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Abstract. We discover a new characterizations of plurisubharmonic
functions in terms of Lp extension from one point and Griffiths positiv-
ity of holomorphic vector bundles with singular Finsler metrics in terms
of Lp extensions. As applications, we give stronger result or new proof
of some well-known theorems on the Griffiths positivity of the holomor-
phic vector bundles and their direct image sheaves associated to certain
holomorphic fibrations.

1. Introduction

In the famous and useful Ohsawa-Takegoshi L2 extension theorem for
holomorphic functions, plurisubharmonic (p.s.h) functions are used as weights
to derive a conclusion about L2 extension from complex submanifolds, in
particular, from one point. In this paper, we show that the converse also
holds, namely, if a function is given as the weight such that the conclusion
about L2 extension from one point in the Ohsawa-Takegoshi L2 extension
theorem holds, then the function must be plurisubharmonic. This result
can be generalized to give a characterization of Griffiths positivity of holo-
morphic vector bundles with singular Finsler metrics. As applications, we
give some stronger result and new proof of a couple of well-known results
on the Griffiths positivity of the direct image sheaves associated to certain
holomorphic fibrations, originally established by Berndtsson [3].

Our first main theorem is to discover the following surprising result.

Theorem 1.1. Let ϕ : D → [−∞,+∞) be an upper semicontinuous func-
tion on a domain D ⊂ Cn that is not identically −∞. Let p > 0 be a fixed
constant. If for any z0 ∈ D with ϕ(z0) > −∞ and any m > 0, there is
f ∈ O(D) such that f(z0) = 1 and

∫

D
|f |pe−mϕ ≤ Cme−mϕ(z0),

where Cm are constants independent of z0 and satisfying the growth condition
lim

m→∞
1
m log Cm = 0, then ϕ is p.s.h.
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The proof of Theorem 1.1 is influenced by Demailly’s regularization method
of psh functions in [8]. Theorem 1.1 can be generalized to holomorphic vec-
tor bundles of higher rank.

We first introduce the notion of multiple Lp-extension property for holo-
morphic vector bundles with singular Finsler metrics.

Definition 1.1 (Multiple Lp-extension property). Let (E, h) be a holomor-
phic vector bundle over a bounded domain D ⊂ Cn equipped with a singular
Finsler metric h. Let p > 0 be a fixed constant. Assume that for any z ∈ D,
any nonzero element a ∈ Ez with finite norm |a|, and any m ≥ 1, there is a
holomorphic section fm of E⊗m on D such that fm(z) = a⊗m and satisfies
the following estimate:∫

D
|fm|p ≤ Cm|a⊗m|p = Cm|a|mp,

where Cm are constants independent of z and satisfying the growth condition
1
m log Cm → 0 as m → ∞. Then (E, h) is said to have the multiple Lp-
extension property.

Theorem 1.2. Let (E, h) be a holomorphic vector bundle over a bounded
domain D ⊂ Cn equipped with a singular Finsler metric h, such that the
norm of any local holomorphic section of E∗ is upper semicontinuous. If
(E, h) has multiple Lp-extension property for some p > 0, then (E, h) is
positively curved in the sense of Griffiths, namely log |u| is p.s.h for any
local holomorphic section u of E∗.

The reader is referred to §2 for the definitions of singular Finsler metrics
and dual Finsler metrics, and §4.2 for the definition of Finsler metrics on
tensor products of vector bundles.

Combing Theorem 1.1 with the Ohsawa-Takegoshi L2 extension theorem,
we give a new proof of the positivity of certain direct image sheaves associ-
ated to holomorphic fibrations.

A paper of the authors with the same title was posted on arXiv (arXiv:1809.10371)
in 2018, and the present paper is a shorter and compressed version of the
arXiv paper. After the first version of the present paper was posted on the
arXiv, there have been several related papers motivated by and based on the
present paper on the study of converse versions of L2 theories for ∂̄. This
shows the usefulness of the present paper.

In [20], motivated by a question posed in the arXiv version of the present
paper, Hosono-Inayama introduced the concept “twisted Hörmander condi-
tion” for hermitian holomorphic vector bundles and proved that this con-
dition implies multiple L2-extension property, a concept introduced in the
present paper, thus get the Griffiths positivity by using Theorem 1.2 in the
present paper.

Deng-Ning-Wang in [11] introduced another notion “optimal L2-estimate
condition” for plurisubharmonic functions (or metrics on line bundles). The
essential difference between the optimal L2-estimate condition and multiple
L2-extension property or twisted Hörmander condition is that the first in-
volves an optimal constant but does not involve the tensor powers of the
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considered bundles. Deng-Ning-Wang shows in [11] that a C2 function is
plurisubharmonic if it satisfies the optimal L2-estimate condition.

In [12], Deng-Ning-Wang-Zhou generalized the concept “optimal L2-estimate
condition” from line bundles to vector bundles, and found that the optimal
L2-estimate condition implies the Nakano positivity of the Chern curvature.
It is well-known that under the assumption of Nakano positivity one has
an optimal L2-estimates for solving ∂̄. Therefore the main result in [12]
establishes the equivalence between Nakano positivity and the optimal L2-
estimate condition for Hermitian holomorphic vector bundles.

Simply speaking, the main difference between the present paper and the
above related papers is as follows. The present paper is to establish a
converse version of the Ohsawa-Takegoshi L2 extension theorem (Theorem
1.1), while the above papers are to establish certain converse versions of
Hörmander’s L2-estimate for ∂̄.

The structure of this paper is organized as follows. In §2, we introduce the
singular Finsler metrics on coherent analytic sheaves and define the concept
of curvature positivity. In §3, we show certain continuity of Hodge-type
metrics on direct image sheaves. In §4, we give the proofs of Theorem 1.1
and Theorem 1.2. In §5, we apply the results in the previous sections to
prove the Griffiths positivity of certain direct image sheaves associated to
holomorphic fibrations.

