
THE SEMICLASSICAL STRUCTURE OF THE SCATTERING MATRIX FOR

A MANIFOLD WITH INFINITE CYLINDRICAL END

T. J. CHRISTIANSEN AND A. URIBE

Abstract. We study the microlocal properties of the scattering matrix associated to the semi-

classical Schrödinger operator P = h2∆X + V on a Riemannian manifold with an infinite cylin-

drical end. The scattering matrix at E = 1 is a linear operator S = Sh defined on a Hilbert
subspace of L2(Y ) that parameterizes the continuous spectrum of P at energy 1. Here Y is the

cross section of the end of X, which is not necessarily connected. We show that, under certain
assumptions, microlocally S is a Fourier integral operator associated to the graph of the scattering

map κ : Dκ → T ∗Y , with Dκ ⊂ T ∗Y . The scattering map κ and its domain Dκ are determined

by the Hamilton flow of the principal symbol of P . As an application we prove that, under
additional hypotheses on the scattering map, the eigenvalues of the associated unitary scattering

matrix are equidistributed on the unit circle.

1. Introduction

For certain Euclidean or asymptotically conic scattering problems it is known that the scattering
matrix quantizes the scattering relation, a mapping determined by the bicharacteristic flow of the
principal symbol of the operator in question, e.g. [1, 2, 4, 29, 28]. Here we consider this problem
for a class of manifolds with infinite cylindrical ends with an application to the equidistribution of
phase shifts of the unitary scattering matrix. Our results are related to results of [41], but are quite
different in methodology and technically apply to different classes of manifolds.

Throughout this paper, (X, g) will denote a smooth connected Riemannanian manifold with
infinite cylindrical end. That is, X has a decomposition as X = XC ∪X∞, where XC is a smooth
compact manifold with boundary ∂XC = Y , and X∞ ∼= (−4,∞)× Y . More precisely, if we denote
by gY the restriction of g to TY = T∂XC (this is a metric on Y ), we assume that X∞ is isometric to
(−4,∞)×Y with the product metric (dr)2 + gY where r is the natural coordinate on (−4,∞). We
do not necessarily assume that Y is connected. For convenience, we extend r to a smooth function
on X, so that r ≤ −4 on XC . The (non-negative) Laplacians on X and Y are denoted by ∆X , ∆Y

respectively.
The purpose of this paper is to study the microlocal properties of the scattering matrix associated

to the semiclassical Schrödinger operator

P = h2∆X + V.

Here V = V (h, x) = V0(x) + h2V2(x), with V0, V2 ∈ C∞
c (XC). The scattering matrix is a linear

operator S = S(h) : 1[0,1](h
2∆Y )L

2(Y ) → 1[0,1](h
2∆Y )L

2(Y ) (where 1I denotes the characteristic
function of the interval I), whose definition we recall in Section 1.2. The space

(1) HY := 1[0,1](h
2∆Y )L

2(Y ) = {f ∈ L2(Y ) | 1[0,1](h
2∆Y )f = f}

1
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parameterizes the continuous spectrum of P at energy 1, see [12, Section 2.4]. When 1 ̸∈ spec(h2∆Y ),
the spectrum of h2∆Y , HY parameterizes the space of bounded, but not L2, elements of the null
space of P − I.

We fix once and for all a semiclassical quantization scheme denoted Oph, associating to compactly
supported smooth functions ψ on T ∗Y semiclassical pseudodifferential operators Oph(ψ) on L

2(Y ).
Our main Theorems, 1.4 and 1.5, state that, under certain assumptions on the resolvent (P − 1−
i0)−1, for suitable functions ψ ∈ C∞

c (T ∗Y ) the compositon S◦Oph(ψ) is a Fourier integral operator
associated to the graph of the scattering map κ. We define κ in Section 1.1. Under some additional
hypotheses, including that the set of fixed points of κm has measure zero for all m = 1, 2 . . ., we
use these results to prove in Theorem 8.4 that the eigenvalues of the associated unitary scattering
matrix SU (unitary on HY ), are equidistributed on S1.

The main results are precisely stated in Section 1.3.

1.1. The scattering map. The scattering map κ is defined on an open subset Dκ of the open unit
tangent ball bundle of Y ,

B := {y = (y, η) ∈ T ∗Y | |η| < 1}.
The map κ is analogous to the scattering map of [29], and related to the scattering relation of [1, 2]
and others.

The definition involves the Hamilton flow Φt of p(x, ξ) = |ξ|2+V0(x), the principal symbol of P ,
on T ∗X. Note that since p↾T∗X∞ = |ξ|2, the projections of the trajectories of Φt in T

∗X∞ ⊂ T ∗X
to X∞ are geodesics on the product manifold (−4,∞)× Y .

We will use the following notation: If y = (y, η) ∈ B, we let

(2) ν±(y) := (0, y,±
√

1− |η|2, η) ∈ T ∗
(0,y)X∞ ⊂ T ∗X.

That is, ν±(y) are unit covectors in T ∗
(0,y)X whose restrictions to {0} × TyY is η, and ν−(y) (resp.

ν+(y)) has a non-trivial ∂r component in the direction of XC (resp. away from XC).

Definition 1.1. A point y− = (y−, η−) ∈ B is in the domain Dκ of the scattering map κ if and
only if the trajectory of ν−(y) under the Hamilton flow Φt of p is not forward trapped, that is, if
and only if

∃ T > 0 such that ∀ t > T Φt(ν−(y)) ∈ X∞.

For such y−, there is a t+ = t+(y−) > 0 and a y+ ∈ B such that

Φt+(ν(y−)) = ν+(y+),

and we define

κ(y−) := y+.

Thus κ : Dκ → B ⊂ T ∗Y .

Remarks 1.2. Some remarks may be in order.

(1) Under the hypotheses of the definition, let (x(t), ξ(t)) = Φt(ν−(y−)). Since x(0) = (r(0), y(0)) =
(0, y−) ∈ X∞ and ṙ(0) < 0, x(t) ∈ XC for some t > 0. The non-trapping condition means
that at some later time the trajectory (x(t), ξ(t)) will exit T ∗XC and lie over X∞.

(2) If V ≡ 0, the map κ is the billiard map of {r ≤ 0}, a Riemannian manifold with boundary.
(3) The scattering map does depend on the choice of decomposition of X as X = XC ∪X∞,

since this choice determines the location of the set {r = 0} ⊂ X∞. We will see in Remark 6.5
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that a different choice of origin for the r coordinate results in a scattering map κ′ : Dκ′ → B
which is of the form

(3) κ′ = ϑ ◦ κ ◦ ϑ and Dκ′ = ϑ−1(Dκ),
for a certain canonical transformation ϑ : B → B. (Note that κ and κ′ are not conjugate.)

(4) For all y = (y, η) ∈ T ∗Y let y′ = (y,−η). Then, using the time-reversibility of the flow Φt,
it is not hard to see that κ(κ(y)′) = y′. Therefore κ is one-to-one.

(5) Examples show that Dκ can be a proper subset of B.

1.2. The scattering matrix. For a manifold with an infinite cylindrical end, the scattering matrix
for the operator P = h2∆X + V is a linear operator from HY to itself, where HY is defined in (1).
Thus the scattering matrix acts on a finite-dimensional space whose dimension increases as h > 0
decreases, and thus can in fact be identified with a matrix, albeit one whose dimension changes
with h. In [31, 8, 34] the scattering matrix is defined via its entries in a particular basis. It is more
convenient here to take an approach like that is used in the Euclidean or cylindrical end case in
[32, Sections 2.7, 7.3], defining the scattering matrix by its action on any element of HY . That the
two approaches yield the same operator is well-known, easy to check, and is a consequence of our
proof of Lemma 1.3.

We also note that there are several conventions in the literature as to exactly which operator is
referred to as the scattering matrix. One, which we shall denote SU , is normalized to be unitary on
HY ; this is found in [8, 34], for example. We shall work primarily with the unnormalized scattering

matrix that we denote S, found in [31]. The two are related by SU = (I−h2∆Y )
1/4
+ S(I−h2∆Y )

−1/4
+ ,

where (•)+ is the Heaviside function. We shall refer to SU as the unitary scattering matrix.
The (unitary) scattering matrix can also be defined in a time-dependent way, via the scattering

operator. This is done in [35, Section 5]; see also [8, Section 2].
Let (I −h2∆Y )

1/2 be the operator on L2(Y ) defined by the spectral theorem, with non-negative
real and imaginary parts. Suppose F ∈ ⟨r⟩1/2+ϵH2(X) for all ϵ > 0 and F is in the null space of
P − 1. Suppose in addition that h2 is not the reciprocal of an eigenvalue of ∆Y . Then on X∞ a
separation of variables argument shows that we can write

(4) F ↿X∞ (r, y) = e−ir(I−h
2∆Y )1/2/h1[0,1](h

2∆Y )f− + eir(I−h
2∆Y )1/2/hf+

for some functions f∓ ∈ L2(Y ). We shall refer to f− as the incoming data, and f+ as the outgoing
data. If 1 ̸∈ spec(h2∆Y ), then the (unnormalized) scattering matrix S = S(h) is such that:

(5) S
(
1[0,1](h

2∆Y )f−
)
:= 1[0,1](h

2∆Y )f+.

More precisely:

Lemma 1.3. If 1 ̸∈ spec(h2∆Y ), for every f ∈ HY there exists F ∈ ⟨r⟩1/2+ϵH2(X) in the null
space of P −1 such that (4) holds with 1[0,1](h

2∆Y )f− = f , and the relation S(f) = 1[0,1](h
2∆Y )f+

defines an operator S : HY → HY . Moreover, if 1 ∈ spec(h20∆Y ), then limh′↑h0
S(h′) exists as a

bounded operator.

If 1 ∈ spec(h20∆Y ), then we define S(h0) = limh′↑h0
S(h′).

Although the results of Lemma 1.3 are known (e.g. [31, 8, 34, 32]), for the convenience of the
reader we give a proof in Section 3. Additionally, the proof shows the operator S is (up to sign
conventions) consistent with the non-unitary scattering matrices of [31, 8, 34].

Like the scattering map, the scattering matrix depends on the choice of coordinate r on the
end, which corresponds to fixing the decomposition X = XC ∪ X∞. For example, if for c0 > −4
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we instead write X = X ′
C ∪ X ′

∞, with X ′
C = XC ∪ {x = (r, y) ∈ X∞ | −4 < r ≤ c0} and

X ′
∞ = X∞ \ {x = (r, y) ∈ X∞ | −4 < r ≤ c0}, then the coordinate in the new decomposition

is r′ = r − c0 − 4. With S′ denoting the scattering matrix for the decomposition X ′
C ∪ X ′

∞,

S′ = ei(c0+4)(I−h2∆Y )
1/2
+ /hSei(c0+4)(I−h2∆Y )

1/2
+ /h. Compare this with the corresponding change in

the scattering map, (3).

1.3. Main results. In our main theorem we assume that an appropriate cut-off resolvent is
bounded at high energy–this is hypothesis (6) of Theorem 1.4. Section 2 contains examples of
manifolds and potentials for which this hypothesis holds, and [11, Theorem 3.1] gives a technique
for constructing such manifolds. Section 2 also contains examples for which the weaker resolvent
bound (7) and the other hypotheses of Theorem 1.5 hold.

Throughout the paper, we use the notation (P − 1± i0)−1 = limδ↓0(P − 1± iδ)−1.

Theorem 1.4. Suppose there are constants C0, N0, h0 > 0 so that

(6) ∥1[0,1](h
2∆Y )1[0,1](r)(P − 1− i0)−11(−∞,0](r)∥ ≤ C0h

−N0 for 0 < h ≤ h0.

Let ψ ∈ C∞
c (T ∗Y ) have its support in the domain of the scattering map. Then for 0 < h < h0

SOph(ψ) and SU Oph(ψ) are semi-classical Fourier integral operators associated with the graph of
the scattering map κ.

Proposition 7.4 gives a more explicit expression for the scattering matrix using the Schrödinger
propagator and some operators which map between L2(Y ) and L2(X∞). This explicit expression
shows how the scattering matrix is a quantum analog of the scattering map defined in Section 1.1;
see also Section 1.4.

We remark here that there is some flexibility in choosing the exact cut-offs in (6): we could
replace 1[0,1](r) by 1[b,c](r) and 1(−∞,0](r) by 1(−∞,a](r) if −4 < a < b < c < ∞. Although we do
not prove this, Section 5 proves some results in this direction.

A more restrictive assumption on the manifold and operator than in Theorem 1.4 allows us to
make a weaker assumption on the resolvent bound. In this next theorem we assume that X is
diffeomorphic to R × Y0, but we do not assume that the metric is globally a product metric. In
Section 2 we give two families of examples for which the metrics on X have a warped product
structure and the resolvent for P = h2∆X satisfies the estimate (7), but which have quite different
trapping properties and quite different quantitative behavior of the eigenvalues of ∆X .

Theorem 1.5. Let (Y0, gY0) be a smooth compact Riemannian manifold, and let g be a metric on
X = R× Y0 which is the product metric (dr)2 + gY0 outside of a compact set. Let P = h2∆X + V
satisfy [P,∆Y0

] = 0. Suppose for any ϵ > 0 there are constants C0 = C0(ϵ), N0 = N0(ϵ), h0 =
h0(ϵ) > 0 so that

(7) ∥1[0,1−ϵ](h
2∆Y )1[0,1](r)(P − 1− i0)−11(−∞,0](r)∥ ≤ C0h

−N0 for 0 < h ≤ h0.

Let ψ ∈ C∞
c (T ∗Y ) have its support in the domain of the scattering map. Then for 0 < h < h0

SOph(ψ) and SU Oph(ψ) are semi-classical Fourier integral operators associated with the graph of
the scattering map κ.

These two theorems are proved by combining the results of Propositions 6.9 and 7.4.
In Section 8 we use these theorems to prove Theorem 8.4. This shows that under some addi-

tional hypotheses in the semiclassical limit the eigenvalues of the unitary scattering matrix SU are
equidistributed.
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We now comment on the resolvent estimates, (6) and (7). In Euclidean or hyperbolic scattering
settings bounds on a cut-off resolvent of a semiclassical operator are well known under non-trapping
assumptions on the bicharacteristic flow of the associated Hamiltonian. Moreover, some estimates
are known under assumptions that the trapping is relatively mild; see, for example, [42, Section 3]
for a recent survey. All of the operators we consider here have nontrivial trapping, as each geodesic
in Y corresponds to a trapped bicharacteristic of P in {p = 1} ∩ {r = c} ⊂ T ∗X∞ for any c > −4.

