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Abstract

In this article we provide the first examples of property (T) II1 factorsN with trivial fundamental
group, F(N) = 1. Our examples arise as group factors N = L(G) where G belong to two distinct
families of property (T) groups previously studied in the literature: the groups introduced by Valette
in [Va04] and the ones introduced recently in [CDK19] using the Belegradek-Osin Rips construction
from [BO06]. In particular, our results provide a continuum of explicit pairwise nonisomorphic prop-
erty (T) factors.

1 Introduction

Motivated by their continuous dimension theory, Murray and von Neumann introduced the notion
of t-by-t matrix over a II1 factorM, for any positive real number t > 0, [MvN43]. This is a II1 factor
denoted byMt and called the t-amplification ofM. When t ≤ 1 this is the isomorphism class of pMp
for a projection p ∈ M of trace τ(p) = t and when 1 < t, it is the isomorphism class of p(Mn(C) ⊗M)p
for an integer n with t/n ≤ 1 and a projection p ∈ Mn(C) ⊗M of trace (Trn ⊗ τ)(p) = t/n. One can see
that up to isomorphism theMt does not depend on n or p but only on the value of t.

The fundamental group, F(M), of a II1 factorM is the set of all t > 0 such thatMt ≅M. Since for
any s, t > 0 we have (Ms)t ≅Mst then one can see F(M) forms a subgroup of R+. As the fundamental
group is an isomorphism invariant of the factor, its study is of central importance to the theory of von
Neumann algebras. In [MvN43] Murray and von Neumann were able to show that the fundamental
group of the hyperfinite II1 factor R satisfies F(R) = R+. This also implies that F(M) = R+ for all
McDuff factors M. However, besides this case no other calculations were available for an extended
period of time and Murray-von Neumann’s original question whether F(M) could be different from
R+ for some factorM remained wide open (see [MvN43, page 742] and the discussions in [Po20]).

A breakthrough in this direction emerged from Connes’ discovery in [Co80] that the fundamental
group of a group factor F(L(G)) reflects rigidity aspects of the underlying group G, being countable
whenever G has property (T) of Kazdhan [Kaz67]. This finding also motivated him to formulate his
famous Rigidity Conjecture in [Co82] along with other problems on computing symmetries of prop-
erty (T) factors—that were highlighted in subsequent articles by other prolific mathematicians [Co94,
Problem 2, page 551], [Jo00, Problems 8-9] and [Po13, page 9]. Further explorations of Connes’ idea
in [Po86, GN87, GG88, Po95] unveiled new examples of separable factorsM with countable F(M),
including examples for which F(M) contains prescribed countable sets. However despite these ad-
vances concrete calculations of fundamental groups remained elusive for more than two decades.
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The situation changed radically with the emergence of Popa’s deformation/rigidity theory in early
2000. Through this novel theory we have witnessed an unprecedented progress towards complete
calculations of fundamental groups. The first successes in this direction were achieved by Popa and
include a series of striking results: examples of factors with trivial fundamental group [Po01] which
answers a long-standing open problem of Kadison [K67] (see [Ge03, Problem 3]); examples of factors
that have any prescribed countable subgroup of R+ as a fundamental group [Po03]. An array of other
powerful results on computations of fundamental groups were obtained subsequently [IPP05, PV06,
Io06, Va07, PV08, Ho09, IPV10, BV12]. Remarkably, in [PV08] it was shown that many uncountable
proper subgroups of R+ can be realized as fundamental groups of separable II1 factors.

However, despite these impressive achievements, significantly less is known about the fundamen-
tal groups of property (T) factors as the prior results do not apply to these factors. In fact there is
no explicit calculation of the fundamental group of any property (T) factor available in the current
literature. In this article we make progress on this problem by providing two independent classes of
examples of property (T) icc groups G whose factors L(G) have trivial fundamental group. In partic-
ular our results advance [Co94, Problem 2, page 551] and provide the first group examples satisfying
the last conjecture on page 9 in Popa’s list of open problems [Po13].

Our first class of groups G were first introduced in [CDK19] and rely on a Rips construction in ge-
ometric group theory developed by Belegradek and Osin in [BO06]. For convenience we briefly recall
this construction. Using Dehn filling results from [Os06], it was shown in [BO06] that for every finitely
generated group Q one can find a property (T) group N such that Q embeds as a finite index subgroup
of Out(N). This gives rise to an action σ ∶ Q → Aut(N) such that the corresponding semidirect prod-
uct group N ⋊σ Q is hyperbolic relative to {Q}. When Q is torsion free one can pick N to be torsion
free as well and hence both N and N ⋊σ Q are icc. Moreover, when Q has property (T) then N ⋊σ Q
has property (T). Throughout this article this semidrect product N ⋊σ Q will be called the Belegradek-
Osin Rips construction and denoted by Rips(Q). Our examples arise as fiber products of these Rips
constructions. Specifically, consider any product group Q = Q1 ×Q2, where Qi are any nontrivial, bi-
exact, weakly amenable, property (T), residually finite, torsion free, icc groups. Now consider any two
groups N1 ⋊σ1 Q, N2 ⋊σ2 Q ∈ Rip(Q) and form the canonical fiber product G = (N1 × N2) ⋊σ Q where
σ = (σ1, σ2) is the diagonal action. Notice that G has property (T) and the class of all these groups will
be denoted by S .

Developing a new technological interplay between methods in geometric group theory and Popa’s
deformation/rigidity theory which continues our prior investigations [CDK19] we will show that the
factors associated with groups in class S have trivial fundamental group. Specifically, using various
technological outgrowths of prior methods [Po03, Oz03, IPP05, Io06, IPV10, Io11, PV12, CIK13, KV15,
CD19, CDK19] we are able to show the following more general statement:

Theorem A. Assume that Q1, Q2, P1, P2 are icc, torsion free, residually finite, hyperbolic property (T) groups.
Let Q = Q1 ×Q2 and P = P1 × P2 and consider any groups (N1 × N2) ⋊Q ∈ S and (M1 ×M2) ⋊ P ∈ S .
Let p ∈ P(L(M1 ×M2) ⋊ P) be a projection and let Θ ∶ L((N1 × N2) ⋊Q) → pL((M1 ×M2) ⋊ P)p be a
∗-isomorphism.

Then p = 1 and one can find a ∗-isomorphism, Θi ∶ L(Ni) → L(Mσ(i)), where σ is a permutation of {1, 2}, a
group isomorphism δ ∶ Q → P, a multiplicative character η ∶ Q → T, and a unitary u ∈ U (L((M1 ×M2) ⋊ P))
such that for all γ ∈ Q, xi ∈ L(Ni) we have that

Θ((x1 ⊗ x2)uγ) = η(γ)u(Θ1(x1) ⊗Θ2(x2)vδ(γ))u∗.

In particular, if we denote by G = (N1 ×N2) ⋊Q then the fundamental group satisfies F(L(G)) = {1}.

Our second class of groups G is based on a minor modification of a construction introduced by
Valette in [Va04]. For reader’s convenience we briefly describe this construction. Denote by H the
division algebra of quaternions and by HZ its lattice of integer points. Fix n ≥ 2 and recall that Λn =
Sp(n, 1)Z is a lattice in the rank one connected simple real Lie group Sp(n, 1), [BHC61]. Notice that
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Sp(n, 1) acts linearly on Hn+1 ≅ R4(n+1) in such a way that Λn preserves (HZ)n+1 ≅ Z4(n+1). Then the
natural semidirect product Gn = Z4(n+1) ⋊Λn is an icc property (T) group. Consider V the collection
of all groups of the form G = Gn1 × ... ×Gnk , where ni ≥ 2 and k ∈ N. Combining Gaboriau’s ℓ2-Betti
numbers invariants in orbit equivalence [Ga02] with the powerful uniqueness of Cartan subalgebra
results of Popa and Vaes [PV12] we show the groups in V give rise to an infinite family of property (T)
group factors with trivial fundamental group. In fact our proof relies on the same strategy developed
by Popa and Vaes in their seminal work [PV11] to show that F(L∞(X) ⋊Fn) = 1.

Theorem B. The following properties hold:

(i) For every G ∈ V the fundamental group satisfies F(L(G)) = {1};

(ii) The family {L(G) ∶ G ∈ V } consists of pairwise stably nonisomorphic II1 factors.

We remark that the II1 factors arising from Class S and Class V are stably nonisomorphic. Indeed,
if G ∈ V , then L(G) admits a Cartan subalgebra by construction. On the other hand, if H ∈ S , then
L(H) does not have a Cartan subalgebra and hence L(G) ≇ L(H)t.
Concrete examples of countable families of pairwise nonisomorphic property (T) II1 factors emerged
from the prior fundamental works of Cowling-Haagerup [CH89] and Ozawa-Popa [OP03]. Additional
examples were obtained more recently, [CDK19]. Since F(M) is countable wheneverM is a property
(T) factor [Co80, CJ85], it also follows that there exist continuum many pairwise mutually nonisomor-
phic property (T) factors. However, to the best of our knowledge, no explicit constructions of such
families exist in the literature till date. Our main results, Theorems A and B, canonically provide such
examples.

Corollary C. For any G = N ⋊Q ∈ S or G = G1 × ... × Gn ∈ V , the set of all amplifications {L(G)t ∶ t ∈
(0,∞)} consists of pairwise nonisomorphic II1 factors with property (T).

It is very plausible that, with the exception of countably many, the factors outlined in Corollary C
do not appear as group factors. Therefore producing uncountable families of pairwise nonisomorphic
property (T) group factors remains an open problem. In [CDK19, Corollary 6.4] a method was pro-
posed to address this problem; but it relies on constructing uncountably many icc, residually finite,
torsion free, property (T) groups, [CDK19, Proposition 6.3]. While this seems possible with the current
methods in geometric group theory, there is no explicit work in the literature in this direction.

2 Preliminaries

2.1 Notations and Terminology

Throughout this document all von Neumann algebras are denoted by calligraphic letters e.g. A, B,
M, N , etc. Given a von Neumann algebraM we will denote by U (M) its unitary group, by P(M)
the set of all its nonzero projections and by (M)1 its unit ball. Given a unital inclusion N ⊆ M of
von Neumann algebras we denote by N ′ ∩M = {x ∈ M ∶ [x,N] = 0}. We also denote by NM(N) =
{u ∈ U (M) ∶ uNu∗ = N} the normalizing group. We also denote the quasinormalizer of N inM by
QN M(N). Recall that QN M(N) is the set of all x ∈ M for which there exist x1, x2, ..., xn ∈ M such
that N x ⊆ ∑i xiN and xN ⊆ ∑iN xi (see [Po99, Definition 4.8]).

