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Abstract. We study random walks on a d-dimensional torus by affine expanding maps whose
linear parts commute. Assuming an irrationality condition on their translation parts, we prove
that the Haar measure is the unique stationary measure. We deduce that if K Ă Rd is an attractor
of a finite iterated function system of n ě 2 maps of the form x ÞÑ D´1x` ti pi “ 1, . . . , nq, where
D is an expanding d ˆ d integer matrix, and is the same for all the maps, under an irrationality
condition on the translation parts ti, almost every point in K (w.r.t. any Bernoulli measure) has
an equidistributed orbit under the map x ÞÑ Dx (multiplication mod Zd). In the one-dimensional
case, this conclusion amounts to normality to base D. Thus for example, almost every point in an
irrational dilation of the middle-thirds Cantor set is normal to base 3.

1. Introduction

In this paper we will analyze random walks on a torus. For some random walks, driven by finitely
many expanding affine maps of the torus we will show that the only stationary measure is the Haar
measure, and hence for any starting point, almost every random trajectory is equidistributed. We
will use the random walks results to obtain new results on digital expansion of typical points
in certain self-affine sets. This paper follows a scheme similar to that of [21], where related
results about random walks on homogeneous spaces were proved, leading to results on Diophantine
properties of typical points on self-similar sets.

1.1. Random walks on tori. Informally, a random walk on a torus may be described as follows.
Suppose G is a semigroup acting on the torus and µ is some probability measure on G. Given a
point x in the torus, the random walk proceeds by sampling a random element g P G according to
µ and moving the point x to gx. The process continues indefinitely to obtain an infinite random
path in the torus.

More formally, let G be a second countable locally compact semigroup acting on Td def
“ Rd{Zd

and let µ be some Borel probability measure on G. To this system we associate a Bernoulli shift
pB, β,B, T q, where B “ GN, β “ µbN is the product measure on B, B is the Borel σ-algebra on B
and T is the left shift. For a measure ν on Td, the convolution of µ with ν is the measure on Td
which is given by

µ ˚ ν pAq “

ż

G

g˚ν pAq dµ pgq ,

for every measurable set A Ď Td. A probability measure ν for which µ˚ν “ ν is called µ-stationary.
Clearly, every G-invariant measure is µ-stationary, but the converse is often false. The action is

called stiff if any µ-stationary measure is invariant (this terminology was introduced by Furstenberg
in [13]). Recently there have been several breakthroughs for the case where G acts on Td by
linear automorphisms. Starting with the work of Bourgain, Furman, Lindenstrauss and Mozes [5],

1



RANDOM WALKS ON TORI AND NORMAL NUMBERS IN SELF-SIMILAR SETS 2

followed by a series of papers by Benoist and Quint [1, 2, 3], these results gave certain conditions
guaranteeing stiffness.

In this paper we establish stiffness for certain random walks generated by affine toral endormor-
phisms, namely maps Td Ñ Td of the form x ÞÑ Dpxq`α, where D is a linear toral endomorphism,
α P T and addition is the group law on Td. Moreover we show that these stiff random walks have
a unique invariant measure. We recall that a toral endomorphism is a map Td Ñ Td of the form
x ÞÑ Dx pmod Zdq, where D is a matrix with integer coefficients. In this paper we will use the
same letter to denote a toral endomorphism and the corresponding integer matrix. We denote the
identity d ˆ d matrix by Id. We call a matrix expanding if all of its (complex) eigenvalues have
modulus greater than 1.

Theorem 1. Let D1, ..., Dn be commuting d ˆ d matrices with coefficients in Z. Assume that all
the Di are expanding. For i “ 1, . . . , n, let αi P Rd and let

hi : Td Ñ Td, hi pxq “ Dipxq ` αi.

Assume that
tpId ´Diqαj ´ pId ´Djqαi : i, j P t1, ..., nuu

is not contained in any proper closed subgroup of Td. Let µ be a probability measure such that
suppµ “ th1, ..., hnu. Then Haar measure is the unique µ-stationary measure on Td.

The uniqueness property of a stationary measure for a random walk has strong consequences.
Indeed, using Breiman’s law of large numbers ([6], see also [4, Chap. 2.2]), in the setting of
Theorem 1, one obtains that for every x P Td and every ϕ P C

`

Td
˘

, for β - a.e. b P B,

1

N

N´1
ÿ

k“0

ϕ pbk ¨ ¨ ¨ b1xq ÝÑ
NÑ8

ż

Td

ϕdHaar.

By a standard argument using the separability of the space C
`

Td
˘

, we obtain that for every
starting point, a.e. trajectory is uniformly distributed. That is:

Corollary 2. For every x P Td, for β-a.e. b P B,

1

N

N´1
ÿ

k“0

δbk¨¨¨b1x ÝÑ
NÑ8

Haar

in the weak-* topology.

1.2. Normal numbers in self similar sets.

1.2.1. Iterated function systems and their attractors . In general, an iterated function system (IFS)
is a finite collection of maps tϕiuiPΛ on a complete metric space pX, dq, where for each i P Λ,
ϕi : X Ñ X is contracting, i.e. for some ρ P p0, 1q, for every x, y P X,

d pϕix, ϕiyq ď ρ ¨ d px, yq .

For every such IFS there is a unique non-empty compact set K Ď Rd which satisfies

K “
ď

iPΛ

ϕipKq,

and is called the attractor of the IFS.
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In this paper, we specialize to IFSs of Rd that consist of affine contractions. That is, for each
i P Λ, ϕi : Rd Ñ Rd is given by ϕi pxq “ Aix` αi, where Ai is a dˆ d matrix, and with respect to
some norm }¨} on Rd, for every i P Λ,

sup
x P Rdzt0u

}Aix}

}x}
ă 1,

and αi P Rd is called the translation of ϕi. We will refer to an attractor of such an IFS as a
self-affine set. An important special case is when the maps ϕi are all similarity functions, i.e. they
are given by ϕi pxq “ ri ¨ Oix ` αi, where ri P p0, 1q is called the contraction ratio of ϕi, Oi is an
orthogonal map and αi P Rd. In this case, the attractor is called a self-similar set.

Every point in the attractor K of an IFS Φ “ tϕiuiPΛ has a symbolic coding (possibly more than
one), given by the so called coding map πΦ : ΛN Ñ K, which may be defined by

@i “ pi1, i2, ...q P ΛN, πΦ piq “ lim
nÑ8

ϕi1 ˝ ϕi2 ˝ ¨ ¨ ¨ ˝ ϕinpx0q,

where x0 is some arbitrary basepoint. It will be convenient for us to choose x0 “ 0. For an
introduction see [10].

We will say that a measure on K is a Bernoulli measure if it is obtained by pushing forward a
Bernoulli measure on the symbol space ΛN by the coding map πΦ. In other words, the measure is of
the form pπΦq˚ P

bN, where P is a probability measure on the finite set Λ and PbN is the product
measure on ΛN. Throughout this text, we assume that P ptiuq ą 0 for every i P Λ (otherwise
we can replace Λ with supp pP q). This definition depends on the underlying IFS (rather than its
attractor), and thus we shall sometimes refer to a measure as a Φ-Bernoulli measure, where Φ
indicates the IFS.

1.2.2. Normal numbers. Let D ě 2 be an integer. Recall that x P R is called normal to base D
if for every n P N, every finite word ω P t0, ..., D ´ 1un occurs in the base D digital expansion of
x with asymptotic frequency D´n. Equivalently, x P R is normal to base D iff the forward orbit
of x under the map x ÞÑ Dx (multiplication by D modulo 1) is equidistributed w.r.t. Lebesgue
measure in r0, 1s. A detailed exposition on normal numbers, and in particular for the equivalence
stated above, may be found in [8]. One useful property of normal numbers is that a number x P R
is normal to some base D iff for every s, t P Q s.t. s ‰ 0, sx` t is normal to base D (this property
was proved by Wall in his Ph.D. thesis [22]).