Acknowledgements. We’re grateful to the referee for his/her helpful and
valuable suggestions and comments.

2. Singular Finsler metrics on coherent analytic sheaves

In this section, we recall the notions of singular Finsler metrics on holo-
morphic vector bundles and give a definition of positively curved singular
Finsler metrics on coherent analytic sheaves.

Definition 2.1. Let E → X be a holomorphic vector bundle over a complex
manifold X. A (singular) Finsler metric h on E is a function h : E →
[0,+∞], such that |cv|2h = |c|2h(v), where |v|2h := h(v), for any v ∈ E and
c ∈ C.

In the above definition, we do not assume the triangle inequality and
any regularity property of a singular Finsler metric. Only when considering
Griffiths positivity certain regularity is required, as shown in the following
Definition 2.3.

Definition 2.2. For a singular Finsler metric h on E, its dual Finsler metric
h∗ on the dual bundle E∗ of E is defined as follows. For f ∈ E∗

x, the fiber
of E∗ at x ∈ X, |f |h∗ is defined to be 0 if |v|h = +∞ for all nonzero v ∈ Ex;
otherwise,

|f |h∗ := sup{|f(v)|; v ∈ Ex, |v|h ≤ 1} ≤ +∞.

Definition 2.3. Let E → X be a holomorphic vector bundle over a complex
manifold X. A singular Finsler metric h on E is called negatively curved (in
the sense of Griffiths) if for any local holomorphic section s of E the function
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log |s|2h is p.s.h., and is called positively curved (in the sense of Griffiths) if
its dual metric h∗ on E∗ is negatively curved.

As far as our knowledge, there has no natural definition of singular Finsler
metric on a coherent analytic sheaf. In the present paper, we will propose a
definition of positively curved Finsler metrics on coherent analytic sheaves.
Let F be a coherent analytic sheaf on X, it is well known that F is locally
free on some Zariski open subset U of X. On U , we will identify F with the
vector bundle associated to it.

Definition 2.4. Let F be a coherent analytic sheaf on a complex manifold
X. A positively curved singular Finsler metric h on F is a singular Finsler
metric on the holomorphic vector bundle F|X\Z , for some analytic subset
Z ⊂ X such that F|X\Z is locally free, satisfying the condition that for any
local holomorphic section g of the dual sheaf F∗ on an open set U ⊂ X, the
function log |g|h∗ is p.s.h. on U \Z, and can be extended to a p.s.h. function
on U .

Remark 2.1.
(1) Suppose that log |g|h∗ is p.s.h. on U \ Z. It is well-known that if
codimC(Z) ≥ 2 or log |g|h∗ is locally bounded above near Z, then log |g|h∗
extends across Z to U uniquely as a p.s.h function. In particular, when F
is torsion free, then codimC(Z) ≥ 2.
(2) The above definition does not depend on the choice of Z, in the sense
that, after extension, the norm functions |g|h∗ for local sections g of F∗,
which are the original quantities that we are really concerning with, remain
unchanged if we choose different Z. Also in this sense, Definition 2.4 matches
Definition 2.1 and Definition 2.3 if F is a vector bundle.

3. Regularity of Hodge-type metrics

The aim of this section is to show certain continuity of Hodge-type metrics
on direct image sheaves. One of the basic techniques is the following Ohsawa-
Takegoshi type L2 extension theorem:

Theorem 3.1 (c.f.[25][9][29]). Let (X, ω) be a weakly pseudoconvex Kähler
manifold and L be a holomorphic line bundle over X with a (singular) her-
mitian metric h. Let s : X → Cr be a holomorphic map such that 0 ∈ Cr

is not a critical value of s. Assume that the curvature current of (L, h) is
semi-positive and |s(x)| ≤ M for some constant M . Let Y = s−1(0) be the
zero set of s. Then for every holomorphic section f of KX ⊗L over Y such
that

∫
Y |f |2|Λr(ds)|−2dVω < +∞, there exists a holomorphic section F of

KX ⊗ L over X such that F |Y = f and
∫

X
|F |2LdVX,ω ≤ Cr,M

∫

Y

|f |2L
|Λr(ds)|2 dVY,ω.

where Cr,M is a constant depending only on r and M .



NEW CHARACTERIZATION OF PLURISUBHARMONIC FUNCTIONS 5

3.1. For families of compact Kähler manifolds. Let X, Y be Kähler
manifolds of dimension m + n and m respectively, let p : X → Y be a
proper holomorphic submersion. Let L be a holomorphic line bundle over
X, and h be a singular Hermitian metric on L, whose curvature current is
semi-positive, i.e., L is pseudoeffective. Let KX/Y be the relative canonical
bundle on X.

Let E = p∗(KX/Y ⊗L⊗I(h)) be the direct image sheaf on Y , where I(h)
is the multiplier ideal sheaf associated to (L, h). By Grauert’s theorem, E
is a coherent analytic sheaf on Y . We assume that E is locally free, then it
is the sheaf of holomorphic sections of a holomorphic vector bundle, which
will be denoted by E. For any y ∈ Y , we can identify the fiber Ey of E at
y with H0(Xy, (KX/Y ⊗ L⊗ I(h))|Xy) ⊂ H0(Xy,KXy ⊗ L|Xy). For u ∈ Ey,
the norm of u is defined to be

Hy(u) := ‖u‖ =

(∫

Xy

|u|2h
)1/2

≤ +∞.

Note that here we view u as an element in H0(Xy,KXy ⊗ L|Xy). Then H
is a singular (Hermitian) metric on E. It is clear that H is locally bounded
below by positive constants. The following proposition shows that H is
lower semicontinuous.