All von Neumann algebras M considered in this document will be tracial, i.e. endowed with a
unital, faithful, normal linear functional τ ∶ M → C satisfying τ(xy) = τ(yx) for all x, y ∈ M. This
induces a norm onM by the formula ∥x∥2 = τ(x∗x)1/2 for all x ∈ M. The ∥ ⋅ ∥2-completion ofM will
be denoted by L2(M). For any von Neumann subalgebra N ⊆ M we denote by EN ∶ M → N the τ-
preserving condition expectation onto N . We denote the orthogonal projection from L2(M) → L2(N)
by eN . The Jones’ basic construction [Jo83, Section 3] for N ⊆Mwill be denoted by ⟨M, eN ⟩.
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For any group G we denote by (ug)g∈G ⊂ U (ℓ2G) its left regular representation, i.e. ug(δh) = δgh
where δh ∶ G → C is the Dirac function at {h}. The weak operatorial closure of the linear span of
{ug ∶ g ∈ G} in B(ℓ2G) is called the group von Neumann algebra and will be denoted by L(G); this
is a II1 factor precisely when non-trivial conjugacy classes of G are infinite (icc). IfM is a tracial von
Neumann algebra and G ↷σ M is a trace preserving action we denote byM⋊σ G the corresponding
cross product von Neumann algebra [MvN37]. For any subset K ⊆ G we denote by PMK the orthogonal
projection from the Hilbert space L2(M⋊G) onto the closed linear span of {xug ∣ x ∈ M, g ∈ K}. When
M is trivial we will denote this simply by PK.

All groups considered in this article are countable and will be denoted by capital letters G, H, Q,
N, M, etc. Given a subgroup H ≤ G, we say that H is almost malnormal in G if for every g ∈ G ∖ H,
H ∩ gHg−1 is finite. Given groups Q, N and an action Q ↷σ N by automorphisms we denote by
N ⋊σ Q the corresponding semidirect product group. For any n ∈ N we denote by StabQ(n) = {g ∈
Q ∶ σg(n) = n}. Given a group inclusion H ⩽ G sometimes we consider the centralizer CG(H) and the
virtual centralizer vCG(H) = {g ∈ G ∶ ∣gH ∣ < ∞}. When H = G the virtual centralizer vCG(H) coincides
with FCG(G), the finite conjugacy radical of G. We also denote by ⟪H⟫ the normal closure of H in G.
If G = G1 ×G2 ×⋯×Gn, then for every k ∈ {1, 2,⋯n}, we denote G1 ×⋯×Gk−1 ×Gk+1 ×⋯×Gn by Ĝk.

2.2 Popa’s Intertwining Techniques

Over more than fifteen years ago, Popa introduced in [Po03, Theorem 2.1 and Corollary 2.3] a
powerful analytic criterion for identifying intertwiners between arbitrary subalgebras of tracial von
Neumann algebras. Now this is known in the literature as Popa’s intertwining-by-bimodules technique
and has played a key role in the classification of von Neumann algebras program via Popa’s deforma-
tion/rigidity theory.

Theorem 2.1. [Po03] Let (M, τ) be a separable tracial von Neumann algebra and let P ,Q ⊆ M be (not
necessarily unital) von Neumann subalgebras. Then the following are equivalent:

1. There exist p ∈ P(P), q ∈ P(Q), a ∗-homomorphism θ ∶ pPp → qQq and a partial isometry 0 ≠ v ∈
qMp such that θ(x)v = vx, for all x ∈ pPp.

2. For any group G ⊂ U (P) such that G′′ = P there is no sequence (un)n ⊂ G satisfying ∥EQ(xuny)∥2 → 0,
for all x, y ∈ M.

3. There exist finitely many xi, yi ∈ M and C > 0 such that ∑i ∥EQ(xiuyi)∥22 ≥ C for all u ∈ U(P).

If one of the three equivalent conditions from Theorem 2.1 holds then we say that a corner of P embeds
into Q insideM, and write P ≺M Q. If we moreover have that Pp′ ≺M Q, for any projection 0 ≠ p′ ∈
P ′ ∩ 1PM1P (equivalently, for any projection 0 ≠ p′ ∈ Z (P ′ ∩ 1PM1P)), then we write P ≺s

M
Q. We

refer the readers to the survey papers [Po07, Va10b, Io18] for recent progress in von Neumann algebras
using deformation/rigidity theory.

We also recall the notion of relative amenability introduced by N. Ozawa and S. Popa. Let (M, τ)
be a tracial von Neumann algebra. Let p ∈ M be a projection, and let P ⊆ pMp, and Q ⊆ M be
von Neumann subalgebras. Following [OP07, Definition 2.2], we say that P is amenable relative to
Q inside M, if there exists a positive linear functional ϕ ∶ p⟨M, eQ⟩p → C such that ϕ∣pMp = τ and
ϕ(xT) = ϕ(Tx) for all T ∈ Q and all x ∈ P . If P is amenable relative to Q insideM, we write P ⋖M Q.

For further use we record the following result which controls the intertwiners in algebras arising
from malnormal subgroups. Its proof is essentially contained in [Po03, Theorem 3.1] so it will be left
to the reader.

Lemma 2.2 (Popa [Po03]). Assume that H ⩽ G is an almost malnormal subgroup and let G ↷ N be a trace
preserving action on a finite von Neumann algebra N . Let P ⊆ N ⋊ H be a von Neumann algebra such that
P ⊀N⋊H N . Then for every elements x, x1, x2, ..., xl ∈ N ⋊ G satisfying Px ⊆ ∑l

i=1 xiP we must have that
x ∈ N ⋊H.
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The following result is a mild generalization of [BV12, Lemma 2.3]. For reader’s convenience we
include all the details in our proof.

Theorem 2.3. Let G be a group together with a normal subgroup H ⊲ G and assume that G ↷ (N , τ) is a trace
preserving action on a von Neumann algebra (N , τ). Consider N ⋊G = M the corresponding crossed product
von Neumann algebra. Assume that A ⊂ M is a (possibly non-unital) subalgebra and G ⊆ N1AM1A(A), a
group of unitaries, are such that A,G” ≺s

M
N ⋊H. Then (AG)” ≺s

M
N ⋊H.

Proof. Let GH ⊂ G be a section for G/H. Also denote by P = N ⋊H. SinceA,G′′ ≺s
M
P , then by [Va10a,

Lemma 2.5], for all ε1, ε2 > 0 there exist Kε1 , Lε2 ⊂ GH , with Kε1 , Lε2 finite, such that for all a ∈ (A)1
and b ∈ (G′′)1 we have 1) ∥PPKε1

(a) − a∥2 ≤ ε1 and 2) ∥PPLε2
(b) − b∥2 ≤ ε2. Here for every S ⊂ GH , the

map PPS ∶ L2(M) → span∥⋅∥2{Pug ∶ g ∈ S} is the orthogonal projection. Also notice that, for all x ∈ M,
PPS(x) = ∑

s∈S
EP(xus−1)us. In particular, for all x ∈ Mwe have,

∥PPS(x)∥∞ ≤ ∣S∣∥x∥∞ and ∥PPS(x)∥2 ≤ ∥x∥2. (2.2.1)

Now for all a ∈ (A)1, b ∈ (G′′)1 we have

∥ab − PPKε1
(a)PPLε2

(b)∥2 ≤ ∥ab − PPKε1
(a)b∥2 + ∥PPKε1

(a)b − PPKε1
(a)PPLε2

(b)∥2
≤ ∥a − PPKε1

(a)∥2∥b∥∞ + ∥PPKε1
∥∞∥b − PPLε2

(b)∥2 (2.2.2)

≤ ∥a − PPKε1
(a)∥2 + ∣Kε1 ∣∥b − PPLε2

(b)∥2
≤ ε1 + ∣Kε1 ∣ε2. (2.2.3)

So letting ε1 = ε and ε2 = ε
∣Kε1 ∣

we get that there exist Kε, Lε finite subsets of the section G/H such that

∥ab − PPKε(a)PPLε(b)∥ ≤ 2ε. (2.2.4)

Since H ⊲ G, then there exist a finite set Fε ⊆ GH such that ∣Fε∣ ≤ ∣Kε∣∣Lε∣ and PPFε(PPKε(a)PPLε(b)) =
PPKε(a)PPLε(b) for all a ∈ U (A), b ∈ (G′′)1. Using this fact together with (2.2.4) we get that ∥PPFε(ab) −
PPKε(a)PPLε(b)∥ ≤ 2ε and combining with (2.2.4) again we get that

∥ab − PPFε(ab)∥ ≤ 2ε. (2.2.5)

for all a ∈ U (A), b ∈ (G′′)1. Since (U (A)G)” = (AG)”, this already shows that (AG)” ≺ P . Next we
argue that we actually have (AG)” ≺s P . To see this fix p ∈ (AG)′ ∩ 1A∨G′′M1A∨G′′ . Then there exists a
finite set Gε ⊆ GH such that

∥p − PPGε(p)∥ ≤
ε

∣Kε∣∣Lε∣
. (2.2.6)

Combining (2.2.6) and (2.2.5) we get that

∥abp − PPFε(ab)PPGε(p)∥ ≤ ∥abp − PPFε(ab)p∥ + ∥PPFε(ab)p − PPFε(ab)PPGε(p)∥
≤ ∥ab − PPFε(ab)∥2∥p∥∞ + ∥PPFε(ab)∥∞∥p − PPGε(p)∥2
≤ 4ε + ∣Fε∣ ⋅

ε

∣Kε∣∣Lε∣
< 5ε. (2.2.7)

Again there exists a finite set Tε ⊂ G such that PPTε(PPFε(ab)PPGε(p)) = PPFε(ab)PPGε(p) and ∣Tε∣ ≤
∣Fε∣∣Gε∣. Using this and (2.2.7) we get that ∥abp − PPTε(abp)∥ < 10ε for all a ∈ U (A), b ∈ G. This shows
that (AG)” ≺s

M
P , as desired.

