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1. INTRODUCTION AND STATEMENT OF RESULTS

Valuations play a central role in convex and integral geometry ever since they were the key ingredient
in Dehn’s solution of Hilbert’s Third Problem in 1901 (see [20, 22]). In the classical setting, valuations
are defined on the set of convex bodies, Kn, that is, on non-empty, compact, convex subsets of Rn, and
a functional Z : Kn → R is called a valuation if

Z(K) + Z(L) = Z(K ∪ L) + Z(K ∩ L)

for every K,L ∈ Kn such that K ∪ L ∈ Kn. Among the most important valuations are the intrinsic
volumes, Vj , for 0 ≤ j ≤ n. Here, Vn is the n-dimensional volume (or Lebesgue measure) and V0

is the Euler characteristic (that is, V0(K) := 1 for every K ∈ Kn). If K ∈ Kn is j-dimensional for
1 ≤ j ≤ n−1, then Vj(K) is just the j-dimensional volume of K. For general K ∈ Kn, the jth intrinsic
volume of K can be defined using the Cauchy–Kubota formulas

(1.1) Vj(K) :=
κn

κjκn−j

(
n

j

)∫
G(n,j)

Vj(projEK) dE.

Here, κj denotes the j-dimensional volume of the j-dimensional unit ball, integration is with respect
to the Haar probability measure on G(n, j), the Grassmannian of j-dimensional subspaces in Rn, and
projE : Rn → E denotes the orthogonal projection onto E ∈ G(n, j) (cf. [39]).

While (1.1) can be proved directly, it is also an immediate consequence of the celebrated Hadwiger
theorem, which classifies continuous, translation and rotation invariant valuations and thereby charac-
terizes linear combinations of intrinsic volumes. Here, continuity is understood with respect to the
Hausdorff metric, and a valuation Z : Kn → R is translation invariant if Z(τK) = Z(K) for every
K ∈ Kn and translation τ on Rn, while it is rotation invariant if Z(ϑK) = Z(K) for every K ∈ Kn and
ϑ ∈ SO(n).

Theorem 1.1 (Hadwiger [20]). A functional Z : Kn → R is a continuous, translation and rotation
invariant valuation if and only if there exist constants ζ0, . . . , ζn ∈ R such that

Z(K) =
n∑
j=0

ζj Vj(K)

for every K ∈ Kn.
1
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The Hadwiger theorem leads to effortless proofs of numerous further results in integral geometry and
geometric probability (see [20, 22]).

We restate the Hadwiger theorem here in a form that makes use of the Cauchy–Kubota formulas (1.1).

Theorem 1.2 (Hadwiger). A functional Z : Kn → R is a continuous, translation and rotation invariant
valuation if and only if there exist constants α0, . . . , αn ∈ R such that

Z(K) =
n∑
j=0

αj

∫
G(n,j)

Vj(projEK) dE

for every K ∈ Kn.

The Hadwiger theorem is the first culmination of the program, initiated by Blaschke, of classifying
valuations invariant under various groups and the starting point of geometric valuation theory (see [39,
Chapter 6]). We refer to [1, 2, 4–6, 18, 19, 25, 27, 30, 31] for some recent classification results and to
[7, 21, 26] for some of the new valuations that keep arising.

Currently, a geometric theory of valuations on function spaces is being developed. On a space X of
(extended) real-valued functions, a functional Z : X → R is called a valuation if

Z(u) + Z(v) = Z(u ∨ v) + Z(u ∧ v)

for every u, v ∈ X such that also their pointwise maximum u ∨ v and their pointwise minimum u ∧ v
belong to X . The first classification results of valuations on classical function spaces were obtained for
Lp and Sobolev spaces and for Lipschitz and continuous functions (see [16, 17, 28, 29, 42, 43]).

Of special interest are valuations on convex functions, where the first classification results were ob-
tained in [11, 12, 33, 34] and the first structural results in [3, 13, 23, 24]. Recently, the authors [15]
established the Hadwiger theorem on convex functions. Let

Convsc(Rn) :=
{
u : Rn → (−∞,+∞] : u 6≡ +∞, lim

|x|→+∞

u(x)

|x|
= +∞, u is l.s.c. and convex

}
denote the space of proper, super-coercive, lower semicontinuous, convex functions on Rn, where | · | is
the Euclidean norm. It is equipped with the topology induced by epi-convergence (see Section 2.2 for
the definition). A functional Z : Convsc(Rn)→ R is epi-translation invariant if Z(u ◦ τ−1 + α) = Z(u)
for every u ∈ Convsc(Rn), every translation τ on Rn and every α ∈ R. It is rotation invariant if
Z(u ◦ ϑ−1) = Z(u) for every u ∈ Convsc(Rn) and ϑ ∈ SO(n).

The authors [15] introduced functional versions of intrinsic volumes on Convsc(Rn) in the following
way. For 0 ≤ j ≤ n− 1, let

Dn
j :=

{
ζ ∈ Cb((0,∞)) : lim

s→0+
sn−jζ(s) = 0, lim

s→0+

∫ ∞
s

tn−j−1ζ(t) dt exists and is finite
}
,

where Cb((0,∞)) is the set of continuous functions with bounded support on (0,∞). In addition, let
ζ ∈ Dn

n if ζ ∈ Cb((0,∞)) and lims→0+ ζ(s) exists and is finite. In this case, we set ζ(0) := lims→0+ ζ(s)
and consider ζ also as an element of Cc([0,∞)), the set of continuous functions with compact support
on [0,∞).

Theorem 1.3 ( [15], Theorem 1.2). For 0 ≤ j ≤ n and ζ ∈ Dn
j , there exists a unique, continuous,

epi-translation and rotation invariant valuation Z : Convsc(Rn)→ R such that

(1.2) Z(u) =

∫
Rn

ζ(|∇u(x)|)
[
D2u(x)

]
n−j dx

for every u ∈ Convsc(Rn) ∩ C2
+(Rn).
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Here C2
+(Rn) is the set of finite-valued functions u ∈ C2(Rn) with positive definite Hessian matrix D2u

and we write [A]i for the ith elementary symmetric function of the eigenvalues of any symmetric matrix
A (with the convention that [A]0 := 1).

Theorem 1.3 allows us to make the following definition. For 0 ≤ j ≤ n and ζ ∈ Dn
j , the functional

intrinsic volume Vn
j,ζ : Convsc(Rn) → R is the unique continuous extension of the functional defined

in (1.2) on Convsc(Rn) ∩ C2
+(Rn). Note that the functional intrinsic volumes are not only rotation

invariant but even O(n) invariant. Moreover, for ζ ∈ Dn
0 , the functional Vn

0,ζ is a constant, independent
of u ∈ Convsc(Rn), and by [13, Proposition 20],

(1.3) Vn
n,ζ(u) =

∫
domu

ζ(|∇u(x)|) dx

for every u ∈ Convsc(Rn) and ζ ∈ Dn
n, where domu := {x ∈ Rn : u(x) < ∞} is the domain of u.

We remark that for ζ ∈ Cc([0,∞)), extensions of (1.2) to Convsc(Rn) were previously defined by the
authors in [13] using Hessian measures and so-called Hessian valuations. For the proof of Theorem 1.3
in [15], singular Hessian valuations were introduced.

The Hadwiger theorem for convex functions is the following result. Let n ≥ 2.

Theorem 1.4 ([15], Theorem 1.3). A functional Z : Convsc(Rn) → R is a continuous, epi-translation
and rotation invariant valuation if and only if there exist functions ζ0 ∈ Dn

0 , . . . , ζn ∈ Dn
n such that

Z(u) =
n∑
j=0

Vn
j,ζj

(u)

for every u ∈ Convsc(Rn).