Since the map x ÞÑ Dx is ergodic (w.r.t. Lebesgue measure on r0, 1s), by Birkhoff’s ergodic
theorem, a.e. real number is normal to every integer base (this was first proved by É. Borel in
1909 without using ergodic theory). Focusing attention to self-similar sets, one may inquire as to
the size of the set of all numbers within some self similar set that are normal to a given base. It
was proved in [7] that the set of real numbers which are not normal to any integer base (these
numbers are called absolutely non-normal) intersects any infinite self-similar K Ď R, in a set whose
Hausdorff dimension is equal to that of K. This extends a result of Schmidt [20], which provides
the same conclusion for K “ r0, 1s, to nice self-similar sets.

On the other hand, in many cases, with respect to natural measures supported on self-similar
sets in R, almost every number is normal to a given base D. Of course this is not the case for
every self-similar set and every base. For example, no number in the middle-thirds Cantor set is
normal to base 3. Several positive results in this direction were obtained in [9, 19, 11, 15, 14]. In
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all of these papers, some independence is assumed to hold, between the contraction ratios of the
IFS and the base D. In the context of self-similar sets, the strongest assertion is the following
theorem proved in [14]:

Theorem 3 (Hochman-Shmerkin). Let K Ď R be the attractor of a contraction IFS Φ “ tϕiuiPΛ
with contraction ratios ri (for i P Λ), and let µ be a Φ-Bernoulli measure on K. Assume that Φ
satisfies the open set condition. Then for every integer D ě 2 satisfying

there is i P Λ for which
log priq

log pDq
R Q, (1.1)

µ-a.e. number is normal to base D.

This is a special case of more general results proved in [14].

1.2.3. New results. In the 1-dim case, our result deals with the opposite situation to the one treated
in Theorem 3. Instead of assuming that at least one contraction ratio of the IFS is multiplicatively
independent of the baseD, we assume that all the contraction ratios of the IFS are integer powers of
D. As a substitute for the ‘independence’ assumption (1.1), we impose an irrationality condition
on the translation parts of the functions in the IFS. In its full generality, our result states the
following:

Theorem 4. Let K be the attractor of an IFS Φ
def
“ tf1, ..., fku, where for each i P Λ

def
“ t1, ..., ku,

fi : Rd Ñ Rd is given by
fipxq “ D´rix` ti,

for some ti P Rd, ri P N and some expanding dˆd matrix D with integer coefficients. Assume that

the set tpId ´DriqDrj tj ´ pId ´DrjqDriti : i, j P Λu
is not contained in any proper closed subgroup of Td. (1.2)

Then, for every Φ-Bernoulli measure µ on K, for µ-almost every x P K, the sequence tDmxu8m“1

is equidistributed in Td with respect to Haar measure.

Note that whenever D is expanding, the functions fi are indeed contractions as defined in §1.2.1
(see Lemma 9).

Observe that in the one-dimensional case, and when r1 “ ¨ ¨ ¨ “ rk “ 1, assumption (1.2) is equiv-
alent to assuming that there exists a pair i, j P Λ s.t. ti ´ tj R Q, and in case this condition holds,
then w.r.t. any Φ-Bernoulli measure on K, almost every number is normal to base D. In fact, the
same conclusion holds for all Φn-Bernoulli measures, where Φn def

“ tfi1 ˝ ¨ ¨ ¨ ˝ fin : pi1, ..., inq P Λnu.
As an example, denote by C Ă r0, 1s the middle-thirds Cantor set and letK def

“ α¨C`β, where α is
any irrational number and β P R. Then K is the attractor of Φ “

 

x ÞÑ 1
3
x` β, x ÞÑ 1

3
x` 2α

3
` β

(

having a uniform contraction ratio of 3´1. While prior results did not provide information regarding
normality of typical points in K to base 3, from Theorem 4 one may deduce that w.r.t. any Φ-
Bernoulli measure on K, almost every point is normal to base 3. Thus Theorem 4 complements
Theorem 3 of Hochman-Shmerkin, and combining them we have the following corollary.

Corollary 5. With the above notations and assumptions, with respect to any Φ-Bernoulli measure
on K “ α ¨ C ` β, a.e. point is normal to every integer base D ě 2.
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Remark 6. It would be interesting to extend Theorem 4 to the more general class of attractors of
IFSs, in which the maps have different linear parts.

In §5 we analyze the case in which d “ 1 and assumption (1.2) does not hold. We also assume
that r1 “ ¨ ¨ ¨ “ rk “ 1. In this case we have:

Theorem 7. Assume that ti ´ tj P Q for every i, j P Λ, and that ti is normal to base D for some
i P Λ. Then for any Bernoulli measure µ, a.e. x P K is normal to base D.

For example, if C is the Cantor middle-thirds set, and α is normal to base 3, then so is a.e.
x P C ` α.

1.3. Acknowledgments. We gratefully acknowledge the support of BSF grant 2016256 and ISF
grant 2095/15. The first named author is also grateful for the support of GIF grant 1485-
304.6/2019. The second named author would like to thank the Department of Mathematics and
Statistics, Indian Institute of Technology Kanpur, for providing an excellent ambience to pursue
research.

2. Preliminaries

In this section we collect some preliminary results we will need.

2.1. Limit measures. A key ingredient in the proof of Theorem 1 is the following result ([12],
see also [4, Lemmas 1.17, 1.19, 1.21]) which applies in the setting of random walks as described at
the beginning of section 1.

Proposition 8 (Furstenberg). Let ν be a µ-stationary probability measure on Td, then the following
hold:

(1) The limit measures νb “ lim
nÑ8

pb1 ˝ ¨ ¨ ¨ ˝ bnq˚ ν exist for β-a.e. b P B.

(2) ν “
ż

B

νb dβ pbq.

(3) For all m P N, for β ˆ µ˚m-a.e. pb, gq P B ˆGm, we have νb “ lim
nÑ8

pb1 ˝ ¨ ¨ ¨ ˝ bn ˝ gq˚ ν.

This is a special case X “ Td of a much more general result.

2.2. Commuting expanding matrices. Recall that a linear transformation (or matrix) is called
expanding if all its (complex) eigenvalues have modulus larger than 1. We shall use the following
characterization of this property.

Lemma 9. Let A be a finite collection of expanding commuting dˆ d matrices with entries in C.
Then there exists a norm }¨} on Cd and some ρ ą 1 such that for every A P A and every x P Cd,
}Ax} ě ρ }x}.

Proof. Since the matrices commute, there is a basis of Cd with respect to which they can all be put
in an upper triangular form. Thus we may assume that all the matrices are in fact upper triangular
complex matrices. Denote by λ the smallest modulus of an eigenvalue of all the matrices in A, and
denote by a the largest modulus of all entries of the matrices. Let m P R be any number satisfying

m ą
da

λ´ 1
,
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and define a norm by
›

›

›

›

›

›

¨

˝

x1
...
xd

˛

‚

›

›

›

›

›

›

def
“ max

i

 

mi´1
|xi|

(

.

A straightforward computation, which we leave to the reader, shows that for any x P Cdzt0u and
any A P A we have }Ax} ą }x}. Since the unit sphere in Cd is compact and A is finite, the
minimum

ρ
def
“ min

"

}Ax}

}x}
: A P A, x P Cd, }x} “ 1

*

exists, is greater than one, and has the required property. �

2.3. Invariance of the set of accumulation points of random trajectories. The following
proposition is a general observation about random walks on a second countable space, generated by
finitely many continuous maps. It states that for almost every trajectory, the set of accumulation
points along the trajectory is invariant under each one of the functions.

