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Abstract. This paper examines and strengthens the Cuntz–Thomsen
picture of equivariant Kasparov theory for arbitrary second-countable
locally compact groups, in which elements are given by certain pairs
of cocycle representations between C∗-dynamical systems. The main
result is a stable uniqueness theorem that generalizes a fundamental
characterization of ordinary KK-theory by Lin and Dadarlat–Eilers.
Along the way, we prove an equivariant Cuntz–Thomsen picture analog
of the fact that the equivalence relation of homotopy agrees with the (a
priori stronger) equivalence relation of stable operator homotopy. The
results proved in this paper will be employed as the technical centerpiece
in forthcoming work of the authors to classify certain amenable group
actions on Kirchberg algebras by equivariant Kasparov theory.
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Introduction

The operator algebraic perspective on K-theory has been responsible for
a long-standing and fruitful exchange of ideas and results between the areas
of topology and C∗-algebras. The extension of topological K-theory from
spaces to C∗-algebras has not only opened up a fresh perspective on the
subject, but led to numerous new insights in the original domain of origin,
many of which are so well-known that we won’t attempt to survey them. In
what may arguably be considered the most powerful unifying K-theoretical
theory enabled by the noncommutative framework, Kasparov’s KK-theory
[36] is a generalized homotopy theory for C∗-algebras connecting K-theory,
K-homology, and Brown-Douglas-Fillmore theory [3]. The original approach
by Kasparov, commonly referred to as the Kasparov picture, is still the
predominant way of treating this subject. While this is entirely appropriate
for the original historical motivation and applications, subsequent uses of
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KK-theory sometimes call for a different (though equivalent) approach that
is better suited for certain other applications.

The description of KK-theory due to Cuntz [6], commonly referred to as
the Cuntz picture, has had many applications such as in cyclic cohomology
[5] or Higson’s celebrated description of KK as a universal functor [27].
In said picture, elements of Kasparov’s group KK(A,B) for separable C∗-
algebras A and B can be described as homotopy classes of so-called Cuntz
pairs, i.e., pairs of ∗-homomorphisms φ,ψ : A → M(B⊗K) such that φ(a)−
ψ(a) ∈ B⊗K for all a ∈ A. A groundbreaking theorem in KK-theory is the
so-called stable uniqueness theorem proved independently by Lin [44] and
Dadarlat–Eilers [9, 10]. It states that if a Cuntz pair (φ,ψ) represents the
zero element in KK(A,B), then φ and ψ are homotopic via a unitary path
in 1+B⊗K after stabilizing both φ and ψ with a suitable ∗-homomorphism.
(This is a tiny oversimplification. It captures how we reprove the original
theorem as a special case of ours, but the former is actually a bit weaker.
This boils down to the difference between proper and strong asymptotic
unitary equivalence in Definition 4.1.)

While the stable uniqueness theorem was originally motivated as a tool
for classification of nuclear C∗-algebras [44, 10], the past decade has found
other groundbreaking utilizations of the theorem, such as the Quasidiagonal-
ity Theorem of Tikuisis–White–Winter [58] and Schafhauser’s AF embed-
dability theorem [49]. It is worth pointing out explicitly that the celebrated
Kirchberg–Phillips theorem [37, 47], which classifies separable simple nuclear
purely infinite C∗-algebras via KK-theory, is known to admit a particularly
slick proof with the help of the stable uniqueness theorem; see [16] for the
most recent one due to the first named author.

With the classification of simple nuclear well-behaved C∗-algebras being
essentially complete due to the work of many hands — an incomplete list
of references being [37, 47, 23, 24, 11, 58, 12, 21, 22, 4] — a natural future
research direction is the classification of C∗-dynamical systems. In the most
general sense, this concerns C∗-algebras equipped with a continuous action
of a locally compact group. At least for special choices of the acting group
(such as finite groups or the integers), classification results in this vein have
been investigated since the 1980s. After some preliminary prototype argu-
ments by Herman–Jones [25] and Herman–Ocneanu [26] inspired by work of
Connes, the concept of the Rokhlin property was fleshed out and exploited
for classification by Kishimoto [40, 42], Izumi [30], and many others. By now
these related techniques have been applied many times and also extended
to actions of compact groups [29, 19, 20], actions of R [41, 52], and more
complicated infinite discrete groups [31]. Generally speaking, classification
via a Rokhlin-type property dominates the bulk of the available literature
when it comes to methodology, but often comes at the cost of restrictions
on the actions that one ends up classifying. It would appear that the latter
drawback is the least pronounced for discrete groups that are in a suitable
way built out of the integer group Z. This led to the recent breakthrough
of Izumi–Matui [32, 33, 34] who managed to classify outer actions of poly-Z
groups on Kirchberg algebras with the help of invariants that not only seem
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to resemble K-theory, but were later argued by Meyer [45] to genuinely
amount to equivariant KK-theory.