Theorem 1.1 and Theorem 1.4 show that the functionals Vn
j,ζ clearly play the role of intrinsic volumes

on Convsc(Rn).
In this article, we present an integral-geometric approach to valuations on convex functions. We

obtain a new version of the Hadwiger theorem on Convsc(Rn), Theorem 1.7, based on new functional
Cauchy–Kubota formulas, and we present a new proof of Theorem 1.3. First, we establish a new integral-
geometric representation of the functionals Vn

j,ζ , corresponding to the Cauchy–Kubota formulas (1.1).
For a linear subspace E ⊆ Rn, we write Convsc(E) for the set of proper, lower semicontinuous, super-
coercive, convex functions w : E → (−∞,+∞]. For u ∈ Convsc(Rn), define the projection function
projE u : E → (−∞,∞] by

projE u(xE) := minz∈E⊥ u(xE + z)

for xE ∈ E, where E⊥ denotes the orthogonal complement of E. If Z : Convsc(Rk) → R is O(k)
invariant and dimE = k, we define Z on Convsc(E) by identifying Convsc(E) with Convsc(Rk) (see
Section 3.1).

Theorem 1.5. Let 0 ≤ j ≤ k < n. If ζ ∈ Dn
j , then

(1.4) Vn
j,ζ(u) =

κn
κkκn−k

(
n

k

)∫
G(n,k)

Vk
j,ξ(projE u) dE

for every u ∈ Convsc(Rn), where ξ ∈ Dk
j is given by

(1.5) ξ(s) :=
κn−k(
n−j
k−j

)(sn−kζ(s) + (n− k)

∫ ∞
s

tn−k−1ζ(t) dt
)

for s > 0.

Here we set κ0 := 1 and D0
0 := D1

1. Further, let V0
0,ξ(projE u) := ξ(0) for ξ ∈ D0

0.
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In the proof of this theorem we make essential use of results from [15] that were established for the
proof of Theorem 1.3. We also use tools from the integral geometry of convex bodies. The proof of
Theorem 1.5 and our new proof of Theorem 1.3 are presented in Section 3. Note that embeddingKn into
Convsc(Rn), we see that (1.4) generalizes the classical Cauchy–Kubota formulas (see Section 5.2).

As a consequence of Theorem 1.5 (with j = k) and the representation of the functional intrinsic
volume for j = n in (1.3), we immediately obtain the following representation of Vn

j,ζ for 0 ≤ j < n.
This is the first explicit representation of functional intrinsic volumes as integrals, as in [15] limits using
Moreau–Yosida approximation were used.

Theorem 1.6. Let 0 ≤ j < n. If ζ ∈ Dn
j , then

Vn
j,ζ(u) =

κn
κjκn−j

(
n

j

)∫
G(n,j)

∫
dom(projE u)

α(|∇ projE u(xE)|) dxE dE

for every u ∈ Convsc(Rn), where α ∈ Cc([0,∞)) is given by

α(s) := κn−j
(
sn−jζ(s) + (n− j)

∫ ∞
s

tn−j−1ζ(t) dt
)

for s > 0.

Here, in the case j = 0, we set ∇ projE u(xE) := 0 and Vn
0,ζ(u) := α(0) for u ∈ Convsc(Rn). Note that

a convex function is differentiable almost everywhere on the interior of its domain and hence the integral
representing Vn

j,ζ(u) is well-defined for u ∈ Convsc(Rn).
Theorem 1.4 and Theorem 1.6 imply the following new version of the Hadwiger theorem for convex

functions, which corresponds to Theorem 1.2. Let n ≥ 2.

Theorem 1.7. A functional Z : Convsc(Rn)→ R is a continuous, epi-translation and rotation invariant
valuation if and only if there exist functions α0, . . . , αn ∈ Cc([0,∞)) such that

Z(u) =
n∑
j=0

∫
G(n,j)

∫
dom(projE u)

αj(|∇ projE u(xE)|) dxE dE

for every u ∈ Convsc(Rn).

Note that by Theorem 1.6 and properties of the integral transform which maps ζ to α (see Lemma 3.8),
Theorem 1.7 is in fact equivalent to Theorem 1.4.

In Section 4, we present results for valuations on Conv(Rn;R) := {v : Rn → R : v is convex},
the space of finite-valued convex functions. The results are obtained from results for valuations on
Convsc(Rn) by using the Legendre–Fenchel transform or convex conjugate. The new Cauchy–Kubota
formulas correspond to results on restrictions of convex functions to linear subspaces in this setting.

In the final section, we collect several applications and results. In particular, we present a second proof
of Theorem 1.5 which uses Theorem 1.4. Thus, similar to the classical Cauchy–Kubota formulas (1.1),
Theorem 1.5 can be proved both directly and as a consequence of the Hadwiger theorem. We also obtain
connections between functional intrinsic volumes and their classical counterparts and answer questions
about non-negative and monotone valuations.

2. PRELIMINARIES

We work in n-dimensional Euclidean space Rn, with n ≥ 1, endowed with the Euclidean norm | · |
and the standard scalar product 〈·, ·〉. We also use coordinates, x = (x1, . . . , xn), for x ∈ Rn. For k ≤ n,
we often identify Rk with {x ∈ Rn : xk+1 = · · · = xn = 0}. Let Bn := {x ∈ Rn : |x| ≤ 1} be the
Euclidean unit ball and Sn−1 the unit sphere in Rn.
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2.1. Convex Bodies. A basic reference on convex bodies is the book by Schneider [39]. For K ∈ Kn,
its support function hK : Rn → R is defined as

hK(x) := maxy∈K〈x, y〉.
It is a one-homogeneous and convex function that determines K.

For K ∈ Kn and 0 ≤ j ≤ n − 1, let Cj(K, ·) be its jth curvature measure (see [39]). We require the
following integral-geometric formula. Let 0 ≤ j ≤ k < n. By (4.79) in [39], for every K ∈ Kn and
every Borel set B ⊆ bdK, we have

(2.1) Cj(K,B) =
nκn
kκk

∫
G(n,k)

CE
j (projEK, projE B) dE,

where CE
j (projEK, ·) is the jth curvature measure of the convex body projEK taken with respect to

the subspace E and bdK is the boundary of K.
Under suitable regularity assumptions, curvature measures can be expressed in terms of the principal

curvatures of the boundary. Let K ∈ Kn have boundary of class C2 with positive Gauss curvature. For
0 ≤ j ≤ n − 1 and x ∈ bdK, let τj(K, x) be the jth elementary symmetric function of the principal
curvatures of bdK at x. By (2.36) and (4.25) in [39], we have

(2.2) Cj(K,B) =

(
n− 1

n− 1− j

)−1 ∫
B

τn−1−j(K, x) dHn−1(x)

for every 0 ≤ j ≤ n − 1 and for every Borel set B ⊆ bdK, where Hk is the k-dimensional Hausdorff
measure.

2.2. Convex Functions. We collect some basic results and properties of convex functions. Standard
references are the books by Rockafellar [36] and Rockafellar & Wets [37] (also, see [12]).

Let Conv(Rn) be the set of proper, lower semicontinuous, convex functions u : Rn → (−∞,∞].
Every function u ∈ Conv(Rn) is uniquely determined by its epi-graph

epiu := {(x, t) ∈ Rn × R : u(x) ≤ t},
which is a closed, convex subset of Rn+1. For t ∈ R, we write

{u < t} := {x ∈ Rn : u(x) < t}, {u ≤ t} := {x ∈ Rn : u(x) ≤ t}
for the sublevel sets of u, which are convex subsets of Rn. Since u is lower semicontinuous, the sublevel
sets {u ≤ t} are closed. If in addition u ∈ Convsc(Rn), then the sublevel sets are bounded. Similarly,
we write

{u = t} := {x ∈ Rn : u(x) = t}, {t1 < u ≤ t2} := {x ∈ Rn : t1 < u(x) ≤ t2}
for t ∈ R and t1 < t2.

The standard topology on Conv(Rn) and its subsets is induced by epi-convergence. A sequence of
functions uk ∈ Conv(Rn) is epi-convergent to u ∈ Conv(Rn) if for every x ∈ Rn:

(i) u(x) ≤ lim infk→∞ uk(xk) for every sequence xk ∈ Rn that converges to x;
(ii) u(x) = limk→∞ uk(xk) for at least one sequence xk ∈ Rn that converges to x.

Note that the limit of an epi-convergent sequence of functions from Conv(Rn) is always lower semi-
continuous.