Proposition 3.2 ([21]). Let s be a holomorphic section of E. The function
|s|(y) := ‖s(y)‖ : Y → [0,+∞] is lower semi-continuous.

Using similar idea in [21] and combining Theorem 3.1, we can get the
following

Proposition 3.3. With the same notations and assumptions as in Propo-
sition 3.2, for every ξ ∈ H0(Y, E∗), the function |ξ|(y) := H∗(ξ(y)) : Y →
[0,+∞] is upper semi-continuous.

3.2. For families of pseudoconvex domains. Let Ω ⊂ Cm+n = Cm
t ×Cn

z

be a pseudo-convex domain. Let p : Ω → Cm be the natural projection. We
denote p(Ω) by D and denote p−1(t) by Ωt for t ∈ D. Let ϕ be a p.s.h.
function on Ω. For an open subset U of D, we denote by F(U) the space of
holomorphic functions F on p−1(U) such that

∫
p−1(K) |F |2e−ϕ < ∞ for all

compact subset K of U . For t ∈ D, let

Et = {F |Ωt : F ∈ F(U), U ⊂ D open and t ∈ U}.
Et is a vector space and we define a norm on it as follows:

H(f) := ‖f‖ =
(∫

Dt

|f |2e−ϕt

)1/2

≤ ∞,

where ϕt = ϕ|Dt . Let E =
∐

t∈D Et be the disjoint union of all Et. Then we
have a natural projection π : E → D which maps elements in Et to t. We
view H as a singular Hermitian metric on E.

In general E is not a genuine holomorphic vector bundle over D. However,
we can also talk about its holomorphic sections, which are the objects we
are really interested in. By definition, a section s : D → E is a holomorphic
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section if it varies holomorphically with t, namely, the function s(t, z) :
Ω → C is holomorphic with respect to the variable t. Note that s(t, z) is
automatically holomorphic on z for t fixed, by Hartogs theorem, s(t, z) is
holomorphic jointly on t and z and hence is a holomorphic function on Ω.
In some sense, E can be viewed as an object similar to holomorphic vector
fields studied in [22].

Let E∗
t be the dual space of Et, namely the space of all complex linear

functions on Et. Let E∗ =
∐

t∈D E∗
t . The natural projection from E∗ to D

is denoted by π∗. Note that we do not define any topology on E∗
t and E∗.

The only object we are interested in is holomorphic sections of E∗ which we
are going to define. Given a holomorphic section s of E on some open set
U of D, s induces a function |s| : U → R with |s|(t) given by ‖s(t)‖, which
is lower semicontinuous and hence measurable, by the following Proposition
3.4.

Definition 3.1. A section ξ of E∗ on D is holomorphic if:
(1) for any local holomorphic section s of E, 〈ξ, s〉 is a holomorphic

function;
(2) for any sequence sj of holomorphic sections of E on D such that∫

D |sj | ≤ 1, if sj(t, z) converges uniformly on compact subsets of Ω
to s(t, z) for some holomorphic section s of E, then 〈ξ, sj〉 converges
uniformly to 〈ξ, s〉 on compact subsets of D.

In the same way we can define holomorphic section of E∗ on open subsets
of D. The Finsler metric H on E induces a Finsler metric H∗ on E∗, as
defined in the Definition 2.2. We will show that H is lower semicontinu-
ous and H∗ is upper semicontinuous, as analogues of Proposition 3.2 and
Proposition 3.3 in the case of families of pseudoconvex domains.

Proposition 3.4. With the above notations and assumptions. Assume s is a
holomorphic section of E, then the function |s|(t) := H(s(t)) : D → [0,+∞]
is lower semicontinuous.

Proof. We assume 0 ∈ D and prove that |s| is lower semicontinuous for a
point 0. Let K1 b K2 b · · · b Kj b · · · b Ω0 be an increasing sequence of
compact subsets of Ω0, such that ∪jKj = Ω0. Since the set valued function
t → Ωt is lower semi-continuous, in the sense that if Ωt contains a compact
set K, then K is contained in all Ωs for s sufficiently close to t. Thus
for any j, there is a small disk Bj ⊂ D centered at a, such that Bj ×
Kj b Ω. Note that e−ϕ is lower semicontinuous, hence lim inft→0 |s|(t) ≥(∫

Kj
|s(0, z)|2e−ϕt

)1/2
for all j. Let j go to ∞, we get lim inft→0 |s|(t) ≥

|s|(0). ¤
The following lemma shows that |ξ|(t) can not take value +∞ anywhere.

Lemma 3.5. Let ξ be a holomorphic section of E∗, then |ξ|(t) < +∞ for
all t ∈ D.

Proof. We argue by contradiction. Assume 0 ∈ D and |ξ(0)| = +∞.
By definition, there is a sequence {uj} ⊂ E0 such that |uj | = 1 and
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limj→∞〈ξ(0), uj〉 = +∞. By Theorem 3.1, there are holomorphic sections
sj of E such that sj(0) = uj and

∫
D |sj | ≤ C for some constant C inde-

pendent of j. By Montel’s theorem there is a subsequence of {sj}, may
assumed to be {sj} itself, that converges uniformly on compact subsets of
Ω to some holomorphic section s of E. By definition, 〈ξ, sj〉 converges uni-
formly on compact sets of D to 〈ξ, s〉. In particular, 〈ξ(0), uj〉 converges to
〈ξ(0), s(0)〉 ≤ +∞, which is a contradiction. ¤

Proposition 3.6. Let ξ : D → E∗ be a holomorphic section of E∗. Then
the function |ξ|(t) := H∗(ξ(t)) : D → [0,+∞) is upper semicontinuous.

