj → P1 has a finite number of rational points, then dimYj = 1,
Yj → P1 is birational and we conclude. Otherwise, thanks to Corollary 1.15, there
exists an integer d0 and a non-empty open subset U ⊆ P1 such that, for every finite
cover c : P1 → P1 with deg c ≥ d0 such that the branch points of c are contained in
U , we have that Yj,c is of general type for every j.

Let D = {dl : Dl → P1} be a scale for f(X(k)). Up to shrinking U furthermore,
we may assume that the set of branch points of D is disjoint from U . Since we are
assuming that the weak Bombieri-Lang conjecture holds up to dimension dimX, the
dimension of Yj,c(k) ⊆ Yj,c is strictly smaller than dimYj for every j. Moreover, we
have that fc(Xc(k)) = m−1

c (f(X(k))) is fat thanks to Lemma 2.2. It follows that,
by induction hypothesis, there exists a generic section Spec k(P1) → Xc for every
finite cover c as above. There are a lot of such covers: let us show that we can choose
them so that the resulting sections "glue" to a generic section Spec k(P1) → X.

2.2. Gluing sections. Choose coordinates on P1 so that 0,∞ ∈ U , let p be any
prime number greater than d0. For any positive integer n, let mn : P1 → P1 be
the n-th power map. We have shown above that there exists a rational section
P1 99K Xmp

for every prime p ≥ d0, call sp : P1 99K Xmp
→ X the composition.

We either assume that there exists an integer N such that, for every rational
point v ∈ P1(k), we have |Xv(k)| ≤ N or that the Bombieri-Lang conjecture holds
in every dimension. In the second case, the uniform bound N exists thanks to a
theorem of Caporaso-Harris-Mazur and Abramovich-Voloch [CHM97, Theorem 1.1]
[AV96, Theorem 1.5] [Abr97]. Choose N +1 prime numbers p0, . . . , pN greater than
d0, for each one we have a rational map

X

P1 P1

f

mp

sp

https://stacks.math.columbia.edu/tag/0G69
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Let Q =
∏N

i=0 pi, for every i = 0, . . . , N , we get a rational section Spi
by

composition with spi :

X

P1 P1 P1

f

mQ/pi

Spi

mQ

mpi

spi

Let V ⊆ P1 be an open subset such that Spi is defined on V for every i. For
every rational point v ∈ V (k), we have |Xv(k)| ≤ N and thus there exists a couple
of different indexes i ≠ j such that Spi

(v) = Spj
(v) for infinitely many v ∈ V (k),

hence Spi
= Spj

. Let Z ⊆ X be the image Spi
= Spj

, by construction we have

k(P1) = k(t) ⊆ k(Z) ⊆ k(t−pi) ∩ k(t−pj ) ⊆ k(t−Q).

Using Galois theory on the cyclic extension k(t−Q)/k(t), it is immediate to check
that k(t−pi) ∩ k(t−pj ) = k(t) ⊆ k(t−Q) since pi, pj are coprime, thus k(Z) = k(t)
and Z → P1 is birational. This concludes the proof of Theorem A.

2.3. Non-rational base. For future reference, we give a version of Theorem A over
non-rational curves. This follows directly from Theorem A using Weil’s restriction
of scalars.

Theorem 2.3. Assume that the weak Bombieri-Lang conjecture holds in every
dimension. Let k be finitely generated over Q, and let f : X → C be a morphism with
X any scheme of finite type over k and C a geometrically connected curve. Assume
that the fibers are GeM and that there are no generic sections Spec k(C) → X.
There exists a finite extension h/k such that X(h) → C(h) is not surjective.

Proof. Assume that X(h) → C(h) is surjective for every finite extension h/k, we
want to prove that there exists a generic section C 99K X. It’s easy to reduce to the
case in which C is smooth and projective, so let us make this assumption.