A sequence of functions vk ∈ Conv(Rn;R) is epi-convergent to v ∈ Conv(Rn;R) if and only if vk
converges pointwise to v, which by convexity is equivalent to uniform convergence on compact sets. On
Convsc(Rn), epi-convergence is, basically, equivalent to Hausdorff convergence of sublevel sets. Here
we say that for a sequence uk ∈ Convsc(Rn), the sets {uk ≤ t} converge to the empty set, if there exists
k0 ∈ N such that {uk ≤ t} = ∅ for every k ≥ k0.
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Lemma 2.1. Let uk, u ∈ Convsc(Rn). If uk epi-converges to u, then {uk ≤ t} converges to {u ≤ t}
for every t 6= minx∈Rn u(x). Conversely, if for every t ∈ R there exists a sequence tk → t such that
{uk ≤ tk} converges to {u ≤ t}, then uk epi-converges to u.

For u ∈ Conv(Rn), let u∗ ∈ Conv(Rn) be its Legendre–Fenchel transform or convex conjugate, which
is defined by

u∗(y) := supx∈Rn

(
〈x, y〉 − u(x)

)
for y ∈ Rn. Since u is lower semicontinuous, u∗∗ = u. Moreover, u ∈ Convsc(Rn) if and only if
u∗ ∈ Conv(Rn;R), and u ∈ Convsc(Rn) ∩ C2

+(Rn) if and only if u∗ ∈ Convsc(Rn) ∩ C2
+(Rn).

Lemma 2.2. A sequence of functions uk in Conv(Rn) is epi-convergent to u ∈ Conv(Rn) if and only if
u∗k is epi-convergent to u∗.

Since Convsc(Rn) ∩ C2
+(Rn) is dense in Conv(Rn;R), this implies the following simple result.

Lemma 2.3. For every u ∈ Convsc(Rn), there exists a sequence of functions from Convsc(Rn)∩C2
+(Rn)

that epi-converges to u.

For a convex body K ∈ Kn, let

IK(x) :=

{
0 if x ∈ K,
+∞ if x 6∈ K

be its (convex) indicator function. Clearly, IK ∈ Convsc(Rn) while I∗K = hK and hK ∈ Conv(Rn;R).
For u ∈ Conv(Rn), the subdifferential of u at x ∈ Rn is defined by

∂u(x) := {y ∈ Rn : u(z) ≥ u(x) + 〈y, z − x〉 for z ∈ Rn}.

Every element of ∂u(x) is called a subgradient of u at x. If u is differentiable at x, then ∂u(x) =
{∇u(x)}. For x, y ∈ Rn, we have y ∈ ∂u(x) if and only if x ∈ ∂u∗(y).

For functions u1, u2 ∈ Convsc(Rn), we denote by u1 � u2 ∈ Convsc(Rn) their infimal convolution
which is defined as

(u1 � u2)(x) := infx1+x2=x u1(x1) + u2(x2)

for x ∈ Rn. Note that
epi(u1 � u2) = epiu1 + epiu2,

where the addition on the right side is the Minkowski addition of subsets in Rn+1. Further, we define
epi-multiplication on Convsc(Rn) in the following way. For λ > 0 and u ∈ Convsc(Rn), let

λ u(x) := λu
(x
λ

)
for x ∈ Rn. This corresponds to rescaling the epi-graph of u by the factor λ, that is, epiλ u = λ epiu.

The two operations above can also be described using convex conjugates. For u1, u2 ∈ Convsc(Rn),
we have

(u1 � u2)∗ = u∗1 + u∗2,

where the addition on the right side is the pointwise addition of functions. Similarly,

(λ u)∗ = λu∗

for every u ∈ Convsc(Rn) and λ > 0.
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2.3. Hessian Measures. We will use two families of Hessian measures of convex functions. For a more
detailed presentation, see [10, 14]. We remark that Hessian measures were introduced by Trudinger and
Wang [40, 41] in the context of so-called Hessian equations.

For u ∈ Convsc(Rn), we use the non-negative Borel measures Ψn
j (u, ·) for 0 ≤ j ≤ n that have the

property that for every Borel function β : Rn → [0,∞),∫
Rn

β(y) dΨn
j (u, y) =

∫
Rn

β(∇u(x))
[
D2u(x)

]
n−j dx

for u ∈ Convsc(Rn) ∩ C2
+(Rn). In addition,

(2.3)
∫
Rn

β(y) dΨn
n(u, y) =

∫
domu

β(∇u(x)) dx

for u ∈ Convsc(Rn) and β ∈ Cc(Rn). For v ∈ Conv(Rn;R), we use the non-negative Borel measures
Φn
j (v, ·) for 0 ≤ j ≤ n that have the property that for every Borel function β : Rn → [0,∞),∫

Rn

β(x) dΦn
j (v, x) =

∫
Rn

β(x)
[
D2v(x)

]
j
dx

for v ∈ Conv(Rn;R) ∩ C2
+(Rn). The measure Φn

n(v, ·) is called the Monge–Ampère measure of v.
The interplay of Hessian measures and convex conjugation is well understood. Let u ∈ Convsc(Rn)

and 0 ≤ j ≤ n. It is an immediate consequence of [14, Theorem 8.2] that

(2.4)
∫
B

β(y) dΨn
j (u, y) =

∫
B

β(x) dΦn
j (u∗, x)

for every u ∈ Convsc(Rn) and Borel subset B ⊆ Rn, when β : Rn\{0} → R is such that one of the two
integrals above, and therefore both, exist.

2.4. Valuations on Convex Functions. We say that Z : Convsc(Rn) → R is epi-homogeneous of
degree j if Z(λ u) = λj Z(u) for every u ∈ Convsc(Rn) and λ > 0.

The following result is an immediate consequence of [13, Proposition 20].

Proposition 2.4. For ζ ∈ Cc([0,∞)), the functional Z : Convsc(Rn)→ R, defined by

Z(u) :=

∫
dom(u)

ζ(|∇u(x)|) dx,

is a continuous, epi-translation and O(n) invariant valuation that is epi-homogeneous of degree n.

Next, we consider valuations on Conv(Rn;R). For X ⊆ Conv(Rn), we associate with a valuation
Z : X → R its dual valuation Z∗ defined on X∗ := {u∗ : u ∈ X} by setting

Z∗(u) := Z(u∗).

It was shown in [14] that Z : X → R is a continuous valuation if and only if Z∗ : X∗ → R is a
continuous valuation. Since u ∈ Convsc(Rn) if and only if u∗ ∈ Conv(Rn;R), this allows us to transfer
results between Convsc(Rn) and Conv(Rn;R). We call a valuation Z : Conv(Rn;R) → R dually epi-
translation invariant if Z∗ is epi-translation invariant or equivalently if

Z(v + `+ α) = Z(v)

for every v ∈ Conv(Rn;R), every linear functional ` : Rn → R and every α ∈ R. We say that Z is
homogeneous of degree j if Z∗ is epi-homogeneous of degree j or equivalently if

Z(λ v) = λj Z(v)

for every v ∈ Conv(Rn;R) and λ > 0.
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3. CAUCHY–KUBOTA FORMULAS

In this section, we give a new proof of Theorem 1.3 and establish the Cauchy–Kubota formulas from
Theorem 1.5. In the proofs, we require results on projection functions that we prove in the first part.
Then we introduce and discuss the integral transformR that connects the coefficient functions in our two
versions of the Hadwiger theorem on convex functions. Finally, we establish Cauchy–Kubota formulas
first for smooth functions and then in the general case.

3.1. Projection Functions. For a linear subspace E ⊆ Rn and a function u ∈ Convsc(Rn), we define
the projection function projE u : E → R by

projE u(xE) := minz∈E⊥ u(xE + z),

where xE ∈ E and E⊥ is the orthogonal complement of E. Note that this minimum is attained since
u is lower semicontinuous and super-coercive. Since minz∈E⊥ u(xE + z) ≤ t if and only if there exists
z ∈ E⊥ such that u(xE + z) ≤ t, this implies that

(3.1) {projE u ≤ t} = projE{u ≤ t}

for every t ∈ R and

(3.2) epi projE u = projE×R epiu.