The fact that KK-theory is extendible to C∗-dynamics instead of just C∗-
algebras is not a mere aesthetic coincidence, but was the key to the impact-
ful applications of Kasparov’s ideas to classically motivated problems such
as the Novikov conjecture. In complete analogy to the Kirchberg–Phillips
theorem mentioned above, Phillips has hypothesized in the past that outer
actions of finite groups on Kirchberg algebras ought to be classified by equi-
variant KK-theory. Various authors have subsequently speculated (albeit
with little trace in the published literature) that this ought to be true for
actions of countable amenable groups. Some evidence for this was provided
in [51], which was recently generalized by Suzuki [50], indicating that there
may even be hope to classify amenable actions of not necessarily amenable
groups. In contrast to the methodology present in the aforementioned El-
liott program, however, it has in large part remained a mystery how the
information encoded in equivariant KK-theory can be systematically em-
ployed towards the classification of actions. The impressive recent work
of Izumi–Matui mentioned above, for example, uses bundle-like invariants
that could only in hindsight be interpreted in K-theoretical language (for
groups without torsion) as a result of the categorical insights related to the
Baum–Connes conjecture [46]. The intention behind this article is to build
a systematic machinery to utilize equivariant KK-theory towards the clas-
sification of C∗-dynamics. We expect and hope for it to lead to a paradigm
shift in the direction of research that concerns dynamical generalizations of
the Elliott classification program.

Since the methodology of Izumi–Matui is closely tied to the Rokhlin prop-
erty and the Evans–Kishimoto intertwining argument [13], it is increasingly
difficult to implement for more complicated groups, and in fact is too restric-
tive for groups with torsion. Recently, the second named author proposed a
categorical framework for C∗-dynamics [53] to classify group actions up to
cocycle conjugacy based on an Elliott intertwining argument that is intended
to provide an alternative to the one of Evans–Kishimoto. In this framework,
arrows between actions of C∗-algebras are so-called cocycle morphisms. In
analogy to ordinary C∗-algebra classification, it is an important intermediate
step to solve the uniqueness problem, i.e., to determine in terms of classi-
fying invariants when two cocycle morphisms are approximately/asymptoti-
cally unitarily equivalent; for more details see [53]. Since it was also argued
that equivariant KK-theory can be viewed as a (bi-)functor on this en-
larged category, it is natural expect that it ought to represent one of the key
obstructions to solving said existence/uniqueness problem.

In [54], Thomsen showed that equivariant KK-theory can be expressed
using Cuntz pairs if one considers pairs of cocycle representations; we will
henceforth refer to this framework as the Cuntz–Thomsen picture. That
is, instead of considering equivariant ∗-homomorphisms, one considers ∗-
homomorphisms A → M(B) that are equivariant after twisting the action
on B with distinguished cocycles. In this picture, Thomsen proved that equi-
variant KK-theory can be described by a Higson-type universal property.
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The aim of this paper is to prove the following stable uniqueness theorem
for equivariant KK-theory. For the most general version, see Theorem 5.4.

Theorem. Let A and B be separable C∗-algebras, and let G be a second-
countable locally compact group. Let α : G ↷ A and β : G ↷ B be two
continuous actions. Let

(φ,u), (ψ, v) : (A,α) → (M(B ⊗ K), β ⊗ idK)

be a pair of cocycle representations forming an anchored (α, β)-Cuntz pair
(see Definition 1.11). Then

[
(φ,u), (ψ, v)

]
= 0 in KKG(α, β) if and only if

there exists a third cocycle representation (θ, y) and a norm-continuous path
u : [0,∞) → U(1 +M2(B ⊗ K)) with u0 = 1 such that

lim
t→∞

∥∥∥(
ψ(a) 0

0 θ(a)

)
− ut

(
φ(a) 0

0 θ(a)

)
u∗
t

∥∥∥ = 0

for all a ∈ A and

lim
t→∞

max
g∈K

∥∥∥(
vg 0
0 yg

)
− ut

(
ug 0
0 yg

)
(β ⊗ idK)(2)

g (ut)∗
∥∥∥ = 0

for all compact sets K ⊆ G.

