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Abstract. LetG be a representation-theoretic Kac–Moody group
associated to a nonsingular symmetrizable generalized Cartan ma-
trix. We first consider Kac-Moody analogs of Borel Eisenstein
series (induced from quasicharacters on the Borel), and prove they
converge almost everywhere inside the Tits cone for arbitrary spec-
tral parameters in the Godement range. We then use this result to
show the full absolute convergence everywhere inside the Tits cone
(again for spectral parameters in the Godement range) for a class
of Kac–Moody groups satisfying a certain combinatorial property,
in particular for rank-2 hyperbolic groups.

1. Introduction

The fundamental theory of Eisenstein series on reductive groups has
played pivotal roles in the formulation of Langlands’ functoriality con-
jecture [La1, La2], and in the study of L–functions by means of the
Langlands–Shahidi method (e.g., [KimSh, Kim]).

The extension of the theory of Eisenstein series to Kac–Moody groups
is of great interest, due to its conjectural roles in some of the central
problems in number theory, such as establishing important analytic
properties of L-functions [BFH, Sh]. Recently, Eisenstein series on ex-
ceptional Lie groups have been shown to occur explicitly as coefficients
of correction terms in certain maximally supersymmetric string theories
[GRV, GMRV, GMV]. Conjectural Eisenstein series on Kac–Moody
groups appear in recent developments in string theory [FK, FKP]. All
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of these potential applications require a proof of convergence (and in
some cases, analytic continuation) of Kac-Moody Eisenstein series.

In his papers [G04, G06, GMS1, GMS2, GMS3, GMS4], Garland ex-
tended the classical theory of Eisenstein series to arithmetic quotients
GZ\GR/K of affine Kac–Moody groups G. In particular, he established
absolute convergence for spectral parameters in a Godement range, and
then proved a meromorphic continuation beyond it. Absolute conver-
gence has been generalized to affine Kac–Moody groups over number
fields by Liu [Li]. Garland, Miller, and Patnaik [GMP] showed that
affine Eisenstein series induced from cusp forms over Q are entire func-
tions of the spectral parameter. It should be mentioned that earlier
results were established in the function field setting by [BK]; related
results also appear in [Ka, LL, P].

Beyond the affine case, Carbone, Lee, and Liu [CLL] studied Eisen-
stein series on the rank 2 hyperbolic Kac–Moody groups with sym-
metric generalized Cartan matrices, and established almost-everywhere
convergence of the series. However, they could not obtain everywhere
convergence as the method in the affine case does not generalize directly
to the hyperbolic case.

Borel Eisenstein series

In this paper we consider the problem of establishing the absolute
convergence of Eisenstein series on arbitrary Kac-Moody groups, for
spectral parameters λ in the traditionally-studied Godement range (i.e.,
Re(λ − ρ) is strictly dominant). We indeed establish their almost-
everywhere convergence in this generality, and additionally show the
absolute convergence for a wide class of groups.

More precisely, letG be a representation-theoretic Kac–Moody group,
and let g be the corresponding real Kac–Moody algebra with a fixed
Cartan subalgebra h. We assume that g is infinite-dimensional and
non-affine, since the finite-dimensional and affine cases have been well-
studied. Let r = dim(h) denote the rank ofG, I the index set {1, . . . , r},
and Φ+ (resp., Φ−) the positive (resp., negative) roots of gC. Then GR
has the Iwasawa decomposition GR = UA+K, where U is a maximal
pro-unipotent subgroup, A+ is the connected component of a maximal
torus, and K is a subgroup of G playing the role of the maximal com-
pact subgroup from the finite-dimensional theory. (See Section 2 for
more details.)



ON THE CONVERGENCE OF KAC–MOODY EISENSTEIN SERIES 3

We formally define the Borel Kac–Moody Eisenstein series Eλ(g) for
g ∈ GR and λ ∈ h∗C by

(1.1) Eλ(g) =
∑

γ∈(Γ∩B)\Γ

a(γg)λ+ρ ,

where a(g) is the A+–component of the Iwasawa decomposition of g, ρ
is the Weyl vector, Γ = GZ is the arithmetic subgroup defined at the
end of Section 2, and B ⊃ NA+ is a Borel subgroup. The goal of this
paper is to study the convergence and analyticity of this formal sum.
Our main result can be stated as follows:

Theorem 1.1. Assume that λ ∈ h∗C satisfies Re(⟨λ, α∨
i ⟩) > 1 for each

simple coroot α∨
i , i ∈ I, and that Property 4.2 holds. Then the Kac–

Moody Eisenstein series Eλ(g) converges absolutely for g ∈ ΓUACK,
where AC ⊂ A+ is the image of the Tits cone C under the exponential
map exp : h → A+.

The condition on λ is precisely the Godement range, and appears in
the classical theory [La2]. Property 4.2 and hence the conclusions of
Theorem 1.1 hold for all G of rank 2 (Proposition 4.4), as well when the
Cartan matrix is symmetric and has sufficiently large entries (Propo-
sition 4.3). However, Property 4.2 is not true for all Kac–Moody root
systems – it even fails in the finite-dimensional Example 4.5.

Though a Godement condition is very natural on the spectral param-
eter, it is not clear what the full range of absolute convergence of Eλ(g)
is in the variable g. Theorem 1.1 adopts a Tits cone constraint, one
which naturally occurs in the literature when studying simpler sums,
e.g., in the Lemma of Looijenga [Lo] (see also [K, §10.6]) quoted in
Lemma 3.2, which corresponds to g in the set UACK. The extension
to the domain ΓUACK – which Proposition 4.10 shows is in fact larger
– comes from the Γ-invariance in (1.1).

In order to prove Theorem 1.1 we consider the constant term E♯
λ(g)

of the series Eλ(g), which is computed by the Gindikin–Karpelevich
formula, and establish its absolute convergence in Theorem 3.3. This is
achieved by using Looijenga’s Lemma and the observation thatM ℓ(w)c(λ,w)
is bounded for any fixed M > 0, as w varies over the Weyl group W .
Here the function c(λ,w) is the product of ratios of the Riemann ζ-
function defined in (3.2). Unlike Theorem 1.1, which assumes Prop-
erty 4.2, Theorem 3.3 and its almost-everywhere convergence Corol-
lary 3.4 hold for all symmetrizable G.
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In Section 4 we show that the Kac–Moody Eisenstein series Eλ(g) is
dominated by a sum over the Weyl group W , which is a close variant
of the constant term E♯

λ(g). Having proved the convergence of E♯
λ(g)

in Theorem 3.3, we use some consequences of Property 4.2 to establish
Theorem 1.1.