Proposition 10. Let X be a second countable space and fj : X Ñ X, j “ 1, . . . , k be continuous.
Let µ def

“
ř

j pjδj, where pj ą 0 for all j and
ř

pj “ 1, and let P def
“ µ

Â

N. Given x0 P X and

i “ pi1, i2, ¨ ¨ ¨ q P t1, ¨ ¨ ¨ , ku
N, we set xnpiq

def
“ fin ˝¨ ¨ ¨˝fi1px0q, and denote the set of all accumulation

points of txnpiqu8n“1 by Lpiq. Then for P-a.e. i P t1, . . . , kuN we have fjpLpiqq Ď Lpiq for j “
1, . . . , k.

For the proof of Proposition 10 we will need the following three lemmas. We retain the same
notation as in the Proposition. We think of t1, . . . , kuN as a probability space and use probabilistic
notation when discussing the P-measure of subsets of this space.

Lemma 11. For i P t1, . . . , kuN, N P N and H ‰ U Ď X, let KN
U “ KN

U piq
def
“ tn ą N : xnpiq P Uu.

Then
P
`
ˇ

ˇKN
U

ˇ

ˇ “ 8 and @n P KN
U , in`1 ‰ 1

˘

“ 0. (2.1)

Proof. We will write the elements of KN
U in increasing order, as N ă n1 ă n2 ă ¨ ¨ ¨ . For any j P N,

let Mj denote the following event:
ˇ

ˇKN
U

ˇ

ˇ ě j and in`1 ‰ 1, @n P tn1, . . . , nju.

That is, Mj is the set of i for which, after the N -th step, the sequence xnpiq visits U at least j
times, and the next element of the sequence i following each of the first j visits to U , is not equal
to 1. Observe that PpMj`1q “ PpMj`1|MjqPpMjq because Mj`1 ĎMj for any j. We have

P
´

Mj`1

ˇ

ˇ

ˇ
Mj

¯

“P
´

ˇ

ˇKN
U

ˇ

ˇ ě j ` 1 and @n P tn1, . . . , nj`1u , in`1 ‰ 1
ˇ

ˇ

ˇ
Mj

¯

“P
´

@n P tn1, . . . , nj`1u , in`1 ‰ 1
ˇ

ˇ

ˇ

ˇ

ˇKN
U

ˇ

ˇ ě j ` 1 and in`1 ‰ 1, @n P tn1, . . . , nju
¯

ˆP
´

ˇ

ˇKN
U

ˇ

ˇ ě j ` 1
ˇ

ˇ

ˇ
Mj

¯

.
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Since the entry inj`1`1 does not depend on the previous entries,

P
´

in`1 ‰ 1, @n P tn1, . . . , nj`1u

ˇ

ˇ

ˇ

ˇ

ˇKN
U

ˇ

ˇ ě j ` 1 and in`1 ‰ 1, @n P tn1, . . . , nju
¯

ďP
`

inj`1`1 ‰ 1
˘

“ 1´ p1.

Hence, by induction, one has PpMjq ď p1´ p1q
j, for all j P N. The conclusion of the lemma is now

immediate. �

Denote by B a countable base of the topology of X. It follows at once that

Lemma 12. P
`

DB P B, DN P N s.t.
ˇ

ˇKN
B

ˇ

ˇ “ 8 and @n P KN
B , in`1 ‰ 1

˘

“ 0.

Lemma 13. Fix i P t1, . . . , kuN and a P Lpiq. If f1paq R Lpiq then there exist B P B containing a,
and N P N such that

ˇ

ˇKN
B

ˇ

ˇ “ 8 and @n P KN
B , in`1 ‰ 1.

Proof. Assume the contrary. That leads to a subsequence txnkpiqu8k“1 converging to a such that
ink`1 “ 1, for all k P N. This shows that f1pxnkq “ xnk`1 for any k and hence, from the continuity of
f1, one obtains xnk`1 Ñ fpaq as k Ñ 8. Thus f1paq P Lpiq which contradicts our assumption. �

Proof of Proposition 10. Combining Lemmas 12 and 13 we obtain that f1pLpiqq Ď Lpiq for P-almost
all i P t1, . . . , kuN. By similar arguments, one can prove the same for any fj, j “ 1, . . . , k. �

3. Random walks on tori

In this section we asume the notations and assumptions of Theorem 1: we are given n com-
muting expanding dˆ d integer matrices D1, ..., Dn, real numbers α1, . . . , αn, and define the affine
endomorphisms h1, . . . , hn by hipxq “ Dipxq`αi. We are also given a probability measure µ whose
support is the finite set th1, ..., hnu. We set β “ µbN, and assume that

tpId ´Diqαj ´ pId ´Djqαi : 1 ď i, j ď nu is not contained in a proper closed subgroup of Td.
(3.1)

We need the following Lemma.

Lemma 14. If a finite set tz1, z2, . . . , z`u Ď Td is not contained in a proper closed subgroup of Td,
then for β-a.e. i “ pi1, i2, . . .q P t1, . . . , nuN the set of all accumulation points of

S piq
def
“ tDim ˝ ¨ ¨ ¨ ˝Di1pzjq : m P N, 1 ď j ď `u

is not contained in a proper closed subgroup of Td.

Proof. Denote the set of i “ pi1, i2, ¨ ¨ ¨ q P t1, . . . , nu
N for which the conclusion fails by Λ0, and

assume by contradiction that βpΛ0q ą 0. For i P Λ0, let us denote the closed subgroup generated
by all the accumulation points of S piq by Kpiq. Since a torus contains countably many closed
subgroups K, we can pass to a subset of Λ0 (which we continue to denote by Λ0) such that
K “ Kpiq is the same for all i. Let p : Rd Ñ Td be the natural projection map. Then p´1pKq
is a closed subgroup of Rd. Let S be the connected component of the identity in p´1pKq, i.e.
the largest subspace contained in p´1pKq. Then S is a rational subspace of Rd, dimS ă d, and
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p´1pKq{S is discrete in Rd{S. Consider the following commutative diagram, where the vertical
maps are the canonical projection maps and p̄ is the map induced by p:

Rd p //

��

Td

��
Rd{p´1pKq

p̄ // Td{K

The diagram shows that pRd{Sq{pp´1pKq{Sq – Rd{p´1pKq is isomorphic to Td{K. Hence Td{K
is a torus of dimension d ´ dimS, Rd{S is the universal cover of Td{K, and the covering map is
given by

π : Rd
{S ÝÑ Td{K, πpx` Sq

def
“ ppxq `K.

Denote by S 1piq the set of accumulation points of S piq, and write S 1piq “
k
ď

j“1

S 1
j piq, where

S 1
j piq is the set of accumulation points of tDim ¨ ¨ ¨Di1zj P Td : m P Nu, for fixed j P t1, . . . , `u.

It follows from Proposition 10 that for all j, there is a subset of Λ0 of full measure, of i for
which D1pS 1

j piqq, . . . , DnpS 1
j piqq are all contained in S 1

j piq. We replace Λ0 with its subset of full
measure for which this holds for all j (and continue to denote this set by Λ0). For each i P Λ0

and each r P t1, . . . , nu, we have DrpKq Ď K. Since S is the largest subspace contained in
p´1pKq, this implies DrpSq Ď S. Being an expanding map, Dr is invertible and hence it preserves
dimensions of linear spaces, and so we must have DrpSq “ S (recall that we denote by Dr both
a toral endomorphism and the corresponding linear transformation). Therefore we may view Dr

as inducing a map on both Td{K and Rd{S, which we continue to denote by Dr, and we have the
following commutative diagram:

Rd{S
Dr //

π
��

Rd{S

π
��

Td{K Dr // Td{K

We have that both horizontal maps in this diagram are surjective endomorphisms, Dr commutes
with the natural projection map from Td ÝÑ Td{K, and the projection of S piq on Td{K has
0 “ K as the only accumulation point for all i P Λ0.

Fix i “ pi1, i2 ¨ ¨ ¨ q P Λ0. We first observe that the projections zj of zj in Td{K satisfy

Dim . . . Di1zj ‰ 0, for some j P t1, . . . , `u and all m P N.

