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ABSTRACT. We study the microlocal properties of the scattering matrix associated to the semi-
classical Schrédinger operator P = h?Ax + V on a Riemannian manifold with an infinite cylin-
drical end. The scattering matrix at £ = 1 is a linear operator S = S} defined on a Hilbert
subspace of L?(Y) that parameterizes the continuous spectrum of P at energy 1. Here Y is the
cross section of the end of X, which is not necessarily connected. We show that, under certain
assumptions, microlocally S is a Fourier integral operator associated to the graph of the scattering
map k : D, — T*Y, with D, C T*Y. The scattering map x and its domain D, are determined
by the Hamilton flow of the principal symbol of P. As an application we prove that, under
additional hypotheses on the scattering map, the eigenvalues of the associated unitary scattering
matrix are equidistributed on the unit circle.

1. INTRODUCTION

For certain Euclidean or asymptotically conic scattering problems it is known that the scattering
matrix quantizes the scattering relation, a mapping determined by the bicharacteristic flow of the
principal symbol of the operator in question, e.g. [1, 2, 4, 29, 28]. Here we consider this problem
for a class of manifolds with infinite cylindrical ends with an application to the equidistribution of
phase shifts of the unitary scattering matrix. Our results are related to results of [41], but are quite
different in methodology and technically apply to different classes of manifolds.

Throughout this paper, (X,¢g) will denote a smooth connected Riemannanian manifold with
infinite cylindrical end. That is, X has a decomposition as X = X¢ U X, where X¢ is a smooth
compact manifold with boundary 0X¢c =Y, and X, & (—4,00) X Y. More precisely, if we denote
by gy the restriction of g to TY = TOX¢ (this is a metric on Y'), we assume that X is isometric to
(—4,00) x Y with the product metric (dr)? + gy where 7 is the natural coordinate on (—4,c0). We
do not necessarily assume that Y is connected. For convenience, we extend r to a smooth function
on X, so that r < —4 on X¢. The (non-negative) Laplacians on X and Y are denoted by Ax, Ay
respectively.

The purpose of this paper is to study the microlocal properties of the scattering matrix associated
to the semiclassical Schrodinger operator

PZhQAx—I—V.

Here V = V(h,x) = Vo(z) + h®Va(x), with Vg, Vo € C°(X¢). The scattering matrix is a linear
operator S = S(h) : 1j,1)(h*Ay)L*(Y) = 1j0,1)(h*Ay)L*(Y) (where 1; denotes the characteristic
function of the interval I'), whose definition we recall in Section 1.2. The space

(1) Hy =101 (R°Ay)L*(Y) = {f € L*(Y) | Ljo,y(R*Ay) f = [}
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parameterizes the continuous spectrum of P at energy 1, see [12, Section 2.4]. When 1 & spec(h?Ay),
the spectrum of h?Ay-, Hy parameterizes the space of bounded, but not L2, elements of the null
space of P — I.

We fix once and for all a semiclassical quantization scheme denoted Op,,, associating to compactly
supported smooth functions 1) on T*Y semiclassical pseudodifferential operators Op,, (/) on L2(Y).
Our main Theorems, 1.4 and 1.5, state that, under certain assumptions on the resolvent (P — 1 —
i0)~1, for suitable functions ¢ € C°(T*Y’) the compositon SoOpy, (1) is a Fourier integral operator
associated to the graph of the scattering map k. We define x in Section 1.1. Under some additional
hypotheses, including that the set of fixed points of kK™ has measure zero for all m = 1,2..., we
use these results to prove in Theorem 8.4 that the eigenvalues of the associated unitary scattering
matrix Sy (unitary on Hy ), are equidistributed on St.

The main results are precisely stated in Section 1.3.

1.1. The scattering map. The scattering map k is defined on an open subset D,; of the open unit
tangent ball bundle of Y,

B:={y=(y,n) €T"Y | [n| <1}.
The map & is analogous to the scattering map of [29], and related to the scattering relation of [1, 2]
and others.

The definition involves the Hamilton flow ®; of p(z,&) = |£]? + Vo (), the principal symbol of P,
on T*X. Note that since pi7-x_ = |£]?, the projections of the trajectories of ®; in T* X, C T*X
to X are geodesics on the product manifold (—4,00) x Y.

We will use the following notation: If 7 = (y,n) € B, we let

(2) Vi(g) = (O7ya:|: 1- |77|2777) S T(T),y)Xoo C T*X

That is, v+ (y) are unit covectors in T(j, )X whose restrictions to {0} x T,)Y is n, and v_(7) (resp.
v4 (7)) has a non-trivial 9, component in the direction of X¢ (resp. away from X¢).

Definition 1.1. A point _ = (y_,n—) € B is in the domain D, of the scattering map & if and
only if the trajectory of v_(g) under the Hamilton flow ®; of p is not forward trapped, that is, if
and only if

3T > 0such that V¢ >T D, (v_(7)) € Xeo-
For such §_, thereisa ty =t (y_) > 0 and a 7, € B such that

Oy, (v(@_)) = va(Hy),
and we define
K(I-) =Ty
Thus k: D, - BCT*Y.

Remarks 1.2. Some remarks may be in order.

(1) Under the hypotheses of the definition, let (z(t),£(t)) = ®:(v_(¥_)). Since z(0) = (r(0), y(0))
(0,y_) € X and 7(0) < 0, z(t) € X¢ for some ¢ > 0. The non-trapping condition means
that at some later time the trajectory (x(t),£(t)) will exit T*X¢ and lie over X .

(2) If V =0, the map & is the billiard map of {r < 0}, a Riemannian manifold with boundary.

(3) The scattering map does depend on the choice of decomposition of X as X = X¢ U X,
since this choice determines the location of the set {r = 0} C X,. We will see in Remark 6.5



SEMICLASSICAL STRUCTURE OF THE SCATTERING MATRIX 3

that a different choice of origin for the r coordinate results in a scattering map ' : D,» — B
which is of the form

(3) K =0orod and D =9 (D,),

for a certain canonical transformation ¢ : B — B. (Note that x and k' are not conjugate.)
(4) For all g = (y,n) € T*Y let ¥ = (y,—n). Then, using the time-reversibility of the flow ®;,
it is not hard to see that k(x(y)’) = 7. Therefore k is one-to-one.
(5) Examples show that D, can be a proper subset of B.

1.2. The scattering matrix. For a manifold with an infinite cylindrical end, the scattering matrix
for the operator P = h?Ax + V is a linear operator from Hy to itself, where Hy is defined in (1).
Thus the scattering matrix acts on a finite-dimensional space whose dimension increases as h > 0
decreases, and thus can in fact be identified with a matrix, albeit one whose dimension changes
with h. In [31, 8, 34] the scattering matrix is defined via its entries in a particular basis. It is more
convenient here to take an approach like that is used in the Euclidean or cylindrical end case in
[32, Sections 2.7, 7.3], defining the scattering matrix by its action on any element of Hy . That the
two approaches yield the same operator is well-known, easy to check, and is a consequence of our
proof of Lemma 1.3.

We also note that there are several conventions in the literature as to exactly which operator is
referred to as the scattering matrix. One, which we shall denote Sy, is normalized to be unitary on
Hy; this is found in [8, 34], for example. We shall work primarily with the unnormalized scattering
matrix that we denote S, found in [31]. The two are related by Sy = (I—thy)i_/‘lS(I—hZAy)I_l/Zl,
where (o) is the Heaviside function. We shall refer to Sy as the unitary scattering matrix.

The (unitary) scattering matrix can also be defined in a time-dependent way, via the scattering
operator. This is done in [35, Section 5]; see also [8, Section 2].

Let (I —h?Ay)'/? be the operator on L?(Y) defined by the spectral theorem, with non-negative
real and imaginary parts. Suppose F € (r)!/?*¢H?(X) for all € > 0 and F is in the null space of
P — 1. Suppose in addition that h? is not the reciprocal of an eigenvalue of Ay. Then on X, a
separation of variables argument shows that we can write

—ir(I—h2 1/2 ir(I—h2 1/2
(4) Flx,. (ny)=e (I=hay) /hl[O,l](thY)ff'i‘e (I=h"Ax) kg,

for some functions fy € L*(Y). We shall refer to f_ as the incoming data, and fy as the outgoing
data. If 1 & spec(h®Ay ), then the (unnormalized) scattering matrix S = S(h) is such that:

(5) S (Lo (R*Ay) f-) == Lo (h*Ay) f4.
More precisely:

Lemma 1.3. If 1 & spec(h?Ay), for every f € Hy there exists F € (r)*/?**H?(X) in the null
space of P—1 such that (4) holds with 1j 1j(R*Ay) f— = f, and the relation S(f) = 191](h*Ay ) f4
defines an operator S : Hy — Hy. Moreover, if 1 € spec(h3Ay), then limpp, S(R') exists as a
bounded operator.

If 1 € spec(h3Ay), then we define S(ho) = limp/4p, S(R).

Although the results of Lemma 1.3 are known (e.g. [31, 8, 34, 32]), for the convenience of the
reader we give a proof in Section 3. Additionally, the proof shows the operator S is (up to sign
conventions) consistent with the non-unitary scattering matrices of [31, 8, 34].

Like the scattering map, the scattering matrix depends on the choice of coordinate r on the
end, which corresponds to fixing the decomposition X = X U X. For example, if for ¢ > —4
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we instead write X = X, U X/, with X, = XcU{z = (ry) € Xo | =4 < r < ¢} and
X, =X\ {z = (ry) € Xoo | =4 < 7 < ¢y}, then the coordinate in the new decomposition
isr' =r—c —4 With S’ denoting the scattering matrix for the decomposition X¢ U X/,

. 1/2 . 1/2
S = eilcot)I=h*Ay) P /h geilco+)(I=h*Ay) % /h Compare this with the corresponding change in

the scattering map, (3).

1.3. Main results. In our main theorem we assume that an appropriate cut-off resolvent is
bounded at high energy-this is hypothesis (6) of Theorem 1.4. Section 2 contains examples of
manifolds and potentials for which this hypothesis holds, and [11, Theorem 3.1] gives a technique
for constructing such manifolds. Section 2 also contains examples for which the weaker resolvent
bound (7) and the other hypotheses of Theorem 1.5 hold.

Throughout the paper, we use the notation (P —1440)~! = lims o(P — 1 +4) L.

Theorem 1.4. Suppose there are constants Cy, No, hg > 0 so that
(6) 110,11 (F*Ay) 101 (r) (P — 1 —i0) " Lo 07 (r)]| < Coh™™° for 0 < h < hy.

Let op € C(T*Y) have its support in the domain of the scattering map. Then for 0 < h < hg
S Opy, (W) and Sy Opy, (¥) are semi-classical Fourier integral operators associated with the graph of
the scattering map k.

Proposition 7.4 gives a more explicit expression for the scattering matrix using the Schrodinger
propagator and some operators which map between L?(Y) and L?(X,,). This explicit expression
shows how the scattering matrix is a quantum analog of the scattering map defined in Section 1.1;
see also Section 1.4.

We remark here that there is some flexibility in choosing the exact cut-offs in (6): we could
replace 1(o.1(r) by 1pp,c)(r) and 1_ (1) by L(_ooq)(r) if =4 < a < b < ¢ < oo. Although we do
not prove this, Section 5 proves some results in this direction.

A more restrictive assumption on the manifold and operator than in Theorem 1.4 allows us to
make a weaker assumption on the resolvent bound. In this next theorem we assume that X is
diffeomorphic to R x Y, but we do not assume that the metric is globally a product metric. In
Section 2 we give two families of examples for which the metrics on X have a warped product
structure and the resolvent for P = h? Ay satisfies the estimate (7), but which have quite different
trapping properties and quite different quantitative behavior of the eigenvalues of Ax.