Observe that, up to replacing X with an affine covering, we may assume that
X is affine. Choose C → P1 any finite map: since X is affine, the Weil restriction
RC/P1(X) → P1 exists [BLR90, §7.6, Theorem 4]. Recall that RC/P1(X) → P1

represents the functor on P1-schemes S 7→ HomC(S ×P1 C,X).
If L/k(C)/k(P1) is a Galois closure and Σ is the set of embeddings σ : k(C) → L as

k(P1) extensions, the schemeRC/P1(X)L is isomorphic to the product
∏

ΣX×Spec k(C),σ

SpecL and hence is a GeM scheme, see [Wei82, Theorem 1.3.2]. It follows that the
generic fiber RC/P1(X)k(P1) is a GeM scheme, too.

Let U ⊆ P1 be the image of V ⊆ C. The fact that X|V (h) → V (h) is surjective
for every finite extension h/k implies that RC/P1(X)|U (k) → U(k) is surjective. By
Theorem A, we get a generic section P1 99K RC/P1(X), which in turn induces generic
section C 99K X by the universal property of RC/P1(X). □

3. Polynomial bijections Q×Q → Q

Finally, let us prove Theorem B using Theorem A.
Let f : A2 → A1 be any morphism. Assume by contradiction that f is bijective

on rational points.
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First, let us show that the generic fiber of f is geometrically irreducible. This is
equivalent to saying that Spec k(A2) is geometrically connected over Spec k(A1), or
that k(A1) is algebraically closed in k(A2). Let k(A1) ⊆ L ⊆ k(A2) a subextension
algebraic over k(A1). Let C → A1 be a finite cover with C regular and k(C) = L.
The rational map A2 99K C is defined in codimension 1, thus there exists a finite
subset S ⊆ A2 and an extension A2 \ S → C. Since the composition A2 \ S(k) →
C(k) → A1(k) is surjective up to a finite number of points, by Hilbert’s irreducibility
theorem we have that C = A1, i.e. L = k(A1).

This leaves us with three cases: the generic fiber is a geometrically irreducible
curve of geometric genus 0, 1, or ≥ 2. The first two have been settled by W. Sawin
in the polymath project [Tao19], while the third follows from Theorem A. Let us
give details for all of them.

Genus 0. Assume that the generic fiber of f has genus 0. By generic smoothness,
there exists an open subset U ⊆ A2 such that f |U is smooth. For a generic
rational point u ∈ U(k), the fiber f−1(f(u)) is birational to a Brauer-Severi variety
of dimension 1 and has a smooth rational point, thus it is birational to P1 and
f−1(f(u))(k) is infinite. This is a contradiction.

Genus 1. Assume now that the generic fiber has genus 1. By resolution of
singularities, there exists an open subset V ⊆ A1, a variety X with a smooth
projective morphism g : X → V whose fibers are smooth genus 1 curves and a
compatible birational map X 99K A2. Let U be a variety with open embeddings
U ⊆ X, U ⊆ A2, replace V with g(U) ⊆ V so that g|U is surjective.

The morphism X \ U → V is finite, let N be an upper bound for the degree of
its fibers. Since the fibers of U → V have at most one rational point, it follows that
|Xv(k)| ≤ N + 1 for every v ∈ V (k).

Every smooth genus 1 fibration is a torsor for a relative elliptic curve (namely, its
relative Pic0), thus there exists an elliptic curve E → V such that X is an E-torsor.
Moreover, every torsor for an abelian variety is torsion, thus there exists a finite
morphism π : X → E over V induced by the n-multiplication map E → E for some
n.

If v ∈ V (k) is such that Xv(k) is non-empty, then |Xv(k)| = |Ev(k)| ≤ N + 1.
This means that, up to composing π with the (N + 1)! multiplication E → E, we
may assume that π(X(k)) ⊆ V (k) ⊆ E(k), where V → E is the identity section. In
particular, X(k) ⊆ π−1(V (k)) is not dense. This gives a contradiction, since X is
birational to A2.

Genus ≥ 2. Thanks to Theorem A, there exists an open subset V ⊆ A1 and a
section s : V → A2. It follows that A2|V (k) = s(V (k)), which gives a contradiction
since s(V ) is a proper closed subset and A2|V (k) is dense. This concludes the proof
of Theorem B.
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