Otherwise, there would exist M P N for which DiM ˝ ¨ ¨ ¨ ˝Di1zj “ 0, for all j P t1, 2, . . . , `u. We
then consider the closed subgroup in Td{K generated by tzi : 1 ď i ď `u. It is obvious that this
subgroup is contained in the kernel of the surjective endomorphism DiM ¨ ¨ ¨Di1 : Td ÝÑ Td. Since
the kernel is finite, so is the subgroup we considered and hence proper in Td{K. Pulling it back to
Td, one obtains a proper closed subgroup that contains both K and all zj’s. This contradicts our
hypothesis. Since 0 is the only accumulation point of the sequence tDim ¨ ¨ ¨Di1ziu

8
m“0, it follows

from compactness that lim
mÑ8

Dim ¨ ¨ ¨Di1zj “ 0 in Td{K, for each j.
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Our next observation is as follows. If we choose a basis of S and then extend it to a basis B of
Rd, then for each r, the matrix representation of Dr, with respect to this basis, is of the form

ˆ

D
prq
S ˚

0 Dprq

˙

.

By hypothesis, all eigenvalues of DprqS and Dprq have absolute value ą 1. The matrix representing
Dr with respect to the projection of B to Rd{S is Dprq. Using Lemma 9, there is a norm || ¨ || on
Rd{S such that

ρ
def
“ inf

1ďrďn,vPRd{S, ||v||“1
||Drv|| ą 1.

We let ||Dr||op denote the operator norm of the linear map Dr, in Rd{S with respect to the norm
on Rd{S chosen above, and let R def

“ max1ďrďk ||Dr||op.
As π is a covering homomorphism, we can take a small enough open ball B in Rd{S cen-

tered at 0 which evenly covers πpBq, i.e. π|B is a homeomorphism onto its image. Since
lim
mÑ8

Dim ¨ ¨ ¨Di1zj “ 0, there is N P N such that Dim ¨ ¨ ¨Di1zj lies in π
`

1
R
B
˘

for all m ě N .

We denote the lift of Dim ¨ ¨ ¨Di1zj in
1
R
B by tm, for all m ě N . Note that tm ‰ 0 for any m ě N .

Since each application of Dr increases the norm of a nonzero vector by at least ρ and at most R,
there exists s P N such that Dim`s ¨ ¨ ¨Dim`1tN P Bz 1

R
B. Since π|B evenly covers its image, we

see that πpDiN`s ¨ ¨ ¨DiN`1
tNq P πpBqzπ

`

1
R
B
˘

, i.e., DiN`s ¨ ¨ ¨DiN`1
DiN ¨ ¨ ¨Di1zj R π

`

1
R
B
˘

. This
contradicts our choice of N . �

We are now ready for the

Proof of Theorem 1. A straightforward induction shows that for any finite sequence j1, j2, . . . , jm P
t1, 2, . . . , nu,

hj1 ˝ ¨ ¨ ¨ ˝ hjmpxq “ Dj1 ˝ ¨ ¨ ¨ ˝Djmpxq `
m
ÿ

s“1

Dj1 ˝ ¨ ¨ ¨ ˝Djs´1pαjsq (3.2)

(with ` denoting addition in Td). From this it is clear that, for any finite sequence j1, . . . , jm and
any pair of indices `, s P t1, 2, . . . , nu, one has

hj1 ˝ ¨ ¨ ¨ ˝ hjm ˝ h` ˝ hspxq

“ hj1 ˝ ¨ ¨ ¨ ˝ hjm ˝ hs ˝ h`pxq `Dj1 ˝ ¨ ¨ ¨ ˝DjmppId ´D`qpαsq ´ pId ´Dsqpα`qq.
(3.3)

For a given vector a P Td, let

Ra : Td Ñ Td, Rapxq
def
“ x` a.

We also denote, for m P N and j P t1, . . . , nuN,

a`,sm,j
def
“ Dj1 ˝ ¨ ¨ ¨ ˝DjmppId ´D`qpαsq ´ pId ´Dsqpα`qq.

With these notations we can rewrite (3.3) as

hj1 ˝ ¨ ¨ ¨ ˝ hjm ˝ h` ˝ hspxq “ Ra`,sm,j
˝ hj1 ˝ ¨ ¨ ¨ ˝ hjm ˝ hs ˝ h`pxq. (3.4)
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Suppose now that ν is a µ-stationary measure on Td. From (3.4) and Proposition 8(3) we obtain
that there is a subset B0 Ă B, with βpB0q “ 1, such that for any b P B0 and any `, s P t1, 2, . . . , nu,

νb “ lim
mÑ8

pb1 ˝ ¨ ¨ ¨ ˝ bm ˝ h` ˝ hsq˚ν “ lim
mÑ8

ˆ

Ra`,sm,j

˙

˚

pb1 ˝ ¨ ¨ ¨ ˝ bm ˝ hs ˝ h`q˚ν . (3.5)

Here we identify B with t1, . . . , nuN in the obvious way and use the same notation β for the
Bernoulli measure on the symbol space t1, . . . , nuN, and identify j with b; this should cause no
confusion. Let ProbpTdq denote the space of Borel probability measures on Td, equipped with the
weak-* topology. The addition map

Td ˆ Td Ñ Td, pa, xq ÞÑ Rapxq

is continuous, and thus the induced map

Td ˆ ProbpTdq Ñ ProbpTdq, pa, θq ÞÑ pRaq˚θ

is also continuous. Thus, by passing to subsequences and using (3.5), we find that for any b P B0,
for any accumulation point a1 of the sequence ta`,sm,ju8m“0, the measure νb is invariant under Ra1 .

We now appeal to condition (3.1) and Lemma 14, which ensure that for β-a.e. j P t1, . . . , nuN,
the accumulation points of the set

Aj
def
“

!

a`,sm,j : `, s P t1, ..., nu , m P N
)

generate a dense subgroup of Td. Upon possibly replacing B0 with its subset, we still have βpB0q “

1, and for all j P B0 we also have that the accumulation points of Aj generate a dense subgroup
of Td. We obtain that for b P B0, νb is invariant under a dense subgroup of Td, and since the
stabilizer of a measure is a closed subgroup, that νb is the Haar measure on Td. The conclusion of
Theorem 1 now follows from Proposition 8(2). �

3.1. Further remarks. We first note that in the one-dimensional case, a stronger version of
Lemma 14 is true: its conclusion holds for every sequence i “ pi1, i2, ¨ ¨ ¨ q P t1, ¨ ¨ ¨ , kuN.

Lemma 15. Let α P TzQ, and let D1, ..., Dn ě 2 be integers, which we think of also as toral
endomorphisms Di : TÑ T. Given a sequence i1, i2, ... P t1, ..., nu

N , denote xk
def
“ Di1 ˝ ¨ ¨ ¨ ˝Dikpαq.

Then the set of all accumulation points of the sequence pxkqkPN is infinite.

We will not be using this result, and we leave the proof to the reader.
The following shows that condition (3.1) cannot be relaxed, at least in case d “ 1:

Proposition 16. Assume that for some i0 P Λ, p1´Di0qαj ´ p1´Djqαi0 P Q for every j P Λ.
Then there exists a finitely supported µ-stationary measure on T.

Proof. Without loss of generality assume that i0 “ 1. Denote

βj “ αj ´
Dj ´ 1

D1 ´ 1
α1.

By assumption βj P Q for every j P Λ. Let q P N be a common denominator for all the βi, and
denote A “

!