Theorem 1.5. Let (Yy, gy,) be a smooth compact Riemannian manifold, and let g be a metric on
X =R x Yy which is the product metric (dr)? + gy, outside of a compact set. Let P = h*Ax +V
satisfy [P, Ay,] = 0. Suppose for any e > 0 there are constants Cy = Cy(e), No = No(e), ho =
ho(e) > 0 so that

(7) Hl[()’l,e](hQAy)l[O’l] (T)(P —-1- 7;0)_11(,00}0] (’I“)” < Coh_NU fO’F 0<h < ho.

Let v € CP(T*Y) have its support in the domain of the scattering map. Then for 0 < h < hg
S Op,(¥) and Sy Opy, (¥) are semi-classical Fourier integral operators associated with the graph of
the scattering map k.

These two theorems are proved by combining the results of Propositions 6.9 and 7.4.

In Section 8 we use these theorems to prove Theorem 8.4. This shows that under some addi-
tional hypotheses in the semiclassical limit the eigenvalues of the unitary scattering matrix Sy are
equidistributed.
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We now comment on the resolvent estimates, (6) and (7). In Euclidean or hyperbolic scattering
settings bounds on a cut-off resolvent of a semiclassical operator are well known under non-trapping
assumptions on the bicharacteristic flow of the associated Hamiltonian. Moreover, some estimates
are known under assumptions that the trapping is relatively mild; see, for example, [42, Section 3]
for a recent survey. All of the operators we consider here have nontrivial trapping, as each geodesic
in Y corresponds to a trapped bicharacteristic of P in {p =1} N{r = ¢} C T* X, for any ¢ > —4.

For manifolds with infinite cylindrical ends, (P —1 —i0)~! = (h?Ax +V — 1 —i0)~! can have
poles for a sequence of h; | 0. For example, let (Yp, go) be a compact Riemannian manifold,
and consider the simplest case X = R x Y with the product metric. Then for any nontrivial
X € C(X), x(h?Ax —1—1i0)~!y has a pole whenever 1/h? is an eigenvalue of Ay, though in this
case including a spectral projection in Ay as is done in (6), as well as a spatial cut-off, is enough
to ensure a bound which is polynomial in h. Theorem 3.1 of [11] gives a technique of constructing
manifolds (X, g) and operators P = h?Ax + V so that for any y € C°(X), ||[x(P — 1 —i0)~ 1y
is polynomially bounded in h. In Section 2 below we give some examples, most using results from
[11], for which (6) or (7) holds.

In an effort to simplify the exposition, our results are for the scattering matrix at fixed energy
1, with corresponding hypotheses (6) and (7) on the resolvent at energy 1. However, as is well
known a rescaling can be used to prove corresponding results at other positive energies. Let E > 0,
and write P — E = E(£P — 1) = E(5(Ax + V) — 1). Setting (X’,¢') = (X, Eg), we have
Ax: = +Ax. By defining ' = E~1/2(r + 4) — 4, we see that we can decompose X’ = X(, U X/
so that ¢' 1x/_ = (dr’ )2 + Egy, as required in our definition of a manifold with infinite cylindrical
end. Then results for the scattering matrix of P’ = Ax/ + %V at energy 1 then imply results for
the scattering matrix of P at energy E.

1.4. Idea of the proof. In order to prove the theorem, we construct the Poisson operator P, or,
more precisely, the Poisson operator multiplied on the right by Opy, (), P Op,,(¢). We define the
Poisson operator below, and show in Section 3 that it is in fact well-defined.

Definition 1.6. Suppose 1 ¢ spec(h?Ay’). The Poisson operator is a linear operator P : L(Y) —
(r\1/2+8 (12 (X)) for any 6 > 0 so that for all f € L*(Y), (P—1)Pf = 0 and Pf has specified incoming
data, namely

—ir(I—h2 1/2 ir(I—h2 1/2
(8) (Pf) Ix= e mUMA g (B Ay ) f 4 T IIAE

for some f; € L?(Y). Moreover, we require that (Pf, g) = ((r)~Y/27Pf, (r)}/2+9g) = 0 for any L?
eigenfunction g of P with eigenvalue 1.

By the definition of the scattering matrix,
S0 (R°Ay)f = 1.1 (R°Ay) f+,

where f is as in (8).

We note that a separation of variables on the end X, shows that any L? eigenfunction of P
must be exponentially decreasing on X, so that its product with an element of (r)1/2+9L2(X)
is integrable. Thus the pairing (Pf,g) := ((r)"/279Pf (r)}/?*9g) makes sense. Without the
restriction involving the eigenfunctions with eigenvalue 1, P is not uniquely determined at values
of h for which 1 is an eigenvalue of P = P(h).

We now outline the ideas behind the microlocal construction of P Opy, (1), omitting details here
for clarity. Let ¢ € C2°(B) and choose 1), € C°([0,1)) so that [|¢s,(h?Ay) Op,(¥)|| = O(h™).
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First, we construct Pappy, an approximation of Py, (h2Ay ) Opy, (1), satisfying the following prop-
erties:

o If fo = {f_(h)}o<n<n, C L*(Y) is a tempered family, then P, f— has an expansion of
the form (8), with f replaced by 1, (h2Ay) Opy, (¥) f-.
o [|[(P—=1)Puppr|l = O(h*>), and (P — 1)Pupp, f— is compactly supported.
If we can construct such an approximation Pappy, then we can find Pig,(h2Ay) Opy, () by using
the outgoing resolvent on X to solve away the error, giving

Pwé‘p(fﬂAY) Opy(¢) = Pappr — (P =1 - io)_l(P = 1)Pappr-
This is the point at which the hypothesis (6) or (7) is used. We note that P does depend on ), but
we omit this in our notation.

We construct Pap,pr using cut-off functions to piece together three terms: on the end X, we use
both the incoming and the outgoing resolvents on the product

X = R, x Y, metric (ds)? + g1y,

and on a compact subset of X we use (roughly) f(f v eit/he=tP/h gt where ty, > 0 is appropriately

chosen. In studying the outgoing and incoming resolvents on the product manifold X = R x Y,
the operators

9) Tof = / eﬂrl(u_h%y)1/2)/hf(T/7 o)dr', Ty : L2 (R xY) — L*(Y)
R

arise naturally, see Lemma 4.2. In order to ensure Pypp,, has the desired incoming data, we shall need
a right inverse of T_. Let x € C°((—1/4,0); R4) satisfy [ x(r)dr =1, and set, for g € C>(Y),

T 12 1/2
(10) Raig = x(r)e™rU=mav)it/hg,
so that Ty Ry = 1.

Thus we find Pyppr as a sum Puppe = A1 + Az + Az (see (45) for details). The operator A; is
determined by (h*A —1+40)"'R_ and is chosen so that

Ay Opy () - 1xo= e U= A 2 /hyy (B2 A L) Opy (1) f-

—that is, Ay gives the desired incoming data; compare (8) and Lemma 18. Moreover, the way in
which A; is chosen ensures the error (P — 1)A; f_ is incoming in the sense that

WEL (P - DA f-) c{(ry,—v1—[nl?n) € T" X : (y,m) €T7Y : [n] <1},
that is, the wavefront set is contained in bicharacteristics pointing towards Xs. The operator As
is supported on a compact subset of the manifold X, and it is built using fot v eit/he=itP/hqt for
suitably chosen t, € (0,00). Using the identity (P — 1) fOT et/ he=tPIhgt = jp(eT/he= /M _ T),
the operator Ay is chosen to solve away the incoming error (P — 1)Aj, but at the cost of a new

error. The new error, (P — 1)(A; + As), is O(h*°) away from the end X, and on the end X, is
outgoing in the sense that

WFh((P - 1)(A1 +A2)f7) C {(T,y, 1- |77|2>77) € T*Xoo : (yJ]) € T*Yv |7)| < 1}

The operator As solves away this new error, by using the outgoing resolvent on X. This third
operator, As, contributes an outgoing term to the expansion of P,y on the end X.

Proposition 7.4 gives, up to small error, an explicit expression for the (cut-off) scattering matrix
involving R_, e"*+P/" and T,. We can read off an approximation of SOp,()f_ from the
outgoing term in Pappr f—, and this comes from the term Aj described above. Since As solves away
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the error (P —1)(A; + As), we can see the operator R_ in the expression for the scattering matrix
as originating from A;, e *+F/" as originating from the use of the propagator in the construction
of Ay, and T, as coming from the use of the outgoing resolvent on X in As, see Lemma 4.2. In
conclusion, if 1 ¢ spec(h?Ay) and (6) holds, then we have that

S Opy,(v) = BiTy Bye /" BsR_B, Op,, (v) + O(h™),

where Bj, j = 1,...,4 are semiclassical pseudodifferential operators needed to make the equality
hold. (They are explicitly given in the statement of Proposition 7.4, but we omit their definitions
here to focus on the bigger picture.)

The operators e *+"/P T and R_ (the latter two pre-composed with suitable cutoffs that
appear in the expression above) are semi-classical Fourier integral operators whose canonical rela-
tions roughly parallel the construction of the scattering map , as we now explain. (For the precise
descriptions of these relations see Section 6.) Recall that for every 5 € B there is a corresponding
incoming bicharacteristic, namely

V= Pu(v- ()
The relation ©7 of R_ relates points 3 in the unit cotangent bundle of Y with the points of a
certain segment 7Y of Y,
7= {" | te©tm)}

The pseudodifferential factors to the right of R_ restrict the domain of this relation to a subset of B
such that, for a certain time t,, the image under ®;, of ¥ is over (0,00) XY C X for i € supp .
Then ®,,(77) is the image of 77 under the canonical relation of e~ P/h_ Finally, the relation O
of Ty relates points in ®;, (7¥) with the image «(¥) of 7 under the scattering map. See Figure 1.

Comparing with the steps in the construction of k, the canonical relation of R_ is analogous
to the map B 3 7 — v_(%), the relation of e~**F/" is analogous to flowing @7 (v-(¥)), and the
relation of Ty is analogous to projecting @) (v—(¥)) — £(¥).

{0} xY

to X¢

FIGURE 1. § € D, and two segments of the corresponding bicharacteristic v¥. The
pair (7,%) is in the canonical relation of R_, W = ®;,(v), and (k(y), w) is in the
canonical relation of 17 .
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Part of the proof of the theorems is to carefully check the various compositions of FIOs which
occur, not only in the expression for the scattering matrix, but also in the construction of Papp,.
This is done in Section 6. The constructions of P Op, (¢) and S Op,,(v) are carried out rigorously
in Section 7.

1.5. Background and related work. An introduction to the spectral and scattering theory of
manifolds with infinite cylindrical ends can be found in [24, 27, 31], with further results for the
scattering matrix in [8, 34]. A relatively short self-contained introduction may also be found in [12,
Section 2]. The papers [9, 13] use a detailed microlocal analysis of the scattering matrix applied to
a specific function in an inverse problem.

In [41] Zelditch and Zworski consider a family of surfaces of revolution having a single connected
asymptotically cylindrical end, proving a result for the pair correlation measure of the phase shifts of
the (unitary) scattering matrix. This is stronger than our equidistribution result, Theorem 8.4, but
is for a particular class of surfaces of revolution. Additionally, Proposition 3 of [41] shows that for
the surfaces under consideration the truncated scattering matrix (in their setting, Sl ;_¢ (h2Ay))
is a semiclassical quantum map associated to the scattering map x. The paper [41] uses the warped
product structure of the surface and a separation of variables argument to reduce the problem to a
study of a family of one-dimensional problems.