Remark: Though Theorem 1.1 is stated only for Borel Eisenstein
series, its conclusions (with modifications just as in the classical finite-
dimensional setting) hold for cuspidally induced Eisenstein series as
well, at least for parabolics with finite-dimensional Levi components.
This is because cusp forms on finite-dimensional semisimple groups are
bounded, hence bounded above by certain Borel Eisenstein series on
the Levi component. A parabolic Eisenstein series for G induced from
such an Eisenstein series is itself a Borel Eisenstein series for G, hence
Theorem 1.1 implies a corresponding convergence statement for Eisen-
stein series induced from cusp forms. See [Bo, Proposition 12.6], [MW,
Proposition II.1.5], and [G11, §3], where this argument is carried out
in more detail in simpler settings. For the same reason, the weaker
statements Theorem 3.3 and Corollary 3.4 also transfer to results for
almost-everywhere convergence for cuspidally-induced Eisenstein se-
ries.

We expect Kac–Moody Eisenstein series to provide interesting ap-
plications. In analogy with SL2(Z), the group E10(Z) is conjectured
to be the discrete invariance group for certain functions that arise in
11-dimensional supersymmetric string theory [DKN, Ga]. Automor-
phic forms on E10 and E11 are conjectured to encode higher derivative
corrections in string theory and M–theory [DN, DHH+, FGKP, W].

Eisenstein series on Kac–Moody groupsGR are invariant under trans-
lations by GZ and hence have Fourier expansions. In [CLL], the authors
defined and calculated the degenerate Fourier coefficients for Eisenstein
series on rank 2 hyperbolic Kac–Moody groups over R. Fleig [Fl] gave
the Fourier integrals needed to obtain the constant term and higher
order Fourier modes for Eisenstein series on E9, E10, and E11, and
showed how the string scattering amplitude “collapse mechanism” of
[FK] extends to the higher order Fourier modes. He also gave explicit
expressions for the constant terms and Fourier modes of some Kac–
Moody Eisenstein series. However, these calculations tacitly assume
absolute convergence (and in some cases, meromorphic continuation)
of the Kac–Moody Eisenstein series, which has yet to be accomplished
for E10 and E11; Theorem 1.1 does not cover these cases because of its
restrictive assumption of Property 4.2.
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2. Kac–Moody groups

Let I = {1, 2, . . . , r}, A = (aij)i,j∈I be an r × r symmetrizable gen-
eralized Cartan matrix, and (h,∆,∆∨) be a realization of A, where
∆ = {α1, ..., αr} ⊂ h∗ and ∆∨ = {α∨

1 , ..., α
∨
r } ⊂ h are the set of simple

roots and set of simple coroots, respectively (see [K, §1] for definitions).

Throughout this paper we shall make the simplifying assumption
that A is nonsingular, which means that h and h∗ are spanned by the
simple roots αi and simple coroots α∨

i , respectively. In particular we
intentionally exclude the affine case, which has been studied extensively
in Garland’s works and in [GMP] (and which has a somewhat different
flavor anyhow).

Recall that ⟨αj, α
∨
i ⟩ = aij for i, j ∈ I, where ⟨·, ·⟩ is the natural

pairing between h∗ and h. Denote the fundamental weights by ϖi ∈ h∗,
i ∈ I, which form the basis of h∗ dual to the α∨

i . Their integral span is
the weight lattice P .

Let gC = gC(A) be the Kac–Moody algebra associated to (h,∆,∆∨).
We denote by Φ the set of roots of gC and have Φ = Φ+⊔Φ−, where Φ+

(resp. Φ−) is the set of positive (resp. negative) roots corresponding
to the choice of ∆. Let wi := wαi

denote the simple Weyl reflection
associated to the simple root αi; the wi for i ∈ I generate the Weyl
group W of gC. A root α ∈ Φ is called a real root if there exists w ∈ W
such that wα is a simple root. A root α which is not real is called
imaginary. For each real root α written as wαi for some w ∈ W and
i ∈ I, its associated coroot is well-defined by the formula α∨ = wα∨

i

[Ku, 1.3.8].

For i ∈ I let ei and fi be the Chevalley generators of gC; we denote
by g the real Lie subalgebra they generate, so that gC = g⊗RC. Let UC
be the universal enveloping algebra of gC. Let Λ ⊆ h∗ be the integral
linear span of the simple roots αi, i ∈ I, and let Λ∨ ⊆ h be the integral
span of the simple coroots α∨

i , i ∈ I. Let UZ ⊆ UC be the Z–subalgebra
generated by

emi
m!

,
fm
i

m!
, and

(
h
m

)
=

h(h− 1) · · · (h−m+ 1)

m!



6 L. CARBONE, H. GARLAND, K.-H. LEE, D. LIU, AND S. D. MILLER

for i ∈ I, h ∈ Λ∨, and m ≥ 0 (see [CG, §4]).

We will now review the representation theoretic Kac–Moody groups
GF associated to g and a field F . The paper [CG] provides an explicit
construction for arbitrary fields F , and we shall presently review the
construction for the fields Q, R, and Qp. Keeping this in mind, we
assume F ⊃ Q.

Let (π, V ) denote the unique irreducible highest weight module for
g corresponding to a choice of some dominant integral weight, and let
v ∈ V be a nonzero highest weight vector. We set

VZ = UZ · v .
Then VZ is a UZ–module contained in VF = F ⊗Z VZ. Since V is
integrable, ei and fi are locally nilpotent on V and VZ. It follows that
they are locally nilpotent on VF and hence elements of End(VF ). Thus
for s, t ∈ F and i ∈ I, their exponentials

uαi
(s) = exp(π(sei))

and u−αi
(t) = exp(π(tfi))

are actually locally finite sums (meaning their action on any fixed vector
is given by a finite sum), and thus define elements of Aut(VF ).

For t ∈ F× and i ∈ I we set

wαi
(t) = uαi

(t)u−αi
(−t−1)uαi

(t)

and define
hαi

(t) = wαi
(t)wαi

(1)−1.

Each simple root αj defines a character on {hαi
(t)|t ∈ F×} by

(2.1) hαi
(t)αj = t⟨αj ,α

∨
i ⟩.

The subgroup ⟨wαi
(1) : i ∈ I⟩ of Aut(VF ) g contains a full set of Weyl

group representatives. For a real root α we let uα(s), s ∈ F , denote a
choice of corresponding one-parameter subgroup, chosen so that

(2.2) uα(s) = wuαi
(±s)w−1 ∈ Aut(VF ) (s ∈ F )

for w = wβ1(1) · · ·wβℓ
(1) and α = wβ1 · · ·wβℓ

αi, for some i ∈ I, where
β1, . . . , βℓ ∈ ∆.