For manifolds with infinite cylindrical ends, (P − 1− i0)−1 = (h2∆X + V − 1− i0)−1 can have
poles for a sequence of hj ↓ 0. For example, let (Y0, g0) be a compact Riemannian manifold,
and consider the simplest case X = R × Y0 with the product metric. Then for any nontrivial
χ ∈ C∞

c (X), χ(h2∆X−1− i0)−1χ has a pole whenever 1/h2 is an eigenvalue of ∆Y0
– though in this

case including a spectral projection in ∆Y as is done in (6), as well as a spatial cut-off, is enough
to ensure a bound which is polynomial in h. Theorem 3.1 of [11] gives a technique of constructing
manifolds (X, g) and operators P = h2∆X + V so that for any χ ∈ C∞

c (X), ∥χ(P − 1 − i0)−1χ∥
is polynomially bounded in h. In Section 2 below we give some examples, most using results from
[11], for which (6) or (7) holds.

In an effort to simplify the exposition, our results are for the scattering matrix at fixed energy
1, with corresponding hypotheses (6) and (7) on the resolvent at energy 1. However, as is well
known a rescaling can be used to prove corresponding results at other positive energies. Let E > 0,
and write P − E = E( 1

EP − 1) = E( 1
E (∆X + V ) − 1). Setting (X ′, g′) = (X,Eg), we have

∆X′ = 1
E∆X . By defining r′ = E−1/2(r + 4) − 4, we see that we can decompose X ′ = X ′

C ∪X ′
∞

so that g′ ↿X′
∞
= (dr′)2 + EgY , as required in our definition of a manifold with infinite cylindrical

end. Then results for the scattering matrix of P ′ = ∆X′ + 1
EV at energy 1 then imply results for

the scattering matrix of P at energy E.

1.4. Idea of the proof. In order to prove the theorem, we construct the Poisson operator P, or,
more precisely, the Poisson operator multiplied on the right by Oph(ψ), POph(ψ). We define the
Poisson operator below, and show in Section 3 that it is in fact well-defined.

Definition 1.6. Suppose 1 ̸∈ spec(h2∆Y ). The Poisson operator is a linear operator P : L2(Y ) →
⟨r⟩1/2+δH2(X) for any δ > 0 so that for all f ∈ L2(Y ), (P−1)Pf = 0 and Pf has specified incoming
data, namely

(8) (Pf) ↿X∞= e−ir(I−h
2∆Y )1/2/h1[0,1](h

2∆Y )f + eir(I−h
2∆Y )1/2/hf+

for some f+ ∈ L2(Y ). Moreover, we require that ⟨Pf, g⟩ = ⟨⟨r⟩−1/2−δPf, ⟨r⟩1/2+δg⟩ = 0 for any L2

eigenfunction g of P with eigenvalue 1.

By the definition of the scattering matrix,

S1[0,1](h
2∆Y )f = 1[0,1](h

2∆Y )f+,

where f+ is as in (8).
We note that a separation of variables on the end X∞ shows that any L2 eigenfunction of P

must be exponentially decreasing on X∞, so that its product with an element of ⟨r⟩1/2+δL2(X)
is integrable. Thus the pairing ⟨Pf, g⟩ := ⟨⟨r⟩−1/2−δPf, ⟨r⟩1/2+δg⟩ makes sense. Without the
restriction involving the eigenfunctions with eigenvalue 1, P is not uniquely determined at values
of h for which 1 is an eigenvalue of P = P (h).

We now outline the ideas behind the microlocal construction of POph(ψ), omitting details here
for clarity. Let ψ ∈ C∞

c (B) and choose ψsp ∈ C∞
c ([0, 1)) so that ∥ψsp(h2∆Y )Oph(ψ)∥ = O(h∞).
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First, we construct Pappr, an approximation of Pψsp(h2∆Y )Oph(ψ), satisfying the following prop-
erties:

• If f− = {f−(h)}0<h<h0 ⊂ L2(Y ) is a tempered family, then Papprf− has an expansion of
the form (8), with f replaced by ψsp(h

2∆Y )Oph(ψ)f−.
• ∥(P − 1)Pappr∥ = O(h∞), and (P − 1)Papprf− is compactly supported.

If we can construct such an approximation Pappr, then we can find Pψsp(h2∆Y )Oph(ψ) by using
the outgoing resolvent on X to solve away the error, giving

Pψsp(h2∆Y )Oph(ψ) = Pappr − (P − 1− i0)−1(P − 1)Pappr.

This is the point at which the hypothesis (6) or (7) is used. We note that P does depend on ψ, but
we omit this in our notation.

We construct Pappr using cut-off functions to piece together three terms: on the end X∞ we use
both the incoming and the outgoing resolvents on the product

X̃ = Rs × Y, metric (ds)2 + g ↿Y ,

and on a compact subset of X we use (roughly)
∫ tψ
0
eit/he−itP/hdt, where tψ > 0 is appropriately

chosen. In studying the outgoing and incoming resolvents on the product manifold X̃ = R × Y ,
the operators

(9) T±f =

∫
R

e∓ir
′((I−h2∆Y )1/2)/hf(r′, •)dr′, T± : L2

c(R× Y ) → L2(Y )

arise naturally, see Lemma 4.2. In order to ensure Pappr has the desired incoming data, we shall need
a right inverse of T−. Let χ ∈ C∞

c ((−1/4, 0);R+) satisfy
∫
χ(r)dr = 1, and set, for g ∈ C∞(Y ),

(10) R±g = χ(r)e±ir(I−h
2∆Y )

1/2
+ /hg,

so that T±R± = I.
Thus we find Pappr as a sum Pappr = A1 + A2 + A3 (see (45) for details). The operator A1 is

determined by (h2∆X̃ − 1 + i0)−1R− and is chosen so that

A1 Oph(ψ)f− ↿X∞= e−ir(I−h
2∆Y )1/2/hψsp(h

2∆Y )Oph(ψ)f−

–that is, A1 gives the desired incoming data; compare (8) and Lemma 18. Moreover, the way in
which A1 is chosen ensures the error (P − 1)A1f− is incoming in the sense that

WFh((P − 1)A1f−) ⊂ {(r, y,−
√

1− |η|2, η) ∈ T ∗X∞ : (y, η) ∈ T ∗Y : |η| < 1},
that is, the wavefront set is contained in bicharacteristics pointing towards XC . The operator A2

is supported on a compact subset of the manifold X, and it is built using
∫ tψ
0
eit/he−itP/hdt for

suitably chosen tψ ∈ (0,∞). Using the identity (P − 1)
∫ T
0
eit/he−itP/hdt = ih(eiT/he−itP/h − I),

the operator A2 is chosen to solve away the incoming error (P − 1)A1, but at the cost of a new
error. The new error, (P − 1)(A1 + A2), is O(h∞) away from the end X∞, and on the end X∞ is
outgoing in the sense that

WFh((P − 1)(A1 +A2)f−) ⊂ {(r, y,
√

1− |η|2, η) ∈ T ∗X∞ : (y, η) ∈ T ∗Y, |η| < 1}.
The operator A3 solves away this new error, by using the outgoing resolvent on X̃. This third
operator, A3, contributes an outgoing term to the expansion of Pappr on the end X∞.

Proposition 7.4 gives, up to small error, an explicit expression for the (cut-off) scattering matrix
involving R−, e

−itψP/h, and T+. We can read off an approximation of SOph(ψ)f− from the
outgoing term in Papprf−, and this comes from the term A3 described above. Since A3 solves away



SEMICLASSICAL STRUCTURE OF THE SCATTERING MATRIX 7

the error (P − 1)(A1 +A2), we can see the operator R− in the expression for the scattering matrix
as originating from A1, e

−itψP/h as originating from the use of the propagator in the construction
of A2, and T+ as coming from the use of the outgoing resolvent on X̃ in A3, see Lemma 4.2. In
conclusion, if 1 ̸∈ spec(h2∆Y ) and (6) holds, then we have that

SOph(ψ) = B1T+B2e
−itψP/hB3R−B4 Oph(ψ) +O(h∞),

where Bj , j = 1, ..., 4 are semiclassical pseudodifferential operators needed to make the equality
hold. (They are explicitly given in the statement of Proposition 7.4, but we omit their definitions
here to focus on the bigger picture.)

The operators e−itψP/h, T+, and R− (the latter two pre-composed with suitable cutoffs that
appear in the expression above) are semi-classical Fourier integral operators whose canonical rela-
tions roughly parallel the construction of the scattering map κ, as we now explain. (For the precise
descriptions of these relations see Section 6.) Recall that for every y ∈ B there is a corresponding
incoming bicharacteristic, namely

γyt := Φt(ν−(y)).

The relation ΘT− of R− relates points y in the unit cotangent bundle of Y with the points of a

certain segment γ̃y of γy,

γ̃y =
{
γyt | t ∈ (0, t(y))

}
.

The pseudodifferential factors to the right of R− restrict the domain of this relation to a subset of B
such that, for a certain time tψ, the image under Φtψ of γ̃y is over (0,∞)×Y ⊂ X∞ for y ∈ suppψ.

Then Φtψ (γ̃
y) is the image of γ̃y under the canonical relation of e−itψP/h. Finally, the relation Θ+

of T+ relates points in Φtψ (γ
y) with the image κ(y) of y under the scattering map. See Figure 1.

Comparing with the steps in the construction of κ, the canonical relation of R− is analogous
to the map B ∋ y 7→ ν−(y), the relation of e−itψP/h is analogous to flowing Φt(y)(ν−(y)), and the
relation of T+ is analogous to projecting Φt(y)(ν−(y)) → κ(y).

←−
to XC

ȳ

v̄

κ(ȳ)
w̄

{0} × Y

Figure 1. y ∈ Dκ and two segments of the corresponding bicharacteristic γy. The
pair (v, y) is in the canonical relation of R−, w = Φtψ (v), and (κ(y), w) is in the
canonical relation of T+.
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Part of the proof of the theorems is to carefully check the various compositions of FIOs which
occur, not only in the expression for the scattering matrix, but also in the construction of Pappr.
This is done in Section 6. The constructions of POph(ψ) and SOph(ψ) are carried out rigorously
in Section 7.

1.5. Background and related work. An introduction to the spectral and scattering theory of
manifolds with infinite cylindrical ends can be found in [24, 27, 31], with further results for the
scattering matrix in [8, 34]. A relatively short self-contained introduction may also be found in [12,
Section 2]. The papers [9, 13] use a detailed microlocal analysis of the scattering matrix applied to
a specific function in an inverse problem.

In [41] Zelditch and Zworski consider a family of surfaces of revolution having a single connected
asymptotically cylindrical end, proving a result for the pair correlation measure of the phase shifts of
the (unitary) scattering matrix. This is stronger than our equidistribution result, Theorem 8.4, but
is for a particular class of surfaces of revolution. Additionally, Proposition 3 of [41] shows that for
the surfaces under consideration the truncated scattering matrix (in their setting, S1[ϵ,1−ϵ](h

2∆Y ))
is a semiclassical quantum map associated to the scattering map κ. The paper [41] uses the warped
product structure of the surface and a separation of variables argument to reduce the problem to a
study of a family of one-dimensional problems.

There are many papers which use microlocal analysis to study the properties of the scattering
matrix in Euclidean scattering. Alexandrova [1, 2] shows that under suitable assumptions the scat-
tering amplitude for a compactly supported perturbation of the semiclassical Euclidean Laplacian
quantizes the scattering relation (see also [3, 4]). A related result for the asymptotically conic
setting is [28]. Ingremeau [29] studies mapping properties of the scattering matrix on Gaussian
coherent states for (non-trapping) semiclassical Schrödinger operators on Rn. Our proofs of Theo-
rems 1.4 and 1.5 have been influenced by both [1] and [29], as well as by [18, Section 3.11]. There
are many other results which use microlocal techniques to find asymptotics of the scattering matrix
in Euclidean settings. We mention just a few, [39, 25, 37, 38, 23, 33] and refer the reader to the
cited papers for further references.

The distribution of phase shifts has been studied in a number of Euclidean settings, e.g. [6, 16,
20, 30, 21, 19]. Some of these papers use the results of Alexandrova or Ingremeau on the microlocal
structure of the scattering matrix. Our Theorem 8.4 is an application of Theorem 1.4 or 1.5 to
prove an equidistribution result in the cylindrical end setting.
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the Mathematical Sciences Research Institute in Berkeley, California, during the fall 2019 semester.

2. Examples for which one of the resolvent estimates holds

In this section we give some examples of manifolds for which the estimates (6) or (7) on the
cut-off resolvent for P = h2∆X or P = h2∆X + V for certain potentials V = V0 + h2V2 holds.

2.1. An example with a single connected end. For n ≥ 2 we can give X = Rn a warped
product structure that makes it a manifold with an infinite cylindrical end. Let ρ be the radial
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coordinate on Rn, and let g0 = dρ2 + f(ρ)gSn−1 , where gSn−1 is the usual metric on the unit sphere
Sn−1. We assume f ∈ C∞([0,∞)), f(ρ) = ρ2 in a neighborhood of ρ = 0, the support of f ′ is
[0, ρ0], with f ′(ρ) > 0 for ρ ∈ (0, ρ0). The d = 2 case is illustrated by Figure 2. Then the only
trapped geodesics are those which lie in a hypersurface {ρ = c} for any c ≥ ρ0.

Figure 2. A cigar-shaped, two-dimensional warped product.

Let g be any metric on X so that g − g0 is supported in {(ρ, y) | ρ < ρ0}, and so that g has the
same trapped geodesics as g0 does. A discussion of constructing such metrics can be found in [11,
Example 1]. We remark that there are metrics satisfying these conditions which are not rotationally
symmetric.

For such manifolds (X, g), Y = Sn−1 and all of B is in the domain of the scattering map.
By [11, Theorem 1.1], for any χ ∈ C∞

c (X), ∥(χh2∆X − 1 − i0)−1χ∥ = O(h−2) when h > 0 is
sufficiently small. Hence the estimate (6) holds for P = h2∆X on (X, g), with N0 = 2. Moreover,
by [11, Theorem 3.1], (6) holds for P = h2∆X + V for a class of potentials V ∈ C∞

c (X;R).
We remark that in the case of a rotationally symmetric surface these manifolds are very similar

to, but not the same as, the surfaces considered in [41].

2.2. Examples modifying hyperbolic surfaces. Starting with a convex cocompact hyperbolic
surface (X, gH), one can modify the metric on the ends of the manifold X in such a way as to
obtain a manifold with cylindrical ends so that the cut-off resolvent is polynomially bounded.

r

cosh2r

f(r)

Figure 3. A hyperbolic surface (X, gH) with three funnels, and an example of a
function f satisfying the conditions on the warping function in Section 2.2.
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There is a compact setN ⊂ X so thatX\N = (−4,∞)r×Yy, and gH ↿X\N= dr2+cosh2(r+4)gY .
Here we have modified slightly the usual convention to fit with our convention of using the coordinate
r ∈ (−4,∞) on the ends of our manifold X. The set N is called the convex core of X, and
the manifold Y is the disjoint union of k circles that might not have the same length. Let f ∈
C∞(R; (0,∞)) be equal to cosh2 r near r = 0, with f ′ compactly supported and f ′ > 0 on the
interior of the convex hull of its support. Let g be the smooth metric on X defined by g ↿N= gH ↿N ,
and g ↿X\N= dr2 + f(r + 4)gY .