0, 1
q
, ..., q´1

q

)

. Denote also x0 “ ´
α1

D1 ´ 1
, so that h1 px0q “ x0.
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We now claim that for all i P Λ, hi pA` x0q Ď A` x0. Indeed, for all a P A and all i P Λ,

hi pa` x0q “ Dipaq ` αi `Dipx0q

“ Dipaq ` αi ` pDi ´ 1q px0q ` x0

“ Dipaq ` αi ´
Di ´ 1

D1 ´ 1
α1 ` x0

“ Dipaq ` βi ` x0 P A` x0

Hence A` x0 supports a µ-stationary measure. �

Remark 17. It may be verified that the hypothesis of Proposition 16 is equivalent to the seemingly
stronger assumption that for every i, j P Λ, p1´Diqαj ´ p1´Djqαi P Q, which is the exact
converse of condition (3.1) in the special case treated here. This equivalence is also implied by
combining Proposition 16 and Theorem 1.

Our method of proof also gives another proof of the following well-known fact:

Proposition 18. Suppose Di “ 1 for every i P Λ, that is, each hi is a translation by αi. Then
Haar measure is the unique µ-stationary probability measure on T if and only if αi is irrational
for some i P Λ.

Proof. Assume first (without loss of generality) that α1 R Q. Since the functions hi are now only
rotations, they commute with each other. Hence, if ν is some µ-stationary measure, by Proposition
8, for β-a.e. b P B,

νb “ lim
kÑ8

pb1 ˝ ¨ ¨ ¨ ˝ bk ˝ h1q˚ ν “ lim
kÑ8

ph1q˚ pb1 ˝ ¨ ¨ ¨ ˝ bkq˚ ν “ ph1q˚ νb.

Since h1 is an irrational rotation, νb has to be Haar measure and hence ν is Haar measure.
The other implication is trivial. �

We remark that Proposition 18 could also be obtained as a corollary of a result of Choquet and
Deny (see [4, §1.5] for the statement and a similar argument).

4. Normal numbers in fractals

Using an idea of [21], we will show how to derive information about orbits in self-affine sets from
random walks on tori. In particular, we will obtain information on normal numbers in self-similar
sets. We will then use the results of §2 to prove Theorem 4. In order to make the idea more
transparent, we first prove a special case of Theorem 4, namely we assume r1 “ ¨ ¨ ¨ “ rk “ 1, or
in other words,

there is an expanding integer matrix D such that fipxq “ D´1x` ti, i “ 1, . . . , k. (4.1)

In this case the irrationality assumption (1.2) simplifies to

tti ´ tj : 1 ď i, j ď ku is not contained in any proper closed subgroup of Td. (4.2)

We use here and further below results of [21, §5], where Γ is taken to be a group rather than
a semigroup. However the more general case of semigroups follows from the same proof. We will
need the following result:
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Proposition 19 ([21], Prop. 5.1). Let Γ be a semigroup acting on a space X, let µ be a probability
measure on Γ, and denote the infinite product measure µbN by β. Given any x0 P X, assume that
for β-a.e. b P B, the random path pbn ¨ ¨ ¨ b1x0qnPN is equidistributed w.r.t. a measure ν on X. Then
for β-a.e. b P B, the sequence

pbn ¨ ¨ ¨ b1x0, T
nbqnPN

is equidistributed w.r.t. the product measure ν b β on X ˆB.

Proof of Theorem 4 assuming (4.1). Let µ be a Bernoulli measure on K given by µ “ π˚ σ, where
σ is a Bernoulli measure on the symbolic space ΛN and π : ΛN Ñ K is the coding map.

By a routine induction, we find that for any n,m P N with n ă m,

fi1 ˝ fi2 ˝ ¨ ¨ ¨ ˝ fimp0q “ D´1fi2 ˝ ¨ ¨ ¨ ˝ fimp0q ` ti1 “ ¨ ¨ ¨

¨ ¨ ¨ “D´nfin`1 ˝ ¨ ¨ ¨ ˝ fimp0q `
n
ÿ

j“1

D´pj´1q
ptijq.

Multiplying by Dn and taking the limit as mÑ 8 we obtain that for any x P K and n P N,

Dn
pxq “

n
ÿ

j“1

Dn´pj´1q
ptijq ` πpT

n
piqq, (4.3)

where x “ πpiq for some i “ pi1, i2, ...q P ΛN.
Define, for each s P Λ, hs : Td Ñ Td by hspxq

def
“ Dpx` tsq. Note that

hin ˝ ¨ ¨ ¨ ˝ hi1p0q “
n
ÿ

j“1

Dn´pj´1q
ptijq, (4.4)

and that phin ˝ ¨ ¨ ¨ ˝ hi1p0qqnPN is in fact a random walk trajectory governed by the probability
measure σ on ΛN. Condition (1.2) in this case implies condition (3.1) of Theorem 1. Denote by λ
the Haar measure on Td. Applying Corollary 2, we get that for σ-a.e. i P ΛN, the sequence (4.4)
equidistributes in Td w.r.t. to λ. Next, we apply Proposition 19, with X “ Td and ν “ λ, and
obtain the equidistribution of the sequence phin ˝ ¨ ¨ ¨ ˝ hi1p0q, T npiqq

8

n“1 w.r.t. the product measure
λ b σ on Td ˆ B, for σ-a.e. i P ΛN. Since the coding map π is continuous, this implies that for
σ-a.e. i P ΛN, the joint sequence

phin ˝ ¨ ¨ ¨ ˝ hi1p0q, πpT
n
piqqq8n“1 (4.5)

is equidistributed in Td ˆK with respect to the product measure λb µ.
Consider the addition map

F : Td ˆK ÝÑ Td, F px, yq “ x` y.

It follows easily from the fact that Haar measure is invariant under addition in Td, that

F˚pλb µq “ λ. (4.6)

The equidistribution of pDnxq8n“1 for µ-almost every x P K follows immediately from (4.6), from
(4.3), (4.4) and from the equidistribution of (4.5). �
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For the general case of Theorem 4, we will need an extension of Proposition 19. We let Cr
def
“ Z{rZ

denote the cyclic group of order r, and let θ denote the uniform measure on Cr. Recall that we
have a random walk on Td driven by a finitely supported measure µ on a semigroup Γ of affine toral
endomorphisms. We write B̄ def

“ psuppµqbZ and β̄
def
“ µbZ. Note this is the two-sided shift space.

We continue to denote by T the shift map (but this time on B̄). We say that a map κ : Γ Ñ Cr is
a morphism if it satisfies

@γ1, γ2 P Γ, κpγ1γ2q “ κpγ1q ` κpγ2q.

Proposition 20. With the notation above, let r P N and let κ : Γ Ñ Cr be a surjective morphism.
Given any x0 P Td, assume that for β̄-a.e. b P B̄, the random path pbn ¨ ¨ ¨ b1x0qnPN is equidistributed
w.r.t. a measure ν on Td. Then for β̄-a.e. b P B̄, the sequence

pbn ¨ ¨ ¨ b1x0, κpbn ¨ ¨ ¨ b1q, T
nbqnPN

is equidistributed w.r.t. the product measure ν b θ b β̄ on Td ˆ Cr ˆ B̄.

Proof. This is not stated explicitly in [21] but is proved along the same lines as [21, Thm. 2.2].
For completeness we sketch the proof.

An extension of Proposition 19 to the bi-infinite sequence space B̄ is given in [21, Prop. 5.2].
Putting this result to use, it is enough to show that for any x0 P Td, for β̄-a.e. b, the sequence
pbn ¨ ¨ ¨ b1x0, κpbn ¨ ¨ ¨ b1qq is equidistributed, with respect to ν b θ on Td ˆ Cr. Indeed, once this is
established we can apply [21, Prop. 5.2] with X “ Td ˆ Cr.

Now note that the action of Γ on Td ˆ Cr by γpx, sq ÞÑ pγx, s ` κpγqq is ergodic. This follows
from the fact that each individual element of γ is an expansive toral endomorphism, and hence is
mixing. Thus the required equidistribution statement follows from [21, Cor. 5.5]. �

We will also need the following lemma:

Lemma 21. Let pX,T, µ,Bq be a probability preserving dynamical system, where X is compact,
B is the Borel σ-algebra, and T is continuous. Assume that for some point x P X, and some
integer p ą 0, the sequence pT pnxq8n“0 is equidistributed w.r.t. µ, then so is the sequence pT nxq8n“0.