We let

G0
F = ⟨uαi

(s), u−αi
(t) : s, t ∈ F, i ∈ I⟩ ⊂ Aut(VF ).

Choose a coherently ordered basis (see [CG, §5]) Ψ = {v1, v2, . . . } of
VZ, and denote by B0

F the subgroup of G0
F consisting of elements which

act upper-triangularly with respect to Ψ. For t ∈ Z>0, we let Ut be the
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span of the vs ∈ Ψ for s ≤ t. Then B0
FUt ⊆ Ut for each t. Let Bt be

the image of B0
F in Aut(Ut). We then have surjective homomorphisms

πtt′ : Bt′ −→ Bt, t′ ≥ t,

which we use to defineBF as the projective limit of the projective family
{Bt, πtt′}. When the field F is unspecified, B is to be interpreted as
BR.

We define a topology on G0
F by decreeing that a base of open neigh-

borhoods of the identity is given by the sets

Vt = {g ∈ G0
F : gvi = vi, i = 1, 2, . . . , t}.

Let GF be the completion of G0
F with respect to this topology. (See

[CLL] for more details.) If R ⊃ Z is a subring of F , the subgroup GR ⊂
GF is defined as the stabilizer of VZ ⊗Z R in GF . For future reference,
we define the following subgroups of GF which play an important role
in the rest of the paper:

• AF = ⟨hαi
(s) : s ∈ F×, i ∈ I⟩; and

• UF ⊂ BF is defined exactly as BF , but with the additional stip-
ulation that elements act unipotently upper triangularly with
respect to Ψ. It contains all subgroups parameterized by the
uα(·), where α ∈ Φ+ is a real root. Then BF = UFAF = AFUF .
When no subscript is given, U is to be interpreted as UR.

Additionally, the following subgroups are specific to the situation F =
R:

• K is the subgroup of GR generated by all exp(t(ei − fi)), t ∈ R
and i ∈ I [KP]; and

• A+ = ⟨hαi
(s) : s ∈ R>0, i ∈ I⟩. In fact, (R>0)

r can be identified
with A+ via the isomorphism (x1, . . . , xr) 7→ hα1(x1) · · ·hαr(xr),
under which A+ has the Haar measure da corresponding to∏r

i=1
dxi

xi
.

Theorem 2.1 ([DGH]). We have the Iwasawa decomposition

(2.3) GR = UA+K,

with uniqueness of expression.

We let u(g), a(g), and k(g) denote the projections from GR onto each
of the respective factors in (2.3). We define the discrete group Γ = GZ
as GR ∩ Aut(VZ) = {γ ∈ GR : γ · VZ = VZ}. As in [G04], it can be
shown that (Γ ∩ U)\U is the projective limit of a projective family of
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finite-dimensional compact nil-manifolds and thus admits a projective
limit measure du, a right U -invariant probability measure.

3. Convergence of the constant term

Using the identification of A+ with (R>0)
r, each element of h∗ gives

rise to a quasicharacter of A+ by (2.1) and linearity. Let λ ∈ h∗ and
let ρ ∈ h∗ be the Weyl vector, which is characterized by ⟨ρ, α∨

i ⟩ = 1,
i ∈ I. We set

(3.1)
Φλ : GR → C×

Φλ : g 7→ a(g)λ+ρ,

which is well-defined by the uniqueness of the Iwasawa decomposition.
Clearly, Φλ is left U -invariant and right K-invariant.

Let B and Γ be as defined in Section 2. Define the Eisenstein series
on GR to be the infinite formal sum

Eλ(g) =
∑

γ∈(Γ∩B)\Γ

Φλ(γg).

Assume first that λ is a real linear combination of the αi, i ∈ I, so that
Φλ > 0. Then we may interpret the infinite sum Eλ(g) as a function
taking values in (0,∞]. Moreover, the function Eλ may be regarded as
a function on

(Γ ∩ U)\GR/K ∼= (Γ ∩ U)\U × A+

by the Iwasawa decomposition (2.3). We define for all g ∈ GR the
so-called “upper triangular” constant term1

E♯
λ(g) =

∫
(Γ∩U)\U

Eλ(ug)du,

which is left U -invariant and right K-invariant. In particular E♯
λ(g) is

determined by the A+-component a(g) of g in the Iwasawa decomposi-
tion. Applying the Gindikin–Karpelevich formula, a formal calculation
as in [G04] yields that
(3.2)

E♯
λ(g) =

∑
w∈W

a(g)wλ+ρc(λ,w) , with c(λ,w) =
∏
α∈Φw

ξ(⟨λ, α∨⟩)
ξ(1 + ⟨λ, α∨⟩)

,

where

(3.3) Φw = Φ+ ∩ w−1Φ−, w ∈ W,

1This is to be distinguished from the proposal in [BK] to consider constant terms
in uncompleted, or so-called “lower triangular”, parabolics.
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and ξ(s) is the completed Riemann ζ-function

ξ(s) = ΓR(s)ζ(s),

where ΓR(s) = π−s/2Γ(s/2). We shall often make use of the following
explicit parametrization of Φw, where w is written as a reduced word
(i.e., minimal length) w = wi1wi2 · · ·wiℓ in the generators {wi : i ∈ I}
of W :

(3.4) Φw = {αiℓ , wiℓαiℓ−1
, wiℓwiℓ−1

αiℓ−2
, . . . , wiℓ · · ·wi2αi1}

(see [Ku, Lemma 1.3.14]).

Returning to (3.2), we now state an elementary estimate on the
Riemann ζ-function from analytic number theory.

Lemma 3.1. One has

lim
σ→∞

max
t∈R

∣∣∣∣ ξ(σ + it)

ξ(σ + 1 + it)

∣∣∣∣ = 0.

Proof. It follows from the Euler product ζ(s) =
∏

p
1

1−p−s that

log ζ(s) = −
∑
p

log(1− p−s) =
∑
n≥2

cnn
−s,

where

cn =

{
1/k if n = pk for prime p,
0 otherwise.