We end this section by highlighting a straightforward corollary of Theorem 2.3 that will be very
useful in the sequel.

Corollary 2.4. Let H ⊲ G be a normal subgroup of G and G ↷ (N , τ) be a trace preserving action on a
tracial von Neumann algebra (N , τ). LetM = N ⋊G. Assume that A, B ⊆M are commuting von Neumann
subalgebras such that A ≺s

M
N ⋊H and B ≺s

M
N ⋊H. Then A∨B ≺s

M
N ⋊H.

Proof. Follows from Theorem 2.3 by letting G = U (B).
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2.3 Height of Elements in Group von Neumann Algebras

The notion of height of elements in crossed products and group von Neumann algebras was in-
troduced and developed in [Io11] and [IPV10] and was highly instrumental in many of the recent
classification results in von Neumann algebras [Io11, IPV10, KV15, CI17, CU18, CDK19]. Following
[IPV10, Section 3] for every x ∈ L(G) we denote by hG(x) the largest Fourier coefficient of x, i.e.,
hG(x) = maxg∈G ∣τ(xu∗g)∣. Moreover, for every subset G ⊆ L(G), we denote by hG(G) = infx∈G hG(x),
the height of G with respect to G. Using the notion of height Ioana, Popa and Vaes proved in their
seminal work, [IPV10, Theorem 3.1] that whenever G, H are icc groups such that L(G) = L(H) and
hG(H) > 0, then G and H are isomorphic. The following generalization of this result to embeddings
was obtained by Krogager and Vaes [KV15] and will be used in an essential way to derive our main
Theorem 4.7 in the last section.

Theorem 2.5 (Theorem 4.1, [KV15]). Let G be a countable group and denote byM= L(G). Let p ∈P(M)
be a projection and assume that G ⊆ U (pMp) is a subgroup satisfying the following properties:

1. The unitary representation {Ad(v)}v∈G on L2((pMp⊖Cp)) is weakly mixing;

2. For any e ≠ g ∈ L(G) we have G” ⊀M L(CG(g));

3. We have hG(G) > 0.

Then p = 1 and there exists a unitary u ∈ L(G) such that uGu∗ ⊆ TG.

Next we highlight a new situation when it’s possible to control lower bound for height of unitary
elements in the context of crossed product von Neumann algebras arising from group actions by auto-
morphisms with no non-trivial stabilizers. Our result and its proof is reminiscent of the prior powerful
techniques for Bernoulli actions introduced in [IPV10, Theorem 5.1] (see also [Io11, Theorem 6.1]) and
their recent counterparts for the Rips constructions [CDK19, Theorem 5.1]. The precise statement is as
follows.

Theorem 2.6. Let G and H be countable groups and let σ ∶ G → Aut(H) be an action by automorphisms for
which there exists a scalar c > 0 satisfying ∣StabG(h)∣ < c for all h ∈ H ∖ {e}. ConsiderM= L(H ⋊σ G) and let
A ⊆ M be a diffuse von Neumann subalgebra (possibly non-unital) such that A ≺s

M
L(H). For any group of

unitaries G ⊆ L(G) satisfying G ⊆ NM(A) we have that hG(G) > 0.

Proof. For ease of exposition denote by N = L(H). Next we prove the following property

Claim 1. For every x, y ∈ L(G), every finite subsets K, S ⊂ G, every a ∈ spanNK with E
L(G)(a) = 0 and every

ε > 0 there exists a scalar κε,K,S,a > 0 such that

∥PNS(xay)∥22 ≤ κε,K,S,a∥y∥22∥a∥22h2
G(x) + ε∥x∥∞∥y∥∞, (2.3.1)

where PNS denotes the orthogonal projection from L2(M) onto span∥⋅∥2(NS).
Proof of Claim 1. First fix a finite set L ⊆ H ∖ {e} and let b ∈ span(LK). Observe that using the Fourier
decomposition of x = ∑g xgug and y = ∑ ygug, where xg = τ(xug−1) and yg = τ(yug−1), basic calculations
show that

∥EN (xby)∥22 = ∥ ∑
g∈G,k∈K

xgyk−1g−1 σg(EN (buk−1))∥22

= ∑
g1,g2∈G,k1,k2∈K

xg1 yk−1
1 g−1

1
xg2 yk−1

2 g−1
2
⟨σg1(EN (buk−1

1
)), σg2(EN (buk−1

2
))⟩. (2.3.2)

Furthermore, using the Fourier decomposition b = ∑h bhuh where bh = τ(buh−1)we also see that

⟨σg1(EN (buk−1
1
)), σg2(EN (buk−1

2
))⟩ = ∑

l1,l2∈L
bk1l1 bk2l2 δσg1(l1),σg2(l2)

= ∑
l1,l2∈L,g−1

2 g1∈Sl1,l2

bk1l1 bk2l2 , (2.3.3)
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where for every l1, l2 ∈ L we have denoted by Sl1,l2 = {g ∈ G ∶ σg(l1) = l2}.
Thus, combining (2.3.2) and (2.3.3) and using basic inequalities together with ∣Sl1,l2 ∣ ≤ c we get that

∥EN (xby)∥22 ≤ ∑
k1,k2∈K;l1,l2∈L,g1,g2∈G,g−1

2 g1∈Sl1,l2

∣xg1 yk−1
1 g−1

1
bk1l1 xg2 yk−1

2 g−1
2

bk2l2 ∣

≤ ∑
k1,k2∈K,l1,l2∈L,s∈Sl1,l2

,g∈G,
∣xgsyk−1

1 s−1g−1 bk1l1 xgyk−1
2 gbk2l2 ∣

≤ (max
l1,l2∈L

∣Sl1,l2 ∣)∣K∣
2∣L∣2h2

G(x)∥y∥22∥b∥22 ≤ c∣K∣2∣L∣2h2
G(x)∥y∥22∥b∥22. (2.3.4)

Using these estimates we are now ready to derive the proof of (2.3.1). To this end fix ε > 0. Using basic
approximations and ∥E

L(G)(a)∥ = 0 one can find a finite set L ⊂ H ∖ {e} and b ∈ span(LK) such that

∥a − b∥2 ≤min{ ε

2
, ∥a∥2} and ∥b∥∞ ≤ 2∥a∥∞. (2.3.5)

Notice that for all z ∈ M we have PNS(z) = ∑EN (zus−1)us and using this formula together with
estimate (2.3.5) and Cauchy-Schwarz inequality we get

∥PNS(xay)∥22 ≤ 2∣S∣ (∑
s∈S
∥EN (xbyus−1∥22)+ ε∣x∥∞∥y∥∞.

Using (2.3.4) followed by (2.3.5) we further have that the last inequality above is smaller than

≤ 2c∣S∣∣K∣2∣L∣2(∑
s∈S

h2
G(x)∥yus−1∥22∥b∥22) + ε∣x∥∞∥y∥∞

≤ 4c∣S∣2∣K∣2∣L∣2h2
G(x)∥a∥22∥y∥22 + ε∣x∥∞∥y∥∞. (2.3.6)

Combining this with (2.3.5) proves the claim where κε,K,S,a = 4c∣S∣2∣K∣2∣L∣2. ∎
In the remaining part we complete the proof of the statement. Towards this first notice that, since

A ≺s
M
N then by [Va10a, Lemma 2.5] for every ε there exists a finite set S ⊆ K such that for all c ∈ U (A)

we have

∥c − PNS(c)∥2 ≤ ε. (2.3.7)

Next we also claim that for every finite set S ⊂ G and every ε > 0 there exists b ∈ U (A) such that

∥E
L(G) ○ PNS(b)∥2 < ε. (2.3.8)

Indeed, to see this first notice that ∥E
L(G) ○ PNS(b)∥22 = ∑

s∈S
∣τ(bus−1)∣2. As A is diffuse and S is finite

there exists b ∈ U (A) such that ∑
s∈S
∣τ(bus−1)∣2 < ε and the claim follows.

Now pick b ∈ U (A) satisfying (2.3.8). Let a ∈ U (A), and g ∈ G. Since gag−1 ∈ U (A) then using
(2.3.7) two times and (2.3.8) we see that

1− ε = ∥gag−1∥2 − ε ≤ ∥PNS(gag−1)∥2 ≤ ∥PNS(g(PNS(b))g−1)∥2 + ε

≤ ∥PNS(g(PNS(b) − E
L(G)(PNS(b)))g−1)∥2 + ∥EL(G)(PNS(b))∥2 + ε

≤ ∥PNS(g(PNS(b) − E
L(G)(PNS(b)))g−1)∥2 + 2ε. (2.3.9)

Now, taking a = PNS(b) − E
L(G)(PNS(b)) and using (2.3.1) we get that the last inequality above is

smaller than

≤ κε,S,S,bhG(g)∥PNS(b) − E
L(G)(PNS(b))∥2 + ε1/2 + 2ε. (2.3.10)

Thus (2.3.9) and (2.3.10) further imply that hG(g) ≥ κ−1
ε,S,S,b(1 − 3ε − ε1/2). Since this holds for all g ∈ G,

letting ε > 0 be sufficiently small we get the desired conclusion.
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3 Two Distinguished Classes of Property (T) Groups

In this section we describe two independent classes of groups with property (T). Our main results
on calculation of fundamental groups apply to factors arising from these classes. The first class, de-
noted by S , is described in subsection 3.1 and was previously introduced in [CDK19] using a Rips
construction in geometric group theory developed by Belegradek-Osin [BO06]. The second class, de-
noted by V , is described in subection 3.2 and is based on construction by Valette [Va04]. We also
highlight several algebraic properties of these groups and their von Neumann algebras that will be
essential to derive our main results in the sequel.

3.1 Class S

Using the powerful Dehn filling technology from [Os06], Belegradek and Osin showed in [BO06,
Theorem 1.1] that for every finitely generated group Q one can find a property (T) group N such that
Q embeds into Out(N) as a finite index subgroup. This canonically gives rise to an action Q ↷ρ N by
automorphisms such that the corresponding semidirect product group N ⋊ρ Q is hyperbolic relative
to {Q}. Throughout this document the semidirect products N ⋊ρ Q will be termed Belegradek-Osin’s
Rips construction groups. When Q is torsion free then one can pick N to be torsion free as well and
hence both N and N ⋊ρ Q are icc groups. Also when Q has property (T) then N ⋊ρ Q has property (T).
Under all these assumptions we will denote by Rips(Q) the class of these Rips construction groups
N ⋊ρ Q.