Under these hypotheses, by [11, Theorem 1.1] using results of [5, 17] the Laplacian ∆X on (X, g)
satisfies ∥χ(h2∆X − 1− i0)−1χ∥ = O(h−2) for any χ ∈ C∞

c (X), implying (6) with N0 = 2. In fact
the result is a bit stronger; see [11, Section 3.3] for further discussion and references.

In higher dimensions it is possible, but more complicated, to do a similar construction to modify
the metrics on (certain) hyperbolic manifolds to give manifolds with infinite cylindrical ends so that
the resolvent of the semiclassical Laplacian satisfies (6); see [11, Section 3.3].

2.3. Right circular cylinder. Set X = Rs × S1y, where S1 is the unit circle, and consider the

product metric on X. Let W ∈ C∞
c (X;R) satisfy W0(s) :=

∫ 2π

0
W (s, y)dy ≥ 0, with W0 ̸≡ 0. Then

by [10, Proposition 4.4 and Lemma 4.5] the operator P = h2∆X + h2W satisfies (6) with N0 = 2.
Thus our results can be interpreted to give results for the nonsemiclassical Schrödinger operator at
high energy.

In this case, the scattering map has as its domain all of B and we can find the scattering map
explicitly. Here Y is the disjoint union of two circles, which we write Y = S1L ⊔ S1R for the cross
sections of the connected ends of X on which s is bounded above (for S1L; the “left” end) or s
is bounded below (for S1R; the “right” end). We use global coordinates (s, y) ∈ R × [0, 2π) on
R× S1, and use these same coordinates y on S1L and S1R. Thus we can see in a particularly simple
example how our choice of function r giving a coordinate on X∞ (or equivalently the decomposition
X = XC ∪X∞) affects the scattering map.

Suppose supp(W ) ⊂ [−a, a] × S1, and set XC = [−a, a] × S1. Then the sets {±s = a + 4}
correspond to the set {r = 0} ⊂ X. Recalling that P = h2∆X + h2W here, a simple computation
finds that if (y−, η−) ∈ T ∗S1R ⊂ T ∗Y with |η−| < 1 then κ(y−, η−) = (y+, η−), where y+ ∈ S1L and,

modulo 2π, y+ = y− + 2(a+ 4)η−/
√
1− η2−. A similar computation works for points in T ∗S1L.

2.4. Warped products. Set X = Rs× (Y0)y and g = ds2+(f(s))4/(n−1)dgY0 , where (Y0, gY0) is a
smooth compact Riemannian manifold and f ∈ C∞(R;R+), with f(s) = 1 if |s| > a. We consider
two special classes of functions f , which give rise to manifolds with qualitatively different behavior
both in terms of the trapped geodesics and in terms of the number of embedded eigenvalues of
h2∆X . For the first one (6) (and hence also (7)) holds for P = h2∆X (and P = h2∆X +V for some
V ), and for the second we show that (7) holds for P = h2∆X .

Here Y is the disjoint union of two copies of Y0. We write Y = Y0L ⊔ Y0R, where Y0L and Y0R
are copies of Y0 identified with the cross section of the “left” and “right” ends of X, respectively.

2.4.1. Hourglass-type warped products. In addition to the assumptions made on f above, assume
that f has a single critical point in (−a, a), and it is a nondegenerate minimum. The surface on
the left in Figure 4 provides an example. Then by [11, Theorem 3.1], see [11, Section 3.4], for any
χ ∈ C∞

c (X),

(11) ∥χ(h2∆X − 1− i0)−1χ∥ = O(h−2) for h > 0 sufficiently small.
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Thus the estimate (6) holds with N0 = 2 for P = h2∆X . We note that the estimate (11) implies
that ∆X has only finitely many eigenvalues. For this manifold, each geodesic which is both forward
and backward trapped lies in a set {s = c} for some c ∈ R with f ′(c) = 0.

For Schrödinger operators P = h2∆X +V , where V ∈ C∞
c (X;R) satisfies certain conditions the

estimate (11) holds, see [11, Theorem 3.1]. For example, if V2 ∈ C∞
c (X;R), and V (x) = V (x, h) =

h2V2(X), then (11) holds. For this example, because we use the results of [11] to prove the estimate
(6), the potentials V need not be functions of s alone.

We now return to the case P = h2∆X . Let fm be the minimum value of f , and set |η|c =

f
2/(n−1)
m . Then using properties of geodesics on warped products, the domain of the scattering
map is {(y, η) ∈ T ∗Y | |η| < 1 and |η| ≠ |η|c}. Suppose (y−, η−) ∈ T ∗Y0L. If |η−| < |η|c, then
κ(y−, η−) ∈ T ∗Y0R, while if |η|c < |η−| < 1, κ(y−, η−) ∈ T ∗Y0L.

We introduce some notation to describe one consequence of this for the scattering matrix. Let
πL : L2(Y0L ⊔ Y0R) → L2(Y0L) and πR : L2(Y0L ⊔ Y0R) → L2(Y0R) be the natural orthogonal
projections. Then if ψs ∈ C∞

c (R) is supported in (−∞, |η|2c), it follows from the mapping properties
of κ and Theorem 1.4 that ∥πLSψs(h2∆Y )πL∥ = O(h∞). Likewise, if ψl ∈ C∞

c (R) is supported in
(|η|2c , 1), then ∥πRSψl(h2∆Y )πL∥ = O(h∞).

Of course, there are similar results focusing on right multiplication by πR rather than πL.

2.4.2. Warped products with bulges. Now consider what is in some sense the opposite situation to
that of Section 2.4.1: in addition to the general assumptions on f in Section 2.4, assume that f has
a single critical point in (−a, a), and it is a maximum. In Figure 4, the figure on the left illustrates
the hourglass-type warped products of Section 2.4.1, while that on the right illustrates the warped
products with bulges discussed in this section.

Figure 4. An hourglass-shaped warped product (left), and a warped product with
a bulge (right).

With these assumptions on f , X has infinitely many trapped geodesics that lie entirely in the
region with s ∈ (−a, a), and it is straightforward to show via a separation of variables and re-
sults from semiclassical analysis that ∆X has infinitely many eigenvalues accumulating at infinity,
[14, 34]. Hence if χ ∈ C∞

c (X) is nontrivial, then there is a sequence {hj} tending to 0 so that
limϵ↓0 ∥χ(h2j∆X − 1 − iϵ)−1χ∥ = ∞. Nonetheless, we show in Lemma A.1 that (7) holds with
N0 = 1. In comparison with the example of Section 2.4.1, the estimate is improved: N0 = 1 here,
compared to N0 = 2 in the hourglass-type example. This may be surprising, since the trapping
in the warped products with bulges is stronger than that in the hourglass-type warped products.
This difference might be attributed to the fact that our microlocal cutoff in the cross-section,
1[0,1−ϵ](h

2∆Y ) has the effect of cutting off away from trapped bicharacteristics in {p = 1} in the
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examples of this section, but not the examples of Section 2.4.1. Alternatively, the difference may
be an artifact of the proof.

In this setting, the domain of the scattering map κ is all of B. Using the notation of Section 2.4.1,
if (y−, η−) ∈ B ∩ T ∗Y0L, then κ(y−, η−) ∈ T ∗Y0R. Then by Theorem 1.5 for any ψ ∈ C∞

c ([−1, 1)),
∥π0LSψ(h2∆Y )π0L∥ = O(h∞).

For the special case of a surface of revolution with a bulge we compute the scattering map in
Section A.2.

3. Existence of the Poisson operator and the scattering matrix

In this section we discuss the Poisson operator, introduced in Section 1.4, and prove some con-
sequences for the scattering matrix, Lemmas 1.3 and 3.1. The construction we give of the Poisson
operator in this section is different from the more microlocal construction that we will give in Sec-
tion 7. Much of the content of this section is known, see e.g. [31, 8, 34, 32, 12], but we include it
for the reader’s convenience.

We begin by checking that there is an operator satisfying the conditions given in Definition 1.6
to define the Poisson operator, and that this uniquely determines the operator. Recall that we
assume 1 ̸∈ spec(h2∆Y ). Let PR1 denote orthogonal projection onto the eigenfunctions of P with
eigenvalue 1, with PR1 = 0 if 1 is not an eigenvalue of P . Then it follows from [31, Section 6.8] or
[12, Lemmas 2.2 and 2.3] that limϵ↓0⟨r⟩−(1/2+δ)(P − 1 ± iϵ)−1 (I − PR1) χ̃ is a bounded operator
on L2(X) for any χ̃ ∈ L∞

c (X) and δ > 0.
Let φ ∈ C∞(R; [0, 1]) satisfy φ(r) = 1 for r ≥ 0, and φ(r) = 0 for r ≤ −1/2. Given f ∈ L2(Y ),

set

(12) FX̃(r, y) = e−ir(I−h
2∆Y )

1/2
+ /h1[0,1](h

2∆Y )f ∈ ⟨r⟩1/2+δH2(R× Y )

and

(13) FX∞(r, y) = φ(r)FX̃ ∈ ⟨r⟩1/2+δH2(X).

Then

(P − 1)FX∞ = (h2∆X − 1)FX∞ =
(
−h2φ′′(r)− 2h2φ′(r)∂r

)
FX̃

has compact support on X∞ ⊂ X. Moreover, this function is orthogonal to any eigenfunction of
P with eigenvalue 1. This is because a separation of variables argument shows that if g ∈ L2(X)
satisfies (P − 1)g = 0, then 1[0,1](h

2∆Y )(g ↿X∞) = 0.
We now set

(14) Pf = FX∞ − (P − 1− i0)−1(h2∆X − 1)FX∞ = FX∞ − lim
ϵ↓0

(P − 1− iϵ)−1(h2∆X − 1)FX∞

and check that it satisfies the requirements on Pf made in the definition of the Poisson operator.
Note that by construction, (P − 1)Pf = 0 and if g ∈ L2(X) satisfies (P − 1)g = 0, then ⟨Pf, g⟩ = 0.
Since (

(P − 1− i0)−1(h2∆X − 1)FX∞

)
↿r>0 = eir(I−h

2∆Y )1/2/hf+

for some function f+ ∈ L2(X), we have shown that Pf ∈ ⟨r⟩1/2+δH2(X), and thus have shown that
there is an operator satisfying the conditions of Definition 1.6.

Next we consider uniqueness. Suppose there are two such Poisson operators, P and P̃. For
incoming data f ∈ L2(Y ), denote the corresponding outgoing data by f+ and f̃+, respectively. Let
{ϕj} be a complete set of orthonormal eigenfunctions of ∆Y , with

(15) ∆Y ϕj = σ2
jϕj , and 0 = σ2

1 ≤ σ2
2 ≤ · · · .
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We have (P − 1)(P− P̃)f = 0 and

(16)
(
(P− P̃)f

)
↿X∞= eir(I−h

2∆Y )1/2/h(f+ − f̃+) =
∑
j

cje
ir(1−h2σ2

j )
1/2/hϕj

for some {cj}, cj ∈ C. Here we use the convention that (1 − h2σ2
j )

1/2 has nonnegative real and

imaginary parts, as in the definition of (I − h2∆Y )
1/2. Applying a Stokes’ identity gives

0 = lim
R→∞

∫
X:r<R

(
(P − 1)(P− P̃)f

)
(P− P̃)f dx = −2i

h

∑
h2σ2

j<1

√
1− h2σ2

j |cj |
2

implying that cj = 0 if h2σ2
j < 1, so that (P − P̃)f ∈ L2(X). Thus (P − P̃)f is an L2 element

of the null space of P − 1, and hence is either 0 or an eigenfunction. But ⟨(P − P̃)f, g⟩ = 0 for

any eigenfunction g of P with eigenvalue 1, so (P − P̃)f ≡ 0 and the Poisson operator is uniquely
defined.

We remark that our argument above shows that if we omit the requirement ⟨Pf, g⟩ = 0 for every
g ∈ L2(X) in the null space of P − 1, then Pf is determined up to addition of an eigenfunction of
P with eigenvalue 1. We shall use this below.

Proof of Lemma 1.3. For f ∈ HY , the function F = Pf satisfies the conditions of the first part of the
Lemma. Our argument above shows that if F, F̃ ∈ ⟨r⟩1/2+δH2(X) with (P − 1)F = 0 = (P − 1)F̃ ,

and both F and F̃ have an expansion as in (4) with the same incoming data f = f− = f̃−, then

F−F̃ is in the L2 null space of P−1. Hence F−F̃ is either 0 or an L2 eigenfunction. Since for any L2

eigenfunction g with eigenvalue 1, 1[0,1](h
2∆Y )(g ↿X∞) = 0, this ensures 1[0,1](h

2∆Y )(f+− f̃+) = 0,

where f+, f̃+ are the outgoing data as in (4) for F and F̃ , respectively. Thus the scattering matrix
is well-defined when 1 ̸∈ spec(h2∆Y ).

We next relate the scattering matrix S defined above to those of [8, Section 1.3] and [34]; see
also [31, Section 6.10], again under the assumption that 1 ̸∈ spec(h2∆Y ). Suppose h

2σ2
k < 1. Then

we can write the expansion as in (8) for Pϕk as

(Pϕk) ↿X∞ (r, y) = e−ir(1−h
2σ2
k)

1/2/hϕk +
∑
j

eir(1−h
2σ2
j )

1/2/hS#
jkϕj

where S#
jk = S#

jk(h) are some scalars. This uniquely determines the S#
jk if h2σ2

j < 1. Comparing

our definition of S, we find Sϕk =
∑
h2σ2

j≤1 S
#
jkϕj . Moreover, this shows that the scattering matrix

of [8, Definition 1.3] is SU = (I − h2∆Y )
1/4
+ S(I − h2∆Y )

−1/4
+ ; this operator is unitary on HY .

Combining this with results of [8, Section 1.3] shows that if h2σ2
j = 1 for some j, then limh′↑h S(h

′)
exists as a bounded operator. □

We shall later need a bound on ∥S∥. We recall that the operator (1−h2∆Y )
1/4
+ S(1−h2∆Y )

−1/4
+

is unitary on HY = 1[0,1](h
2∆Y )L

2(Y ). This does not immediately give a good bound on ∥S∥
itself, since ∥(I − h2∆Y )

−1/2
+ ∥ is large when 1/h2 is near an eigenvalue of ∆Y . However, under the

assumptions of Theorem 1.5, h2∆Y commutes with S, and in this setting ∥S∥ = 1. In general we
have the following lemma. Recall PR1 is orthogonal projection onto the eigenfunctions of P with
eigenvalue 1.