Proof. We assume 0 ∈ D and prove that |ξ| is upper semicontinuous at 0.
We need to show that

lim sup
j→+∞

|ξ|(tj) ≤ |ξ|(0).

for every sequence t1, t2, · · · ∈ D which converges to 0. We may assume
that |ξ|(tj) 6= −∞ for all j ∈ N, and that the sequence |ξ|(tj) actually has
a limit. From the definition of the dual metric and Lemma 3.5, for each j,
there exists uj ∈ Etj , such that |uj | = 1 and |ξ|(tj) < |〈ξ(tj), uj〉|+ ε, where
ε > 0 is an arbitrary constant.

By Theorem 3.1, there are holomorphic sections sj of E such that

sj(tj) = uj and
∫

D
|sj(t)| ≤ K

for some constant K independent of j.
By Montel’s theorem, there is a subsequence of {sj}, denoted by {sj}

itself, that converges on compact subsets of Ω uniformly to some holomorphic
section s of E.

By definition, 〈ξ, sj〉, as a sequence of the holomorphic functions on D,
converges uniformly on compact subsets of D to 〈ξ, s〉. In particular

lim sup
j→∞

|ξ|(tj) ≤ lim sup
j→∞

(|〈ξ(tj), uj〉|+ ε) = |〈ξ(0), s(0)〉|+ ε.

If s(0) = 0, we are done. We assume s(0) 6= 0. Then it suffices to prove that
|s(0)| ≤ 1. But this is true since sj converges to s uniformly on compacts
sets, |uj | = 1, and e−ϕ is lower semicontinuous. ¤

Remark 3.1. Let ξ be a holomorphic section of E∗. By Lemma 3.5 and
Theorem 3.6, |ξ|(t) is locally bounded above by positive constants. On the
other hand, it is not difficult to show that a section of E∗ is holomorphic
if it satisfies condition (1) in Definition 3.1 and its norm is locally bounded
above.

4. New characterizations of psh functions and positively
curved bundles

4.1. Characterization of plurisubharmonic functions. We give the
proof of Theorem 1.1 in this subsection. We need some preparations.
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Let D, ϕ, and p be as in Theorem 1.1. Let

Hp(D, ϕ) = {f ∈ O(D); ‖f‖ϕ,p :=
∫

D
|f |pe−ϕ < ∞}.

For z ∈ D, define

Kϕ,p = sup{|f(z)|p; f ∈ Hp(D, ϕ), ‖f‖ϕ,p = 1}.
It is also easy to see that

Kϕ,p(z) = (inf{‖f‖ϕ,p; f ∈ Hp(D, ϕ), |f(z)| = 1})−1

if there exists an f ∈ Hp(D, ϕ) with f(z) 6= 0, and otherwise Kϕ,p(z) is 0.
We have the following

Lemma 4.1. With the above notations, Kϕ,p is a continuous function on
D.

Proof. This is proved by a normal family argument.
By definition, it is clear that Kϕ,p is lower semicontinuous. We now show

it is also upper semicontinuous.
Assume a ∈ D and zj ∈ D which converges to a as j →∞. Let ε > 0 be

arbitrary. There exists fj ∈ Hp(D, ϕ) such that ‖fj‖ϕ,p = 1 and |fj(zj)|p >
Kϕ,p(zj) − ε. Since ϕ is upper semicontinuous and hence bounded above
locally, {fj} is a normal family on D and hence has a subsequence, which
is denoted by {fj} itself, that converges uniformly to some f ∈ O(D) on
compact subsets of D. By Fatou’s lemma, we have f ∈ Hp(D, ϕ) and
‖f‖ϕ,p ≤ 1. So

Kϕ,p(a) ≥ |f(a)|p = lim
j→∞

|fj(zj)|p ≥ lim sup
j→∞

Kϕ,p(zj)− ε.

Letting ε go to 0, we see Kϕ,p is upper semicontinuous. ¤

Using the same normal family argument as in the proof of Lemma 4.1,
one can show that the supremum in the definition of Kϕ,p can be attained.

Lemma 4.2. Let D, ϕ and p be as above. Then for any z ∈ D there exits
f ∈ Hp(D, ϕ) such that ‖f‖ϕ,p = 1 and Kϕ,p(z) = |f(z)|p.
Lemma 4.3. log Kϕ,p is a p.s.h. function on D.

Proof. Note that log Kϕ,p = sup{p log |f |; f ∈ Hp(D, ϕ), ‖f‖ϕ,p = 1} and
log Kϕ,p is upper semicontinuous by Lemma 4.1, log Kϕ,p is plurisubhar-
monic. ¤

Now we’re ready to prove Theorem 1.1.

Proof of Theorem 1.1. We will use the above notations and definitions. We
denote 1

m log Kmϕ,p by ϕm. By Lemma 4.3, ϕm is p.s.h on D. We want to
show that ϕm converges to ϕ as m →∞.

By assumption, for any z ∈ D with ϕ(z) > −∞, there exists f ∈ D such
that f(z) = 1 and ‖f‖mϕ,p ≤ Cme−mϕ. Then we have

−ϕm(z) ≤ 1
m

log ‖f‖mϕ,p ≤ 1
m

log
(
e−mϕ(z)

)
+

log Cm

m
= −ϕ(z) +

log Cm

m
.
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This is

ϕm(z) ≥ ϕ(z)− log Cm

m
.

Let z ∈ D and r > 0 such that d(z, ∂D) > r. We have

ϕ|B(z,r) ≤ sup
ζ∈B(z,r)

ϕ(ζ).