Proof. Given a continuous function f P CpXq, we have

1

N

N´1
ÿ

n“0

fpT pnxq ÝÑ
NÑ8

ż

fdµ.

For every integer 0 ď m ă p, f ˝ Tm is also continuous, and therefore

1

N

N´1
ÿ

n“0

fpT pn`mxq ÝÑ
NÑ8

ż

f ˝ Tmdµ “

ż

fdµ.

Summing over all possible values of m, we get

1

N

N´1
ÿ

n“0

fpT pnxq ` fpT pn`1xq ` ¨ ¨ ¨ ` fpT pn`pp´1qxq ÝÑ
NÑ8

p

ż

fdµ.
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Since the left hand side is just 1
N

pN´1
ř

n“0

fpT nxq, dividing both sides by p, we get

1

pN

pN´1
ÿ

n“0

fpT nxq ÝÑ
NÑ8

ż

fdµ.

Since f is bounded, the claim follows. �

Proof of Theorem 4, general case. We have a set K which is the attractor of the maps fipxq “
D´ri ¨ x` ti pi “ 1, . . . , kq, for an expanding dˆ d integer matrix D. We can assume with no loss
of generality that

gcdpr1, . . . , rkq “ 1; (4.7)

indeed, if this does not hold, we can replace D with a power of D and (using Lemma 21) reduce
to the situation in which (4.7) holds. Write

Di
def
“ Dri , r

def
“ max ri, and D̄ def

“ Dr.

Again by Lemma 21, it suffices to show that the D̄-orbit of a.e. x P K is equidistributed. Com-
puting as in (4.3) and (4.4) we see that for any b “ pi1, . . .q P B and n P N,

Di1 ˝ ¨ ¨ ¨ ˝Dinπpbq “ πpT nbq ` hin ˝ ¨ ¨ ¨ ˝ hi1p0q. (4.8)

For each n and b, let ` “ `b,n P N satisfy rp`´ 1q ă ri1 ` ¨ ¨ ¨ ` rin ď r`, and let s “ sb,n so that

D̄`
“ Di1 ¨ ¨ ¨DinD

s. (4.9)

That is,

`
def
“

Qri1 ` ¨ ¨ ¨ ` rin
r

U

and s
def
“ r`´ pri1 ` ¨ ¨ ¨ ` rinq P t0, . . . , r ´ 1u. (4.10)

If we consider s as an element of Cr (i.e. consider its class modulo r) then we see that s “ κpbn ¨ ¨ ¨ b1q

where κ is the morphism mapping ij to ´rj, considered as an element of Cr. The morphism κ is
surjective in view of (4.7).

By Corollary 2 and Proposition 20, the sequence

phin ˝ ¨ ¨ ¨ ˝ hi1p0q, sb,n, T
nbq P Td ˆ Cr ˆ B̄

is equidistributed with respect to Haarb θ b β̄ for β̄-a.e. b.
For b P B̄ we continue to use the notation π to denote the map πpbq “ πpi1, i2, . . .q where

b “ p. . . , i´1, i0, i1, . . .q. Let x0 “ πpbq, where b belongs to the subset of B̄ of full measure for which
this equidistribution result holds, we have from (4.8) and (4.9) that

D̄`b,npx0q “ Dsb,n pπpT nbq ` hin ˝ ¨ ¨ ¨ ˝ hi1p0qq . (4.11)

We consider this sequence as a sequence depending on the index n, and note that it is the image
of an equidistributed sequence under the continuous map

Ψ : Td ˆ Cr ˆ B̄ Ñ Td, Ψpx, c, bq
def
“ Dc

pπpbq ` xq.

Thus it is equidistributed with respect to λ, as a sequence of the parameter n.
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However, our objective is to show equidistribution of the sequence pD̄zpx0qq
8
z“1. Note that given

b as above, the sequence p`b,nqnPN is monotonically increasing, but might have repetitions. To
handle these repetitions we introduce the following notation: for fixed b, and for each n P N, let

tbpnq
def
“ |tm P N : `b,n “ `b,mu|

´1 .

It is clear from (4.10) and the definition of r that tbpnq P
 

1
r
, 2
r
, . . . , 1

(

. It is not hard to see that
we can compute tbpnq from sb,n and from the symbols pT nbqj where |j| ď r. That is, there is a
continuous function t̂ on Cr ˆ B̄ such that tbpnq “ t̂psb,n, T

nbq. Now given f P CpTdq, we define

F : Td ˆ Cr ˆ B̄ by F px, c, bq
def
“ pf ˝Ψq ¨ t̂pc, bq

so that

F px, sb,n, T
nbq “

f pDspπpT nbq ` xqq

|tm P N : `b,n “ `b,mu|
.

This definition ensures that the Birkhoff sums of the two sides of (4.11) satisfy
L´1
ÿ

z“0

f
`

D̄zx0

˘

“

NL´1
ÿ

n“0

F phin ˝ ¨ ¨ ¨ ˝ hi1p0q, sb,n, T
nbq `Op1q,

where NL “ |tm P N : `b,m ă Lu|. Thus

1

NL

L´1
ÿ

z“0

f
`

D̄zx0

˘

ÝÑ
LÑ8

ż

TdˆCrˆB̄
F dpλb θ b β̄q. (4.12)

Applying this with the constant function f ” 1 gives the existence of the limit

ξ
def
“

ż

t̂ dθ b dβ̄ “ lim
LÑ8

L

NL

.

Dividing both sides of (4.12) by ξ and using Fubini to compute the right hand side, we see that

1

L

L´1
ÿ

z“0

f
`

D̄zx0

˘

ÝÑ
LÑ8

ż

Td
f dλ,

as required. �

5. When all the differences are rational.

In this section we shall analyze the situation in which condition (1.2) in Theorem 4 does not
hold. We focus on the one-dimensional case where r1 “ ¨ ¨ ¨ “ rk “ 1, thus we assume throughout
this section that all the differences ti ´ tj are rational. For all i P Λ, denote δi

def
“ ti ´ t1 P Q. Note

that δ1 “ 0. Given i P ΛN, recall that

π piq “ lim
nÑ8

fi1 ˝ ¨ ¨ ¨ ˝ fin p0q P K.

By equation (4.3), for every m P N,

Dm
pπ piqq “

m
ÿ

j“1

Dj
pt1q `

m
ÿ

j“1

Dm´pj´1q
`

δij
˘

` πpTmpiqq pmod 1q.
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Denote

αm
def
“

m
ÿ

j“1

Dj
pt1q , ηm piq

def
“

m
ÿ

j“1

Dm´pj´1q
`

δij
˘

so that
Dm

pπ piqq “ αm ` ηm piq ` πpT
m
piqq pmod 1q.

Note that ηm piq stays inside the finite set ∆ “

!

0, 1
q
, ..., q´1

q

)

, where q is a common denominator
for δ2, δ3, ..., δk. Also note that αm is a deterministic sequence (does not depend on i), and

αm “
řm
j“1D

j pt1q

“
Dm`1 ´D

D ´ 1
t1 (mod 1)

“ Dm D

D ´ 1
t1 ´

D

D ´ 1
t1 (mod 1).

Recall that i is sampled according to some Bernoulli measure on the space of symbols ΛN. In
what follows, we analyze ηm piq as a Markov process with a finite state space. Therefore, we now
recall some basic properties of such processes. A good reference for this topic is [17].