In [CDK19, Sections 3,5] we introduced a class of property (T) groups based on the Belegradek-
Osin Rips construction groups and we have proved several rigidity results for the corresponding von
Neumann algebras, [CDK19, Theorem A]. Next we briefly recall this construction also highlighting its
main algebraic properties that are relevant in the proofs of our main results in the next section.

Class S . Consider any product group Q = Q1 ×Q2, where Qi are any nontrivial, bi-exact, weakly
amenable, property (T), residually finite, torsion free, icc groups. Then for every i = 1, 2 consider a
Rips construction Gi = Ni ⋊ρi Q ∈ Rips(Q), let N = N1 × N2 and denote by G = N ⋊σ Q the canonical
semidirect product which arises from the diagonal action σ = ρ1 × ρ2 ∶ Q → Aut(N), i.e. σg(n1, n2) =
((ρ1)g(n1), (ρ2)g(n2)) for all (n1, n2) ∈ N. Throughout this article the category of all these semidirect
products G will denoted by Class S .

Concrete examples of semidirect product groups in class S can be obtained if the initial groups Qi
are any uniform lattices in Sp(n, 1) when n ≥ 2. Indeed one can see that the required conditions on
Qi’s follow from [Oz03, CH89].

For further reference we record some algebraic properties of groups in class S . For reader’s con-
venience we provide some details. For further details the reader may consult [CDK19, Sections 3,4,5]
and the references within.

Theorem 3.1. For any G = N ⋊σ Q ∈S the following hold:

a) G is an icc, torsion free, property (T) group;

b) Q is malnormal subgroup of G, i.e. gQg−1 ∩Q = {e} for every g ∈ G ∖Q;

c) The stabilizer StabQ(n) = {e} for every n ∈ N ∖ {e};

d) The virtual centralizers satisfy vCG(N) = {e}, and vCG(Q) = {e};

e) G is the fiber product G = G1 ×Q G2; thus embeds into G1 ×G2 where Q embeds diagonally into Q ×Q.

Proof. Part a) follows from [CDK19, Theorem 3.14, part 4.]. Part e) is contained in [CDK19, Notation
5.4.].

Now we argue for c). Let e ≠ n = (n1, n2) ∈ N1 ×N2 and assume by contradiction there is h ∈ Q ∖ {e}
such that n = σh(n). Thus we get ni = σh(ni) for all i = 1, 2. As n ≠ e then nj ≠ e for some j ∈ {1, 2}. The
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prior relation implies that n−1
j knj = k for all k ∈ ⟨h⟩ and therefore njQn−1

j ∩Q ⊇ ⟨h⟩. As from [CDK19,
Theorem 3.14, part 2.] Ni ⋊Q is hyperbolic relative to Q then using [Os06b, Theorem 1.4] it follows
that Q is almost malnormal in Ni ⋊Q. Altogether, these imply that the group ⟨h⟩ must be finite and
nontrivial which contradicts the assumption that Q is torsion free. Thus h = e, which finishes the proof.

Now we justify b). Let g = nq ∈ G be such that gQg−1 ∩Q ≠ {e}. Let x ∈ Q ∖ {e}. Then, gxg−1 =
n(qxq−1)n−1 = nσy(n−1)y, where y = qxq−1, and σy(z) = yzy−1 for any z ∈ G. Thus, gxg−1 ∈ Q, if and
only if nσy(n−1) = e. By part c) this happens if and only if n = e, which implies g ∈ Q.

Next we prove the first assertion in d). Note that vCG(N) is trivial if and only if L(N)′ ∩L(N ⋊Q) =
C. As Q acts outerly on N, it follows that Q ⊆ Out(L(N)), which yields the desired conclusion.

In the remaining part we show the second assertion in d). Towards this, fix g ∈ vCG(Q). Then there
exists a finite index subgroup Q0 ⩽ Q such that gh = hg for all h ∈ Q0. Writing g = nq for some n ∈ N,
q ∈ Q we further get nqh = σh(n)hq for all h ∈ Q0. This entails qh = hq and n = σh(n) for all h ∈ Q0. The
first relation implies that q ∈ FCQ(Q) and since Q is icc we conclude that q = e. As n = σh(n) for all
h ∈ Q0 ≠ {e} part c) implies that n = {e}. Altogether, these imply g = e, which gives the conclusion.

Finally we conclude this subsection with a folklore lemma related to the calculation of centralizers
of elements in products of hyperbolic groups. We include some details for reader’s convenience.

Lemma 3.2. Let Q = Q1 ×Q2, where Qis are non-elementary torsion free, hyperbolic groups. For any e ≠ g ∈ Q
the centralizer CQ(g) is of one of the following forms: A, A ×Q2 or Q1 × A, where A is an amenable group.

Proof. Let g = (g1, g2) ∈ Q where gi ∈ Qi and notice that CQ(g) = CQ1(Q1) × CQ2(g2). Therefore
to get our conclusion it suffices to show that for every gi ∈ Qi either CQi(gi) = Qi or CQi(gi) is an
elementary group. However this is immediate once we note that for every gi ≠ e the centralizer satisfies
CQi(gi) ⩽ EQi(gi), where EQi(gi) is maximal elementary subgroup containing gi of the torsion free icc
hyperbolic group Qi, see for example [Ol91].

3.2 Class V

We describe a construction of group pairs with property (T) developed by Valette [Va04]. Denote
by H the division algebra of quaternions and by HZ its lattice of integer points. Let n ≥ 2. Recall that
Sp(n, 1) is the rank one connected simple real Lie group defined by

Sp(n, 1) = {A ∈ GLn+1(H) ∣ A∗ JA = J}

where J = Diag(1, . . . , 1,−1). Since the subgroup Sp(n, 1) is the set of real points of an algebraic Q-
group, the group of integer points Λn = Sp(n, 1)Z is a lattice in Sp(n, 1) by Borel–Harish-Chandra’s
result [BHC61]. Observe that Sp(n, 1) acts linearly on Hn+1 ≅ R4(n+1) in such a way that Λn preserves
(HZ)n+1 ≅ Z4(n+1). For every n ≥ 2, consider the natural semidirect product Gn = Z4(n+1) ⋊Λn.
Throughout this documents we denote by V the collection of all finite direct product groups of the
form G = Gn1 × ...×Gnk , where ni ≥ 2 and k ∈N. Also for a group Gn ∈ V , we denote byMn = L(Gn),
and by An = L(Z4(n+1)). Note thatMn = An ⋊Λn.

For further use we record some properties of the groups Gn ∈ V and their von Neumann algebras
Mn.

Theorem 3.3. Let Gn ∈ V with n ≥ 2. Then the following hold true:

(i) Gn is an infinite icc countable discrete group with property (T) so thatMn is a II1 factor with property
(T).

(ii) An ⊆Mn is the unique Cartan subalgebra, up to unitary conjugacy.
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Proof. (i)We use the notation g = (a, γ) ∈ Z4(n+1) ⋊Λn = Gn. Since the lattice Λn/{± id} in the adjoint
Lie group Sp(n, 1)/{± id} is icc, the conjugacy class of any element of the form g = (a, γ) in Gn with
γ ∉ {± id} is infinite. The Z4(n+1)-conjugacy class of any element of the form g = (a,− id) in Gn is
also clearly infinite. Moreover, the exact same proof as [Va04, Theorem 4, Step 3] shows that the
conjugacy class of any element of the form g = (a, id) in Gn with a ≠ 0 is infinite. It follows that Gn is an
icc countable discrete group. By [Va04, Proposition 1], the group pair (R4(n+1) ⋊ Sp(n, 1), R4(n+1)) has
relative property (T). Since both Z4(n+1) ⋊Λn < R4(n+1) ⋊Sp(n, 1) and Z4(n+1) < R4(n+1) are lattices, the
group pair (Z4(n+1) ⋊Λn, Z4(n+1)) also has property (T). Since Sp(n, 1) has property (T) by Kostant’s
result, so does its lattice Λn < Sp(n, 1). Altogether, this implies that Gn has property (T). HenceMn =
L(Gn) has property (T) by [CJ85].

(ii) We first show that An ⊆ Mn is a Cartan subalgebra. Note that it suffices to show that An ⊆ Mn

is maximal abelian. To this end, it is enough to show that the Z4(n+1)-conjugacy class in Gn of any
element of the form g = (0, γ) with γ ≠ id is infinite. Indeed, if γ ∈ Λn is such that the Z4(n+1)-
conjugacy class of g = (0, γ) in Γn is finite, since Z4(n+1) is torsion-free, this forces γ to act trivially on
Z4(n+1) and so necessarily γ = id.
Since L∞(T4(n+1)) = An ⊂ Mn = L∞(T4(n+1)) ⋊Λn is a Cartan subalgebra and sinceMn is a type II1
factor, the probability measure-preserving action Λn ↷ T4(n+1) is essentially free and ergodic. Then
[PV12, Theorem 1.1] shows thatAn ⊂Mn is the unique Cartan subalgebra, up to unitary conjugacy.

4 Fundamental Group of Factors Arising from Class S

In this section we prove our main result describing isomorphisms of amplifications of property
(T) group factors L(G) associated with groups G ∈S . These factors were first considered in [CDK19],
where various rigidity properties were established. For instance, in [CDK19, Theorem A] it was shown
that the semidirect product decomposition of the group G = N ⋊Q is a feature that’s completely recov-
erable from L(G). In this section we continue these investigations by showing in particular that these
factors also have trivial fundamental group (see Theorem 4.7 and Corollary 1). In order to prepare
for the proof of our main theorem we first need to establish several preliminary results on classifying
specific subalgebras of L(G). Some of the theorems will rely on results proved in [CDK19]. We recom-
mend the reader to consult these results beforehand as we will focus mostly on the new aspects of the
techniques. Throughout this section we shall use the notations introduced in Section 3.1.

Our first result classifies all diffuse, commuting property (T) subfactors inside these group factors.