Lemma 3.1. There is a C > 0 independent of h so that

∥S∥ ≤ Ch∥1[0,1](h
2∆Y )1[0,1](r)(P − 1− i0)−1(I − PR1)1[−1,0](r)∥.
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Proof. First suppose 1 ̸∈ spec(h2∆Y ). We use the Poisson operator P as constructed in (14). Let
f ∈ HY , and denote the outgoing data in Pf by f+, so that Sf = f+. We note from our construction
of P in (14) that

1[0,1](h
2∆Y )

(
Pf ↿X∞|r>0 −e−ir(I−h

2∆Y )1/2/hf
)

=
(
eir(I−h

2∆Y )1/2/h1[0,1](h
2∆Y )f+

)
↿X∞|r>0

= 1[0,1](h
2∆Y )

(
(P − 1− i0)−1[h2∂2r , φ]FX̃

)
↿X∞|r>0

= 1[0,1](h
2∆Y )

(
(P − 1− i0)−1(I − PR1)[h

2∂2r , φ]FX̃
)
↿X∞|r>0 .

where FX̃ is defined in (12) and φ is as in (13). Thus using that [h2∂2r , φ] = 1[−1,0](r)[h
2∂2r , φ]

∥1[0,1](h
2∆Y )f+∥L2(Y )

≤ ∥1[0,1](h
2∆Y )1[0,1](r)(P − 1− i0)−1(I − PR1)1[−1,0](r)∥L2(X)→L2(X)∥[h2∂2r , φ]FX̃∥L2(X)

≤ Ch∥1[0,1](h
2∆Y )1[0,1](r)(P − 1− i0)−1(I − PR1)1[−1,0](r)∥L2(X)→L2(X)∥f∥L2(Y )

for some constant C, since

∥[h2∂2r , φ]FX̃∥L2(X) = ∥[h2∂2r , φ]e−ir(I−h
2∆Y )

1/2
+ /h1[0,1](h

2∆Y )f∥ ≤ C∥f∥L2(Y ).

To handle the case of 1 ∈ spec(h2∆Y ), take the limit as h′ ↑ h to obtain the desired bound. □

4. The resolvent on X̃ = R× Y

We shall need some facts about the behavior of the resolvent of the Laplacian on the manifold
X̃ = R×Y with the product metric, and the operators that arise when studying it. We begin with
a simple lemma about the resolvent of −h2∂2r on R.

Lemma 4.1. Let τ > 0 and f ∈ L2
c(R) be supported in the interval [a, b]. Then, if r > b(

(−h2∂2r − τ2 ∓ i0)−1f
)
(r) = ± i

2τh
e±iτr/h

∫ b

a

e∓iτr
′/hf(r′)dr′

and (
(−h2∂2r + τ2)−1f

)
(r) =

1

2τh
e−τr/h

∫ b

a

eτr
′/hf(r′)dr′.

If r < a, then (
(−h2∂2r − τ2 ∓ i0)−1f

)
(r) = ± i

2τh
e∓iτr/h

∫ b

a

e±iτr
′/hf(r′)dr′

and (
(−h2∂2r + τ2)−1f

)
(r) =

1

2τh
eτr/h

∫ b

a

e−τr
′/hf(r′)dr′.

Proof. We use that, for λ ∈ C with ℑλ > 0,(
(−h2∂2r − λ2)−1f

)
(r) =

i

2λh

∫ ∞

−∞
eiλ|r−r

′|/hf(r′)dr′.

Then the lemma follows directly using the support properties of f . □
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Recall the operators T± : L2
c(X̃) → L2(Y ) are defined by

(T±f)(y) =

∫
R

e∓ir
′((I−h2∆Y )1/2)/hf(r′, y)dr′.

Lemma 4.2. Let f ∈ L2
c(X̃) be supported in [a, b]× Y , and let ψsp ∈ C∞

c ([0, 1)). Then

(
ψsp(h

2∆Y )(I − h2∆Y )
1/2(h2∆X̃ − (1± i0))−1f

)
↿r>b =

±i
2h
ψsp(h

2∆Y )e
±ir(I−h2∆Y )1/2/hT±f

(17)

Moreover,
(18)(

ψsp(h
2∆Y )(I − h2∆Y )

1/2(h2∆X̃ − 1− i0)−1f
)
↿r<a=

i

2h
ψsp(h

2∆Y )e
−ir(I−h2∆Y )1/2/hT−f.

Proof. The proof uses separation of variables and the spectral theorem.
Let {σ2

j }, {ϕj} be the eigenvalues and eigenfunctions of ∆Y as in (15). Define

(19) τj = τj(h) := (1− h2σ2
j )

1/2,

where our convention is the square root has nonnegative real and imaginary parts. Then writing
f(r, y) =

∑∞
j=1 fj(r)ϕj(y), we have(

(I − h2∆Y )
1/2(h2∆X̃ − 1− i0)−1)f

)
(r, y) =

∞∑
j=1

τj
(
(−h2∂2r − τ2j − i0)−1fj

)
(r)ϕj(y).

Now we assume that r > b. Then from Lemma 4.1,(
(I − h2∆Y )

1/2(h2∆X̃ − 1− i0)−1f
)
(r, y) =

∞∑
j=1

i

2h
eiτjr/h

(∫ b

a

e−iτjr
′/hfj(r

′)dr′

)
ϕj(y)

so that

(20)
(
ψsp(h

2∆Y )(I − h2∆Y )
1/2(h2∆X̃ − 1− i0)−1f

)
(r, y)

=

∞∑
j=1

i

2h
ψsp(h

2σ2
j )e

iτjr/h

(∫ b

a

e−iτjr
′/hfj(r

′)dr′

)
ϕj(y).

But then, for the top choice of sign, this is the representation of the operator on the right hand of
(17) given by the spectral theorem.

The proofs of the remaining equalities are similar. □

5. Resolvent estimates on X

This section contains two lemmas that we use later to allow some flexibility in exactly how we
cut-off the resolvent on the end X∞. We recall that r > −4 only on the end X∞. These estimates
do not require the bounds (6) or (7).

Lemma 5.1. Let c > −4, M > c and z ∈ C \ spec(P ). Then

∥1[M,M+1](r)(P − z)−11(−∞,c](r)∥ ≤ ∥1[c,c+1](r)(P − z)−11(−∞,c](r)∥
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and for any ϵ > 0

∥1[0,1−ϵ](h
2∆Y )1[M,M+1](r)(P − z)−11(−∞,c](r)∥

≤ ∥1[0,1−ϵ](h
2∆Y )1[c,c+1](r)(P − z)−11(−∞,c](r)∥.

Proof. Recall that on the end X∞, P = −h2∂2r + h2∆Y . We use here the notation

(21) τ̃j(z) = τ̃j(z, h) = (z − h2σ2
j )

1/2,

where the square root has positive imaginary part, which is possible since z ̸∈ [0,∞). Notice
limz→1, ℑz>0 τ̃j(z) = τj . Then for any f ∈ L2(X) there are cj ∈ C so that

(P − z)−1(1(−∞,c](r)f) ↿r>c (r, y) =
∞∑
j=1

cje
iτ̃j(z)r/hϕj(y).

Since for each j, |eiτ̃j(z)r/h| is monotonically decreasing on (−4,∞),∥∥∥∥∥∥1[M,M+1](r)

∞∑
j=1

cje
iτ̃j(z)r/hϕj(y)

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥1[c,c+1](r)

∞∑
j=1

cje
iτj(z)r/hϕj(y)

∥∥∥∥∥∥
2

proving the first statement of the lemma.
The proof of the second statement is very similar. □

Lemma 5.2. For M > 0 there is a C = C(M) > 0 so that for all z ∈ C \ spec(P ), h ∈ (0, 1]

∥1[0,1](r)(P − z)−11(−∞,M ](r)∥ ≤ C
(
h−2 + ∥1[0,1](r)(P − z)−11(−∞,0](r)∥

)
.

Moreover, for every M, ϵ > 0 there is a C = C(M, ϵ) so that

∥1[0,1−ϵ](h
2∆Y )1[0,1](r)(P − z)−11(−∞,M ](r)∥

≤ C
(
h−2 + ∥1[0,1−ϵ](h

2∆Y )1[0,1](r)(P − z)−11(−∞,0](r)∥
)
.

Proof. We can write

(22) 1[0,1](r)(P − z)−11(−∞,M ](r) = 1[0,1](r)(P − z)−11(−∞,0](r) + 1[0,1](r)(P − z)−11[0,M ](r).

It is immediate that the first term on the right is bounded as desired, so we need only bound
∥1[0,1](r)(P − z)−11[0,M ](r)∥.

Let P0D denote the operator −h2∂2r + h2∆Y on the product manifold ((−4,∞)× Y, (dr)2 + gY )
with Dirichlet boundary conditions at {r = −4}. Using τ̃j(z) as in (21), if f ∈ L2((−4,∞) × Y )
and we write f(r, y) =

∑∞
j=1 fj(r)ϕj(y), then for z ∈ C \ [0,∞)

((P0D − z)−1f)(r, y) =

∞∑
j=1

i

2τ̃j(z)h

(∫ ∞

−4

(ei|r−r
′|τ̃j(z)/h − ei(r+r

′+8)τ̃j(z)/h)fj(r
′)dr′

)
ϕj(y).

Note that the choice of Dirichlet boundary condition ensures that for any M ′ ∈ R,

(23) ∥1[−4,M ′](r)(P0D − z)−11[−4,M ′](r)∥+ ∥1[−4,M ′](r)h∂r(P0D − z)−11[−4,M ′](r)∥ ≤ C ′

h2

for some C ′ = C ′(M ′), independent of z ∈ C \ [0,∞) and h ∈ (0, 1].
Now choose χ ∈ C∞

c (R) so that χ(r) = 1 for r ≤ −1 and χ(r) = 0 for r ≥ 0. Then, with
χ = χ(r),

(P − z)(1− χ)(P0D − z)−11[0,M ](r) = 1[0,M ](r)− [P, χ](P0D − z)−11[0,M ](r)
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so that
(24)
(P −z)−11[0,M ](r) = (1−χ)(P0D−z)−11[0,M ](r)+(P −z)−1(h2χ′′+2h2χ′∂r)(P0D−z)−11[0,M ](r).

Since χ′ is supported in [−1, 0], using (23) and (24) proves ∥1[0,1](r)(P − z)−11[0,M ](r)∥ is bounded
as desired, completing the proof of the first part of the lemma.

To prove the second statement, we left multiply both sides of (22) and (24) by 1[0,1−ϵ](h
2∆Y ),

and proceed as before. □

We remark that although Lemma 5.1 and 5.2 are stated for the resolvent (P − z)−1 for z ∈
C \ spec(P ), by a limiting argument they also hold for (P − z ± i0)−1, when z ∈ [0,∞). Of course,
if z ∈ [0,∞) the estimates are only meaningful if the right hand side is finite.

6. Microlocal properties of components of the scattering matrix

In this section we analyze the operators that go into the approximation to the scattering matrix,
proving that they are Fourier integral operators (FIOs). In dealing with canonical relations between
cotangent bundles, it will be convenient to use the following notational principles:

• We will identify the cotangent bundle of a Cartesian product with the product of the
cotangent bundles, and separate points in cotangent bundle factors by a semi-colon. For
example, (r, ρ ; y, η) ∈ T ∗(R×Y ) denotes the generic point in T ∗(R×Y ) with (r, ρ) ∈ T ∗R
and (y, η) ∈ T ∗Y . This differs from some notation in the introduction.

• On occasion we will use the notation x = (x, ξ) ∈ T ∗X, y = (y, η), w = (w, θ) ∈ T ∗Y , and
r = (r, ρ). Also, the “prime” operation is defined to be y′ := (y,−η).

• A canonical relation from a symplectic manifold M1 to M2 will be a Lagrangian subman-
ifold of M2 ×M−

1 (the domain of the relation is a subset of the second factor).
• If an FIO e.g. from C∞

c (Y ) to C∞(X) has a Schwartz kernel K ∈ C−∞(X×Y ), its canonical
relation is

{(x, y) | (x, y′) ∈ WF(K)} .

6.1. The operators T±ψsp(h
2∆Y ) and R±ψsp(h

2∆Y ). In this section we prove that T+ψsp(h
2∆Y )

and R−ψsp(h
2∆Y ) are semi-classical Fourier integral operators for any ψsp ∈ C∞

c ([0, 1)). We recall

from (19) that τj = (1− h2σ2
j )

1/2.

Proposition 6.1. Let

(25) W±(r, w, y) =
∑
j

ψsp(h
2σ2
j )e

∓irh−1τjϕj(w)ϕj(y),

where ψsp ∈ C∞
c ([0, 1)). Then W± is a Lagrangian semi-classical function on R×Y ×Y , associated

with the Lagrangian submanifold Γ± ⊂ T ∗(R× Y × Y ) given by

(26) Γ± = {(r;w; y′) | y ∈ B, w = Ψ±r(y), ρ = ∓H(y)} ,

where B is the open unit tangent ball bundle of Y ,

H(y, η) =
√

1− |η|2

and Ψ is the Hamilton flow of H.
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Proof. Microlocally in B, the operator
√
I − h2∆Y is a semi-classical self-adjoint pseudodifferential

operator of order zero. The function W± is the Schwartz kernel of the composition

ψsp(h
2∆)e∓irh

−1
√
I−h2∆Y ,

regarded as an operator L2(Y ) → L2(X̃). It is well-known that if A is a self adjoint semi-classical

pseudodifferential operator of order zero, the exponential e−irh
−1A is a semi-classical Fourier integral

operator [26, Theorem 11.5.1], [36, Section IV.6] associated with a Lagrangian strictly analogous
to Γ+. The presence of the factor ψsp(h

2∆) in U microlocalizes
√
I − h2∆Y to where it is a

pseudodifferential operator, so the same construction can be applied verbatim to the W±. □

Note that the operator T±ψsp(h
2∆Y ) : L

2
c(X̃) → L2(Y ) has W± as its Schwartz kernel, except

for a trivial permuation of the variables:

T±ψsp(h
2∆Y )(f)(w) =

∫
W±(r, w, y) f(r, y) dr dy.

Similarly, R±ψsp(h
2∆Y ), where R± is defined by (10), has for Schwartz kernel W∓, this time in

the standard manner:

R±ψsp(h
2∆Y )(g)(r, w) = χ(r)

∫
W∓(r, w, y)g(y) dy.

Therefore:

Corollary 6.2. The operator T±ψsp(h
2∆Y ) : L

2
c(X̃) → L2(Y ) is a Fourier integral operator asso-

ciated with the canonical relation

(27) Θ± =
{(
w ; (r; y)

)
| y ∈ B, w = Ψ±r(y), ρ = ±H(y)

}
.

Moreover, R±ψsp(h
2∆Y ) : L

2
c(Y ) → L2(X̃) is a Fourier integral operator associated with the canon-

ical relation

(28) ΘT± =
{(

(r;w) ; y
)
| y ∈ B, w = Ψ∓r(y), ρ = ±H(w), r ∈ supp(χ)

}
,

which is the transpose of (27) (except for the restriction on r).

In what follows we will work with the compositions e−itψP/hR− and T+χ̃(r)e
−itψP/hR−, where

χ̃ is compactly supported on X∞. We will use the composition theorem for FIOs to prove that
each of these operators is an FIO, [26, Theorem 18.13.1]. We will show that the clean-intersection
hypothesis of that theorem is satisfied in each case.