There are many papers which use microlocal analysis to study the properties of the scattering
matrix in Euclidean scattering. Alexandrova [1, 2] shows that under suitable assumptions the scat-
tering amplitude for a compactly supported perturbation of the semiclassical Euclidean Laplacian
quantizes the scattering relation (see also [3, 4]). A related result for the asymptotically conic
setting is [28]. Ingremeau [29] studies mapping properties of the scattering matrix on Gaussian
coherent states for (non-trapping) semiclassical Schrodinger operators on R™. Our proofs of Theo-
rems 1.4 and 1.5 have been influenced by both [1] and [29], as well as by [18, Section 3.11]. There
are many other results which use microlocal techniques to find asymptotics of the scattering matrix
in Euclidean settings. We mention just a few, [39, 25, 37, 38, 23, 33] and refer the reader to the
cited papers for further references.

The distribution of phase shifts has been studied in a number of Euclidean settings, e.g. [6, 16,
20, 30, 21, 19]. Some of these papers use the results of Alexandrova or Ingremeau on the microlocal
structure of the scattering matrix. Our Theorem 8.4 is an application of Theorem 1.4 or 1.5 to
prove an equidistribution result in the cylindrical end setting.

Acknowledgements. The authors thank Kiril Datchev and Maciej Zworski for helpful conver-
sations and suggestions. In addition, the authors thank K. Datchev for making the first versions
of some of the figures used in this paper, and the anonymous referee for helpful feedback. The
first author gratefully acknowledges the partial support of an M.U. Research Leave and a Simons
Foundation collaboration grant. Moreover, this material is based in part upon work supported by
the National Science Foundation under Grant No. 1440140, while the authors were in residence at
the Mathematical Sciences Research Institute in Berkeley, California, during the fall 2019 semester.

2. EXAMPLES FOR WHICH ONE OF THE RESOLVENT ESTIMATES HOLDS

In this section we give some examples of manifolds for which the estimates (6) or (7) on the
cut-off resolvent for P = h?Ax or P = h?Ax + V for certain potentials V = V; + h%V5 holds.

2.1. An example with a single connected end. For n > 2 we can give X = R™ a warped
product structure that makes it a manifold with an infinite cylindrical end. Let p be the radial
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coordinate on R", and let go = dp® + f(p)ggn—1, where ggn—1 is the usual metric on the unit sphere
S*=t. We assume f € C*°([0,00)), f(p) = p? in a neighborhood of p = 0, the support of f’ is
[0, po], with f'(p) > 0 for p € (0,p9). The d = 2 case is illustrated by Figure 2. Then the only
trapped geodesics are those which lie in a hypersurface {p = ¢} for any ¢ > po.

FIGURE 2. A cigar-shaped, two-dimensional warped product.

Let g be any metric on X so that g — go is supported in {(p,y) | p < po}, and so that g has the
same trapped geodesics as gg does. A discussion of constructing such metrics can be found in [11,
Example 1]. We remark that there are metrics satisfying these conditions which are not rotationally
symmetric.

For such manifolds (X, g), Y = S*~! and all of B is in the domain of the scattering map.

By [11, Theorem 1.1], for any y € C°(X), ||[(xh?Ax — 1 —i0)"1x|| = O(h™2) when h > 0 is
sufficiently small. Hence the estimate (6) holds for P = h?Ax on (X, g), with Ny = 2. Moreover,
by [11, Theorem 3.1], (6) holds for P = h?Ax + V for a class of potentials V € C°(X;R).

We remark that in the case of a rotationally symmetric surface these manifolds are very similar
to, but not the same as, the surfaces considered in [41].

2.2. Examples modifying hyperbolic surfaces. Starting with a convex cocompact hyperbolic

surface (X, gg), one can modify the metric on the ends of the manifold X in such a way as to
obtain a manifold with cylindrical ends so that the cut-off resolvent is polynomially bounded.

cosh?r

FIGURE 3. A hyperbolic surface (X, gg) with three funnels, and an example of a
function f satisfying the conditions on the warping function in Section 2.2.
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There is a compact set N C X so that X\ N = (=4, 00), xYy, and gp 1 x\ny= dr?+cosh®(r+4)gy-.
Here we have modified slightly the usual convention to fit with our convention of using the coordinate
r € (—4,00) on the ends of our manifold X. The set N is called the convex core of X, and
the manifold Y is the disjoint union of k circles that might not have the same length. Let f €
C>®(R; (0,00)) be equal to cosh?r near r = 0, with f’ compactly supported and f’ > 0 on the
interior of the convex hull of its support. Let g be the smooth metric on X defined by g 1nv= g5 1,
and g 1x\n=dr® + f(r +4)gy.

Under these hypotheses, by [11, Theorem 1.1] using results of [5, 17] the Laplacian Ax on (X, g)
satisfies || x(h?Ax — 1 —i0)"1x|| = O(h™2) for any x € C°(X), implying (6) with Ny = 2. In fact
the result is a bit stronger; see [11, Section 3.3] for further discussion and references.

In higher dimensions it is possible, but more complicated, to do a similar construction to modify
the metrics on (certain) hyperbolic manifolds to give manifolds with infinite cylindrical ends so that
the resolvent of the semiclassical Laplacian satisfies (6); see [11, Section 3.3].

2.3. Right circular cylinder. Set X = R; x Sgll, where S' is the unit circle, and consider the
product metric on X. Let W € C°(X; R) satisfy Wy(s) := fozﬂ W (s,y)dy > 0, with Wy # 0. Then
by [10, Proposition 4.4 and Lemma 4.5] the operator P = h2Ax + h2W satisfies (6) with Ny = 2.
Thus our results can be interpreted to give results for the nonsemiclassical Schrédinger operator at
high energy.

In this case, the scattering map has as its domain all of B and we can find the scattering map
explicitly. Here Y is the disjoint union of two circles, which we write Y = S} USL for the cross
sections of the connected ends of X on which s is bounded above (for S}; the “left” end) or s
is bounded below (for Sk; the “right” end). We use global coordinates (s,y) € R x [0,27) on
R x S!, and use these same coordinates y on S} and Sk. Thus we can see in a particularly simple
example how our choice of function r giving a coordinate on X, (or equivalently the decomposition
X = X¢o U X)) affects the scattering map.

Suppose supp(W) C [—a,a] x S, and set X¢ = [—a,a] x S!. Then the sets {+s = a + 4}
correspond to the set {r = 0} C X. Recalling that P = h2Ax + h2W here, a simple computation
finds that if (y_,n_) € T*S) C T*Y with |n_| < 1 then x(y_,n—) = (y+,7n—), where y; € S} and,

modulo 27, y4 = y_ + 2(a +4)n_/4/1 —n?. A similar computation works for points in 7*S}.

2.4. Warped products. Set X = R, x (Yp), and g = ds?+ (f(s))" " Vdgy,, where (Yy, gy, ) is a
smooth compact Riemannian manifold and f € C*°(R;R,), with f(s) = 1 if |s| > a. We consider
two special classes of functions f, which give rise to manifolds with qualitatively different behavior
both in terms of the trapped geodesics and in terms of the number of embedded eigenvalues of
h?Ax. For the first one (6) (and hence also (7)) holds for P = h?Ax (and P = h?Ax +V for some
V), and for the second we show that (7) holds for P = h?Ax.

Here Y is the disjoint union of two copies of Y. We write Y = Yy, U Yy, where Yy, and Ypgr
are copies of Yy identified with the cross section of the “left” and “right” ends of X, respectively.

2.4.1. Hourglass-type warped products. In addition to the assumptions made on f above, assume
that f has a single critical point in (—a,a), and it is a nondegenerate minimum. The surface on
the left in Figure 4 provides an example. Then by [11, Theorem 3.1], see [11, Section 3.4], for any
X € G (X),

(11) Ix(h*Ax —1—1i0) x| = O(h™?%) for h > 0 sufficiently small.
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Thus the estimate (6) holds with Ny = 2 for P = h?Ax. We note that the estimate (11) implies
that Ax has only finitely many eigenvalues. For this manifold, each geodesic which is both forward
and backward trapped lies in a set {s = ¢} for some ¢ € R with f/(¢) = 0.

For Schrédinger operators P = h?Ax + V, where V € C°(X; R) satisfies certain conditions the
estimate (11) holds, see [11, Theorem 3.1]. For example, if Vo € C°(X;R), and V(z) =V (z,h) =
h2V5(X), then (11) holds. For this example, because we use the results of [11] to prove the estimate
(6), the potentials V' need not be functions of s alone.

We now return to the case P = h?Ax. Let f,, be the minimum value of f, and set |n|. =
fﬁ/ =D Then using properties of geodesics on warped products, the domain of the scattering
map is {(y,n) € T*Y | |n| < 1 and |n| # |n|.}. Suppose (y_,n-) € T*Yor. If [n_| < |nlc, then
k(y—,n-) € T*Yogr, while if |n|. < |n—| < 1, s(y_,n-) € T*Yy.

We introduce some notation to describe one consequence of this for the scattering matrix. Let
7r, : L2(Yor U Yor) — L%(Yor) and 7 @ L?(Yor U Yor) — L?(Yor) be the natural orthogonal
projections. Then if 15 € C°(R) is supported in (—o0, |n|?), it follows from the mapping properties
of k and Theorem 1.4 that |7y Svs(h?Ay )| = O(h*). Likewise, if ¢, € C2°(R) is supported in
(In[2,1), then | Sun(h? Ay )z || = O(h™).

Of course, there are similar results focusing on right multiplication by mp rather than my,.

2.4.2. Warped products with bulges. Now consider what is in some sense the opposite situation to
that of Section 2.4.1: in addition to the general assumptions on f in Section 2.4, assume that f has
a single critical point in (—a, a), and it is a maximum. In Figure 4, the figure on the left illustrates
the hourglass-type warped products of Section 2.4.1, while that on the right illustrates the warped
products with bulges discussed in this section.

FIGURE 4. An hourglass-shaped warped product (left), and a warped product with
a bulge (right).

With these assumptions on f, X has infinitely many trapped geodesics that lie entirely in the
region with s € (—a,a), and it is straightforward to show via a separation of variables and re-
sults from semiclassical analysis that Ay has infinitely many eigenvalues accumulating at infinity,
[14, 34]. Hence if x € C°(X) is nontrivial, then there is a sequence {h;} tending to 0 so that
limeyo [[x(R5Ax — 1 —i€)~'x|| = oo. Nonetheless, we show in Lemma A.1 that (7) holds with
Ny = 1. In comparison with the example of Section 2.4.1, the estimate is improved: Ny = 1 here,
compared to Ny = 2 in the hourglass-type example. This may be surprising, since the trapping
in the warped products with bulges is stronger than that in the hourglass-type warped products.
This difference might be attributed to the fact that our microlocal cutoff in the cross-section,
1[071_€](h2Ay) has the effect of cutting off away from trapped bicharacteristics in {p = 1} in the
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examples of this section, but not the examples of Section 2.4.1. Alternatively, the difference may
be an artifact of the proof.

In this setting, the domain of the scattering map & is all of B. Using the notation of Section 2.4.1,
if (y_,n-) € BNT*Yyy, then x(y_,n—) € T*Ypr. Then by Theorem 1.5 for any ¢ € C°([—1,1)),
lmor S (h2 Ay )mor|| = O(R™).

For the special case of a surface of revolution with a bulge we compute the scattering map in
Section A.2.

3. EXISTENCE OF THE POISSON OPERATOR AND THE SCATTERING MATRIX

In this section we discuss the Poisson operator, introduced in Section 1.4, and prove some con-
sequences for the scattering matrix, Lemmas 1.3 and 3.1. The construction we give of the Poisson
operator in this section is different from the more microlocal construction that we will give in Sec-
tion 7. Much of the content of this section is known, see e.g. [31, 8, 34, 32, 12], but we include it
for the reader’s convenience.