Theorem 4.1. Let N ⋊Q ∈ S . Also let A1,A2 ⊆ L(N ⋊Q) = M be two commuting, property (T), type II1
factors. Then for each k ∈ {1, 2} one of the following holds:

1. There exists i ∈ {1, 2} such that Ai ≺M L(Nk);

2. A1 ∨A2 ≺M L(Nk) ⋊Q.

Proof. Let Gk = Nk ⋊Q for k ∈ {1, 2}. Notice that by part e) in Theorem 3.1 we have that N ⋊Q ⩽ G1 ×
G2 = G where Q is embedded as diag(Q) ⩽ Q ×Q. Notice that A1,A2 ⊆ L(N) ⋊Q ⊆ L(G1 ×G2) =∶ M̃.
By [CDK19, Theorem 5.3] there exists i ∈ {1, 2} such that

a) Ai ≺M̃ L(Gk), or

b) A1 ∨A2 ≺M̃ L(Gk ×Q).

Assume a). Since A1 ∨ A2 ⊆ L(N) ⋊Q and Gk is normal in G then using [CDK19, Lemma 2.3] we
further get that Ai ≺M̃ L((N ⋊Q) ∩Gk) = L(((N1 × N2) ⋊ diag(Q)) ∩ (Nk ⋊Q)) = L(Nk) and thus we
have that c) Ai ≺M̃ L(Nk).
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Assume b). Then using [CDK19, Lemma 2.3] one can find h ∈ G such that A1 ∨A2 ≺M̃ L(Γ ∩ h(Γk ×
Q)h−1) = L(h(Nk ⋊diag(Q))h−1). This implies that d) A1 ∨A2 ≺M̃ L(Nk) ⋊Q.

Note that by using [CDK19, Lemma 2.5] case d) already implies that A1 ∨A2 ≺M L(Nk) ⋊Q which
gives possibility 2. in the statement.

Next we show that c) gives 1. To accomplish this we only need to show that the intertwining
actually happens inM. By Popa’s intertwining techniques c) implies there exist finitely many xi ∈ M̃,
and c > 0 such that

n
∑
i=1
∥E
L(Nk)

(axi)∥22 ≥ c for all a ∈ U (Ai). (4.0.1)

Using basic approximations of xi’s and increasing n ∈N and decreasing c > 0, if necessary, we can
assume that xi = ugi where gi ∈ Ĝk ×Q.
Now observe that E

L(Nk)
(axi) = E

L(Nk)
(augi) = E

L(Nk)
(EM(augi)) = E

L(Nk)
(aEM(ugi)). Thus (4.0.1)

becomes
n
∑
i=1
∥E
L(Nk)

(aEM(ugi))∥
2
2 ≥ c for all a ∈ U (Ai)

and hence Ai ≺M L(Nk) as desired.

Next we show that actually the intertwining statements in the previous theorem can be made much
more precise.

Theorem 4.2. Let N ⋊Q ∈ S . Also let A1,A2 ⊆ L(N ⋊Q) = M be two commuting, property (T), type II1
factors. Then for every k ∈ {1, 2} one of the following holds:

1. There exists i ∈ {1, 2} such that Ai ≺M L(Nk);

2. A1 ∨A2 ≺M L(Q).

Proof. Using Theorem 4.1 the statement will follow once we show thatA1 ∨A2 ≺M L(Nk)⋊Q implies
A1 ∨A2 ≺M L(Q), which we do next. Since A1 ∨A2 ≺M L(Nk) ⋊Q, there exist

ψ ∶ p(A1 ∨A2)p → ψ(p(A1 ∨A2)p) = R ⊆ q(L(Nk) ⋊Q)q (4.0.2)

∗-homomorphism, nonzero partial isometry v ∈ qMp such that

ψ(x)v = vx for all x ∈ p(A1 ∨A2)p. (4.0.3)

Notice that we can pick v such that the support projection satisfies s(E
L(Nk⋊Q)(vv∗)) = q. Moreover,

since Ai’s are factors we can assume that p = p1 p2 for some pi ∈ P(Ai). Next let Ri = ψ(piAi pi).
Note that R1, R2 are commuting property (T) subfactors such that R1 ∨R2 = R ⊆ q(L(Nk) ⋊ Q)q.
Using the Dehn filling technology from [Os06, DGO11], we see that there exists a short exact sequence
1 → ∗

γj
Q

γj
0 → Nk ⋊Q → H → 1 where H is a hyperbolic, property (T) group and Q0 ⩽ Q is a finite index

subgroup. Then using [PV12, CIK13] in the same way as in the proof of [CDK19, Theorem 5.2] we
have either a) Ri ≺L(Nk)⋊Q L(∗γj

Q
γj
0 ), for some i, or b) R = R1 ∨R2 ⋖L(Nk)⋊Q L(∗γj

Q
γj
0 ). Since Ri’s have

property (T) then by [Po01, Proposition 4.6] so does R and hence possibility b) entails R ≺
L(Nk)⋊Q

L(∗
γj

Q
γj
0 ). Summarizing, cases a)-b) imply that Ri ≺L(Nk)⋊Q L(∗γj

Q
γj
0 ), for some i. Then using [IPP05,

Theorem 4.3] this further implies R ≺
L(Nk)⋊Q L(Q

γj
0 ) and hence Ri ≺L(Nk)⋊Q L(Q0) ⊆ L(Q). As

Q ⩽ Nk ⋊Q is malnormal, using the same arguments as in the proof of [CDK19, Theorem 5.3] one
can show that R ≺

L(Nk)⋊Q L(Q). Indeed, let ϕ ∶ rRir → ϕ(rRir) ∶= R̃ ⊆ q1L(Q)q1 be a unital ∗-
homomorphism, and let w ∈ q1L(Nk ⋊Q)r be a nonzero partial isometry such that

ϕ(x)w = wx for all x ∈ rRir. (4.0.4)
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Note that ww∗ ∈ L(Q) by Lemma 2.2 and hence R̃ww∗ = wRiw∗ ⊆ L(Q). For every u ∈ Ri+1, where
i + 1 is considered (mod 2), we have

R̃wuw∗ = R̃ww∗wuw∗ = wRiw
∗wuw∗ = ww∗wuRiw

∗ = wuRiw
∗

= wuRiw
∗ww∗ = wuw∗wRiw

∗ = wuw∗R̃ww∗ = wuw∗R̃.

Thus Lemma 2.2 again implies that wuw∗ ∈ L(Q). Altogether these show that wRi+1w∗ ⊆ L(Q).
Combining with the above we get wRw∗ = wRiRi+1w∗ = ww∗wRiRi+1w∗ = wRiw∗wRi+1w∗ ⊆ L(Q).
From relation (4.0.4) we have that w∗w ∈ R. Also by (4.0.3) we have Rv = vp(A1 ∨A2)p and hence
v∗Rv = v∗vp(A1 ∨A2)p. Hence there exists p0 ∈ P(p(A1 ∨A2)p) so that v∗w∗wv = v∗vp0. Next we
argue that wvp0 ≠ 0. Indeed, otherwise we would have wv = 0 and hence wvv∗ = 0. As w ∈ L(Nk ⋊Q)
this would imply that wE

L(Nk⋊Q)(vv∗) = 0 and hence w = wq = ws(E
L(Nk⋊Q)(vv∗)) = 0, which is a

contradiction. To this end, combining the previous relations we have wvp(A1 ∨A2)pp0 ⊆ wvp(A1 ∨
A2)pv∗vp0 = wvp(A1 ∨A2)pv∗w∗wv = wRvv∗w∗wv = wRw∗wv ⊆ L(Q)wv. Since the partial isometry
wv ≠ 0 the last relation clearly shows that A1 ∨A2 ≺M L(Q), as desired.

Theorem 4.3. Let A1,A2 ⊆ L(N) ⋊ Q = M be two commuting, property (T), type II1 factors such that
(A1 ∨A2)′ ∩ r(L(N) ⋊Q)r = Cr. Then one of the following holds:

a) A1 ∨A2 ≺s
M
L(N), or

b) A1 ∨A2 ≺s
M
L(Q).

Proof. Fix k ∈ {1, 2}. By Theorem 4.2 we get that either

i) ik ∈ {1, 2} such that Aik ≺M L(Nk), or

ii) A1 ∨A2 ≺M L(Q).

Note that case ii) together with the assumption (A1 ∨A2)′ ∩ r(L(N) ⋊Q)r = Cr and [DHI16, Lemma
2.4] already give b). So assume that case i) holds. Hence for all k ∈ {1, 2}, there exists ik ∈ {1, 2} such
that Aik ≺M L(Nk). Using [DHI16, Lemma 2.4], there exists 0 ≠ z ∈ Z(NrMr(Aik)

′ ∩ rMr) such that
Aik z ≺s

M
L(Nk). Since A1 ∨A2 ⊆ NrMr(Aik)

′′, then NrMr(Aik)
′ ∩ rMr ⊆ (A1 ∨A2)′ ∩ rMr = Cr. Thus

we get that z = r. In particular

Aik ≺
s
M
L(Nk). (4.0.5)

We now briefly argue that k ≠ l ⇒ ik ≠ il . Assume by contradiction that i1 = i2 = i. Then (4.0.5) implies
that Ai ≺s

M
L(N1) and Ai ≺s

M
L(N2). By [DHI16, Lemma 2.6], this implies that Ai ⋖M L(N1) and

Ai ⋖M L(N2). Note that L(Ni) are regular in M and hence by [PV11, Proposition 2.7] we get that
Ai ⋖M L(N1) ∩ L(N2) = C, which implies that Ai is amenable. This contradicts our assumption that
Ai has property (T). Thus ik ≠ il whenever k ≠ l. Therefore we have that Ai1 ≺

s
M
L(N1) ⊆ L(N)

and Ai2 ≺
s
M
L(N2) ⊆ L(N). Using Corollary 2.4 we get that A1 ∨A2 ≺s

M
L(N), which completes the

proof.

Our next result concerns the location of the ”core” von Neumann algebra. Before proceeding to
this we first present an intertwining result which is contained in the first part of the proof of [IPP05,
Lemma 8.4]. For completeness we include a detailed independent proof.

Lemma 4.4. LetM = B ⋊G be a crossed product II1 factor such that B ⊆ M is an irreducible II1 subfactor.
Let p ∈ B be a projection and letA ⊆ pMp be an irreducible regular II1 subfactor. IfA ≺M B and B ≺M A then
the following holds.
There exist projections a ∈ A, b ∈ pBp, a nonzero partial isometry v ∈ bMa and a ∗-isomorphism onto its image
θ ∶ aAa →R = θ(aAa) ⊆ bBb such that θ(x)v = vx for all x ∈ aAa. Moreover we have that:

1. The projections v∗v = a and vv∗ ∈ R′ ∩ bMb;
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2. The relative commutant ofR in bBb satisfiesR′ ∩ bBb = Cb;

3. The inclusionR ⊆ bBb has finite Jones index.

Proof. If A ≺M B then we also have A ≺pMp pBp. Using [CD19, Theorem 2.2] one can find nonzero
projections a ∈ A, b ∈ pBp, a nonzero partial isometry v ∈ bMa, and a ∗-isomorphism onto its image
θ ∶ aAa →R ∶= θ(aAa) ⊆ bBb such that

θ(x)v = vx for all x ∈ aAa. (4.0.6)

In addition, v∗v = a, vv∗ ∈ R′ ∩ bMb and the relative commutant satisfiesR′ ∩ bBb = Cb.
Since A, B are II1 factors and B ≺M A then one can find nonzero projections f ∈ bBb, e ∈ aAa, a

nonzero partial isometry w ∈ eM f , and a ∗-isomorphism onto its image ϕ ∶ fB f → eAe such that for all
y ∈ fB f we have

ϕ(y)w = wy. (4.0.7)

As before we also have that w∗w = f and ww∗ ∈ ϕ( fB f )′ ∩ eMe.
Let 0 ≠ r ∶= θ(e) ∈ R. Notice the intertwining relations (4.0.6)-(4.0.7) imply that θ(ϕ(y))vw =

vϕ(y)w = vwy for all y ∈ fB f . As w = aw = v∗vw we see that vw ≠ 0. Taking t ≠ 0 the partial
isometry in the polar decomposition of vw, we further get ψ ∶= θ ○ ϕ ∶ fB f → rRr is a ∗-isomorphism
onto its image satisfying ψ(x)t = tx for all x ∈ fB f .

Now let t = ∑g tgug be the Fourier expansion in B ⋊G with tg ∈ B. The prior intertwining relation
entails ψ(x)tg = tgσg(x) for all x ∈ fB f and g ∈ G. Since there is a g with tg ≠ 0 and B is a II1 factor this
further implies bBb ≺B R and hence bBb ≺bBb R. Thus [CD18, Proposition 2.3] implies that R ⊆ bBb
has finite Jones index.

Theorem 4.5. Let N ⋊Q, M ⋊ P ∈ S . Let p ∈ L(M) be a nonzero projection and assume that Θ ∶ L(N ⋊
Q) → pL(M ⋊ P)p is a ∗-isomorphism. Then there exists a unitary v ∈ pL(M ⋊ P)p such that Θ(L(N)) =
vpL(M)pv∗.

Proof. From assumptions there are Q1, Q2, P1, P2 icc, torsion free, residually finite, biexact, weakly
amenable property (T) groups so that Q = Q1 ×Q2 and P = P1 × P2. We also have that N = N1 ×N2 and
M = M1 ×M2 where Ni’s and Mi’s have property (T). Denoting byM = L(M ⋊ P), A = Θ(L(N)) and
Ai = Θ(L(Ni))we see that A1 and A2 are commuting property (T) subalgebras of pMp. Using part b)
in Theorem 4.3 we have that (A1 ∨A2)′ ∩ pMp = Θ(L(N)′ ∩L(N ⋊Q)) = CΘ(1) = Cp. Using Theorem
4.3 we get either

a) A ≺s
M
L(M) or,

b) A ≺s
M
L(P).

Assume case b) above holds. Then there exist projections r ∈ A, q ∈ L(P), a nonzero partial isometry v ∈
qMr, and a ∗-homomorphism ψ ∶ rAr → ψ(rAr) ⊆ qL(P)q such that ψ(x)v = vx for all x ∈ rAr. Arguing
exactly as in the proof of [CDK19, Theorem 5.5], we can show that vQN rMr(rAr)′′v∗ ⊆ qL(P)q.

Now, QN rMr(rAr)′′ = rMr, using [Po03, Lemma 3.5]. Thus, M ≺M L(P) and hence L(P) has
finite index in M by [CD18, Theorem 2.3], which is a contradiction. Hence we must have a), i.e.
A ≺s

M
pL(M)p.

Repeating the above argument verbatim, we get that pL(M)p ≺pMp A. Let N = L(N ⋊Q) and B =
L(M). Thus using Lemma 4.4 one can find nonzero projections r ∈ A, b ∈ pBp, a unital ∗-isomorphism
ψ ∶ rAr → R ∶= ψ(rAr) ⊆ bL(M)b, and a nonzero partial isometry v ∈ pMp satisfying v∗v = r, vv∗ ∈
R′ ∩ bMb and ψ(x)v = vx for all x ∈ rAr. Moreover, we have R′ ∩ bBb = Cb and R ⊆ bBb has finite
index. Notice that by [Po02, Lemma 3.1], we have that [R′ ∩ bMb ∶ (bBb)′ ∩ bMb] ≤ [bBb ∶ R]. As
(bBb)′ ∩ bMb = Cb, we conclude that R′ ∩ bMb is finite dimensional. Let x ∈ R′ ∩ bMb. Since xr = rx
for all r ∈ R we have that r∑gxgug = ∑gxgugr, where x = ∑g∈Pxgug is the Fourier decomposition of
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x in M = B ⋊ P. Let ug(y)u∗g = σg(y) for any y ∈ M⋊ P. Thus ∑grxgug = ∑gxgσg(r)ug and hence
rxg = xgσg(r) for all g and r. In particular this entails that

xgx∗g ∈ R′ ∩ bBb = Cb, and (4.0.8)

xgug ∈ R′ ∩ bMb. (4.0.9)

From (4.0.8) we see that xg is a scalar multiple of a unitary in bMb. Hence by normalization we may
assume that each xg is itself either a unitary or zero.

Let K be the set of all g ∈ P for which there exists xg ∈ U (bBb) such that xgug ∈ U (R′ ∩ bMb)
and notice that K is a subgroup of P. Note that {xgug}g∈K is a τ-orthogonal family in R′ ∩ bMb. As
R′ ∩ bMb is finite dimensional, we get that K is a finite subgroup of P. As P is torsion free (see part a) in
Theorem 3.1) then K = {e}. In particular, this shows thatR′ ∩ bMb = R′ ∩ bBb = Cb which implies vv∗ =
b ≤ p. Since v∗v = r ≤ p one can find a unitary v0 ∈ pMp extending v. Thus ψ(x) = v0xv∗0 for all x ∈ rAr
and hence R = v0rArv∗0 ⊆ bBb. Let v0 = Θ(w0), where w0 ∈ L(N ⋊Q) is a unitary. Also let r0 ∈ L(N)
be a projection such that Θ(r0) = r. Thus, we get that r0L(N)r0 ⊆ w∗0 Θ−1(bBb)w0 ⊆ r0(L(N) ⋊Q)r0. It
is well known that r0(L(N) ⋊Q)r0 decomposes as a certain twisted crossed product factor r0(L(N) ⋊
Q)r0 = r0L(N)r0 ⋊ρ,α Q where α ∶ Q ×Q → U (r0L(N)r0) is a 2-cocycle and Q ↷ρ r0L(N)r0 is a cocycle
action associated to α. Thus by the Galois correspondece results á la [Ch78] one can find a subgroup
L < Q such that w∗0 Θ−1(bBb)w0 = r0L(N)r0 ⋊ρ,α L. As the index [w∗0 Θ−1(bBb)w0 ∶ r0L(N)r0] < ∞,
we must have that L is a finite subgroup of the torsion free group Q. Thus L = {e} which gives that
Θ(r0L(N)r0) = rAr = v∗0 bBbv0.

Thus, since A and pBp are factors then using the same argument as on [IPP05, page 26, lines 5-
7] one can find a unitary c ∈ pMp such that cAc∗ ⊆ pBp. Reversing the roles of A and pBp same
argument implies existence of a unitary d ∈ pMp so that dpBpd∗ ⊆ A. Altogether, we have that
cAc∗ ⊆ pBp ⊆ d∗Ad. In particular, dcA(dc)∗ ⊆ A. Using the Fourier expansion of dc in A⋊Θ(Q)
and the irreducibility of A ⊂ pMp one can see that cd = zΘ(vh) for some h ∈ Q and a unitary z ∈ A.
Replacing this in the prior containment we get that cAc∗ = pBp, as desired.

Remark. Alternatively, since P is torsion free then it does not have nontrivial finite normal subgroups
and hence Theorem 4.4 can also be deduced directly from part 1 in [Is19, Proposition 4.4].

Next we show that in the previous result we can also identify up to corners the algebras associ-
ated with the acting groups. The proof relies heavily on the classification of commuting property (T)
subalgebras provided by Theorem 4.3 and the malnormality of the acting groups.

Theorem 4.6. Let N ⋊Q, M ⋊ P ∈ S . Let p ∈ L(M) be a projection and assume that Θ ∶ L(N ⋊Q) →
pL(M ⋊ P)p is a ∗-isomorphism. Then the following hold:

1. There exists v ∈ U (pL(M ⋊ P)p) such that Θ(L(N)) = vpL(M)pv∗, and

2. There exists u ∈ U (L(M ⋊ P)) such that Θ(L(Q)) = pu∗L(P)up.

Proof. As part 1. follows directly from Theorem 4.5 we only need to show part 2.
Recall that Q = Q1 ×Q2, P = P1 × P2, N = N1 ×N2 and M = M1 ×M2 where Qi, Pi, Ni and Mi are icc,

property (T) groups. Denote byM= L(M ⋊ P), A = Θ(L(N)), B = Θ(L(Q)) and Bi = Θ(L(Qi)). Then
we see that B1,B2 ⊂ pMp are commuting property (T) subalgebras such that B1 ∨ B2 = B. Moreover,
by part b) in Theorem 3.1 we have that {B1 ∨B2}′ ∩ pMp = B′ ∩Θ(L(N ⋊Q)) = CΘ(1) = Cp. Hence
by Theorem 4.3, we either have that a) B ≺s

M
L(M), or b) B ≺s

M
L(P). By part 1. we also know that

A ≺s
M
L(M). Thus, if a) holds, then Theorem 2.3 implies that pMp = Θ(L(N ⋊Q)) ≺M L(M). In turn

this implies that Q is finite, a contradiction. Hence b) must hold, i.e. B ≺s
M
L(P).

Thus there exist projections q ∈ B, r ∈ L(P), a nonzero partial isometry v ∈ M and a ∗-homomorphism
ψ ∶ qBq → R ∶= ψ(qBq) ⊆ rL(P)r such that ψ(x)v = vx for all x ∈ qBq. Note that vv∗ ∈ R′ ∩ rMr. Since
R ⊆ rL(P)r is diffuse, and P ⩽ M ⋊ P is a malnormal subgroup (part c) in Theorem 3.1), we have that
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QN rMr(R)′′ ⊆ rL(P)r. Thus vv∗ ∈ rL(P)r and hence vqBqv∗ = Rvv∗ ⊆ rL(P)r. Extending v to a
unitary v0 inMwe have that v0qBqv∗0 ⊆ L(P). As L(P) and B are factors, after perturbing v0 to a new
unitary u, we may assume that uBu∗ ⊆ L(P). This further implies that upu∗ ∈ L(P) and since Θ(1) = p
we also have

B = pBp ⊆ pu∗L(P)up. (4.0.10)

Next we claim that

pu∗L(P)up ≺M B. (4.0.11)

To see this first notice that, since P is malnormal in M ⋊ P and P is icc (see parts a) and c) in Theorem
3.1) then (pu∗L(P)up)′ ∩Θ(L(N ⋊Q)) = (pu∗L(P)up)′ ∩ pMp = u∗(L(P)′ ∩L(M ⋊ P))up = Cp. Thus
using Theorem 4.3 we have either a) pu∗L(P)up ≺s

pMp A or b) pu∗L(P)up ≺s
pMp B. Assume a) holds.

By part 1. we have pu∗L(P)up ≺s
pMp A = vpL(M)pv∗; in particular, this implies that L(P) ≺M L(M)

but this contradicts the fact that L(M) and L(P) are diffuse algebras that are τ-perpendicular inM.
Thus b) holds which proves the claim.

Using (4.0.11) together with malnormality of Θ(L(Q)) inside Θ(L(N ⋊Q)) and arguing exactly as
in the proof of relation (4.0.10) we conclude that there exists w ∈ U(pMp) such that

wpu∗L(P)upw∗ ⊆ B. (4.0.12)

Combining ( 4.0.10) and ( 4.0.12) we get that wBw∗ ⊆ wpu∗L(P)upw∗ ⊆ B and hence w ∈QNpMp(B)” =
B. Thus we get

pu∗L(P)up ⊆ w∗Bw = B. (4.0.13)

Combining (4.0.10) and (4.0.13)we get the theorem.

Finally, we are now ready to derive one of the main results of this paper.

Theorem 4.7. Let N ⋊Q, M⋊ P ∈S with N = N1 ×N2 and M = M1 ×M2. Let p ∈ L(M⋊ P) be a projection
and assume that Θ ∶ L(N ⋊Q) → pL(M ⋊ P)p is a ∗-isomorphism. Then p = 1 and one can find a permutation
σ ∈ S2, ∗-isomorphisms Θi ∶ L(Ni) → L(Mi), a group isomorphism δ ∶ Q → P, a multiplicative character
η ∶ Q → T, and a unitary u ∈ L(M ⋊ P) such that for all g ∈ Q, xi ∈ Ni we have that

Θ((x1 ⊗ x2)ug) = η(g)u(Θσ(1)(x1) ⊗Θσ(2)(x2)vδ(g))u∗.

Proof. Throughout this proof we will denote by M = L(N ⋊Q). Using Theorem 4.5, and replacing
Θ by Θ ○ Ad(v) if necessary, we may assume that Θ(L(N)) = pL(M)p. By Theorem 4.6, there exists
u ∈ U (M) such that Θ(L(Q)) ⊆ u∗L(P)u, whereM = L(M ⋊ P). Moreover we have that Θ(1) = p,
the projection upu∗ ∈ L(P) and also Θ(L(Q)) = pu∗L(P)up. Next we denote by Γ = u∗Pu and by
G = {Θ(ug) ∶ g ∈ Q}. Using these notations we show the following.

Claim 2. hΓ(G) > 0.

Proof of Claim 2. Notice that G ⊆ L(Γ) is a group of unitaries normalizing Θ(L(N)). Moreover, by
Theorem 3.1 we can see that the action σ ∶ P → Aut(M) satisfies all the conditions in the hypothesis of
Theorem 2.6 and thus using the conclusion of the same theorem we get the claim. ∎
Claim 3. Let e ≠ g ∈ Γ. Then G′′ ⊀ L(CΓ(g)).
Proof of Claim 3. Since Γ is isomorphic to the product of two biexact groups, say Γ1 ×Γ2, by Lemma 3.2
we get that CΓ(g) = A, Γ1 × A, or A × Γ2 for an amenable group A. If CΓ(g) = A then since G is non-
amenable we clearly have G′′ ⊀ L(CΓ(g)). Next assume CΓ(g) = A × Γ2 and assume by contradiction
that G′′ ≺ L(CΓ(g). As Q = Q1 ×Q2 for Qi property (T) icc group, then G′′ = Θ(L(Q1))⊗̄Θ(L(Q2)) is a
II1 factor with property (T). Since G′′ ≺ L(A × Γ2) = L(A)⊗̄L(Γ) and L(A) is amenable then it follows
that G′′ ≺ L(Γ). However by [Oz03, Theorem 1] this is impossible as L(Γ2) is solid and G′′ is generated
by two non-amenable commuting subfactors. The case CΓ(g) = Γ1 × A follows similarly. ∎
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Claim 4. The unitary representation {Ad(v)}v∈G on L2(pL(Γ)p⊖Cp) is weakly mixing.

Proof of Claim 4. First note that we have Θ(L(Q)) = G′′ = pL(Γ)p. Also since Q is icc then using
[CSU13, Proposition 3.4] the representation Ad(Q) on L2(L(Q)⊖C) is weak mixing. Combining these
two facts, we get that the representation G on L2(pL(Γ)p⊖Cp) is weak mixing, as desired. ∎

Claims 2-4 above together with Theorem 2.5 show that p = 1 and moreover there exists unitary
w ∈ L(M ⋊ P), a group isomorphism δ ∶ Q → P and a multiplicative character η ∶ Q → T such that
Θ(ug) = η(g)wvδ(g)w∗ for all g ∈ Q. Since Θ(L(N)) = L(M) then the same argument as in the proof
of [CD19, Theorem 4.5] (lines 10-27 on page 25) shows that i) w∗L(M)w ⊆ L(M). However re-writing
the previous relation as vh = η(g)w∗Θ(uδ−1(h))w for all h ∈ P and applying the same argument as
above for the decomposition M = Θ(L(N)) ⋊Θ(Q) we get that ii) wΘ(L(N))w∗ ⊆ Θ(L(N)). Then
combining i) and ii) we get that w∗L(M)w = L(M). Now from the above relations it follows clearly
that the map Ψ = Ad(w∗) ○Θ ∶ L(N) → L(M) is a ∗-isomorphism, and Θ(xug) = η(g)w(Ψ(x)uδ(g))w∗
for all x ∈ L(N).

Finally, using the same arguments as in [CDK19, Theorem 5.1] we argue next that the isomorphism
Ψ arises from a tensor of ∗-isomorphisms Φi ∶ L(Ni) → L(Mσ(i)) for a permutation σ of {1, 2}.
Claim 5. For every k ∈ {1, 2} there exists i ∈ {1, 2} such that Ψ(L(Ni)) ⊆ L(Mk).
Proof of Claim 5. Since Ψ(L(N1)) and Ψ(L(N2)) are commuting property (T) II1 factors then using
Theorem 4.1 then one of the following must hold: a) there is i ∈ {1, 2} such that Ψ(L(Ni)) ≺ L(Mk), or
b) Ψ(L(N)) ≺ L(Mk ⋊ P).

Assume b) holds. As Ψ(L(N)) = L(M) we get L(M) ≺ L(Mk ⋊ P). Then using [CI17, Lemma 2.2]
one can find f ∈ M ⋊ P such that the index [M ∶ f (Mk ⋊ P) f−1 ∩M] < ∞. As M < M ⋊ P is normal this
further implies [M ∶ Mk] < ∞, a contradiction.

Assume a) holds. Since Ψ(L(Ni)) is regular in M and the latter is a factor then from [DHI16,
Lemma 2.4 3)] we actually have that Ψ(L(Ni)) ≺s L(Mk). Next we recycle an argument from [CU18]
to show that Ψ(L(Ni)) ⊆ L(Mk). Indeed, by [Va10a, Lemma 2.5], for every ϵ > 0 there is a finite set {e} ∈
F ⊂ P such that ∥a − PMF(a)∥2 ≤ ϵ for all a ∈ (Ψ(L(Ni)))1. As Ψ(L(Ni)) is invariant under the action
of ad(Ψ(ug)) = ad(vδ(g)) we also have ∥a − Pδ(g)(MF)δ(g−1)(a)∥2 ≤ ϵ for all g ∈ P and a ∈ Ψ(L(Ni))1.
Since P is icc there exists g ∈ P such that δ(g)Fδ(g)−1 ∩ F = {e} and using the prior inequalities we have
∥a − E

L(M)(a)∥2 = ∥a − Pδ(g)(MF)δ(g)−1∩(MF)(a)∥2 ≤ 2ϵ. Since ϵ > 0 was arbitrary we get Ψ(L(Ni)) ⊆
L(Mk), and the claim obtains. ∎

In the Claim 5 we denote by i ∶= τ(k) where τ ∶ {1, 2} → {1, 2}. Claim 5 also implies that τ is a
bijection and since Ψ(L(N)) = L(M) then we must have that Ψ(L(Nτ(k))) = L(Mk) for all k ∈ {1, 2}.
This shows that Ψ splits as a tensor of ∗-isomorphisms Φi ∶ L(Ni) → L(Mσ(i)) where i ∈ {1, 2} and
σ = τ−1.

Corollary 1. For any G = N ⋊Q ∈S the fundamental group of L(G) is trivial, i.e. F(L(G)) = 1.

5 Fundamental Group of Factors Arising from Class V

In this section we describe another class of examples of property (T) factors with trivial fundamen-
tal group, namely the L(G) associated with the group in class G ∈ V from subsection 3.2. Using the
properties highlighted there in combination with Popa–Vaes’s Cartan rigidity results [PV12] and Gabo-
riau’s ℓ2-Betti numbers invariants [Ga02] we show these are pairwise stably nonisomorphic property
(T) factors with trivial fundamental group.

Theorem 5.1. Let G ∈ V . The following properties hold:

(i) For every G ∈ V the fundamental group satisfies F(L(G)) = {1};
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(ii) The family {L(G) ∶ G ∈ V } consists of pairwise stably nonisomorphic II1 factors.

Proof. (i) Since G ∈ V , then G = Gn1 × ... × Gnk , with ni ≥ 2 and k ∈ N. Recall that for every n ≥ 2,
Gn = Z4(n+1) ⋊Λn ∈ V . First we show our statement for k = 1, i.e. Mn = L(Gn) has trivial fundamental
group. To this end, let Rn be the orbit equivalence relation induced by the essentially free, ergodic
probability measure preserving action Λn ↷ T4(n+1). Thus L(Rn) = Mn and [PV12, Theorem 1.4]
implies that F(Mn) = F(Rn). Using Borel’s result [Bo83], the n-th ℓ2-Betti number of Λn is nonzero
and finite. Therefore a combination of [Ga02, Corollaire 3.16] and [Ga02, Corollaire 5.7] implies that
F(Rn) = {1} and hence F(Mn) = {1}.

The case k ≥ 2 follows in a similar manner. Indeed let m = ∑k
i=1 ni. Using Kunneth formula for

ℓ2-Betti numbers, we see the m-th ℓ2-Betti number of Λn1 ×⋯×Λnk is nonzero and finite. Thus using
[PV12, Theorem 1.6] and arguing exactly as in the previous paragraph, we get F(L(G)) = {1}.
(ii) Let G, H ∈ V and t > 0 such that L(G) ≅ L(H)t. Notice that G = Gn1 × ... ×Gnk and H = Gm1 ×

...×Gml , with ni, mj ≥ 2. Denote byRΛn1×...×Λnk
andRΛm1×...×Λml

the equivalence relations arising from

the product actions ×i(Λni ↷ Z4(ni+1)) and ×i(Λmi ↷ Z4(mi+1)), respectively. Using [PV12, Theorem
1.6] we get the these equivalence relations are stably isomorphic, i.e. RΛn1×...×Λnk

≅ (RΛm1×...×Λml
)t.

Therefore using [MS02, Theorem 1.16] (see also [Dr19, Theorem A]) we have k = l and after permuting
the indices we have RΛni

≅ (RΛmi
)ti for some t1t2...tk = t. However using [Ga02, Corollaire 0.4] (see

also [CZ88]) this further implies that ni = mi and t, t1, t2, ..., tk = 1; in particular, G ≅ H.

Remark 1. We remark that we could have directly applied [Va04, Theorem 4] to the adjoint group of
Sp(n, 1) in order to obtain examples of icc groups that satisfy the conclusion of the above theorem.
Instead, we adapted the explicit and simpler construction given in [Va04, Example 1, (a)] to the case of
Sp(n, 1).
Remark 2. Note that the II1 factors arising from Class S and Class V are stably nonisomorphic.
Indeed, if G ∈ V , then L(G) admits a Cartan subalgebra by construction. On the other hand, if H ∈S ,
then L(H) does not have a Cartan subalgebra and hence L(G) ≇ L(H)t.

Our results shed new light towards constructing nonisomorphic II1 factors with property (T). While
it is well known that there exist uncountably many pairwise nonisomorphic such factors, virtually
nothing is known about producing explicit uncountable families. Indeed our Corollary 1 and Theorem
5.1 give such examples.

Corollary 2. For any G = N ⋊Q ∈S or G = Gn1 × ...×Gnk ∈ V then the set of all amplifications {L(G)t ∶ t ∈
(0,∞)} consists of pairwise nonisomorphic II1 factors with property (T).

We end this section with a unique prime factorization result of independent interest regarding
groups in class V . We notice this can also be employed to bypass the usage of [MS02, Theorem 1.16] in
Theorem 5.1. In fact the result is a particular case of the recent work of D. Drimbe [Dr19, Theorem A].
However, for reader’s convenience we decided to include a succinct proof based on the results from
this paper and the recent methods developed to classify tensor product decompositions of II1 factors,
[DHI16, KV15, Dr19]. We are grateful to the anonymous referee for suggesting to us the following
proof which shortened significantly our original arguments.

Theorem 5.2. Assume that G = Gn1 × ...×Gnk ∈ V . Assume thatM = L(G) = P1⊗̄P2 where the Pis are II1
factors. Then one can find a partition I1 ⊔ I2 = {1, ..., k}, a unitary u ∈ M and positive scalars t1, t2 with t1t2 = 1
such that L(×i∈I1 Gni) = uPt1

1 u∗ and L(×i∈I2 Gni) = uPt2
2 u∗.

Proof. Throughout this proof for every subset F ⊂ {1, ..., k} we denote by F̄ = {1, ..., n} ∖ F its comple-
ment and by GF = ×i∈FGni the sub-product group of G supported on F. Using these notations we first
prove the following
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Claim 6. For every I ⊆ {1, ..., k} and e ∈ P(L(GI)) assume that C,D ⊆ eL(GI)e are two commuting diffuse
property (T) von Neumann subalgebras. Then for every i ∈ I we have either C ≺M L(GI∖{i}), or D ≺M
L(GI∖{i}).
Proof of Claim 6. WriteM = (L(GI∖{i})⊗̄Ai) ⋊Λi. Since C,D ⊆ eL(GI)e are commuting property (T)
von Neumann subalgebras then using [KV15, Lemma 5.2] we have either a) C ≺M L(GI∖{i})⊗̄Ai or b)
D ≺M L(GI∖{i})⊗̄Ai.

Assume a) holds. Thus there exist projections p ∈ C, q ∈ L(GI∖{i})⊗̄Ai a nonzero partial isometry
w ∈ M and a ∗-isomorphism on its image ϕ ∶ pCp →Q ∶= ϕ(pCp) ⊆ q(L(GI∖{i})⊗̄Ai)q such that

ϕ(x)w = wx for all x ∈ pCp. (5.0.1)

We also have that w∗w ∈ (C′∩M)p and ww∗ ∈ Q′∩qMq and we can arrange that the support projection
satisfies sup(E

L(GI∖{i})⊗̄Ai
(ww∗)) = q. Since C has property (T) then so does pCp and also Q. Since

Q ⊆ L(GI∖{i})⊗̄Ai and Ai is amenable then we have that Q ≺
L(GI∖{i})⊗̄Ai

L(GI∖{i}). Therefore one can
find projections r ∈ Q, t ∈ L(GI∖{i}) a partial isometry v ∈ L(GI∖{i})⊗̄Ai and a ∗-isomorphism on its
image ψ ∶ rQr → tL(GI∖{i})t such that

ψ(x)v = vx for all x ∈ rQr. (5.0.2)

Letting s ∶= ϕ−1(r) ∈ C the equations (5.0.1)-(5.0.2) show that for every y ∈ sCs we have ψ(ϕ(y))vw =
vϕ(y)w = vwy. Moreover, using sup(E

L(GI∖{i})⊗̄Ai
(ww∗)) = q and v ∈ L(GI∖{i})⊗̄Ai a simple calcula-

tion shows that vw ≠ 0. Altogether, these imply that C ≺M L(GI∖{i}).
In a similar fashion, case b) implies D ≺M L(GI∖{i}), and the claim obtains. ∎
In the remaining part we derive the conclusion of the theorem. Since the subgroups Gī are normal

in G then using [DHI16, Lemma 2.6] and the Claim 6 (for C = P1 and D = P2) inductively one can find
nonempty minimal subsets I1, I2 ⊊ {1, ..., k} such that

P1 ≺s
M
L(GI1) and P2 ≺s

M
L(GI2). (5.0.3)

Next we argue that I1, I2 form a (proper) partition of {1, ..., n}, i.e. {1, ..., n} = I1 ⊔ I2. First, assume
by contradiction there exists i ∈ I1 ∩ I2. Then Claim 6 implies that either c) P1 ≺s

M
L(Gī) or d) P2 ≺s

M

L(Gī). Assume c) holds. Combining it with (5.0.3) and using [DHI16, Lemma 2.8] we get that P1 ≺s
M

L(GI1∖{i}), which contradicts minimality of I1. Similarly, case d) leads to a contradiction. Thus, we
proved that I1 ∩ I2 = ∅.

Now observe (5.0.3) imply that P1 ≺s
M
L(GI1∪I2) and P2 ≺s

M
L(GI1∪I2). Thus, using Theorem 2.3

we further have L(G) = P1 ∨P2 ≺M L(GI1∪I2). By [DHI16, Lemma 2.5] we have [G ∶ GI1∪I2] < ∞ and
since the Gni ’s are infinite we conclude that G = GI1∪I2 and thus {1, ..., n} = I1 ∪ I2. Altogether, the above
relations show that {1, ..., n} = I1 ⊔ I2.

Finally, combining (5.0.3) with [DHI16, Theorem 6.1] one can find a product decomposition G =
Γ1 × Γ2 such that Γi is commensurable with GIi for all i = 1, 2 and there exist a unitary u ∈ M and
scalars t1t2 = 1 such that L(Γ1) = u(Pt1

1 )u
∗ and L(Γ2) = u(Pt2

2 )u
∗. Since for every i = 1, 2 the group Γi

is commensurable to GIi and G is icc, torsion free one can check that in fact Γi = GIi and the desired
conclusion follows.

An alternative proof of the above theorem can be given by using the notion of spatially commensu-
rable von Neumann algebras [CdSS17, Definition 4.1] together with the results [CdSS17, Lemma 4.2,
Theorems 4.6-4.7]. This bypasses the usage of [DHI16, Theorem 6.1]. We leave the details to the reader.
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