6.2. Geometric considerations. To better understand the previous canonical relations, introduce
the co-isotropic submanifold of T ∗X

C = p−1(1) = {x = (x, ξ) ∈ T ∗X | p(x) = |ξ|2 + V0(x) = 1}.
(We are working microlocally in a region of T ∗X where p−1(1) is a submanifold, and therefore
without loss of generality for simplicity we will assume it is a submanifold everywhere). The null
leaves of C are the (unparametrized) Hamilton trajectories of p. Let

(29) C± := {(r; y) ∈ T ∗X∞ | y ∈ B, ρ = ±H(y)}
where B ⊂ T ∗Y is the open unit cotangent bundle. Note that C± ⊂ C and that ρ ̸= 0 on C±. Also
introduce the embeddings

(30) ν± : B → C±, ν±(y) = (0,±H(y) ; y).
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In view of our notation conventions, this notation is consistent with (2).

Proposition 6.3. The images T± := ν±(B) = C± ∩ {r = 0} are symplectic submanifolds, and
ν± : B ∼= T± is a symplectomorphism. Moreover, T± are Poincaré cross sections of C±. Explicitly,
the null leaf of C± through (r; y) intersects the transversal T± at ν±(Ψ±r(y)).

Proof. Let Gt denote the Hamilton flow on T ∗Y of the square of the Riemannian norm function,
γY (y) = |η|2. Then on T ∗X∞

Φt(r, ρ ; y) = (r + 2tρ, ρ ; Gt(y))

as long as r+2tρ > −4. On the other hand, dH = − 1
2H dγY , and therefore a similar relation holds

among the corresponding Hamilton fields of H and γY . It follows that Gt = Ψ−2tH and on T ∗X∞

(31) Φt(r, ρ ; y) = (r + 2tρ, ρ ; Ψ−2tH(y)(y)).

Therefore

(32) ∀ (r, ρ ; y) ∈ C± Φ−r/2ρ(r, ρ ; y) = ν±(Ψ±r(y)).

□

Note that (32) implies that for all (r, ρ ; y) ∈ C±, (r, ρ ; y) = Φr/2ρ (ν±(Ψ±r(y))). Replacing y by
Ψ∓r(y) yields

(33) (r, ρ ; Ψ∓r(y)) = Φr/2ρ (ν±(y)) .

Therefore, we can re-state Corollary 6.2 as follows:

Corollary 6.4. The canonical relation ΘT± of R±ψsp(h
2∆Y ) is

(34) ΘT± =

{
(Φt(ν±(y)) , y) | y ∈ B, t = ± r

2H(y)
, r ∈ (−1/4, 0)

}
.

Remark 6.5. We can use (31) to see how the scattering map changes if we change the origin of the
r coordinate. If we replace r by r − c for some constant c > 0, we obtain a scattering map κ′ with
domain Dκ′ . A point y ∈ B is in the domain Dκ′ if and only if the trajectory t 7→ Φt(c,−H(y); y)
is not forward-trapping. By (31),

(35) Φt(c,−H(y); y) = (c− 2tH(y),−H(y) ; Ψ−2tH(y)(y)).

Therefore this trajectory traverses the hypersurface {r = 0} at time t = c
2H(y) and at the point

(0,−H(y); Ψ−c(y)). It follows that if we let

ϑ := Ψ−c : B → B,
then ϑ maps Dκ′ into Dκ. The converse is analogous, that is, ϑ maps Dκ′ bijectively onto Dκ.

To find κ′(y), we are to follow the trajectory described above until the time t′+(y) > 0 where it
intersects {r = c}, and then take the T ∗Y component of the point of intersection. By the previous
discussion,

t′+(y) =
c

2H(y)
+ t+(ϑ(y)) + s

where s is such that

Φs(0, H(κ(ϑ(y)));κ(ϑ(y))) = (c,H(κ(ϑ(y)));κ′(y)).

Applying (35) again to the left-hand side of this identity, we obtain

Φs(0, H(κ(ϑ(y)));κ(ϑ(y))) = (2sH(κ(ϑ(y))), H(κ(ϑ(y))); Ψ−2sH(κ(ϑ(y)))(κ(ϑ(y))),
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that is, s = c/2H(κ(ϑ(y))). Substituting, we have

(c,H(κ(ϑ(y))); Ψ−c(κ(ϑ(y))) = (c,H(κ(ϑ(y)));κ′(y)),

which shows that κ′ = ϑ ◦ κ ◦ ϑ.

6.3. The operator T+χ(r)e
−itψP/hR−ψsp(h

2∆Y )Oph(ψ). Let us fix δ > 0 and use Y (the fraktur
letter Y ) for

Y = {y = (y, η) ∈ T ∗Y | |η| < 1− δ} ∩ Dκ,
where δ > 0 is small enough that supp(ψsp) ⊂ [0, 1− δ). Let ψ ∈ C∞

c (Y), and let tψ > 0 be chosen

sufficiently large so that if (y, η) ∈ suppψ then Φt(0,−
√

1− |η|2; y, η) ∈ {(x, ξ) ∈ T ∗X∞ | r ≥ 0}
for all t ≥ tψ. The existence of such a tψ follows from the assumption that the support of ψ is
compact and is contained in the domain of the scattering map.

We first consider e−itψP/hR−ψsp(h
2∆Y )Oph(ψ).

Proposition 6.6. For any χ̃ ∈ C∞
c ((−4,∞)) the composition χ̃(r)e−itψP/hR−ψsp(h

2∆Y )Oph(ψ)
is a Fourier integral operator whose canonical relation Σ ⊂ T ∗X × T ∗Y is

(36) Σ =

{(
Φtψ+t(ν−(y)) ; y

)
∈ T ∗X∞ × T ∗Y, | y ∈ Y, t ∈

(
0,

1

8H(y)

)}
.

Remark 6.7. Clearly (36) is parametrized by

D :=

{
(y, t) ∈ Y× R | t ∈

(
0,

1

8H(y)

)}
.

The condition on t ensures that (36) is over the portion of the cylinder defined by r ∈ (0,∞).

Remark 6.8. It is important to note that by the assumption on tψ and Y, in (36)

t 7→ Φtψ+t(ν−(y0))

is an outward-going geodesic on T ∗X∞ ∩ C. It is therefore of the form

(37) Φtψ+t(ν−(y0)) = (r(t), H(y(t)) ; y(t))

with dr
dt > 0.

Proof of Proposition 6.6. Again by [26, Theorem 11.5.1], the factor e−itψP/h is a Fourier integral
operator associated to the graph of Φtψ . It is known ([26, §4.3]) that left-composition by an
FIO associated with a canonical transformation is always clean (in fact, transverse), and therefore
χ(r)e−itψP/hR− is a Fourier integral operator whose canonical relation is the composition of the
graph of Φtψ with ΘT−. The result follows directly from Corollary 6.4.

□.

For χ̃ ∈ C∞
c ((−4,∞)) and ψsp ∈ C∞

c (B), we analyze next the composition

(38) ψsp(h
2∆Y )T+ ◦

(
χ̃(r)e−itψP/hR−ψsp(h

2∆Y )Oph(ψ)
)
,

which is a bit more complicated.

Proposition 6.9. The operator (38) is an FIO, associated to the graph of the scattering map κ
restricted to Y.
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Proof. Introduce the manifolds:

T ∗X
∆
× T ∗X := {(x;x) | x ∈ T ∗X)} , A = T ∗Y ×

(
T ∗X

∆
× T ∗X

)
× T ∗Y,

and B = Θ+ ×Σ. Recall that Θ+ and Σ are the canonical relations associated to the factors of the
composition (38), and note that A and B are submanifolds of T ∗Y × T ∗X × T ∗X × T ∗Y .

We first prove that the manifolds A and B intersect cleanly. We claim that the intersection is
the set

(39) A ∩B =
{(
κ(y) ; Φtψ+t(ν−(y)) ; Φtψ+t(ν−(y)) ; y

)
| (y, t) ∈ D

}
,

where κ is the scattering map. To see this, let ζ ∈ A ∩B, and let us write

ζ = (w ; Φs(ν+(w)) ; Φtψ+t(ν−(y)) ; y),

where Φs(ν+(w)) = Φtψ+t(ν−(y)). Therefore

ν+(w) = Φtψ+t−s(ν−(y)),

which is a relation that characterizes the scattering map, namely

(40) ν+(κ(y)) = Φt+(y)(ν−(y)),

where y → t+(y) is a smooth function by the implicit function theorem. Therefore w = κ(y), which
yields (39). We also obtain the relation t+(y) = tψ + t− s.

The set A ∩B is clearly a submanifold parametrized by (y, t) ∈ D, and elements in Tζ(A ∩B)
are of the form

(41)
(
dκ(δy) ; dΦtψ+t ◦ dν−(δy) + δtΞ ; dΦtψ+t ◦ dν−(δy) + δtΞ ; δy

)
where δy ∈ TyT

∗Y , δt ∈ TtR ∼= R, and Ξ is the Hamilton field of p (the generator of Φ) evaluated
at the appropriate point.

To prove that the intersection is clean, we need to show that

Tζ (A ∩B) = TζA ∩ TζB.
The inclusion Tζ (A ∩B) ⊂ TζA ∩ TζB is automatic, so let v ∈ TζA ∩ TζB. Since v ∈ TζB, it is of
the form

v =
(
δw ; d(Φs) ◦ dν+(δw) + δsΞ ; d(Φtψ+t) ◦ dν−(δy) + δtΞ ; δy

)
where δw ∈ TwB, δs ∈ TsR ∼= R, etc. The condition v ∈ TζA means that the middle entries in v
are equal, that is

(42) d(Φs) ◦ dν+(δw) + δsΞ = d(Φtψ+t) ◦ dν−(δy) + δtΞ.

Comparing with (41), in order to conclude that v ∈ Tζ (A ∩B) all we need to show is that δw =
dκ(δy). To see this, let us rewrite (42) as

d(Φtψ+t−s) ◦ dν−(δy) = dν+(δw) + (δs− δt)Ξ.

But, by (40), this also equals

d(Φt+(y)) ◦ dν−(δy) = dν+(dκ(δy))− dt(δy)Ξ.

Now the summands on the right-hand sides of these expressions correspond to the direct sum
decomposition TC+ = TT+⊕RΞ. Therefore, corresponding summands must equal each other, that
is

dν+(δw) = dν+(dκ(δy)) and (δs− δt)Ξ = −dt(δy)Ξ.
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Since dν+ is injective, the first of these relations yields δw = dκ(δy), and the proof that A and B
intersect cleanly is complete.

By the composition theorem for semi-classical FIOs [26, Theorem 18.13.1], the operator (38) is
a semi-classical FIO associated to the relation which is the image of A ∩ B under the projection
onto T ∗Y × T ∗Y . By (39), this is precisely the graph of κ restricted to Y. □

7. A microlocal approximation of the Poisson operator and the scattering matrix

In this section we give a microlocal construction of POph(ψ), the Poisson operator composed
with Oph(ψ). Recall ψ ∈ C∞

c (T ∗Y ) has support contained in the domain of the scattering map κ.
A consequence of our construction is an expression for the scattering matrix in terms of R−, T+,
and the Schrödinger propagator, see Proposition 7.4. Propositions 6.9 and 7.4 combine to prove
our theorems.

Recall tψ > 0 is chosen sufficiently large so that if (y, η) ∈ suppψ, then Φt(0,−
√

1− |η|2; y, η) ∈
{(x, ξ) ∈ T ∗X∞ : r ≥ 0} for all t ≥ tψ. Here we continue to use the notation for the cotangent
variables on T ∗X∞ introduced in Section 6. Choose M ∈ N so that if (y, η) ∈ suppψ and −1/4 ≤
s ≤ 0 then

(43) ∀ t ∈ [0, tψ] Φt(s,−
√

1− |η|2; Ψs(y, η)) ∈ {(x, ξ) ∈ T ∗X∞ : r ≤M − 2}.
In particular, this implies M ≥ 2. Let bψ < 1 be chosen so that if (y, η) ∈ supp(ψ) or

(r,
√
1− |η|2; y, η) = Φtψ (r−,−

√
1− |η−|2; y−, η−) for some (y−, η−) ∈ suppψ and −1/4 ≤ r− ≤ 0,

then |η| ≤ bψ. Choose ψsp ∈ C∞
c ([0, 1)) so that ψsp is 1 on [0, bψ].

Let χj ∈ C∞(R; [0, 1]) satisfy χj(r) = 1 if r < −2 + j and χj(r) = 0 if r > −3/2 + j, ensuring
χjχj+1 = χj .

Recall R− is defined in (10), and supp(R−f−) ⊂ {(r, y) ∈ X∞ | −1/4 ≤ r ≤ 0}. Set

U− = (I − h2∆Y )
1/2ψsp(h

2∆Y )R− Oph(ψ) : L
2(Y ) → H∞

c (X∞) ⊂ H∞(X),

U+ = (χM (r)− χ1(r))e
−itψP/hU− : L2(Y ) → L2(X∞) ⊂ L2(X)(44)

and

(45) Pappr = 2ih

(
(1− χ0(r))(h

2∆X̃ − 1 + i0)−1U− +
1

ih
χM (r)

∫ tψ

0

eit/he−itP/hU−dt

−eitψ/h(1− χ0(r))(h
2∆X̃ − 1− i0)−1

(
ψsp(h

2∆Y )U+

))
.

We shall see that the operator Pappr is an approximation of POph(ψ). The mapping properties

of (h2∆X̃ − 1 ± i0)−1 ensure that if f− ∈ L2(Y ), then Papprf− ∈ ⟨r⟩1/2+δH∞(X) for any δ > 0.
Note that our definition of Pappr involves Oph(ψ), and so depends on choice of ψ, even though our
notation does not indicate this.

We begin with a preliminary lemma.

Lemma 7.1. Let χ̃ ∈ C∞
c (X∞) have support in the region with r ≥M−2 ≥ 0. Then ∥χ̃e−itP/hU−∥ =

O(h∞) uniformly for t satisfying 0 ≤ t ≤ tψ.

Proof. First observe that, by (10),

∀ g ∈ L2(Y ) U−g = χ(r)(I − h2∆Y )
1/2ψsp(h

2∆Y )e
−ir(I−h2∆Y )

1/2
+ /hg,

where χ is supported in (−1/4, 0).
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For each value of h and each t, the operator e−itP/hU− is a smoothing operator of finite rank. By
Corollary 6.2 and the composition theorem for FIOs, it is also a semi-classical FIO whose canonical
relation is

(46)
{(

Φt(r, ρ;w) , y
)
| w = Ψr(y), y ∈ supp(ψ), ρ = −H(w), r ∈ supp(χ)

}
.