We begin by checking that there is an operator satisfying the conditions given in Definition 1.6
to define the Poisson operator, and that this uniquely determines the operator. Recall that we
assume 1 ¢ spec(h?Ay). Let PR, denote orthogonal projection onto the eigenfunctions of P with
eigenvalue 1, with PRy = 0 if 1 is not an eigenvalue of P. Then it follows from [31, Section 6.8] or
[12, Lemmas 2.2 and 2.3] that lim,jo(r)~(/2+9) (P — 1 + ie)~! (I — PR;) X is a bounded operator
on L?(X) for any y € L(X) and § > 0.

Let ¢ € C*(R;[0,1]) satisfy ¢(r) =1 for 7 > 0, and op(r) = 0 for » < —1/2. Given f € L*(Y),
set

(12) Fyg(r,y) = e im0 a0 /hy 0 (h2Ay) f € () /2 HX R x V)
and

(13) Fx..(r,y) = o(r)Fx € (nN'/*TH*(X).

Then

(P—1)Fx_ = (*PAx — 1)Fx_ = (—=h*¢"(r) — 20%¢/(r)0,) Fx
has compact support on X, C X. Moreover, this function is orthogonal to any eigenfunction of
P with eigenvalue 1. This is because a separation of variables argument shows that if g € L?(X)
satisfies (P — 1)g = 0, then 1p 1)(h*Ay)(g 1x..) = 0.
We now set

(14) Pf=Fx_—(P—1-i0)"Y(h*Ax —1)Fx_ = Fx__ — hﬁ)l(P —1—ie) '(h*Ax — 1)Fx__

and check that it satisfies the requirements on Pf made in the definition of the Poisson operator.
Note that by construction, (P —1)Pf = 0 and if g € L?(X) satisfies (P —1)g = 0, then (Pf, g) = 0.
Since
((P —1— Z-O)fl(h2AX _ 1)FX00) 1r>0 — eir(17h2Ay)1/2/hf+

for some function f; € L?(X), we have shown that Pf € (r)!/?*9 (2(X), and thus have shown that
there is an operator satisfying the conditions of Definition 1.6.

Next we consider uniqueness. Suppose there are two such Poisson operators, P and P. For
incoming data f € L?(Y'), denote the corresponding outgoing data by fy and f+, respectively. Let
{¢;} be a complete set of orthonormal eigenfunctions of Ay, with
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We have (P —1)(P —P)f =0 and
~ ir(I—h2 1/2 ~ ir(1—h2o2)1/2
(16) (B —B)f) 1= T gy = fo) = 3 ege 00 P mg,
J

for some {c;}, ¢; € C. Here we use the convention that (1 — h?0%)!/2 has nonnegative real and
imaginary parts, as in the definition of (I — h2Ay)'/2. Applying a Stokes’ identity gives

0= lim X:r<R((P—1)(P—I@)f)(IP IP’)fdx_—— 3 - h2a?le?

h202<1

implying that ¢; = 0 if h%0% < 1, so that (P — P)f € L?>(X). Thus (P — P)f is an L? element
of the null space of P — 1, and hence is either 0 or an eigenfunction. But ((P — P)f,g) = 0 for
any eigenfunction g of P with eigenvalue 1, so (P — I@) f = 0 and the Poisson operator is uniquely
defined.

We remark that our argument above shows that if we omit the requirement (Pf, g) = 0 for every
g € L?(X) in the null space of P — 1, then Pf is determined up to addition of an eigenfunction of
P with eigenvalue 1. We shall use this below.

Proof of Lemma 1.3. For f € Hy, the function F' = Pf satisfies the conditions of the first part of the
Lemma. Our argument above shows that if F, F' € (r)1/?T0H?(X) with (P —1)F =0 = (P— 1)F,
and both F and F have an expansion as in (4 ) with the same incoming data f = f_ = f_ then
F—Fis in the L2 null space of P—1. Hence F—F is either 0 or an L? eigenfunction. Since for any L2
eigenfunction g with eigenvalue 1, 1j9 1)(h?Ay)(g 1x..) = 0, this ensures 1j 1) (h*Ay)(f4 — fy) =0,
where f,, f+ are the outgoing data as in (4) for F and F, respectively. Thus the scattering matrix
is well-defined when 1 ¢ spec(h?Ay ).

We next relate the scattering matrix S defined above to those of [8, Section 1.3] and [34]; see
also [31, Section 6.10], again under the assumption that 1 ¢ spec(h®?Ay ). Suppose h%o? < 1. Then
we can write the expansion as in (8) for P¢y, as

—ir(1—h252)1/2 ir(1—h? 2 1/2
(Pr) 1x., (ry) = e mIThoR) /g o N eir(=hio) H/hgh )

where Sﬁ = S;‘i (h) are some scalars. This uniquely determines the Sﬁ if hQO? < 1. Comparing
our definition of S, we find S¢p, = > h202<1 ﬁqﬁ - Moreover this shows that the scattering matrix
of [8, Definition 1.3] is Sy = (I — h2Ay)i/4S(I h2A ) %: this operator is unitary on Hy-.

Combining this with results of [8, Section 1.3] shows that if hgaj = 1 for some j, then limy, 4, S(R)
exists as a bounded operator. O

We shall later need a bound on ||S]|. We recall that the operator (1 — thy)i/4S(l h*Ay) 1/4
is unitary on Hy = 1p1)(h*Ay)L?*(Y). This does not immediately give a good bound on S|

itself, since ||(I — h?Ay) 1/2|| is large when 1/h? is near an eigenvalue of Ay . However, under the
assumptions of Theorem 1.5, h2Ay commutes with S, and in this setting ||S|| = 1. In general we
have the following lemma. Recall PR, is orthogonal projection onto the eigenfunctions of P with
eigenvalue 1.

Lemma 3.1. There is a C' > 0 independent of h so that
S]] < Chnl[o,l](hQAY)l[O,l] (r)(P—1—1i0)""(I - PR1)L_1,0/(r)]-
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Proof. First suppose 1 ¢ spec(h?Ay). We use the Poisson operator P as constructed in (14). Let
f € Hy, and denote the outgoing data in Pf by f,, so that Sf = f,. We note from our construction
of P in (14) that

—ir(I— /
Loy (PAy) (Bf Txjrsg —e~TUHA0 /0 )
ir(I—h2 1/2
= (6 (I=h"Ax) /hl[o,l](thY)ﬁ—) 1X oo |r>0
= 1p,1y(R*Ay) (P —1—1i0)"'[h?02, 0] F¢) 1x.jr>0
= Lo (h*Ay) (P =1 -i0)"1(I = PR1)[W*0}, ¢]Fg) 1xfr>o0 -
where Fg is defined in (12) and ¢ is as in (13). Thus using that [h207,¢] = 1;_1 (1) [h?82, ¢]
110,11 (P*Ay) fellL2(v)
< Ly (h*Ay) L0,y (r) (P =1 =i0) (I = PR1)L_1.0)(") || 2(x) > L2000 I[R°07, 0] F [l L2 x)
< Chl[11g,1(h*Ay) 11 (r)(P =1 = i0) "1 (I = PR1)L 1,0/ (Pl L2 0) - 220 1 f 2 v)
for some constant C, since
—ir(I—h2 1/2
1207, A1l 0y = N20F, ele I S0 M0y (W AY)FI < Cllfll 22
To handle the case of 1 € spec(h?Ay ), take the limit as A’ 1 h to obtain the desired bound. [

4. THE RESOLVENT ON X = R x Y

_ We shall need some facts about the behavior of the resolvent of the Laplacian on the manifold
X =R x Y with the product metric, and the operators that arise when studying it. We begin with
a simple lemma about the resolvent of —h29? on R.

Lemma 4.1. Let 7 > 0 and f € L%(R) be supported in the interval [a,b]. Then, if r > b

. b
((_h2872‘ _ 7_2 ¥ iO)_lf) (7") _ iieiiﬂ“/h/ eq:iﬂ"r'/hf(r/)d,r/

27h
and
b
(1202 4 7)71) (1) = 5 oe ™ [ e
T a
If r < a, then
: b
(=h*0} — > Fi0)"'f) (r) = iﬁe¥i7r/h/ T I f () !
T a
and
1 b ,
((—hQ(r“),Q‘ + 7‘2)—1f) (7") — ﬂeTT/h/ e 7T /hf(T/)d’l"/.
T a

P?OO’, We use that7 for A € C with S\ > 0,
9 —1g { iX|r—r' £ ]

Then the lemma follows directly using the support properties of f. |
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Recall the operators Ty : L2(X) — L2(Y) are defined by

ar! _p2 v 1/2
(Tof)(y) = /R T2 0 p (10 .

Lemma 4.2. Let f € L2(X) be supported in [a,b] x Y, and let ¢, € C([0,1)). Then
(17)
AN — B2ANY2(R2A o — 1 _ = 2 A )i (T—h2Ay) /2 /Ry,
Yep(h™ Ay )( R Ay) 2 (W Ax = (1£40))7f) Trsp = 2h'¢sp<h v)e wf
Moreover,
(18) ‘
(¢5p(h2Ay)(I — WAV (R2Ag —1— iO)’lf) lrca= i%p(thy)eﬂ‘r(phmy)1/2/hT7f‘

Proof. The proof uses separation of variables and the spectral theorem.
Let {02}, {¢;} be the eigenvalues and eigenfunctions of Ay as in (15). Define

(19) 7 =1(h) == (1= h%c3)"/?,

where our convention is the square root has nonnegative real and imaginary parts. Then writing

Friy) = 3272, fi(r);(y), we have
(<I —R2AY) 2 (RPAx -1 - io)_l)f) (r,y) = ZTj ((—=h?02 — 72 —i0) 71 f;) (1) (y).-

Now we assume that » > b. Then from Lemma 4.1,

a

oo . b
(= n2ay) 20285 = 1=i0)71f) (ry) = Y g-e™/" ( / e”"”hfj(r’)dr’> ¢;(y)

Jj=1

so that

(20)  (op(h2AV)(I = W2AY) 2 (A5 ~ 1= i0)71) (r,y)

oo . b
= iwsp(hza?)ehﬂ/h (/ e T /hfj(T')dT/> 0 (y).
j=1 ¢

But then, for the top choice of sign, this is the representation of the operator on the right hand of
(17) given by the spectral theorem.
The proofs of the remaining equalities are similar. ([l

5. RESOLVENT ESTIMATES ON X

This section contains two lemmas that we use later to allow some flexibility in exactly how we
cut-off the resolvent on the end X,,. We recall that » > —4 only on the end X,,. These estimates
do not require the bounds (6) or (7).

Lemma 5.1. Let ¢ > —4, M > ¢ and z € C\ spec(P). Then
12iar,2041) (1) (P = 2) 7 oo, (M| < e,y (1) (P = 2) 71 L (oo (1)
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and for any € >0

1110,1- (F*Ay) L g 0141y (1) (P — 2) T Lo g (7) |
<1o1—g (W Ay) L eqr (r)(P = 2) " L (Lo ()]
Proof. Recall that on the end X, P = —h%0? + h2Ay. We use here the notation
(21) 7i(2) = 7(2,h) = (z — h®0?)"/?,

where the square root has positive imaginary part, which is possible since z ¢ [0,00). Notice
lim, 1, 5250 7j(2) = 7j. Then for any f € L*(X) there are ¢; € C so that

(P = 2) " (Lo, () Trse (ry) = Y e g (y).