Recall that a Markov process with a finite state space Ω is characterized by a transition matrix
P : Ω ˆ Ω Ñ r0, 1s, where P pω1,ω2q indicates the probability of moving from the state ω1 P Ω to
the state ω2 P Ω in one step. The process is called irreducible if for every two states ω1, ω2 P Ω,
there exists some integer n ą 0, such that P n pω1, ω2q ą 0. An irreducible Markov chain is called
aperiodic if for some (equivalently, every) ω P Ω,

g.c.d tn ą 0 : P n
pω, ωq ą 0u “ 1.

It is well known that an irreducible Markov chain with a finite state space has a unique stationary
measure, and in case the process is aperiodic as well, the distribution of the process at time n
converges, as nÑ 8, to the unique stationary measure, regardless of the starting point, and at an
exponential rate (see e.g. [17, Theorem 4.9]).

Lemma 22. ηm piq is an aperiodic, irreducible Markov process with a finite state space.

Proof. For each j denote δ̃j
def
“ D ¨ δj P ∆. Then

ηm piq “
m
ÿ

j“1

Dm´j
´

δ̃ij

¯

.

This process may be defined by the following recurrence relation:

η1 “ δ̃i1
@m ě 1, ηm`1 “ D ¨ ηm ` δ̃im`1

For every y P ∆, define the map Ty : ∆ Ñ ∆, by

Ty pxq “ D pxq ` y.

Note that T0 pxq “ D pxq, and the recurrence relation may be written as

ηm`1 “ Tδ̃im`1
pηmq .
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Denote by Γ the semigroup generated by the functions
 

Tδ̃0 , Tδ̃1 , . . . , Tδ̃k
(

, and let ∆̃ Ď ∆ be
defined as ∆̃ “ tF p0q : F P Γu . Note that η1 “ Tδ̃i1

p0q, and so

∆̃ “ ta P ∆ : Dm P N, P pηm “ aq ą 0u .

Since the variables
´

δ̃ij

¯8

j“1
are IID, this is indeed a Markov process on the finite state space ∆̃.

In order to show that it is irreducible, it is enough to show that for every F P Γ, DG P Γ s.t.
G˝F p0q “ 0. Given such F P Γ, denote x “ F p0q. Note that for every α P ∆, F pαq “ Dm pαq`x
for some constant m P N. Since ∆̃ is finite, the orbit

 

Dl pxq : l P N
(

is eventually periodic, and
so there exist some l, s such that Dl pxq “ Dl`s pxq. We may assume that s ě m, otherwise we
may replace s by a large enough positive integer multiple of s. We denote y “ Dl pxq, so that
Ds pyq “ y. Now, we note that for every w P N,

w ¨ y (mod 1) “ Dspw´1q pyq `Dspw´2q pyq ` ¨ ¨ ¨ ` y
“ Dl

`

Dspw´1q pxq `Dspw´2q pxq ` ¨ ¨ ¨ ` x
˘

“ T l0 ˝
`

F ˝ T s´m0

˘w´1
pxq

And so, denoting G “ T l0 ˝
`

F ˝ T s´m0

˘w´1, we have found G P Γ such that G pxq “ w ¨ y (mod 1).
In particular, we may find G P Γ such that G pxq “ q ¨ y (mod 1) “ 0, which proves irreducibility.

The Markov process is also aperiodic since P
`

ηm`1 “ 0
ˇ

ˇ ηm “ 0
˘

ą 0. �

From Lemma 22 it follows that the process ηm has a unique stationary measure p.

Theorem 23. Assume that αm is equidistributed w.r.t. some measure ν on T. Then for µK-a.e.
x P K, the orbit pDm pxqq8m“0 is equidistributed w.r.t. the measure ν ˚ p ˚ rµK (where rµK is the
projection of µK to T).

In order to prove Theorem 23, we will need the following property of aperiodic, irreducible
Markov chains. The proof of the following proposition uses some of the ideas in the proof of
Proposition 19, given in [21].

Proposition 24. Let x “ px1, x2, ...q P ΩN be an aperiodic, irreducible Markov chain with a finite
state space Ω and a transition matrix P . Let p be the unique stationary measure for the process
and let µ be the corresponding measure on ΩN w.r.t. p as the starting probability for the process
(i.e., µ

` 

ω P ΩN : ω1 P A
(˘

“ p pAq for every A Ď Ω). Then for every strictly increasing sequence
of positive integers pnkq

8

k“1, for µ-a.e. x P ΩN, the sequence pT nk pxqq8k“1 is equidistributed w.r.t.
µ.

Proof. For the rest of the paper, given a finite sequence ω “ pω1, ..., ω`q P Ω`, we denote the
corresponding cylinder set by rωs def

“
 

ξ P ΩN : pξ1, ..., ξ`q “ pω1, ..., ω`q
(

.
Let Bm be the σ-algebra generated by the first m coordinates of ΩN. Given some fixed ω “

pω1, ..., ω`q P Ω` for any ` P N, define

ϕk,m,ω
def
“ E

“

1rωs ˝ T
nk ´ µ prωsq |Bm

‰

.

Note that 1rωs pT nk pxqq only depends on the first nk ` l coordinates of x, and so for nk ď m´ `,

ϕk,m,ω “ 1rωs ˝ T
nk ´ µ prωsq .
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On the other hand, for nk ą m, the random variable ϕk,m,ω is constant on atoms of the σ-algebra
Bm, which are just the cylinders rτ s for τ P Ωm. For each such cylinder rτ s such that µ prτ sq ą 0,
by the definition of conditional expectation we have @y P rτ s ,

ϕk,m,ω pyq “
1

µ prσsq
¨ µ

`

T´nk rωs X rσs
˘

´ µ prωsq .

Note that
1

µ prσsq
¨ µ pT´nk rωs X rσsq is nothing but the measure of T´nk rωs conditioned on the

atom rσs, or in a more probabilistic language, it is

P
“

x P T´nk rωs |x P rσs
‰

.

Since the process is irreducible and aperiodic, there are constants C ą 0 and α P p0, 1q, such
that for µ almost every x P ΩN,

|ϕk,m,ω pxq| ď C ¨ αnk´m

(see e.g. [17, Theorem 4.9]).
In view of the above, we see that the sum

ř8

k“1 ϕk,m,ω almost surely converges, and so we may
define the random variables

Mm
def
“

8
ÿ

k“1

ϕk,m,ω.

Denote K1 pmq “ max tk : nk ď m´ lu , K2 pmq “ max tk : nk ď mu. Note that K1 and K2 are
both increasing functions of m (but not strictly increasing in general). Writing Mm as

Mm “

K1pmq
ÿ

k“1

“

1rωs ˝ T
nk ´ µ prωsq

‰

`

K2pmq
ÿ

k“K1pmq`1

ϕk,m,ω `
8
ÿ

k“K2pmq`1

ϕk,m,ω

and noting that
ˇ

ˇ

ˇ

ˇ

K2
ř

k“K1`1

ϕk,m,ω

ˇ

ˇ

ˇ

ˇ

ď `, we have

Mm ´ L ď

K1pmq
ÿ

k“1

“

1rωs pT
nkxq ´ µ prωsq

‰

ďMm ` L

for some constant L ą 0. Since Mm is a martingale w.r.t. the increasing sequence of σ-algebras
pBmqmPN, by Doob’s martingale convergence theorem,Mm converges almost surely to some number,
which implies that for µ-almost every x,

1

m

m
ÿ

k“1

“

1rωs pT
nkxq ´ µ prωsq

‰

ÝÑ
mÑ8

0.

Since the countable family of cylinder sets generates the Borel σ-algebra of subsets of ΩN, we
get that for µ-almost every x, for every function f P C

`

ΩN
˘

,

1

m

m
ÿ

k“1

f pT nkxq ÝÑ
mÑ8

ż

fdµ.

�
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Corollary 25. Let γm be an equidistributed sequence w.r.t. some Borel probability measure σ on
a compact metric space X, and let

`

ΩN, T, µ
˘

be as above. Then for µ-a.e. i P ΩN, the sequence
pγm, T

miq8m“1 is equidistributed w.r.t. σ b µ.