In a follow-up paper [18], the above main result is employed to prove a dy-
namical Kirchberg–Phillips theorem, i.e., a classification theorem for certain
amenable group actions on Kirchberg algebras via equivariant Kasparov the-
ory. In the special case of discrete groups, this classifies all amenable and
outer actions, which completely settles an important open problem men-
tioned above.

Besides this intended application, we wish to emphasize some novel as-
pects in our approach towards the theorem, which we believe might make
this article appealing even for those readers who are only interested in the
known (non-dynamical) stable uniqueness theorem of Lin and Dadarlat–
Eilers. If we were to summarize it in an oversimplified slogan, it would be
that upon direct comparison, we employ certain tricks related to quasicen-
tral approximate units in order to overcome all of the truly substantial or
deep technical obstacles that the known proof in the literature was deal-
ing with. For those readers familiar with the original proof, we point out
that our approach is self-contained in the Cuntz–Thomsen picture, without
a need to translate certain problems into the Kasparov picture or Fredholm
picture ([27]) of KK-theory to solve them. Furthermore, we found a more
direct alternative to the part about automorphisms of C∗-algebras that are
norm-homotopic to the identity, which was utilizing the theory of derivations
in a key way.

The article is organized as follows. In the first preliminary section, we
introduce basic notation, recall needed definitions or arguments from the lit-
erature, and introduce equivariant KK-theory in the Cuntz–Thomsen pic-
ture. In the second section, we introduce a Cuntz–Thomsen analog of the
equivalence relation of operator homotopy. A pair of cocycle representations
(φ,u), (ψ, v) : (A,α) → (M(B ⊗ K), β ⊗ idK) is said to be operator homo-
topic, if it is possible to find a continuous path of unitaries {ut}0≤t≤1 with
u0 = 1 and Ad(u1) ◦ (φ,u) = (ψ, v), and such that Ad(ut) ◦ (φ,u) forms



STABLE UNIQUENESS FOR KKG 5

a Cuntz pair with (ψ, v) for all t ∈ [0, 1]. This entails that the two cocy-
cle representations had to form a Cuntz pair to begin with, and that their
associated KK-class vanishes. Although this is in general a strict implica-
tion, we show as our main result in the second section (Theorem 2.9) that
anchored Cuntz pairs with vanishing KK-class can always be arranged to
become operator homotopic after stabilizing with a suitably chosen cocycle
representation. In the third section, we investigate sufficient conditions to
determine when cocycle representations absorb each other in the spirit of
[35] and Voiculescu’s theorem [59]. We introduce the notion of weak con-
tainment between cocycle representations, which unifies weak containment
of unitary representations with certain known subequivalence relations for ∗-
homomorphisms of C∗-algebras. The most appealing feature of this concept
is that a cocycle representation (φ,u) turns out to weakly contain another
cocycle representation (ψ, v) precisely when the infinite repeat (φ∞,u∞)
absorbs the infinite repeat (ψ∞, v∞) (see Definition 3.2). Building on this
fact, we give a new elementary proof of the fact that for separable A and
B, it is always possible to find a cocycle representation (θ, y) that absorbs
every other one; see Theorem 3.16. This generalizes various similar results
from the literature [56, 57, 17]. Our proof has the advantage that it is easily
adaptable in a more general context, as well as being based on a simplified ar-
gument that skips the previously common part about Kasparov–Stinespring
dilations of completely positive maps. In the fourth section, we investigate
criteria on pairs of cocycle representations to be strongly asymptotically
unitarily equivalent. Although a priori much weaker, we prove that it is suf-
ficient to ask for the asymptotic unitary equivalence to be implemented by
certain paths of unitaries in the multiplier algebra M(B) instead of 1 +B.
In comparison to the previously known proof in the non-dynamical setting
that utilized the theory of derivations in this step, our proof combines a
functional calculus argument with the existence of quasicentral approximate
units inside B. As a consequence of this observation, we deduce as the main
result of the fourth section (Corollary 4.5) that operator homotopic cocycle
representations are strongly asymptotically unitarily equivalent. In the fifth
and final section, we combine the main results of the other sections and
deduce our final main result Theorem 5.4.
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1. Preliminaries