In particular, it is clear that projE u ∈ Convsc(E).

Lemma 3.1. Let E ⊆ Rn be a linear subspace and let u ∈ Convsc(Rn). If xE, yE ∈ E are such
that yE ∈ ∂ projE u(xE), then for every x ∈ Rn with projE x = xE and projE u(xE) = u(x) also
yE ∈ ∂u(x). In particular, such x ∈ Rn exist.

Proof. Let xE, yE be given with yE ∈ ∂ projE u(xE). By the definition of the projection function, there
exists x ∈ Rn with projE x = xE such that

projE u(xE) = min
z∈E⊥

u(xE + z) = u(x).

Since yE ∈ ∂ projE u(xE), we have

projE u(zE) ≥ projE u(xE) + 〈zE − xE, yE〉

for every zE ∈ E. Thus, using again the definition of the projection function as well as the fact that
〈w, yE〉 = 〈projE w, yE〉 for every w ∈ Rn, we obtain

u(z) ≥ projE u(projE z) ≥ u(x) + 〈z − x, yE〉

for every z ∈ Rn, which shows that yE ∈ ∂u(x). �

Since for every linear subspace E ⊆ Rn the map K 7→ projEK is continuous on Kn, we directly
obtain the following result from (3.1) and Lemma 2.1.

Lemma 3.2. For every linear subspace E ⊆ Rn, the map projE : Convsc(Rn)→ Convsc(E) is continu-
ous.

We also need the next result.

Lemma 3.3. The map
(ϑ, u) 7→ u ◦ ϑ−1

is jointly continuous on SO(n)× Convsc(Rn).
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Proof. Let ul be a sequence of functions in Convsc(Rn) that epi-converges to some ū ∈ Convsc(Rn).
Furthermore, let ϑl be a convergent sequence in SO(n) and without loss of generality we may assume
that ϑlx → x for every x ∈ Rn as l → ∞. We need to show that ul ◦ ϑ−1

l epi-converges to ū. This is
equivalent, by Lemma 2.2, to the epi-convergence of the corresponding sequence of convex conjugates in
Conv(Rn;R), which on Conv(Rn;R) is equivalent to pointwise convergence and to uniform convergence
on compact sets. Let vl, v̄ ∈ Conv(Rn;R) be defined as vl := u∗l for l ∈ N and v̄ := ū∗. Since vl is
uniformly convergent to v̄ on compact sets, for every y ∈ Rn,

lim
l→∞

vl(ϑ
t
ly) = v̄(y),

where ϑtl denotes the transpose of ϑl. Thus, vl ◦ ϑtl is epi-convergent to v̄, and by Lemma 2.2, we obtain
that ul ◦ ϑ−1

l is epi-convergent to ū. �

Let 1 ≤ k ≤ n−1 and E ∈ G(n, k). There exists a rotation ϑ ∈ SO(n) such that {ϑx : x ∈ E} = Rk,
where we consider both E and Rk as subspaces of Rn (note that ϑ is not unique). Now, for every
u ∈ Convsc(E) we have u ◦ ϑ−1 ∈ Convsc(Rk). Note that the restriction of ϑ ∈ SO(n) to Rk is an
element of O(k) but not necessarily of SO(k). For an O(k) invariant Z : Convsc(Rk)→ R, set

Z(u) := Z(u ◦ ϑ−1)

for u ∈ Convsc(E). Since Z is O(k) invariant, this definition does not depend on the particular choice of
ϑ ∈ SO(n) and Z is well-defined on Convsc(E).

For 1 ≤ k ≤ n − 1, define the distance of two linear subspaces E,F ∈ G(n, k) as the Hausdorff
distance of the convex bodies Bn ∩ E and Bn ∩ F . This induces a topology on the Grassmannian
G(n, k), which is used in the proof of the following statement.

Lemma 3.4. Let 1 ≤ k ≤ n − 1. If Z: Convsc(Rk) → R is a continuous, epi-translation and O(k)
invariant valuation, then

(3.3) u 7→
∫

G(n,k)

Z(projE u) dE

defines a continuous, epi-translation and O(n) invariant valuation on Convsc(Rn).

Proof. We will first show that

(3.4) (E, u) 7→ Z(projE u)

is jointly continuous on G(n, k)×Convsc(Rn). For this, let El be a convergent sequence in G(n, k) with
limit Ē ∈ G(n, k), and let ul be a sequence in Convsc(Rn) that epi-converges to some ū ∈ Convsc(Rn).
We need to show that

(3.5) lim
l→∞

Z(projEl
ul) = Z(projĒ ū).

Since El converges to Ē, we may choose a sequence ϑl ∈ SO(n) such that ϑlx→ x for every x ∈ Rn

as l→∞ and such that {ϑlx : x ∈ El} = Ē for every l ∈ N. In particular, we now have

(projEl
ul) ◦ ϑ−1

l ∈ Convsc(Ē)

for every l ∈ N. By the O(k) invariance of Z, the definition of w 7→ Z(projE w) on Convsc(Rn) and our
choice of ϑl, it follows that

Z(projEl
ul) = Z((projEl

ul) ◦ ϑ−1
l ) = Z(projĒ(ul ◦ ϑ−1

l ))

for every l ∈ N. Combined with Lemma 3.2 and Lemma 3.3, this implies (3.5).
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Next, let ul be again an epi-convergent sequence in Convsc(Rn) with limit ū ∈ Convsc(Rn). Since ul
is epi-convergent, G(n, k) is compact, and the map defined by (3.4) is continuous, the supremum

sup{|Z(projE ul)| : l ∈ N, E ∈ G(n, k)}
is finite. Hence, it follows from the dominated convergence theorem that

lim
l→∞

∫
G(n,k)

Z(projE ul) dE =

∫
G(n,k)

Z(projE ū) dE

and therefore (3.3) is continuous. In particular, the right side of (3.3) is well-defined and finite. In
addition, it is easy to see that (3.3) is epi-translation and O(n) invariant. Finally, the valuation property
follows from the corresponding property of Z combined with the fact that

projE(u ∨ v) = (projE u) ∨ (projE v), projE(u ∧ v) = (projE u) ∧ (projE v)

for every u, v ∈ Convsc(Rn) and E ∈ G(n, k). �

As a consequence of Proposition 2.4 and Lemma 3.4, we obtain the following result.

Lemma 3.5. For 0 ≤ j ≤ n and α ∈ Cc([0,∞)), the functional

u 7→
∫

G(n,j)

∫
dom(projE u)

α(|∇ projE u(xE)|) dxE dE

is a continuous, epi-translation and rotation invariant valuation on Convsc(Rn).

3.2. The Integral TransformR. For ζ ∈ Cb((0,∞)) and s > 0, define

R ζ(s) := s ζ(s) +

∫ ∞
s

ζ(t) dt.

Note that, under these assumptions, we haveR ζ ∈ Cb((0,∞)). For l ∈ N, let

Rl ζ := (R◦ · · · ◦ R)︸ ︷︷ ︸
l

ζ

and setR0 ζ := ζ .

Lemma 3.6. If l ≥ 0 and ζ ∈ Cb((0,∞)), then

Rl ζ(s) = slζ(s) + l

∫ ∞
s

tl−1ζ(t) dt

for s > 0.

Proof. We prove the statement by induction on l. Observe that the statement is trivially true for l = 0
and l = 1. Therefore, assume that l > 1 and that the statement is true for the case l − 1. Using the
induction assumption, we now have

Rl ζ(s) = Rl−1R ζ(s)

= slζ(s) + sl−1

∫ ∞
s

ζ(t) dt+ (l − 1)

∫ ∞
s

tl−1ζ(t) dt+ (l − 1)

∫ ∞
s

tl−2

∫ ∞
t

ζ(r) dr dt
(3.6)

for every s > 0. Using integration by parts and that ζ has bounded support shows that

(l − 1)

∫ ∞
s

tl−2

∫ ∞
t

ζ(r) dr dt = −sl−1

∫ ∞
s

ζ(t) dt+

∫ ∞
s

tl−1ζ(t) dt

for every s > 0, which combined with (3.6) completes the proof. �
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We require the following simple result.