By Lemma 4.2, we can choose f ∈ Hp(D, mϕ) such that ‖f‖mϕ,p = 1 and
Kmϕ,p(z) = |f(z)|p. Note that |f |p is a p.s.h function, we get

∫

B(z,r)
|f(ζ)|p ≥ πnr2n

n!
|f(z)|p,

by the mean value inequality. Therefore, we get

1 = ‖f‖mϕ,p ≥
∫

B(z,r)
|f(ζ)|pe−mϕ(ζ) ≥ πnr2n

n!
|f(z)|pe−m supζ∈B(z,r) ϕ(ζ),

which implies

ϕm(z) =
1
m

log |f(z)|p ≤ sup
ζ∈B(z,r)

ϕ(ζ)− 1
m

log(
πnr2n

n!
).

In summary, we have

ϕ(z)− log Cm

m
≤ ϕm(z) ≤ sup

ζ∈B(z,r)
ϕ(ζ)− 1

m
log(

πnr2n

n!
).

We now take r = e−
√

m/2n, then the above inequality becomes

ϕ(z)− log Cm

m
≤ ϕm(z) ≤ sup

ζ∈B(z,e−
√

m/n)

ϕ(ζ)− 1
m

log
πn

n!
+

1√
m

.

Note that ϕ is u.s.c, the above inequality implies that lim supζ→z ϕ(ζ) = ϕ(z)
and hence ϕm converges to ϕ pointwise as m → ∞. Let ψm = supj≥m ϕj

and let ψ∗m be the upper semicontinuous regularization of ψm. We have

ϕ(z) ≤ ψm(z) ≤ sup
ζ∈B(z,e−

√
m/n)

ϕ(ζ) +
2√
m

for m >> 1. Since the last term of the above inequality is u.s.c, ψ∗m also
satisfies the same inequality. So we also have ψ∗m converges to ϕ pointwise
as m →∞, thus ϕ is plurisubharmonic.

¤

Remark 4.1. It is worth mentioning that Berndtsson proved in [1] that a
continuous function ϕ on a planar domain is subharmonic if e−mϕ can be
used as a weight for Hörmander’s L2-estimate for ∂̄. For the arguments
in [1], dimension-one condition and continuity for ϕ seem to be necessary
assumptions. It seems interesting to generalize Berndtsson’s result to higher
dimensions and upper semi-continuous functions.
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Remark 4.2. After the present paper appeared on the arXiv, there are sev-
eral groups who made contributions to the question raised in Remark 4.1,
for instance, Hosono-Inayama [20], Deng-Ning-Wang [11], and Deng-Ning-
Wang-Zhou [12]. For a discription on these papers, the readers are referred
to a few paragraphes at the end of Introduction (§1), where we explain the
progress on the aforementioned question, as well as their relations with the
present paper.

4.2. Characterization of positive vector bundles. The aim of this sub-
section is to prove Theorem 1.2.

We start from some basic linear algebra. Let V be a vector space of
finite dimension. Recall that a Finsler metric on V is defined to be a map
h : V → [0,+∞] such that h(cv) = |c|2h(v) for all v ∈ V and c ∈ C. Given
a Finsler metric on V , the dual metric h∗ on the dual space V ∗ is defined
as in Definition 2.2. For a positive integer m, the m-th tensor power of V is
denoted by V ⊗m. Then h and h∗ induces naturally Finsler metrics hm and
h∗m on V ⊗m and (V ∗)⊗m as follows. Recall that a vector ξ ∈ (V ∗)⊗m can
be viewed as a map ξ : V m → C which is multilinear, namely linear on each
component.

Definition 4.1. The metric h∗m : (V ∗)⊗m → [0,+∞] on (V ∗)⊗m is defined
as:

h∗m(ξ) := sup{|ξ(u1, · · · , um)|;ui ∈ V, h(ui) ≤ 1, 1 ≤ i ≤ m}
if h(u) < +∞ for some u ∈ V ; otherwise, h∗m(ξ) is defined to be 0. The
metric hm on V ⊗m is defined in the same way by identifying V and (V ∗)∗,
the dual space of V ∗.

According to this definition, for ξ1, · · · , ξm ∈ V ∗, we have the product
formula h∗m(ξ1 · · · ξm) = h∗(ξ1) · · ·h∗(ξm). Definition 4.1 can be applied to
holomorphic vector bundles. If E is a holomorphic vector bundle over a
complex manifold X and h is a Finsler metric on E. The induced metrics
hm and h∗m on E⊗m and (E∗)⊗m is defined pointwise.

We now give the proof of Theorem 1.2.

Proof. Let u be a local holomorphic section of E∗ on U ⊂ D. We need to
show that the function ϕ := log |u| is p.s.h. on U . Our strategy is to prove
that ϕ satisfies the condition in Theorem 1.1.

Without loss of generality, we assume U = D. Let z be a fixed point in
D. We assume that |u(z)| 6= 0. Let a ∈ Ez such that |a| = 1 and 〈u(z), a〉 =
|u(z)|. By assumption, there is a holomorphic section f of E⊗m over D such
that f(z) = a⊗m and

∫
D |f |p ≤ Cm|a⊗m|p = Cm|a|mp = Cm. We view u⊗m

as a holomorphic section of (E∗)⊗m. It is obvious that |u⊗m| = |u|m and
|u⊗m(z)| = 〈u⊗m(z), a⊗m〉. By definition,

|u(ζ)|m ≥ |〈u⊗m(ζ), f(ζ)〉|/|f(ζ)|
for ζ ∈ D, which is

(1) e−mϕ(ζ) ≤ e− log |〈u⊗m(ζ),f(ζ)〉||f(ζ)|.
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Since u⊗m, f are holomorphic section of (E∗)⊗m and E⊗m respectively,
〈u⊗m, f〉 is a holomorphic function on D. By the Ohsawa-Takegoshi ex-
tension theorem, there is a holomorphic function h on D such that h(z) = 1
and ∫

D
|h|2e−p log |〈u⊗m(ζ),f(ζ)〉| ≤ Ce−p log |〈u⊗m(z),f(z)〉| = Ce−pmϕ(z),

where C is a constant independent m and z. By the above inequality, we
have ∫

D
|h|e− p

2
mϕ ≤

∫

D
|h|e− p

2
log |〈u⊗m(ζ),f(ζ)〉||f | p2

≤
(∫

D
|h|2e−p log |〈u⊗m(ζ),f(ζ)〉|

∫

D
|f |p

)1/2

≤
(
Ce−pmϕ(z)Cm

)1/2

=
√

CCme−
p
2
mϕ(z).