In particular |cn| ≤ 1, hence

| log ζ(σ + it)| ≤
∑
n≥2

|cn|n−σ ≤
∑
n≥2

n−σ −→ 0, as σ → ∞,

e.g., by dominated convergence. Therefore lim
σ→∞

ζ(σ+ it) = 1 uniformly

in t ∈ R. On the other hand, it is easy to see from standard properties of
Γ-functions (or applying dominated convergence to the integral formula
(4.2)) that

lim
σ→∞

ΓR(σ + it)

ΓR(σ + it+ 1)
= 0,

again uniformly in t ∈ R. Thus the Lemma follows by multiplying
these two estimates. □

Let C ⊂ h be the open fundamental chamber

C = {x ∈ h : ⟨αi, x⟩ > 0, i ∈ I}.
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Let C denote the interior of the Tits cone ∪w∈W wC corresponding to
C [K, §3.12]. Using the exponential map exp : h → A+, set AC = exp C
and AC = expC. Let

(3.5) C∗ = {λ ∈ h∗ : ⟨λ, α∨
i ⟩ > 0, i ∈ I}.

Let K be a compact subset of C and µ ∈ P ∩ C∗. We define AK,µ(N)
to be the number of µ′ in the Weyl orbit W · {µ} whose maximum on
K is ≥ −N . We now recall a lemma due to Looijenga [Lo] (which is
contained in Lemma 3.2 and the beginning of the proof of Proposition
3.4 there – see also [K, §10.6]).

Lemma 3.2. We have AK,µ(N) = O(N r) as N → ∞. Furthermore,
for λ ∈ h∗C with Re(λ) ∈ C∗,

∑
w∈W awλ converges absolutely and uni-

formly for a in any fixed compact subset of AC.

We apply Lemma 3.1 and Lemma 3.2 to show the following conver-
gence result:

Theorem 3.3. If λ ∈ h∗C satisfies Re(λ − ρ) ∈ C∗, then E♯
λ(g) given

in (3.2) converges absolutely for g ∈ UACK, and in fact uniformly for
a(g) lying in any fixed compact subset of AC.

Proof. By applying absolute values, we may assume without loss of

generality that λ is real. Let S ≥ 1 be a constant such that
∣∣∣ ξ(s)
ξ(s+1)

∣∣∣ ≤ 1

when Re(s) > S, which exists by Lemma 3.1. Since ⟨λ, α∨
i ⟩ > 1 for all

i ∈ I, we see that ⟨λ, α∨⟩ > S for all but finitely many positive roots α.
Therefore c(λ,w) is bounded in w ∈ W , and the convergence follows
from that of

∑
w∈W awλ in Lemma 3.2. □

By applying Tonelli’s theorem as in [G04, §9], we obtain the following
result for arbitrary Kac–Moody groups.

Corollary 3.4. For λ ∈ h∗C with Re(λ − ρ) ∈ C∗ and any compact
subset S of AC, there exists a measure zero subset S0 of (Γ ∩ U)\US
such that the series Eλ(g) converges absolutely for g ∈ USK off the
set S0K.

For later use, we further strengthen Lemma 3.2 and prove that

Theorem 3.5. Assume that λ ∈ h∗C with Re(λ) ∈ C∗. Then for any
M > 0, ∑

w∈W

M ℓ(w)awλ

converges absolutely and uniformly for a in any fixed compact subset of
AC.
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Proof. We take advantage of the fact that the constraints on both λ
and a are preserved under small perturbations. Let s > 0 be sufficiently
small so that λ′ := λ− sρ ∈ C∗. Then

M ℓ(w)awλ = M ℓ(w)awsρ+wλ′ ≤ 1

2

(
M2ℓ(w)a2wsρ + a2wλ′

)
.

Since the convergence of
∑

w∈W a2wλ′
is handled by Lemma 3.2, it suf-

fices to prove the absolute and uniform convergence of∑
w∈W

M2ℓ(w)a2wsρ =
∑
w∈W

T ℓ(w)a2wsρ , T = M2 ,

for a in any fixed compact subset of AC, for any T, s > 0.

Using the fact that

(3.6) ρ− wρ =
∑

α∈Φw−1

α

is a sum of ℓ(w) positive roots (see (3.4) and [Ku, 1.3.22(3)]), we may
write

T ℓ(w)a2wsρ = a2sρ
∏

α∈Φw−1

Ta−2sα = a2sρ
∏

α∈Φw−1

(Ta−sα)a−sα .

We shall prove that asα > T for all but finitely many positive roots
α (in particular, those in Φw−1). Assuming this momentarily, the par-
enthetical term Ta−sα is bounded, and can only be greater than 1 for
finitely many positive roots α. Hence there exists a constant D > 0
depending continuously on a, s and T such that

T ℓ(w)a2wsρ ≤ Da2sρ
∏

α∈Φw−1

a−sα = Da2sρas(wρ−ρ) = Das(wρ+ρ) .

Hence ∑
w∈W

T ℓ(w)a2wsρ ≤ Dasρ
∑
w∈W

aw(sρ) ,

and the Theorem follows from a second application of Lemma 3.2.

Finally, we return to the claim that asα > T for all but finitely
many positive roots α. Let Hρ denote the unique element of h such
that ⟨αi, Hρ⟩ = ⟨ρ, α∨

i ⟩ = 1 for all i ∈ I (it exists by the assumed
nondegeneracy of the Cartan matrix). Since a is assumed to lie in the
open set AC, there exists some ε > 0 such that a = a1a2, with a1 also
an element of AC and a2 = eεHρ . Then

(3.7) asα = asα1 asα2 = asα1 eεs⟨α,Hρ⟩ .

Since a1 ∈ AC, the values of aα1 are at least 1 for all but finitely many
α [K, Prop. 3.12(c)]. At the same time, ⟨α,Hρ⟩ is the sum of the
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(nonnegative) coefficients of α when expanded as a linear combination
of simple roots, and thus tends to infinity as α varies. The claim now
follows from (3.7). □

4. Everywhere convergence of Eisenstein series

In the previous section we demonstrated the almost-everywhere ab-
solute convergence of Eisenstein series. In this section we will prove the
absolute convergence of the Eisenstein series on ΓUACK under Gode-
ment’s criterion on the spectral parameter λ, subject to a condition
(Property 4.2) on the root system of the Kac–Moody group. The key
idea is that the Eisenstein series can be nearly bounded by its constant
term.

We start with some calculations for the group SL(2,R). It follows
from direct computation that

(4.1) a

((
0 −1
1 u

))α

=

( 1√
1+u2 0

0
√
1 + u2

)α

=
1

1 + u2
,

where α is the positive simple root of the diagonal Cartan. Define

(4.2)
c∞(s) :=

∫
R
a

((
0 −1
1 u

))(s+1)α/2

du

=

∫
R
(1 + u2)−

s+1
2 du =

ΓR(s)

ΓR(s+ 1)
, Re(s) > 0.

Returning to the setting of a general Kac–Moody group GR, we shall
now assume that λ ∈ h∗C is actually real, i.e., λ ∈ h∗, since this entails
no loss of generality in considering absolute convergence. Recall the
notation uα(x) from (2.2).

Lemma 4.1. Assume that α is a positive simple root such that ⟨λ, α∨⟩ >
0 (equivalently, ⟨λ + ρ, α∨⟩ > 1). For any x ∈ R and g = uak ∈ GR,
with u ∈ U , a ∈ A+, and k ∈ K, we have∑

m∈Z

a(wαuα(x+m)g)λ+ρ ≤ awα(λ+ρ) (2 + aαc∞(⟨λ, α∨⟩)) .

In particular, for any ϵ > 0 there exists a constant M = Mϵ > 2 such
that

(4.3)
∑
m∈Z

a(wαuα(x+m)g)λ+ρ ≤ Mawα(λ+ρ)(1 + aα)

whenever ⟨λ, α∨⟩ ≥ ϵ, uniformly over x ∈ R.
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Proof. Factor u = uα(y)u
(α), where y ∈ R and u(α) lies in the unipo-

tent radical U (α) of the parabolic subgroup whose Levi component is
generated by A and the one parameter subgroups u±α(·). Then since
wαuα(x + m + y) lies inside this Levi, it normalizes U (α). Hence we
may write

a(wαuα(x+m)g) = a(wαuα(x+m+ y)u(α)ak)

= a(wαuα(x+m+ y)a) ,

since U (α) ⊂ U . As x is arbitrary and plays no role in the asserted upper
bounds, we may replace x by x− y so that we are instead considering
the sum
(4.4)∑

m∈Z

a(wαuα(x+m)a)λ+ρ = awα(λ+ρ)
∑
m∈Z

a(wαuα(a
−α(x+m)))λ+ρ.

Recalling (4.1), the sum (4.4) becomes

awα(λ+ρ)
∑
m∈Z

(1 + a−2α(x+m)2)−
1
2
⟨λ+ρ,α∨⟩.

Since ⟨λ+ρ, α∨⟩ = ⟨λ, α∨⟩+1, comparing the sum to its corresponding
integral gives the estimate∑

m∈Z

(1 + a−2α(x+m)2)−
s+1
2 ≤ 2 +

∫
R
(1 + a−2αx2)−

s+1
2 dx

= 2 + aα c∞(s) ,

for s = ⟨λ, α∨⟩ > 0. The second statement (4.3) forM = max(2, c∞(ϵ))
now follows from the bound of c∞(⟨λ, α∨⟩) ≤ c∞(ϵ). □

We wish to generalize (4.3) to arbitrary w ∈ W by induction on
ℓ(w), which is the most complicated part of the argument. For tech-
nical reasons we need to introduce the following property. Recall the
notation Φw = Φ+ ∩ w−1Φ− from (3.3)-(3.4).

Property 4.2. Every nontrivial w ∈ W can be written as w = vwβ,
where β is a positive simple root, ℓ(v) < ℓ(w), and α − β is never a
real root for any α ∈ Φv.

It is not hard to see (e.g., see [T, §3.2]) that Property 4.2 is unchanged
if the word “real” is omitted. This is because if α − β = α + wββ is
a (necessarily, positive) root, then v(α − β) = vα + wβ is a negative
root (cf. (3.4)), and all elements of Φv are real roots (again appealing
to (3.4)).
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Although Property 4.2 does not hold for arbitrary Kac–Moody root
systems (see Example 4.5 for counterexamples), we shall nevertheless
demonstrate that it holds in infinitely many examples.

Proposition 4.3. Property 4.2 holds if the Cartan matrix A = (aij)
of g is symmetric and |aij| ≥ 2 for all i, j ∈ I.

Proof. First we claim that if wi1 · · ·wik is a reduced word and the
(positive, by (3.4)) root wik · · ·wi2αi1 is expanded as

∑
j∈I mjαj, then

mik > mj for j ̸= ik. Indeed, this can be seen as follows by induction,
the case k = 2 being a consequence of our assumption. Assume that
the claim is true for k. Then we write wik+1

wik · · ·wi2αi1 =
∑

j∈I m
′
jαj

and obtain∑
j∈I

m′
jαj = wik+1

∑
j∈I

mjαj

= mik(αik − aik+1ikαik+1
) − mik+1

αik+1

+
∑

j ̸=ik,ik+1

mj(αj − aik+1jαik+1
) .

We have m′
j = mj < mik = m′

ik
for j ̸= ik, ik+1 and

m′
ik+1

= −mikaik+1ik − mik+1
−

∑
j ̸=ik,ik+1

mjaik+1j > mik = m′
ik
,

since −(1 + aik+1ik)mik − mik+1
≥ mik − mik+1

> 0. This proves the
claim.

We now claim that for any reduced word w = wi1 · · ·wiℓ , one has
⟨α, α∨

iℓ
⟩ < 0 for each α ∈ Φv, where v = wi1 · · ·wiℓ−1

. By (3.4) the
elements of Φv can be written as wiℓ−1

· · ·wik+1
αik , k = 1, . . . , ℓ−1. By

the above claim, if wiℓ−1
· · ·wik+1

αik =
∑

j∈I mjαj, then miℓ−1
> mj for

j ̸= iℓ−1. In particular, miℓ−1
> miℓ since iℓ ̸= iℓ−1 for a reduced word.

Therefore
(4.5)

⟨wiℓ−1
· · ·wik+1

αik , α
∨
iℓ
⟩ = ⟨

∑
j∈I

mjαj, α
∨
iℓ
⟩ =

∑
j ̸=iℓ

mjaiℓj + 2miℓ

≤ miℓ−1
aiℓiℓ−1

+ 2miℓ < 0

after dropping all but the j = iℓ−1 term from the sum.

Let (·|·) denote the symmetric bilinear form on h∗ defined in [K, §2.3],
which in general involves a choice of scaling by a positive constant;
since A is symmetric it can be written as (αi|αj) = aij = ⟨αj, α

∨
i ⟩.

The bilinear form (·|·) is Weyl invariant [K, Prop. 3.9], and so one has
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(β|β) = (αi|αi) for any root of the form β = wαi, for some w ∈ W and
i ∈ I. On the other hand, [K, Prop. 5.2(c)] shows that (β|β) ≤ 0 for
any imaginary root (that is, a root which is not a Weyl translate of a
simple root). Thus in any event one has

(4.6) (β|β) ≤ max
i∈I

(αi|αi)

for any root β.2

Let α = wiℓ−1
· · ·wik+1

αik be an element of Φv, where 1 ≤ k ≤ ℓ− 1.
Since

(4.7) Φw = wiℓΦv ∪ {αiℓ}
by (3.4), α cannot equal αiℓ , for if it did then −αiℓ = wiℓα ∈ Φw would
be a positive root. We compute

(α− αiℓ |α− αiℓ) = (αik |αik) + (αiℓ |αiℓ) − 2(α|αiℓ)

= 4 − 2⟨α, α∨
iℓ
⟩ > 4

using the second claim above. Thus α−αiℓ is not a root for α ∈ Φv. □

Unfortunately Proposition 4.3’s restrictive assumption on |aij| rules
out many cases of interest. In fact, only one hyperbolic Kac–Moody
algebra of rank ≥ 3 satisfies its hypotheses, namely the one having A =(

2 −2 −2
−2 2 −2
−2 −2 2

)
. In contrast, however, the assumptions of Proposition 4.3

hold for many rank 2 hyperbolic root systems, even ones with non-
symmetric Cartan matrices:

Proposition 4.4. Let A =

(
2 −b
−a 2

)
, a, b ≥ 2 and ab ≥ 5. Then

Property 4.2 holds for the Kac–Moody root system associated to A.

Proof. The Weyl group of the root system is the infinite dihedral group
generated by the simple reflections w1 and w2. In terms of the basis
{α1, α2} of h∗, w1 acts by the matrix ( −1 b

0 1 ) and w2 acts by the matrix
( 1 0
a −1 ). Since w1 and w2 play symmetric roles, it suffices to establish

Property 4.2 in the case that β = α2. Thus w = vwβ is represented by
a reduced word ending in w2, and hence v is represented by a reduced
word ending in w1. In particular, v must have the form (w2w1)

m or
w1(w2w1)

m for some m ≥ 0. The roots α ∈ Φv either have the form

(w1w2)
nα1 or (w1w2)

nw1α2 ,

2For later reference we remark that even though A here is assumed to be sym-
metric, the conclusion (4.6) nevertheless holds even if A is merely symmetrizable
(with (·|·) as defined in [K, §2.3], or any positive scalar multiple of it).
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for some n ≥ 0 by (3.4). To establish Property 4.2, we show that none
of

(4.8) (w1w2)
nα1 − α2 or (w1w2)

nw1α2 − α2 , n ≥ 0,

are roots. Following the strategy in the proof of Proposition 4.3, we
will use the symmetric bilinear form (·|·) on h∗ associated to the sym-

metrized matrix

(
a 0
0 b

)
A =

(
2a −ab
−ab 2b

)
, and appeal to condition

(4.6), which on our context states that

(4.9) (β|β) ≤ max{2a, 2b}
for any root β.

Let µ =
√
ab+

√
ab−4

2
> 1 and hn =

1

µ− µ−1
(µn − µ−n), which is a

monotonically increasing function of n satisfying

hn+2 = hn + µn+1 + µ−n−1.

Since
√
ab > 2 we have for any n ≥ 1 that

√
ab hn+2 − 2hn+1 =

√
ab (µn+1 + µ−n−1)− 2(µn + µ−n) +

√
ab hn − 2hn−1

>
√
ab hn − 2hn−1.

Repeating, we obtain

(4.10)

√
ab h2n+2 − 2h2n+1 ≥

√
ab h2 − 2h1 = ab− 2 and

√
ab h2n+1 − 2h2n ≥

√
ab h1 − 2h0 =

√
ab > 2

for any n ≥ 0.

It follows from the formulas for the Weyl action that

(w1w2)
nα1 = h2n+1α1 +

√
a√
b
h2nα2,

(w1w2)
nw1α2 =

√
b√
a
h2n+2α1 + h2n+1α2

(the case n = 0 is obvious, and both sides satisfy the same recurrence

relations in n). Since (·|·) is W -invariant and
√
ab > 2, we compute

((w1w2)
nα1 − α2 | (w1w2)

nα1 − α2)

= (α1|α1) + (α2|α2)− 2((w1w2)
nα1|α2)

= 2a+ 2b− 2
(
h2n+1α1 +

√
a√
b
h2nα2

∣∣∣α2

)
= 2a+ 2b+ 2ab h2n+1 − 4

√
ab h2n

= 2a+ 2b+ 2
√
ab(

√
ab h2n+1 − 2h2n)

> 2a+ 2b > max{2a, 2b} ,
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so that (w1w2)
nα1 − α2 cannot be a root according to (4.9).

Similarly,

((w1w2)
nw1α2 − α2 | (w1w2)

nw1α2 − α2)

= 2(α2|α2)− 2((w1w2)
nw1α2|α2)

= 4b− 2
(√

b√
a
h2n+2α1 + h2n+1α2

∣∣∣α2

)
= 4b+ 2

√
b√
a
ab h2n+2 − 4b h2n+1

= 4b+ 2b
(√

ab h2n+2 − 2h2n+1

)
≥ 4b+ 2b(ab− 2) = 2ab2 > max{2a, 2b} ,

where we have used the assumption a, b ≥ 2. Thus (w1w2)
nw1α2 − α2

is not a root either. □

Example 4.5. (1) Let Φ be the root system for the (asymmetric)

Cartan matrix A =

(
2 −1
−a 2

)
, a ≥ 5 (so that detA < 0). Consider

w = wα2wα1wα2 , which is the unique reduced for w of minimal length.
Letting v = wα2wα1 and β = α2, we see wα1α2 ∈ Φv and wα1α2 − α2 =
α1, hence Property 4.2 does not hold for this Kac-Moody root system.

(2) Let Φ be the A2 root system and consider w = wα2wα1wα2 =
wα1wα2wα1 . Then Property 4.2 does not hold for w, regardless of how
it is written as a reduced word.

In the rest of this section we will establish our main result on con-
vergence (which assumes Property 4.2).

Definition 4.6. Assume that Property 4.2 holds. Then by recur-
sion any nontrivial w ∈ W can be expressed as a reduced word w =
wβ1 · · ·wβℓ

such that

α− βi+1 is never a root for any α ∈ Φvi , i = 1, 2, . . . , ℓ− 1,

where vi = wβ1 · · ·wβi
. Such a reduced word will be called an admissible

word for w.

Lemma 4.7. Assume Property 4.2 and that λ ∈ C∗. Let w = wβ1 · · ·wβℓ

be an admissible word for w ∈ W and again set vi = wβ1 · · ·wβi
. Then

(4.11) ⟨v−1
i (λ+ ρ) +

∑
α∈Si

α, β∨
i+1⟩ > 1, i = 1, 2, . . . , ℓ− 1,

for any subset Si of Φvi.
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Proof. For α ∈ Φvi , consider the root string α +mβi+1, m ∈ Z. Since
α and βi are real roots and α− βi+1 is not a root by Property 4.2, we
have by [K, Prop. 5.1(c)] that

⟨α, β∨
i+1⟩ = −max {m : α +mβi+1 is a root} ≤ 0 .

Note that (4.11) is equivalent to

⟨v−1
i λ−

∑
α∈Φvi\Si

α, β∨
i+1⟩ > 0

by (3.6). Since λ ∈ C∗ and the fact that viβ
∨
i+1 is a positive root

(cf. (3.4)), we have

⟨v−1
i λ−

∑
α∈Φvi\Si

α, β∨
i+1⟩ ≥ ⟨v−1

i λ, β∨
i+1⟩ = ⟨λ, viβ∨

i+1⟩ > 0,

and the claim follows. □

Let Uw ⊂ U be the subgroup generated by the one-parameter sub-
groups for the roots in Φw.

Lemma 4.8. Assume Property 4.2 and let w = wβ1 · · ·wβℓ
be an ad-

missible word for an element w ∈ W (see Definition 4.6). Suppose
that

u = uν1(x1) · · ·uνℓ(xℓ) ∈ Uw and γ = uν1(m1) · · ·uνℓ(mℓ) ∈ Γ ∩ Uw

for x1, . . . , xℓ ∈ R and m1, . . . ,mℓ ∈ Z, where νi = wβℓ
· · ·wβi+1

βi ∈
Φw, i = 1, . . . , ℓ (cf. (3.4)). Then

wuγ = wβ1uβ1(ϵ1(x1 +m1)) · · ·wβℓ
uβℓ

(ϵℓ(xℓ +mℓ))

for some signs ϵ1, . . . , ϵℓ ∈ {−1, 1} depending only on β1, . . . , βℓ and
the choice of Weyl group reprsentatives in Aut(VF ).

Proof. We will show that the sum of the positive real roots νi and
νj is not a root, which implies that their root spaces and hence one-
parameter subgroups uνi(·) and uνj(·) commute. The Lemma then
follows immediately from this commutativity, since

uγ = uν1(x1 +m1) · · ·uνℓ(xℓ +mℓ)

and one can apply (2.2).

After multiplying on the left by wβj
· · ·wβℓ

, the claim that νi + νj is
not a root is equivalent to the statement that

wβj−1
· · ·wβi+1

βi − βj , 1 ≤ i < j ≤ ℓ,
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is never a root. This follows from Definition 4.6 since

wβj−1
· · ·wβi+1

βi ∈ Φvj−1
,

where vj−1 = wβ1 · · ·wβj−1
satisfies

vj−1wβj−1
· · ·wβi+1

βi = wβ1 · · ·wβi−1
(wβi

βi) = −wβ1 · · ·wβi−1
βi

and we have used (3.4). □

We can now prove the convergence of Eisenstein series on Kac–Moody
groups satisfying Property 4.2, after establishing one more lemma.

Lemma 4.9. Assume that λ ∈ C∗ and Property 4.2. Then there ex-
ists a constant M > 0 depending continuously on λ such that, for an
admissible word w = wβ1 . . . wβℓ

,∑
m1,...,mℓ∈Z

a(wβ1uβ1(x1 +m1) · · ·wβℓ
uβℓ

(xℓ +mℓ)g)
λ+ρ

≤ M ℓaw
−1(λ+ρ)

∏
α∈Φw

(1 + aα),

uniformly for x1, . . . , xℓ ∈ R, g ∈ GR, and a = a(g).

Proof. Since λ is in the open chamber C∗, there exists a positive con-
stant ϵ > 0 such that λ−ϵρ ∈ C∗. In particular, ⟨λ, α∨⟩ ≥ ϵ for any posi-
tive root α. We will prove the lemma with the valueM = max(2, c∞(ϵ))
from the proof of Lemma 4.1, using an induction on ℓ = ℓ(w). Indeed,
the case ℓ = 1 is precisely (4.3).

Assume the Lemma is known for v = wβ1 · · ·wβℓ−1
. Recall from (3.4)

that

Φv = Φ+ ∩ v−1Φ− = {βℓ−1, wβℓ−1
βℓ−2, . . . , wβℓ−1

· · ·wβ2β1} .

and Φw = wβℓ
Φv ∪ {βℓ} (cf. (4.7)). By induction we have

(4.12)∑
m1,...,mℓ∈Z

a(wβ1uβ1(x1+m1) · · ·wβℓ
uβℓ

(xℓ+mℓ)g)
λ+ρ ≤

M ℓ−1
∑
mℓ∈Z

a(wβℓ
uβℓ

(xℓ +mℓ)g)
v−1(λ+ρ)

∏
α∈Φv

(1 + a(wβℓ
uβℓ

(xℓ +mℓ)g)
α)

= M ℓ−1
∑
S⊂Φv

∑
mℓ∈Z

a(wβℓ
uβℓ

(xℓ +mℓ)g)
v−1(λ+ρ)+

∑
α∈S α.
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The i = ℓ− 1 case of Lemma 4.7 applied to λ− ϵρ gives that

1 < ⟨v−1(λ−ϵρ+ρ)+
∑
α∈S

α, β∨
ℓ ⟩ = ⟨v−1(λ+ρ)+

∑
α∈S

α, β∨
ℓ ⟩−ϵ⟨ρ, vβ∨

ℓ ⟩

for any S ⊂ Φv. As vβℓ is a positive root by (3.4), ⟨ρ, vβ∨
ℓ ⟩ at least

1 and hence ⟨v−1(λ + ρ) +
∑

α∈S α, β
∨
ℓ ⟩ must be at least 1 + ϵ. This

shows that the assumptions of Lemma 4.1 (with α = βℓ) apply to the
mℓ-sum, therefore showing (4.12) is bounded by

M ℓ
∑
S⊂Φv

awβℓ
v−1(λ+ρ)+wβℓ

∑
α∈S α(1 + aβℓ) = M ℓaw

−1(λ+ρ)
∏
α∈Φw

(1 + aα).

□

Proof of Theorem 1.1: We must show that the series Eλ(g) con-
verges absolutely for g ∈ ΓUACK, whenever λ ∈ h∗C satisfies Re(λ)−ρ ∈
C∗ and Property 4.2 holds. It is equivalent to show the same assertion
for g ∈ UACK and λ ∈ h∗, since the sums defining Eλ(γg) and Eλ(g)
contain the same terms and are term-by-term bounded by ERe(λ)(g).

Let Γw = Γ∩BwB = Γ∩BwUw. Then Γw is left-invariant under Γ∩B
and right-invariant under Γ∩Uw. Group the terms in the definition of
Eisenstein series

Eλ(g) =
∑

γ∈(Γ∩B)\Γ

Φλ(γg) =
∑

γ∈(Γ∩B)\Γ

a(γg)λ+ρ

as

(4.13) Eλ(g) =
∑
w∈W

∑
γ1∈(Γ∩B)\Γw/(Γ∩Uw)

∑
γ2∈Γ∩Uw

a(γ1γ2g)
λ+ρ.

Write γ1 = utwu′, where u ∈ U , t ∈ A, u′ ∈ Uw, so that

(4.14) a(γ1γ2g) = a(utwu′γ2g) = t · a(wu′γ2g).

Writing w = wβ1 · · ·wβℓ
as an admissible word (Definition 4.6) and

using Lemma 4.8, we can express wu′γ2 in the form

wβ1uβ1(x1 +m1) · · ·wβℓ
uβℓ

(xℓ +mℓ)

for some x1, . . . , xℓ ∈ R (which parameterize u′) and m1, . . . ,mℓ ∈ Z
(which parameterize the sum over γ2).

Lemma 4.9 bounds
∑

γ2∈Γ∩Uw

a(γ1γ2g)
λ+ρ by

(4.15) tλ+ρM ℓ(w)aw
−1(λ+ρ)

∏
α∈Φw

(1 + aα),

where M is the constant in Lemma 4.9. In particular, the sum over γ2
converges absolutely. Since C is contained in the Tits cone ∪w∈W wC,
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we may write a = w0a0w
−1
0 for some w0 ∈ W and a0 such that aα0 ≥ 1

for any α > 0. Since w−1
0 α > 0 for all but finitely many α > 0, we

see that aα = a
w−1

0 α
0 ≥ 1 for all but finitely many α > 0. Hence there

exists a constant Ca > 0 which depends continuously on a such that

(4.16)
∏
α∈Φw

(1 + aα) ≤ Ca2
ℓ(w)

∏
α∈Φw

aα = Ca2
ℓ(w)aρ−w−1ρ,

since the product has 2ℓ(w) terms and aα is bounded below by a constant
depending only on a (cf. (3.6)).

The only remaining manifestation of γ1 (aside from w) is t = t(γ1).
Recall the notation Φλ(g) = a(g)λ+ρ and the Gindikin–Karpelevich
integral (see (3.2))

(4.17)

∫
(Γ∩Uw)\Uw

∑
γ1∈(Γ∩B)\Γw/(Γ∩Uw)

∑
γ2∈Γ∩Uw

Φλ(γ1γ2n) dn

=
∏

α∈Φw−1

ξ(⟨λ, α∨⟩)
ξ(1 + ⟨λ, α∨⟩)

.

We recall from (4.14) that Φλ(γ1γ2n) = Φλ(utwu
′γ2n) = tλ+ρΦλ(wu

′γ2n),
with t = t(γ1), and formally obtain∫

(Γ∩Uw)\Uw

∑
γ1∈(Γ∩B)\Γw/(Γ∩Uw)

∑
γ2∈Γ∩Uw

Φλ(γ1γ2n) dn

=
∑

γ1∈(Γ∩B)\Γw/(Γ∩Uw)

∫
Uw

t(γ1)
λ+ρΦλ(wu

′n′) dn′

=
∑

γ1∈(Γ∩B)\Γw/(Γ∩Uw)

t(γ1)
λ+ρ

∫
Uw

Φλ(wn
′) dn′ .

The last integral is the absolutely-convergent Gindikin-Karpelevich in-
tegral ∫

Uw

Φλ(wn
′)dn′ =

∏
α>0,w−1α<0

ΓR(⟨λ, α∨⟩)
ΓR(1 + ⟨λ, α∨⟩)

(cf. (3.2)), and so the unfolding step above is justified by the Fubini
Theorem. We thus obtain∑

γ1∈(Γ∩B)\Γw/(Γ∩Uw)

t(γ1)
λ+ρ =

∏
α>0,w−1α<0

ζ(⟨λ, α∨⟩)
ζ(1 + ⟨λ, α∨⟩)

,
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which is bounded for w ∈ W , say, by a constant Cλ. Combining the
above results with (4.15) and (4.16), we find that

Eλ(g) ≤ CλCa

∑
w∈W

(2M)ℓ(w)aw
−1λ+ρ ,

which converges absolutely by Theorem 3.5. □

We end this paper with the observation that in our situation, ΓUACK
is strictly larger than UACK (see the comments in the second paragraph
following Theorem 1.1).

Proposition 4.10. Let A be a generalized Cartan matrix of indefi-
nite type as in [K, Theorem 4.3(Ind)], and further assume that A is
non-singular, as before. Let GR be the complete Kac–Moody group as-
sociated with A as in Section 2. Then UACK is not invariant under
multiplication by Γ on the left.

Proof. Recall that C is the interior of the Tits cone X :=
⋃

w∈W wC.
Since G is of indefinite type, by [K, Proposition 5.8c)] the closure of X
is given by

X = {h ∈ h : ⟨α, h⟩ ≥ 0 for all α ∈ Φim
+ },

where Φim
+ is the set of positive imaginary roots. By [K, Theorem 5.6c)],

there exists some α ∈ Φim
+ such that ⟨α, α∨

i ⟩ < 0 for all i ∈ I. It follows

that α∨
i ̸∈ X for any i ∈ I.

Fix a simple coroot α∨
i /∈ X. Since 0 ∈ X = C, AC contains elements

h arbitrarily close to the identity. Recall that u−αi
(1) ∈ Γ. For h ∈ AC,

we have that

u−αi
(1)h = hu−αi

(t), where t = hαi .

The SL(2,R) calculation(
1 0
t 1

)
=

(
1

δ(t)
t

δ(t)

0 δ(t)

)( 1
δ(t)

− t
δ(t)

t
δ(t)

1
δ(t)

)
, δ(t) =

√
t2 + 1 ,

shows that the Iwasawa A+-component of u−αi
(1)h ∈ ΓAC is equal to

h · hαi
(1/δ(t)). This cannot lie in AC for h near the identity, since

δ(t) →
√
2 as t → 1 and α∨

i ̸∈ X. □
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