Lemma 3.7. Let 0 ≤ k < n− 1. If ζ ∈ Dn
k , then

(3.7) lim
s→0+

sn−1−k
∫ ∞
s

ζ(t) dt = 0.

Moreover, if 0 ≤ k < n and ρ ∈ Dn−1
k , then

lim
s→0+

sn−k
∫ ∞
s

ρ(t)

t2
dt =

{
ρ(0) if k = n− 1,

0 else.

Proof. Let ζ ∈ Dn
k . If ζ is such that lims→0+

∫∞
s
ζ(t) dt exists and is finite, then (3.7) is trivial. In the

remaining case, we use L’Hospital’s rule and the definition of Dn
k to obtain

lim
s→0+

∣∣∣sn−1−k
∫ ∞
s

ζ(t) dt
∣∣∣ ≤ lim

s→0+
sn−1−k

∫ ∞
s

|ζ(t)| dt = lim
s→0+

|ζ(s)|
n−1−k
sn−k

= lim
s→0+

|sn−kζ(s)|
n− 1− k

= 0.

The proof of the second statement is analogous. We remark that for k = n− 1 the limit lims→0+ ρ(s) =
ρ(0) exists and is finite. �

In the following lemma, basic properties of the integral transformR are established.

Lemma 3.8. For 0 ≤ k ≤ n and 0 ≤ l ≤ n − k, the map Rl : Dn
k → Dn−l

k is a bijection with inverse
R−l : Dn−l

k → Dn
k , given by

(3.8) R−l ρ(s) := (R−1)lρ(s) =
ρ(s)

sl
− l
∫ ∞
s

ρ(t)

tl+1
dt

for ρ ∈ Dn−l
k and s > 0.

Proof. Let 0 ≤ k ≤ n − 1. We will first show that if ζ ∈ Dn
k , then R ζ ∈ Dn−1

k . In case k = n − 1, it
easily follows from the definition of Dn

n−1 that lims→0+R ζ(s) exists and is finite and thusR ζ ∈ Dn−1
n−1.

In case k < n− 1, we have

sn−1−kR ζ(s) = sn−kζ(s) + sn−1−k
∫ ∞
s

ζ(t) dt

for s > 0. Since ζ ∈ Dn
k , it follows that lims→0+ s

n−kζ(s) = 0. Combined with Lemma 3.7 this shows
that

lim
s→0+

sn−1−kR ζ(s) = 0.

Next, observe that∫ ∞
s

tn−1−k−1R ζ(t) dt =

∫ ∞
s

tn−k−1ζ(t) dt+

∫ ∞
s

tn−1−k−1

∫ ∞
t

ζ(r) dr dt

=

∫ ∞
s

tn−k−1ζ(t) dt− sn−1−k

n− 1− k

∫ ∞
s

ζ(t) dt+

∫ ∞
s

tn−1−k

n− 1− k
ζ(t) dt

=
n− k

n− 1− k

∫ ∞
s

tn−k−1ζ(t) dt− 1

n− 1− k
sn−1−k

∫ ∞
s

ζ(t) dt.

Since ζ ∈ Dn
k , we see that lims→0+

∫∞
s
tn−k−1ζ(t) dt exists and is finite. Combined with Lemma 3.7,

this shows that the expression above converges to a finite value as s → 0+. Thus, R ζ ∈ Dn−1
k . It now

easily follows by induction that Rl ζ ∈ Dn−l
k for 0 ≤ k ≤ n and 0 ≤ l ≤ n − k, where we remark that

the case l = 0 is trivial.
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Second, for ζ ∈ Dn
k we have

Rl ζ(s)

sl
− l
∫ ∞
s

Rl ζ(t)

tl+1
dt = ζ(s)+

l

sl

∫ ∞
s

tl−1ζ(t) dt− l
∫ ∞
s

ζ(t)

t
dt− l2

∫ ∞
s

1

tl+1

∫ ∞
t

rl−1ζ(r) dr dt

for every s > 0. Using integration by parts, we obtain∫ ∞
s

1

tl+1

∫ ∞
t

rl−1ζ(r) dr dt =
1

l

( 1

sl

∫ ∞
s

tl−1ζ(t) dt−
∫ ∞
s

ζ(t)

t
dt
)

for s > 0 and therefore the (left) inverse of Rl is given by (3.8). Similarly, one shows that Rl is the
inverse operation to (3.8).

Now let ρ ∈ Dn−1
k with 0 ≤ k ≤ n− 1 be given. We need to show thatR−1 ρ ∈ Dn

k . Again, it is easy
to see that the continuity and the bounded support of ρ imply the same properties forR−1 ρ. Since

sn−kR−1 ρ(s) = sn−k−1ρ(s)− sn−k
∫ ∞
s

ρ(t)

t2
dt,

it follows from the definition of Dn−1
k and Lemma 3.7 that lims→0+ s

n−kR−1 ρ(s) = 0. Note, that in the
last step the cases k < n− 1 and k = n− 1 need to be dealt with separately. Furthermore, observe that∫ ∞

s

tn−k−1R−1 ρ(t) dt =

∫ ∞
s

tn−1−k−1ρ(t) dt−
∫ ∞
s

tn−k−1

∫ ∞
t

ρ(r)

r2
dr dt

=

∫ ∞
s

tn−1−k−1ρ(t) dt+
sn−k

n− k

∫ ∞
s

ρ(t)

t2
ds−

∫ ∞
s

tn−k

n− k
ρ(t)

t2
dt

=
n− 1− k
n− k

∫ ∞
s

tn−1−k−1ρ(t) dt+
1

n− k
sn−k

∫ ∞
s

ρ(t)

t2
dt.

In case k = n−1, the first term on the right side of the last equation vanishes. In case k < n−1, it follows
from the definition of Dn−1

k that lims→0+
∫∞
s
tn−1−k−1ρ(t) dt exists and is finite and from Lemma 3.7

that the second term converges as s→ 0+. Thus,R−1 ρ ∈ Dn
k andR : Dn

k → Dn−1
k is a bijection.

Finally, it now easily follows by induction that Rl : Dn
k → Dn−l

k is a bijection for 0 ≤ k ≤ n and
0 ≤ l ≤ n − k, where again the case l = 0 is trivial. Furthermore, this implies that (R−1)l is indeed
given by (3.8). �

We remark that since Dk
k = Dn

n for every 0 ≤ k < n, Lemma 3.8 allows us to redefine Dn
k as

Dn
k = R−(n−k) Dn

n = {R−(n−k) ζ : ζ ∈ Dn
n}.

3.3. Cauchy–Kubota Formulas for Smooth Functions. We use the auxiliary space,

Convsc,0(Rn) = {u ∈ Convsc(Rn) : u(0) = 0 ≤ u(x) for every x ∈ Rn}.

If u ∈ Convsc,0(Rn) ∩ C2
+(Rn), then the level sets {u ≤ t} have boundary of class C2 with positive

Gaussian curvature for every t > 0. We have u(x) = 0 if and only if x = 0. For such a function u and
0 ≤ j ≤ n − 1, we write τj(u, x) for the jth elementary symmetric function of the principal curvatures
of {u ≤ t} at x 6= 0, where t = u(x).
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We need the following result, whose proof is based on a lemma by Reilly [35].

Proposition 3.9 ( [15], Proposition 3.13). Let 1 ≤ j ≤ n − 1 and ζ ∈ Dn
j . For 0 < t1 < t2 and

u ∈ Convsc,0(Rn) ∩ C2
+(Rn),∫

{t1<u≤t2}
ζ(|∇u(x)|)

[
D2u(x)

]
n−j dx =

∫
{t1<u≤t2}

(Rn−j ζ)(|∇u(x)|) τn−j(u, x) dx

−
∫
{u=t2}

ηn−j−1(|∇u(x)|) τn−j−1(u, x) dHn−1(x)

+

∫
{u=t1}

ηn−j−1(|∇u(x)|) τn−j−1(u, x) dHn−1(x),

where ηn−j−1(s) =
∫∞
s
tn−j−1ζ(t) dt for s > 0.

As a consequence, we obtain the following lemma.

Lemma 3.10. Let 1 ≤ j ≤ n− 1 and ζ ∈ Dn
j . For u ∈ Convsc,0(Rn) ∩ C2

+(Rn),∫
Rn

ζ(|∇u(x)|)
[
D2u(x)

]
n−j dx =

∫
Rn

(Rn−j ζ)(|∇u(x)|) τn−j(u, x) dx.

Proof. Since u(0) ≥ u(x) + 〈∇u(x),−x〉 it follows from the Cauchy–Schwarz inequality that

|∇u(x)| ≥ u(x)− u(0)

|x|
for every x ∈ Rn\{0}. Using that lim|x|→∞ u(x)/|x| = +∞, we obtain that lim|x|→∞ |∇u(x)| = +∞.
The proof now follows by letting t1 → 0+ and t2 → ∞ in Proposition 3.9. Here, for the integral
involving t1 we use that ηn−j−1 is bounded and thus, since {u = 0} = {0} and because of (2.2), this
integral vanishes as t1 → 0+. For the integral involving t2, we use the fact that ηn−j−1 has compact
support. �

We can now prove Cauchy–Kubota formulas for convex functions in C2
+(Rn).

Proposition 3.11. Let 1 ≤ j ≤ k < n. If ζ ∈ Dn
j , then∫

Rn

ζ(|∇u(x)|)
[
D2u(x)

]
n−j dx

(3.9)
=

κn
κkκn−k

(
n

k

)∫
G(n,k)

∫
E

ξ(|∇ projE u(xE)|)
[
D2 projE u(xE)

]
k−j dxE dE

for every u ∈ Convsc(Rn) ∩ C2
+(Rn), where ξ ∈ Dk

j is given by

ξ(s) :=
κn−k(
n−j
k−j

) Rn−k ζ(s)

for s > 0.

Proof. Let K ∈ Kn be of class C2 with positive Gaussian curvature. In particular, this implies that K
is strictly convex. For E ∈ G(n, k), let bdE projEK denote the boundary of projEK as a subset of
E. It follows from the strict convexity of K that for every xE ∈ bdE projEK, there exists a unique
point x ∈ bdK such that projE x = xE . The map xE 7→ x can be also defined as follows. Let
νK : ∂K → Sn−1 be the Gauss map of K, and let νprojE K : bdE projEK → Sk−1

E be the Gauss map
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of projEK (here the unit sphere Sk−1
E of E is seen as a subset of Sn−1). Then νK and νprojE K are

diffeomorphisms and
x = ν−1

K (νprojE K(xE)).

For simplicity, we write x = proj−1
E xE , that is, proj−1

E = ν−1
K ◦ νprojE K . Let γ : bdK → R be

continuous (which implies in particular that γ ◦ proj−1
E is continuous). It follows from (2.2), (2.1)

combined with Fubini’s theorem, and again (2.2) (in dimension k) that∫
bdK

γ(x) τn−j(K, x) dHn−1(x)

=

(
n− 1

n− j

)∫
bdK

γ(x) dCj−1(K, x)

=

(
n− 1

n− j

)
nκn
kκk

∫
G(n,k)

∫
bdE projE K

γ(proj−1
E xE) dCE

j−1(projEK, xE) dE

=
κn
(
n
j

)
κk
(
k
j

) ∫
G(n,k)

∫
bdE projE K

γ(proj−1
E xE) τEk−j(projEK, xE) dHk−1(xE) dE.

(3.10)

Here, τEk−j(projEK, xE) is the (k − j)th elementary symmetric function of the principal curvatures of
bdE projEK at xE in E.

Now, let u ∈ Convsc,0(Rn) ∩ C2
+(Rn) and 0 < t1 < t2. We first observe that, by the coarea formula,∫

{t1<u≤t2}
(Rn−j ζ)(|∇u(x)|) τn−j(u, x) dx =

∫ t2

t1

∫
{u=t}

(Rn−j ζ)(|∇u(x)|)
|∇u(x)|

τn−j(u, x) dHn−1(x) dt.

Next, fix E ∈ G(n, k). For every t > 0, the convex set {u ≤ t} has positive Gaussian curvature. We
consider the map proj−1

E : bdE projE{u ≤ t} → {u = t} defined as above. Combined with Lemma 3.1
we therefore have

(3.11) ∇u(proj−1
E xE) = ∇ projE u(xE)

for every xE ∈ bdE projE{u ≤ t}.
Hence∫
{t1<u≤t2}

(Rn−j ζ)(|∇u(x)|) τn−j(u, x) dx

=

∫ t2

t1

∫
{u=t}

(Rn−j ζ)(|∇u(x)|)
|∇u(x)|

τn−j(u, x) dHn−1(x) dt

=
κn
(
n
j

)
κk
(
k
j

) ∫ t2

t1

∫
G(n,k)

∫
bdE projE{u≤t}

(Rn−j ζ)(|∇u(proj−1
E xE)|)

|∇u(proj−1
E xE)|

τEk−j(projE u, xE) dHk−1(xE) dE dt

=
κn
(
n
j

)
κk
(
k
j

) ∫
G(n,k)

∫ t2

t1

∫
{projE u=t}

(Rn−j ζ)(|∇ projE u(xE)|)
|∇ projE u(x)|

τEk−j(projE u, xE) dHk−1(xE) dt dE

=
κn
(
n
j

)
κk
(
k
j

) ∫
G(n,k)

∫
{t1<projE u≤t2}

(Rn−j ζ)(|∇ projE u(xE)|) τEk−j(projE u, xE) dxE dE,

where we have used the coarea formula, (3.10), (3.11), and Fubini’s theorem. Next, let t1 → 0+ and t2 →
+∞. We apply Lemma 3.10 to both u and to projE u. On the right side we also use the boundedness of
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Rn−j ζ , equation (2.2) and the dominated convergence theorem, and obtain∫
Rn

ζ(|∇u(x)|)
[
D2u(x)

]
n−j dx

=
κn
(
n
j

)
κk
(
k
j

) ∫
G(n,k)

∫
E

R−(k−j)(Rn−j ζ)(|∇ projE u(xE)|)[D2 projE u(xE)]k−j dxE dE.

SinceR−(k−j)Rn−j ζ = Rn−k ζ and (
n

j

)(
n− j
k − j

)
=

(
n

k

)(
k

j

)
,

we have therefore shown (3.9) for u ∈ Convsc,0(Rn) ∩ C2
+(Rn). The conclusion now follows since for

each u ∈ Convsc(Rn)∩C2
+(Rn) there exists u0 ∈ Convsc,0(Rn)∩C2

+(Rn) such that epi(u0) is a translate
of epi(u) in Rn+1 and since both sides of (3.9) are invariant with respect to epi-translations. �

For the special case j = k, we immediately obtain the following result, where we use that each
function in Dj

j can be uniquely extended to a function in Cc([0,∞)).

Proposition 3.12. Let 1 ≤ j < n. If ζ ∈ Dn
j , then∫

Rn

ζ(|∇u(x)|)
[
D2u(x)

]
n−j dx =

κn
κjκn−j

(
n

j

)∫
G(n,j)

∫
dom(projE u)

α(|∇ projE u(xE)|) dxE dE

for every u ∈ Convsc(Rn) ∩ C2
+(Rn), where α ∈ Cc([0,∞)) is given by

α(s) := κn−jRn−j ζ(s)

for s > 0.

3.4. New Proof of Theorem 1.3. The case j = n follows from Proposition 2.4 and the case j = 0 is
trivial. So let 1 ≤ j ≤ n− 1. For ζ ∈ Dn

j , define

α(s) := κn−jRn−j ζ(s)

for s > 0 and note that α can be extended to a function in Cc([0,∞)) by Lemma 3.8 and the definition
of Dj

j . Hence Lemma 3.5 shows that the functional Z, defined by

Z(u) :=
κn

κjκn−j

(
n

j

)∫
G(n,j)

∫
dom(projE u)

α(|∇ projE u(xE)|) dxE dE,

is a continuous, epi-translation and rotation invariant valuation on Convsc(Rn). From Proposition 3.12,
we obtain that

(3.12) Z(u) =

∫
Rn

ζ(|∇u(x)|)
[
D2u(x)

]
n−j dx

for u ∈ Convsc(Rn) ∩ C2
+(Rn). Thus Z has the required properties. It is uniquely determined by (3.12)

since Convsc(Rn) ∩ C2
+(Rn) is dense in Convsc(Rn) by Lemma 2.3.
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3.5. An Auxiliary Result. Using polar coordinates, we obtain from (1.2) and (2.4) that

(3.13) Vn
0,ζ(u) =

∫
Rn

ζ(|x|) dx = nκn lim
s→0+

∫ ∞
s

tn−1ζ(t) dt

for every u ∈ Convsc(Rn) and ζ ∈ Dn
0 . The following result proves the case j = 0 in Theorem 1.5.

Lemma 3.13. Let 0 ≤ k < n. If ζ ∈ Dn
0 , then

Vn
0,ζ(u) =

κn
κk

∫
G(n,k)

Vk
0,Rn−k ζ

(projE u) dE

for every u ∈ Convsc(Rn).

Proof. Observe that by (3.13), Lemma 3.8 and the definition of Dn
0 , we have

Vn
0,ζ(u) = nκn lim

s→0+

∫ ∞
s

tn−1ζ(t) dt = κnRn ζ(0)

for every u ∈ Convsc(Rn) and similarly

Vk
0,Rn−k ζ

(projE u) = κkRkRn−k ζ(0) = κkRn ζ(0)

for every u ∈ Convsc(Rn) and E ∈ G(n, k). Combined with our conventions for the case k = 0, the
statement is now immediate. �

3.6. Proof of Theorem 1.5. The case j = 0 follows from Lemma 3.8 and Lemma 3.13. Therefore,
assume that j > 0. For u ∈ Convsc(Rn) ∩ C2

+(Rn), it follows from Theorem 1.3 and Proposition 3.11
that

Vn
j,ζ(u) =

∫
Rn

ζ(|∇u(x)|)
[
D2u(x)

]
n−j dx

=
κn

κkκn−k

(
n

k

)∫
G(n,k)

∫
E

ξ(|∇ projE u(xE)|)
[
D2 projE u(xE)

]
k−j dxE dE

=
κn

κkκn−k

(
n

k

)∫
G(n,k)

Vk
j,ξ(projE u) dE,

where ξ ∈ Dk
j is as in (1.5). The statement now follows from Theorem 1.3, Lemma 3.4 and Lemma 2.3.

4. THE HADWIGER THEOREM ON FINITE-VALUED CONVEX FUNCTIONS

The authors [15] established the Hadwiger theorem also for valuations on Conv(Rn;R) by using
duality with valuations on Convsc(Rn). For 0 ≤ j ≤ n and ζ ∈ Dn

j , define Vn,∗
j,ζ as the valuation dual to

Vn
j,ζ , that is, Vn,∗

j,ζ (v) := Vn
j,ζ(v

∗) for v ∈ Conv(Rn;R).

Theorem 4.1 ([15], Theorem 1.4). For 0 ≤ j ≤ n and ζ ∈ Dn
j , the functional Vn,∗

j,ζ : Conv(Rn;R)→ R
is a continuous, dually epi-translation and rotation invariant valuation such that

Vn,∗
j,ζ (v) =

∫
Rn

ζ(|x|)
[
D2v(x)

]
j
dx

for every v ∈ Conv(Rn;R) ∩ C2
+(Rn).
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The Hadwiger theorem on Conv(Rn;R) is the following result. Let n ≥ 2.

Theorem 4.2 ( [15], Theorem 1.5). A functional Z : Conv(Rn;R) → R is a continuous, dually epi-
translation and rotation invariant valuation if and only if there exist functions ζ0 ∈ Dn

0 , . . . , ζn ∈ Dn
n

such that

Z(v) =
n∑
j=0

Vn,∗
j,ζj

(v)

for every v ∈ Conv(Rn;R).

For v ∈ Conv(Rn;R) and a linear subspace E of Rn, let v|E : E → R denote the restriction of v to
E. We require the following result.

Lemma 4.3 ([37], Theorem 11.23). If E is a linear subspace of Rn and u ∈ Convsc(Rn), then

(projE u)∗(xE) = (u∗)|E(xE)

for xE ∈ E, where on the left side the convex conjugate is taken with respect to the ambient space E.

The following result is obtained from Theorem 1.7 by using Lemma 4.3, (2.3) and (2.4). It is our second
version of the Hadwiger theorem on Conv(Rn;R). Let n ≥ 2.

Theorem 4.4. A functional Z : Conv(Rn;R) → R is a continuous, dually epi-translation and rotation
invariant valuation if and only if there exist functions α0, . . . , αn ∈ Cc([0,∞)) such that

Z(v) =
n∑
j=0

∫
G(n,j)

∫
E

αj(|x|) dΦj
j(v|E, x) dE

for every v ∈ Conv(Rn;R).

Here in the summand j = 0 we define dΦ0
0(v|E, ·) to be the Dirac point measure at 0 and note that this

summand is just a constant functional on Conv(Rn;R).
The following integral-geometric formulas are obtained from Theorem 1.5 by using Lemma 4.3.

Theorem 4.5. For 0 ≤ j ≤ k < n and ζ ∈ Dn
k ,

Vn,∗
j,ζ (v) =

κn
κkκn−k

(
n

k

)∫
G(n,k)

Vk,∗
j,ξ (v|E) dE

for every v ∈ Conv(Rn;R), where ξ ∈ Dk
j is given by

ξ(s) :=
κn−k(
n−j
k−j

)(sn−kζ(s) + (n− k)

∫ ∞
s

tn−k−1ζ(t) dt
)

for s > 0.

For results of a similar nature we refer to [9, Theorem 2.1], where Crofton formulas for Hessian measures
were established. The following special case of the previous theorem corresponds to Theorem 1.6.
Combined with properties of the integral transform mapping ζ to α (see Lemma 3.8), it shows that
Theorem 4.4 is equivalent to Theorem 4.2.

Theorem 4.6. For 0 ≤ j < n and ζ ∈ Dn
j ,

Vn,∗
j,ζ (v) =

κn
κjκn−j

(
n

j

)∫
G(n,j)

∫
E

α(|x|) dΦj
j(v|E, x) dE
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for every v ∈ Conv(Rn;R), where α ∈ Cc([0,∞)) is given by

α(s) := κn−j
(
sn−jζ(s) + (n− j)

∫ ∞
s

tn−j−1ζ(t) dt
)

for s > 0.

5. ADDITIONAL RESULTS AND APPLICATIONS

In this section, we present a second proof of Theorem 1.5, which uses Theorem 1.4, and establish con-
nections between functional intrinsic volumes and their classical counterparts. We also answer questions
about non-negative and monotone valuations.

We require the following result, which follows from [15, Lemma 2.15 and Lemma 3.24].

Lemma 5.1 ([15]). If 1 ≤ j ≤ n and ζ ∈ Dn
j , then

Vn
j,ζ(ut) = κn

(
n

j

)
Rn−j ζ(t)

for t ≥ 0, where ut(x) := t|x|+ IBn(x) for x ∈ Rn.

5.1. Second Proof of Theorem 1.5. By Lemma 3.6, we have

ξ =
κn
(
n
j

)
κk
(
k
j

) Rn−k ζ

and Lemma 3.8 implies that ξ ∈ Dk
j . For j = 0, the result now follows from Lemma 3.13. Thus, let

j > 0. For every E ∈ G(n, k), it easily follows from (3.2) that projE(t u) = t projE u for every
t > 0 and u ∈ Convsc(Rn). Hence, using Lemma 3.4, we obtain that the right side of (1.4) defines a
continuous, epi-translation and rotation invariant valuation that is epi-homogeneous of degree j. Thus,
by Theorem 1.4, there exists ζ̃ ∈ Dn

j such that

κn
(
n
j

)
κk
(
k
j

) ∫
G(n,k)

Vk
j,Rn−k ζ

(projE u) dE = Vn
j,ζ̃

(u)

for every u ∈ Convsc(Rn). We need to show that ζ̃ = ζ .
Indeed, for t ≥ 0, consider the function ut ∈ Convsc(Rn) defined in Lemma 5.1 and observe that

projE ut(xE) = t|xE|+ IBk
E

(xE)

for xE ∈ E, where Bk
E denotes the Euclidean unit ball in the k-dimensional space E. It follows from

Lemma 5.1 that

Rk−jRn−k ζ = Rn−j ζ̃

and therefore

Rn−j ζ = Rn−j ζ̃ .