By Theorem 1.1, ϕ = log |u| is p.s.h on D. ¤
Remark 4.3. Although this theorem is stated and proved for vector bundles
of finite rank, the same argument also works for holomorphic vector bundles
of infinite rank.

5. Positivity of direct images of twisted relative canonical
bundles

In this section, we apply Theorem 1.1 to show that the direct image of
relative canonical bundles twisted by pseudoeffective line bundles associated
to certain families of pseudoconvex domains or compact Kähler manifolds
is semi-positive in the sense of Griffiths. The proof is given by combing
Theorem 1.1 and Theorem 3.1.

5.1. For families of pseudoconvex domains. Let U,D be bounded pseu-
doconvex domains in Cr and Cn respectively, and let Ω = U ×D ⊂ Cr×Cn.
Let ϕ be a p.s.h function on Ω, which is for simplicity assumed to be
bounded. For t ∈ U , let Dt = {t} × D and ϕt(z) = ϕ(t, z). Let Et =
H2(Dt, e

−ϕt) be the space of L2 holomorphic functions on Dt with respect
to the weight e−ϕt . Then Et are Hilbert spaces with the natural inner prod-
uct. Since ϕ is assumed to be bounded on Ω, all Et for t ∈ U are equal as
vector spaces, however, the inner products on them depend on t if ϕ(t, z)
is not constant with t. So, under the natural projection, E =

∐
t∈U Et is

a trivial holomorphic vector bundle (of infinite rank) over U with varying
Hermitian metric.

In [3] , Berndtsson proved that E is semipositive in the sense of Griffths,
namely, for any local holomorphic section ξ of the dual bundle E∗ of E, the
function log |ξ| is p.s.h. (indeed Berndtsson proved a stronger result which
says that E is semipositive in the sense of Nakano). The aim here is to
provide a new proof of the positivity of E, based on our new charaterization
of p.s.h. functions (Theorem 1.1).
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Theorem 5.1. The vector bundle E is semipositive in the sense of Griffths.

Before giving the proof of Theorem 5.1, we first recall the notion of Hilbert
tensor product of Hilbert spaces and prove a related lemma. Let V and W
be two Hilbert spaces. For v ∈ V, w ∈ W , the norm of v ⊗ w is defined
to be ‖v‖‖w‖. If {vi}i∈I and {wj}j∈J are orthonormal bases of V and W
respectively, then the Hilbert tensor product V ⊗̂W of V and W is defined
to be the Hilbert space with {vi ⊗ wj}i∈I,j∈J as an orthonormal basis. It
is easy to show that the definition of V ⊗̂W is independent of the choices
of the orthonormal bases of V and W . By definition one can check that
(V ⊗̂W )∗ = V ∗⊗̂W ∗.

The definition can be naturally generalized to the tensor product of sev-
eral Hibert spaces. In particular, we can define the tensor powers V ⊗̂k :=
V ⊗̂ · · · ⊗̂V ((k ≥ 1)) of a Hilbert space V . Let V be a Hilbert space. For
v ∈ V , it is obvious that the norm of v⊗k := v ⊗ · · · ⊗ v ∈ V ⊗̂k is ‖v‖k for
all k ≥ 1.

Lemma 5.2. Let D1, D2 be bounded domains in Cn
z and Cm

w respectively.
Let ϕ1 and ϕ2 be p.s.h. functions on D1 and D2. Then

H2(D1 ×D2, e
−(ϕ1+ϕ2)) = H2(D1, e

−ϕ1)⊗̂H2(D2, e
−ϕ2).

Proof. Let {fi}∞i=1 and {gi}∞i=1 be orthonormal bases of H2(D1, e
−ϕ1) and

H2(D2, e
−ϕ2) respectively. Then K1(z) =

∑
i |fi(z)|2 is the Bergman ker-

nel of H2(D1, e
−ϕ1) and K2(w) =

∑
j |gj(w)|2 is the Bergman kernel of

H2(D2, e
−ϕ2). Let K(z, w) =

∑
i,j |fi(z)gj(w)|2. It is clear that K(z, w) =

K1(z)K2(w). By Fubini theorem, {fi(z)gj(w)}∞i,j=1 is an orthonormal set
of H2(D1 × D2, e

−(ϕ1+ϕ2)). By the product property of the Bergman ker-
nel, the Bergman kernel of H2(D1 ×D2, e

−(ϕ1+ϕ2)) equals to K1(z)K2(w).
So {fi(z)gj(w)}∞i,j=1 is an orthonormal basis of H2(D1×D2, e

−(ϕ1+ϕ2)) and
hence

H2(D1 ×D2, e
−(ϕ1+ϕ2)) = H2(D1, e

−ϕ1)⊗̂H2(D2, e
−ϕ2).

¤
It is clear that Lemma 5.2 can be generalized to product of several do-

mains. We now give the proof of Theorem 5.1.

Proof. Let u be a local holomorphic section of the dual bundle E∗ of E. We
need to prove that log |u(t)| is a p.s.h. function. Without loss of generality,
we assume that u is a global holomorphic section, namely a holomorphic
section of E∗ on U . The upper semi-continuity of log |u(t)| follows from
Proposition 3.6. We now prove that log |u(t)| satisfies the condition in The-
orem 1.1 for some p > 0.

For m ≥ 1, let Ωm = U × Dm and ϕm(t, z1, · · · , zm) = ϕ(t, z1) + · · · +
ϕ(t, zm). For t ∈ U , we denote t×Dm by Dm

t . Let E⊗̂m
t = H2(Dm

t , e−ϕm),
and E⊗̂m =

∐
t∈U E⊗̂m

t . By Lemma 5.2, E⊗̂m is the m-th tensor power of
E in the Hilbert space sense.

Let t0 ∈ U be an arbitrary point such that u(t0) 6= 0. By the definition
of tensor powers of Hilbert spaces given as above, u⊗m is a nonvanishing
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holomorphic section of (E⊗̂m)∗ = (E∗)⊗̂m, and |u⊗m(t)| = |u(t)|m. Let
f ∈ E⊗̂m

t0
such that ∫

Dm
t0

|f |2e−ϕm(t0,z1,···zm) = 1

and 〈u⊗m(t0), f〉 = |u(t0)|m.
By Theorem 3.1, there eixsts F ∈ O(Ωm) such that F |Dm

t0
= f and

(2)
∫

Ωm

|F (t, z1, · · · , zm)|2e−ϕm(t,z1,···zm) ≤ C,

where C is a constant independent of t0 and m. Let Ft(z1, · · · , zm) =
F (t, z1, · · · , zm) and

||Ft||2t =
∫

Dm
t

|Ft|2e−ϕm(t,z1,··· ,zm).

Since ϕ is bounded, by the mean value inequality, ‖Ft‖t < +∞. This implies
Ft lies in E⊗̂m

t for all t ∈ U and hence F can be seen as a holomorphic section
of E⊗̂m.

From the definition of |u⊗m(t)|, it is clear that

‖Ft‖t|u(t)|m ≥ |〈u⊗m(t), Ft〉|,
and hence

e−m log |u(t)| ≤ e− log |〈u⊗m(t),Ft〉|||Ft||t.
Note that 〈u⊗m(t), Ft〉 is a holomorphic function on U . By Theorem 3.1,

there is a holomorphic function h on U such that h(t0) = 1 and

(3)
∫

U
|h(t)|2e−2 log |〈u⊗m(t),Ft〉| ≤ C ′e−2 log |〈u⊗m(t0),Ft0 〉| = C ′e−2m log |u(t0)|,

where C ′ is a constant independent of m and t0. So we have the estimate∫

U
|h(t)|e−m log |u(t)|

≤
∫

U
|h(t)|e− log |〈u⊗m(t),Ft〉|||Ft||t

≤
(∫

U
|h(t)|2|e−2 log |〈u⊗m(t),Ft〉|

∫

U
||Ft||2t

)1/2

≤
√

CC ′e−m log |u(t0)|,

(4)

where the last inequality follows from (2), (3) and Fubini theorem. By
Theorem 1.1, log |u(t)| is subharmonic. ¤

5.2. For families of compact Kähler manifolds. In this subsection, we
study the positivity of the direct image sheaf of the twisted relative canonical
bundle associated to a family of compact Kähler manifolds.

Let X, Y be Kähler manifolds of dimension r + n and r respectively, and
let p : X → Y be a proper holomorphic map. For y ∈ Y let Xy = p−1(y),
which is a compact submanifold of X of dimension n if y is a regular value
of p. Let L be a holomorphic line bundle over X, and h be a singular
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Hermitian metric on L, whose curvature current is semi-positive. Let KX/Y

be the relative canonical bundle on X.
Let E = p∗(KX/Y ⊗L⊗I(h)), and Ẽ = p∗(KX/Y ⊗L) be the direct image

sheaves on Y , where I(h) is the multiplier ideal sheaf associated to (L, h).
We can choose a proper analytic subset A ⊂ Y such that:

(1) p is submersive over Y \A,
(2) both E and Ẽ are locally free on Y \A,
(3) for y ∈ Y \A, the fibers Ey and Ẽy are naturally identified with

H0(Xy,KXy⊗L|Xy⊗I(h)|Xy) and H0(Xy,KXy⊗L|Xy) respectively,

where E and Ẽ are the vector bundles on Y \A associated to E and Ẽ re-
spectively. For u ∈ Ẽy, the norm of u is defined to be

H(u) := ‖u‖ =

(∫

Xy

|u|2h
)1/2

≤ +∞.

Then H is a Finsler metric on Ẽ, whose restriction on E gives a singular
Hermitian metric on E, which will be also denoted by H. The following
theorem says that H is positively curved as a singular Finsler metric on the
coherent sheaf E (see Definition 2.4 for definition).

Theorem 5.3. With the above assumptions and notations, H is a positively
curved singular metric on E.
Proof. The proof splits into three steps.

Step 1. We prove that H is a positively curved singular Finsler metric on
Ẽ → U := Y \A. The argument is similar to that in the proof of Theorem
5.1. Let u be a local holomorphic section of Ẽ∗. By definition, we need to
show that log |u| is a p.s.h. function. Without loss of generality, in this step
we can assume that U = Br is the unit ball and u is a holomorphic section
of Ẽ∗ on U .

For m ≥ 1, let Xm = {(y, z1, · · · zm); y ∈ U, z1, · · · , zm ∈ Xy} be the m-th
fiber-product power of X. The is a natural proper holomorphic submersion
from Xm to U , which is denoted by pm : Xm → U . Let Xm

y = p−1
m (y) be the

fiber over y ∈ U .
For 1 ≤ i ≤ m, we have a projection πi : Xm → X which sends

(y, z1, · · · , zm) to (y, zi). Let Lm = π∗1L ⊗ · · · ⊗ π∗mL and let hm be the
singular Hermitian metric on Lm induced from the metric h on L. Then the
curvature current of hm is nonnegative.

Note that H0(Xm
y ,KXm

y
⊗ Lm|Xm

y
) = H0(Xy,KXy ⊗ LXy)⊗m for y ∈ U .

Indeed, this follows the same proof of Lemma 5.2 by putting a smooth
Hermitian metric on L. In particular, the dimension of H0(Xm

y ,KXm
y
⊗

Lm|Xm
y

) is independent of y ∈ U . Since U is assumed to be the unit ball,
we can identify Kp−1

m (U)/U with Kp−1
m (U). So pm∗(KXm/U ⊗ Lm)|U is locally

free and corresponds to a holomorphic vector bundle, say Ẽm, on U , and we
have Ẽm = Ẽ⊗m. In the same way as defining H, we can define a Finsler
metric, say Hm, on Ẽm. For y ∈ U , let Ẽy,b and Ẽm

y,b be subspaces of
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Ẽy and Ẽm
y consisting of vectors of finite norm. By Lemma 5.2, we have

Ẽm
y,b = (Ẽy,b)⊗m.
Recall that u is a holomorphic section of Ẽ∗ on U , and we need to prove

that log |u| is a p.s.h. function on U . Note that the restriction u|E of u on
E is a holomorphic section of E∗. The point is that, by definition of the
dual norm in Definition 2.2, the norm of u|E and u are equal. Therefore,
by Proposition 3.3, log |u| is upper semicontinuous. Now it suffices to prove
that log |u| satisfies the condition in Theorem 1.1.

Let y0 ∈ U be any given point such that |u(y0)| 6= 0. u⊗m is a holo-
morphic section of (Ẽ∗)⊗m = Ẽm∗. Note that the definition of the norm
of u⊗m only involves vectors in Ẽm of finite norm, by Lemma 5.2, we
have |u⊗m(y)| = |u(y)|m. There exists fy0 ∈ Ẽm

y0
such that ‖fy0‖ :=

Hm(fy0) = 1 and |〈u⊗m(y0), fy0〉| = |u(y0)|m. By Theorem 3.1, there is
F ∈ H0(p−1

m (U), (KXm ⊗ Lm)|p−1
m (U)) such that F |Xm

y0
= fy0 and

∫

Xm

|F (y, z1, · · · , zm)|2e−ϕm(z,z1,··· ,zm) ≤ C,

where ϕm is the weight of hm and C is an absolute constant independent of
y0 and m. For y ∈ U , let Fy(z1, · · · , zm) = F (y, z1, · · · , zm), then Fy ∈ Ẽm

y

and

‖Fy‖2 =
∫

Xm
y

|Fy|2e−ϕm(y,z1,··· ,zm).

From the definition of |u⊗m(y)|, it is clear that

‖Fy‖|u(y)|m ≥ |〈u⊗m(y), Fy〉|,
and hence

e−m log |u(y)| ≤ e− log |〈u⊗m(y),Fy〉|||Fy||.
Note that F can be seen as a holomorphic section of Ẽm on U , so <

u⊗m(y), Fy > is a holomorphic function on U . By Ohsawa-Takegoshi L2

extension theorem (Theorem 3.1), there is a holomorphic function h on U
such that h(y0) = 1 and

∫

U
|h(y)|2e−2 log |〈u⊗m(y),Fy〉| ≤ C ′e−2m log |u(y0)|,

where C ′ is an absolute constant independent of m and y0. So we have the
estimate ∫

U
|h(y)|e−m log |u(y)|

≤
∫

U
|h(y)|e− log |〈u⊗m(y),Fy〉|||Fy||

≤
(∫

U
|h(y)|2|e−2 log |〈u⊗m(y),Fy〉|

∫

U
||Fy||2

)1/2

≤
√

CC ′e−m log |u(y0)|.

(5)

By Theorem 1.1, log |u(t)| is plurisubharmonic.
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Step 2. We prove that H is a positively curved singular Finsler metric on
E → U := Y \A. We also assume that U = Br be the unit ball. Note that
E is a holomorphic subbundle of Ẽ. Since U is a Stein manifold, there is a
holomorphic subbundle E′ of Ẽ such that Ẽ splits as E ⊕ E′.

So any holomorphic section u of E∗ on U can be extended to a holomor-
phic section ũ of Ẽ∗ by setting u(a) = 0 for all a ∈ E′. Note that the norm
of any vector in Ẽ\E is +∞ (by Theorem 3.1), by definition, the norm of
u and ũ are equal. By the result in Step 1, log |ũ| is plurisubharmonic, so
log |u| is plurisubharmonic.

Step 3. We will complete the proof of Theorem 5.3 in this final step. Let u
be a holomorphic section of the dual sheaf E∗ of E on some open set V in
Y . We want to show that |u|V \A is bounded above on all compact subsets
of V . Once this is established, log |u| can be extended uniquely to a p.s.h.
function on V and we are done.

The boundeddness of log |u| follows from the idea in the proof of Propo-
sition 23.3 in [21]. Since the proof is quite standard, we omit it here.

¤

Remark 5.1. Theorem 5.3 was proved by Berndtsson in [3] in the case that
the metric on L is smooth and p is a submersion, and is similar to results
obtained in [4] and [26]. Our method to Theorem 5.1 and Theorem 5.3 is
different from the previous ones. As showed in the proofs, our arguments
are based on Theorem 1.1 and a fiber-product technique.

Remark 5.2. The same method to Theorem 5.1 and Theorem 5.3 can be
used to prove the plurisubharmonic variation of k-Bergman kernel metrics
for all integers k ≥ 1, and the positivity of NS metrics (see [4] for definitions,
and [2, 3, 18, 4, 26, 21, 30] for related results).
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tivity notions for vector bundles, Sci. China Math. 64 (2021), 1745–1756.

[21] C. Hacon, M. Popa, and C. Schnell, Algebraic fiber spaces over abelian varieties:
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