More precisely, let χ♯ ∈ C∞
c (R) be identically equal to one in a neighborhood of 1 ∈ R, and note

that

χ♯(h2∆X)U− = U− +O(h∞)

because the image of the canonical relation of U− (which is the same as that of R−) is contained
in p−1(1). We now use the well-known approximation of e−itP/hχ♯(h2∆X) by oscillatory integrals,
uniformly for t in a bounded interval, see e.g. [36, Theorem IV-30] or [4, Lemma 3.2]. That is,
one can write e−itP/hχ♯(h2∆X) = F1 + R1, where the Schwartz kernel of F1 is a finite sum of

oscillatory integrals of the form
∫
eih

−1ϖ(t,x,x′,p)a(t, x, x′, p, h)dp where ϖ are generating functions
for portions of the canonical relation of the graph of the Hamilton flow of p, the amplitudes a are
smooth and have an asymptotic expansion in powers of h, and the Schwartz kernel of R1 is O(h∞)
uniformly for t in a bounded interval. Similarly, one can write U− = F2 +R2, where the Schwartz

kernel of F2 is a finite sum of oscillatory integrals of the form
∫
eih

−1ϖ(y,x,p)a(y, x, p, h)dp where ϖ
are generating functions for the canonical relation of R−, and the Schwartz kernel of R2 is O(h∞).
It follows that

e−itP/hχ♯(h2∆X)U− = F1F2 + S, S = F1R2 +R1F2 +R1R2.

Note that the Schwartz kernel of S is O(h∞) uniformly for t in a compact interval.
Now recall how M ∈ N is chosen, (43), and also recall that supp(χ) ⊂ (−1/4, 0). It follows

that the Schwartz kernel of χ̃F1F2 is a finite sum of oscillatory integrals whose phase functions do
not have critical points in the support of their amplitudes. Therefore the Hilbert-Schmidt norm of
χ̃F1F2 can be estimated as h→ 0 by a finite sum of absolute values of oscillatory integrals without
critical points. By smoothness of the integrands, the estimate is uniform in t ∈ [0, tψ].

In combination with the rapid decrease of the Schwartz kernel of S, we can conclude that the
Hilbert-Schmidt norm of χ̃e−itP/hU− is O(h∞) uniformly in t ∈ [0, tψ]. □

Lemma 7.2. Set (P − 1)Pappr = 2ihE. Then for any f− ∈ L2(Y ), Ef− is compactly supported
with support in Xc ∪ {(r, y) ∈ X∞ : r ≤M − 1}, and ∥E∥L2(Y )→H2(X) = O(h∞).

Proof. Using that

(P − 1)

∫ tψ

0

eit/he−itP/hdt = ih
(
eitψ/he−itψP/h − I

)
and (1− χ0)U− = U− = χMU− gives E =

∑4
j=1Ej , where

E1 = [h2∂2r , χ0](h
2∆X̃ − 1 + i0)−1U−

E2 = − 1

ih
[h2∂2r , χM ]

∫ tψ

0

eit/he−itP/hU−dt

E3 = eitψ/h
(
χMe

−itψP/hU− − ψsp(h
2∆Y )U+

)
E4 = −eitψ/h[h2∂2r , χ0](h

2∆X̃ − 1− i0)−1ψsp(h
2∆Y )U+.

The claim about the support of E is immediate from our expression for E.
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We begin with bounding E2. Since [h2∂2r , χM ] is supported in {x ∈ X∞ | x = (r, y),M − 2 ≤
r ≤ −3/2 +M}, as a corollary of Lemma 7.1 we obtain that ∥E2∥ = O(h∞).

For E3, we use

(47) ∥E3∥ = ∥χMe−itψP/hU− − ψsp(h
2∆Y )(χM − χ0)e

−itψP/hU−∥

≤ ∥(1− ψsp(h
2∆Y ))(χM − χ0)e

−itψP/hU−∥+ ∥χ0e
−itψP/hU−∥.

That ∥(1−ψsp(h2∆Y ))(χM−χ0)e
−itψP/hU−∥ = O(h∞) follows from Proposition 6.6 and our choice

of ψsp, and that ∥χ0e
−itψP/hU−∥ = O(h∞) follows from Proposition 6.6, the support properties of

χ0, and our choice of tψ.
Now consider E4. The support properties of [h2∂2r , χ0] and (χM − χ1) mean that by Lemma 4.2

∥E4∥ = (2h)−1∥(h2χ′′
0(1− h2∆Y )

−1/2 − 2iχ′
0)ψsp(h

2∆Y )T−U+∥.
But by Corollary 6.2 and Proposition 6.6, the composition of the canonical relations of T− and U+

is empty. Therefore ∥T−U+∥L2(Y )→Hm(Y ) = O(h∞), and hence ∥E4∥ = O(h∞).
The term E1 is handled in a way similar to E4, using that

(h2∆X̃ − 1 + i0)−1f = (h2∆X̃ − 1− i0)−1f.

□

For the next lemma, we continue to use the functions χj introduced above.

Lemma 7.3. Suppose f ∈ L2
c(X) has support in XC ∪ {(r, y) ∈ X∞ | −4 < r ≤ M ′}, with

−4 < M ′ <∞. Then for r ≥M ′,

(48) ∥
(
1[0,1−ϵ](h

2∆Y )(1− χ0)(P − 1− i0)−1f
)
(r, •)∥L2(Y )

≤ ∥1[0,1−ϵ](h
2∆Y )1[M ′,M ′+1](r)(P − 1− i0)−11(−∞,M ′](r)∥∥f∥

for any ϵ > 0. Moreover,

(49) ∥
(
1[0,1)(h

2∆Y )(1− χ0)(P − 1− i0)−1f
)
(r, •)∥L2(Y )

≤ ∥1[0,1)(h
2∆Y )1[M ′,M ′+1](r)(P − 1− i0)−11(−∞,M ′](r)∥∥f∥.

Although these two are almost the same, and have essentially identical proofs, the operator norm
on the right side of (48) may be smaller than that in (49); see, for example, Section 2.4.2.

Proof. From the support properties of f , there are cj = cj(h, f) ∈ C so that for r > M ′

(1[0,1−ϵ](h
2∆Y )(1− χ0)(P − 1− i0)−1f)(r, y) =

∑
h2σ2

j≤1−ϵ

cje
iτjr/hϕj(y)

where τj = (1− σ2
jh

2)1/2 ≥ 0 for h2σ2
j ≤ 1. Then for r > M ′

∥
(
1[0,1−ϵ](h

2∆Y )(1− χ0)(P − 1− i0)−1f
)
(r, •)∥2L2(Y )

=
∑

h2σ2
j≤1−ϵ

|cj |2

=

∫
X∞ |M ′≤r≤M ′+1

|1[0,1−ϵ](h
2∆Y )(1− χ0)(P − 1− i0)−1f |2

= ∥1[0,1−ϵ]1[M ′,M ′+1](r)(P − 1− i0)−11(−∞,M ′](r)f∥2
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proving (48). The proof of (49) is essentially identical. □

Recall that Pappr as defined in (45) depends on ψ ∈ C∞(T ∗Y ). Set

(50) Q = Pappr − (P − 1− i0)−1(P − 1)Pappr.

Then (P − 1)Q = 0, and for any f− ∈ L2(Y ), δ > 0, ⟨r⟩−1/2−δQf− ∈ L2(X). We shall show that Q
is actually Pψsp(h2∆Y )Oph(ψ), and that under the hypotheses of Theorem 1.4 or 1.5 we can use
this to find an expression for the cut-off scattering matrix, up to a small error.

Proposition 7.4. If 1 ̸∈ spec(h2∆Y ), then the operator Q defined in (50) is Q = Pψsp(h2∆Y )Oph(ψ).
Moreover, if (6) holds, then

(51) SOph(ψ)

= eitψ/h(I−h2∆Y )
−1/2ψsp(h

2∆Y )T+(χM−χ1)e
−itψP/h(I−h2∆Y )

1/2R−ψsp(h
2∆Y )Oph(ψ)+O(h∞),

and if the hypotheses of Theorem 1.5 hold,

(52) S1[0,1−ϵ](h
2∆Y )Oph(ψ)

= eitψ/h(I−h2∆Y )
−1/21[0,1−ϵ](h

2∆Y )T+(χM−χ1)e
−itψP/h(I−h2∆Y )

1/2R−ψsp(h
2∆Y )Oph(ψ)+O(h∞)

for any ϵ > 0. If 1 ∈ spec(h2∆Y ) the equations (51) and (52) hold as limits as h′ ↑ h.

Proof. As noted already, (P − 1)Q = 0. Thus to show that Q = Pψsp(h2∆Y )Oph(ψ) it remains to
study the expansion of Qf− on X∞ for f− ∈ L2(Y ). We begin by studying the behavior of Papprf−
for r > M . By Lemma 4.2,

(1− χ0(r))(h
2∆X̃ − 1 + i0)−1U−f− ↿r>M

=
−i
2h
e−ir(I−h

2∆Y )1/2/h(I − h2∆Y )
−1/2T−ψsp(h

2∆Y )(I − h2∆Y )
1/2R− Oph(ψ)f− ↿r>M

=
−i
2h
e−ir(I−h

2∆Y )1/2/hψsp(h
2∆Y )Oph(ψ)f− ↿r>M(53)

using that T± commutes with functions of h2∆Y and T±R± = I. Also by Lemma 4.2,

(54) (1− χ0(r))(h
2∆X̃ − 1− i0)−1

(
ψsp(h

2∆Y )U+f−
)
↿r>M

=
i

2h
eir(I−h

2∆Y )1/2/h(1− h2∆Y )
−1/2T+

(
ψsp(h

2∆Y )U+f−
)
↿r>M .

The term χM (r)
∫ tψ
0
eit/he−itP/hU−dt in (45) vanishes if r > M .

If 1 ̸∈ spec(h2∆Y ),

(55)
(
(1− χ0)(P − 1− i0)−1Ef−

)
(r, y) ↿r>M=

∑
0≤h2σ2

j

cje
iτjr/hϕj(y)

for some cj ∈ C. Recall τj defined in (19) has ℜτj ≥ 0, ℑτj ≥ 0. Combining these four observations,
we see that if 1 ̸∈ spec(h2∆Y ),

(Qf−) ↿r>M= e−ir(I−h
2∆Y )1/2/hψsp(h

2∆Y )Oph(ψ)f−

+ eir(I−h
2∆Y )1/2/heitψ/h(I − h2∆Y )

−1/2T+
(
ψsp(h

2∆Y )U+f−
)

− 2ih
∑

0≤h2σ2
j

cje
iτjr/hϕj(y).(56)
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This shows that Q = Pψsp(h2∆Y )Oph(ψ).
We now turn to proving (51), so suppose (6) holds. Then using in addition Lemmas 5.1 and 5.2,

for any M ′ > 0 there is a constant C so that

∥1[M ′,M ′+1](r)(P − 1− i0)−11(−∞,M ′](r)∥ ≤ C(h−2 + h−N0) for 0 < h ≤ h0.

Then by (55) and Lemmas 7.2 and 7.3,
∑

0≤h2σ2
j≤1 |cj |2 = O(h∞∥f−∥) where the cj are defined via

(56). Thus by our definition of the scattering matrix and (56)

Sψsp(h
2∆Y )Oph(ψ)f− = eitψ/h(1− h2∆Y )

−1/2T+
(
ψsp(h

2∆Y )U+f−
)
+O(h∞∥f−∥).

Using ∥(1 − ψsp(h
2∆Y ))Oph(ψ)∥ = O(h∞) and the fact that Lemma 3.1 and (6) imply ∥S∥ =

O(h1−max(2,N0)) finishes the proof when (6) holds, if 1 ̸∈ spec(h2∆Y ). If 1 ∈ spec(h2∆Y ), then the
equality holds by taking the limits as h′ ↑ h.

Now suppose the hypotheses of Theorem 1.5 hold. Since P commutes with ∆Y0
, the scattering

matrix S commutes with ∆Y0 and, as mentioned earlier, this implies ∥S∥ = 1. Thus

∥S(1− ψsp(h
2∆Y ))Oph(ψ)∥ = ∥(1− ψsp(h

2∆Y ))Oph(ψ)∥ = O(h∞).

Applying Lemmas 5.1, 5.2, 7.2, and 7.3 as before gives
∑

0≤h2σ2
j≤1−ϵ |cj |2 = O(h∞), where the cj

are as in (56). Thus (52) holds. □

Proof of Theorems 1.4 and 1.5. Combining Propositions 6.9 and 7.4 proves Theorems 1.4 and 1.5
for SOph(ψ).

Turning to the proof for SU Oph(ψ), choose ψsp ∈ C∞
c ([0, 1)) so that

(I − ψsp(h
2∆Y ))Oph(ψ0) = O(h∞).

Then the unitarity of SU implies

SU Oph(ψ) = (I − h2∆Y )
1/4
+ S(I − h2∆Y )

−1/4
+ ψsp(h

2∆Y )Oph(ψ) +O(h∞).

Since (I −h2∆Y )
−1/4
+ ψsp(h

2∆Y )Oph(ψ) is a pseudodifferential operator with symbol supported in
the support of ψ, using the result for S we see there is a ψ1 ∈ C∞

c ([0, 1)) so that

∥(I − ψ1(h
2∆Y ))Sψsp(h

2∆Y )(I − h2∆Y )
−1/4
+ ψsp(h

2∆Y )Oph(ψ)∥ = O(h∞).

Thus

SU Oph(ψ) = (I − h2∆Y )
1/4
+ ψ1(h

2∆Y )S(I − h2∆Y )
−1/4
+ ψsp(h

2∆Y )Oph(ψ) +O(h∞),

and the result for SU follows from the result for S and composition properties of Fourier integral
and pseudodiffierential operators. □

8. Equidistribution of phase shifts

As an application of our theorems on the microlocal structure of the unitary scattering matrix
SU , in this section we prove Theorem 8.4, a result about the distribution of its phase shifts. This
requires some additional hypotheses, for which we need some background.
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8.1. Distance on T ∗Y and Minkowski content. Fix any smooth Riemannian metric on T ∗Y .
This induces a distance on each connected component of T ∗Y . If y, w ∈ T ∗Y belong to different
connected components of T ∗Y , we shall say the (generalized) distance (in T ∗Y ) between them is
infinite. We will denote this (generalized) distance by distT∗Y ; distT∗Y : T ∗Y × T ∗Y → [0,∞]. We
use this to define the (2n − 2)-dimensional Minkowski content of a bounded set A ⊂ T ∗Y , where
2n− 2 = dim(T ∗Y ). The (2n− 2)-dimensional upper Minkowski content of A is

M∗2n−2(A) = lim sup
δ↓0

µ({y ∈ T ∗Y | distT∗Y (y,A) < δ})

where for B ⊂ T ∗Y , µ(B) is the Liouville measure of B. Similarly, the (2n− 2)-dimensional lower
Minkowski content is

M2n−2
∗ (A) = lim inf

δ↓0
µ({y ∈ T ∗Y | distT∗Y (y,A) < δ}).