Hence, Lemma 3.8 implies that ζ̃ = ζ .
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5.2. Retrieving Intrinsic Volumes and Cauchy–Kubota formulas. The space, Kn, of convex bodies
in Rn can be embedded into the function space Convsc(Rn) by identifying K ∈ Kn with its indicator
function IK ∈ Convsc(Rn). Similarly, we can embed Kn into Conv(Rn;R) by identifying K with its
support function hK ∈ Conv(Rn;R). As the following results show, the functional intrinsic volumes
generalize the classical intrinsic volumes, and it is easy to retrieve the intrinsic volume Vj on Kn from
both Vn

j,ζ on Convsc(Rn) and Vn,∗
j,ζ on Conv(Rn;R).

Proposition 5.2. If 0 ≤ j ≤ n− 1 and ζ ∈ Dn
j , then

Vn
j,ζ(IK) = κn−jRn−jζ(0)Vj(K)

or equivalently

Vn
j,ζ(IK) = (n− j)κn−j lim

s→0+

∫ ∞
s

tn−j−1ζ(t) dt Vj(K)

for every K ∈ Kn. If ζ ∈ Dn
n, then

Vn
n,ζ(IK) = ζ(0)Vn(K)

for every K ∈ Kn.

Proof. Let K ∈ Kn be given and 0 ≤ j ≤ n. It follows from (3.1) that projE IK = IprojE K and thus,∫
dom(projE IK)

α(|∇ projE IK(xE)|) dxE =

∫
projE K

α(0) dxE = α(0)Vj(projEK)

for every α ∈ Cc([0,∞)) and E ∈ G(n, j), where integration is with respect to the Lebesgue measure
on E. Hence, combining this, Theorem 1.6, Lemma 3.6 and (1.1), we obtain

Vn
j,ζ(IK) =

κn
κj

(
n

j

)
Rn−jζ(0)

∫
G(n,j)

Vj(projEK) dE = κn−jRn−jζ(0)Vj(K),

which concludes the proof. �

Since I∗K = hK for K ∈ Kn, we immediately obtain the following dual statement.

Proposition 5.3. If 0 ≤ j ≤ n− 1 and ζ ∈ Dn
j , then

Vn,∗
j,ζ (hK) = κn−jRn−jζ(0)Vj(K)

or equivalently

Vn,∗
j,ζ (hK) = (n− j)κn−j lim

s→0+

∫ ∞
s

tn−j−1ζ(t) dt Vj(K)

for every K ∈ Kn. If ζ ∈ Dn
n, then

Vn,∗
n,ζ(hK) = ζ(0)Vn(K)

for every K ∈ Kn.

We remark that it is possible to prove Proposition 5.2 and Proposition 5.3, without using Theorem 1.6,
by direct calculation.

Proposition 5.2 shows that our new Cauchy–Kubota formulas generalize the classical ones. In order to
see this, let 0 ≤ j ≤ k < n and choose α ∈ Cc([0,∞)) such that α(0) 6= 0. Set ζ := R−(n−j) α and note
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that by Lemma 3.8 we have ζ ∈ Dn
j . Choosing u = IK for some convex body K ∈ Kn in Theorem 1.5,

we obtain

κn−jα(0)Vj(K) = Vn
j,ζ(IK)

=
κn
κk

(
n
k

)(
n−j
k−j

) ∫
G(n,k)

Vk
j,Rn−k ζ

(projE IK) dE

=
κn
κk

(
n
k

)(
n−j
k−j

) ∫
G(n,k)

κk−j(Rk−jRn−kR−(n−j) α)(0)Vj(projEK) dE,

where we used Proposition 5.2 and the fact that projE IK = IprojE K for E ∈ G(n, k), which follows
from (3.1). SinceRk−jRn−kR−(n−j) α = α and α(0) 6= 0, we therefore obtain

κn−j
κk−j

(
n− j
k − j

)
Vj(K) =

κn
κk

(
n

k

)∫
G(n,k)

Vj(projEK) dE.

Note that the special case j = k is just (1.1).

5.3. Non-negative and Monotone Valuations. Theorem 1.6 allows us to easily answer the question
under which conditions on ζ ∈ Dn

j the valuation Vn
j,ζ is non-negative.

Let 1 ≤ j ≤ n− 1 and ζ ∈ Dn
j . Recall that α ∈ Cc([0,∞)) is given by

α(s) = κn−j
(
sn−jζ(s) + (n− j)

∫ ∞
s

tn−j−1ζ(t) dt
)

= κn−jRn−j ζ(s)

for s > 0. Since

Vn
j,ζ(u) =

κn
κjκn−j

(
n

j

)∫
G(n,j)

∫
dom(projE u)

α(|∇ projE u(xE)|) dxE dE

for every u ∈ Convsc(Rn), it is easy to see that if α is non-negative, then so is Vn
j,ζ .

Conversely, assume that Vn
j,ζ(u) ≥ 0 for every u ∈ Convsc(Rn). By Lemma 5.1 we now have

0 ≤ Vn
j,ζ(ut) =

κn
κn−j

(
n

j

)
α(t)

for every t ≥ 0. Thus, α needs to be non-negative.
In the cases j = 0 and j = n, non-negativity is easy to describe. Thus, we have shown the following

result.

Proposition 5.4. For j = 0, the valuation Vn
j,ζ is non-negative if and only if lims→0+

∫∞
s
tn−1ζ(t) dt ≥ 0.

For j = n, the valuation Vn
j,ζ is non-negative if and only if ζ is non-negative. For 1 ≤ j ≤ n − 1, the

valuation Vn
j,ζ is non-negative if and only if

sn−jζ(s) + (n− j)
∫ ∞
s

tn−j−1ζ(t) dt ≥ 0

for every s > 0.

A valuation Z: Convsc(Rn) → R is increasing, if Z(u1) ≤ Z(u2) for all u1, u2 ∈ Convsc(Rn) such
that u1 ≤ u2. It is decreasing if Z(u1) ≥ Z(u2) for all u1, u2 ∈ Convsc(Rn) such that u1 ≤ u2. It is
monotone if it is decreasing or increasing.

Proposition 5.5. If Z is a continuous, epi-translation invariant, and monotone valuation on Convsc(Rn),
then Z is constant.
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Proof. Without loss of generality we assume that Z is increasing. By Lemma 2.3 and the continuity
of Z, it is sufficient to prove that Z(u1) = Z(u2) for every u1, u2 ∈ Convsc(Rn) such that dom(u1) =
dom(u2) = Rn. Fix two such functions u1, u2 ∈ Convsc(Rn). For r > 0, let Br := {x ∈ Rn : |x| ≤ r}
and set

u1,r = u1 + IBr , u2,r = u2 + IBr .

As u1 and u2 are continuous in Br, there exists γ > 0 such that

u2,r(x)− γ ≤ u1,r(x) ≤ u2,r(x) + γ

for every x ∈ Rn. From the epi-translation invariance and monotonicity of Z, we deduce

Z(u1,r) = Z(u2,r),

and this equality holds for every r > 0. On the other hand u1,r and u2,r epi-converge to u1 and u2,
respectively, as r →∞. The continuity of Z implies that Z(u1) = Z(u2). �

We remark that monotone functionals on convex functions that are epi-additive, that is, additive with
respect to infimal convolution, were classified in [38]. Rigid motion invariant and monotone valuations
(that are not necessarily epi-translation invariant) were studied in [8].
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GAGNI 67/A - 50134, FIRENZE, ITALY

Email address: mussnig@gmail.com