Notation 1.1. Throughout, G will denote a second-countable, locally com-
pact group unless specified otherwise. Normal capital letters like A,B,C
will denote generic C∗-algebras. The multiplier algebra of A is denoted as
M(A), whereas A† denotes the proper unitization of A, i.e., one adds a new
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unit even if A was unital. For a unital C∗-algebra A, we write U(A) for its
unitary group and U0(A) for the connected component of the unit element
inside the unitary group. For a (not necessarily unital) C∗-algebra, we write
U(1 +A) for the set of all unitaries in A† whose scalar part is 1, which can
be canonically identified with U(A) if A was already unital. Throughout
the article, the symbol K denotes the C∗-algebra of compact operators on a
separable infinite-dimensional Hilbert space. If a particular statement calls
for specifying the Hilbert space H, we write K(H). Greek letters such as
α, β, γ are used for point-norm continuous maps G → Aut(A), in particular
for point-norm continuous G-actions. In this case we use the same symbol
α for the induced action α : G → Aut(M(A)), which is point-strictly con-
tinuous, but may in general fail to be point-norm continuous. Depending
on the situation, we may denote idA either for the identity map on A or the
trivial G-action on A. We will denote by Aα or M(A)α the C∗-subalgebra of
fixed points (in A or M(A)) with respect to α. Normal alphabetical letters
such as u, v, U, V are used for unitary elements in some C∗-algebra A. If
either u ∈ U(M(A)) or u ∈ U(1 + A), we denote by Ad(u) the induced
inner automorphism of A given by a 7→ uau∗. Double-struck letters such
as u, v,U,V are used for strictly continuous maps G → U(M(A)). Most of
the time they will be assumed to be (1-)cocycles with respect to an action
α : G ↷ A, which for the map u would mean that it satisfies the cocycle
identity ugh = ugαg(uh) for all g, h ∈ G. Under this assumption, one obtains
a new (cocycle perturbed) action αu : G↷ A via αug = Ad(ug) ◦ αg.
Definition 1.2 (see [53, Section 1]). Let α : G↷ A and β : G↷ B be two
actions on C∗-algebras.

(i) A cocycle representation (φ,u) : (A,α) → (M(B), β) consists of a ∗-
homomorphism φ : A → M(B) and a strictly continuous β-cocycle
u : G → U(M(B)) satisfying Ad(ug) ◦ βg ◦ φ = φ ◦ αg for all g ∈ G.

(ii) If additionally φ(A) ⊆ B, then the pair (φ,u) is called a cocycle
morphism, and we denote (φ,u) : (A,α) → (B, β).

In the situation above, if φ = 0 and u = 1, then (φ,u) is called the zero
representation, and on occasion we write (0,1) = 0 where notationally con-
venient.
Notation 1.3. Let us say that an action β : G ↷ B on a C∗-algebra is
strongly stable if (B, β) is (genuinely) conjugate to (B ⊗ K, β ⊗ idK).
Remark 1.4. We will repeatedly and without mention use the fact that
an action β : G ↷ B is strongly stable if and only if there is a sequence
of isometries rn ∈ M(B)β such that 1 =

∑∞
n=1 rnr

∗
n in the strict topology.

The “only if” part is clear since such a sequence can be obtained through
an inclusion B(ℓ2(N)) ∼= M(K) ⊆ M(B ⊗ K)β⊗idK . For the “if” part, one
realizes that if {ek,ℓ}k,ℓ≥1 is a set of matrix units generating the compacts
K, then

B ⊗ K → B, b⊗ ek,ℓ 7→ rkbr
∗
ℓ

defines an isomorphism that is equivariant with respect to β ⊗ idK and β.
We shall now recall some necessary background on equivariant KK-

theory. Throughout the paper the focus lies on the Cuntz–Thomsen picture
[6, 7, 27, 54] rather than Kasparov’s original picture [36].
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Definition 1.5 (cf. [54, Section 3]). Let α : G ↷ A and β : G ↷ B be
two actions on C∗-algebras where A is separable and B is σ-unital. An
(α, β)-Cuntz pair is a pair of cocycle representations

(φ,u), (ψ, v) : (A,α) → (M(B ⊗ K), β ⊗ idK),

such that the pointwise differences φ−ψ and u−v take values in B⊗K. (In
Thomsen’s work it was also assumed that the map u−v is norm-continuous.
This turns out to be redundant, see [53, Proposition 6.9].) If β is assumed
to be strongly stable, then we also allow (M(B), β) as the codomain of an
(α, β)-Cuntz pair for notational convenience.

Definition 1.6 (cf. [54, Lemma 3.4]). Let β : G ↷ B be an action on a
C∗-algebra. Suppose that there exists a unital inclusion O2 ⊆ M(B)β. For
two isometries t1, t2 ∈ M(B)β with t1t

∗
1 + t2t

∗
2 = 1, we may consider the

β-equivariant ∗-homomorphism

M(B) ⊕ M(B) → M(B), b1 ⊕ b2 7→ b1 ⊕t1,t2 b2 := t1b1t
∗
1 + t2b2t

∗
2.

Up to unitary equivalence with a unitary in M(B)β, this ∗-homomorphism
does not depend on the choice of t1 and t2: If v1, v2 ∈ M(B)β are two
other isometries with v1v

∗
1 +v2v

∗
2 = 1, then the unitary equivalence between

“⊕t1,t2” and “⊕v1,v2” is implemented by w = t1v
∗
1 + t2v

∗
2 ∈ M(B)β. One

refers to the element b1 ⊕t1,t2 b2 as the Cuntz sum of the two elements b1
and b2 (with respect to t1 and t2).

Now let α : G↷ A be another action on a C∗-algebra, and (φ,u), (ψ, v) :
(A,α) → (M(B), β) two cocycle representations. We likewise define the
(pointwise) Cuntz sum

(φ,u) ⊕t1,t2 (ψ, v) = (φ⊕t1,t2 ψ,u ⊕t1,t2 v) : (A,α) → (M(B), β),

which is easily seen to be another cocycle representation. Since its unitary
equivalence class does not depend on the choice of t1 and t2, we will often
omit t1 and t2 from the notation if it is clear from context that a given
statement is invariant under said equivalence.

Notation 1.7. Given a C∗-algebra B, we denote B[0, 1] = C[0, 1] ⊗ B. If
one has an action β : G ↷ B, we consider the obvious G-action on B[0, 1]
given by β[0, 1] = idC[0,1] ⊗β.

Definition 1.8 (see [54, Section 3]). Let A be a separable C∗-algebra and
B a σ-unital C∗-algebra. For two actions α : G ↷ A and β : G ↷ B, let
EG(α, β) denote the set of all (α, β)-Cuntz pairs, and let DG(α, β) denote the
subset of all degenerate (α, β)-Cuntz pairs, i.e., those with φ = ψ and u = v.
A cocycle pair is a Cuntz pair

(
(φ,u), (ψ, v)

)
∈ EG(α, β) with φ = ψ = 0.

(We note that Thomsen refers to cocycle pairs as degenerate Cuntz pairs.
We have chosen to rename these, since this does not coincide with the usual
notion. We will be working with a notion of degenerate Cuntz pairs that
better resembles the usual notion for Kasparov modules. We point out that
initial confusion about this matter led the second named author to give a
slightly wrong definition of KKG in [53, Section 6]. Fortunately this mistake
has no bearing on the validity of the results therein.) We will slightly abuse
notation and denote a cocycle pair of the form

(
(0,u), (0, v)

)
by (u, v). In the
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special case of having the trivial example
(
(φ,u), (ψ, v)

)
=

(
(0,1), (0,1)

)
,

we denote its associated degenerate Cuntz pair simply by the symbol 0.
Two elements x0, x1 ∈ EG(α, β) are called homotopic if there exists an

(α, β[0, 1])-Cuntz pair in EG(α, β[0, 1]) which restricts to x0 upon evaluation
at 0 ∈ [0, 1], and restricts to x1 in EG(α, β) upon evaluation at 1 ∈ [0, 1].
Let us for the moment write x0 ∼h x1.

For any unital inclusion O2 ⊆ M(B⊗K)β⊗idK with generating isometries
t1, t2, one can perform the Cuntz addition for two (α, β)-Cuntz pairs as(

(φ0,u0), (ψ0, v0)
)

⊕t1,t2

(
(φ1,u1), (ψ1, v1)

)
=

(
(φ0,u0) ⊕t1,t2 (φ1,u1), (ψ0, v0) ⊕t1,t2 (ψ1, v1)

)
.

This is independent of the choice of t1, t2 up to homotopy; see [55, Lemma
3.3]. It was proved by Thomsen [54, Theorem 3.5] that Kasparov’s equivari-
ant KK-group KKG(α, β) is naturally isomorphic to EG(α, β)/∼, whereby
one has x ