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Abstract. In this manuscript we study braid varieties, a class of affine algebraic varieties associated

to positive braids. Several geometric constructions are presented, including certain torus actions on
braid varieties and holomorphic symplectic structures on their respective quotients. We also develop

a diagrammatic calculus for correspondences between braid varieties and use these correspondences

to obtain interesting decompositions of braid varieties and their quotients. It is shown that the max-
imal charts of these decompositions are exponential Darboux charts for the holomorphic symplectic

structures, and we relate these charts to exact Lagrangian fillings of Legendrian links.
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1. Introduction

This article studies braid varieties, a class of affine algebraic varieties associated to positive braids, and
their relation to contact and symplectic geometry. First, the geometric properties of braid varieties are
studied, including the construction of torus actions and holomorphic symplectic structures on their
quotients. Then, we construct correspondences between these braid varieties by using certain moduli
spaces associated to weaves, a class of labeled planar diagrams. These geometric correspondences are
shown to induce valuable decompositions for braid varieties and their quotients, also unifying known
constructions of P. Boalch and A. Mellit, in the case of character varieties, and M. Henry and D.
Rutherford, in the case of augmentation varieties.

The diagrammatic calculus based on weaves, presented in Section 5, allows for direct and explicit
computations, and we provide new constructions of embedded exact Lagrangian fillings for Legendrian
links through combinatorial methods. The main results of the article are Theorems 1.1, 1.3 and 1.7,
and several detailed examples are provided throughout the manuscript. In particular, we believe
that the construction of a holomorphic symplectic structure on augmentation varieties, developed in
Section 3 is of value for contact and symplectic geometry.

1.1. Context. Legendrian links in contact 3–manifolds [1, 4, 48] are central in contact and symplectic
geometry. Legendrian fronts, immersed planar cuspidal curves, arise in topology, as Cerf diagrams
[2, 11, 28], in differential equations, as Stokes data for irregular singularities [5, 102, 104], and in
analysis, as wavefront sets [60, 61, 74]. In this article, we use that a positive braid β gives rise to a
Legendrian link Λ(β) ⊆ (R3, ξst), cf. [23, Section 2.2] or [17, 48].

Associated to a Legendrian link Λ ⊆ (R3, ξst), there exist two geometrically defined moduli spaces:
the moduli space of microlocal sheaves in R2 microlocally supported at Λ, cf. [24, 55, 68, 69], and the
moduli space of exact Lagrangian fillings L ⊆ (R4, ωst), with boundary ∂L = Λ, cf. [2, 17, 23, 48].
Note that the latter can be understood as the (geometric part of the) moduli space of objects of
the Fukaya category of (R4, ωst) partially wrapped at Λ. For the Legendrian links Λ(β) ⊆ (R3, ξst),
these moduli are algebraic stacks and, when appropriately decorated, smooth algebraic varieties. The
present manuscript studies a collection of algebraic varieties associated to a positive braid β, including
and generalizing these two moduli spaces, and new correspondences between them. These algebraic
correspondences are often induced by geometric exact Lagrangian cobordisms between Legendrian
links, and can in general be described with a diagrammatic calculus, as we will show, building on
work of the first author with E. Zaslow [25].

In summary, we introduce the class of braid varieties, study torus actions and their quotients, construct
correspondences and morphisms between them, and develop a diagrammatic calculus associated to
these correspondences. As we establish these results, we prove several theorems of interest, including
the fact that the augmentation variety associated to Λ(β) admits a holomorphic symplectic structure,
and explain the relation between A. Mellit’s decomposition of character varieties [82] and the ruling
stratification of the augmentation variety [56, 57]. Note that holomorphic symplectic structures play a
central role in the study of moduli spaces of connections [7, 9], and there ought to be a relation to their
symplectic structures through understanding the moduli stack of objects in the Aug+-category [86] as
a wild character variety [6, 101]. It should be noted that our diagrammatic calculus, which we refer
to as algebraic weaves, provides a combinatorial and explicit approach to these decompositions. In
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addition, the pieces are compatible with the holomorphic symplectic structure, the open toric charts
admitting (exponential) holomorphic Darboux coordinates.

1.2. Main Results. Let us define our main object of study, the braid matrices and braid varieties.
In order to do this, let us fix n > 0. For each i = 1, . . . , n − 1, we consider the braid matrix
Bi(z) ∈ GL(n,C[z]) defined by:

(Bi(z))jk :=


1 j = k and j ̸= i, i+ 1

1 (j, k) = (i, i+ 1) or (i+ 1, i)

z j = k = i+ 1

0 otherwise;

, i.e. Bi(z) :=



1 · · · · · · 0
...

. . .
...

0 · · · 0 1 · · · 0
0 · · · 1 z · · · 0
...

. . .
...

0 · · · · · · 1


.

Note that the only the non-trivial (2 × 2)-block is at ith and (i + 1)st rows. Braid matrices have
appeared in a range of areas, starting with L. Euler’s continuants [40], G. Stokes’ study of irregular
singularities [104] (see P. Boalch’s [8, 9]), M. Broué and J. Michel’s work on Deligne-Lusztig varieties
[12], P. Deligne’s braid invariants [30], and more recently in T. Kálmán’s study of the Legendrian
Contact DGA [66] (see also [23]) and A. Mellit’s results on the curious Lefschetz property for character
varieties [82], among others.

Let γ be a positive n-braid word [γ] ∈ Br+n , γ = σi1 · · ·σiℓ . We consider the following matrix
Bγ(z1, . . . , zℓ) ∈ GL(n,C[z1, . . . , zℓ]), we which define to be the matrix product

Bγ(z1, . . . , zℓ) := Bi1(z1) · · ·Biℓ(zℓ).

Finally, if π ∈ GL(n,C) is a permutation matrix we consider the braid variety

X0(γ;π) := {(z1, . . . , zℓ) : Bγ(z1, . . . , zℓ)π is upper-triangular} ⊆ Cℓ.

Note that this is an affine algebraic variety, given by the vanishing of
(
n
2

)
polynomial equations in the

variables z1, . . . , zℓ.

From our definition above, it is simple to see thatX0(γ;π) is isomorphic toX0(γ
′;π) if [γ] = [γ′] ∈ Brn,

i.e. if two positive words γ, γ′ represent the same n-braid, the resulting braid varieties are isomorphic,
hence the name. In the course of the article, the permutation (matrix) π will often be the identity
π = Id = e ∈ Sn or the longest element π = w0 = (n n − 1 . . . 1) ∈ Sn. Let ∆ ∈ Br+n be a positive
braid lift of the permutation w0, i.e. ∆ will be a braid word for the half-twist. See Example 2.2 for
our specific choice of positive braid word for ∆.

The first result of the article establishes geometric properties of braid varieties, including the existence
of a torus action and their relation to the Floer-theoretically defined augmentation varieties [10, 27, 86].
It reads as follows.

Theorem 1.1. Let γ be a positive n-braid word [γ] ∈ Br+n . Then the following statements hold:

(i) X0(γ∆; 1) ≃ X0(γ;w0)×C(
n
2), and X0(γ;w0) is non-empty if and only if the Demazure prod-

uct of γ equals w0. In this case, X0(γ;w0) is an irreducible complete intersection of dimension
ℓ(γ)−

(
n
2

)
, and X0(γ∆; 1) is an irreducible complete intersection of dimension ℓ(γ).

Suppose that there exists a positive n-braid word β such that γ = β∆. Then:

(ii) The braid variety X0(β∆;w0), and thus X0(β∆
2; 1), is smooth.

(iii) There exists a free torus action on X0(β∆;w0) such that the quotient algebraic variety X0(β∆;w0)/T
is smooth and holomorphic symplectic.

(iv) There exists an isomorphism between X0(β∆;w0)/T and an augmentation variety Aug(β)
associated to the Legendrian link Λ(β). In particular, Aug(β) is a holomorphic symplectic
(smooth) affine variety.
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(v) The open Bott-Samelson variety OBS(β) associated to β is isomorphic to the quotient

OBS(β) ∼= (GL(n,C)×X0(β; 1)) /B,

where B ⊆ GL(n,C) is the Borel subgroup of upper-triangular matrices.

In Theorem 1.1.(iii), the dimension of the torus T does depend on the number of components in
the closure of β, see Section 2 for details. See Section 2.6 for the details on marked points used to
define the objects in 1.1.(iv). The different varieties and the torus action featured in Theorem 1.1 are
presented in the course of the article, and the proof of this theorem is obtained by gathering some
the results we develop, such as Theorem 2.39, Theorem 2.6, Theorem 3.14 and Corollary 5.36. See
also Section 4.4 for the definition of Demazure product, and note that the Demazure product of β∆
equals w0 for any β.

Theorem 1.1 discusses the absolute aspects of braid varieties. The study of such varieties also relies
crucially on their relative geometry: morphisms between different such braid varieties and, more
generally, correspondences, yield interesting (and useful) results. In order to study this relative
setting, we develop the diagrammatic calculus of weaves, which we summarize as follows.

Let Wn be the category defined as:

- Objects: Ob(Wn) are arbitrary positive braid words γ = σi1 · · ·σiℓ , [γ] ∈ Br+n ,
- Morphisms: HomWn

(γ, γ′) are compositions of the following six elementary moves, starting
at γ at the top and ending at γ′ at the bottom. The moves are

σiσi → σi, σiσi+1σi ↔ σi+1σiσi+1, σiσj → σjσi (|i− j| > 1), and σiσi ↔ 1.

We will declare some of the morphisms to be equivalent, see section 4.

The morphisms in Wn will be represented diagrammatically as certain planar graphs with edges
decorated by simple transpositions si. (Namely, si are the Coxeter projections of the Artin braid
generators σi, 1 ≤ i ≤ n.) These planar graphs are referred to as weaves, following [25, Section 2],
and Wn will be called the category of weaves. The elementary moves above, i.e. the building blocks
for morphisms, can be drawn as follows:

There is also a dual 6-valent vertex corresponding to σiσi−1σi → σi−1σiσi−1 which we do not draw
here but is equally allowed. An algebraic weave, obtained by vertically and horizontally concatenating
the models above (plus additional decorations), represents a morphism from the braid word on the
top to the braid word on the bottom. The composition of weaves

HomWn(γ
′, γ′′)×HomWn(γ, γ

′) −→ HomWn(γ, γ
′′)

is given by vertical stacking of these weave diagrams. See Figure 1 for an instance of a morphism.

Remark 1.2. Note that this diagrammatic category is in part similar to the categories appearing in
Soergel calculus [37, 38], but differs in several key aspects. In particular, in the category of algebraic
weaves there is no requirement that the two ways of getting from σiσiσi to σi, via the moves σiσi → σi,
are equivalent:
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Figure 1. An algebraic weave in HomWn
(γ, γ′) between the two positive 3-braids

γ = σ3
1σ2σ

3
1σ

2
1σ

3
1σ

3
2σ

3
1σ2σ

3
1 , at the top, and γ′ = σ3

2σ
2
1σ

2
2 , at the bottom. The darker

shade is labeled with the transposition s1 and the lighter shade is labeled with s2. For
readability we omit the (downward pointing) orientations. The upside-down trivalent
vertices are defined using the usual trivalent vertices and cups, see Section 4.3.2.

The difference between these diagrams will be referred to as a weave mutation.

Let C be the category of algebraic varieties whose morphisms are correspondences. That is, a morphism
X → Y consists of a pair of morphisms X ← Z → Y , and composition corresponds to the fiber
product. The second result in this manuscript shows that braid varieties and their correspondences
provide a realization of the weave category Wn, as follows.

Theorem 1.3. There exists a functor X0 : Wn −→ C such that:

(a) Objects: For a positive braid word γ ∈ Ob(Wn), the functor X0 associates the braid variety
X0(γ) := X0(β;w0).

(b) Morphisms: For a weave w ∈ HomWn(β2, β1), the functor associates a correspondence
X0(w) between X0(β2;w0) and X0(β1;w0), such that correspondences X0(w) and X0(w

′) as-
sociated to equivalent weaves with no caps w,w′ are isomorphic. (The algebraic variety X0(w)
is in fact described as a certain moduli space governed by the weave w.)

(c) Composition: Let w1 ∈ HomWn
(β1, β0), w2 ∈ HomWn

(β2, β1), and consider their compo-
sition w = w1 ◦ w2 ∈ HomWn(β2, β0), which is obtained by vertical concatenation of w2, at
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the top, and w1, at the bottom. Then the composition of weaves under X0 corresponds to the
diagram:

X0(w)

X0(w1) X0(w2)

X0(β0;w0) X0(β1;w0) X0(β2;w0),

where the middle square is Cartesian.

(d) Let w ∈ HomWn
(β2, β1) be a weave with no caps, a cups and b trivalent vertices. Then the

correspondence X0(w) defines an injective map

X0(w) : Ca × (C∗)b ×X0(β1;w0) ↪→ X0(β2;w0).

Furthermore, the correspondences X0(w) are equivariant with respect to appropriate torus actions and,
using Theorem 1.1.(iv), yield correspondences between augmentation varieties.

The proof of Theorem 1.3 occupies the majority of Section 5, the equivariance statement being
discussed in Subsection 5.7. The statements in Theorem 1.3.(a)-(c) are the algebraic analogues of the
symplectic geometric results obtained in [25]. Note that the algebraic variety X0(∆;w0) is a point,
and thus Theorem 1.3 implies the following.

Corollary 1.4. Let w ∈ HomWn
(γ,∆) be a weave with no caps, a cups and b trivalent vertices,

a, b ∈ N. Then the correspondence X0(w) yields an injective map

X0(w) : Ca × (C∗)b ↪→ X0(γ;w0), 2a+ b = ℓ(γ)−
(
n

2

)
.

Corollary 1.4 provides a unifying framework for many known decompositions, including the ruling
stratification in augmentation varieties [43, 56, 57], and the decomposition by walks in character
varieties [82]. First, we will see that any weave w ∈ HomWn

(γ,∆) with no cups or caps yields an

open (algebraic) torus (C∗)ℓ(γ)−(
n
2) ⊂ X0(γ;w0). Fixing such a weave, we will see that its complement

can be further decomposed with weaves (that will now include cups). The weaves with no caps or
cups, that will be of primary importance in this article, will be referred to as Demazure weaves. Note
that different Demazure weaves define (a priori) different decompositions of X0(γ;w0).

Remark 1.5. The manuscript also includes a new construction of weaves, coming from a class
of labeled triangulations. This construction, described in Section 4.7, uses Demazure products in a
crucial manner and, together with results of [25], provides a systematic (and combinatorial) mechanism
to construct embedded exact Lagrangian fillings for Legendrian links in (R3, ξst) which are obtained
as closures of a positive braid β. Specifically, the points in the braid variety X0(β;w0) correspond to
fillings of the (−1)-closure of β∆, cf. [23, Section 2].

Finally, complementing Theorem 1.1 and Theorem 1.3, we give a geometric interpretation to these
toric charts associated to Demazure weaves w ∈ HomWn(β∆,∆), as follows.

First, we show in Section 2.3 that these charts can be combinatorially obtained by opening the
crossings of the positive braid β. Indeed, Section 2.3 shows that there is an injective map

X0(β
′∆;w0)× C∗ ↪→ X0(β∆;w0),

if the positive braid word β′ is obtained from β by removing exactly one crossing. Therefore, opening
the crossings in β one by one, in some order, yields a toric chart in X0(β∆;w0). Different orders
might yield identical or different toric charts. For instance, for a 2-strand braid β = σn

1 , there are
n! possible orderings and one obtains a Catalan number Cn of toric charts. In particular, in this
correspondence, each toric chart is obtained by exactly one 312-pattern avoiding permutation.

Definition 1.6. Throughout the paper, if β is a braid word of length ℓ, we denote by Sℓ the set of
orderings on the crossings of β (which is in bijection with the symmetric group in ℓ letters).
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Regarding this relation, between toric charts and openings of crossings, we show the following.

Theorem 1.7. Let [β] ∈ Br+n be a positive braid and β = σi1 · σi2 · . . . · σil a positive braid word.
Consider an ordering ρ ∈ Sl for the crossings of β. Then:

(i) There exists a (Demazure) weave wρ such that the sequence of crossing openings according
to ρ is realized by the weave wρ. Conversely, any Demazure weave w is equivalent to open-
ing crossings for some ordering ρ ∈ Sl, i.e. there exists ρ ∈ Sl such that w is equivalent to wρ.

(ii) Two toric charts C1, C2 ⊆ X0(β∆;w0) associated to different orderings of the crossings are
represented by weaves w1,w2 such that w1,w2 are related by a sequence of mutations. In
addition, the union of all such toric charts covers X0(β∆;w0) up to codimension 2.

The first item is proven in Lemma 5.17 and Theorem 5.18, and the proof of the codimension-2 cover
is established in Theorem 2.25. The mutation equivalence of any weaves yielding toric charts follows
from the more general Theorem 4.12, which states that, under technical conditions that are satisfied
in the weaves pertaining to Theorem 1.7, any two Demazure weaves between the same two braid
words are related by a sequence of equivalence moves and mutations. Note that Theorem 4.12 is a
translation of a result of B. Elias [36] to our weaves framework.

Remark 1.8. Note that both the openings of crossings and mutations can be described in terms of
braid words. Indeed, consider a braid word σiuσj with σiu = uσj , i.e. (σi, σj) is a deletion pair in
the notation of [58]. Then, we can consider two different weaves:

σiuσj

σiσiu uσjσj

σiu uσj

In this diagram, the left weave σiuσj → uσj corresponds to the opening of a crossing σi, and the right
weave σiuσj → uσj to opening a crossing σi. Theorem 1.7 implies that the two weaves are always
related by a sequence of equivalence moves and mutations. For example, for i = j and u = σi we get
a mutation, while for i = 1, j = 2 and u = σ2σ1 we get an equivalence (see Section 4.2.4):

σ1(σ2σ1)σ2

σ1σ1(σ2σ1) (σ2σ1)σ2σ2

σ1(σ2σ1) (σ2σ1)σ2

1.3. Related developments. In this section we comment on some recent results and developments
which were completed after the first version of this paper was posted on arXiv.

We further studied certain classes braid varieties in [18]. In particular, all positroid varieties [71] in
the Grassmannian Gr(k, n) were shown to be isomorphic to braid varieties for several different braids,
both on n and on k strands. The paper [18] also gives a precise relation between braid varieties,
subword complexes and brick polytopes [13, 26, 39, 52, 53, 63, 72, 73, 92]. The faces of a subword
complex for a braid word γ correspond to all possible subwords of γ such that the Demazure product
of their complements equals w0. Subword complexes were introduced by Knutson and Miller [72, 73]
in the context of Gröbner geometry of Schubert polynomials. Knutson and Miller proved that subword
complexes are homeomorphic to balls or spheres. Pilaud and Stump found polytopal realizations of
spherical subword complexes and called them brick polytopes. Results of [52, 53, 54] describe the
behavior of subword complexes under braid moves and moves sisi → si in γ. Ceballos, Labbé and
Stump [26] proved that certain brick polytopes are generalized associahedra, thus relating subword
complexes to the theory of cluster algebras. See also more recent works of Brodsky and Stump [13]
and of Jahn, Löwe and Stump [63] further exploring this relation. Using the work of Escobar [39],
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we also show in [18] that a braid variety admits a smooth compactification by the so-called brick
manifold. The combinatorics of the boundary divisor agree with the dual subword complex.

Finally, there was a recent increase of interest relating weaves, braid varieties and cluster algebras.
In particular, in a joint work with I. Le and L. Shen [19], we show that any braid variety admits
a cluster structure. This result was also proven in [45, 46, 98] by different methods, and we expect
the two cluster structures to be closely related. The above results resolve a long-standing conjecture
of Leclerc [76] on the existence of cluster structure on open Richardson varieties. In particular, a
cluster structure guarantees the existence of a collection of open tori which correspond to Demazure
weaves as in Corollary 1.4. On such a torus, [19] defines a collection of cluster coordinates using the
combinatorics of a weave. We refer to [19, 45, 46, 98, 99, 100] and references therein for all definitions
and details.
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2. Braid Varieties and Augmentation Varieties

In this section we introduce and start studying braid varieties. Part of Theorem 1.1 is proven in
this section, with the holomorphic symplectic structure being discussed in Section 3. This section
also discusses the torus actions on braid varieties and their quotients, which relate to augmentation
varieties.

Notations for the braid group. Let n ∈ N. The braid group Brn on n-strands is presented with
n− 1 generators σi, i ∈ [1, n− 1], and relations

(2.1) σiσi+1σi = σi+1σiσi+1, for i = 1, . . . , n− 2, σiσj = σjσi for |i− j| ≥ 2, i, j ∈ [1, n− 1].

In this article, we mainly work with the positive braid monoid Br+n ⊆ Brn generated by the nonnegative
powers of the generators σi, i ∈ [1, n−1]. By definition, a (positive) braid word is a product expression
of non-negative powers of the generators σi where no relations are being applied. For instance, the
two braid words σ1σ2σ3σ1 and σ2σ1σ2σ3 are distinct as braid words and represent the same element
[σ1σ2σ3σ1] = [σ2σ1σ2σ3] ∈ Br+4 .

The symmetric group Sn is the Coxeter group associated to Brn: it is generated by the transpositions
si = (i i+ 1), subject to relations (2.1) above and the additional relation s2i = 1, for all i ∈ [1, n− 1].
By definition, a reduced expression for a permutation w ∈ Sn is a minimal length expression for
the element w as a product of the generators si, i ∈ [1, n − 1]; the length ℓ(w) is defined as the
length of such reduced expression. It is well-known that any two reduced expressions are related by
a sequence of braid moves (2.1). Therefore, one can define a positive braid lift of w ∈ Sn to Br+n by
choosing an arbitrary reduced expression and replacing each generator si with the generator σi, for
each i ∈ [1, n− 1]. We will refer to such positive braid lifts as reduced braid words. To ease notation,
we interchangeably use σi, si, and sometimes simply i for the braid group generators, i ∈ [1, n− 1].

2.1. Braid matrices and braid varieties. Braid varieties are affine algebraic varieties cut out by
matrix equations. Their definition relies on the following notion.
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Definition 2.1. Let n ∈ N, i ∈ [1, n − 1] ∈ N and z a (complex) variable. The braid matrix
Bi(z) ∈ GL(n,C[z]) is defined as

(Bi(z))jk :=


1 j = k and j ̸= i, i+ 1

1 (j, k) = (i, i+ 1) or (i+ 1, i)

z j = k = i+ 1

0 otherwise;

, i.e. Bi(z) :=



1 · · · · · · 0
...

. . .
...

0 · · · 0 1 · · · 0
0 · · · 1 z · · · 0
...

. . .
...

0 · · · · · · 1


.

Given a positive braid word β = σi1 · · ·σir ∈ Br+n and z1, . . . , zr complex variables, we define the
braid matrix Bβ(z1, . . . , zr) ∈ GL(n,C[z1, . . . , zr]) to be the product

Bβ(z1, . . . , zr) = Bi1(z1) · · ·Bir (zr).

For instance, it follows from Definition 2.1 that Bβ(0, . . . , 0) is simply the permutation matrix as-
sociated to the Coxeter projection π(β) ∈ Sn. Thus, in a sense, braid matrices are deformations of
permutation matrices. It is a simple computation to verify the two relations:

(2.2) Bi(z1)Bi+1(z2)Bi(z3) = Bi+1(z3)Bi(z2 − z1z3)Bi+1(z1), ∀i ∈ [1, n− 2],

and

(2.3) Bi(z1)Bj(z2) = Bj(z2)Bi(z1) for |i− j| ≥ 2.

Here are a few useful examples.

Example 2.2. Let us first consider (a lift of) the Coxeter element σ1σ2 · · ·σn−1 ∈ Br+n . Induction
on n shows that

(2.4) Bσ1σ2···σn−1
(z1, . . . , zn−1) =


0 0 . . . 0 1
1 0 . . . 0 z1
0 1 . . . 0 z2
...

...
. . .

...
...

0 0 . . . 1 zn−1

 .

Now we consider the positive braid word ∆ = (σ1σ2 · · ·σn−1)(σ1 · · ·σn−2) · · · (σ1σ2)σ1, which repre-
sents a half-twist. It follows from (2.4) that its associated braid matrix is

(2.5) B∆

(
z1, . . . , z(n2)

)
=


0 0 . . . 0 1
0 0 . . . 1 z1
0 0 . . . zn z2
...

...
. . .

...
...

1 z(n2)
. . . z2n−3 zn−1


Let ∆′ ∈ Br+n be any positive braid lift of the longest element w0 of Sn. It then follows from the
braid relation (2.2) that

(2.6) B∆′

(
z1, . . . , z(n2)

)
=


0 0 . . . 0 1
0 0 . . . 1 z2,n
0 0 . . . z3,n−1 z3,n
...

...
. . .

...
...

1 zn,2 . . . zn,n−1 zn,n

 ,

where the zi,j are algebraically independent generators of C
[
z1, . . . , z(n2)

]
.
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Lemma 2.3. Let ∆2 ∈ Br+n represent the full-twist braid, i.e. the square of the positive braid lift of
w0 ∈ Sn to the braid group. Then its braid matrix can be decomposed as

B∆2

(
z1, . . . , z(n2)

, w1, . . . w(n2)

)
= LU =


1 0 . . . 0
c21 1 . . . 0
... · · ·

. . . 0
cn1 · · · · · · 1



1 u12 . . . u1n
0 1 . . . u2n

0 · · ·
. . . un−1,n

0 · · · · · · 1

 ,

where cij ∈ C
[
z1, . . . , z(n2)

]
and uij ∈ C

[
w1, . . . , w(n2)

]
are algebraically independent generators.

Proof. By Example 2.2, B∆ = Lw0 = w0U . Hence B∆2 = B∆B∆ = Lw0w0U = LU . □

Let us now use braid matrices to define the central object of interest in this manuscript.

Definition 2.4. Let β = σi1 · · ·σir ∈ Br+n be a positive braid word. The braid variety X0(β) ⊆ Cr

associated to β is the affine closed subvariety given by

X0(β) := {(z1, . . . , zr) : Bβ(z1, . . . , zr) is upper-triangular} ⊆ Cr.

Let π ∈ Sn be considered as a permutation matrix. We define the braid variety X0(β;π) ⊆ Cr as

X0(β;π) := {(z1, . . . , zr) : Bβ(z1, . . . , zr)π is upper-triangular} ⊆ Cr.

It follows from the braid relation (2.2) that different presentations of the same braid [β] ∈ Brn yield
algebraically isomorphic braid varieties.

Let us give some simple examples of braid varieties.

Example 2.5. Consider the positive braid associated to the full twist β = ∆2. Lemma 2.3 implies that

X0(∆
2) is given by the equations cij = 0, and thus the braid variety is the affine space X0(∆

2) ∼= C(
n
2),

with coordinates being uij . Similarly, Example 2.2 implies that the braid variety X0(∆;w0) = {pt}
is a point.

The computation in Example 2.2 shows that X0(β;w0) admits a closed embedding into X0(β ·∆):

ι : X0(β;w0)→ X0(β ·∆), (z1, . . . , zℓ) 7→ (z1, . . . , zℓ, 0, 0, . . . , 0)

where there are
(
n
2

)
zeroes in (z1, . . . , zℓ, 0, . . . , 0). In general, if Π ∈ Br+n is a positive lift of a

permutation π ∈ Sn then X0(β;π) embeds into X0(β ·Π). Let us now establish the general dimension
and smoothness for braid varieties.

Theorem 2.6. Let β ∈ Br+n be a positive braid of length ℓ(β). Then, the braid varieties X0(β ·∆;w0)
and X0(β ·∆2) are smooth of dimension ℓ(β) and ℓ(β) +

(
n
2

)
, respectively. In addition, X0(β ·∆2) ≃

X0(β ·∆;w0)× C(
n
2).

Proof. The variety X0(β ·∆2) is defined by the condition that Bβ·∆2 is an upper triangular matrix.
By Lemma 2.3, we get

Bβ·∆2 = BβB∆2 = BβLU = Bβ·∆w0U.

This is upper-triangular if and only if Bβ·∆w0 is upper-triangular, which is precisely the condition

defining X0(β ·∆;w0). Therefore, X0(β ·∆2) ≃ X0(β ·∆;w0)×C(
n
2), with C(

n
2) being the coordinates

on the upper unitriangular matrix U . Now, by (2.5) we have that B∆w0 is a lower unitriangular
matrix, and thus we can write

(2.7) Bβ·∆w0 = BβL

where L is lower unitriangular. If we have a point in X(β ·∆;w0) we obtain Bβ·∆w0 = U ′, an upper
triangular matrix. Together with (2.7) we obtain

B−1
β = L(U ′)−1.

Note that the existence of an LU decomposition M = LU ′′ is an open condition on M , namely the
non-vanishing of principal minors; also, if an LU decomposition exists, it is unique provided that L
has 1s on the diagonal. Therefore X0(β ·∆;w0) is isomorphic to an open subset in the affine space
Cℓ(β). Hence, it is smooth of dimension dimX0(β ·∆;w0) = ℓ(β), and X0(β ·∆2) is also smooth of
dimension dimX0(β ·∆2) = ℓ(β) +

(
n
2

)
, as required. □

10



In the proof of the previous result we obtained that X0(β ·∆;w0) is open in the affine space Cℓ(β).
Since this will be used again later, let us state it as a separate result.

Lemma 2.7. Let β ∈ Br+n be a positive braid of length ℓ(β). Then, the braid variety X(β ·∆;w0) is
open in the affine space Cℓ(β), and it is given by the non-vanishing of the leading principal minors of
the matrix B−1

β (z1, . . . , zℓ).

Lemma 2.7 implies that the braid variety X(β · ∆;w0) is isomorphic to the (half-decorated) double
Bott-Samelson cell studied in [100]. Note that a similar smoothness result was proved in [100, The-
orem 2.30]. The braid varieties associated to 2-stranded braids β ∈ Br+2 are smooth varieties whose
equations closely relate to Euler’s continuants [40].

Example 2.8. Consider β = σ3
1 ∈ Br+2 , the braid variety X0(σ

5
1) = X0(σ

3
1 · ∆2) is defined by the

equation:

B(z1)B(z2)B(z3)B(z4)B(z5) is upper-triangular.

This condition can written as (cf. Lemma 2.3)

B(z1)B(z2)B(z3)

(
1 0
z4 1

)(
1 z5
0 1

)
is upper-triangular,

and equivalently

B(z1)B(z2)B(z3)

(
1 0
z4 1

)
=

(
z2 + (z2z3 + 1)z4 z2z3 + 1

z1z2 + (z1 + (z1z2 + 1)z3)z4 + 1 z1 + (z1z2 + 1)z3

)
is upper-triangular.

Note that we have (
1 0
z4 1

)
=

(
0 1
1 z4

)(
0 1
1 0

)
=

(
0 1
1 z4

)
w0,

and thus the condition above, in the coordinates (z1, z2, z3, z4) ∈ C4, is in fact the equation for
X0(σ

3
1 ·∆;w0). This implies that X0(σ

3
1 ·∆2) is isomorphic to X0(σ

3
1 ·∆;w0) times an affine line C =

Spec(C[z5]). This is proven in general in Theorem 2.6. It thus suffices to understand X0(σ
3
1 ·∆;w0).

For that, consider the equation above:

(2.8) X0(σ
3
1 ·∆;w0) = {(z1, z2, z3, z4) ∈ C4 : 1 + z1z2 + z4(z1 + z3 + z1z2z3) = 0} ⊆ C4,

which cuts out a hypersurface, and should be smooth according to Theorem 2.6. Indeed, note that
we must have z1 + z3 + z1z2z3 ̸= 0, otherwise the defining Equation 2.8 would imply 1 + z1z2 = 0,
and in these constraints z1 = z1 + z3(z1z2 + 1) = z1 + z3 + z1z2z3 = 0. This is a contradiction; thus,
z1+z3+z1z2z3 ̸= 0 in X0(σ

3
1 ·∆;w0). In consequence, X0(σ

3
1 ·∆;w0) is isomorphic to the open subset

X0(σ
3
1 ·∆;w0) = {(z1, z2, z3) ∈ C3 : (z1 + z3 + z1z2z3) ̸= 0} ⊆ C3,

since the coordinate z4 can be obtained uniquely from any points (z1, z2, z3) ∈ C3 in this subset. This
shows that X0(σ

3
1 ·∆;w0) is smooth.

In fact, this provides a rather simple description for this braid variety: it is the open set foliated by
the smooth hypersurfaces (z1 + z3 + z1z2z3) = a, a ∈ C∗. For a fixed a ∈ C∗, the Stein deformation
type of the affine surface {(z1 + z3 + z1z2z3) = a} is described in [22, Section 4.1]. □

Remark 2.9. In the case of positive braids associated to algebraic knots K ⊆ R3, the braid varieties
can be similarly described symplectically using the arboreal skeleta constructed in [16]. In general,
following the lines of Example 2.8, the braid varieties for (2, n)-torus links can be similarly described
in terms of affine hypersurfaces.

Note that we can write

X0(σ
3
1 ·∆;w0) ∼= {(z1, z2, z3, t) : (z1 + z3 + z1z2z3)t = 1} ⊆ C3 × C∗

t ,

and thus there exists a C∗-action on X0(σ
3
1 · ∆;w0) whose quotient yields the affine hypersurface

{z1+z3+z1z2z3 = 1} ⊆ C3. The feature of admitting certain (complex) torus actions with interesting
quotients is a general property of braid varieties, as we will now see.
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2.2. Torus actions on braid varieties. Let [β] ∈ Br+n be a positive braid with a fixed positive braid
word β = σi1 · · ·σir . Consider the Cartan subgroup T ∼= (C∗)n ⊆ GL(n,C) of diagonal matrices, and
its quotient T by the subgroup of scalar invertible matrices. In this section we construct an algebraic
T -action on the braid variety X0(β). First, we observe that

(2.9)

(
t1 0
0 t2

)(
0 1
1 z

)
=

(
0 1
1 t2

t1
z

)(
t2 0
0 t1

)
.

Let Dt = diag(t1, . . . , tn) ∈ T be a diagonal matrix. In general, we have DtBi(z) = Bi

(
ti+1

ti
z
)
Dsi(t),

for si the Coxeter projection of σi. Thus

(2.10) DtBi1(z1) · · ·Bir (zr) = Bi1(c1z1) · · ·Bir (crzr)Dw(t),

where r = ℓ(β), ck = twk(ik+1)t
−1
wk(ik)

, wk = si1 · · · sik−1
and w = wr+1 is the permutation correspond-

ing to β. The torus actions we study are defined as follows.

Definition 2.10. Let β be a positive n-braid word of length r = ℓ(β). The action of the torus
T ∼= (C∗)n on affine space Cℓ(β) is given by

t.(z1, . . . , zr) := (c1z1, . . . , crzr), t ∈ T, (z1, . . . , zr) ∈ Cr,

where ci are defined as above, i ∈ [1, r]. Note that this T-action preserves the braid varietyX0(β) ⊆ Cr

thanks to relation (2.10). Let T := T/C∗
diag
∼= (C∗)n−1, the quotient of T by the diagonal subtorus.

By definition, the T -action T × X0(β) −→ X0(β) on the braid variety X0(β) is the quotient of the
restriction of the above T-action to X0(β) by the diagonal subtorus C∗

diag. Note that the T-action
descends to the T -action quotient since the diagonal subtorus (t, . . . , t) ⊆ T acts trivially on X0(β).□

Example 2.11. Let us consider the braid word β = σ1σ2σ2σ1σ2. If t = (t1, t2, t3) ∈ (C∗)3 we have

t.(z1, z2, z3, z4, z5) =

(
t2
t1
z1,

t3
t1
z2,

t1
t3
z3,

t1
t2
z2,

t3
t2
z5.

)
Remark 2.12. We can read the ti/tj factor of each zk-variable from the braid β as follows. For the
weight of zk, consider the strands that are incident on the left to the k-th crossing of β and follow
them until the left border of β. If the strand incident from the bottom (resp. the top) to the k-th
crossing arrives at the i-th (resp. j-th) level strand at the leftmost end, then the scalar factor for zk
is ti/tj . For example, the next figure illustrates that for z3 in Example 2.11 we have t1/t3. □

The torus action on Cr in Definition 2.10 depends on the choice of braid word β. Nevertheless, we
have the following result.

Lemma 2.13. Let β, β′ be two positive presentations of the same braid, i.e. [β] = [β′]. Then, the
algebraic isomorphism X0(β) ∼= X0(β

′) defined by formulas (2.2) and (2.3) is T -equivariant.

Proof. Let us verify that applying the relation (2.2) defines a T -equivariant isomorphism. For this, it
suffices to consider n = 3, β = σ1σ2σ1 and β′ = σ2σ1σ2. The action of T on C3 that yields the action
on X0(σ1σ2σ1) is given by:

(2.11) (t1, t2, t3).(z1, z2, z3) =

(
t2
t1
z1,

t3
t1
z2,

t3
t2
z3

)
while the T -action on C3 given the action on X0(σ2σ1σ2) is given by:

(2.12) (t1, t2, t3).(w1, w2, w3) =

(
t3
t2
w1,

t3
t1
w1,

t2
t1
w3

)
.

Then (2.11) and (2.12) imply that the map (z1, z2, z3) 7→ (z3, z2 − z1z3, z1) is T -equivariant. The
verification that (2.3) also induces a T -equivariant isomorphism is similar. □
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We also have the following result.

Lemma 2.14. The T -action preserves the product decomposition

X0(β ·∆2) ∼= X0(β ·∆;w0)× C(
n
2)

established in Theorem 2.6.

Proof. This follows from uniqueness of the LU-decomposition, which is indeed unique if the lower
triangular matrix has 1’s on the diagonal. □

Let c(β) be the number of cycles in the cycle decomposition of the Coxeter projection π(β) ∈ Sn, i.e.
the number of cycles of β understood as a permutation. The braid [β] ∈ Brn closes up (either through
the rainbow or (−1)-framed closure, see Figure 2 and Section 2.6 for more details) to a knot in R3 if
and only if c(β) = 1, and there are (n− 1)! such permutations π(β) ∈ Sn. For a braid associated to
a knot, we have the following result.

Lemma 2.15. Let β be a positive braid word, [β] ∈ Br+n , with c(β) = 1. Then the action of T ∼=
(C∗)n−1 on the braid variety X0(β) is free.

Proof. Let (z1, . . . , zr) ∈ X0(β) and assume t.(z1, . . . , zr) = (z1, . . . , zr) for some t ∈ (C∗)n. In
particular, we have that Bβ(z) = Bβ(t.z). Thanks to Equality (2.10), we have that DtBβ(z)D

−1
w(t) =

Bβ(z). Since z ∈ X0(β), the matrix Bβ(z) is upper triangular, and therefore its diagonal entries must
be nonzero, as det(Bβ(z)) = ±1. From the equation

DtBβ(z)D
−1
w(t) = Bβ(z),

it follows that tit
−1
w(i) = 1 for every i = 1, . . . , n. Given that c(β) = 1, we must have that ti = tj for

all i, j and the result follows. □

Corollary 2.16. Let β be a positive braid word, [β] ∈ Br+n , with c(β) = 1. Then the action of
T ∼= (C∗)n−1 on X0(β ·∆;w0) is free.

Proof. Note that c(β) = c(β∆2) and thus, by Lemma 2.15, the T -action on X0(β∆
2) is free. The

result now follows from Lemma 2.14. □

Corollary 2.17. Let β be a positive braid word, [β] ∈ Br+n , with c(β) = 1. Then the quotients of the
braid varieties X0(β · ∆2)/T and X0(β · ∆;w0)/T are smooth and of dimension ℓ(β) +

(
n
2

)
− n + 1

and ℓ(β)− n+ 1, respectively.

Remark 2.18. Similarly to [44, Corollary 4.8] one can argue that for c(β) = 1 we have

X0(β) = (X0(β)/T )× T.

Indeed, fixing the diagonal entries of Bβ(z) provides the corresponding principal T -bundle over
X0(β)/T with a section, hence this bundle is trivial.

The hypothesis c(β) = 1 in Lemma 2.15 is needed, as the T -actions on the braid varieties will in
general fail to be free. For instance, consider the 2-stranded braid β = σ4

1 and its braid variety

X0(β) ∼= {(z1, z2, z3, z4) ∈ C4 : z1 + z3(1 + z1z2) = 0}.

The T -action scales z1 and z3 by t ∈ T ∼= C∗, and scales z2 and z4 by t−1. Hence, it has a fixed point
(z1, z2, z3, z4) = (0, 0, 0, 0) ∈ X0(β). The following remark explains how to proceed in the case that
c(β) ̸= 1.

Remark 2.19. Consider a positive braid word β such that [β] ∈ Br+n closes up to a link with k
connected components, i.e. c(β) = k. Let w = w(β) be the permutation in Sn corresponding to β.
Let C1, . . . , Ck be the disjoint cycles in w, and Cj = (aj,1 . . . aj,ℓj ). Now let Tc ⊆ T be the (n − k)-
dimensional torus given by the equations ta1,ℓ1

= ta2,ℓ2
= · · · = tak,ℓk

. Recall that T = T/C∗, so we

can instead consider the torus T̃c ⊆ T given by the equations ta1,ℓ1
= ta2,ℓ2

= · · · = tak,ℓk
= 1. The

projection T̃c → Tc is an isomorphism, and the actions of Tc, T̃c on the braid varieties coincide, so we
will not distinguish between these tori.
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The same argument as in the proof of Lemma 2.15 shows that Tc acts freely on X0(β). Note that we
obtain that the quotient braid variety X0(β ·∆;w0)/Tc is a smooth variety of dimension ℓ(β)−n+ k,
and a similar result holds for the quotient X0(β ·∆2)/Tc.

This concludes the discussion on the torus action on X0(β). The geometric structures discussed
during the article, e.g. decompositions and holomorphic symplectic structures, are compatible with
these torus actions, and will be studied for the braid varieties X0(β) and their quotients X0(β)/T .

2.3. Toric charts in braid varieties. In this subsection, we construct a codimension-0 toric chart
Tτ ⊆ X0(β · ∆;w0) associated to an (arbitrary) ordering τ ∈ Sl(β) of the crossings of the positive
braid word β. For that, consider two n-braid words

β = σi1σi2 · . . . · σik−1
σikσik+1

· . . . · σil , β′ = σi1σi2 · . . . · σik−1
σik+1

· . . . · σil ,

i.e. β′ is obtained from β by removing the kth crossing σik . We will construct a rational map
X0(β ·∆2) 99K X0(β

′ ·∆2)×C∗ that identifies the latter variety with an explicit open set in X0(β ·∆2).

We start with the following lemma.

Lemma 2.20. Let L and U be invertible lower- and upper-triangular matrices, respectively, and

i = 1, . . . , n− 1. Then there exist lower- and upper-triangular matrices L̃ and Ũ such that

Bi(z)U = ŨBi

(
ui+1,i+1z + ui,i+1

ui,i

)
, LBi(z) = Bi

(
li+1,i+1z + li+1,i

li,i

)
L̃.

Moreover, ũi,i+1 = l̃i+1,i = 0 and ũk,k = usi(k),si(k) for every k.

Proof. We prove the statement for the upper-triangular matrix U , the case of L is proven analogously.
First, note that

(2.13) (Bi(z)U)j,k =


uj,k if j ̸∈ {i, i+ 1},
ui+1,k if j = i,

ui,k + zui+1,k if j = i+ 1,

and

(2.14) (ŨBi(w))j,k =


ũj,k if k ̸∈ {i, i+ 1},
ũj,i+1 if k = i,

ũj,i + wũj,i+1 if k = i+ 1.

Now, assume that we know the matrix U and z, and we want to solve for the entries of Ũ and w in

such a way that Bi(z)U = ŨBi(w). Note that (2.13) and (2.14) force uj,k = ũj,k if j, k ̸∈ {i, i + 1}.
In particular, ũk,k = uk,k if j ̸= i, i+1, and the matrix Ũ is upper triangular except for, perhaps, the
i and i+ 1-st row and column.

Setting j = i = k in (2.14) and (2.13) we obtain ui+1,i = ũi,i+1. Since U is upper triangular, this
forces ũi,i+1 = 0. Now setting j = i and k = i + 1 gives ui+1,i+1 = ũi,i + wũi,i+1, so ũi,i = ui+1,i+1.
Similarly, setting j = i+ 1, k = i we obtain ui,i + zui+1,i = ũi+1,i+1, so the upper triangularity of U
gives us ũi+1,i+1 = ui,i. Note that at this point we have shown that ũk,k = usik,sik for every k.

If k ̸∈ {i, i+ 1} then (2.13) and (2.14) give us

ũi,k = ui+1,k and ũi+1,k = ui,k + zui+1,k.

Similarly, if j ̸∈ {i, i + 1} we obtain (setting k = i) ũj,i+1 = uj,i that the we can use to solve for
ũj,i in the equation uj,i+1 = ũj,i + wũj,i+1, that we obtain setting k = i + 1. Note that at this
point we have found all entries ũk,j , except for ũi+1,i, that we must show is 0. This is where our
choice of w in the statement of the lemma comes into play. Indeed, setting j = i + 1 = k we obtain
ui,i+1 + zui+1,i+1 = ũi+1,i + wũi+1,i+1. Thus, since we know that ũi+1,i+1 = ui,i we obtain

w =
ui+1,i+1z + ui,i+1

ui,i
⇒ ũi+1,i = 0

so the matrix Ũ is upper triangular and the lemma is proved. □
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The key algebraic equality that incarnates opening a crossing σi in a positive braid word, in terms of
braid matrices, reads

(2.15) Bi(z) = Ui(z)Di(z)Li(z),

where the variable z ∈ C∗ associated to that crossing σi is now assumed to be non-zero. In this
equation, we have used the matrices

(2.16) Ui(z) :=

(
1 z−1

0 1

)
, Di(z) :=

(
−z−1 0
0 z

)
, Li(z) :=

(
1 0
z−1 1

)
,

understood as being the (2 × 2)-block matrices placed in i-th and (i + 1)-st row and column. Let
us now illustrate how the process of opening a crossing occurs at the level of general braid matrices,
as follows. Consider the positive braid word β = β1σiβ2 and the braid word β′ = β1β2 obtained by
opening (i.e. removing) the explicit crossing σi between β1, β2. In order to apply Equation 2.15 we
must assume that the variable z associated to the crossing σi is non-vanishing, and we always do so.
Then we write

Bβ = Bβ1
(z1, . . . , zr−1)Bi(z)Bβ2

(zr+1, . . . , zℓ) = Bβ1
Ui(z)Di(z)Li(z)Bβ2

,

and use both Equation (2.9) and Lemma 2.20 to slide the middle matrices to the sides, U,D to the
left and L to the right. This results in a decomposition of the form

Bβ = U ′D′Bβ1(z
′
1, . . . , z

′
r−1)Bβ2

(z′r+1, . . . , z
′
ℓ)L

′ = U ′D′Bβ′(z′1, . . . , z
′
r−1, z

′
r+1, . . . , z

′
ℓ)L

′

where U ′, L′ and D′ are some explicit upper (lower) unitriangular and diagonal matrices, respectively,
and z′1, . . . , z

′
r−1, z

′
r+1, . . . , z

′
ℓ are polynomial functions on z1, . . . , zr−1, z

±1
r , zr+1, . . . , zℓ. Note that

Bβ(z)L1 is upper-triangular for some lower-triangular matrix L1 if and only if Bβ′(z′)L′L1 is upper-
triangular. These are the first ingredients for the construction of the rational map

Ωσi : X0(β∆
2) 99K X0(β

′∆2)× C∗.

For the second ingredient, we consider a point (z1, . . . , zℓ, cij) ∈ X0(β · ∆2). By Theorem 2.6, this
is equivalent to Bβ(z)L(cij) being upper triangular. Now we open a crossing, so we assume zi ̸= 0
is non-vanishing: using the decomposition above we obtained that Bβ′(z′1, . . . , z

′
r−1)L

′L(cij) is upper
triangular. Since L′L(cij) is lower triangular with 1’s in the diagonal, we can write L′L(cij) = L(c′ij),

where c′ij are polynomial functions on z−1
r , zr+1, . . . , zℓ, cij . These polynomial functions are the second

ingredient. In summary, we obtain the following rational map.

Definition 2.21. Consider the positive braid word β = β1σiβ2 of length ℓ = l(β), β′ = β1β2, and
suppose that the complex variable zi associated to the (middle) crossing σi is non-vanishing. By
definition, the rational map Ωσi

associated to opening the crossing σi is

Ωσi
: X0(β∆

2) 99K X0(β
′∆2)× C∗, (z1, . . . , zℓ, cij) 7→ (z′1, . . . , z

′
r−1, z

′
r+1, . . . , z

′
ℓ, c

′
ij , z

−1
r ),

where z′i ∈ C[z1, . . . , zr−1, z
±
r , zr+1, . . . , zℓ], c

′
ij ∈ C[z−1

r , zr+1, . . . , zℓ, cij ] are the polynomial functions
defined as above.

In the same notation and hypothesis as above, we have the following result.

Lemma 2.22. The rational map

Ωσi
: X0(β∆

2) 99K X0(β
′∆2)× C∗

restricts to an isomorphism between the open locus {zr ̸= 0} ⊆ X0(β ·∆2) and X0(β
′ ·∆2)× C∗.

Proof. From the construction, see e.g. Lemma 2.20, if we know z′1, . . . , z
′
r−1, z

′
r+1, . . . , z

′
ℓ and zr then

we can reconstruct z1, . . . , zℓ, provided zr ̸= 0. It remains to show that, if we also know c′ij then
we can reconstruct cij as well. For that, we just notice that we can reconstruct L′, and we have the
equation L(cij) = (L′)−1L(c′ij). □

There are two fundamental properties of these rational maps Ωσi
: they can be iterated, and they are

compatible with the torus action. This leads to the following result.

Proposition 2.23. Let β be a positive n-braid word. For each ordering τ ∈ Sℓ(β) of the crossings of

β, there exists an open set T̃τ ⊆ X0(β ·∆2) such that:
15



(i) T̃τ ∼= (C∗)ℓ(β) ×X0(∆
2) = (C∗)ℓ(β) × C(

n
2).

(ii) T̃τ is given by the non-vanishing of Laurent polynomials in zr1 , z
′
r2 , z

′′
r3 , . . . , z

(ℓ−1)
rℓ ; these latter

variables can be taken as coordinates of the (C∗)ℓ(β)-factor.

(iii) T̃τ is stable under the action of (C∗)n−1 on X0(β ·∆2).

Proof. Parts (i) and (ii) follow from the discussion above, applied iteratively. Thus, the only assertion
that needs a proof is the stability under the torus action in Part (iii). For that, we need to show

that zr1 , z
′
r2 , . . . , z

(ℓ−1)
rℓ are all homogeneous under the (C∗)n−1-action. This is proven in Lemmas 2.29

and 2.30 below (both lemmas are independent of the intervening material), and their corresponding
analogues in the case of lower-triangular matrices. □

Proposition 2.23 and the relation between the braid varieties X0(β ·∆2) and X0(β ·∆;w0), as estab-
lished in Theorem 2.6, imply the following result.

Corollary 2.24. Let β be a positive n-braid word. For each ordering τ ∈ Sℓ(β) of the crossings of β,

there exists an open set Tτ ⊆ X0(β ·∆;w0) which is isomorphic to a torus Tτ ∼= (C∗)ℓ(β) and stable
under the action of (C∗)n−1 on X0(β ·∆;w0).

The union of the toric charts Tτ in Corollary 2.24, as τ ∈ Sℓ(β) ranges through all the possible
orderings, does not necessarily cover the entire variety X0(β ·∆;w0). Fortunately, we can show that
it does cover it up to codimension 2.

Theorem 2.25. Let β be a positive braid word. The complement

X0(β ·∆;w0) \

 ⋃
τ∈Sℓ(β)

Tτ

 ⊆ X0(β ·∆;w0)

has codimension at least 2.

Proof. Let us prove this by induction on the length ℓ(β) ∈ N. The base case, ℓ(β) = 0 holds, as
X0(∆;w0) = {pt}, see Example 2.5. Note that for the case ℓ(β) = 1, β = σi for some i ∈ [1, n − 1],
and X0(β∆;w0) is defined by the condition that Bi(z)

−1 admits an LU -decomposition. (See the proof
of Theorem 2.6.) Note that Bi(z)

−1 is the identity everywhere except in the i and i + 1-st row and
columns, where it is (

−z 1
1 0

)
.

So that Bi(z)
−1 admitting an LU -decomposition is equivalent to the non-vanishing z ̸= 0 (which is

obviously equivalent to the nonvanishing of the principal minors of Bi(z)
−1). ThusX0(β ·∆;w0) = C∗;

thus the statement also holds in this case.

For the induction step, we assume the statement to be true for length ℓ ∈ N and suppose that
ℓ(β) = ℓ + 1. Let U1 := {z1 ̸= 0} and U2 := {z2 ̸= 0} and let β′, β′′ be the braids we obtain by
opening the first and second crossings of β, respectively. In particular, U1 = X0(β

′ ·∆;w0)×C∗ and
U2 = X0(β

′′ ·∆;w0)×C∗. By the induction assumption, U1 and U2 can be covered up to codimension
2 by opening crossings in the positive braids β′, β′′, respectively. Moreover, the complement of U1∪U2

is {z1 = 0} ∩ {z2 = 0}. By Lemma 2.7, X0(β∆;w0) is an open subset in the affine space where zi
are coordinates, so {z1 = 0} ∩ {z2 = 0} ∩ X0(β · ∆;w0) is either empty or has codimension 2 in
X0(β ·∆;w0) and the required result follows. □

The toric charts Tτ ⊆ X0(β · ∆;w0) used in Corollary 2.24 and Theorem 2.25 are constructed in
Proposition 2.23, whose proof we now complete.

2.4. Proof of Proposition 2.23. Let us state and prove Lemma 2.29 and Lemma 2.30, which
will conclude the proof of Proposition 2.23. For that, we will need to establish some notation and
conventions regarding actions of tori on C-algebras.
Let R be a C-algebra, and assume that a torus T acts on R by algebra automorphisms. We will
assume that this action is rational, that is, each element r ∈ R is contained in a finite-dimensional
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T -stable subspace of R. This guarantees that, as a vector space, R is the direct sum of its T -weight
spaces. Equivalently, put more succinctly, R is graded (as a C-algebra) by the character lattice X(T )
of T .

Now, given n > 0, we denote by Mn(R) the algebra of n × n-matrices with coefficients in R. Note
that the action of T on R extends to an action on Mn(R). Indeed, if t ∈ T and U = (ujk) ∈Mn(R),
defining t.U via

(t.U)jk = t.ujk

defines an action of T on Mn(R) and it respects the multiplication on Mn(R).

Our preferred torus will be, as in the previous sections, T = (C∗)n/C∗, the quotient of (C∗)n by its
diagonal torus. Its character lattice is X(T ) = {(a1, . . . , an) ∈ Zn |

∑
ai = 0}. For i ∈ [1, n], we

denote by ei the vector (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn, where the 1 is on the i-th position, so that the
differences ei − ej belong to X(T ).

Definition 2.26. Let T be the torus (C∗)n−1 = (C∗)n/C∗, w ∈ Sn a permutation, and assume
that T acts rationally and by algebra automorphisms on a C-algebra R. By definition, a matrix
U = (ua,k) ∈Mn(R) is said to be w-admissible if ua,k ∈ R is homogeneous of weight

wt(ua,k) = ew(a) − ew(k)

for every a, k ≤ n.

Remark 2.27. (Characterization of w-admissibility) Consider the torus T = (C∗)n. Under the
assumptions of Definition 2.26, T acts on R via the projection T → T . Thus, as explained in the
discussion above, it also acts onMn(R). Independently, since R is a C-algebra, the torus T embeds into
Mn(R) as the torus of diagonal matrices with entries in C∗. As above, for t = (t1, . . . , tn) ∈ (C∗)n,
let us denote by Dt the diagonal matrix diag(t1, . . . , tn). Then, U is w-admissible if and only if
t.U = Dw(t)UD

−1
w(t).

Before we proceed with Lemma 2.29, here is an example of a w-admissible matrix.

Example 2.28. Let w ∈ Sn be any permutation and assume z0 is an invertible element of weight
wt(z0) = ew(i+1) − ew(i). Then the matrix Ui(z0) = Id+ z−1

0 Ei,i+1 is w-admissible.

Consider a w-admissible matrix U ∈ Mn(R) and z an element of weight wt(z) = ew(a) − ew(b) +
ew(m) − ew(k) for some a, b,m, k ∈ [1, n]. Then the element ua,k + zub,m is homogeneous. The salient
property of admissible matrices, which motivates their definition, is that they allow us to construct
homogeneous elements for the torus action, as the following result shows.

Lemma 2.29. Let w ∈ Sn be a permutation, U0 be an invertible upper-triangular w-admissible matrix,
and β = σiℓ · · ·σi1 a positive braid word. Consider algebraically independent variables zℓ, . . . , z1 with
weights

wt(zk) = −ewk−1(ik+1) + ewk−1(ik).

where wd = wsi1 · · · sid , and inductively define (see Lemma 2.20) the upper triangular matrices
U1, . . . U ℓ and elements z′ℓ, . . . , z

′
1 ∈ R[zℓ, . . . , z1] by the equation

Bid+1
(zd+1)U

d = Ud+1Bid+1
(z′d+1),

Then the following two facts hold:

(a) The elements z′1, . . . , z
′
ℓ+1 are all homogeneous with respect to the torus action and, moreover,

wt(z′d) = wt(zd) for every d = 1, . . . , ℓ.

(b) For every d = 0, . . . , ℓ, the matrix Ud is invertible, upper triangular, wd-admissible and has
entries in the polynomial ring R[zd−1, . . . , z1].

Proof. A computation shows that the matrices U0, . . . , U ℓ are invertible and upper triangular. In
order to prove the remaining claims, we induct on the length ℓ, with the base ℓ = 0 holding by
assumption.

For the inductive step, suppose that the statement holds for positive braids of length ℓ, and consider
a positive braid β = σiℓ+1

σiℓ · · ·σi1 of length ℓ + 1. Note that the matrices U0, U1, . . . , U ℓ and the
elements z′1, . . . , z

′
ℓ coincide with those for the braid σiℓ · · ·σi1 , so we only need to show that the
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element z′ℓ+1 is homogeneous of the same weight as zℓ+1, and that the matrix U ℓ+1 is wsi1 · · · siℓ+1
-

admissible. To ease the notation, we will write i := iℓ+1.

By the comment preceding the lemma, each of the entries of the matrix Bi(zℓ+1)U
ℓ is homogeneous.

The (i+ 1, i+ 1)-entry of this matrix is uℓi+1,i+1zℓ+1 + uℓi,i+1. Dividing by uℓi,i we obtain that

z′ℓ+1 =
uℓi+1,i+1zℓ+1 + uℓi,i+1

uℓi,i

is homogeneous. Since the diagonal entries of U ℓ have weight 0 and every entry of U ℓ is algebraically
independent with zℓ+1, we obtain that z′ℓ+1 is homogeneous of the same weight as zℓ+1. Moreover,

using again the wℓ-admissibility assumption for U ℓ we have that every entry of the matrix U ℓB−1(z′ℓ+1)
is homogeneous.

Now U ℓ+1 = Bi(zℓ+1)U
ℓB−1

i (z′ℓ+1). We check that this matrix is wℓ+1 = wℓsi-admissible. Indeed,

computing Dwℓ+1(t)U
ℓ+1D−1

wℓ+1(t)
we have

Dwℓ+1(t)U
ℓ+1D−1

wℓ+1(t)
= (t.Bi(zℓ+1))Dw(t)U

ℓD−1
w(t)(t.B

−1
i (z′ℓ+1))

= (t.Bi(zℓ+1))(t.U
ℓ)(t.B−1

i (z′ℓ+1))
= t.(U ℓ+1)

where the first equality follows from (2.9). This concludes the proof thanks to Remark 2.27. □

The proof of the following result is similar to that of Lemma 2.29 and left to the reader.

Lemma 2.30. Let U ∈ Mn(R) be a w-admissible upper-triangular matrix and z0 ∈ R homogeneous
and invertible with weight wt(z0) = −ew(i+1) + ew(i). Then the matrix U ′ = Di(z0)UD

−1
i (z0) is

wsi-admissible.

This concludes the necessary ingredients for Proposition 2.23, and thus completes our argument for
Corollary 2.24 and Theorem 2.25. The following three subsections relate the results and constructions
of Subsections 2.1, 2.2 and 2.3 to character varieties, through the work of P. Boalch, A. Mellit [7, 8, 9,
82] and others, augmentation varieties, as featured in [23, 65, 66], and open Bott-Samelson varieties,
according to [100, 102].

2.5. Mellit’s chart and sequences of crossings. In this subsection we recast a construction from
[82] in the light of braid varieties, in particular defining a certain toric chart in X0(β∆;w0), which we
refer to as the Mellit chart. The main result of the subsection is that the Mellit chart can be obtained
by our opening-crossing procedure from Subsection 2.3 above. In order to connect to [82], we need
the following preliminary discussion.

Let w ∈ Sn be a permutation and Cw = BwB ⊆ GL(n,C) the Bruhat cell corresponding to w, where
B ⊆ GL(n,C) is the Borel subgroup of upper-triangular matrices. Recall that the product of any two
matrices in Cu and Cv belongs to Cuv if ℓ(uv) = ℓ(u)+ℓ(v). Consequently, for any reduced expression
u = si1 · · · siℓ , the associated braid matrix Bu(z1, . . . , zℓ) belongs to the Bruhat cell Cu. Recall that
we interchangeably use the notation si and σi for the Artin generators of the braid group, which is
particularly well-suited when comparing to the notation used in [82].

Proposition 2.31. Let u = si1 · · · siℓ be a reduced expression and suppose that ℓ(usi) = ℓ(u) − 1.
Then there exists k ∈ N such that:

(a) The matrix Bu(z1, . . . , zℓ)Bi(z) belongs to the Bruhat cell Cu if and only if zk ̸= 0,

(b) In case zk ̸= 0, we can uniquely write Bu(z1, . . . , zℓ)Bi(z) = UBu(z
′
1, . . . , z

′
ℓ) for a certain

upper-triangular matrix U .

Proof. Since ℓ(usi) = ℓ(u) − 1, there exists k ∈ N such that usi = si1 · · · ŝik · · · siℓ (this is known
as exchange property for the Coxeter group Sn). That is, we can write u = u1siku2 such that
siku2 = u2si, and thus usi = u1siku2si = u1siksiku2 = u1u2. This implies the following equation for
the braid matrices:

Bu(z1, . . . , zℓ)Bi(z) = Bu1
(z1, . . . , zk−1)Bik(zk)Bik(z

′)Bu2
(z′k+1, . . . , z

′
ℓ),
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where z′, z′k+1, . . . , z
′
ℓ are some functions of z, zk+1, . . . , zℓ. If zk ̸= 0, then we can further write

Bik(zk)Bik(z
′) = UBik(z

′′), so

Bu(z1, . . . , zℓ)Bi(z) = ŨBu1
(z′1, . . . , z

′
k−1)Bik(z

′′)Bu2
(z′k+1, . . . , z

′
ℓ) = ŨBu(z

′
1, . . . , z

′
k−1, z

′′, z′k+1, . . . , z
′
ℓ)

and the result is in the Bruhat cell Cu. If instead zk = 0, then Bik(zk)Bik(z
′) is upper-triangular,

and Bu(z1, . . . , zℓ)Bi(z) is in the Bruhat cell Cu1u2
, which is disjoint from Cu. □

Example 2.32. Consider β1 = s1s2s1s1 and β2 = s1s2s1s2. Then the braid matrix Bβ1
(z1, z2, z3, z4)

is in the Bruhat cell Cs1s2s1 if and only if z3 ̸= 0. In contrast, the braid matrix Bβ2(z1, z2, z3, z4) is in
the Bruhat cell Cs1s2s1 if and only if z1 ̸= 0. In both cases, we have a reduced expression u = s1s2s1
and a simple reflection s1, resp. s2, satisfying the assumption of Proposition 2.31.

Remark 2.33. The index k ∈ N from Proposition 2.31 is unique and can be described geometrically,
as follows. Draw a braid diagram for u, labeling the strands 1 to n on the right. Since ℓ(usi) = ℓ(u)−1,
the i-th and (i + 1)-st strands intersect somewhere in the diagram for u. Given that u is reduced,
they intersect exactly once. The index k corresponds to this intersection point. □

Let us now compare our construction to [82], with β∆ = si1 · · · si
ℓ+(n2)

a positive braid. In [82, Section

5.4], a sequence of permutations p0 = 1, p1, . . . , pℓ+(n2)
is defined according to the following rules:

(a) If ℓ(pk−1sik) = ℓ(pk−1) + 1 then pk = pk−1sik ,
(b) If ℓ(pk−1sik) = ℓ(pk−1)− 1 then pk = pk−1.

In the terminology of ibid., this sequence is a walk which never goes down.

Remark 2.34. The permutations 1 = p0, p1, . . . , pℓ+(n2)
may be described in terms of the Demazure

product, cf. Section 4.4. Indeed, using the notation of that section it follows that pj = δ(σi1 · · ·σij ).

Let us now describe the toric chart used in [82].

Definition 2.35 (Mellit Chart). Let β be a positive n-braid word, the Mellit chart M ⊆ X0(β∆, w0)
is defined as the locus of z1, . . . , zs such that

(2.17) Bi1(z1) · · ·Bis(zs) ∈ Cps
for all s ≤ ℓ+

(
n

2

)
.

Note that M ⊆ X0(β∆, w0) is codimension-0 and Zariski open in X0(β∆, w0).

Remark 2.36. By definition, the Mellit chart M is closely related to the maximal piece in the
Deodhar decomposition [32].

At this stage, our Corollary 2.24 provides many toric charts Tτ for X0(β∆, w0), (surjectively) indexed
by orderings τ ∈ Sℓ(β) of the crossings. The toric chart M introduced in Definition 2.35 is also a
subset of X0(β∆, w0), and it is thus natural to ask whether M is of the form Tτ and, if so, for which
ordering τ this is the case. This is answered in our next result (and its proof).

Theorem 2.37. Let β be a positive braid word. Then there exists an ordering τ(β) ∈ Sℓ(β) of the
crossings such that Tτ(β) ⊆ X0(β∆, w0) coincides with the Mellit chart M ⊆ X0(β∆, w0).

Proof. The ordering τ(β) in which we open the crossings is as follows. First, we find the smallest j such
that pj−1 = pj . This means that pj−1 = si1 · · · sij−1 is a reduced word and ℓ(pj−1sij ) = ℓ(pj−1)− 1.
The condition (2.17) holds automatically for s < j, and for s = j we can apply Proposition 2.31:
there exists some k < j such that Bi1(z1) · · ·Bij (zj) ∈ Cpj

if and only if zk ̸= 0.

It follows from Remark 2.33 that the crossing with index k is in the braid β, and never in ∆. We
can open this crossing and obtain a new braid β′∆. By Proposition 2.31, a point in X0(β∆, w0) is in
the Mellit chart if and only if the corresponding point in X0(β

′∆, w0) is in the respective chart. This
process can be continued iteratively. Eventually, all crossings in β will be exhausted, and we reach a
reduced expression ∆, which satisfies the defining inclusion (2.17) automatically. □

Example 2.38. Consider the positive 3-braid β = σ1σ2σ1, and thus β∆ = σ1σ2σ1σ1σ2σ1. By
opening the third crossing from the left σ1, we reach the braid word σ1σ2σ1σ2σ1. Then we open
the first (leftmost) σ1 crossing and obtain σ2σ1σ2σ1. Finally, opening again the first (leftmost)
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crossing σ2 in the resulting braid (which corresponds to the second crossing in the original braid)
we reach the positive braid word ∆ = σ1σ2σ1. This sequence of crossings τ(β) yields a toric chart
Tτ(β) ⊆ X0(β∆, w0) which coincides with the Mellit chart M ⊆ X0(β∆, w0).

This concludes our discussion on the Mellit chart and the relation between our Corollary 2.24 and
[82, Section 5]. Let us shift our focus towards augmentation varieties, a class of algebraic varieties
which are central to the study of Legendrian links in contact 3-manifolds.

2.6. Augmentation varieties as quotient braid varieties. In this subsection, we establish a con-
nection between braid varieties and augmentation varieties. The latter are a class of varieties that
feature saliently in the study of Floer-theoretic invariants associated to Legendrian links Λ ⊆ (R3, ξst).
The reader is referred to [48] for the basics of 3-dimensional contact topology, [84] for a survey on
Floer-theoretic invariants of Legendrian knots, and [23, 27, 65, 66] for further details.

Figure 2. The front projection known as the rainbow closure of β.

Let β ∈ Br+n be a positive braid word and Λ(β) ⊆ (R3, ξst) the Legendrian link associated to the
rainbow framed closure of the braid β. This is the front diagram for Λ(β) depicted in Figure 2,
cf. [17, 23]. Let us also choose a collection of marked points t ⊆ β on the Legendrian link Λβ , see e.g.
[85, 86]. In our case, the two choices for marked points that we use are:

(1) A choice of one marked point per strand of the braid β, this collection of marked points will
be denoted by ts.

(2) A choice of one marked point per component of the Legendrian link Λ(β) ⊆ (R3, ξst), this
collection will be denoted by tc.

By convention, we place all marked points to the right of all crossings in β and before the right cusps.
Though not essential, this convention will be useful in simplifying some statements. Note also that tc
technically depends on a choice of strand per component of Λ(β), but for the sake of readability we
prefer to not include this into our notation. Figure 3 depicts two instances of such placing of marked
points.

Figure 3. The front (xz) projection of the rainbow closure of the braid word
β = σ1σ2σ3σ1σ2σ1, with one marked point per strand (left) and one marked point
per component (right). This is a braid word for the half-twist ∆4. Note that the
Legendrian condition implies that all crossings are overcrossings. Note also that the
marked points are located to the right of all crossings of β.
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Let A(β, t) be the commutative Legendrian Contact DGA of the Legendrian link Λ(β) ⊆ (R3, ξst)
endowed with a set of marked points t ⊆ Λ(β). The stable tame isomorphism type, and thus the
quasi-isomorphism type, of this differential graded algebra (DGA) is an invariant of the Legendrian
link Λ(β) ⊆ (R3, ξst) with marked points t up to Legendrian isotopy. It was defined by Y. Chekanov
[27] over Z2-coefficients and latter lifted to Z-coefficients and marked points [85, 86], see [84] for a
survey. The differential of A(β, t) is given by a count of (pseudo)holomorphic strips whose asymp-
totics are governed by the Legendrian link Λ ⊆ (R3, ξst). In the case of a rainbow closure Λ = Λ(β),
the differential is always given by polynomials in the generators, an explicit formula is given in [23,
Section 5]. In this manuscript, the augmentation variety Aug(β, t) associated to (β, t) is defined to be
Aug(β, t) := Spec H0(A(β, t)), the affine variety associated to the 0th homology of this DGA. This
is an affine algebraic variety defined over Z. The fact that A(β, t) is non-negatively graded implies
that the set of R-points of Aug(β, t) can be identified with Homdg(A(β, t), R), the set of dg-algebra

morphisms from A(β, t) to R, where R is taken to be a dg-algebra concentrated in degree 0 and with
trivial differential.

In the case of Legendrian links Λ ⊆ (R3, ξst) associated to positive braids, Λ ≃ Λ(β), augmentation
varieties Aug(β, t) are closely related to braid varieties. This will follow from the work of T. Kálmán
[66], cf. also [23, Section 5], as we will now explain.

Theorem 2.39. Let β be a positive braid word, [β] ∈ Br+n . The following two statements hold:

(i) There exists an algebraic isomorphism Aug(β, ts) ∼= X0(β ·∆;w0).

(ii) Let Tc ⊆ (C∗)n be the algebraic torus determined by tw−1(i) = 1 if the ith strand of the
braid β has a marked point in tc (compare with Remark 2.19). Then there exists an algebraic
isomorphism

Aug(β, tc) ∼= X0(β ·∆;w0)/Tc.

Proof. Let us use the following characterization by T. Kálmán [65, 66] (see also [23]): if β is a positive
braid word and i1, . . . , is are strands that carry a marked point (to the right of every crossing) then

the augmentation variety is the affine subvariety of Cℓ(β)+(n2) × (C∗)s given by the equation

(2.18) Bβ(z)


1 0 · · · 0
c21 1 · · · 0
...

...
. . .

...
cn1 cn2 · · · 1

 diag(t1, . . . , tn) is upper triangular with a prescribed diagonal

where the notation follows the convention that in diag(t1, . . . , tn) we have ti = 1 if i ̸= i1, . . . , is.
For the choice of marked points ts, this reduces to Bβ(z)B∆(u)w0 being upper triangular, which
is precisely the definition of X0(β · ∆;w0). This establishes the statement in (i). For the choice
of marked points tc, as in (ii), Equation (2.18) reduces to Bβ(z)B∆(u)w0 being upper triangular
with a prescribed diagonal outside of the strands carrying marked points. Since the action of Tc on
X0(β ·∆;w0) is free (see Remark 2.19) the quotient map X0(β ·∆;w0)→ X0(β ·∆;w0)/Tc is a principal
Tc-bundle. In consequence, X0(β · ∆;w0)/Tc is equivalent to the closed subvariety of X0(β · ∆;w0)
given by prescribing the diagonal elements in Bβ·∆w0 at entries corresponding to strands not carrying
marked points. □

In contact geometry, opening a crossing from β = β1σiβ2 to β
′ = β1β2 can be realized by an embedded

exact Lagrangian cobordism Li ⊆ (R3 × Rt, d(e
tα)) in the symplectization of (R3, ξst), with ∂Li =

∂−Li ∪ ∂+Li and ∂−Li = Λ(β′) and ∂+Li = Λ(β) [1, 11] (this is correct in the case that the positive
braid has a half-twist remaining [23, 34], which will always be the case in our context). It follows
from the Floer-theoretic functoriality proven in [34, 89] that such a Lagrangian cobordism induces an
algebraic regular map ΦLi : Aug(β′, t) −→ Aug(β, t) between augmentation varieties. It follows from
[23, 34] that the (Z-lifted) Floer-theoretical map ΦLi agrees with the (quotient of the) map Ωσi we
constructed in Subsection 2.3.
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The toric charts we constructed in Corollary 2.24, using Proposition 2.23, can now be used to give an
open cover of the augmentation varieties in Theorem 2.39, up to codimension 2, as follows.

Corollary 2.40. Let β be a positive braid word, [β] ∈ Br+n , with c(β) = k. Geometrically, the
Legendrian link has Λ(β) has k connected components. For each ordering τ ∈ Sℓ(β) of the crossings of

β there exist codimension-0 toric charts T c
τ ⊆ Aug(β, tc) and T

s
τ ⊆ Aug(β, ts), with T

c
τ
∼= (C∗)ℓ(β)−n+k

and T s
τ
∼= (C∗)ℓ(β) such that the complements

Aug(β, tc) \

 ⋃
τ∈Sℓ(β)

T c
τ

 ⊆ Aug(β, tc), Aug(β, ts) \

 ⋃
τ∈Sℓ(β)

T s
τ

 ⊆ Aug(β, ts)

both have codimension at least 2.

Proof. In view of Theorem 2.39, only the statement for Aug(β, tc) remains unproven. It follows from
the T -stability of the toric charts on the braid variety X0(β ·∆;w0), cf. Corollary 2.24. □

2.7. Open Bott-Samelson varieties. This section is not required for the rest of the manuscript:
it is provided here for contextual completeness with respect to the articles [17, 47, 100, 101]. The
purpose of this section is to relate the braid variety X0(β) to the (diagonal) open Bott-Samelson
variety OBS(β) associated to the braid β. This is achieved in Theorem 2.43 below, after a brief
reminder on Bott-Samelson varieties.

Consider G := GL(n,C), B ⊆ G the Borel subgroup of upper-triangular matrices and the flag variety
Fℓ := G/B. The projective variety Fℓ is the moduli space of complete flags of subspaces in Cn: an
element F ∈ Fℓ is a flag F = (F1 ⊆ · · · ⊆ Fn) where dimFi = i. Given a flag F ∈ Fℓ, we can choose
a basis (v1, . . . , vn) of Cn such that Fj = ⟨v1, . . . , vj⟩ for j = 1, . . . , n; we denote by VF ∈ G the
matrix whose columns are the vectors vi expressed in the standard basis. Conversely, given a matrix
V ∈ G, we can consider a flag FV = (F1 ⊆ · · · ⊆ Fn) where Fj is the span of the first j columns

of the matrix V . In this correspondence, two flags are equal FV = FV ′
if and only if their matrices

V, V ′ are related by an upper triangular matrix, i.e. V = V ′U for some U ∈ B.
By definition, two flags F ,F ′ ∈ Fℓ are in relative position si, i ∈ [1, n − 1], if Fj = F ′

j for j ̸= i

and Fi ̸= F ′
i . In terms of their matrices, the flags FV ,FV ′

are in relative position si if and only if
there exist upper-triangular matrices A1 and A2 such that V ′ = V A1siA2, where si is understood as
a permutation matrix.

Remark 2.41. Since the permutation matrix si = Bi(0) is a braid matrix with the variable set to

zero, it follows from Lemma 2.20 that the flags FV and FV ′
are in relative position si if and only if

there exist an upper-triangular matrix U and z ∈ C such that V ′ = V UBi(z).

Building on the articles [12, 30], and the subsequent developments [17, 100, 101, 102], we introduce
the two algebraic varieties OBS(β) and OBS′(β) as follows.

Definition 2.42. Let β = σi1 · · ·σiℓ be a positive braid word.

(i) The open Bott-Samelson variety OBS(β) ⊆ Fℓℓ+1 associated to β is the moduli space of
(ℓ+1)-tuples of flags (F0, . . . ,Fℓ) such that consecutive flags Fk−1,Fk are in relative position
sik , for each k ∈ [1, ℓ].

(ii) The diagonal open Bott-Samelson variety OBS′(β) ⊆ OBS(β) is the closed subvariety defined
by the additional condition that F0 = Fℓ.

The diagonal open Bott-Samelson variety OBS′(β) will be related to the braid variety, as we now
explain. First, let us construct a map π : G × X0(β) → OBS′(β) as follows. Consider a point
(z1, . . . , zℓ) ∈ X0(β) and a matrix V ∈ G, and define Vk := V Bi1(z1) · · ·Bik(zk) ∈ G. The map π is
then defined by:

π : G×X0(β) −→ OBS′(β), π(V, z1, . . . , zℓ) := (FV ,FV1 , . . . ,FVℓ).

It follows from Remark 2.41 that π(V, z1, . . . , zℓ) ∈ OBS(β) and since Vℓ = V Bβ(z1, . . . , zℓ), and
(z1, . . . , zℓ) ∈ X0(β), we actually have that π(V, z1, . . . , zℓ) ∈ OBS′(β). Thus, the image of π belongs
to OBS′(β) ⊆ OBS(β), as written above. This map is, in general, not an isomorphism. Nevertheless,
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we will now construct a right B-action on the product G×X0(β), and π will descend to an isomorphism
on the quotient.

Indeed, consider an upper-triangular matrix U = U0 ∈ B and define z′1, . . . , z
′
ℓ and U1, . . . , U ℓ ∈ B

inductively via the equation

(2.19) Biℓ−k
(zℓ−k)U

k = Uk+1Biℓ−k
(z′ℓ−k).

It follows from the equation U ℓBβ(z1, . . . , zℓ) = Bβ(z
′
1, . . . , z

′
ℓ)U

0 that (z1, . . . , zℓ) ∈ X0(β) if and only
if (z′1, . . . , z

′
ℓ) ∈ X0(β). For each (V, z1, . . . , zℓ) ∈ G×X0(β) and upper-triangular matrix U = U0 ∈ B,

we define its (right) action by:

(V, z1, . . . , zℓ) · U := (V U ℓ, z′1, . . . , z
′
ℓ).

The usefulness of this right action is manifest in the main result of this subsection which reads as
follows.

Theorem 2.43. Let β be a positive braid word, G = GL(n,C) and B ⊆ G the Borel subgroup of
upper-triangular matrices. Then

(i) The right B-action on G×X0(β) defined above is free.

(ii) The map π : G×X0(β) −→ OBS′(β) induces an isomorphism (G×X0(β))/B ∼= OBS′(β).

Proof. Let us first prove the freeness of the right B-action. Indeed, suppose that there exists a fixed
point, i.e. there exist U ∈ B and (V, z1, . . . , zℓ) ∈ G×X0(β) such that

(V, z1, . . . , zℓ) · U = (V, z1, . . . , zℓ).

Since z′j = zj for every j ∈ [1, ℓ], it follows from Equation (2.19) that the matrices U,U1, . . . , U ℓ are

pairwise conjugate. In particular, the initial upper-triangular matrix U is conjugate to U ℓ. Never-
theless, the condition V U ℓ = V implies that U ℓ = Id, and it follows that U = Id. The action is thus
free.

Second, let us show that the map π is surjective, onto the diagonal open Bott-Samelson variety
OBS′(β). For that, consider a point (F0, . . . ,Fℓ) ∈ OBS′(β) and let V ∈ G be any matrix such that
FV = F0. Thanks to Remark 2.41, we have that there exist upper-triangular matrices U1, . . . , U ℓ

and z1, . . . , zℓ ∈ C such that

Fk = FV U1Bi1 (z1)···U
kBik

(zk) for all k = 1, . . . , ℓ.

Now, use Lemma 2.20 to slide all the upper triangular matrices U2, . . . , U ℓ to the left; this yields

upper-triangular matrices Û1 = U1, Û2, . . . , Û ℓ and ẑ1, . . . , ẑℓ with the property that, for every k:

V Û1 · · · Û ℓBi1(ẑ1) · · ·Bik(ẑk) = V U1Bi1(z1) · · ·UkBik(zk)Û ,

and
ÛBik+1

(ẑk+1) · · ·Biℓ(ẑℓ) = Uk+1Bik+1
(zk+1) · · ·U ℓBiℓ(zℓ),

where Û is an upper-triangular matrix depending on k. This implies that π(V Û1 · · · Û ℓ, ẑ1, . . . , ẑℓ) =
(F0, . . . ,Fℓ). It remains to show that (ẑ1, . . . , ẑℓ) ∈ X0(β), that is, the matrix Bβ(ẑ1, . . . , ẑℓ) is upper-

triangular. Since F0 = Fℓ, the matrices V and V Û1 · · · Û ℓBℓ(ẑ1, . . . , ẑℓ) differ by an upper-triangular

matrix. Since Û1, . . . , Û ℓ are upper-triangular, the result follows. Thus, π is surjective.

Third, let us prove that the map π is B-invariant. We need to check that for every k the matri-
ces V Bi1(z1) · · ·Bik(zk) and V U ℓBi1(z

′
1) · · ·Bik(z

′
k) differ by an upper-triangular matrix. It follows

from Equation (2.19) that this matrix is precisely U ℓ−k, which is upper-triangular. This proves
B-invariance.
Finally, we must show that if π(V, z1, . . . , zℓ) = π(V ′, z′1, . . . , z

′
ℓ) then there exists an upper triangular

matrix U such that (V ′, z′1, . . . , z
′
ℓ) = (V, z1, . . . , zℓ) · U . For that, note that FV = FV ′

implies that

there exists an upper-triangular matrix, say U ℓ, such that V ′ = V U ℓ. Since FV Bi1
(z1) = FV ′B′

i1
(z′

1),
there also exists an upper-triangular matrix, say U ℓ−1, such that V ′B′

i1
(z′1) = V Bi1(z1)U

ℓ−1. In

consequence, we obtain the equality V U ℓBi1(z
′
1) = V Bi1(z1)U

ℓ−1, and thus U ℓBi1(z
′
1) = Bi1(z1)U

ℓ−1.
Note that this is precisely Equation (2.19). We iterate this procedure until we find U0, which is the
required upper-triangular matrix. This concludes the proof of the statement. □
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Remark 2.44. By [20, Section 6.4] or [101, Theorem 3.9], for certain β, the variety OBS′(β) is
closely related to a suitable positroid variety [71], see also [18]. See [44], where the topology of
positroid varieties is studied in detail.

Remark 2.45. As a side note, the homotopy types of the varieties X0(β) and OBS′(β) appear to be
related to the spectra constructed in [70]. This remains to be explored.

This concludes our discussion relating braid varieties to open Bott-Samelson varieties. Let us now
move to the construction of a holomorphic symplectic structure on braid varieties X0(β).

3. Holomorphic Symplectic Structure

This section constructs holomorphic symplectic structures on the quotients X0(β∆;w0)/T of braid
varieties, establishing the remainder of Theorem 1.1.(iii). In particular, Theorem 2.39 will imply that
the augmentation variety associated to a Legendrian link Λ(β), β a positive braid word and a certain
choice of marked points, is holomorphic symplectic. In addition, the toric charts we built in Corollary
2.24 will actually be exponential pre-Darboux charts (cf. Example 3.1 below) for a closed holomorphic
2-form on X0(β∆;w0), and they will project via the torus quotient to exponential Darboux charts
for this holomorphic symplectic structure. The construction we present draws from the literature on
character varieties, where the holomorphic symplectic structures on character varieties have a central
role, starting with the Atiyah-Bott-Goldman structures [3, 49] and continuing with, e.g., the work of
P. Boalch and L. Jeffrey [6, 7, 8, 64, 82].

Example 3.1. Let T = (C∗)n be an algebraic torus with coordinates (x1, . . . , xn) ∈ (C∗)n. In
general, a holomorphic 2-form ω ∈ Ω2

T on T is an expression of the form

ω =
∑
i<j

fij(x1, . . . , xn)dxidxj ,

where fij(x1, . . . , xn) : T −→ C are holomorphic functions. For instance,

ω = (x1x2)
−1dx1dx2

is a holomorphic 2-form on (C∗)2. In general, a set of coordinates (x1, . . . , xn) ∈ (C∗)n are said to be
exponential pre-Darboux coordinates for a holomorphic 2-form ω ∈ Ω2

T if ω is expressed in this set of
coordinates as

ω =
∑
i<j

Cij · (xixj)−1dxidxj ,

where Cij ∈ C are all constant functions. If one defines Xi := log(xi), so that we can formally write

dXi = d log(xi) = x−1
i dxi, then exponential pre-Darboux coordinates are such that

ω =
∑
i<j

Cij · dXidXj ,

i.e. the coefficients are constant with respect to the expressions {dX1, . . . , dXn}. The 2-form that we
now construct in Subsection 3.1 will be endowed with a set of exponential pre-Darboux coordinates.

Remark 3.2. We use the term pre-Darboux, instead of Darboux, because ω might not a priori be
symplectic and the constants might not define the standard symplectic basis. If ω is symplectic and
{Xi = log(xi)} are chosen as the standard symplectic basis, then exponential pre-Darboux coordinates
coincide with the usual exponential Darboux coordinates.

3.1. Construction of a 2-form. First, let us review the construction of a 2-form on the braid variety
X0(β) according to [64, 82]. For that, let θ := f−1df and θR := dff−1 denote respectively the left-
and right-invariant algebraic 1-forms on the (complex) Lie group G = GL(n,C); these 1-forms are
valued in the Lie algebra g = gl(n), and θ is referred to as the Maurer-Cartan form. We have the
following facts (see e.g. [64, Section 4],[82, Section 3]):

(a) The 3-form Ω := 1
6Tr(θ ∧ [θ, θ]) is closed and represents a nontrivial class in H3(G;C) ≃ C.
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(b) There is a 2-form (f |g) := Tr(π∗
1θ ∧ π∗

2θ
R) = Tr(f−1df ∧ dgg−1) on G × G satisfying the

following two “cocycle conditions”:

(3.1) d(f |g) = π∗
1Ω−m∗Ω+ π∗

2Ω,

(3.2) (g|h)− (fg|h) + (f |gh)− (f |g) = 0,

where π1, π2,m : G×G→ G are the two projections and the Lie group multiplication map.

Definition 3.3. Let X be an arbitrary algebraic variety. A map f : X → G is said to be Ω-trivial if
f∗Ω = dω for some 2-form ω on X.

Suppose that two maps f : X → G and g : Y → G are Ω-trivial, then the product

f · g : X × Y f×g−−−→ G×G m−→ G

is also Ω-trivial. Indeed, if f∗Ω = dωX and g∗Ω = dωY then (3.1) implies

(f · g)∗Ω = d(ωX + ωY − (f |g)).

By iterating this construction, we obtain the following result.

Proposition 3.4. Suppose that fi : Xi → G, i ∈ [1, r] are Ω-trivial maps with f∗i Ω = dωi and consider
the form on X1 × · · · ×Xr given by:

(3.3) ω :=
∑

ωXi
− (f1|f2)− (f1f2|f3)− . . .− (f1 · · · fr−1|fr).

Then

(f1 · · · fr)∗Ω = dω.

Let us abbreviate:

(3.4) (f1|f2| · · · |fr) := (f1|f2) + (f1f2|f3) + . . .+ (f1 · · · fr−1|fr)

so that (3.3) can be more succinctly written as

(3.5) ω =
∑

ωXi
− (f1|f2| · · · |fr).

The condition (3.2) implies that this operation defines an associative convolution (f1|f2| · · · |fr) on
collections of Ω-trivial maps. The following identity will be useful for us.

Lemma 3.5. For fi : Xi → G, i = 1, . . . , r we have:

(3.6) (f1| · · · |fr) = (f1| · · · |fjfj+1| · · · |fr) + (fj |fj+1).

Proof. This follows from (3.2). Let us set f := f1 · · · fj−1. It follows from the definition (3.4) that
(3.6) is equivalent to

(f |fj) + (ffj |fj+1) = (f |fjfj+1) + (fj |fj+1).

This latter identity is a consequence of (3.2). □

Example 3.6. Suppose that D1, . . . , Dr are diagonal matrices. Then Di and dDi all commute with
each other, and one can prove by induction that

(3.7) (D1| · · · |Dr) =
∑
i<j

Tr(d logDi ∧ d logDj).

Indeed, if r = 2 then

(D1|D2) = Tr(D−1
1 dD1 ∧ dD2 ·D−1

2 ) = Tr(d logD1 ∧ d logD2).

For the step of the induction, we write

(D1| · · · |Dr+1) = (D1| · · · |Dr)+(D1 · · ·Dr|Dr+1) = (D1| · · · |Dr)+Tr (d log(D1 · · ·Dr) ∧ d logDr+1) =

(D1| · · · |Dr) +

r∑
i=1

Tr(d logDi ∧ d logDr+1).
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Having summarized the necessary ingredients, let us apply this construction to braid varieties as
follows. We can regard the braid matrices Bi(z) as functions Bi : C → G where z is the coordinate
on C. The first key fact is that the maps Bi : C→ G given by the braid matrices are Ω-trivial, since
B∗

i (Ω) is a 3-form on C which must vanish.

Similarly, for a braid β = σi1 · · ·σir , we can regard the braid matrix

Bβ(z1, . . . , zr) = Bi1(z1) · · ·Bir (zr)

as a function Bβ : Cr → G. Let us define the following 2-form on Cr:

(3.8) ωβ := (Bi1(z1)| · · · |Bir (zr)) =

(Bi1(z1)|Bi2(z2)) + (Bi1(z1)Bi2(z2)|Bi3(z3)) + . . .+ (Bi1(z1) · · ·Bir−1
(zr−1)|Bir (zr)).

Here we keep track of the arguments of different Bij for the reader’s convenience. By Proposition 3.4,
we conclude that the map Bβ : Cr → G is Ω-trivial with primitive −ωβ . By applying (3.2) repeatedly,
we get the identity

(3.9) ωβ1β2
= ωβ1

+ (Bβ1
|Bβ2

) + ωβ2
.

For reduced words, this form vanishes.

Lemma 3.7 ([82], Proposition 5.1.5). Let β ∈ Br+n be a reduced positive braid word. Then the 2-form
ωβ vanishes on Cℓ(β).

The following example will prove useful.

Example 3.8. Let ∆ ∈ Br+n be the positive braid (word) associated to the half-twist; then by Lemma

3.7 we have that the 2-form ω∆ = 0 vanishes on C(
n
2). Following Lemma 2.3, we can write

B∆2 = B∆(c)B∆(u) = Lw0 · w0U = LU,

where two copies of B∆ depend on two sets of independent variables cij and uij . The 2-form on C2(n2)

associated to ∆2 then reads:

ω∆2 = ω∆(c) + (B∆(c)|B∆(u)) + ω∆(u) = (B∆(c)|B∆(u)) =

(Lw0|w0U) = (L|w0|w0|U) = (L|w0w0|U) = (L|U).

Here the second equation follows from (3.9), and in the second line we use that w0 is constant and
(w0|f) = (f |w0) = 0 for any f .

Lemma 3.9. The restriction of the 2-form ωβ to the braid variety X0(β) is closed.

Proof. Note that the map Bβ : X0(β) −→ G lands in the subgroup of upper-triangular matrices, and
the restriction of the 3-form Ω to the space of upper-triangular matrices vanishes. Therefore, since d
commutes with pull-back, we have

dωβ = −B∗
βΩ = 0,

i.e. ωβ is a closed 2-form. □

Consider now the toric charts Tτ ⊆ X0(β∆;w0) ⊆ X0(β ·∆2) constructed in Corollary 2.24 and, in
particular, the restriction ω|Tτ

. Recall the matrices Ui, Di, Li defined in (2.16). By Proposition 2.23
(ii) and Corollary 2.24, the coordinates on the torus Tτ are given by the coordinates associated to the
Di-matrices that appear while opening crossings according to τ .

Lemma 3.10. Let β be a positive braid word and τ ∈ Sℓ(β). The restriction of the 2-form ωβ·∆2 to

the toric chart Tτ ⊆ X0(β∆;w0) ⊆ X0(β ·∆2) has constant coefficients in the canonical (exponential)
coordinates associated to the Di matrices.

Here constant coefficients is to be understood in the sense of Example 3.1, i.e. Lemma 3.10 states that
the coordinates associated to the Di are exponential pre-Darboux coordinates for ωβ·∆2 .

26



Proof. By Lemma 2.3, we can write

Bβ·∆2 = BβB∆2 = Bi1(z1) · · ·Bir (zr)LU.

By Example 3.8, we can also write

ωβ·∆2 = ωβ + (Bβ |B∆2) + ω∆2 =

ωβ + (Bβ |LU) + (L|U) = (Bi1(z1)| · · · |Bir (zr)|L|U).

Next, we need to understand the behavior of the 2-form under opening the crossings according to τ , as
this determines the construction of the toric chart Tτ . Note that on the varietyX0(β∆;w0) ⊆ X0(β∆

2)
we have U = I, the identity matrix. We break this computation in several steps.

1) By using the decomposition in equation (2.15) and (3.6), we can write

(· · · |Bis(zs)| · · · ) =

(· · · |Uis(zs)|Dis(zs)|Lis(zs)| · · · )− (Uis(zs)|Dis(zs)|Lis(zs)).

Note that (Uis(zs)|Dis(zs)|Lis(zs)) is a 2-form on a 1-dimensional space (with coordinate zs) and
therefore vanishes, so

(· · · |Bis(zs)| · · · ) = (· · · |Uis(zs)|Dis(zs)|Lis(zs)| · · · ).

2) Next, we would like to move upper-triangular matrices to the left and lower-triangular matrices to
the right as in Lemma 2.20. Assume that U is an upper unitriangular matrix (so dU is strictly upper
triangular) then

(· · · |Bi(z)|U | · · · ) = (· · · |Bi(z)U | · · · ) + (Bi(z)|U) =

(· · · |ŨBi(z
′)| · · · ) + (Bi(z)|U) = (· · · |Ũ |Bi(z

′)| · · · ) + (Bi(z)|U)− (Ũ |Bi(z
′)).

The terms (Bi(z)|U), (Ũ |Bi(z
′)) in fact vanish. Indeed, observe that

B−1
i (z)dBi(z) =

(
−z 1
1 0

)(
0 0
0 dz

)
=

(
0 dz
0 0

)
,

while dU · U−1 is strictly upper triangular, so

(Bi(z)|U) = Tr
(
B−1

i (z)dBi(z) ∧ dU · U−1
)
= 0.

Similarly,

dBi(z
′) ·Bi(z

′)−1 =

(
0 0
0 dz′

)(
−z′ 1
1 0

)
=

(
0 0
dz′ 0

)
,

so that

(Ũ |Bi(z
′)) = Tr

(
Ũ−1dŨ ∧ dBi(z

′) ·Bi(z
′)−1

)
= (Ũ−1dŨ)i,i+1dz

′.

On the other hand, by Lemma 2.20 we get Ũi+1,i+1 = 1 and Ũi,i+1 = 0, hence dŨi+1,i+1 = dŨi,i+1 = 0.
Therefore

(Ũ−1dŨ)i,i+1 =
∑
k

(Ũ−1)i,kdŨk,i+1 = (Ũ−1)i,idŨi,i+1 + (Ũ−1)i,i+1dŨi+1,i+1 = 0,

and (Ũ |Bi(z
′)) = 0. We conclude that

(· · · |Bi(z)|U | · · · ) = (· · · |Ũ |Bi(z
′)| · · · ),

and similarly (· · · |Di(z)|U | · · · ) = (· · · |Ũ |Di(z)| · · · ). The conclusion from this computation is that
the 2-form ωβ·∆2 does not change as we move U to the left. Similarly, it does not change as we move
lower-triangular matrices to the right.

3) After opening all crossings, we are left with several upper unitriangular matrices, followed by several
diagonal matrices and by several lower unitriangular matrices.

Let U be an upper unitriangular matrix and U ′ an upper-triangular matrix, then dU is strictly upper-
triangular and dU ′ is upper-triangular. Therefore U−1dU is strictly upper-triangular and dU ′(U ′)−1

is upper-triangular, hence

(3.10) (U |U ′) = Tr
(
U−1dU ∧ dU ′(U ′)−1

)
= 0.

Similarly, (L|L′) = 0 for two lower unitriangular matrices L,L′.
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By (3.6) this means that we can use (3.10) to consolidate all upper and all lower unitriangular matrices
and write

ωβ·∆2 = (Ũ |Di1 | · · · |Dir |L̃|I).
Since ŨDi1 · · ·Dir L̃ is upper-triangular, we get L̃ = I. On the other hand, by (3.10) we get

(Ũ |Di1 · · ·Dir |I) = (Ũ |Di1 · · ·Dir ) + (ŨDi1 · · ·Dir |I) = 0,

Thus, by (3.7) we get

ωβ·∆2 = (Ũ |Di1 | · · · |Dir |I) = (Di1 | · · · |Dir ) =
∑
s<t

Tr(d log(Dis) ∧ d log(Dit)).

By direct computation, using the notation in (2.16) for Di, we have

d logDi(x) = d log

(
−x−1 0
0 x

)
=

(
−x−1dx 0

0 x−1dx

)
,

for some variable x. Therefore, each summand Tr(d log(Dis(xs)) ∧ d log(Dit(xt))) as above is of the
form Cst ·d log(xs)d log(xt) with Cst a constant, for some coordinates xs, xt on the torus Tτ . Therefore,
{x1, . . . , xr} are exponential pre-Darboux coordinates for ωβ·∆2 . □

Corollary 3.11. The form ωβ·∆2 induces a skew-symmetric bilinear form on the cocharacter lattice
of the torus chart Tτ .

As emphasized above, the proof of Lemma 3.10 actually shows that the entries of the Di matrices
associated to (opening the crossings for) β are exponential pre-Darboux. We have now discussed
closedness of the 2-form ωβ·∆2 and its expression in the toric charts Tτ(β). In order to show that
ωβ·∆2 induces an holomorphic symplectic structure, as stated in Theorem 1.1.(iii), it suffices to show
non-degeneracy, which we now address.

3.2. Non-degeneracy of ωβ·∆2 . Let us recall the torus Tc from Remark 2.19 that acts freely on the
variety X0(β ·∆2). The following result is key for this section: it relates the action of the torus Tc to
the 2-form ωβ·∆2 .

Lemma 3.12 ([82], Proposition 5.3.3). The form ωβ·∆2 is Tc-invariant. Thus, it descends to a 2-form
ωβ·∆2/Tc

on the quotient X0(β∆;w0)/Tc.

In this subsection, we will show that ωβ·∆2/Tc
is nondegenerate, and thus holomorphic symplectic,

on the space X0(β∆;w0)/Tc. In order to do this, let us consider the Mellit chart M, as constructed
in Theorem 2.37. By Remark 2.19 and Corollary 2.24, the torus Tc acts freely on M, and we will
consider restrictions of ωβ·∆2 on M and ωβ·∆2/Tc

on M/Tc respectively.

We will first show that the restriction of ωβ·∆2/Tc
to M/Tc is non-degenerate, and thus (holomorphic)

symplectic. Then we prove, in Theorem 3.14, that ωβ·∆2/Tc
induces the holomorphic symplectic

structure according to Theorem 1.1.(iii).

Following [82, Section 6], we can construct a topological avatar for the torus M, as follows. Consider a
labeled marked surface (S, A,B), i.e. an oriented surface S with boundary ∂S and two sets of points
A := {1, 2, . . . , n}, B := {1′, 2′, . . . , n′} ⊆ ∂S such that:

- Each connected component of S has a boundary component.
- Each boundary component intersects both A and B.
- The elements of A and B in each boundary component alternate.

Let us denote the two Abelian groups Λ := H1(S, A) and Λ′ := H1(S, B). Since A and B are
alternating, there is a perfect pairing · : Λ ⊗ Λ′ −→ Z. There is also a map rot : Λ −→ Λ′, that
is induced from the map that, up to homotopy, rotates the boundary components clockwise. This
induces a bilinear form ω̃S on the first homology Λ, given by ω̃S(γ, γ

′) = γ · rot(γ′), and we also
consider its anti-symmetrization ωS .

By Corollary 3.11, ωβ·∆2 induces a form on the cocharacter lattice of M. In order to prove the
symplecticity of ωβ·∆2 stated in Theorem 1.1, we use the following result.

Lemma 3.13. ([82, Section 6.5]) There exists a marked surface (S, A,B) such that Λ is identified
with the cocharacter lattice of M, and the form induced by ωβ·∆2 on the cocharacter lattice of M is
identified (up to a nonzero constant factor) with ωS .
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Note that the surface S is homeomorphic to the spectral curve constructed in [25]. Now, we need
two more properties of (S, A,B), which follow from the construction in [82, Section 6.5]. Recall
from Remark 2.19 that π is the permutation corresponding to β with disjoint cycles C1, . . . , Ck, and
Cj = (aj,1 . . . aj,ℓj ).

- The connected components of ∂S correspond to the cycles of π, i.e. to the components of the
closure of the braid β.

- Let Cj be the connected component of ∂S corresponding to the cycle (aj,1 . . . aj,ℓj ). Then,
the elements of A = {1, . . . , n} appearing in C are precisely aj,1 . . . aj,ℓj , and they appear in
the same order as in the cycle.

We will now decompose Λ = H1(S, A), as follows. First, we have the exact sequence in relative
homology

0→ H1(S)→ H1(S, A)
∂→ H0(A) = ZA → H0(S)→ 0,

where the image of ∂ is spanned by elements of the form a − b, where a, b ∈ A belong to the same
connected component of S. For each such a, b, we choose a path from a to b in S, and we let K be
the span of the classes of these paths in homology. This gives a splitting

H1(S, A) = H1(S)⊕K

We construct a basis of K as follows. For simplicity, we will assume that S is connected, the general
case follows similarly. For each connected component Cj of ∂S, we take the path from aj,i to aj,i+1

following Cj , j ∈ [1, ℓj −1]. We also take a path γj from aj,ℓj to aj+1,1, j ∈ [1, k−1]. Then we obtain
the basis of K, see Figure 4:

K = Z{aj,iaj,i+1, γj′ | j ∈ [1, k], i ∈ [1, ℓj − 1], j′ ∈ [1, k − 1]}.

...

...

Figure 4. The surface S, with the marked points in the boundary. Points of A are
colored white, and points of B are colored black. For the sake of readability we do
not label the paths along the boundary for two consecutive points of A.

We can further split H1(S) as follows. We let S̄ be the surface obtained from S by attaching disks
along the boundary components. We have an exact sequence

0→ H2(S̄)→ H1(∂S)→ H1(S)→ H1(S̄)→ 0

so that H1(S) = H1(S̄)⊕ (H1(∂S)/H2(S̄)). Note that a spanning set for H1(∂S)/H2(S̄) is given by
Ci − Cj , where Ci and Cj are boundary components of the same connected component of S. Since
we are assuming S is connected, a basis is given by Ci − Ci+1, i ∈ [1, k − 1]. Moreover, since the
elements in H1(S) are rot-invariant, the form ωS on H1(S) is given by the intersection form. This
implies that ωS |H1(S̄) is the intersection form on S̄, and therefore is non-degenerate. In addition,

ωS(H1(S̄), H1(∂S)/H2(S̄)) = 0 and ωS(H1(S̄),K) = 0. Thus, using the decomposition

Λ = H1(S, A) = H1(S̄)⊕ (H1(∂S)/H2(S̄))⊕K,
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the form ωS has the following form

ωS =

ωS |H1(S̄) 0 0
0 0 ∗
0 ∗ ∗

 .

We will not find the remaining terms * for ωS , we will only do so after passing to the quotient by the
action of a torus, as this is all that suffices. We have a map ψ : ZA → H1(S, A) that to each point
a ∈ A associates the path that follows the boundary component containing a from a to rot2(a). In
other words, it sends aj,i to a path aj,iaj,i+1, where aj,ℓj+1 = aj,1.

The torus Tc is the fixed torus for the action of the element σ = (a1,ℓ1a2,ℓ2 · · · ak,ℓk). According to
[82], to find the cocharacter lattice of M/Tc we need to mod out by the image of ψ on σ-invariant
elements of A. Thus, the cocharacter lattice of M/Tc can be identified with

Λ = H1(S̄)⊕ (H1(∂S)/H2(S̄))⊕ Z{γ1, . . . , γk−1}.

There is a natural projection q : Λ → Λ, and the form ωS descends to a form ωS,Λ on Λ. It agrees

with the form ωM/Tc
induced by ωβ·∆2 on the cocharacter lattice of M/Tc.

In addition, note that we can identify q(Ci) = ai,ℓiai,1. Thus, q(Ci−Ci+1) = ai,ℓiai,1−ai+1,ℓi+1ai+1,1.
Note also that ωS(γi, γj) = 0 as γi · rot(γj) = 0 for every i ̸= j. Moreover, γi · rot(ai,ℓiai,1 −
ai+1,ℓi+1

ai+1,1) = 0 while (ai,ℓiai,1−ai+1,ℓi+1
ai+1,1)·γi = 2. Thus, ωS,Λ(γi, ai,ℓiai,1−ai+1,ℓi+1

ai+1,1) =

2. Similarly, we can see that ωS,Λ(γi, ai−1,ℓi−1ai−1,1 − ai,ℓiai,1) = 1 and ωS,Λ(γi, ai+1,ℓi+1ai+1,1 −
ai+2,ℓi+2

ai+2,1) = −1. It follows that the form ωS,Λ is given by the following matrix:

ωS,Λ =

ωS |H1(S̄) 0 0
0 0 −P
0 P 0

 ,

where P is the (k − 1)× (k − 1)-matrix

P =


2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2

 .

This implies that the form ωM/Tc
on the cocharacter lattice of M/Tc is non-degenerate, therefore the

restriction of ωβ·∆2/Tc
to M/Tc is non-degenerate as well. Thus the chart M/Tc is (holomorphic)

symplectic. Let us now use the above discussion, and this result for the Mellit chart, to conclude
Theorem 1.1.(iii).

Theorem 3.14. Let β ∈ Br+n be a positive braid (word). Then, the 2-form ωβ·∆2 induces a 2-form on
the augmentation variety Aug(β, tc) that has maximal rank at every point. Thus, the augmentation
variety of any positive braid is holomorphic symplectic.

Proof. By Theorem 2.39, the augmentation variety Aug(β, tc) can be identified with X0(β∆;w0)/Tc.
The coefficients of the form ωβ·∆2 are regular functions on X0(β∆;w0) and by Lemma 3.12 the form
is Tc-invariant. Thus, we have an induced closed 2-form ωβ·∆2/Tc

on the augmentation variety, and
it is non-degenerate if and only if its determinant does not vanish anywhere. Let us first prove that
it is non-degenerate on all toric charts. Thanks to the discussion above on the Mellit chart, the form
ωβ·∆2/Tc

is non-degenerate on the (quotient) toric chart M/Tc; By Lemma 3.10, the 2-form ωβ·∆2/Tc

has constant coefficients in canonical coordinates in any other chart M′/Tc obtained from an ordering
of the crossings, and, by the above, it is non-degenerate on the intersection with M/Tc. Thus, the
2-form ωβ·∆2/Tc

is non-degenerate on the entire (other) chart M′/Tc. Finally, by Theorem 2.25, these
toric charts cover Aug(β, tc) up to codimension 2. Hence, the determinant of ωβ·∆2/Tc

is non-zero
outside of a codimension 2 locus and hence it is non-zero everywhere. □

This concludes the proof of Theorem 1.1 and establishes that the augmentation variety associated to
a positive braid is holomorphic symplectic. The following is an explicit example to help illustrate the
computations and arguments above.
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Example 3.15. Consider the case n = 2, β = σ2, so that X(β∆;w0) = X(σ3;w0). A direct compu-
tation, similar to Example 2.8, shows that

X(σ3;w0) = {(z1, z2, z3) : z1 + z3 + z1z2z3 = 0} ⊂ C3.

As in Example 2.8, we can rewrite the defining equation as z1 + z3(1 + z1z2) = 0 and observe that
1 + z1z2 ̸= 0. Indeed, 1 + z1z2 = 0 and z1 + z3(1 + z1z2) = 0 imply z1 = 0, which would imply
1 + z1z2 = 1, a contradiction with 1 + z1z2 = 0. Since 1 + z1z2 ̸= 0, we can write

z3 = − z1
1 + z1z2

,

and thus X(σ3;w0) ∼= {(z1, z2) : 1 + z1z2 ̸= 0} ⊂ C2. The torus Tc is trivial in this case. Let us
compute the form ωβ∆2 on X(σ3;w0)/Tc = X(σ3;w0). For the matrix

M = B(z1)B(z2) =

(
1 z2
z1 1 + z1z2

)
,

we compute

M−1dM =

(
1 + z1z2 −z2
−z1 1

)(
0 dz2
dz1 z1dz2 + z2dz1

)
=

(
−z2dz1 dz2 − z22dz1
dz1 z2dz1

.

)
The two-form ωβ∆2 can now be computed as

ωβ∆2 = (B(z1)|B(z2)) + (B(z1)B(z2)|B(z3)) = (B(z1)|B(z2)) + (M |B(z3)) =

= Tr

[(
0 dz1
0 0

)(
0 0
dz2 0

)]
+Tr

[(
−z2dz1 dz2 − z22dz1
dz1 z2dz1

)(
0 0
dz3 0

)]
=

= dz1dz2 + dz2dz3 − z22dz1dz3.
Let us explicitly show that ωβ∆2 is symplectic form on X(σ3;w0), as follows. Since

dz3 = d

(
− z1
1 + z1z2

)
=
−dz1(1 + z1z2) + z1(z1dz2 + z2dz1)

(1 + z1z2)2
=
−dz1 + z21dz2
(1 + z1z2)2

,

we can further write

ωβ∆2 = dz1dz2 −
dz2dz1

(1 + z1z2)2
− z21z

2
2dz1dz2

(1 + z1z2)2
=

1 + 2z1z2 + z21z
2
2 − 1− z21z22

(1 + z1z2)2
dz1dz2.

This simplifies to the expression

(3.11) ωβ∆2 =
2dz1dz2
1 + z1z2

=
2dz1dz2

w
, where w := 1 + z1z2.

We conclude that ω is holomorphic symplectic on the open subset {w ̸= 0} ⊂ C2 which is isomorphic
to X(σ3;w0) as explained above.

Let us now find explicit exponential Darboux coordinates. The two ways of opening crossings in β
correspond to two toric charts T1 := {z1 ̸= 0, w ̸= 0} and T2 := {z2 ̸= 0, w ̸= 0} in X(σ3;w0). Identity
(3.11) implies that

ωβ∆2 =
2dz1dw

z1w
=
−2dz2dw
z2w

.

It therefore follows that {z1, w} are exponential Darboux coordinates in T1, and {z2, w} are ex-
ponential Darboux coordinates in T2. This is indeed in agreement with Lemma 3.10 above. The
corresponding skew-symmetric form on the cocharacter lattice of both tori is given by the matrix(

0 2
−2 0

)
, up to reordering coordinates.

Finally, the surface S in this case is an annulus. It has two boundary components and one point from
A and one point from B on each component. The relative homology Λ = H1(S, A) has rank 2 and
is generated by an absolute cycle γ along the core of the annulus, and a relative cycle γ′ connecting
the two points in A. With an appropriate choice of orientations, the intersection form on Λ is given

by the matrix

(
0 1
−1 0

)
, which is half the skew-symmetric form in the cocharacter lattice. Note

that in this case we cannot use H1(S) or H1(S, ∂S), as these lattices have rank 1, while our tori are
two-dimensional. This explains the need of introducing marked points A and B, cf. also [24, Section
3]. From the viewpoint of cluster algebras, the variable z1 is mutable and corresponds to the absolute
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cycle γ, and the variable w is frozen and corresponds to the relative cycle γ′, up to signs. See [24, 19]
for more details and [97] for more examples and computations of the form ωβ∆2 for 2-stranded braids.

Remark 3.16. In our more recent work [19], we construct cluster structures on braid varieties and in
[19, Section 9.2] we show that the Gekhtman-Shapiro-Vainshtein cluster 2-form for the corresponding
cluster structure on X0(β∆;w0) coincides with ωβ·∆2 . The variety Aug(β, tc) = X0(β∆;w0)/Tc is
an even-dimensional quotient of the cluster variety X(β∆;w0) which has really full rank by [19,
Section 8.1], and the torus Tc acts by so-called cluster automorphisms, cf. [75, Section 5.1]. The non-
degeneracy of ωβ·∆2/Tc

can then also be deduced from the results of [75, Section 5.5]. This argument
using [19] and [75] is logically independent of the one given in this section, and [19] appeared after
the present article.

Remark 3.17. It is likely that the above setup can be shown to fit within the context of P. Boalch’s
work [7, 8, 9], of which we learnt after this manuscript first appeared. In particular, the holomorphic
symplectic structure constructed above might likely coincide with some of the holomorphic symplectic
structures he builds on wild character varieties by using quasi-Hamiltonian G-spaces with G-valued
moment maps. (Potentially, the moment map is given by the action of the marked points in tc.)
Moving onward, we hope to better understand their work and connect it to the results above.

This subsection concludes the first part of the article, and we now move forward to discuss correspon-
dences between braid varieties and the diagrammatic calculus we develop for their study.

4. The Combinatorics of Weaves

This section discusses weaves, based on [25], and connects them to braid varieties. In short, weaves are
a diagrammatic calculus that can be used to study the braid varieties X0(β), describing toric charts,
regular functions and other relevant geometric structures on them. The present section focuses on
the combinatorial aspects of these diagrams; in particular, this formalizes the weave category Wn

discussed in Section 1. We use these weaves in Section 5, where we prove that a weave between two
positive braids β1 and β2 yields a correspondence between the braid varieties X0(β1) and X0(β2) (as
stated in Theorem 1.3). We refer the reader to [25] for the original definition of weaves as well as the
contact and symplectic geometry motivation behind them, cf. also [24].

4.1. Weaves. Weaves are diagrams introduced in the work of the first author and E. Zaslow [25].
They are defined on any smooth surface Σ but, in the present manuscript, we restrict ourselves to the
diffeomorphism type of the plane Σ = R2. In appearance, these diagrams are similar to the planar
diagrams appearing in Soergel calculus [37, 38]; there are nevertheless key distinctions. We refer to
our diagrams as weaves, as they are a particular instance of the symplectic constructions in [25].

Definition 4.1. Let β1, β2 be two positive n-braid words. By definition, a weave w of degree n from
β2 to β1, denoted w : β2 → β1, is the image of a continuous map

w :

n−1⋃
i=1

Gi −→ R× [1, 2],

where each Gi, i ∈ [1, n− 1] is a trivalent graph and the following conditions are satisfied:

(i) The restriction w|Gi
: Gi −→ R× [1, 2] is a topological embedding for all i ∈ [1, n− 1], which

is a smooth embedding away from the trivalent vertices of the graph Gi.

(ii) The images w(Gi) and w(Gi+1) are only allowed to intersect at trivalent vertices, i ∈ [1, n−2],
and the planar edges around this intersection point must alternatingly belong to Gi and Gi+1.
In addition, for |i − j| ≥ 2 the intersections between w(Gi) and w(Gj) are transverse, and
these are not allowed to intersect at trivalent vertices.

(iii) In a neighborhood of R×{j} ⊆ R× [1, 2], j = 1, 2, the image im(w) is given by l(βj) vertical

lines, such that the kth line belongs to G
σ
(j)
ik

, where σ
(j)
ik

is the kth crossing of βj .
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Figure 5. (Left) A 3-weave from β2 = (σ1σ2)
4σ1 ∈ Br+3 down to β1 = σ2σ1σ2 ∈

Br+3 . The darker shade indicates a transposition label s1 ∈ S3 and the lighter shade
indicates the transposition label s2 ∈ S3. (Right) A 2-weave from β2 = σ16

1 ∈ Br+2
to β1 = σ2

1 ∈ Br+2 , all black edges are labeled with the unique transposition s1 ∈ S2.
Trivalent vertices are emphasized in orange in both weaves.

See Figure 5 for two explicit examples with n = 2, 3. The image im(w) of a weave w is often referred
to as a weave itself and denoted w, to ease notation. The intersection of a weave w with a small
neighborhood of R× {2}, resp. of R× {1}, is said to be the top of the weave, resp. its bottom.

Following [25, Section 4], we also introduce a notion of weave equivalence, represented by the local
moves in Figure 6. That is, by definition, two weaves w1,w2 are said to be (weave) equivalent if they
differ by a sequence consisting of moves from Figure 6. See also [24, Section 3.1] and [19, Section 4.2].

By definition, there is also an additional move called a weave mutation, after [25, Section 4.8], which
is not considered as an equivalence. Weave mutation is depicted in Figure 7.

The definition of weaves and weave equivalence in [25] are manifestly rotationally symmetric. In this
paper we would like to break this symmetry by choosing a generic vertical direction and reading a
weave top to bottom, allowing only certain local models to appear in such scanning. Similarly to
Definition 4.1.(iii) above, a generic horizontal cross-section at the jth level of this type of weave is
then a sequence of colored points in w which we interpret as a braid word

βj(w) = s
(j)
i1
s
(j)
i2
· · · s(j)iℓ(βj)

∈ Br+n .

This particular type of weave w can then be understood as a “movie” of different braid words:

w := (β0(w)→ β1(w)→ · · · → βℓ(w)(w)).

The initial braid word β0(w) being read at the (top) horizontal cross-section R × {2}, and the last
braid word βℓ(w)(w) is read at the (bottom) horizontal cross-section R× {1}. The number ℓ(w) ∈ N
will be referred to as the length of the weave Σ.

Definition 4.2. Let β1, β2 be positive n-braid words. A weave w of degree n from β2 to β1 is said
to be sliced if its cross-sections change top to bottom according to one of the following six situations,
depicted in Figure 8:
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Figure 6. Weave equivalences, after [25, Theorem 1.1].

←→

Figure 7. Weave mutation, after [25, Theorem 4.21]. This is not an equivalence.

Figure 8. The six local models for sliced n-weave. In (a), (c), (d), (e), and (f), we
have j, k ∈ [1, n − 1]. In (b), we have k ∈ [1, n − 2], and |j − k| ≥ 2. The inverse of
the local model in (b), with sk+1sksk+1 on top and sksk+1sk on the bottom, is also
allowed.
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(a) Two consecutive edges labeled with the same transposition sk come together, and continue
moving down as one unique edge, also labeled with sk, k ∈ [1, n− 1]. This is referred to as a
trivalent vertex, and correspond to the model around (the image of) a trivalent vertex of the
graph Gk in Definition 4.1. Algebraically, we represent this local model by sksk → sk.

(b) Three consecutive edges labeled by sk, sk+1, sk come together, and continue moving down as
three edges but now labeled sk+1, sk, sk+1. This is referred to as a hexavalent vertex, and corre-
spond to the model around an intersection point of the (images of the) graphsw(Gk)∩w(Gk+1)
in Definition 4.1. Algebraically, we represent this local model by sksk+1sk → sk+1sksk+1.
In addition, we also allow the same move, but reversed: sk+1sksk+1 → sksk+1sk, with
sk+1sksk+1 on top and sksk+1sk at the bottom.

(c) Two consecutive edges labeled with two different transpositions sk, sj , with |j − k| ≥ 2,
come together, and continue moving down as two edges, now labeled by sj , sk. This is re-
ferred to as a 4-valent vertex, and correspond to the model around a (transverse) intersection
point of w(Gk) and w(Gj) in Definition 4.1. Algebraically, we represent this local model by
sksj → sjsk.

(d) Two consecutive edges labeled with the same transposition sk come together, merge and there
is no edge continuing down. This is referred to as a cup, and we represent this local model by
sksk → 1.

(e) The inverse of the move in (d), where two consecutive edges are created as moving downwards
from the empty set. This is referred to as a cap, and we represent this local model by 1→ sksk.

(f) There is an edge labeled by sk and it continues moving down as the same edge labeled by sk,
i.e. nothing occurs. This local model is represented algebraically by sk → sk.

By definition, we require that all 3-,4- and 6-vertices, cups and caps appear at different heights, and all
horizontal tangencies are isolated. Note that 4-valent and hexavalent vertices represent (the Coxeter
projection of the) braid relations. Finally, the following two are special types of sliced weaves that we
use:

(ii) By definition, a simplifying weave is a sliced weave with no caps; thus the only allowed local
models are (a),(b),(c),(d) and (f), not (e).

(ii) By definition, a Demazure weave is a sliced weave with no cups nor caps; thus the only allowed
local models are (a),(b),(c) and (f), not (d),(e).

Note that a sliced weave is simplifying if and only if the length of a braid word is not increasing as
we scan down the weave with horizontal cross-sections. The reasons behind the choice of the name
Demazure weaves will be explained in Section 4.4. Demazure weaves prominently feature in [19]. In
this article, all weaves we discuss are sliced and thus from now onwards weave will refer to sliced weave
unless otherwise indicated.

Remark 4.3. A cautious reader might have noticed that some local weave pictures are allowed by
the general setup of [25] but do not directly appear in our list (a)-(f) in Figure 8. The upside-down
trivalent vertices, i.e. the horizontal flip of model (a), given by sk → sksk, can be constructed using
the above trivalent vertices and caps, see Section 4.3.2. Similarly, one may encounter a 6-valent vertex
with a incoming and (6 − a) outgoing edges for any 0 ≤ a ≤ 6. All these can be modeled using the
usual 6-valent vertices, cups and caps, possibly in several different ways. We declare all such weaves
(fixing a and the coloring of edges at the top) equivalent. The same applies to “non-standard” 4-valent
vertices, see sections 4.3.4 and 4.3.3 below for details.

Remark 4.4. For context with [25, Section 7.1.2], we note that Demazure weaves w : β2 → β1
are free, in that their fronts can be realized by embedded exact Lagrangian cobordisms from the
Legendrian associated to β1 to the Legendrian associated to β2. Indeed, this is implied by the fact
that the three models (a), (b), (c) above are decomposable Lagrangian cobordisms. For (b), (c) this
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follows from the fact that they are traces of Legendrian isotopies, e.g. (b) is the Lagrangian trace of
the Legendrian Reidemeister III move. For (a), this follows from the generic Legendrian perturbation
of the D−

4 front, as drawn in [25, Figure 36], or by comparison to the pinching saddle cobordism, as
established in [62, Prop. 3.1]. In particular, a Demazure weave w : β → ∆ yields a unique embedded
exact Lagrangian filling of the Legendrian associated to β∆, as the Legendrian unlink, associated to
∆2, admits a unique embedded exact Lagrangian filling.

4.2. Equivalence of Demazure weaves. Let us now introduce a series of situations, all representing
an equivalence between two weaves w1,w2 whose top and bottom ends coincide, i.e. β0(w1) = β0(w2)
and βℓ(w1)(w1) = βℓ(w2)(w2). The majority of equivalences we describe compare two local models,
and an equivalence between two different weaves w1,w2 will be obtained by applying several of the
local equivalences listed here. We focus on Demazure weaves and their equivalences which only pass
through Demazure weaves. In this section we translate the moves of Figure 6 to our formalism.

Remark 4.5. A cautious reader may choose to call the equivalence relation in this section Demazure
equivalence. In principle, it might be possible that two Demazure weaves are not equivalent through
Demazure weaves, but are equivalent through the more general weave equivalences from Figure 6. We
have not investigated this problem. This fine point is irrelevant for the results of this paper, and we
use the same notion of equivalence to simplify the exposition.

Remark 4.6. In what follows, we also require that the horizontal reflection of each of the upcoming
relations explained in 4.2.1–4.2.6 below is also a relation.

4.2.1. Changing the height of vertices. We allow to change relative heights of any pair of crossings in
a weave provided that they are not connected by an edge and there are no crossings between them.
(This is commonly called the interchange law in the context of 2-categories.)

4.2.2. Canceling pairs of 4- and 6-valent vertices. The following weaves are declared to be equivalent:

This corresponds to moves (I) and (V) from Figure 6. From the algebraic perspective, i.e. studying
the braids in the horizontal cross-sections, this is the diagrammatic incarnation of the fact that the
two moves sksk+1sk → sk+1sksk+1 and sk+1sksk+1 → sksk+1sk, and the two moves sisj → sjsi
and sjsi → sisj , |i − j| ≥ 2, are inverse to each other. That is, performing a Reidemeister III
move and then its inverse is considered to be (equivalent to) the trivial weave. Similarly, performing
a commutation move in the braid group, and then the same move in reverse, is also considered
to be (equivalent to) the trivial weave. In the notation above, we are declaring the weave w1 =
sk+1sksk+1 → sksk+1sk → sk+1sksk+1 to be equivalent to the constant weave w2 = sk+1sksk+1, and
the weave w1 = sisj → sjsi → sisj to be equivalent to the constant weave w2 = sisj .

4.2.3. Commutation with distant colors. We declare that an edge of the weave labeled with a color
(i.e. a transposition) which is distant to the rest of the colors at a given vertex can be moved past
this vertex. That is, we declare that the following weaves are equivalent:

36



Similarly, we declare that three lines with pairwise distant colors can be rearranged according to the
weave equivalence depicted above. As illustrated in the equivalences above, the particular sequences
of braid moves that we are declaring to be equivalent are read from taking horizontal cross-sections
in the above diagrams; we will thus not necessarily indicate them any longer.

4.2.4. 1212- and 2121-relations. We require that the following two ways of getting from σ1σ2σ1σ2,
denoted 1212 for simplicity, to σ1σ2σ1, i.e. 121, are equivalent:

This corresponds to the move (II) from Figure 6.

We also impose equivalences for other interpretations of the move (II) from Figure 6 using Demazure
weaves, corresponding to other paths around the pentagon on the left of the above figure. Namely,
we require that the two ways of getting from 1121 to 212 are equivalent, and that the two ways of
getting from 2122 to 121 are equivalent, and so forth. The equivalence of the two ways of getting
from 1121 to 212 corresponds to the equivalence of the following two simplifying weaves:

We also require that the two ways of getting from 1211 to 212 are equivalent, which is the same as
requiring that the two ways of getting from 2121 to 212 are equivalent and so on. The weaves are
obtained from the ones above by the symmetry along the vertical line:

There are also similar relations for any pair of adjacent colors in either order which we do not draw
here.

4.2.5. Cycles for 12121. As an example for the previous relation, we observe that there are many paths
in the Demazure graph from 12121 to 212, related by consecutive application of the 1212-relation:
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(A) 12121→ 21221→ 2121→ 2212→ 212

(B) 12121→ 11211→ 1211→ 2121→ 2112→ 212

(C) 12121→ 11211→ 1211→ 121→ 212 ∼ 12121→ 11211→ 1121→ 121→ 212

(D) 12121→ 11211→ 1121→ 1212→ 2122→ 212

(E) 12121→ 12212→ 1212→ 2122→ 212

Note that the equivalence between (A) and (E) corresponds to the move (III) from Figure 6.

4.2.6. Zamolodchikov relation. Diagrammatically, the Zamolodchikov relation is the equivalence of
the following diagrams, relating various braid words for the longest element w0 ∈ S4:

This corresponds to the move (IV) from Figure 6.

4.2.7. Mutations. In contrast with Soergel calculus, we do not declare the two ways of getting from
sisisi to si via sisi to be equivalent. They are related by the following special type of move, which
we call a weave mutation:
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This concludes the list of diagrammatic equivalences (4.3.5)-(4.2.6), and the mutation non-equivalence
(4.2.7).

4.3. Equivalence of simplifying weaves. In this section we define an equivalence relation for
simplifying weaves. The complete list of equivalences includes:

(1) All of the equivalences for Demazure weaves from Section 4.2.
(2) Changing the relative height of cups and vertices, see Section 4.3.1.
(3) Additional moves with cups listed in sections 4.3.2(a), 4.3.3(a) and 4.3.4(a).

Remark 4.7. One can check that the additional equivalence relations for simplifying weaves do not
change the total number of cups. Therefore, two Demazure weaves are equivalent through simplifying
weaves if and only if they are equivalent through Demazure weaves.

By reflecting these relations along a horizontal axis, we get a similar notion of equivalence for weaves
with caps, see 4.3.2(b), 4.3.3(b) and 4.3.4(b). There is an additional “zig-zag” move in section 4.3.5
which allows one to create or delete a cup and a cap simultaneously.

Remark 4.8. Just as in Remark 4.6, we will require that the horizontal reflection of the relations
4.3.1–4.3.4 are also relations.

4.3.1. Changing the height of vertices II. We allow to change relative heights of any crossing with a
cup or cap in a weave, provided that they are not connected by an edge and there are no crossings,
cups, or caps between them.

4.3.2. Non-standard trivalent vertices.

(a) We can consider a trivalent vertex with 3 inputs and 0 outputs, defined by either of the
pictures:

We require that the two pictures are equivalent, note that both weaves are simplifying.

(b) We can define an upside-down trivalent vertex in the following ways which are required to be
equivalent:

Since both weaves include a cap, these are not simplifying, and we do not allow upside-down
trivalent vertices in simplifying weaves.

A horizontal reflection of these relations would express a ”standard” trivalent vertex using
an upside-down trivalent vertex and a cup. There is a similar picture to 4.3.2(a) with 0 inputs
and 3 outputs.

4.3.3. Non-standard 6-valent vertices. The following relations correspond to different ways to a look
at a single 6-valent vertex. We require that all of them are equivalent, provided that the numbers of
inputs and outputs are fixed.

(a) We illustrate simplifying weaves with 4 inputs and 2 outputs, and 5 inputs and 1 output,
defined using standard 6-valent vertex and cups. The former in fact implies the latter.
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Finally, we can define a 6-valent vertex with 6 inputs and 0 outputs, and the following
diagram shows that all ways to do so are equivalent:

121212

212212 112112 122122 121121

2112 1122 1221

22 11

∅

(b) The symmetric pictures with 2 inputs and 4 outputs, 1 input and 5 outputs, and 0 inputs
and 6 outputs, are obtained by reflection in the horizontal axis and using caps. These are not
simplifying.

4.3.4. Non-standard 4-valent vertices.

(a) Similarly, we can define non-standard 4-valent vertices by simplifying weaves with 3 inputs
and 1 output, or 4 inputs and 0 outputs.

(b) By reflecting these, we get weaves with 1 input and 3 outputs (or 0 inputs and 4 outputs)
which use caps. These are not simplifying.

4.3.5. Planar isotopies. A weave in the plane is, in particular, a planar diagram. We declare planar
isotopic diagrams to define equivalent weaves. In particular, we need to require the following zigzag
relation with canceling pairs of caps and cups:
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Algebraically, the weave w1 = sk → sksksk → sk · 1 = sk, where first a cap creates 1→ (sksk) to the
left of the initial sk, and then a cup erases the rightmost to sk via (sksk) → 1, is equivalent to the
constant weave w2 = sk.

Proposition 4.9. Assume the zigzag relation and the equivalence relations 4.3.2-4.3.4. Then any
two planar isotopic weaves are equivalent.

Proof. By [37, Proposition 3.2] it is sufficient to prove that every vertex is cyclic, that is, invariant
under the 360 degree rotation. For a trivalent vertex, we use the definition of the upside down trivalent
vertex and relations 4.3.2 to show that a 60 degree rotation changes either of the trivalent vertices to
another one of the same type, e.g.:

This implies that a trivalent vertex is invariant under 120 degrees rotation, and hence invariant under
360 degree rotation. Similarly, we can use the relations 4.3.3 to show that the 6-valent vertex is
invariant under rotation by 60 degrees, and hence by 360 degrees:

The proof for a 4-valent vertex is similar. We refer to [37, Section 3] and references therein for more
details on cyclicity and isotopy invariance. □

4.3.6. Rotational invariance. We expect that, similarly to the proof of Proposition 4.9 and the results
of [37], the equivalence relations above are rotationally invariant. That is, any rotation of an equiva-
lence relation follows from the relations. We do not need and do not prove it here, but give a couple
of examples which illustrate this point:

Note that these two pictures, as planar graphs, are similar to the ones that we already considered
(cancellation 121→ 212→ 121 and 1212-move), but in this case they are drawn differently.

Both of these are actually consequences of the above relations. The former follows from the equivalence
4.3.3. For the latter, we can consider the diagram:
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12121

21221 11211 12212

211 1121 1212

21 2122

All cycles in this diagram are covered by the above relations.

4.4. Demazure product and Demazure weaves. We will use the notion of Demazure product of
a word (equivalently, of an expression) in the alphabet of simple reflections {si}. This terminology is
introduced in [73], but the notion goes back at least to [31]. We refer the reader to [29, Section 2.2]
for a detailed discussion on this notion and its relation to 0-Hecke algebras over F2.

The Demazure product of a word Q = si1si1 . . . sil(β), denoted by δ(Q), is the largest element of Sn in
the Bruhat order, such that Q contains some reduced expression of this element as a subword. This
element is well-defined. It admits an equivalent inductive definition by the folllowing rule:

δ(si) := si, δ(Qsi) :=

{
δ(Q)si if ℓ(δ(Q)si) = ℓ(δ(Q)) + 1

δ(Q) if ℓ(δ(Q)si) = ℓ(δ(Q))− 1.

It can be verified from either definition that for any Q,Q′ we have

δ(QsisiQ
′) = δ(QsiQ

′);

δ(Qsisi+1siQ
′) = δ(Qsi+1sisi+1Q

′);

δ(QsisjQ
′) = δ(QsjsiQ

′), |i− j| ≥ 2.

(4.1)

Given two permutations u, v ∈ Sn, we define their star product u ⋆ v as the Demazure product of the
concatenation of an arbitrary reduced expression of u and an arbitrary reduced expression of v. By
construction, we have

(u ⋆ v) ⋆ w = δ(uvw) = u ⋆ (v ⋆ w).

By the Demazure product of an element β of the positive braid monoid we mean

δ(β) := δ(si1si2 . . . sil(β))

for a positive braid word σi1σi2 . . . σil(β) for β. This is well-defined: by equations (4.1), δ(β) does not
depend on the choice of positive braid word.

Example 4.10. The inductive definition of the Demazure product of a word, and the definition of
the star product of permutations imply that

w ⋆ si =

{
wsi if ℓ(wsi) = ℓ(w) + 1,

w if ℓ(wsi) = ℓ(w)− 1.

Note that the Demazure power of a simple transposition is simply si ⋆ si ⋆ . . . ⋆ si = si for any number
of multiples. Note also that for any w ∈ Sn we have the equality w ⋆ w0 = w0 ⋆ w = w0.

In fact, the Demazure product is the product in a monoid known as Coxeter monoid [106], 0−Hecke
monoid [41, 59], Coxeter ∗-monoid, or Richardson-Springer monoid in the literature. Richardson and
Springer studied its action on the set of orbits of the flag variety under the action of the fixed point
subgroup of an involution on the algebraic group [94, 95]. Norton [87] constructed a bijection between

42



the set Sn and the underlying set of this monoid. As the examples above show, the multiplication in
the monoid is quite different from the one in the permutation group. More generally, given a positive
braid β, δ(β) does not coincide with the image of β under the canonical surjection onto Sn. A first
relation to the weaves introduced above is given in the following lemma.

Lemma 4.11. Let w be a Demazure weave. Then the Demazure product of the associated braid words
βj(w), j ∈ [0, l(w)], remains unchanged, i.e. δ(β0(w)) = δ(βj(w)).

Proof. Equations (4.1) imply that 3-, 6- and 4-valent vertices preserve the Demazure product. □

Lemma 4.11 shows that Demazure weaves provide a transparent diagrammatic interpretation of the
Demazure product and of the 0−Hecke monoid. This motivated our nomenclature.

4.5. Classification of weaves. We call two weaves equivalent if they are related by a sequence of
elementary equivalence moves from Section 4.2 (with no mutations), and mutation equivalent if they
are related by a sequence that might involve both equivalence moves and mutations.

Theorem 4.12. (a) Let w1,w2 be two weaves such that the source braids of w1,w2 coincide and
the target braids of w1,w2 coincide. If w1,w2 only have 6- and 4- valent vertices, then w1,w2 are
equivalent.

(b) Let w1,w2 be two Demazure weaves such that the source braids of w1,w2 coincide and the target
braids of w1,w2 coincide. If the target is reduced, then w1,w2 are mutation equivalent.

Proof. The theorem follows from the main result of [36], which we briefly recall. For part (a), consider
the graph where vertices correspond to braid words and edges to braid moves (that is, 6- or 4-valent
vertices). Then the cycles in this graph are generated by commutation with distant colors and
Zamolodchikov relations, hence any two paths in this graph are equivalent.

For (b), consider the Hecke-type algebra with generators Ti and relations

T 2
i = αTi + β, TiTi+1Ti = Ti+1TiTi+1 + lower order terms, TiTj = TjTi, (|i− j| > 1).

Using these relations, it can be verified that every product of Ti can be written as a linear combination
of reduced expressions, possibly in a non-unique way. This non-uniqueness appears from ambiguities:
applying the relations in different order could yield different results.

B. Elias proved in [36, Proposition 5.5] that (modulo commutation with distant colors) there are
exactly 5 types of potential ambiguities that one needs to consider: iii, ii(i+1)i, i(i+1)ii, i(i+1)i(i+
1)i, i(i+1)(i+2)i(i+1)i, which are nothing but the trivial move, the 5-cycles corresponding to 1121
and 1211 from 4.2.4, the cycle from 4.2.5 for the word 12121, and the Zamolodchikov relation. Note
that the ambiguity iii corresponds to different ways of getting from iii to i. There are two such ways
without cups, and they are related by the mutation from Section 4.2.7. □

Remark 4.13. The assumption in (b) that the target is reduced is important. Indeed, the two
trivalent vertices (ss)s→ ss and s(ss)→ ss are neither equivalent nor mutation equivalent.

Remark 4.14. Note that by Theorem 4.12(a), any two simplifying weaves relating two positive braid
words for the same braid are equivalent. Thus, we will oftentimes not specify such a weave.

Let us continue studying conditions for equivalences. Suppose that a positive braid word β contains
a piece siusj . Following [58], the pair of crossings (si, sj) is said to be a deletion pair if siu = usj .
(Note that unlike [58], we do not require u to be a reduced word.) Let us define a relation ≺ on the
crossings of the braid β according to si ≺ sj if (si, sj) form a deletion pair. The following two lemmas
are used in the proof of the criterion Theorem 4.17 below.

Lemma 4.15. (i) The relation ≺ is a partial order on the set of crossings of β.
(ii) The set of crossings of β is a disjoint union of linearly ordered sets.

Proof. Assume that we have a piece of a braid siusjvsk and (si, sj) and (sj , sk) are deletion pairs so
that siu = usj , sjv = vsk. Then

si · usjv = usjsjv = usjv · sk,
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and (si, sk) is a deletion pair. This proves (i). To prove (ii), assume (si, sj) and (si, sk) are deletion
pairs, and assume wlog that sj is to the left of sk. We must show that (sj , sk) is a deletion pair. We
have

siu = usj , siusjv = usjvsk,

and siusjv = siuvsk. Hence sjv = vsk, and (sj , sk) is a deletion pair. The case when (si, sk) and
(sj , sk) are deletion pairs is analogous. □

We call a deletion pair (si, sj) close if si ≺ sj is a cover relation, i.e. no crossing in-between si and sj
forms a deletion pair with si or sj .

Lemma 4.16. Suppose that (si, sj) is a close deletion pair, then the following Demazure weaves are
equivalent:

(4.2) siusj → sisiu→ siu→ usj ∼ siusj → usjsj → usj .

Note that the condition that the deletion pair is close is necessary, see Remark 4.13.

Proof. First, note that by Theorem 4.12(a) we can choose a sequence of braid relations relating siu
and usj arbitrarily, and all such weaves would be equivalent. Furthermore, we can choose a braid
word for u arbitrarily. Indeed, if u′ is related to u by braid relations then we get the diagram:

siusj

sisiu siu
′sj usjsj

sisiu
′ u′sjsj

siu
′ u′sj

siu usj

The quadrilaterals on the left and on the right are isotopies, and the rest are built entirely from
braid relations and hence are equivalences by Theorem 4.12(a). Therefore the outside pentagon is
equivalent to the inside one.

We now prove the statement by induction on the length of u. If u is empty, the statement is clear.
Otherwise, by definition of deletion pair we get siu = usj . If u ends with sj then we do not have a
close pair, contradiction. Otherwise we need to apply some braid relation to usj which involves sj .
We have the following cases:

1) If u = vsk and |k − j| > 1 then usj = vsksj = vsjsk while siu = sivsk, so vsj = siv. We get the
following diagram:

sivsksj vsjsksj vsksjsj

sivsjsk vsjsjsk vsksj

sisivsk sivsk vsjsk

The top square is an isotopy, and the pentagon on the right is commutation with distant colors. By
the assumption of induction, two Demazure weaves (4.2) corresponding to sivsj are equivalent, which
implies that the bottom pentagon is an equivalence as well.
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2) If u = vsjsj+1 then usj = vsjsj+1sj = vsj+1sjsj+1 while siu = sivsjsj+1, so siv = vsj+1. We get
the following diagram:

sivsjsj+1sj vsj+1sjsj+1sj vsjsj+1sjsj

sivsj+1sjsj+1 vsj+1sj+1sjsj+1 vsjsj+1sj

sisivsjsj+1 sivsjsj+1 vsj+1sjsj+1

The top square is an isotopy, and the pentagon on the right is 5-cycle from Section 4.2.4. By the
assumption of induction, two Demazure weaves (4.2) corresponding to sivsj+1 are equivalent, and the
bottom pentagon is an equivalence as well.

The case when u = vsjsj−1 is analogous. □

Given a Demazure weave w : β2 → β1, we have an injection ιw from the set of crossings in the bottom
β1 to the set of crossings in the top β2. For a 6-valent vertex it is a bijection which exchanges left
and right crossings, for a 4-valent vertex it is a bijection exchanging crossings, and for a 3-valent
vertex the injection sends the crossing in the target to the right crossing in the source. We refer to
the crossings not in the image of ιw as missing. Note that the number of missing crossings equals the
number of trivalent vertices and equals ℓ(β2)− ℓ(β1). The following result is a characterization of the
equivalence between Demazure weaves in a special case.

Theorem 4.17. Let β1, β2 be two braid words such that ℓ(β1) = ℓ(β2) − 1. Then two Demazure
weaves w1,w2 : β2 → β1 are equivalent if and only if they have the same missing crossing in β2.

Proof. Since ℓ(β1) = ℓ(β2)− 1, any Demazure weave between β2 and β1 has one trivalent vertex. Let
us prove that equivalent weaves have the same missing crossing. It is verified that commutations with
distant colors and Zamolodchikov relations induce the same bijections between crossings, so any two
weaves with the same source and target and only 6- and 4-valent vertices induce the same bijection.
Finally, for the 5-cycle from Section 4.2.4 we observe that in either weave for 1121 the first crossing
is missing, while in either weave for 1211 the third crossing is missing.

Conversely, assume that the Demazure weaves w1,w2 : β2 → β1 have the same missing crossing. It is
sufficient to prove that they can be related by a sequence of cycles from Lemma 4.16 and equivalences.
Note that a trivalent vertex corresponds to a close deletion pair. We have the following cases, where
the deletion pair is underlined:

(1) Assume that (si, sj) is a close deletion pair and we apply a 4-valent vertex to sj :

siusjsk = siusksj , |k − j| > 1,

then (si, sj) is a close deletion pair in the resulting braid, and Lemma 4.16 applies.

(2) Assume that we apply a 6-valent vertex with sj on the left:

siusjsj+1sj = siusj+1sjsj+1

then (si, sj+1) is a close deletion pair in the resulting braid, and Lemma 4.16 applies.

(3) Assume that we apply a 6-valent vertex with sj on the right:

siusjsj+1sj = siusj+1sjsj+1

Note that siusjsj+1 = usjsj+1sj = usj+1sjsj+1 implies siu = usj+1, and (si, sj+1) is again
a close deletion pair.

(4) Finally, assume that we apply a 6-valent vertex with sj in the middle, then we no longer get
a deletion pair. Instead, u = vsj+1 and sivsj+1 = vsj+1sj . By considering possible braid
moves, we can write v = wsj , then

siwsjsj+1 = wsjsj+1sj = wsj+1sjsj+1,
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hence siw = wsj+1.We get the following diagram:

siwsjsj+1sjsj+1 siwsjsjsj+1sj wsj+1sjsjsj+1sj

siwsj+1sjsj+1sj+1 wsj+1sjsj+1sjsj+1 wsjsj+1sjsjsj+1

wsj+1sj+1sjsj+1sj+1 wsj+1sjsj+1sj+1 wsjsj+1sjsj+1

Here the squares are isotopies and 5-cycle is an equivalence from Section 4.2.4.

By combining all these cases (and the ones obtained by changing j + 1 to j − 1, or applying braid
moves to si), we can find equivalent weaves w1 ∼ w′′

1 ◦w′
1 and w2 ∼ w′′

2 ◦w′
2 where

• w′
1,w

′
2 : β2 → β′ are weaves between equivalent braid words.

• w′′
1 ,w

′′
2 : β′ → β1 are weaves obtained by finding a close deletion pair in β′ and applying either

weave from Lemma 4.16, followed by a sequence of braid moves.

Note that w′
1 ∼ w′

2, so it is enough to check that w′′
1 ∼ w′′

2 . Since w1,w2 have the same missing
crossing in β2, w

′′
1 and w′′

2 have the same missing crossing in β′. Thus, w′′
1 and w′′

2 use the same close
deletion pair in β′, so the result now follows from Lemma 4.16. □

Remark 4.18. Although it is natural to consider the above injection and missing crossings for more
general weaves, these notions are not invariant under the equivalence relation. Indeed, one can check
that the two paths in the 5-cycle for 1121 yield two different injections on crossings (with the same
image), and the different paths for 12121 have different missing vertices.

For a positive braid word β, we define the mutation graph of β to be a graph with vertices given by
the equivalence classes of Demazure weaves w : β∆ → ∆, from β∆ to ∆, i.e. w ∈ HomWn(β∆,∆),
and edges corresponding to mutations. Note that, by Theorem 4.12(b), any two equivalence classes
of Demazure weaves in HomWn

(β∆,∆) are related by mutations.

Conjecture 4.19. Suppose we oriented each mutation in the direction (ss)s→ s(ss). For any positive
braid β, this orientation descends to the mutation graph of β. With this orientation, the mutation
graph has no oriented cycles.

The conjecture is motivated by [14], where a similar statement was proven for the exchange graphs
for quivers and cluster algebras; see also [15].

4.6. Examples. Let us study two explicit examples in detail, illustrating the material and results
presented above.

Example 4.20. 2-strand braids. A braid on two strands is an element of Br2: we denote by σ the
unique Artin generator of this group, and by s the corresponding Coxeter generator (12) ∈ S2. Each
positive braid β ∈ Br2 has a unique braid word, which has the form σl, l ≥ 0, and note that ∆ = σ.
By abuse of notation, we will also write this word as sl. We refer to the braid σl as the (2, l)-torus
braid, since its (rainbow) closure is the (2, l)-torus link.

We have no braid moves in Br2, so each weave w ∈ HomW2(β, β
′) contains only trivalent vertices,

cups and caps (and no 6- or 4-valent vertices). Each Demazure weave w ∈ HomW2(β · ∆,∆) is
naturally a rooted binary tree as it contains only trivalent vertices. By construction, all such binary
trees with l(β) + 1 leaves are mutualy non-equivalent, but they are all related by mutations. If we
orient each mutation (ss)s → s(ss), the oriented mutation graph will coincide with the classical
Hasse graph of the Tamari lattice. It is known to be the 1-skeleton of a combinatorial polytope: the
(l(β)− 1)-dimensional associahedron, see e.g. [93]. We can summarize this discussion as follows.

Lemma 4.21. The mutation graph of the (2, l) torus braid is the 1-skeleton of the (l−1)-dimensional
associahedron.

We can also understand each Demazure weave w ∈ HomW2
(sl · ∆,∆) as a sequence of openings of

crossings in the braid sl · ∆ = sl+1. As we understand trivalent vertices ss → s as openings of the
left crossing, w is actually a sequence of openings of crossings in β; the only crossing of ∆ is the
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crossing of the concave end of w. Naturally, the sequence of crossings being opened can be seen as a
permutation in Sl. The Tamari lattice is known to be both a sublattice and a lattice quotient of the
weak order on permutations, see [93]. Note that a permutation is the same as a maximal chain in the
Boolean lattice 2[l] of the subsets of the set of crossings of β.

Finally, another way to look at Demazure weaves w ∈ HomW2
(sl · ∆,∆) is to consider them as

monotone paths along the edges in the l−dimensional cube, with 2−dimensional faces representing
elementary moves (equivalences or mutations) between weaves. We illustrate this on the example
of the (2, 3)-torus braid β = sss in Figure 9. Each edge of the cube is oriented downwards and
corresponds to one trivalent vertex in a weave. Equivalently, it corresponds to opening a single
crossing in β. Each vertex represents a horizontal cross-section away from the vertices of a Demazure
weave w ∈ HomW2(ssss, s); equivalently, it corresponds to a braid word obtained from β by the
opening of some crossings. The underlined letters represent crossings that have been opened. For
each edge of the weave in a horizontal slice, we can trace back its parents in ssss; these parents are in
parentheses. The cube has the unique top vertex representing the braid ssss, and the unique bottom
vertex representing s. Each Demazure weave can be seen as a monotone path along the edges from
the top vertex to the bottom vertex.

(ssss)

(ss)(ss)

(sss)s

s(sss)

(ss)ss

ss(ss)

ssss

s(ss)s

opening crossings

mutations

Figure 9. The Hasse graph of the Boolean lattice 2[3]. The top vertex is the initial
braid word β · ∆ = s3 · s = s4, the bottom vertex represents ∆ = s. Demazure
weaves w ∈ HomW2

(ssss, s) correspond to monotone paths from the top vertex to
the bottom vertex.

The light gray face in the cube in Figure 9 illustrates the weave mutation given by

((s (s s)) s) (s ((s s) s))
oo //

The dark gray face is the only face that does not represent a mutation. Two monotone paths related
by the flip in this face correspond to two different possibilities to draw the same weave in such a way
that each horizontal cross-section contains at most one trivalent vertex:

((s s) (s s)) ((s s) (s s))
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(((s s) s) s)

((s (s s)) s) (s ((s s) s))

((s s) (s s))

(s (s (s s)))

77

))

//

$$

55

Figure 10. The mutation graph of the (2, 3) torus braid sss. All mutations are
oriented in the direction (ss)s → s(ss). It coincides with the Hasse graph of the
Tamari lattice.

Two weaves are related by a single mutation if they are related by a polygonal flip in a non-gray face.
In Figure9, mutations (ss)s → s(ss) correspond to replacements of two “left” sides of a square by
its two “right” sides. The mutation graph is the 1-skeleton of 2-dimensional associahedron, that is, a
pentagon. It is drawn on Figure 10 as the Hasse graph of the Tamari lattice of rooted binary trees
with 4 leaves. This concludes this example, focused on 2-stranded braids. The study of n-stranded
braids and their weaves is, in general, more intricate (and interesting as well). This is illustrated in
the next example.

Example 4.22. The (3, 2) torus braid. Consider the (3, 2) torus braid β = σ1σ2σ1σ2 = 1212.
Figure 11 illustrates Demazure weaves 1212 · ∆ = 1212121 → 212 and relations between them. In
Figure 11, we allow weaves with trivalent vertices 11 → 1, 22 → 2 and 6-valent vertices representing
braid moves only in one direction: 121 → 212. Edges of the graph in Figure 11 represent single
moves. We assume that each weave is drawn in such a way that each horizontal cross-section contains
at most one vertex. Each vertex on Figure 11 represents a horizontal cross-section without vertices
of an (a priori, not unique) weave. All edges are oriented downward. The weaves then correspond to
monotone paths from the top vertex to the bottom vertex on the figure.

It appears that there is a way to draw the graph as a 1−skeleton of a 3−dimensional polytope with 21
facets, although we did not try to find an explicit polytopal realization. The 2-dimensional (polygonal)
faces correspond to the elementary moves between the paths. All the 2-dimensional faces are 4- or
8-gons:

(1) Gray quadrilaterals correspond to mutations between the pairs of paths from sss to s.
(2) Other quadrilaterals correspond to isotopies exchanging the heights of vertices in a weave.
(3) Octagons correspond to the outer octagons in Section 4.2.5, they are formed by paths (A)

and (E). Note that the inner vertices and paths do not appear since the moves 212→ 121 are
not allowed.

We have no words containing 1121 or 1211 in our example, so the pentagons from 4.2.4 do not appear.
In order to cover all Demazure weaves, we should allow the moves 212→ 121. In Figure 11, we should
then replace each octagonal face by 5 faces from 4.2.5.

Two weaves are equivalent if the corresponding paths are separated by several white faces, and related
by a single mutation if they are separated by one gray face and several white faces. If we start from
some monotone path, replace its part given by some edges of a 2-dimensional face by all the other
edges of this face, and repeat this procedure by modifying paths across 2-dimensional faces until we
come back to the original path (making the 360 degrees turn around the vertical axis in the polytope
along the way), we go by all edges of the mutation graph of equivalence classes of paths exactly once.
The mutation graph is a pentagon.

Each Demazure weave w : 1212121 = β · ∆ → ∆ = 121 is equivalent to a Demazure weave w′ :
β ·∆→ 212 concatenated with a single 6−valent vertex 212→ 121. Indeed, if the last vertex in w is a
6−valent vertex βℓ(w)−1(w) = 212→ 121 = βℓ(w)(w), then we define w′ to be w with this vertex being
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1221221

121221 122121

2121 1212

1212121

2122121

212121

221221

22121

22212

2212

212

2122212

212212

21212

22122

2212

212212

1212212

121212

122122

12122

21222

2122

2122

12212

212221

21221

12121

21221

122212

12212

Figure 11. The top vertex is the initial braid word β · ∆ = s1s2s1s2 · s1s2s1, the
bottom vertex represents s2s1s2. Demazure weaves β · ∆ → ∆ with only 6-valent
vertices s1s2s1 → s2s1s2 and 3-valent vertices allowed correspond to monotone paths
from the top vertex to the bottom vertex.

removed. By construction, w is then the concatenation of w′ with this vertex βℓ(w)−1(w)→ βℓ(w)(w).
Otherwise, we define w′ to be w concatenated with a vertex 121 → 212. Then w is equivalent to w′

concatenated with a vertex 212 → 121 via a cancellation move from Section 4.2.2. These arguments
show that the mutation graph of Demazure weaves β ·∆→ ∆ is isomorphic to the mutation graph of
Demazure weaves β ·∆→ 212. Thus, the former, i.e. the mutation graph of β, is also a pentagon.

The appearance of the pentagon is not completely unexpected. Indeed, it coincides with the mutation
graph of the torus braid (2, 3).Since the Legendrian links Λ(3, 2) = Λ(2, 3) coincide, and the corre-
sponding augmentation varieties are isomorphic. The fact that the mutations graphs of Demazure
weaves of these two braids are isomorphic to each other is to be expected.

Let us conclude this subsection on examples with two conjectures. First, inspired by the (Legendrian)
equivalence between certain Legendrian (2, n)- and (n, 2)-torus links, and Lemma 4.21, we state the
following conjecture.

Conjecture 4.23. For the (n, 2) torus braid β, the mutation graph of Demazure weaves β ·∆ → ∆
is the 1-skeleton of the (n− 1)-dimensional associahedron.

Our conjectural 3-dimensional polytope on Figure 11 is similar to polytopes from [81, Figure 1] where
the vertices encode equivalence classes of reduced expressions of elements in the braid group and
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edges correspond to braid moves (also oriented from sisi+1si to si+1sisi+1). Reduced expressions
are considered to be equivalent if they are related by a sequence of moves sisj → sjsi, |i − j| ≥ 2.
This equivalence relation is trivial in our 3−strand case. It would be interesting to construct such
polytopes for other braids.

Remark 4.24. The polytopes in [81] are the Hasse graphs of second higher Bruhat orders introduced
by Manin and Schechtman [79, 80], see also [107]. Given an arbitrary braid β, we can consider a
similar oriented graph Dβ . First, we associate a vertex to the braid β. We draw edges corresponding
to moves ss → s, sisi+1si → si+1sisi+1, and sisj → sjsi, |i − j| ≥ 2. We then contract all edges
corresponding to moves sisj → sjsi, |i − j| ≥ 2. This defines a poset with covering relations defined
by edges. An element of the poset is an equivalence class of positive braid words with Demazure
product ∆, with a certain extra decoration. Words are considered to be equivalent if they are related
by a sequence of moves sisj → sjsi, |i− j| ≥ 2. The decoration can be understood in terms of subsets
of the set of crossings of the braid β; however, it is nontrivial to give a precise definition because of
the issue discussed in Remark 4.18. We can also define the decoration in a non-combinatorial way by
using variables from Section 5.6.

If we forget the decoration, this poset becomes a poset on the set of words with Demazure product ∆.
Its analogue for all expressions of ∆ and covering relations ss→ s replaced by ss→ e was defined by
Elias [36] as an extension of the second higher Bruhat order to necessarily reduced words. It was used
in the proof of the main result of the work [36], which we translated to our language as Theorem 4.12.
Our weaves thus resemble saturated chains in the second higher Bruhat order, which in turn can be
seen as elements of the third higher Bruhat order. However, our equivalence relations differ from the
one considered by Manin and Schechtman. Note also that Thomas [105] defined the 0th Bruhat order
to be the Boolean lattice. As we discussed in Example 4.20, Demazure weaves in W2 can be seen as
maximal chains in the 0th Bruhat order. In the present article, we will not explore the link between
weaves and the theory of higher Bruhat orders further.

The graph Dβ is not always a 1-skeleton of a polytope: e.g. D12122 is only a 1-skeleton of a union of
two quadrilaterals. However, we have the following expectation.

Conjecture 4.25. For an arbitrary positive braid word β, the poset complex of the oriented graph
Dβ is either a sphere or a ball. If it is a sphere, it admits a polytopal realization.

4.7. Triangulations and weaves. This subsection provides two types of constructions for weaves,
by using certain labeled triangulations, and a relation between them. Specifically, we present the
following constructions:

(1) From an admissible triangulation τ , as in Definition 4.26 below, we construct a weave w(τ).
There are choices in the construction of w(τ), but any two sets of choices lead to equivalent
weaves.

(2) From a Demazure triangulation τ , as in Definition 4.30 below, we construct a weave w(τ).
There are choices in the construction of w(τ) and, in contrast to (1) above, different choices
might lead to non-equivalent weaves. Nevertheless, any two weaves constructed from the same
Demazure triangulation τ are mutation equivalent.

(3) In Proposition 4.39 below we show that any Demazure triangulation can be subdivided to an
admissible triangulation, and explain how the resulting weaves – via (1) and (2) above – are
related.

In this subsection, weaves are not a priori sliced. The use of the word weave in this subsection will
refer to Definition 4.1 unless otherwise specified.

4.7.1. Admissible triangulations and weaves. Given a positive braid word β, let us write the letters
(crossings) of β ·∆ on the sides of a (ℓ(β) + ℓ(w0))−gon.

Definition 4.26. Let P ⊆ R2 be a regular n-gon. Consider triangulation τ of P such that the
vertices and edges of P are vertices and edges of the triangulation τ , though τ may contain vertices
inside of P . By definition, τ is said to be admissible if each of the edges is oriented and labeled by a
permutation u such that every triangle is one of the following two types:
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si si

si

u v

uv

That is, either all three sides of one triangle of τ are labeled by the same simple reflection si and
the edges do not form a 3-cycle, or the sides are labeled by permutations u, v and u · v such that
ℓ(u ·v) = ℓ(u)+ ℓ(v) as depicted above (and edge orientations also are as in the figure). By definition,
we call such triangles admissible.

Remark 4.27. Note that the edges in τ are oriented, but the triangles are not oriented, and so
neither is the triangulation τ itself. The orientation on edges is used below only to illustrate the way
we read and concatenate edge labels: if we follow the edge labeled by u in the direction opposite to
its orientation, then we read the label as u−1.

Now, given an admissible triangulation τ as in Definition 4.26, we can algorithmically construct a
weave w(τ) associated to it. For this, we make some additional choices. This is done as follows:

(1) Choose a reduced expression for the permutation on every edge. For triangles of the second
type, we then concatenate the reduced expressions for u and v and get a reduced expression
for uv. This can be represented by a (piece of a) weave with no vertices at all. Now, this
resulting reduced expression for uv is possibly different from the one initially assigned to uv.
Since two reduced expressions are related by a sequence of braid moves, which are translated
to 6- and 4-valent vertices for weaves, we can draw a weave (just with 4- and 6-valent ver-
tices) representing that sequence and connecting these two reduced expressions for uv. Note
that the resulting weave on such a triangle of the second type depends on this choice of a
sequence of braid moves. That said, any two such weaves are related by weave equivalences,
by Theorem 4.12.(a).

(2) For triangles of the first type, with edges labeled by si, we associate a weave consisting of a
single trivalent vertex of the corresponding color si.

In summary, the possible choices in (1) give equivalent weaves and there are no choices in (2), for
triangles of the first type. Therefore, this assignment of a weave for each triangle in τ glues up to a
weave w(τ) on the entire polygon P , well-defined up to weave equivalence. (Cf. Remark 4.14.)

We can encode some of the moves between weaves in terms of admissible triangulations, as follows:

(i) Given three permutations u, v and w such that ℓ(uvw) = ℓ(u)+ ℓ(v)+ ℓ(w), we can make the
following moves, which clearly do not change the weave, up to equivalence:

u

v

w

uvw

uv ∼ u

v

w

uvw

vw

u vw

uvw

v

uv w

∼ u vw

uvw

For unlabeled triangulations, these are precisely the Pachner moves (also known as bistellar
flips) in dimension 2. The result of Pachner [88] states that all triangulations of a polygon are
related by such moves (the general version of this result holds for piecewise linear manifolds
and bistellar flips in higher dimensions).
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(ii) If we have four permutations u, v, w, t such that uv = tw, then u−1t = vw−1. Assuming that
all these products are reduced, we have a move

u

v

w

t

uv = tw ∼ u

v

w

t

u−1t = vw−1

Note that in this case we get the equations

ℓ(u) + ℓ(v) = ℓ(t) + ℓ(w), ℓ(u) + ℓ(t) = ℓ(v) + ℓ(w)

which imply
ℓ(u) = ℓ(w), ℓ(v) = ℓ(t).

(iii) We can encode the 1212-move from Section 4.2.4 as the following move between triangulations:

Example 4.28. The weave corresponding to either of the following two diagrams is a 6-valent vertex:

The choice of a reduced expression (121 or 212) on the diagonal determines the triangle containing
this 6-valent vertex. This illustrates (ii) above.

Remark 4.29. Conversely to the construction above, given a weave we can consider the dual planar
graph. It has triangular regions corresponding to 3-valent vertices in the weave, hexagonal regions
corresponding to 6-valent vertices, and quadrilateral regions corresponding to 4-valent vertices. By
choosing any admissible triangulation of each hexagon and quadrilateral, we get a triangulation of the
entire polygon. The choice of the triangulation does not matter - for example, for the hexagon with
sides labeled 1,2,1,2,1,2 there are 14 triangulations and 12 of them (those that do not contain triangles
formed by three diagonals) are admissible. From Example 4.28, any two of them can be related
by a sequence of the above moves, and correspond to equivalent weaves. In conclusion, we have a
construction starting with a weave and resulting in a triangulation and vice versa. These constructions
depend on choices and neither of them is a bijection. For future work, it would be interesting to find
a complete set of moves between triangulations such that the corresponding equivalence classes are
in bijection with the equivalence classes of weaves.

4.7.2. Demazure triangulations. The correspondence between weaves and admissible triangulations
in Subsection 4.7.1 above is clear combinatorially. Nevertheless, it has a disadvantage: given a tri-
angulation, it is unclear if the corresponding weave is simplifying or Demazure (more precisely, it is
unclear whether the underlying colored graph can be drawn as a sliced weave which is simplifying
or Demazure, respectively) or, geometrically, if the corresponding Lagrangian surface is embedded in
R4 (instead of merely immersed). In order to resolve this issue, we now introduce a special class of
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triangulations – with different labeling rules – which we refer to as Demazure triangulations. We stress
that Demazure triangulations are not necessarily admissible triangulations, as defined in Subsection
4.7.1 above. That said, Proposition 4.39 below explains how to produce admissible triangulations
from Demazure triangulations by a subdivision process.

Let β be a positive n-braid word with Demazure product δ(β) = w0 and set N := ℓ(β) + 1. Consider
an N -gon P whose vertices are labeled clockwise with integers from 0 to N − 1. Label the first N − 1
sides clockwise by the letters of β, and label the last (or bottom) side connecting N − 1 and 0 by w0.
By definition, such labeled polygon P is said to be labeled according to β.

Definition 4.30. Let β be a positive n-braid word with Demazure product δ(β) = w0 and P a
polygon labeled according to β. By definition, a Demazure triangulation τ(P, β) is a non-oriented
triangulation of P with edges labeled by permutations such that:

(1) The only vertices of τ(P, β) are the vertices of P .

(2) Every edge is labeled by a permutation as follows. An edge e in τ(P, β) divides the boundary
∂P into two connected components, and the labels in the connected component of ∂P that
does not contain the w0-label spell a subword β′ ⊆ β. Then the permutation assigned to e is
the Demazure product δ(β′) of such subword β′.

Figure 12. (Left) A Demazure triangulation for the braid word β =
σ2σ

2
1σ

2
2σ

2
1σ2σ

2
1σ2. The Demazure product w0 = s1s2s1 and its associated edge are

depicted in green for visual emphasis. (Right) A possible weave associated to this
Demazure triangulation.

First, a Demazure triangulation, as in Definition 4.30, is not necessarily admissible, as in Definition
4.26. Note also that the edges of a Demazure triangulation are diagonals of the polygon P and we
sometimes refer to them as diagonals. Second, there are no choices in the definition of a Demazure
triangulation beyond the triangulation of the polygon P itself and the braid word for β. These two
uniquely specify the labeling of the edges. Additional choices will be needed when we try to associate
a weave to a Demazure triangulation. By definition, any Demazure triangulation of a polygon labeled
according to β is said to be a Demazure triangulation of β, and we often simply write τ(β) for such
a Demazure triangulation.

Example 4.31. Figure 12 (left) illustrates an instance of a Demazure triangulation. The positive
3-braid word is β = σ2σ

2
1σ

2
2σ

2
1σ2σ

2
1σ2, whose Demazure product is indeed w0 = s1s2s1.

Definition 4.32. Given a Demazure triangulation, we define the height of the bottom w0-side to be
0. Given any other side or edge, we define its height as the number of edges separating it from the
bottom side plus one.
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Example 4.33. The following picture illustrates edges in a triangulation labeled by height, where
the bottom side is labeled with w0:

0

w0
23

24

24

11

23

By definition, in any triangle in a Demazure triangulation we have two sides of equal height h labeled
by some permutations u, v and the third side of height h− 1 labeled by u ⋆ v.

Definition 4.34. Let △ be a triangle with sides u, v and u ⋆ v. The defect of △ is

def(△) = ℓ(u) + ℓ(v)− ℓ(u ⋆ v).

The following fact relates defects to the length of the boundary braid.

Lemma 4.35. Let β be a positive braid word and △ a triangle in a Demazure triangulation of β.
Then ∑

△

def(△) = ℓ(β).

Proof. Set r := ℓ(β) to ease notation and let us prove the following more general statement: “Sup-
pose that a diagonal, or the side with vertices 0 and N , encloses a braid β′ with k crossings, and
carries the label u = δ(β′). Then the sum of defects of the triangles above this diagonal equals
k− ℓ(u).” The required statement in the lemma follows from this by setting u = w0, so that we have
r + ℓ(w0)− ℓ(w0) = r.

To prove this general statement, we use induction in k ∈ N. Consider the triangle adjacent to the
diagonal with u, its other sides are labeled v and w such that v ⋆ w = u. By the assumption of
induction, sum of defects above v equals k1 − ℓ(v) and the sum of defects above w equals k2 − ℓ(w),
with k1+k2 = k, so the total sum of defects equals k1−ℓ(v)+k2−ℓ(w)+ℓ(v)+ℓ(w)−ℓ(u) = k−ℓ(u). □

The next result justifies the chosen nomenclature for a Demazure triangulation.

Proposition 4.36. Let β be a positive braid word with Demazure product δ(β) = w0, ∆ a reduced word
for w0, and τ(β) a Demazure triangulation associated to β. Then there exists a non-deterministic al-
gorithm that constructs a Demazure weave w(τ(β)) ∈ HomWn(β,∆) from the Demazure triangulation
τ(β).

Before its proof, we emphasize that there are choices in the construction of a Demazure weave w(τ(β))
from the Demazure triangulation τ(β). Different choices for the same τ(β) lead to mutation-equivalent,
but not necessarily weave-equivalent, weaves.

Proof. First, observe that for any two permutations u, v there exists a (non-unique) Demazure weave
from the concatenation of any reduced braid words for u and v at the top to any reduced word for
u ⋆ v at the bottom. This is immediate by the definition of Demazure product: we can go from uv
to u ⋆ v by a sequence of braid relations and moves sisi → si, which correspond to 6-,4- and 3-valent
vertices. Therefore, for each triangle of the Demazure triangulation, we have a Demazure weave from
the concatenation of the reduced words for the labels of the sides of height h to the reduced word for
the label of the height h− 1. Note that such Demazure weaves associated to a triangle might not be
unique, but at least one exists. Given a Demazure triangulation, we now construct a Demazure weave
as follows.

For each possible height h there is a unique polygonal chain Lh inside the Demazure triangulation,
consisting of diagonals of the triangulation of height h and (some) sides of the polygon of height at
most h, and satisfying the following conditions:
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(i) Its two endpoints coincide with the endpoints of the bottom side.

(ii) It contains all diagonals of height h precisely once, and each side of the polygon at most once.

For each diagonal or side appearing in Lh, we choose a reduced expression of its label; for the bottom
side, we choose ∆ as a reduced word for w0, and for each other side its label is a letter of β. The
clockwise orientation of the boundary of the polygon induces an orientation on the bottom side. We
define βh to be the concatenation of all the words appearing as labels of the line segments appearing
in Lh, where we orient Lh from the target of the oriented bottom side to its source. Note that we
have β0 = ∆ and βN−3 = β. By the discussion above, for each height h, there exists a (non-unique)
Demazure weave from βh to βh−1. By choosing such a weave for each height h and concatenating
them we obtain a Demazure weave from β to w0. □

Figure 13. (Left) A weave mutation. (Right) A move obtained from composing a
sequence of weave equivalences, one weave mutation and another sequence of weave
equivalences.

Remark 4.37. As stated in the proof above, note that there are several ways to fill a triangle of
a Demazure triangulation with a (piece of a) weave. For instance, if all sides are labeled with the
same permutation 121, we have the two options in Figure 13 (right), which are mutation equivalent
but not weave-equivalent. In Figure 14 we depict (some) possible pieces of weaves that can appear in
triangles of a Demazure triangulation with only 2 colors, i.e. for permutations in s1, s2 ∈ S3.

4.7.3. Relation between Demazure triangulations and admissible triangulations. Demazure triangula-
tions, discussed in Subsection 4.7.2, relate to admissible triangulations, discussed in 4.7.1, as follows.

To ease notation, we say that a weave is compatible with a Demazure triangulation τ if it can be
obtained from τ using the construction in the proof of Proposition 4.36. Note that there are typically
different (non-equivalent) weaves compatible with the same Demazure triangulation τ , cf. Remark
4.37. Similarly, a weave is said to compatible with an admissible triangulation τ if it can be obtained
from τ using the construction in Subsection 4.7.1. In this case, any two weaves compatible with the
same admissible triangulation τ are weave equivalent.

Let β a positive braid word with Demazure product w0 and fix a reduced expression ∆ for w0 as in
Proposition 4.36. Consider a Demazure triangulation τ of β. This is a triangulation τ of a polygon
with l(β) + 1 sides, where the summand 1 accounts for the edge that is labeled with w0. In order to
relate it to an admissible triangulation for β, which triangulates a polygon with l(β)+ l(w0) sides, we
need to account for this difference in the number of sides. This is achieved as follows:

Definition 4.38. Let τ(β) be Demazure triangulation of β, ∆ a reduced expression for w0 and
τ(∆op) a Demazure triangulation for ∆op. By definition, a ∆-expansion of τ(β) is the triangulation
of a polygon with l(β) + l(w0) sides obtained by gluing τ(β) and τ(∆op) along their (correspondingly
unique) w0-edges. By definition, a w0-expansion is a ∆-expansion, for some (unspecified) reduced
expression ∆ of w0.

We refer to any such triangulation, as in Definition 4.38 for some choice of reduced expression for ∆,
as a w0-expansion of τ(β).
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Figure 14. Possible weaves associated to triangles of a Demazure triangulation as
in the proof of Proposition 4.36, using only two colors s1, s2 ∈ S3. Note that fourth
(i.e. the first in the second row) and seventh diagrams coincide as (pieces of) weaves;
and the same is true for the sixth, ninth and fourteenth diagrams.

Proposition 4.39. Let β be a positive braid word. Any w0-expansion of a Demazure triangulation
τ(β) for β can be subdivided and oriented to obtain an admissible triangulation τ(β) for β. In addition,
any weave compatible with τ(β) is compatible with τ(β).

Proof. Consider a triangle in a Demazure triangulation with sides u, v and u⋆v = δ(uv). If u⋆v = uv,
then this triangle is admissible. Otherwise, we use induction in ℓ(v). Let v1 be the longest prefix
of v such that uv1 is reduced. Then we can write v = v1sv2 such that ℓ(uv1) = ℓ(u) + ℓ(v1) but
ℓ(uv1s) < ℓ(u) + ℓ(v1) + 1. Therefore we can find a reduced expression w such that uv1 = ws, and
draw the following diagram:
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u v

w
s

s s

v1

v2

u ⋆ v

The unmarked edges are labeled by ws = uv1, ws and sv2. Now

u ⋆ v = u ⋆ v1 ⋆ s ⋆ v2 = w ⋆ s ⋆ s ⋆ v2 = ws ⋆ v2,

and by the assumption of induction we can subdivide the marked triangle with sides ws and v2 into
admissible ones. In this manner, we subdivide each triangle in an arbitrary Demazure triangulation
into admissible triangles. Therefore, we can subdivide each w0-expansion of τ(β) (recall that it is
glued out of two Demazure triangulations) into a triangulation consisting of admissible triangles,
which is then admissible by definition. Let us denote this admissible triangulation by τ(β).

For the statement about the weave, let us describe an arbitrary weave compatible with τ(β) as
a sequence of braid words. First, given a subdivided triangle as above, we choose some word for
u, v1, v2 and use a sequence of braid relations

uv → uv1sv2 → wssv2

Next, we insert a trivalent vertex in the central triangle and get wsv2, and proceed by induction. This
yields one possible sequence of moves computing the Demazure product u ⋆ v. This gives a Demazure
weave for each triangle in τ(β). Gluing them together, we get a Demazure weave w1 compatible with
τ(β), as in the proof of Proposition 4.36. Doing the same for each triangle in our chosen Demazure
triangulation for ∆op, where we fixed the word ∆op on the bottom side, we obtain a Demazure weave
w2 from ∆op to itself. Now we can glue these two weaves w1,w2 together along their w0-edges and
declare that all the consecutive edges that spell ∆op, i.e. all the edges from w2 except its w0-edge, are
to be considered as one edge (indeed, since the polygons for β and for ∆op have opposite orientations,
the gluing can in fact be interpreted as the concatenation of w1 with the half-turn of w2, the latter
being a Demazure weave from ∆ to itself). By labeling this particular edge with w0, the result of
gluing w1 and w2 and performing this identification gives a weave compatible with τ(β). Indeed, it
is compatible with τ(β) because w2 consists only of 4- and 6-valent vertices. In fact, this resulting
weave is equivalent to w1 by Theorem 4.12.(a). □

5. Algebraic Weaves, Morphisms, and Correspondences

This section develops the relative geometry of braid varieties, studying morphisms and correspon-
dences between them. These correspondences are defined using weaves, and provide a functor from
the category of algebraic weaves to the category of algebraic varieties and their correspondences. Here
and below, a correspondence betweenX and Y is an algebraic variety Z with two regular maps Z → X
and Z → Y . In general, we do not require that Z is a subset of X × Y . That said, this stronger
condition does hold for correspondences associated with simplifying weaves, see Remark 5.10.

5.1. Correspondences. In this section, we use horizontal dashed segments in order to keep track of
certain variables, corresponding to the zi-variables in the braid variety. By definition, a horizontal
segment inside the domain R× [1, 2], where a weave is drawn, is any connected segment contained in
a line of the form R×{r}, for some real value r ∈ [1, 2]. In addition, we also consider particular types
of weaves. Altogether, this leads to the following definition.

Definition 5.1. An algebraic weave of degree n is a sliced weave w ⊆ R× [1, 2] of degree n such that:

(i) The edges have been oriented downwards, with the models according to Figure 15 for cups and
caps. By convention, diagrams are oriented from top to bottom, from R×{2} down to R×{1}.
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(ii) The weave w is decorated with horizontal dashed rays, as follows. By definition, dashed rays
are horizontal rays of the form (−∞, b]× {r} ⊆ R× [1, 2], for some b ∈ R and r ∈ (1, 2), such
that the dashed ray starts at a trivalent vertex, or at the bottom of a cup, or at the top of a
cap. The first three diagrams in Figure 15, excluding the rightmost picture, depict the three
possible starts of a dashed ray. In other words, the starting point (b, r) ∈ R× [1, 2] of a dashed
ray must either be a trivalent vertex, the lowest point of a cup or the highest point of a cap.

(iii) The weave w is such that any horizontal line R × {h}, for some h ∈ [1, 2], contains at most
one of the following types of points: a vertex of w, the lowest point of a cup or the highest
point of a cap.

In particular, all vertices, cups and caps of w have different heights, and dashed rays never
pass through another vertex, cup or cap (in addition to the starting point), dashed rays are
all parallel to each other and are all transverse to the edges of w. Therefore, the only local
models involving an intersection between a dashed ray and w are as depicted in Figure 15.

By definition, a (transverse) intersection point of a dashed ray with a weave edge, distinct from the
starting point of the dashed ray, will be referred to as a virtual vertex. A virtual vertex is drawn in
the rightmost diagram of Figure 15.

Remark 5.2. Throughout this section, we refer to the valency of a vertex in the original weave w,
without accounting for any additional valency due to dashed rays. In particular, trivalent vertices
will be still called trivalent despite an additional edge starting at them.

Figure 15. Local models for algebraic weaves, compare with Figure 8. The starting
point of a dashed ray must be at a trivalent vertex, a cup or a cap. These cases are
respectively labeled with (a), (d) and (e). A virtual vertex is shown on the right.

By Definition 5.1, the new local models for algebraic weaves involving dashed rays are those in Fig-
ure 15. The weave edges of the original weave w are subdivided by the virtual vertices into smaller
segments, and dashed rays are subdivided into intervals, which we often refer to as dashed segments.

Let w : β2 → β1 be an algebraic weave from β2, at the top, to β1 , at the bottom. We now construct
a correspondence between the two braid varieties X0(β1) and X0(β2). To each segment of an edge
labeled by i we associate a variable z and the braid matrix Bi(z). Segments of a weave edge separated
by a virtual vertex carry different variables. In addition, each dashed segment (a segment of a dashed
ray) is labeled by an invertible upper triangular matrix whose entries are considered variables as well.
All these variables and matrices can be considered as coordinates in the space

Vw := Cweave segments ×
(
C(

n
2) × (C∗)n

)dashed segments

,

where we are identifying the space of invertible upper triangular n × n-matrices with C(
n
2) × (C∗)n.

See Figure 16 for an example. The correspondence associated to an algebraic weave w is a closed
subvariety of Vw. This correspondence is defined using the following notion of monodromy.

Definition 5.3. Let w be an algebraic weave and τ : [0, 1]→ R× [1, 2] a regular parametrization of
an oriented embedded path transverse to both w and its dashed rays. By definition, the monodromy
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Figure 16. The space Vw for this algebraic weave w is C15 ×
(
C(

3
2) × (C∗)3

)4

.

Indeed, there are 15 weave segments, each labeled with a variable zi ∈ C, and 4 dashed
segments, each labeled with an invertible triangular matrix Uj . The correspondence
M(w) associated to this algebraic weave is a closed subvariety of Vw.

of the weave w along τ , also referred to as the monodromy of τ , is the ordered product of the following
matrices:

(i) Bi(z), if the path τ crosses an edge labeled by i with variable z from left to right,
(ii) Bi(z)

−1, if the path τ crosses an edge labeled by i with variable z from right to left,
(iii) U , if the path τ crosses a dashed segment colored by U from top to bottom,
(iv) U−1, if the path τ crosses a dashed segment colored by U from bottom to top.

In detail, let {t1, . . . , tf} ∈ [0, 1] with t1 < . . . < tf be the times such that τ(ti) intersects either
the weave or a dashed ray, and let M(ti) be the matrix associated to that intersection point and
its intersection sign, according to (i) through (iv) above. Then the monodromy of τ is the product
M(t1) · . . . ·M(tf ).

Definition 5.4. Let w be an algebraic weave. By definition, the correspondence variety M(w)
associated to the weave w is the affine algebraic subvariety of Vw cut out by the following two
conditions:

(1) The monodromy of a closed loop around a neighborhood of every vertex of w is the identity.
(2) The monodromy of a closed loop around a neighborhood of every virtual vertex is the identity.

The two conditions (1) and (2) in Definition 5.4 can be written in terms of polynomial equations on
the z-variables and the coefficients of the invertible upper-triangular matrices. ThereforeM(w) ⊆ Vw

is a closed affine algebraic subvariety.

5.2. Properties of correspondences. From the ambient space Vw associated to w : β2 → β1 , we
have two natural projections

Cℓ(β1) ← Vw → Cℓ(β2).

The projection Vw → Cℓ(β2) is given by reading the labels zj associated to the weave segments at

the top boundary of w, corresponding to crossings of β2. Similarly, the projection Vw → Cℓ(β1) is
given by reading the labels zj associated to the weave segments at the bottom boundary of w, which
correspond to crossings of β1. By considering the braid matrices associated to β1 and β2, we obtain
the corresponding maps

GL(n)
Bβ1←−− Vw Bβ2−−→ GL(n).
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These two maps can be thought of as monodromies along the left to right horizontal paths near the
top boundary of w, in the case of Bβ2

, and near the bottom boundary of w, for Bβ1
. More generally,

if a horizontal slice of w spells out a braid word β, the corresponding braid matrix defines a map
Bβ : Vw → GL(n).

Definition 5.5. Let w : β2 → β1 be an algebraic weave of degree n and π ∈ Sn a permutation. The
closed subvariety M(w, π) ⊆ M(w) ⊆ Vw is given by the condition that Bβ1

π is upper triangular.
There exists a natural mapM(w, π)→ X0(β1, π) given by projecting to the labels associated to the
bottom boundary segments of w, which spell β1.

Proposition 5.6. Let w1 : β1 → β0 and w2 : β2 → β1 be algebraic weaves and w := w1 ◦ w2 their
composition. Then the following hold:

(a) Let π ∈ Sn be a permutation, which we represent by a homonymous permutation matrix
π ∈ GLn(C). Suppose that the matrix Bβ1

· π is upper-triangular. Then Bβ2
· π is upper-

triangular andM(w2, π) is a correspondence between X0(β1;π) and X0(β2;π).

(b) The composition of weaves corresponds to the following diagram:

M(w, π)

M(w1, π) M(w2, π)

X(β0;π) X(β1;π) X(β2;π),

In addition, the middle square is Cartesian. In other words, M(w, π) is a convolution of
correspondencesM(w1, π) andM(w2, π).

Proof. For Part (a), Definition 5.4 implies that the monodromy around any closed loop is the identity.
The monodromy around the closed loop encircling the whole weave with β2 on the top and β1 on the

bottom must then be the identity. The monodromy around this particular loop equals Bβ2
B−1

β1
Ũ−1,

where Ũ is the product of the upper-triangular matrices assigned to the dashed segments to the left

of w. Therefore we have the equality Bβ2
= ŨBβ1

. By the discussion above, projecting to the labels
associated to the top boundary of w defines a mapM(w, π)→ X0(β2, π).

For (b), recall that the composition w = w1 ◦ w2 of weaves is defined by vertical stacking, with w2

on top and w1 at the bottom. Therefore, we can concatenate the labels in Vw1 and Vw2 if they
agree along β1. In that case, there are natural mapsM(w) −→M(wi), i = 1, 2, given by restriction,
because the monodromy conditions in w1 and w2 are independent. The z-variables for labels along
β1 form a space Cl(β1) and restriction to the top, resp. bottom, gives a map M(w1) −→ Cl(β1),
resp.M(w2) −→ Cl(β1). It follows from above that we obtain a Cartesian square:

M(w)

M(w1) M(w2).

Cℓ(β1)

By Part (a), the condition that Bβ0π is upper-triangular implies that both Bβ1π and Bβ2π are upper-
triangular, and thus we also have the same Cartesian diagram now incorporating π. □

Remark 5.7. Note that flipping an algebraic weave w : β2 → β1 upside down and reversing orienta-
tions on the edges corresponds to switching β1 and β2 and transposing the associated correspondence.
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Proposition 5.6.(a) for the case where π = 1 is the identity gives a correspondenceM(w, 1) between
the braid varieties X0(β2) and X0(β1). Note that M(w, 1) is a closed subvariety of M(w) and, in
general, M(w, 1) ̸=M(w). By Proposition 5.6.(b), it suffices to describe these correspondences for
elementary weaves in order to understand them for general algebraic weaves. These correspondences,
in the case of elementary weaves, are described as follows:

(1) For a trivalent vertex colored by i, the correspondenceM(w, π) embeds into X(β2;π) as the
open locus {z1 ̸= 0} and projects onto X(β1;π) with fibers P1 \ {0,∞} = C∗. In terms of
matrices, we have the identity

Bi(z1)Bi(z2) =

(
−z−1

1 1
0 z1

)
Bi(z2 + z−1

1 ).

(2) For 6-valent and 4-valent vertices, the corresponding braid varieties X(β2;π) and X(β1;π) are
isomorphic, andM(w, π) realizes this isomorphism. In terms of matrices, this corresponds to
the identities

Bi(z1)Bi+1(z2)Bi(z3) = Bi+1(z3)Bi(z2 − z1z3)Bi+1(z1),

Bi(z1)Bj(z2) = Bj(z2)Bi(z1) (|i− j| > 1).

(3) For a cup colored by i, the correspondenceM(w, π) embeds into X(β2;π) as the closed locus
{z1 = 0} and projects onto X(β1;π) with fibers P1 \ {∞} = C. In terms of matrices, we have
the identity

Bi(0)Bi(z) =

(
1 z
0 1

)
.

For a cap, we just use the transposed correspondence.
(4) A virtual vertex corresponds to the identity

Bi(z)U = ŨBi(z
′)

from Lemma 2.20. In particular, we have z′ =
ui+1,i+1z+ui,i+1

ui,i
. Here U and Ũ are the labels for

the segments of the dashed ray to the right and to the left of the virtual vertex, respectively:

z

z′

Ũ U

These four rules are justified by the following result.

Proposition 5.8. In the construction of the correspondence varietyM(w):

(a) The invertible triangular matrices labeling dashed segments are uniquely determined by the
variables on the edges.

(b) The output variables of each 3-, 6-, or 4-valent vertex are determined by the input variables.

Proof. It follows from the proof of Lemma 2.20 that the equation Bi(z)U = ŨBi(z
′) uniquely de-

termines Ũ and z′ for given z and U . This establishes Part (a) near a virtual vertex. It remains to
consider the dashed segments near trivalent vertices, cups, and caps. We verify both Part (a) and
Part (b) in the necessary cases, as follows:

(1) For a 6-valent vertex, we have that Bi(z1)Bi+1(z2)Bi(z3) = Bi+1(w1)Bi(w2)Bi+1(w3) implies
w1 = z3, w2 = z2 − z1z3, w3 = z1, so the output variables are determined by the input ones.
The proof for a 4-valent vertex is similar. Note that there are no dashed segments in this case
of 4- and 6-valent vertices, so it is only to do with Part (b).

(2) For a 3-valent vertex, we have an equation Bi(z1)Bi(z2) = UBi(w) which can be written as(
1 z2
z1 1 + z1z2

)
=

(
0 1
1 z1

)(
0 1
1 z2

)
=

(
a b
0 c

)(
0 1
1 w

)
=

(
b a+ bw
c cw

)
.
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This equality implies b = 1, c = z1, w = (1 + z1z2)/c = z2 + z−1
1 and a = z2 − bw = −z−1

1 . In
particular, z1 must be nonzero.

(3) For a cup, we have Bi(z1)Bi(z2) = U and similarly z1 = 0 and U is determined by z2. The
case of a cap follows analogously.

□

By combining these facts, we obtain the following result:

Theorem 5.9. Let w : β2 → β1 be a simplifying algebraic weave with m cups and r trivalent vertices.
Then:

(1) There exists an isomorphism

M(w, π) ∼= Cm × (C∗)r ×X0(β1;π)

such that the mapM(w, π)→ X0(β1, π) is given by the projection to the third factor.

(2) The mapM(w, π)→ X0(β2, π) is injective.

Proof. The map to X0(β2;π) is injective by Proposition 5.8. This proves Part (2). For Part (1) we
read our weave inductively from bottom to top. At the bottom, the bottom edges of w spell the braid
word β1, and the corresponding z-variables parametrize a point in X0(β1;π). As we move up, we
encounter the following cases:

(i) If we cross a 6-valent vertex, similarly to Proposition 5.8 the variables z1, z2, z3 above the
vertex are determined by the variables w1, w2, w3 below it.

(ii) If we cross a 3-valent vertex v, we get an identity Bi(z1)Bi(z2) = UBi(z3). We can choose
z1 ∈ C∗ arbitrarily, then by Proposition 5.8 we have z2 = z3 − z−1

1 and U is determined
by z1 and z3. The z-variables right below the dashed ray starting at v and the matrix U
uniquely determine the z-variables above the dashed ray and the upper-triangular matrices
on the dashed ray.

(iii) If we cross a cup, we get an identity Bi(0)Bi(z2) = U . The choice of z2 in C is arbitrary and,
similarly to the previous case, U propagates to the left in a unique way.

(iv) The case of a 4-valent vertex is immediate.

Therefore, each trivalent vertex contributes with a C∗-factor, each cup contributes with a C-factor
and neither 4-valent nor 6-valent vertices contribute additional factors. This gives an isomorphism
as in Part (1) and, by construction, it satisfies that the map M(w, π) → X0(β1, π) is given by the
projection to the third factor, projecting away the C and C∗-factors from the cups and trivalents. □

Remark 5.10. If w : β2 → β1 is a simplifying algebraic weave, then the mapsM(w, π)→ X0(β1;π)
andM(w, π)→ X0(β2;π) identifyM(w, π) with a subvariety of the product X(β1;π)×X(β2;π) and
we obtain a correspondence in the sense of [78].

Corollary 5.11. Let w : β2 → β1 be a Demazure weave with r trivalent vertices. Then

M(w, π) = (C∗)r ×X(β1;π),

and the mapM(w, π)→ X(β2;π) is an open embedding.

Corollary 5.11 follows from 5.9 because we have ℓ(β1) + r = ℓ(β2), and thusM(w, π) and X0(β2, π)
have the same dimension.

We now state the invariance of the correspondences M(w) under weave equivalence, which will be
proven in Section 5.4:

Theorem 5.12. Let w1,w2 be equivalent Demazure weaves between β2 and β1, i.e. w1,w2 are
related by a sequence of elementary moves (not mutations). Then, their associated correspondences
M(w1) and M(w2) are isomorphic. Furthermore, there exists such an isomorphism that induces an
isomorphism betweenM(w1, π) andM(w2, π) for all permutations π ∈ Sn.
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Remark 5.13. It is shown in [25] that two Legendrian weaves related by an elementary move (or
compositions of thereof) yield Hamiltonian isotopic Lagrangian projections, and also yield the same
maps between the corresponding Legendrian Contact DGAs. Theorem 5.12 is an algebraic analogue
of this statement.

5.2.1. An aside on flag moduli. We could have followed [25, Section 5] and have also defined the
following correspondence MOBS(w), called the flag moduli space of w in [25, Section 5]. This flag
moduli is defined as follows. To each region of (R × [1, 2]) \ w we associate a flag in Cn, if w goes
between n-braids, and two regions separated by a line colored by i have flags in relative position
si. The flags separated by a dashed segment are required to coincide. Recall the definition of the
open Bott-Samelson variety from Section 2.7, cf. Definition 2.42. There are two natural projec-
tionsMOBS(w) → OBS(β0),MOBS(w) → OBS(β1), so thatMOBS(w) is a correspondence between
OBS(β0) and OBS(β1). We can also defineMOBS′(w) ⊆MOBS(w) as the closed subvariety given by
the additional condition that the flag corresponding to the unbounded region on the far left of the
weave coincides with the flag corresponding to the unbounded region on the far right. The variety
MOBS′(w) is a correspondence between OBS′(β0) and OBS′(β1). In this setting, in line with Theorem
2.43, we can conclude the following.

Proposition 5.14. Let G = GL(n) and B ⊆ G the Borel subgroup of upper-triangular matrices.
There is a free action of B on G×M(w) that preserves G×M(w, 1) and we have isomorphisms

MOBS(w) ∼= (G×M(w))/B, MOBS′(w) ∼= (G×M(w, 1))/B.

Proof. An element in G = GL(n,C) corresponds to the choice of a basis in one of the regions on
the plane. Given a point in M(w), we can define a basis in every other region, and the trivial
monodromy condition ensures that this assignment is well-defined. The flags in regions are induced
by these bases. The action of B changes the basis in the rightmost region, but does not affect the flag
in it. Similarly to the proof of Theorem 2.43, we can propagate this action to the left and obtain the
required isomorphism. □

5.3. Opening crossings. Let us now shift the focus to studying the relation between these corre-
spondences and opening crossings of a positive braid; the latter having been a crucial ingredient in
Sections 2.1 and 3.

Definition 5.15. Let β be a positive braid word on n strands and σ = σi a letter in β, and let β′

be the result of removing σ from β. We define an equivalence class of Demazure weaves from β∆ to
β′∆ as the composition of the following three weaves:

(a) Move ∆ next to σi and change the braid word for w0 to one which starts from σi. This only
uses braid relations, or, equivalently, 6- and 4-valent vertices,

(b) Apply the trivalent vertex σiσi → σi,
(c) Move ∆ back to the end of the word.

We will call any such weave an opening weave for (β, σ). Any choice of braid relations in (a) and (c)
yields equivalent weaves.

Let us remark that the element ∆ is not central in the braid group, and care is needed in Steps (a)
and (c) of Definition 5.15: if β = γ1σiγ2 then the procedure in Definition 5.15 is

γ1σiγ2∆→ γ1σi∆γ
′
2 → γ1σi∆

′γ′2 → γ1∆
′γ′2 → γ1∆γ

′
2 → γ1γ2∆

where ∆′ is a minimal braid lift of a reduced expression of w0 that starts with σi (and is related to
∆ by a sequence of braid moves), the opening of the crossing σi is performed in the third step, and
all other arrows only involve braid moves or, equivalently, 4- and 6-valent vertices. Let us now give a
concrete example of this procedure.

Example 5.16. (a) Suppose that β = 1212 and we want to open the second crossing in β · ∆ =
1212121. The above moves have the following form, where we have underlined ∆ and ∆′:

1212121 = 1212121 = 1212121→ 1221221→ 121221→ 112121 = 112121 = 112121.

The corresponding weave has the form
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(b) For another example, suppose that β = 12112 and we want to open the second crossing in
β ·∆ = 12112121. The above moves have the following form, where we have underlined ∆ and ∆′:

12112121 = 12112121 = 12112121→ 12121221 = 12121221→ 12212221→ 1212221→
→ 1121221 = 1121221→ 1112121 = 1112121 = 1112121.

The corresponding weave has the form

From these examples, we can see that some steps required to move ∆ next to σi in Definition 5.15
simply require us to use associativity of braid words, without using braid relations, and can be
interpreted as the identity. These moves are marked with an equality sign in both examples above.

Lemma 5.17. Let σi be a letter in β, and let w be an opening weave for (β, σi). Then the correspon-
denceM(w) agrees with the graph of the rational map Ωσi

from Definition 2.21.

Proof. Observe that the trivalent vertex σiσi → σi corresponds to opening the left crossing σi. Indeed,
applying Lemma 2.22 yields a sequence of matrix identities

Bi(z1)Bi(z2) =

(
−z−1

1 1
0 z1

)(
1 0
z−1
1 1

)
Bi(z2) =

(
−z−1

1 1
0 z1

)
Bi(z2 + z−1

1 )

followed by pushing the upper-triangular matrix to the left. This agrees with the correspondence
associated to the trivalent vertex (see also the proof of Proposition 5.8). It is a direct verification that
opening a crossing commutes with braid relations in (a) and (c) not involving this crossing, and the
result follows. □

As a result, opening all crossings in a braid β, in some order, corresponds to a Demazure weave.
Interestingly, the converse is also true, up to equivalence relation on weaves.

Theorem 5.18. Let w : β∆ → ∆ be a Demazure weave. Then w is equivalent to a weave obtained
by opening crossings in some order.

Proof. Similarly to the proof of Theorem 4.17, any Demazure weave between braids β and β′ such
that ℓ(β) = ℓ(β′) + 1 is equivalent to a weave corresponding to opening a crossing in β followed by
some braid moves. Let us prove the statement of the theorem by induction on the length of β. When
ℓ(β) = 0, we have a weave from ∆ to ∆; since ∆ is reduced, the cancellation relation in 4.2.2 and
the Zamolodchikov relation in Section 4.2.6 guarantee that all weaves ∆ → ∆ are equivalent to the
identity weave. Given a weave from β∆ to ∆, choose a slice β′ right below the first trivalent vertex.
By the above argument the weave is equivalent to opening a crossing in β (which results in a braid
β′′∆) followed by some braid moves to β′, and followed by the rest of the weave. By the assumption
of induction, the weave from β′′∆ to ∆ is equivalent to opening crossings in β′′ in some order. □

Corollary 5.19. Let w be a Demazure weave between β∆ and ∆. Then the open chartM(w, w0) ↪→
X0(β∆, w0) coincides with one of the toric charts from Section 2.3.

Proof. By Theorem 5.18 the weave w is equivalent to the weave w′ obtained by opening crossings in
some order. By Theorem 5.12 the open charts in X0(β∆, w0) corresponding to w and w′ coincide. □
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5.4. Proof of Theorem 5.12. Let us prove Theorem 5.12. In order to do so, we directly check each
elementary move from Section 4.2 separately. Cancellation of 4- and 6-valent vertices and commuting
with distant colors are clear, and we do not include them in the list. Similarly, all the ways to resolve
12121 are related to each other by a sequence of 1212-moves, as explained in Section 4.2.5, so it is
sufficient to check the latter. Below are the remaining verifications needed for proving Theorem 5.12.

5.4.1. Changing the heights of vertices. Changing the height of vertices does not change the the graph,
but can change the dashed segments. Specifically, we need to understand how to slide dashed segments
past 3-, 4- and 6-valent vertices, cups and caps. Here are the cases:

z1

s−1z1 sz2 + k

z2

s(z2 + z−1
1 ) + k

UU ′′

A

z1 z2

z2 + z−1
1

s(z2 + z−1
1 ) + k

B

U ′ U

The most interesting case is sliding through a 3-valent vertex. In this case we have identity
(5.1)(

0 1
1 z1

)(
0 1
1 z2

)(
a b
0 c

)
=

(
0 1
1 z1

)(
c 0
0 a

)(
0 1

1 b+cz2
a

)
=

(
a 0
0 c

)(
0 1
1 az1

c

)(
0 1

1 b+cz2
a

)
.

Therefore we have a transformation (z1, z2) → (s−1z1, sz2 + k) where s = c
a and k = b

a . Note that

z1 ̸= 0 is equivalent to s−1z1 ̸= 0. The transformation corresponding to the same dashed segment on
the right figure sends z2+ z

−1
1 → s(z2+ z

−1
1 )+ k, see the first of the identities (5.1) (or Lemma 2.20).

On the left figure, we also obtain s(z2+z
−1
1 )+k, now as the result of going down through the trivalent

vertex: (sz2 + k) + (s−1z1)
−1 = s(z2 + z−1

1 ) + k.

Let us now analyze the labels of the dashed segments on the far left, that we have indicated by U ′′

and A on the left weave, and by B and U ′ on the right weave. In the left-hand side weave we have:

Bi(z1)Bi(z2)U = U ′′Bi(s
−1z1)Bi(sz2 + k) = U ′′ABi(s(z2 + z−1

1 ) + k).

In the right-hand side weave we have:

Bi(z1)B2(z2)U = BBi(z2 + z−1
1 )U = BU ′Bi(s(z2 + z−1

1 ) + k).

Comparing, we obtain the equality U ′′A = BU ′. It follows that, should there be more edges on the
left of the weave, the labels of these edges remain constant below both dashed lines, as needed.

For a 6-valent vertex we have

Bi(z1)Bi+1(z2)Bi(z3)

a b c
0 d e
0 0 f

 =

f 0 0
0 d 0
0 0 a

Bi(z̃1)Bi+1(z̃2)Bi(z̃3),

where

z̃1 =
1

d
(e+ z1f), z̃2 =

1

a
(c+ z3e+ z2f), z̃3 =

1

a
(b+ z3d).

Similarly,

Bi+1(z
′
1)Bi(z

′
2)Bi+1(z

′
3)

a b c
0 d e
0 0 f

 =

f 0 0
0 d 0
0 0 a

Bi+1(z̃1
′)Bi(z̃2

′)Bi+1(z̃3
′),

where

z̃1
′ =

1

a
(b+ z′1d), z̃2

′ =
1

ad
(cd− be− z′3bf + z′2df), z̃3

′ =
1

d
(e+ z′3f).

Now for (z′1, z
′
2, z

′
3) = (z3, z2 − z1z3, z1) we get (z̃1

′, z̃2
′, z̃3

′) = (z̃3, z̃2 − z̃1z̃3, z̃1). We show all these
changes of variables in the following figure:

65



We leave the check for 4-valent vertices to the reader.

For a cup, we can apply (5.1) to write (z1, z2) → (s−1z1, sz2 + k). Note that the cup is defined
whenever z1 = 0, which is equivalent to s−1z1 = 0, so we can still apply a cup below the dashed
segment. We can also check the compatibility of the labels on the dashed segments left of the cup, as
follows. If

Bi(0)Bi(z2) = A, Bi(0)Bi(sz2 + k) = B

for upper-triangular matrices A,B, then we have

AU = Bi(0)Bi(z2)U = U ′′Bi(0)Bi(sz2 + k) = U ′′B.

The computation for a cap is similar.

5.4.2. The 1212-relation. We refer to the notations in Section 4.2.4. Two weaves declared to be
equivalent have one trivalent vertex each, so the corresponding algebraic weaves have one dashed
segment each:

The path 1212→ 2122→ 212→ 121 on the left corresponds to changes of variables

(z1, z2, z3, z4)→ (z3, z2 − z1z3, z1, z4)→ (z2,−z2z−1
1 + z3, z4 + z−1

1 )→ (z4 + z−1
1 , z3 + z2z4, z2).

Note that the second step corresponds to opening third crossing, which affects all other crossings:

B2(z3)B1(z2 − z1z3)B2(z1)B2(z4) = B2(z3)B1(z2 − z1z3)

1 0 0
0 −z−1

1 1
0 0 z1

1 0 0
0 1 0
0 z−1

1 1

B2(z4) =

B2(z3)B1(z2 − z1z3)

1 0 0
0 −z−1

1 1
0 0 z1

B2(z1
−1 + z4) =

B2(z3)

−z−1
1 0 1
0 1 z2 − z1z3
0 0 z1

B1(−z2z−1
1 + z3)B2(z

−1
1 + z4) =

−z−1
1 1 0
0 z1 0
0 0 1

B2(z2)B1(−z2z−1
1 + z3)B2(z

−1
1 + z4).

The dashed segment on the left weave is divided by edges of the weave into three segments corre-
sponding to the upper triangular matrices appearing in this sequence of matrix identities. Namely, if

U, Ũ ,
˜̃
U are the matrices corresponding to these segments, from right to left, then we have

U =

1 0 0
0 −z−1

1 1
0 0 z1

 , Ũ =

−z−1
1 0 1
0 1 z2 − z1z3
0 0 z1

 ,
˜̃
U =

−z−1
1 1 0
0 z1 0
0 0 1

 .
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The right weave 1212→ 1121→ 121 corresponds to changes of variables

(z1, z2, z3, z4)→ (z1, z4, z3 + z2z4, z2)→ (z4 + z−1
1 , z3 + z2z4, z2),

so the end result is the same as for the sequence of transformations for the left weave.

For completeness, we also include the computation for some of the other diagrams in Section 4.2.4.
For 1121 we get two paths

(z1, z2, z3, z4)→ (z2 + z−1
1 , z3, z4)→ (z4, z3 − z4(z2 + z−1

1 ), z2 + z−1
1 )

and
(z1, z2, z3, z4)→ (z1, z4, z3 − z2z4, z2)→ (z3 − z2z4, z4 − z1(z3 − z2z4), z1, z2)→

(z4,−z−1
1 (z4 − z1(z3 − z2z4)), z2 + z−1

1 )

Note that
−z−1

1 (z4 − z1(z3 − z2z4)) = z3 − z4(z2 + z−1
1 ).

For 1211 we get two paths

(z1, z2, z3, z4)→ (z2 − z1z3, z−1
3 z2, z4 + z−1

3 )→
(z4 + z−1

3 , z−1
3 z2 − (z4 + z−1

3 )(z2 − z1z3), z2 − z1z3)
and

(z1, z2, z3, z4)→ (z3, z2 − z1z3, z1, z4)→ (z3, z4, z1 − z4(z2 − z1z3), z2 − z1z3)→
(z4 + z−1

3 , z1 − z4(z2 − z1z3), z2 − z1z3).
Note that

z−1
3 z2 − (z4 + z−1

3 )(z2 − z1z3) = z−1
3 z2 − z4z2 + z1z3z4 − z−1

3 z2 + z1 = z1 − z4(z2 − z1z3).
The proof for other pair of adjacent colors is similar.

5.4.3. The Zamolodchikov relation. The left diagram in Section 4.2.6 represents the following path:

123121→ 121321→ 212321→ 213231→ 231213→ 232123→ 323123

which induces the following change of variables:

(z1, z2, z3, z4, z5, z6)→ (z1, z2, z4, z3, z5, z6)→ (z4, z2 − z1z4, z1, z3, z5, z6)→
(z4, z2 − z1z4, z5, z3 − z1z5, z1, z6)→ (z4, z5, z2 − z1z4, z3 − z1z5, z6, z1)→

(z4, z5, z6, z̃3, z2 − z1z4, z1)→ (z6, z5 − z4z6, z4, z̃3, z2 − z1z4, z1).
Here z̃3 = z3 − z1z5 − z2z6 + z1z4z6. The right diagram represents the following path:

123121→ 123212→ 132312→ 312132→ 321232→ 321323→ 323123

which induces the following change of variables:

(z1, z2, z3, z4, z5, z6)→ (z1, z2, z3, z6, z5 − z4z6, z4)→ (z1, z6, z3 − z2z6, z2, z5 − z4z6, z4)→
(z6, z1, z3 − z2z6, z5 − z4z6, z2, z4)→ (z6, z5 − z4z6, z̃3, z1, z2, z4)→

(z6, z5 − z4z6, z̃3, z4, z2 − z1z4, z1)→ (z6, z5 − z4z6, z4, z̃3, z2 − z1z4, z1).

This concludes the proof of Theorem 5.12, as required. Hence, we have established invariance of the
correspondencesM(w) under equivalence of Demazure weaves.

5.5. Correspondences for simplifying weaves.

Proposition 5.20. Let w1,w2 be two equivalent simplifying weaves. Then the associated correspon-
dences M(w1) and M(w2) are isomorphic. Furthermore, there exists such an isomorphism that
induces an isomorphism betweenM(w1, π) andM(w2, π) for all permutations π ∈ Sn.

Proposition 5.20 is proved in Sections 5.5.1–5.5.3 below by verifying that the non-standard vertices
yield well defined correspondences using the diagrams in Sections 4.3.2.(a), 4.3.3.(a), and 4.3.4.(a).
That is, that equivalent weaves in these Sections give isomorphic correspondences. Indeed, by defini-
tion of the equivalence for simplifying weaves, Proposition 5.20 then follows from Theorem 5.12.

Remark 5.21. Proposition 5.20 can be also deduced from Proposition 5.14 as follows. The flag
moduli spaceMOBS(w) can be defined for any weave w and is invariant under rotations. The general
equivalence moves from Figure 6 can be obtained by rotations of Demazure equivalence moves, and
hence define isomorphic correspondences by Theorem 5.12.
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5.5.1. Non-standard trivalent vertex. Let us check that the two ways to define an upside down trivalent
vertex in Section 4.3.2.(b) are equivalent. Indeed, the left picture corresponds to the changes of
variables

(z)→ (0, u, z)→ (−u, z + u−1)

while the right picture corresponds to

(z)→ (z − w, 0, w)→ ((z − w)−1, w).

Here the cap on the left produces variables (0, u) while the cap on the right produces variables (0, w).
We can identify the two diagrams by setting w = z + u−1, u = −(z − w)−1.

Next, we compare two ways in Section 4.3.2.(a) corresponding to the paths 111 → 11 → ∅. The left
one corresponds to a sequence of changes of variables

(z1, z2, z3)→ (z2 + z−1
1 , z3)→ ∅,

and the cup is well defined if z2 + z−1
1 = 0, that is, 1 + z1z2 = 0. The right diagram corresponds to

(z1, z2, z3)→ (z1 + z−1
2 , z3 + z−1

2 )→ ∅,

and the cup is well defined if z1 + z−1
2 = 0, which leads to the same equation. Note that 1 + z1z2 = 0

implies that both z1 and z2 are invertible, so that both trivalent vertices are well defined.

5.5.2. Non-standard 6-valent vertex. Let us check the vertex with 5 inputs and one output from
Section 4.3.3.(a).

One can check that in all weaves we require z1 = z2 = 0. Now the movie 12121→ 21221→ 211→ 2
results in a sequence of changes of variables:

(0, 0, z3, z4, z5)→ (z3, 0, 0, z4, z5)→ (z3, 0, z5)→ z3,

the movie 12121→ 11211→ 2 yields

(0, 0, z3, z4, z5)→ (0, z4, z3, 0, z5)→ z3,

and the movie 12121→ 12212→ 112→ 2 yields

(0, 0, z3, z4, z5)→ (0, 0, z5, z4 − z3z5, z3)→ (0, z4 − z3z5, z3)→ z3.

Now consider 4 inputs and 2 outputs, in both cases, we require z1 = 0. For the movie 1212→ 2122→
21 we get

(0, z2, z3, z4)→ (z3, z2, 0, z4)→ (z3 + z2z4, z2),

while the movie 1212→ 1121→ 21 yields

(0, z2, z3, z4)→ (0, z4, z3 + z2z4, z2)→ (z3 + z2z4, z2).

5.5.3. Non-standard 4-valent vertex. In both cases from Section 4.3.4.(a), we have z1 = 0, and 131→
311→ 3 corresponds to (0, z2, z3)→ (z2, 0, z3)→ z2, while 131→ 113→ 3 corresponds to (0, z2, z3)→
(0, z3, z2)→ z2.

This completes the proof of Proposition 5.20. □

5.5.4. Isotopies. Finally, let us check the zigzag relation. On the left we have (z) → (0, 0, z) → (z)
while on the right we have

(z)→ (z − u, 0, u)→ (u)

which is well defined if z − u = 0, so that z = u.

Since the weaves (and the associated correspondences) and the equivalence relations for non-standard
6- and 4-valent vertices from Sections 4.3.3.(b) and 4.3.4.(b) are reflections across the horizontal axis of
those from Sections 4.3.3.(a) and 4.3.4.(a), the calculations in Sections 5.5.2 and 5.5.3 show that such
equivalent weaves also give isomorphic correspondences. Proposition 4.9 then implies the following.

Corollary 5.22. Let w1 and w2 be two planar isotopic weaves. Then the associated correspondences
M(w1) andM(w2) are isomorphic.
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5.6. Mutation equivalence and rational maps. The previous subsections have discussed weave
equivalence thoroughly. In this subsection, we address weave mutations. First, note that any De-
mazure weave w from β2 to β1 defines a rational map Φw from X0(β2, π) to X0(β1, π), that is, the
variables associated to crossings in β1 can be expressed as rational functions in variables associated
to crossings in β2. This rational map Φw is defined on the image of M(w, π), but we can extend it

to its maximal domain; we denote such extension by Φ̂w.

Example 5.23. The weave (ss)s→ ss corresponds to the rational map (z1, z2, z3) 7→ (z2 + z−1
1 , z3),

while the weave s(ss)→ ss corresponds to the rational map (z1, z2, z3) 7→ (−z2 − z1z22 , z3 + z−1
2 ). □

Recall that two weaves are mutation equivalent if they are related by a sequence of equivalences and
mutations. We now explain the natural relation between the maps associated to mutation equivalent
weaves.

Theorem 5.24. Let w,w′ be two weaves which are mutation equivalent. Then, the corresponding

maximal extensions of rational functions Φ̂w, Φ̂w′ coincide.

Proof. By Theorem 5.12 the maps Φw and Φw′ coincide for equivalent weaves even before mutations.
Therefore it is sufficient to check mutations, using Example 5.23. One of the trivalent graphs involved
in a mutation corresponds to the rational map

(z1, z2, z3) 7→ z3 + (z2 + z−1
1 )−1 = z3 +

z1
1 + z1z2

while the other corresponds to the rational map

(z1, z2, z3) 7→ z3 + z−1
2 + (−z2 − z1z22)−1 = z3 +

1

z2
− 1

z2(1 + z1z2)
= z3 +

z1
1 + z1z2

.

Note that in the first case the map Φw is defined on the toric chart {z1 ̸= 0, 1 + z1z2 ̸= 0} while in
the second case it is defined on the chart {z2 ̸= 0, 1 + z1z2 ̸= 0}, but in both cases it extends to the
locus {1 + z1z2 ̸= 0} and the extensions agree. □

Remark 5.25. Alternatively, we may state that the rational maps Φw and Φw′ agree on the inter-
section of their corresponding domains, hence their maximal extensions must agree too.

5.7. Torus actions and augmentation varieties. In this subsection, given a simplifying weave w
from β2 to β1, we will construct an action of the torus T = (C∗)n/C∗ on the correspondence variety
M(w) so that for every π ∈ Sn both projections M(w, π) → X0(βi;π), i = 1, 2, are T -equivariant.
In particular, this allows us to define a correspondence between augmentation varieties by Theorem
2.39.

First, we modify the action of T on X0(β;π) defined in Section 2.2 as follows. Take β = σi1 · · ·σiℓ ∈
Br+n and let w ∈ Sn be its corresponding permutation. We define an action of T on Cℓ by

(5.2) t ·β (z1, . . . , zℓ) = (d1z1, . . . , dℓzℓ)

where dk = twρ
k(ik)

t−1
wρ

k(ik+1)
. Here, wρ

ℓ−k = siℓ · · · siℓ−k+1
= (siℓ−k+1

· · · siℓ)−1 (the superscript ρ stands

for right, as we read the braid word β right-to-left, as opposed to Section 2.2 above). Thanks to (2.9)
we have that Bβ(t ·β z) = D−1

w−1(t)Bβ(z)Dt, so for every permutation π ∈ Sn we have an induced

action on X0(β;π).

Example 5.26. Let us take the braid word β = σ1σ2σ2σ1σ2. If t = (t1, t2, t3) we have

t ·β (z1, z2, z3, z4, z5) =

(
t3
t1
z1,

t2
t1
z2,

t1
t2
z3,

t1
t3
z4,

t2
t3
z5

)
.

Comparing with Example 2.11 above, we see that the action we define here and that we define
in Section 2.2 are different, in general. Note, however, that the two actions coincide up to the
transposition t2 ↔ t3.

Remark 5.27. More generally, this torus action on X0(β;π) differs from the the action in Section
2.2 by conjugation by the permutation matrix w. The action used in Section 2.2 coincides with that
considered in [82], while the action used in this section behaves better under morphisms given by
weaves, as we will see below.
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Remark 5.28. Similarly to Remark 2.12, one can read the weight of the z-variables from the braid
diagram β. Indeed, to find the weight of zk look at the strands that are incident to the k-th crossing
of β on the right and follow them all the way to the right. For example, the next figure computes that
the weight of z3 in Example 5.26 above is t1/t2.

Lemma 5.29. Let γ1, γ2 ∈ Br+n and denote r := ℓ(γ1).

(1) Let β2 = γ1σiσi+1σiγ2 and β1 = γ1σi+1σiσi+1γ2. Then, the map

f : Cℓ(β2) → Cℓ(β1), f(z) = (z1, . . . , zr, zr+3, zr+2 − zr+1zr+3, zr+1, zr+4, . . . , zℓ)

satisfies f(t ·β2
z) = t ·β1

f(z).

(2) Let β2 = γ1σiσjγ2 and β1 = γ1σjσiγ2, where |i− j| > 1. Then, the map

f : Cℓ(β2) → Cℓ(β1), f(z) = (z1, . . . , zr, zr+2, zr+1, zr+3, · · · , zℓ)

satisfies f(t ·β2
z) = t ·β1

f(z).

Proof. This is verified by direct computation. □

If D = diag(a1, . . . , an) is a diagonal matrix and w ∈ Sn, we write wD := diag(aw−1(1), . . . , aw−1(n)).
The following lemma will be used to construct a (well-defined) torus action.

Lemma 5.30. Let R be a C-algebra with a rational T = (C∗)n-action by algebra automorphisms. Let
w ∈ Sn be a permutation and z ∈ R an element of weight ew(j) − ew(j+1) for some j = 1, . . . , n− 1.
Let z0 ∈ R be an invertible element of weight ei+1 − ei and define z′ by the equation

Bj(z)
wDi(z0) =

wsjDi(z0)Bj(z
′),

see (2.9). Then, the weight of z′ is wt(z′) = esiw(j) − esiw(j+1).

We remark that this Lemma, just as Remark 2.27, is valid for an arbitrary rational T-action on a
C-algebra R, and not just for the action considered in this section or Section 2.2.

Proof. First, note that z having weight ew(j) − ew(j+1) is equivalent to saying that for any t ∈ T:

t.Bj(z) = Dwsj(t)Bj(z)D
−1
w(t),

cf. Remark 2.27. Also, since Di(z0) = diag(1, . . . ,−z−1
0 , z0, 1, . . . , 1), where −z−1

0 is in the i-th place,
we have that t.wDi(z0) = Dw(t)

wDi(z0)D
−1
siw(t). Now we compute

t.Bj(z
′) = (t.wsjDi(z0)

−1)(t.Bj(z))(t.
wDi(z0))

= (Dsiwsj(t)
wsjDi(z0)

−1D−1
wsj(t)

)(Dwsj(t)Bj(z)D
−1
w(t))(Dw(t)

wDi(z0)D
−1
siw(t))

= Dsiwsj(t)Bj(z
′)D−1

siw(t)

and the result follows. □

Finally, the desired statement regarding torus actions on our correspondences reads as follows.

Proposition 5.31. Let w be a simplifying algebraic weave from β2 to β1. Then, there is an action
of the algebraic torus T = (C∗)n/C∗ onM(w) such that for every permutation π ∈ Sn:

(1) T preserves the correspondence varietyM(w, π).
(2) The projectionsM(w, π)→ X0(β2;π),M(w, π)→ X0(β1;π) are equivariant.
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Proof. Thanks to Proposition 5.8 we haveM(w) ⊆ Cℓ(β2), and we have an action of T on Cℓ(β2) given
by (5.2). Again by Proposition 5.8, this induces an action onM(w).

Note that, more generally, we have projections M(w) → Cℓ(β2), M(w) → Cℓ(β1). We will show
that both of these maps are T -equivariant. This implies (1) and (2) above. By the definition of
the T -action, the map M(w) → Cℓ(β2) is T -equivariant. To show that the map M(w) → Cℓ(β1) is
T -equivariant, it suffices to do it for elementary weaves. For four and six-valent vertices, the result
follows from Lemma 5.29 and Proposition 5.8.

Now we move on to three-valent vertices; we have β2 = γ1σiσiγ2 and β1 = γ1σiγ2. By Proposition
5.8 the mapM(w)→ Cℓ(β1) is given by z 7→ (z′1, . . . , z

′
r, zr+1+ z

−1
r , zr+2, . . . , zℓ), where z

′
1, . . . , z

′
r are

determined by the equations

Bir−d
(zr−d)U

d = Ud+1Bir−d
(z′r−d), U0 = Ui(zr)Di(zr).

Note that the weights of zr+2, . . . , zℓ are clearly preserved under the projection, so for simplicity we
may assume that γ2 = 1. We split this into a two-step process, first ‘sliding Ui to the left’ and then
‘sliding Di(zr) to the left’. To slide Ui to the left, we define z̃1, . . . , z̃r via

Bir−d
(zr−d)Ũ

d = Ũd+1Bir−d
(z̃r−d), Ũ0 = Ui(zr).

And to now slide Di(zr) to the left, we define z′1, . . . , z
′
r via:

Bir−d
(z̃r−d)Ū

d = Ūd+1Bir−d
(z′r−d), Ū0 = Di(zr).

Since Ui(zr) is unitriangular, it follows from Lemma 2.29 that the T -weight of z̃r−d coincides with
that of zr−d for d = 0, . . . , r − 1. Now the result follows from Lemma 5.30.

Finally, we check cups: we have β2 = γ1σiσiγ2 and β1 = γ1γ2. The mapM(w)→ Cℓ(β1) is given by
z 7→ (z1, . . . , zr, zr+3, . . . , zℓ). Now, since sisi = 1, the result follows. □

Thanks to Proposition 5.31, we are able to define correspondences between certain augmentation
varieties. Let β1, β2 be braid words, and let t be a set of marked points on the strands 1, . . . , n
satisfying the following conditions:

(i) There is at most one marked point per strand and, by convention, it is placed to the right of
all crossings in both β1 and β2 (see Figure 3),

(ii) Each component of both β1 and β2 contains at least one marked point.

For example, we can choose t = ts or t = tc as in Section 2.6. We can then form the augmentation
varieties Aug(β1, t) and Aug(β2, t). Now let Tt ⊆ T be the torus defined by the equations ti = 1 if
the i-th strand has a marked point. Thanks to (a straightforward generalization of) Theorem 2.39,
we have Aug(β1, t) ∼= X0(β1 ·∆;w0)/Tt and Aug(β2, t) ∼= X0(β2 ·∆;w0)/Tt. In combination with the
correspondences above, we then obtain the following result.

Corollary 5.32. Let w be a simplifying algebraic weave from β2 ·∆ to β1 ·∆. Then, Tt acts freely
onM(w) andM(w, w0)/Tt defines a correspondence between Aug(β2, t) and Aug(β1, t).

5.8. Weaves and decompositions. In this subsection, we explain how algebraic weaves can be used
to decompose braid varieties; augmentation varieties can be similarly decomposed. For that, recall
that a simplifying weave w with a braid β2 on the top and β1 on the bottom defines an injective map

M(w, π) : X0(β1;π)× Ca × (C∗)b ↪→ X0(β2;π),

where a is the number of cups and b is the number of trivalent vertices. Since each cup decreases the
length by 2, and each trivalent vertex by 1, we get the equation 2a+ b = ℓ(β2)− ℓ(β1).
We will be interested in simplifying weaves w with some braid γ on the top and the half twist ∆ on
the bottom. Since X0(∆;w0) is a point, see Example 2.5, we obtain an injective map

M(w, w0) : Ca × (C∗)b ↪→ X0(γ;w0), 2a+ b = ℓ(γ)−
(
n

2

)
.

Definition 5.33. We say that a collection of simplifying weaves (w1, . . . ,wk) decomposes the braid
variety X0(γ,w0) if the images ofM(wi) do not intersect each other and their union is X0(γ,w0).
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Remark 5.34. The reason why use the term decomposition (as opposed to stratification) is that, in
some parts of the literature, a condition on a stratification is that the closure of a stratum is a union
of strata. This is not the case in, for example, the Deodhar decomposition (cf. [33] or [103, Section
4.3]), which is a special case of the decompositions we discuss here.

Theorem 5.35. (a) Let γ be a positive braid word. Then there exists a finite collection of sim-
plifying weaves (w1, . . . ,wk), where each wi has γ on the top and the half twist ∆ on the
bottom, which decomposes X0(γ,w0) in the sense of Definition 5.33.

(b) Furthermore, given any Demazure weave w from γ to ∆, there is a decomposition of X0(γ,w0)
by a collection of simplifying weaves (w1 = w,w2, . . . ,wk) as in (a), where the correspondence

M(w) ∼= (C∗)ℓ(γ)−(
n
2)

is the unique piece of maximal dimension.

Proof. Let us first prove (a) by induction on ℓ(γ) ∈ N. If γ is reduced, then the matrix Bγ(z1, . . . , zℓ(γ))
contains 1’s corresponding to the permutation matrix for γ and independent variables elsewhere. Then
Bγ(z1, . . . , zℓ(γ))w0 contains 1

′s corresponding to the permutation matrix for γw0, so it is never upper-
triangular unless γw0 = 1. We conclude that X0(γ;w0) is empty for γ ̸= ∆ and it is a point for γ = ∆.
In both cases the variety can be obviously decomposed.

If γ is not reduced, then after applying some braid moves we get a braid with two crossings σi next to
each other. Let z1 and z2 be the variables corresponding to these crossings. If z1 ̸= 0, we can apply
a trivalent vertex and get a braid γ′, and if z1 = 0, we can apply a cup and get a braid γ′′. By the
assumption of induction, we can decompose X0(γ

′;w0) and X0(γ
′′;w0) by simplifying weaves.

For (b), let us decompose w into elementary weaves: w(1) between γ = γ(0) and γ(1), w(2) between
γ(1) and γ(2) etc. Clearly, we can decompose X0(γ;w0) as follows:

X0(γ;w0) =M(w) ⊔
(
X0(γ;w0) \ ImM(w(1))

)
⊔
(
ImM(w(1)) \ ImM(w(1)w(2))

)
⊔ . . .

Let us prove that all these pieces can be further decomposed by simplifying weaves. Indeed, if w(i) is
a 6- or 4-valent vertex, thenM(w(i)) is an isomorphism and

ImM(w(1) · · ·w(i−1)) = ImM(w(1) · · ·w(i)).

If w(i) is a trivalent vertex with variables z1 and z2 then

ImM(w(1) · · ·w(i−1)) \ ImM(w(1) · · ·w(i)) =M(w(1) · · ·w(i−1))(Wi)

where Wi is the locus {z1 = 0} ⊂ X0(γ
(i−1);w0). In this case we can apply a cup to γ(i−1) and

obtain a new braid γ̃(i). Then Wi as an image of the correspondence for this cup, and by (a) we can

decompose X0(γ̃(i);w0) by simplifying weaves. □

Finally, we obtain the following consequence.

Corollary 5.36. The braid variety X0(γ;w0) is not empty if and only if γ contains some reduced
expression for w0 as a subword, or, equivalently, the Demazure product of γ equals w0. In this case,
X0(γ;w0) is an irreducible complete intersection of dimension ℓ(γ)−

(
n
2

)
.

Proof. By [73, Lemma 3.4] a braid word γ contains some reduced expression for w0 as a subword if
and only if δ(γ) = w0. If δ(γ) = w0 then there is a Demazure weave from γ to w0, so X0(γ;w0) is
not empty. By Theorem 5.35, if X0(γ;w0) is not empty then there is a simplifying weave from γ to
∆, and γ contains some reduced expression for w0 as a subword.

Since X0(γ;w0) is cut out by
(
n
2

)
equations in the affine space of dimension ℓ(γ), all its components

have dimension at least ℓ(γ) −
(
n
2

)
. On the other hand, if δ(γ) = w0 then by Theorem 5.35(b) the

braid variety X0(γ;w0) has unique piece of dimension ℓ(γ) −
(
n
2

)
and all other pieces have smaller

dimension, therefore this variety is an irreducible complete intersection. □

Remark 5.37. In [82] it is proven that the complement to the toric chart in X0(β∆;w0) from Section
2.5 can be decomposed into pieces of the form Ca × (C∗)b with 2a+ b = ℓ(β). Similarly to the proof
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of Theorem 2.37, one can check that these strata (originally defined in terms of Bruhat cells) can be
realized by simplifying weaves.

The decompositions we presented in Theorem 5.35 are far from unique. However, the number of pieces
of given dimension a + b = ℓ(γ) −

(
n
2

)
− a does not depend of the decomposition. The topological

significance of these numbers is given by the following result.

Lemma 5.38. Suppose that there are na pieces of the form Ca × (C∗)b, 2a + b = ℓ(γ) −
(
n
2

)
in the

decomposition from Theorem 5.35. Consider the polynomial

fγ(q) =
∑
a

naq
a(q − 1)b =

∑
a

naq
a(q − 1)ℓ(γ)−(

n
2)−2a.

a) The number of points in the variety X0(γ;w0) over a finite field Fq equals fγ(q).

b) The coefficient in the HOMFLY-PT polynomial of the closure of γ∆−1 of lowest a-degree is pro-
portional to fγ(q).

See [67] for the definition of HOMFLY-PT polynomial, a related computation and more details.

Proof. Part (a) is clear as Theorem 5.35 can be proved verbatim over any field. Over Fq, the strata
Aa × (A1 \ {0})b have qa(q − 1)b points, and the result follows.

For (b), we prove it by induction in ℓ(γ). If γ is reduced then we have two cases:

(i) If γ = ∆, then γ∆−1 = 1 and the closure of γ∆−1 is the n-component unlink. At the same
time, X0(∆;w0) is a point and f∆(q) = 1.

(ii) If γ ̸= ∆, then γ∆−1 is the closure of a nontrivial negative permutation braid and the
coefficient in the HOMFLY-PT polynomial of lowest a-degree vanishes [67]. At the same
time, X0(γ;w0) is empty and fγ(q) = 0.

Now suppose that γ is not reduced. It follows from (a) that fγ(q) is invariant under braid relations,
since so is X0(γ;w0). Finally, if γ = γ1σiσiγ2, γ

′ = γ1σiγ2 and γ′′ = γ1γ2. Then fγ(q) = (q −
1)fγ′(q) + fγ′′(q) which matches the skein relation for HOMFLY polynomials of the braids γ∆−1,
γ′∆−1 and γ′′∆−1. By the induction hypothesis, the statement of (b) holds for γ′ and γ′′. Thus, it
also holds for γ. □
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Birkhäuser, Basel, 2012.

[94] R.W. Richardson and T.A. Springer. The Bruhat order on symmetric varieties. Geometriae Dedicata volume 35
(1990), pp. 389–436.

[95] R.W. Richardson and T.A. Springer. Combinatorics and geometry of K-orbits on the flag manifold., Linear algebraic
groups and their representations, Contemp. Math., vol. 153, Amer. Math. Soc., 1993, pp. 109–142.

[96] R. Rouquier. Categorification of the braid groups. arxiv:0409593.
[97] T. Scroggin. On the Cohomology of Two Stranded Braid Varieties. arXiv:2312.03283.

[98] K. Serhiyenko, M. Sherman-Bennett. Leclerc’s conjecture on a cluster structure for type A Richardson varieties.
arXiv:2210.13302

[99] K. Serhiyenko, M. Sherman-Bennett, L. Williams. Cluster structures in Schubert varieties in the Grassmannian.
Proc. Lond. Math. Soc. (6) 119 (2019), 1694–1744.

[100] L. Shen, D. Weng. Cluster Structures on Double Bott-Samelson Cells. Forum Math. Sigma 9 (2021), Paper No.
e66, 89 pp.

[101] V. Shende, D. Treumann, H. Williams, E. Zaslow. Cluster varieties from Legendrian knots. Duke Math. J. 168

(2019), no. 15, 2801–2871.
[102] V. Shende, D. Treumann, E. Zaslow. Legendrian knots and constructible sheaves. Invent. Math. 207 (2017), no.

3, 1031–1133.

75



[103] D. Speyer. Richardson varieties, projected Richardson varieties and positroid varieties. arXiv 2303.04831.

[104] G. G. Stokes, On the numerical calculation of a class of definite integrals and infinite series, Trans. Camb. Phil.

Soc., 9 (1847), 379–407.
[105] H. Thomas. Maps between higher Bruhat orders and higher Stasheff-Tamari posets. In Formal Power Series and

Algebraic Combinatorics. Linköping University, Sweden, 2003.
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