=1

Since for each j, |eiﬂ'(z)"/ h| is monotonically decreasing on (—4, 00),
2 2

1[M,M+1] (T) Z Cjeﬁj(z)T/h(bj (y) < 1[C7C+1] (T) Z CjeiTj(Z)r/h(bj (y)
j=1 j=1

proving the first statement of the lemma.
The proof of the second statement is very similar. O

Lemma 5.2. For M > 0 there is a C = C(M) > 0 so that for all z € C\ spec(P), h € (0,1]
120,11 (M) (P = 2) " L (oo, (M) £ C (h72 + |21 (M) (P — 2) " L (a0, (1)]]) -
Moreover, for every M, € > 0 there is a C = C(M,¢€) so that

10,1 (R Ay) 1011 (r) (P — 2) " Lo ary ()]
<C (W2 +11j0,1-q(h*Ay) Loy (r) (P = 2) " (oo o) ()]]) -
Proof. We can write
(22) L u(r)(P — Z)_ll(foo,M] (r) = Lj,y(r)(P — Z)_ll(foo,o] () + Lo,y (r) (P — Z)_ll[o,M] (r).

It is immediate that the first term on the right is bounded as desired, so we need only bound
|1 L10,17(r) (P — Z)_ll[o,M](T)H-

Let Pyp denote the operator —h292 + h2Ay on the product manifold ((—4, 00) x Y, (dr)? + gy)
with Dirichlet boundary conditions at {r = —4}. Using 7;(z) as in (21), if f € L?*((—4,00) x Y)
and we write f(r,y) = 3272, f;(r)¢;(y), then for z € C\ [0, 00)

— — i > ilr—r' |7 (2 i(r4r’ Ti(z
((Pop —2)7 ) (ry) = Zm (/4 (!l rIm @ gt )/h)fj(rl)dr'> 5 (y)-
j=1"" -
Note that the choice of Dirichlet boundary condition ensures that for any M’ € R,
_ _ o
(23) ||1[—4,M'] (r)(Pop — 2) 11[—471\/1'](7‘)” + ||1[—4,M'] (r)ho,(Pop — 2) 11[—4,M'] (r)]l < o)
h

for some C' = C'(M’), independent of z € C\ [0,00) and h € (0, 1].
Now choose x € C°(R) so that x(r) = 1 for r < —1 and x(r) = 0 for » > 0. Then, with
X = x(r),
(P —2)(1=x)(Pop — Z)fll[o,M] (1) = 10,0 (r) — [P, Xx](Pop — Z)fll[o,M] (1)
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so that
(24)
(P—Z)fll[o,M] (r) = (1—x)(Pop — Z)fll[o,M] (r)+(P—2)""(h*X"+2h*X'0,)(Pop —Z)fll[o,M] (1)

Since X’ is supported in [—1, 0], using (23) and (24) proves ||19.1](r)(P — 2) "' Lo, ar(r)|| is bounded
as desired, completing the proof of the first part of the lemma.

To prove the second statement, we left multiply both sides of (22) and (24) by 1jg1_q(h*Ay),
and proceed as before. O

We remark that although Lemma 5.1 and 5.2 are stated for the resolvent (P — 2)~! for z €
C \ spec(P), by a limiting argument they also hold for (P — z £i0)~!, when z € [0, 00). Of course,
if z € [0,00) the estimates are only meaningful if the right hand side is finite.

6. MICROLOCAL PROPERTIES OF COMPONENTS OF THE SCATTERING MATRIX

In this section we analyze the operators that go into the approximation to the scattering matrix,
proving that they are Fourier integral operators (FIOs). In dealing with canonical relations between
cotangent bundles, it will be convenient to use the following notational principles:

e We will identify the cotangent bundle of a Cartesian product with the product of the
cotangent bundles, and separate points in cotangent bundle factors by a semi-colon. For
example, (r,p; y,n) € T*(R x Y') denotes the generic point in T*(R x Y) with (r, p) € T*R
and (y,n) € T*Y. This differs from some notation in the introduction.

e On occasion we will use the notation T = (z,£) € T*X, 7 = (y,n), w = (w,0) € T*Y, and
7= (r,p). Also, the “prime” operation is defined to be ¥’ := (y, —n).

e A canonical relation from a symplectic manifold M; to My will be a Lagrangian subman-
ifold of My x M7 (the domain of the relation is a subset of the second factor).

e If an FIO e.g. from C°(Y') to C°°(X) has a Schwartz kernel £ € C~°°(X xY), its canonical
relation is

{(@,9) | (7,7) € WF(K)}.

6.1. The operators T1ts,(h*Ay) and Rit)s,(h*Ay). In this section we prove that T 1, (h?Ay)
and R_1s,(h?Ay) are semi-classical Fourier integral operators for any v, € C2°([0,1)). We recall
from (19) that 7; = (1 — h205)1/2.

Proposition 6.1. Let
(25) Wi (r,w,y) =Y o (ha)eT ™ 7 ¢ (w)d;(y),

J

where g, € C°([0,1)). Then Wy is a Lagrangian semi-classical function on R xY XY, associated
with the Lagrangian submanifold Ty CT*(R xY X Y) given by

(26) Iy ={(Fmwy) |7 €B,w="Vs(7), p=FH®)},
where B is the open unit tangent ball bundle of Y,

H(y,n) =v/1—nl

and ¥ is the Hamilton flow of H.
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Proof. Microlocally in B, the operator v/I — h2Ay is a semi-classical self-adjoint pseudodifferential
operator of order zero. The function W is the Schwartz kernel of the composition

wsp(hQA)e$irh’1\/I—h2Ay,

regarded as an operator L2(Y) — L2(X). It is well-known that if A is a self adjoint semi-classical

. . . —7 -1 . . . . .
pseudodifferential operator of order zero, the exponential e =" 4 is a semi-classical Fourier integral

operator [26, Theorem 11.5.1], [36, Section IV.6] associated with a Lagrangian strictly analogous
to I't. The presence of the factor 1,,(h%A) in U microlocalizes v/I —h2Ay to where it is a
pseudodifferential operator, so the same construction can be applied verbatim to the W. ]

Note that the operator Ti1ps,(h?Ay) : L2(X) — L*(Y) has W as its Schwartz kernel, except
for a trivial permuation of the variables:

Tutbup(PAy ) (f) (w) = / Wi (r,w,y) f(r,y) dr dy.

Similarly, Rys,(h?Ay), where Ry is defined by (10), has for Schwartz kernel W, this time in
the standard manner:

Rithup(W2Ay)(9)(r,w) = X(r) / W (r, ., 4)a(y) dy.
Therefore:

Corollary 6.2. The operator Tiths,(h?Ay) : L2(X) — L2(Y) is a Fourier integral operator asso-
ciated with the canonical relation

(27) 01 ={(@; (7)) |7 € B, W= Vs,(7), p=+H(G)} .
Moreover, Ritpg,(h?Ay ) : L2(Y) — L*(X) is a Fourier integral operator associated with the canon-
ical relation
(28) ol = {(mw): 9)|§ € B, w=V5.(y), p= £H(®), 7 € supp(x)} ,
which is the transpose of (27) (except for the restriction on r).

In what follows we will work with the compositions e~ /PR and T, x(r)e"**F/"R_ where
X is compactly supported on X,,. We will use the composition theorem for FIOs to prove that

each of these operators is an FIO, [26, Theorem 18.13.1]. We will show that the clean-intersection
hypothesis of that theorem is satisfied in each case.

6.2. Geometric considerations. To better understand the previous canonical relations, introduce
the co-isotropic submanifold of T*X

C=p (1) ={T=(2,6) € T"X | p(@) = [¢|* + V() = 1}.

(We are working microlocally in a region of T*X where p~1(1) is a submanifold, and therefore
without loss of generality for simplicity we will assume it is a submanifold everywhere). The null
leaves of C are the (unparametrized) Hamilton trajectories of p. Let

(29) C+ ={(Ty) eT" X |7EB, p=+H(@)}

where B C T*Y is the open unit cotangent bundle. Note that C+ C C and that p # 0 on CL. Also
introduce the embeddings

(30) ve:B—=Ce,  vx(y) = (0,£H(®@); 7).
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In view of our notation conventions, this notation is consistent with (2).

Proposition 6.3. The images T+ = ve(B) = Cx N {r = 0} are symplectic submanifolds, and
vy B2 Ty is a symplectomorphism. Moreover, Ti are Poincaré cross sections of C+. Fxplicitly,
the null leaf of Cx through (F; §) intersects the transversal Ty at vy (V1. (7)).

Proof. Let G denote the Hamilton flow on T*Y of the square of the Riemannian norm function,
vy (§) = |n|?>. Then on T* X,

Qu(r,p;Y) = (r+2tp, p; Gi(Y))

as long as r 4+ 2tp > —4. On the other hand, dH = —ﬁdﬂyy, and therefore a similar relation holds
among the corresponding Hamilton fields of H and vy . It follows that Gy = U_o;g and on T X

(31) Qi(r,p;9) = (r+2tp, p; YV o) (7))
Therefore
(32) v (7‘, P3 y) €Cy (I’—r/Qp(T»/U y) = V:I:(\Ilﬂ:r(y))'

O

Note that (32) implies that for all (r, p; 7) € Cx, (1,05 ¥) = ®r/2, (v+(¥+,(¥))). Replacing 7 by
W (y) yields
(33) (7‘, P \IIZFT(Q)) = (I)r/2p (Vi (?)) .

Therefore, we can re-state Corollary 6.2 as follows:

Corollary 6.4. The canonical relation ©% of Ryths,(h*Ay) is

(34) of = {(cbt(ui(y)),y) TEB, =y, e (—1/4,o>}.

Remark 6.5. We can use (31) to see how the scattering map changes if we change the origin of the
r coordinate. If we replace r by r — ¢ for some constant ¢ > 0, we obtain a scattering map s’ with
domain D,/. A point § € B is in the domain D, if and only if the trajectory t — ®;(c, —H(7);7)
is not forward-trapping. By (31),

(35) ®i(c, —H(y);y) = (¢ = 2tH(Y), —HY); Y2t (V))-
Therefore this trajectory traverses the hypersurface {r = 0} at time t = ﬁ@) and at the point
(0, —H(y); Y_.(7)). It follows that if we let

Y:=V_.:B— B,

then ¥ maps D, into D,. The converse is analogous, that is, ¥ maps D, bijectively onto Dy.

To find #'(7), we are to follow the trajectory described above until the time #/, () > 0 where it
intersects {r = c}, and then take the 7*Y component of the point of intersection. By the previous
discussion, .

t\(7) = 0 +t+(0(@)) + s
where s is such that

(0, H(x(0(9))); 5(0(®))) = (e, H(s(I@))); &' (7))-
Applying (35) again to the left-hand side of this identity, we obtain

®,(0, H(k(9(1))); x(9([¥))) = (2sH (r(I(H))), H(K(D(@))); Y —2s 1 (x(0m)) (K(I(F))),
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that is, s = ¢/2H (k(9(7))). Substituting, we have

(e, H(x(())); T -c(k(0(@))) = (¢, H(s(I(@))); &' (7)),

which shows that K" = 9o ko ¢.

6.3. The operator T x(r)e”"**F/"R_1,(h2Ay)Op),(¢). Let us fix § > 0 and use Q) (the fraktur
letter Y) for

YD={y=(,n)eTY|[n <1-06}NDs,

where ¢ > 0 is small enough that supp(vsp,) C [0,1— ). Let ¥ € C°(9), and let t,, > 0 be chosen
sufficiently large so that if (y,n) € supp¢ then ®,(0,—+/1 — [n|%;y,n) € {(z,§) € T* X | 7 > 0}
for all ¢ > t. The existence of such a ¢, follows from the assumption that the support of v is

compact and is contained in the domain of the scattering map.
We first consider e~ /" R_1),(h? Ay )Opy, ().

Proposition 6.6. For any X € C2°((—4,00)) the composition X (r)e" /MR 1), (h? Ay ) Opy, (1)
ts a Fourier integral operator whose canonical relation ¥ C T*X x T*Y is

1

(36) ¥ = {(@tw+t(y(y)); Y) €T Xoo xTY, 7€, t e (0, 8H(y)> }

Remark 6.7. Clearly (36) is parametrized by

D::{(y,t)e@xRHe(O,ng(l/))}.

The condition on ¢ ensures that (36) is over the portion of the cylinder defined by r € (0, c0).
Remark 6.8. It is important to note that by the assumption on ¢, and 9, in (36)
t= Poy (V- (o))
is an outward-going geodesic on T* X, N C. It is therefore of the form
(37) D1, (v- (o)) = (r(t), H((?)); 7(t))
with 22 > 0.

Proof of Proposition 6.6. Again by [26, Theorem 11.5.1], the factor e~*»F/" is a Fourier integral
operator associated to the graph of ®; . It is known ([26, §4.3]) that left-composition by an
FIO associated with a canonical transformation is always clean (in fact, transverse), and therefore
x(r)e~*P/"R_ is a Fourier integral operator whose canonical relation is the composition of the
graph of ®; with ©T. The result follows directly from Corollary 6.4.

0.

For x € C°((—4,00)) and 9, € C°(B), we analyze next the composition

(38) wsgo(thY)T-i- © ()2(r)e_itwp/hR—wszn(hZAY)OPh(Z/J)) )
which is a bit more complicated.

Proposition 6.9. The operator (38) is an FIO, associated to the graph of the scattering map K
restricted to %).
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Proof. Introduce the manifolds:
A A
T"X xT*X ={(z;7) |zreT*X)}, A=T"Y x (T*X X T*X> x T*Y,

and B = O, x X. Recall that ©4 and X are the canonical relations associated to the factors of the
composition (38), and note that 2 and B are submanifolds of T*Y x T*X x T*X x T*Y.

We first prove that the manifolds 2 and B intersect cleanly. We claim that the intersection is
the set
(39) ANDB = {(k@); Pyt (v-(7)); Pr,+(v—@)): ¥) | (U,t) € D},

where £ is the scattering map. To see this, let ¢ € AN B, and let us write

(= W; ®s(v4(W)); Pryrt(v—(¥)); Y)s
where ®,(vy (W)) = @4, ++(v—(¥)). Therefore

v (W) = @4, 14— s (v (7)),

which is a relation that characterizes the scattering map, namely

(40) v (5(1)) = @1, ) (v- (1)),
where 5 — t () is a smooth function by the implicit function theorem. Therefore W = k(¥), which
yields (39). We also obtain the relation ¢4 (g) =ty +t — s.

The set 2N B is clearly a submanifold parametrized by (7,t) € D, and elements in T, (A N B)
are of the form
(41) (dk(6Y) ; APy, 1+ © dv_(0Y) + 6tZ; dPy, 44 0 dv—(6Y) + 6125 67)
where 67 € T7T*Y, 6t € T;R =2 R, and = is the Hamilton field of p (the generator of ®) evaluated
at the appropriate point.

To prove that the intersection is clean, we need to show that

Te (ANDB) =T ANTB.
The inclusion Ty (ANB) C T, ANTB is automatic, so let v € T AN T B. Since v € T;B, it is of
the form
v = (6w; d(®s) o dvy (6W) + 6sZ; d(Py,44) 0 dv_(6Y) + 625 67)
where éw € TwB, ds € TsR 2 R, etc. The condition v € T¢2 means that the middle entries in v
are equal, that is
(42) d(®s) o dvy (0w) + 9sE = d(Py, 1¢) o dv_(0Y) + SLE.
Comparing with (41), in order to conclude that v € T¢ (20N B) all we need to show is that 0w =
dr(07). To see this, let us rewrite (42) as
d(P¢,4t—s) 0 dv_(0Y) = dvy (6W) 4 (s — 6t)Z.
But, by (40), this also equals
A(@. ) o dv_(3) = dv (dr (7)) — dE(oT)E.

Now the summands on the right-hand sides of these expressions correspond to the direct sum
decomposition TC4 =TT @ R=. Therefore, corresponding summands must equal each other, that
is

dv; (W) = dvy (dr(0y)) and  (0s — §t)E = —dt(67)=.
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Since dv, is injective, the first of these relations yields 6w = dk(07), and the proof that 2 and B
intersect cleanly is complete.

By the composition theorem for semi-classical FIOs [26, Theorem 18.13.1], the operator (38) is
a semi-classical FIO associated to the relation which is the image of 2% N B under the projection
onto T*Y x T*Y. By (39), this is precisely the graph of k restricted to ). a

7. A MICROLOCAL APPROXIMATION OF THE POISSON OPERATOR AND THE SCATTERING MATRIX

In this section we give a microlocal construction of P Op,, (1), the Poisson operator composed
with Opy,(¢). Recall ¢ € C°(T*Y') has support contained in the domain of the scattering map k.
A consequence of our construction is an expression for the scattering matrix in terms of R_, T.,
and the Schrodinger propagator, see Proposition 7.4. Propositions 6.9 and 7.4 combine to prove
our theorems.

Recall ty, > 0 is chosen sufficiently large so that if (y,7) € supp ¢, then ®,(0, —\/1 — |n|%;y,7n) €
{(z,8) € T* X : 7> 0} for all t > t,. Here we continue to use the notation for the cotangent
variables on T* X, introduced in Section 6. Choose M € N so that if (y,n) € suppe and —1/4 <
5 < 0 then

(43) Vee[0ty]  Puls,—V1I-[n*%Vs(y,m) € {(2,§) €T Xoo: 7 < M -2}
In particular, this implies M > 2. Let by < 1 be chosen so that if (y,n) € supp(y) or
(ro/1=n%y,m) = @4, (r—, —/1 = [n-|%;y—,n-) for some (y_,n_) € suppe and —1/4 <r_ <0,

then |n| < by. Choose 1, € C2°([0,1)) so that 1, is 1 on [0, by].

Let x; € C*(R;[0,1]) satisfy x;(r) =1if r < =2+ j and x;(r) =0 if » > —3/2 + j, ensuring
XiXj+1 = Xj-

Recall R_ is defined in (10), and supp(R_f-) C {(r,y) € X | —1/4 <7 < 0}. Set

U_ = (I —h2Ay)Y%)e,(h2Ay)R_ Op, () : LX(Y) = HX (X)) € H®(X),
(44) Uy = (xar(r) = xa(r)e ™ PMU_ L2(Y) —» L*(Xoo) C LP(X)

and

ty .
(45) Pappr = 2ih <(1 —xo(r) (WA —1+i0)"'U_ + %XM(T)/ et/he= PR gy
v 0

_eitw/h(l _ X()(?"))(h?A)”( —1— iO)_l (¢sp(h2AY)U+)) .

We shall see that the operator P,y is an approximation of POp,(¢). The mapping properties
of (A —1£i0)7! ensure that if f_ € L2(Y), then Papp f- € (r)V/2TOH>(X) for any & > 0.
Note that our definition of Pupp, involves Opy, (¢), and so depends on choice of 1, even though our
notation does not indicate this.

We begin with a preliminary lemma.

Lemma 7.1. Let ¥ € C°(X ) have support in the region withr > M—2 > 0. Then ||xe~*F/"U_|| =
O(h™) uniformly for t satisfying 0 <t < t,.

Proof. First observe that, by (10),
—ar([— 1/2
VgeL2(Y)  U_g=x(r)I —h2Ay)" 2, (h2 Ay )e =" av) " /h g
where x is supported in (—1/4,0).
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For each value of h and each ¢, the operator e~ *F/"{J_ is a smoothing operator of finite rank. By
Corollary 6.2 and the composition theorem for FIOs, it is also a semi-classical FIO whose canonical
relation is

(46) {(q)t(ra P3 E) ) ?)| w = ‘IJT(y)v RS Supp(¢)7 p= —H(@), re Supp(X)} '

More precisely, let x* € C>°(R) be identically equal to one in a neighborhood of 1 € R, and note

that
Y (RPAX)U- = U_ + O(h™)

because the image of the canonical relation of U_ (which is the same as that of R_) is contained
in p~1(1). We now use the well-known approximation of e~**/"y#(h2A x) by oscillatory integrals,
uniformly for ¢ in a bounded interval, see e.g. [36, Theorem IV-30] or [4, Lemma 3.2]. That is,
one can write e*itp/hxﬁ(thX) = F; + R1, where the Schwartz kernel of F; is a finite sum of
oscillatory integrals of the form [ eih_lw(t’“’”/’p)a(t, x,2’,p, h)dp where w are generating functions
for portions of the canonical relation of the graph of the Hamilton flow of p, the amplitudes a are
smooth and have an asymptotic expansion in powers of h, and the Schwartz kernel of R is O(h>)
uniformly for ¢ in a bounded interval. Similarly, one can write U_ = F3 + Ro, where the Schwartz
kernel of F> is a finite sum of oscillatory integrals of the form [ eihilw(y’x’p)a(y, x,p, h)dp where w
are generating functions for the canonical relation of R_, and the Schwartz kernel of Ry is O(h*°).
It follows that

e PIMEMEAX)U_ = FiF, + S, S =F1R2+ RiF2 + RiRo.

Note that the Schwartz kernel of S is O(h*°) uniformly for ¢ in a compact interval.

Now recall how M € N is chosen, (43), and also recall that supp(x) C (—1/4,0). It follows
that the Schwartz kernel of yF;F> is a finite sum of oscillatory integrals whose phase functions do
not have critical points in the support of their amplitudes. Therefore the Hilbert-Schmidt norm of
xF1F2 can be estimated as h — 0 by a finite sum of absolute values of oscillatory integrals without
critical points. By smoothness of the integrands, the estimate is uniform in ¢ € [0, ¢y].

In combination with the rapid decrease of the Schwartz kernel of S, we can conclude that the
Hilbert-Schmidt norm of Ye~®*/*U_ is O(h>) uniformly in ¢ € [0, t,]. O

Lemma 7.2. Set (P — 1)Puppe = 2ihE. Then for any f- € L*(Y), Ef_ is compactly supported
with support in X, U{(r,y) € Xoo : 7 < M — 1}, and [|E||L2(v)—m2(x) = O(h™).

Proof. Using that
ty
(P — 1)/ eit/he=itP/hgy _ ip (eitw/hefitwp/h _ I)
0
and (1 - XO)U, =U_ = XMU, giVeS E = Zj:l Ej, where
El = [h287%’XO}(h2AX -1 + Z’O)ilU_

1 ty )
Ey = 7,7[}7/283,)(]\4]\/ e he=PIhT_ gt
Zh 0

By = et/ (xare W EMT — g (h2 Ay U )
Ey = =™ /MR202 xol (R A5 — 1 —140) Yehg, (R2Ay)U,.

The claim about the support of E is immediate from our expression for F.
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We begin with bounding E». Since [h?02, x ] is supported in {z € Xo | z = (r,y), M —2 <
r < —=3/2+ M}, as a corollary of Lemma 7.1 we obtain that ||Es| = O(h®°).
For E3, we use

(47) | Esll = [xace™ ™ P/MU- = g (R*Av) (xar — xo)e ™ F/MU_|

<1 = bop(R*Ay)) (xar = x0)e™ " F/MU_|| + |xoe™ " P U_|.
That ||(1—sp(R2Ay)) (xar —x0)e " F/PU_|| = O(h*) follows from Proposition 6.6 and our choice
of s, and that ||xoe **F/"U_|| = O(h™) follows from Proposition 6.6, the support properties of

X0, and our choice of ¢,.
Now consider F,. The support properties of [h202, xo] and (xar — x1) mean that by Lemma 4.2

1E4] = 2R) "M I(h*x5 (1 = h2Ay) ™2 = 2ix() iy (B Ay )T U4 .

But by Corollary 6.2 and Proposition 6.6, the composition of the canonical relations of 7_ and U
is empty. Therefore |T Uyl 2(y)—mm(yv)y = O(h™), and hence || Ey|| = O(h*).
The term FE; is handled in a way similar to 4, using that

(RPAg —14i0)" ' f = (R2A 5 — 1 —i0)~ 1 f.
For the next lemma, we continue to use the functions x; introduced above.

Lemma 7.3. Suppose f € L2(X) has support in Xc U {(r,y) € Xoo | =4 < v < M'}, with
—4 < M' < oco. Then forr > M,

(48) || (Lpa-q(h*Ay)(1 — x0)(P —1—i0)""f) (7, @)l L2(v)
< Lo1-q (R Ay) L ) (r) (P =1 = i0) " Lo ey (M) [ £
for any € > 0. Moreover,
(49) || (Lo,1)(P*Ay)(1 = x0)(P = 1 =i0) ") (r, )| 2(v)
< 11j0,1) (R* Ay )L agr agr4) () (P = 1= i0) ™ L Z oo pa) () [ £]-

Although these two are almost the same, and have essentially identical proofs, the operator norm
on the right side of (48) may be smaller than that in (49); see, for example, Section 2.4.2.

Proof. From the support properties of f, there are ¢; = ¢;j(h, f) € C so that for r > M’
(Loa-g(B*Ay)(1 = xo)(P =1 =i0) " f)(r,y) = D ;e ";(y)
h20']2.S176

where 7; = (1 — U?h2)1/2 > (0 for h2aj2- < 1. Then for r > M’
I (Ljo,1— (P*Ay) (1 = x0) (P = 1—i0) "' f) (r, )12y

10,1 (F*Ay) (1 = x0)(P — 1 —i0) " f|?

/Xx | M/<r<M’+1
= 110,1-qdpepr 41y (r) (P — 1 — io)ill(—oo,M’] () fII?
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proving (48). The proof of (49) is essentially identical. O
Recall that Papp,: as defined in (45) depends on ¢ € C*°(T*Y). Set
(50) Q ="Poppr — (P —1—i0)" (P — 1)Papp:-

Then (P —1)Q = 0, and for any f_ € L*(Y), § > 0, (r)~Y/279Qf_ € L?(X). We shall show that Q
is actually P, (h2Ay ) Op, (1), and that under the hypotheses of Theorem 1.4 or 1.5 we can use
this to find an expression for the cut-off scattering matrix, up to a small error.

Proposition 7.4. If1 ¢ spec(h?Ay), then the operator Q defined in (50) is Q = Pibg,(h2Ay ) Opy, ().
Moreover, if (6) holds, then

(51) SOpy(¥)

= IR Ay )" 2y (02 Ay ) T (xar—xa)e ™" /M (I=h2 Ay ) V2R3 (h* Ay') Opy, (1) +O(h™),
and if the hypotheses of Theorem 1.5 hold,

(52) 51[0,1—6](h2AY)OPh(¢)

= (TR Ay )2 L0 (B2 AY)Ty (xar—x1)e~ P/ (T—h2 Ay /2 R_th,y (2 Ay) Opy (1) +O(h™)
for any € > 0. If 1 € spec(h?Ay) the equations (51) and (52) hold as limits as h' 1 h.

Proof. As noted already, (P —1)Q = 0. Thus to show that @ = Pt,(h?Ay) Op,,(¢) it remains to
study the expansion of Qf— on X for f_ € L?(Y). We begin by studying the behavior of Papp, f—
for r > M. By Lemma 4.2,

(1= x0(r)(R*Ag = 1+i0) " U_f- Tr>m

v _ir(I—h2 )2 _
= ﬁe (I-h%Ay) /h(I _ thy) 1/2T_¢sp(h2Ay)(I _ hZAy)l/QR_ Oph(¢)f— oo

—1 —ir(I—h2 1/2
(53) = oo Ty (12 Ay) Opp ()~ Trsas

using that Ty commutes with functions of h2Ay and T4 R+ = I. Also by Lemma 4.2,
(54) (1= x0(r)(h*Ag —1—i0)"" (Ysp(R*Ay)Us f-) o

T ir(I—h2 1/2 _
=o55¢ U= A (1 = B2 Ay )T VPT ($ap(BPAY)U S f2) 1o -

The term xar(r) fot”” et/he=tP/hTT_dt in (45) vanishes if r > M.
If 1 ¢ spec(h?Ay),
(55) (A= x)(P=1—i0)'Ef_) (ry) o= > ;e "¢;(y)
OShza'?.

for some ¢; € C. Recall 7; defined in (19) has R7; > 0, I7; > 0. Combining these four observations,
we see that if 1 ¢ spec(h?Ay),

—ir(I—h2Ay 1/2
(QF=) Trsp=e UM ATy (B2 Ay) Opy, (1) f -
IR B ity M (T _ 2 ALY V2T, (4 (B2 Ay ) U )
(56) —2ih Y e M (y).

0§h20'12.
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This shows that Q = P, (h?Ay) Opy, ().
We now turn to proving (51), so suppose (6) holds. Then using in addition Lemmas 5.1 and 5.2,
for any M’ > 0 there is a constant C so that

1L a1 (1) (P =1 = 00) " Lo ar (r)]| < C(R™2 4+ h=N0) for 0 < h < hy.
Then by (55) and Lemmas 7.2 and 7.3, 2,2« [¢;|? = O(h®|| f-||) where the ¢; are defined via
<h?o2<
(56). Thus by our definition of the scattering matrix and (56)
Stsp(B*Ay) Opy, () f— = /M (1 = W2 Ay) T2 Ty (o (B Ay)U f-) + O(R f-])-

Using ||(1 — ¢sp(h2Ay ) Op,(¥)|| = O(h™) and the fact that Lemma 3.1 and (6) imply ||S|| =
O(h'~max(2,No)) finishes the proof when (6) holds, if 1 & spec(h?Ay ). If 1 € spec(h?Ay ), then the
equality holds by taking the limits as b’ 1 h.

Now suppose the hypotheses of Theorem 1.5 hold. Since P commutes with Ay, the scattering
matrix S commutes with Ay, and, as mentioned earlier, this implies ||S|| = 1. Thus

IS(1 = ¢up(h*Ay)) Op, (¥)]| = (1 = ¥sp(A*Ay)) Oy, ()| = O(AX).

Applying Lemmas 5.1, 5.2, 7.2, and 7.3 as before gives > ;2,21 |¢;|* = O(h®), where the c¢;
<h%02<
are as in (56). Thus (52) holds. O

Proof of Theorems 1.4 and 1.5. Combining Propositions 6.9 and 7.4 proves Theorems 1.4 and 1.5

for S Op;, (¢).
Turning to the proof for Sy Op;, (¢), choose 1, € C°([0,1)) so that

(I = sp(h®Ay)) Opy (o) = O(h™).

Then the unitarity of Sy implies
Su Opy (W) = (I = h2Ay)Y'S(T = h2Ay) 1Y "y (B Ay) Opy, (v) + O(h™).

Since (I — hQAy)jrl/Zl@/JSp(thy) Op;,(¢) is a pseudodifferential operator with symbol supported in
the support of ¢, using the result for S we see there is a 1); € C2°(]0,1)) so that

(I — 01 (h?Ay))Stsp (B2 Ay ) (I — B2 Ay ) 4, (W2 Ay) Opy, ()] = O(h™).
Thus
St Opy () = (I — B2Ay) Y 1 (h2Ay)S(T — h2Ay ) b, (B2 Ay) Opy, (¥) + O(h™),

and the result for Sy follows from the result for S and composition properties of Fourier integral
and pseudodiffierential operators. O

8. EQUIDISTRIBUTION OF PHASE SHIFTS

As an application of our theorems on the microlocal structure of the unitary scattering matrix
Sy, in this section we prove Theorem 8.4, a result about the distribution of its phase shifts. This
requires some additional hypotheses, for which we need some background.
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8.1. Distance on T*Y and Minkowski content. Fix any smooth Riemannian metric on T*Y.
This induces a distance on each connected component of T*Y. If §, w € T*Y belong to different
connected components of T*Y, we shall say the (generalized) distance (in T*Y") between them is
infinite. We will denote this (generalized) distance by distp«y; distr-y : T*Y x T*Y — [0, 00]. We
use this to define the (2n — 2)-dimensional Minkowski content of a bounded set A C T*Y, where
2n — 2 = dim(7T*Y’). The (2n — 2)-dimensional upper Minkowski content of A is

/\/1*2"_2(14) _ hms;jgu({y e T*Y | distr«y (g, A) < 6})

where for B C T*Y, p(B) is the Liouville measure of B. Similarly, the (2n — 2)-dimensional lower
Minkowski content is

M2 (4) = liminf u({7 € TV | distry (7. 4) < 5}).

If M*27=2(A) = M27=2(A), then the (2n — 2)-dimensional Minkowski content of A is M?"72(A) =
M?2=2(A).

For general A, the Minkowski content may depend on the choice of the metric on T*Y via the
induced distance or the chosen measure. However, we shall only apply this for bounded sets A
that have zero (2n — 2)-dimensional Minkowski content. For such sets, the property of having zero
Minkowski content is independent of the choice of smooth metric on T*Y. Moreover, this is also
true of the choice of measure, as long as the measures are mutually absolutely continuous.

Remark 8.1. A set in a d-dimensional manifold that has zero d-dimensional Minkowski content has
measure zero, but the converse is not true. For example, let Q be the intersection of the unit cube
in R? with Q%. Then Q has measure zero but d-dimensional Minkowski content one.

8.2. Hypotheses and Theorem 8.4. Throughout Sections 8.2 and 8.3, we assume:
(1) The assumptions of at least one of Theorems 1.4 or 1.5 hold.
(2) For m € Z, let Dym C B be the domain of k™, where we recall k is the scattering map. We
assume that for each m € N the (2n — 2)-dimensional Minkowski content of B\ Dym is 0.
(3) For each m € Z\ {0}, the set of fixed points of ™ has measure 0.

In reference [20], where the authors studied the equidistribution property for semiclassical Schrédinger
operators on R™, the analogs of the first and second assumptions are implied by a non-trapping
assumption, while the analog of the third assumption is made explicitly. The proof we give here
follows in outline much of the strategy of [20]. Some differences include not having knowledge of
the microlocal structure of Sy near By, and allowing for the possibility that the domain of the
scattering map may not be all of B.

Remark 8.2. Recall that for § = (y,n) € B we write ¥ = (y,—n). We shall use that since
k(@) =7,y € Dy if and only if ¥ € D,.-1, and similarly for iterates of x. Hence the condition
we made on the Minkowski content in assumption (2) is equivalent to making the assumption for
all m € Z\ {0}.

Remark 8.3. The examples described in Sections 2.1 and 2.4 satisfy conditions (1) and (2). We
show in Section A.2 that a surface of revolution with a bulge, as introduced in Section 2.4.2, satisfies
condition (3) as well.

Let Sy = Sy (h) = (I—h2Ay) YV S(I—h2Ay) ;" if 1 & spec(h2Ay), and Sy (h) = limpqp, Sy (')

if 1 € spec(h?Ay). It will be helpful to recall here that S, Sy : Hy — Hy, where Hy =
10,1)(h*Ay)L?*(Y)). The operator Sy is the unitary (on Hy) scattering matrix. We note that
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both the scattering matrix and the hypothesis 3 depend on the choice of coordinate r on the the
cylindrical end.

Theorem 8.4. Suppose (X, g) is an n-dimensional manifold with infinite cylindrical end, and
(X,g) and the associated scattering map k satisfy all the conditions listed above. Let f € C(S!).

Then

27
g 00" Ty (1 (50)) = =520 [ gt

where c,_1 1s the usual Weyl constant in dimension n — 1.

Subscripts on the trace in this section and the next indicate the space in which the trace is taken.
An immediate corollary of this Theorem is the following equidistribution result.

Corollary 8.5. Let 0 < 01 < 05 < 2w. Then

) _ —1vol(Y)
lim (R N (61,65, 1)) = =1LV g, g
ﬁ%( (61,02, )) o (02 1)

where N (61, 602,h) is the number of eigenvalues of Sy with argument between 61 and 0.

8.3. Proof of Theorem 8.4. We begin with a result on the structure of the iterates of the unitary
scattering matrix.

Lemma 8.6. Let m € Z\ {0} and let yo € C°(B) be supported in D.m. Then under the hypotheses
of Theorem 8.4, (Su)™ Op;, (o) is a semiclassical Fourier integral operator associated to the graph
of k™.

Proof. Theorem 1.4 or 1.5 implies the result for m = 1.

Now suppose the lemma has been proved for 1 < m < m’. We shall show that it holds for
m = m’ + 1, proving the lemma for positive m by induction. Recall now we assume that supp g C
D,mr+1, and use D, ,uryr C D, . Choose ¢,y € C°(B) to be supported on the domain of &
and to be 1 on {s™ (y,n) | (y,n) € suppeo}. Then choose Vg € C([0,1)) so that (I —
Ysp.m (B2 Ay ) Opy, (Y ) = O(h™). We write

(Su)™ +" Opy, (o)
= SU(Yspmr (W*Ay) + T = Pap mr (h*Ay)) Oy () (Su)™ Opy ()
+ Sy (I = Opy, (1) (Su)™ Opy, (o)
= Strthsp.m (W2 Ay) Opy, (Y ) (Sp)™ Opy (o) + Sr(1 = Opy, () (St)™ Opy, (o) + O(h).

That this is a semiclassical FIO associated to ™ *1 follows from the inductive hypothesis, an
application of Theorem 1.4 or 1.5, and the composition properties of Fourier integral operators.
Thus concludes the proof for positive m.

We now turn to the result for S;;'. We shall use that since x((x(7))’) = 7', using the notation
(Dm—l)/ = {ﬂ | 7 e Dn—l}, gives (Dm—l)/ =D,.

Lemma 3.1 of [34] implies that S{; = Sy, where S{; denotes the transpose of Syy. Then for any
Y € C2(Dy), SE Opp,(¥) = Sy Opy, (1) is a semiclassical FIO associated to the scattering map x.
Denote complex conjugation by C, and let ¢y € C°(D,-1). As an operator on Hy, Sljl = S} and
S} Opy, (vo) = C SEC Opy, (10). But COpy,(vo) = Op,,(¥)C for some ¢p € C°((Dy-1)") = C(Dy),
so that S}; Opy, (¢) = C Sy Op,, (¥)C. Now using that we know that Sy Opy, (1) is a semiclassical
FIO, the properties of FIOs under conjugation by the action of the complex conjugate C, and the
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equality of sets {((k(¥)),¥) | ¥ € Dx} = {(k~2(¥),7) | ¥ € Dx-1} we prove the second assertion in
the special case m = 1.

The general case of negative values of m can be proved by induction, in much the same manner
as for positive m. O

Lemma 8.7. Under the hypotheses of Theorem 8.4, for anym € N, € > 0 there is a ) € C°(DymN
D,.—m) so that for h > 0 sufficiently small, ||(I — Opy, ()11 (h2Ay)|| Trya ) < eh "t
Proof. For m fixed and 6 > 0, set

Us = {y eB | diStT*y(?, Y \ (D,.im N D,/;m)) > 5}

and Vs := B\ Us. Note that Us is open, and Us C Usja. Let ps € C°(Usj2) C C(B) satisfy
0<vs<1land1l—1s=0on Us.
Let x5 € C°([0,1 4 6); [0, 1]) with xs(t) =1 for ¢ € [0, 1], and note
|

17 = Opu (¥)) Loy (P Av)lly,, = (T = Opp(Ws))xs (W*Av) Lo 1 (W*Av) | my,
< (I = Opy, (5))xs (W* Av) |15, 2.4, |1 110,1) (R A ) 15,2,
where || e | zs denotes the Hilbert-Schmidt norm. Now

I(Z = Opy (¥s))xs (B*Ay)irs, .
= Trzar) (1= Opa(es)xs(h2Av)) " (T = Opy (¥5))xs (h*Av) )

< C@mh)" / 11— (o) xs () 2 dys + O(h2™)

*Y

for some C' > 0 independent of § and h. Here p is the Liouville measure. By the Weyl law,
[1110,1)(R*Ay)|13g = cp—1h! 7" vol(Y) + O(h?>~™). Thus there is a constant Cy independent of
0 and h so that

(57)

1/2
17 = Opu (¥ Loy (P*Av) Ty, < Coh'™" (/ (1 - wa(y,n))x(5(|n|)|2> dp+O(h*™").

The integrand on the right in (57) takes values in [0,1] and is supported in V; U{yg € T*Y | 1 <
In| <1+6} Let Ws ={y=(y,n) €eT*Y |1 -6 < |n] <146}, and note

L2(Y)

*Y

(58) V5 \ Ws C {y € B| distry (7,B\ (Dxm NDy-m)) < 6}

C{y e T*Y | distry (¥, B\ (Dym NDy-m)) < 6}.
Since by hypothesis (2) both B\ Dym and B\ D,-» have zero (2n — 2)-dimensional Minkowski
content, so does B\ (Dym NDy-m) = (B\ Dym) U (B\ Dy-m). Thus (58) implies fvs\W& 1dp — 0
as 0 | 0. Of course fm 1dp — 0 as § | 0. Hence, since

(59) | 0= st dn< [ va

UWs
we may choose §p > 0 small enough so that

1/2
o ([ 10— v mmsnlad®)  dn <2
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Then set 1 = 15,, and we have chosen 7 so that
17 = Opn () Lo,y (B Av) Iy, ) < (/2R + O(R*TT).
When h > 0 is sufficiently small, we have the desired estimate. (|

Corollary 8.8. Under the hypotheses of Theorem 8.4, for any m € Z and ¢ > 0 there is a
th € C(Dym ND,—m) so that for h sufficiently small | Try, (f(Sy)(I — Opy, (¥))| < eh="Tsup |f].

Proof. Let ¢ be as guaranteed by Lemma 8.7. Then

|TTHy(f(SU)(I - OPh(¢))| = |TrL2(Y)(f(SU)(I - Oph(¢))1[o,1](h2AY)|
< If(Sv)IIT — Oph(d’))l[o,l](hQAY)||TrL2(Y> < sup | fleh ™"
for h sufficiently small. O

Lemma 8.9. Let m € Z\ {0}, and ¢ € C°(Dym). Then under the hypotheses of Theorem 8.4,
Tryy (ST Opy () = o(h™").

Proof. This follows from Lemma 8.6, our hypothesis (3) on the fixed point set of ™, and [20,
Proposition 7.1]. O

Proof of Theorem 8.4. Given € > 0 and f € C(S'), use the density of the polynomials in e? and
e~% in the continuous functions on S! to choose ¢ € C*®(S') with sup |f(8) — ¢()| < € and so that
q(e?) = Z;-I:ﬂ, aje?? for some J € N, a; € C. Choose ¢ € C°(D,.s N D,-s) as guaranteed by
Corollary 8.8, applied with m = J.

Now

(60)  Tray f(Sv) = Tra, (F(Sv) — q(Sv)) + Trag, (a(Sv)( = Opy(¥))) + Tray (¢(Sv) Opy(¥)).-
Since by the Weyl law Hy is of dimension h!="¢,,_1 vol(Y) + O(h?~") and || f(Sv) — q¢(Sv )| < e,

(61) Ty, (f(St) — q(Sv))| < eh*"cp_1vol(Y) + O(h*™™).
By our choice of 9 as in Corollary 8.8, for A > 0 sufficiently small
(62) Tray (9(Su)(I — Opy, ()] < eh " sup |g| < eh' " (e +sup |f]).

Using ap = 5= fo% q(€")df and Lemma 8.9,

J
Tryy (9(Su) Opy(¥) = Y a;Tra, (S, Opy, (1))
j=—J
1 27

(63) q(ew)dQ Try, Opy,(¥) + o(h*™™).

27
But by our choice of 9 as in Corollary 8.8, fo(; h sufficiently small
Tryy (Opy, () = Iy )| < €h' ™™,
and since the dimension of Hy is ¢,_1 vol(Y)h!™™ + O(h?>~™) by the Weyl law,
(64) |Tr3s, Opy, (%) — cn1 vOl(Y)AIT™| < eh ™™ 4 O(R*7™).
Using (61- 64) in (60), we find for h sufficiently small

2m
Try, f(Sv) — 03—1 vol(Y)h!™" f(em)dﬁ‘ < 2eh ™" (cp_y vol(Y) + e +sup |f| + 1) + o(R*™™)
™ 0
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implying
2
1}11?01 A" Tryy, f(Su) — C;* vol(Y) f(e“’)dé)‘ < 2€(cp_1vol(Y) + e+ sup|f| +1).
m 0
Since € > 0 is arbitrary, this proves the theorem. ([l

APPENDIX A. WARPED PRODUCTS WITH A BULGE

This section collects two results for warped products with bulges, as introduced in Section 2.4.2.
These results are a resolvent estimate and a computation of the scattering map for the special case
in which the manifold is a surface of revolution.

We recall the setting. Let f € C°°(R;(0,00)) satisfy f(s) = 11if |s| > a and suppose f has a
single nondegenerate critical point in (—a,a), and this point is a maximum of f. Let (Y, gy,) be a
smooth compact Riemannian manifold, and set (X, g) = (R x Yy, ds? 4+ f4/ (= Vgy.).

A.1. The Resolvent estimate for the warped product with a bulge. Here we bound the
microlocally cut-off resolvent on a warped product with a bulge. We give a result that is stronger
than we need in terms of the spatial cut-off (a weight in |s|, rather than a compactly supported
function in s). Our presentation uses a commutator argument and is inspired by [40, 15] and
references therein; see also [11, Section 2].

Lemma A.1. Let f, Yy, and X be as described above, and let P = h?Ax.Then for any €, a > 0
there are Co = Cy(€,a), ho = ho(e, ) > 0 so that

(65) [|Lj0,1-q(h2Ayy) (L + |s])~HH/2(P — 1 —i0) 71 (1 + |s])~HF/2|| < Coh™" for 0 < h < hg.

We emphasize that while € > 0 is small, it is fixed here.

Proof. In this case
(66) WA = £ (202 4 K2F7()/F(5) + 2 Ay, £(5) 70D £().

Since f is bounded, and is bounded below away from 0, it suffices to study the resolvent of the
operator in parentheses on the right hand side of (66). To do so, we will separate variables. Set
¢ = f(s)"% =1, We will show that for any a > 0 and € > 0 there is a hg = ho(e, a), Co = Cp (e, a)
so that

(67) [I(L+ |s))" T 2(=h202 + 7o — 1 —i6) " (1 + |s|) "2 gy p2m) < Coh™!
forO<h<hp, 0<d<1,0<7<1—¢

Then using that this implies ||R2(f"/f)(=h?0? + 1o — 1 —i6)~ (1 + |s|)~(+)/2|| = O(h), the
estimate (67) together with a separation of variables using (66) proves the lemma.

We give a proof of (67) that is valid uniformly for all 7 € [0, 1 — ¢]. Without loss of generality we
can assume that the maximum of f, and hence the minimum of ¢, occurs at s = 0 so that s¢’(s) > 0.
We also remark that 0 < ¢ < 1. In order to simplify notation, we introduce Q, := —h29% +1¢p 