If M∗2n−2(A) = M2n−2
∗ (A), then the (2n−2)-dimensional Minkowski content of A is M2n−2(A) =

M2n−2
∗ (A).
For general A, the Minkowski content may depend on the choice of the metric on T ∗Y via the

induced distance or the chosen measure. However, we shall only apply this for bounded sets A
that have zero (2n− 2)-dimensional Minkowski content. For such sets, the property of having zero
Minkowski content is independent of the choice of smooth metric on T ∗Y . Moreover, this is also
true of the choice of measure, as long as the measures are mutually absolutely continuous.

Remark 8.1. A set in a d-dimensional manifold that has zero d-dimensional Minkowski content has
measure zero, but the converse is not true. For example, let Q be the intersection of the unit cube
in Rd with Qd. Then Q has measure zero but d-dimensional Minkowski content one.

8.2. Hypotheses and Theorem 8.4. Throughout Sections 8.2 and 8.3, we assume:

(1) The assumptions of at least one of Theorems 1.4 or 1.5 hold.
(2) For m ∈ Z, let Dκm ⊂ B be the domain of κm, where we recall κ is the scattering map. We

assume that for each m ∈ N the (2n− 2)-dimensional Minkowski content of B \ Dκm is 0.
(3) For each m ∈ Z \ {0}, the set of fixed points of κm has measure 0.

In reference [20], where the authors studied the equidistribution property for semiclassical Schrödinger
operators on Rn, the analogs of the first and second assumptions are implied by a non-trapping
assumption, while the analog of the third assumption is made explicitly. The proof we give here
follows in outline much of the strategy of [20]. Some differences include not having knowledge of
the microlocal structure of SU near ∂BY , and allowing for the possibility that the domain of the
scattering map may not be all of B.

Remark 8.2. Recall that for y = (y, η) ∈ B we write y′ = (y,−η). We shall use that since
κ(κ(y)′) = y′, y ∈ Dκ if and only if y′ ∈ Dκ−1 , and similarly for iterates of κ. Hence the condition
we made on the Minkowski content in assumption (2) is equivalent to making the assumption for
all m ∈ Z \ {0}.

Remark 8.3. The examples described in Sections 2.1 and 2.4 satisfy conditions (1) and (2). We
show in Section A.2 that a surface of revolution with a bulge, as introduced in Section 2.4.2, satisfies
condition (3) as well.

Let SU = SU (h) = (I−h2∆Y )
1/4
+ S(I−h2∆Y )

−1/4
+ if 1 ̸∈ spec(h2∆Y ), and SU (h) = limh′↑h SU (h

′)
if 1 ∈ spec(h2∆Y ). It will be helpful to recall here that S, SU : HY → HY , where HY =
1[0,1](h

2∆Y )L
2(Y ). The operator SU is the unitary (on HY ) scattering matrix. We note that
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both the scattering matrix and the hypothesis 3 depend on the choice of coordinate r on the the
cylindrical end.

Theorem 8.4. Suppose (X, g) is an n-dimensional manifold with infinite cylindrical end, and
(X, g) and the associated scattering map κ satisfy all the conditions listed above. Let f ∈ C(S1).
Then

lim
h↓0

(
hn−1TrHY

(f(SU ))
)
=
cn−1 vol(Y )

2π

∫ 2π

0

f(eiθ)dθ

where cn−1 is the usual Weyl constant in dimension n− 1.

Subscripts on the trace in this section and the next indicate the space in which the trace is taken.
An immediate corollary of this Theorem is the following equidistribution result.

Corollary 8.5. Let 0 ≤ θ1 < θ2 < 2π. Then

lim
h↓0

(
hn−1N(θ1, θ2, h)

)
=
cn−1 vol(Y )

2π
(θ2 − θ1)

where N(θ1, θ2, h) is the number of eigenvalues of SU with argument between θ1 and θ2.

8.3. Proof of Theorem 8.4. We begin with a result on the structure of the iterates of the unitary
scattering matrix.

Lemma 8.6. Let m ∈ Z\{0} and let ψ0 ∈ C∞
c (B) be supported in Dκm . Then under the hypotheses

of Theorem 8.4, (SU )
mOph(ψ0) is a semiclassical Fourier integral operator associated to the graph

of κm.

Proof. Theorem 1.4 or 1.5 implies the result for m = 1.
Now suppose the lemma has been proved for 1 ≤ m ≤ m′. We shall show that it holds for

m = m′ +1, proving the lemma for positive m by induction. Recall now we assume that suppψ0 ⊂
Dκm′+1 , and use Dκm′+1 ⊂ Dκm′ . Choose ψm′ ∈ C∞

c (B) to be supported on the domain of κ

and to be 1 on {κm′
(y, η) | (y, η) ∈ suppψ0}. Then choose ψsp,m′ ∈ C∞

c ([0, 1)) so that (I −
ψsp,m′(h2∆Y ))Oph(ψm′) = O(h∞). We write

(SU )
m′+1 Oph(ψ0)

= SU (ψsp,m′(h2∆Y ) + I − ψsp,m′(h2∆Y ))Oph(ψm′)(SU )
m′

Oph(ψ0)

+ SU (I −Oph(ψm′))(SU )
m′

Oph(ψ0)

= SUψsp,m′(h2∆Y )Oph(ψm′)(SU )
m′

Oph(ψ0) + SU (I −Oph(ψm′))(SU )
m′

Oph(ψ0) +O(h∞).

That this is a semiclassical FIO associated to κm
′+1 follows from the inductive hypothesis, an

application of Theorem 1.4 or 1.5, and the composition properties of Fourier integral operators.
Thus concludes the proof for positive m.

We now turn to the result for S−1
U . We shall use that since κ((κ(y))′) = y′, using the notation

(Dκ−1)′ = {y | y′ ∈ Dκ−1}, gives (Dκ−1)′ = Dκ.
Lemma 3.1 of [34] implies that STU = SU , where S

T
U denotes the transpose of SU . Then for any

ψ ∈ C∞
c (Dκ), STU Oph(ψ) = SU Oph(ψ) is a semiclassical FIO associated to the scattering map κ.

Denote complex conjugation by C, and let ψ0 ∈ C∞
c (Dκ−1). As an operator on HY , S

−1
U = S∗

U and
S∗
U Oph(ψ0) = C STUCOph(ψ0). But COph(ψ0) = Oph(ψ)C for some ψ ∈ C∞

c ((Dκ−1)′) = C∞
c (Dκ),

so that S∗
U Oph(ψ0) = C SU Oph(ψ)C. Now using that we know that SU Oph(ψ) is a semiclassical

FIO, the properties of FIOs under conjugation by the action of the complex conjugate C, and the
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equality of sets {((κ(y))′, y′) | y ∈ Dκ} = {(κ−1(y), y) | y ∈ Dκ−1} we prove the second assertion in
the special case m = 1.

The general case of negative values of m can be proved by induction, in much the same manner
as for positive m. □

Lemma 8.7. Under the hypotheses of Theorem 8.4, for any m ∈ N, ϵ > 0 there is a ψ ∈ C∞
c (Dκm∩

Dκ−m) so that for h > 0 sufficiently small, ∥(I −Oph(ψ))1[0,1](h
2∆Y )∥TrL2(Y )

≤ ϵh−n+1.

Proof. For m fixed and δ > 0, set

Uδ := {y ∈ B | distT∗Y (y, T
∗Y \ (Dκm ∩ Dκ−m)) > δ}

and Vδ := B \ Uδ. Note that Uδ is open, and Uδ ⊂ Uδ/2. Let ψδ ∈ C∞
c (Uδ/2) ⊂ C∞

c (B) satisfy
0 ≤ ψδ ≤ 1 and 1− ψδ = 0 on Uδ.

Let χδ ∈ C∞
c ([0, 1 + δ); [0, 1]) with χδ(t) = 1 for t ∈ [0, 1], and note

∥(I −Oph(ψδ))1[0,1](h
2∆Y )∥TrL2(Y )

= ∥(I −Oph(ψδ))χδ(h
2∆Y )1[0,1](h

2∆Y )∥TrL2(Y )

≤ ∥(I −Oph(ψδ))χδ(h
2∆Y )∥HSL2(Y )

∥1[0,1](h
2∆Y )∥HSL2(Y )

where ∥ • ∥HS denotes the Hilbert-Schmidt norm. Now

∥(I −Oph(ψδ))χδ(h
2∆Y )∥2HSL2(Y )

= TrL2(Y )

((
(I −Oph(ψδ))χδ(h

2∆Y )
)∗

(I −Oph(ψδ))χδ(h
2∆Y )

)
≤ C(2πh)1−n

∫
T∗Y

|(1− ψδ(y, η))χδ(|η|)|2 dµ+O(h2−n)

for some C > 0 independent of δ and h. Here µ is the Liouville measure. By the Weyl law,
∥1[0,1](h

2∆Y )∥2HSL2(Y )
= cn−1h

1−n vol(Y ) + O(h2−n). Thus there is a constant C0 independent of

δ and h so that
(57)

∥(I −Oph(ψ))1[0,1](h
2∆Y )∥TrL2(Y )

≤ C0h
1−n

(∫
T∗Y

|(1− ψδ(y, η))χδ(|η|)|2
)1/2

dµ+O(h2−n).

The integrand on the right in (57) takes values in [0, 1] and is supported in Vδ ∪ {y ∈ T ∗Y | 1 ≤
|η| ≤ 1 + δ}. Let Wδ = {y = (y, η) ∈ T ∗Y | 1− δ < |η| < 1 + δ}, and note

(58) Vδ \Wδ ⊂ {y ∈ B | distT∗Y (y,B \ (Dκm ∩ Dκ−m)) < δ}
⊂ {y ∈ T ∗Y | distT∗Y ((y,B \ (Dκm ∩ Dκ−m)) < δ} .

Since by hypothesis (2) both B \ Dκm and B \ Dκ−m have zero (2n − 2)-dimensional Minkowski
content, so does B \ (Dκm ∩ Dκ−m) = (B \ Dκm) ∪ (B \ Dκ−m). Thus (58) implies

∫
Vδ\Wδ

1dµ → 0

as δ ↓ 0. Of course
∫
Wδ

1dµ→ 0 as δ ↓ 0. Hence, since

(59)

∫
T∗Y

|(1− ψδ(y, η))χδ(|η|)|2 dµ ≤
∫
Vδ∪Wδ

1dµ

we may choose δ0 > 0 small enough so that

C0

(∫
T∗Y

|((1− ψδ0(y, η))χδ0(|η|)|
2

)1/2

dµ < ϵ/2.
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Then set ψ = ψδ0 , and we have chosen ψ so that

∥(I −Oph(ψ))1[0,1](h
2∆Y )∥TrL2(Y )

≤ (ϵ/2)h−n+1 +O(h2−n).

When h > 0 is sufficiently small, we have the desired estimate. □

Corollary 8.8. Under the hypotheses of Theorem 8.4, for any m ∈ Z and ϵ > 0 there is a
ψ ∈ C∞

c (Dκm ∩Dκ−m) so that for h sufficiently small |TrHY
(f(SU )(I −Oph(ψ))| ≤ ϵh−n+1 sup |f |.

Proof. Let ψ be as guaranteed by Lemma 8.7. Then

|TrHY
(f(SU )(I −Oph(ψ))| = |TrL2(Y )(f(SU )(I −Oph(ψ))1[0,1](h

2∆Y )|
≤ ∥f(SU )∥∥(I −Oph(ψ))1[0,1](h

2∆Y )∥TrL2(Y )
≤ sup |f |ϵh−n+1

for h sufficiently small. □

Lemma 8.9. Let m ∈ Z \ {0}, and ψ ∈ C∞
c (Dκm). Then under the hypotheses of Theorem 8.4,

TrHY
(SmU Oph(ψ)) = o(h1−n).

Proof. This follows from Lemma 8.6, our hypothesis (3) on the fixed point set of κm, and [20,
Proposition 7.1]. □

Proof of Theorem 8.4. Given ϵ > 0 and f ∈ C(S1), use the density of the polynomials in eiθ and
e−iθ in the continuous functions on S1 to choose q ∈ C∞(S1) with sup |f(θ)− q(θ)| < ϵ and so that

q(eiθ) =
∑J
j=−J aje

ijθ for some J ∈ N, aj ∈ C. Choose ψ ∈ C∞
c (DκJ ∩ Dκ−J ) as guaranteed by

Corollary 8.8, applied with m = J .
Now

(60) TrHY
f(SU ) = TrHY

(f(SU )− q(SU )) + TrHY
(q(SU )(I −Oph(ψ))) + TrHY

(q(SU )Oph(ψ)).

Since by the Weyl law HY is of dimension h1−ncn−1 vol(Y ) +O(h2−n) and ∥f(SU )− q(SU )∥ < ϵ,

(61) |TrHY
(f(SU )− q(SU ))| < ϵh1−ncn−1 vol(Y ) +O(h2−n).

By our choice of ψ as in Corollary 8.8, for h > 0 sufficiently small

(62) |TrHY
(q(SU )(I −Oph(ψ))| ≤ ϵh1−n sup |q| ≤ ϵh1−n(ϵ+ sup |f |).

Using a0 = 1
2π

∫ 2π

0
q(eiθ)dθ and Lemma 8.9,

TrHY
(q(SU )Oph(ψ)) =

J∑
j=−J

ajTrHY
(SjU Oph(ψ))

=
1

2π

∫ 2π

0

q(eiθ)dθ TrHY
Oph(ψ) + o(h1−n).(63)

But by our choice of ψ as in Corollary 8.8, for h sufficiently small

|TrHY
(Oph(ψ)− IHY

)| < ϵh1−n,

and since the dimension of HY is cn−1 vol(Y )h1−n +O(h2−n) by the Weyl law,

(64) |TrHY
Oph(ψ)− cn−1 vol(Y )h1−n| < ϵh1−n +O(h2−n).

Using (61- 64) in (60), we find for h sufficiently small∣∣∣∣TrHY
f(SU )−

cn−1

2π
vol(Y )h1−n

∫ 2π

0

f(eiθ)dθ

∣∣∣∣ ≤ 2ϵh1−n (cn−1 vol(Y ) + ϵ+ sup |f |+ 1) + o(h1−n)
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implying

lim
h↓0

∣∣∣∣hn−1TrHY
f(SU )−

cn−1

2π
vol(Y )

∫ 2π

0

f(eiθ)dθ

∣∣∣∣ ≤ 2ϵ (cn−1 vol(Y ) + ϵ+ sup |f |+ 1) .

Since ϵ > 0 is arbitrary, this proves the theorem. □

Appendix A. Warped products with a bulge

This section collects two results for warped products with bulges, as introduced in Section 2.4.2.
These results are a resolvent estimate and a computation of the scattering map for the special case
in which the manifold is a surface of revolution.

We recall the setting. Let f ∈ C∞(R; (0,∞)) satisfy f(s) = 1 if |s| > a and suppose f has a
single nondegenerate critical point in (−a, a), and this point is a maximum of f . Let (Y0, gY0

) be a
smooth compact Riemannian manifold, and set (X, g) = (R× Y0, ds

2 + f4/(n−1)gY0).