Proof. Recall that a Borel set U Ă X is called a continuity set with respect to the measure σ,
if σpBUq “ 0. As a compact metric space, X has a countable basis consisting only of continuity
sets (see [16, Chapter 3.2]), which we denote by U . Given a set I ˆ rωs Ď X ˆ ΩN, where I is a
continuity set w.r.t. σ, and ω P Ω` for some ` P N, consider the sum

1

N

N
ÿ

m“1

1Iˆrωs pγm, T
miq .

Define A “ tm P N : γm P Iu and let pmkqkPN be an increasing enumeration of all elements in A.
Since I is a continuity set w.r.t. σ, by the equidistribution of γm we know that

lim
NÑ8

|AX t1, ..., Nu|

N
“ σ pIq .

By Proposition 24, pTmkiq8k“1 is a.s. equidistributed w.r.t. µ, hence a.s.

1

k

k
ÿ

j“1

1rωs pT
mj iq ÝÑ µ prωsq .

Denote B “ B piq “ tm P A : Tmi P rωsu. Then

lim
NÑ8

|B X t1, ..., Nu|

|AX t1, ..., Nu|
“ µ prωsq a.s.

Hence,

1

N

N
ÿ

m“1

1Iˆrωs pγm, T
miq “

|B X t1, ..., Nu|

N

“
|AX t1, ..., Nu|

N
¨
|B X t1, ..., Nu|

|AX t1, ..., Nu|
ÝÑ
NÑ8

σ pIq ¨ µ prωsq

We have obtained that for every continuity set I, and every ω P
Ť

lPN
Ω`, the following holds for

µ-a.e. i P ΩN:

1

N

N
ÿ

m“1

1Iˆrωs pγm, T
miq ÝÑ

NÑ8
σ pIq ¨ µ prωsq “

ż

1Iˆrωsdpσ b µq. (5.1)

Let A be the algebra generated by U . A is countable, and it may be easily verified that all the
elements of A are continuity sets as well. Therefore, for µ-a.e. i, (5.1) holds for every I P A, and
ω P

Ť

lPN
Ω`. The claim now follows from [18, Theorem 1.9]. �

Proof of Theorem 23. By Corollary 25, for β-a.e. i P ΛN, the sequence pαm, ηm piqq is equidis-
tributed w.r.t. ν b p, which implies that the sequence αm ` ηm piq is equidistributed w.r.t. ν ˚ p.
Using Proposition 19 exactly in the same way as in the proof of Theorem 4, we may deduce that
for β-a.e. i P ΛN, αm ` ηm piq ` πpTmpiqq is equidistributed w.r.t. the measure ν ˚ p ˚ ĂµK . �
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From Theorem 23 we readily obtain:

Proof of Theorem 7. Suppose t1 is normal to base D. Then so is
D

D ´ 1
t1, and therefore αm is

equidistributed w.r.t. Haar measure. The conclusion now follows immediately from Theorem
23. �

It is not hard to find an example in which the ti are irrational and not normal to base D, and
the conclusion of Theorem 7 fails. For example, this will hold when the ti have many appearances
of long strings of the digit 0 in base D. Nevertheless, the converse to Theorem 7 is also false. Here
is a counterexample.

Example 26. Denote

fα1 pxq
def
“

1

4
x` α, fα2 pxq

def
“

1

4
x`

1

2
` α.

LetKα be the attractor of the IFS tfα1 , fα2 u for a given value of α. Note that changing α corresponds

to translating the fractal K0. More precisely, Kα “ K0 ` cα where cα “
4

3
α. Let µα be the

`

1
2
, 1

2

˘

-
Bernoulli measure on Kα. Note that for all n P Z,

µ̂α pnq “ e2πincαµ̂0 pnq ,

hence µ̂α pnq “ 0 if and only if µ̂0 pnq “ 0.
Denoting ∆1 “ 0, ∆2 “

1
2
and Λ “ t1, 2u, the Fourier transform of µ0 may be calculated as

follows (see [8, proof of Theorem 6.1]):

µ̂0 pnq “ lim
NÑ8

2´N
ÿ

jPΛN

exp

˜

2πin
N
ÿ

s“1

4´s`1∆js

¸

“ lim
NÑ8

2´N
N´1
ź

s“0

ˆ

1` exp

ˆ

2πin4´s
1

2

˙˙

.

Therefore

|µ̂0 pnq| “
8
ź

s“0

ˇ

ˇ

ˇ

ˇ

cos

ˆ

4´s
1

2
πn

˙
ˇ

ˇ

ˇ

ˇ

. (5.2)

Using equation 5.2, we see that for all k,m P Z with k ě 0, we have µ̂0

`

4k p2m` 1q
˘

“ 0.
Let ν be the

`

1
2
, 1

2

˘

-Bernoulli measure defined on the attractor of the IFS
 

x ÞÑ 1
4
x, x ÞÑ 1

4
x` 1

4

(

.
Analyzing ν̂ in the same way we analyzed µ̂0, we see that

|ν̂ pnq| “
8
ź

s“0

ˇ

ˇ

ˇ

ˇ

cos

ˆ

4´s
1

4
πn

˙
ˇ

ˇ

ˇ

ˇ

,

and hence for all k,m P Z with k ě 0, we have ν̂
`

4k2 p2m` 1q
˘

“ 0.
Since ν is ergodic for the ˆ4 map, it has generic points. Let t be a generic point for ν, and

t̃
def
“ 3

4
t. By equation (4.3), we see that for every x P Kt̃, if x “ lim

nÑ8
f t̃i1 ˝ ¨ ¨ ¨ ˝ f

t̃
in p0q then for every

n P N,

4nx “
n
ÿ

j“1

4j t̃` π pT n piqq “ 4n
4

3
t̃´

4

3
t̃` π pT n piqq “ 4nt` π pT n piqq ´ t,
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where π is the coding map for the IFS
!

f t̃1, f
t̃
2

)

. By Corollary 25 and the computation above, we
get that for µt̃-a.e. x P Kt̃, the orbit p4nxq

8

n“1 is equidistributed w.r.t. the measure ν ˚µt̃ translated
by ´t.

Claim. For all nonzero w P Z, there exist k P NY t0u and m P Z such that either w “ 4k p2m` 1q
or w “ 4k p4m` 2q.

Proof of Claim. Clearly, it’s enough to prove the statement for the case 4 - w. If w is odd,
then w “ 40 p2m` 1q for some m P Z. Otherwise, w is even, and since we assume 4 - w, then
w “ 40 p4m` 2q for some m P Z. �

By the Claim and the analysis of the Fourier transforms of ν and µ0 given above, we get that
for every 0 ‰ n P Z,

zν ˚ µt̃ pnq “ ν̂ pnq ¨ µ̂t̃ pnq “ 0.

This implies that ν ˚ µt̃ is Haar measure on T, and ultimately we get that for µt̃-a.e. x P Kt̃, the
orbit p4nxq8n“1 is equidistributed w.r.t. Haar measure on T although t̃ is not normal to base 4.

Remark 27. The convolution in the example above may also be viewed as follows. The probability
measure µ0 is the law of the random variable

ř8

j“1 4´jξj, where the ξj are IID variables which
assume the values 0, 2 with probability 1

2
. The measure ν is the law of the random variable

ř8

j“1 4´jχj, where the χj are IID variables which assume the values 0, 1 with probability 1
2
. Hence,

ν ˚ µ0 is the law of the random variable
ř8

j“1 4´jχj `
ř8

j“1 4´jξj. But
8
ÿ

j“1

4´jχj `
8
ÿ

j“1

4´jξj “
8
ÿ

j“1

4´j pχj ` ξjq

and since χj ` ξj are IID random variables that take the values 0, 1, 2, 3 with probability 1
4
each,

ν ˚ µ0 is actually Haar measure on T. Therefore, ν ˚ µt̃ is also Haar measure.
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