A.1. The Resolvent estimate for the warped product with a bulge. Here we bound the
microlocally cut-off resolvent on a warped product with a bulge. We give a result that is stronger
than we need in terms of the spatial cut-off (a weight in |s|, rather than a compactly supported
function in s). Our presentation uses a commutator argument and is inspired by [40, 15] and
references therein; see also [11, Section 2].

Lemma A.1. Let f , Y0, and X be as described above, and let P = h2∆X .Then for any ϵ, α > 0
there are C0 = C0(ϵ, α), h0 = h0(ϵ, α) > 0 so that

(65) ∥1[0,1−ϵ](h
2∆Y0

)(1 + |s|)−(1+α)/2(P − 1− i0)−1(1 + |s|)−(1+α)/2∥ ≤ C0h
−1 for 0 < h ≤ h0.

We emphasize that while ϵ > 0 is small, it is fixed here.

Proof. In this case

(66) h2∆X = f(s)−1
(
−h2∂2s + h2f ′′(s)/f(s) + h2∆Y0

f(s)−4/(n−1)
)
f(s).

Since f is bounded, and is bounded below away from 0, it suffices to study the resolvent of the
operator in parentheses on the right hand side of (66). To do so, we will separate variables. Set
φ = f(s)−4/(n−1). We will show that for any α > 0 and ϵ > 0 there is a h0 = h0(ϵ, α), C0 = C0(ϵ, α)
so that

(67) ∥(1 + |s|)−(1+α)/2(−h2∂2s + τφ− 1− iδ)−1(1 + |s|)−(1+α)/2∥L2(R)→L2(R) ≤ C0h
−1

for 0 < h < h0, 0 < δ < 1, 0 ≤ τ ≤ 1− ϵ.

Then using that this implies ∥h2(f ′′/f)(−h2∂2s + τφ − 1 − iδ)−1(1 + |s|)−(1+α)/2∥ = O(h), the
estimate (67) together with a separation of variables using (66) proves the lemma.

We give a proof of (67) that is valid uniformly for all τ ∈ [0, 1− ϵ]. Without loss of generality we
can assume that the maximum of f , and hence the minimum of φ, occurs at s = 0 so that sφ′(s) ≥ 0.
We also remark that 0 < φ ≤ 1. In order to simplify notation, we introduce Qτ := −h2∂2s + τφ− 1,
local to this proof.

Let u ∈ H2(R) satisfy u(s), u′(s) → 0 as s→ ±∞ and (1 + |s|)(1+α)/2(Qτ − iδ)u ∈ L2(R). Let
w ∈ C1(R;R) be bounded, along with its first derivative. Now using inner products on L2(R), add
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the equalities

⟨w′u, u⟩ = −2ℜ⟨wu, u′⟩
h2⟨w′u′, u′⟩ = −2ℜ⟨wh2u′′, u′⟩

and

−τ⟨(wφ)′u, u⟩ = 2ℜ⟨τwφu, u′⟩
to get

(68) ⟨w′u, u⟩+ h2⟨w′u′, u′⟩ − τ⟨(wφ)′u, u⟩ = −2ℜ⟨w(Qτu− iδu), u′⟩+ 2δℑ⟨wu, u′⟩.

We wish to choose w so that both w′ and w′ − τ(wφ)′ are nonnegative, with w′ > 0. To do so, set
w(s) = w1(s)φ

β , where w1(s) is the odd function that is given for s > 0 by w1(s) = 1− (1 + s)−α

and β > 0 is a constant to be chosen below. The restriction α, β > 0 ensures w′ > 0, since w′
1 > 0

and w1(s)φ
′(s) ≥ 0. We compute

w′ − τ(wφ)′ = φβ−1 (w′
1φ(1− τφ) + w1φ

′(β(1− τφ)− τφ)) .

Choosing β = 2/ϵ and using τ ≤ 1− ϵ, 0 < φ ≤ 1, yields

w′ − τ(wφ)′ ≥ φβ−1 (w′
1φϵ+ w1φ

′(βϵ− 1 + ϵ))

≥ φβw′
1ϵ.(69)

Since ϵ > 0 is fixed and the minimum of φ is strictly positive, there is a c0 > 0, independent of
τ ∈ [0, 1− ϵ] so that

(70) w′ − τ(wφ)′ ≥ c0w
′
1 = c0α(1 + |s|)−(1+α).

Using these in (68) and estimating the right hand side of (68) using the Cauchy-Schwarz inequal-
ity yields, for some constant C independent of h, τ ∈ [0, 1− ϵ] and δ > 0, and any γ > 0

(71) ∥
√
w′

1u∥2 + h2∥
√
w′u′∥2 ≤ C

γh2
∥(w/

√
w′)(Qτu− iδu)∥2 + Cγh2∥

√
w′u′∥2 + Cδ∥u∥∥u′∥.

We will use below that we can simplify this somewhat, by using that w is bounded and that
w′ ≥ c1w

′
1 for some c1 > 0. Now

(72) ∥u′∥2 =
1

h2
⟨−h2u′′, u⟩ = ℜ 1

h2
⟨(Qτ − iδ)u, u⟩+ 1

h2
⟨(1− τφ)u, u⟩

≤ 1

h2

∥∥∥∥∥ 1√
w′

1

(Qτ − iδ)u

∥∥∥∥∥∥∥∥√w′
1u
∥∥∥+ 1

h2
∥u∥2

and

δ∥u∥2 = ℑ⟨(Qτ − iδ)u, u⟩ ≤

∥∥∥∥∥ 1√
w′

1

(Qτ − iδ)u

∥∥∥∥∥∥∥∥√w′
1u
∥∥∥

giving, if 0 < δ ≤ 1 and γ > 0
(73)

δ∥u∥∥u′∥ ≤ 1

h

∥∥∥∥∥ 1√
w′

1

(Qτ − iδ)u

∥∥∥∥∥∥∥∥√w′
1u
∥∥∥ (1 + δ)1/2 ≤ 1

γh2

∥∥∥∥∥ 1√
w′

1

(Qτ − iδ)u

∥∥∥∥∥
2

+ γ
∥∥∥√w′

1u
∥∥∥2 .
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Using this in (71) and simplifying as indicated above yields, for some constant C independent of
τ ∈ [0, 1− ϵ] and δ ∈ (0, 1],

∥
√
w′

1u∥2 + h2∥
√
w′u′∥2 ≤ C

γh2

∥∥∥∥∥ 1√
w′

1

(Qτ − iδ)u

∥∥∥∥∥
2

+ Cγh2∥
√
w′u′∥2 + Cγ∥

√
w′

1u∥2.

Choosing γ sufficiently small, we can absorb the second and third terms on the right into the
corresponding terms on the left, yielding, on using estimates for w′, w′

1 and with a new constant C

∥(1 + |s|)−(1+α)/2u∥2 + h2∥(1 + |s|)−(1+α)/2u′∥2 ≤ C

h2

∥∥∥(1 + |s|)(1+α)/2(Qτ − iδ)u
∥∥∥2 .

Dropping the second term on the left and applying the resulting inequality with u = (Qτ−iδ)−1(1+
|s|)−(1+α)/2v for v ∈ L2(R) proves (67). □

We remark that the estimate (67) holds for any fixed τ ∈ [0, 1− ϵ] from well-known non-trapping
results, e.g. [37, 22, 7]. In fact, a rescaling and these known non-trapping results prove the estimate
uniformly for τ ∈ [ϵ′, 1−ϵ] for any fixed ϵ, ϵ′ > 0. We are unaware, however, of a result that directly
implies (67) uniformly for all τ ∈ [0, 1− ϵ], so we have chosen to give a direct proof here, valid for
all values of τ in this interval.

A.2. Scattering map for a surface of revolution with a bulge. In this section we compute
the scattering map for a surface of revolution with a bulge, as in Section 2.4.2. We use the function
f and manifold X introduced above (Section A or 2.4.2), but specialize to the case Y0 = S1 and
X = R× S1.

It will be convenient to use a coordinate θ ∈ R on S1, identifying points which differ by an
integral multiple of 2π. The manifold X has two connected ends and Y = S1L ⊔ S1R, where S1L
corresponds to s→ −∞, the “left” end. On S1L and S1R we use the coordinate θ which is inherited
from the factor of S1 in X.

Lemma A.2. Let X = Rs × S1θ be a surface of revolution with a bulge as described above, and let
{r = 0} = {s = −a− 4} ⊔ {s = a+ 4}. Then if (θ−, η−) ∈ T ∗S1R with |η−| < 1,

κ(θ−, η−) =

θ− + η−

∫ a+4

−a−4

1

f2(s̃)
√
(f(s̃))4 − η2−

ds̃, η−

 ∈ T ∗S1L.

On the other hand, if (θ−, η−) ∈ T ∗S1L and |η−| < 1, then κ(θ−, η−) ∈ T ∗S1R and it is given by the
same expression.

Proof. We use the coordinates (s, θ, ρ, η) on T ∗X. (We are going back to the notation used at the
beginning of the paper where the spatial variables come first, followed by the corresponding fiber
variables.) The principal symbol of the Laplacian is p = ρ2 + (f(s))−4η2. Thus the equations for
the Hamiltonian flow are

(74)
ṡ = 2ρ θ̇ = 2(f(s))−4η
ρ̇ = 4(f(s))−5f ′(s)η2 η̇ = 0.

Denote the initial conditions by (s0, θ0, ρ0, η0), and note that η is constant under the Hamiltonian
flow, while s and ρ are independent of θ0. Thus, denoting the Hamiltonian flow by Φt, we have

Φt(s0, θ0, ρ0, η0) = (s(t, s0, ρ0, η0), θ(t, s0, θ0, ρ0, η0), ρ(t, s0, ρ0, η0), η0).
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We shall prove the first equality of the lemma; the second can be derived from the first. Thus
we wish to consider initial data

(75) (s0, θ0, ρ0, η0) = (a+ 4, θ0,−
√
1− η20 , η0), where |η0| < 1.

Since p is constant under the Hamilton flow, ρ2+f−4(s)η2 = ρ20+η
2
0 = 1 using that the initial data

are as in (75). Thus since f(s) ≥ 1 and ρ0 < 0, ρ = −(1− f−4(s)η2)1/2. Using (74) shows that s is
a strictly decreasing function of t for such initial data. Thus κ(θ0, η0) ∈ T ∗S1L, and we wish to find
θ(t−a−4, s0, θ0, ρ0, η0) where t−a−4 is the value of t for which s(t, s0, ρ0, η0) = −a− 4. This value of
t depends on η0, but we suppress this in our notation. Using (74),

(76) θ(t−a−4, s0, θ0, ρ0, η0)− θ0 = η0

∫ t−a−4

0

2f−4(s(t, s0, ρ0, η0))dt.

To evaluate the integral in (76) we shall think of s, rather than t, as the independent variable,
which works since s is a strictly decreasing function of t. Using (74) to find the derivative of t with
respect to s gives

θ(t−a−4, s0, θ0, ρ0, η0)− θ0 = 2η0

∫ −a−4

a+4

f−4(s̃)
1

2ρ(s̃)
ds̃ = η0

∫ a+4

−a−4

f−4(s̃)
1√

1− f−4(s̃)η20
ds̃

where we use s̃ as a variable to emphasize it is not a function of t here.
□

A similar, but more complicated, computation can be made for an hourglass-type surface of
revolution.

Using Lemma A.2 we can see that for a surface of revolution with a bulge the scattering map
κ satisfies Hypothesis 3 of Section 8. Indeed, it is clear that for any m ∈ Z, κ2m+1 has no fixed
points. Moreover, for each fixed value of η−, the θ component of κ2m(•, η−) is a rotation bymδθ(η−),

where δθ(η−) := 2η−
∫ a+4

−a−4
1

f2(s̃)
√

(f(s̃))4−η2−
ds̃. Thus fixed points of κ2m correspond to values of η−

so that mδθ(η−) is an integral multiple of 2π. But since δθ is a smooth, strictly increasing function
of η− ∈ (−1, 1), for m ̸= 0 this can happen only for isolated vales of η−, with accumulation points
only at η− = ±1.
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line. Ann. Sci. Éc. Norm. Supér. (4) 54 (2021), no. 4, 1051-1088.

[12] T.J. Christiansen and K. Datchev, Wave asymptotics for waveguides and manifolds with infinite cylindrical

ends. IMRN 2022, no. 24, 19431-19500. arXiv:1705.08972v2
[13] T.J. Christiansen and M. Taylor, Inverse problems for obstacles in a waveguide. Comm. PDE 35, Issue 2 (2010)

328-352.

[14] T. Christiansen and M. Zworski, Spectral asymptotics for manifolds with cylindrical ends. Ann. Inst. Fourier
(Grenoble) 45 (1995), no. 1, 251-263.

[15] K. Datchev, Quantitative limiting absorption principle in the semiclassical limit. Geom. Func. Anal., 24:3

(2014), pp. 740–747.
[16] K. Datchev, J. Gell-Redman, A. Hassell, and P. Humphries, Approximation and equidistribution of phase shifts:

spherical symmetry. Comm. Math. Phys. 326 (2014), no. 1, 209-236.

[17] S. Dyatlov and J. Zahl, Spectral gaps, additive energy, and a fractal uncertainty principle. Geom. Funct. Anal.,
26:4 (2016), pp. 1011–1094.

[18] S. Dyatlov and M. Zworski, Mathematical theory of scattering resonances, American Mathematical Society,
Providence, 2019.

[19] J. Gell-Redman and A. Hassell, The distribution of phase shifts for semiclassical potentials with polynomial

decay. IMRN 2020, no. 19, 629-6346.
[20] J. Gell-Redman, A. Hassell, and S. Zelditch, Equidistribution of phase shifts in semiclassical potential scattering.

J. Lond. Math. Soc. (2) 91 (2015), no. 1, 159–179.

[21] J. Gell-Redman and M. Ingremeau, Equidistribution of phase shifts in obstacle scattering. Comm. Partial
Differential Equations 44 (2019), no. 1, 1-19.

[22] C. Gérard and A. Martinez, Principe d’absorption limite pour des opérateurs de Schrödinger à longue portée.

C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 3, 121–123.
[23] C. Gérard and A. Martinez, Semiclassical asymptotics for the spectral function of long-range Schrödinger op-

erators. J. Funct. Anal. 84 (1989), no.1, 226-254.

[24] C.I. Goldstein, Meromorphic continuation of the S-matrix for the operator −∆ acting in a cylinder. Proc.
Amer. Math. Soc., 42:2 (1974), pp. 555-562.

[25] V. Guillemin, Sojourn times and asymptotic properties of the scattering matrix. Proceedings of the Oji Seminar
on Algebraic Analysis and the RIMS Symposium on Algebraic Analysis (Kyoto Univ., Kyoto, 1976). Publ. Res.

Inst. Math. Sci. 12 (1976/77), supplement, 69-88.

[26] V. Guillemin and S. Sternberg. Semi-classical analysis. International Press, Boston, MA, 2013.
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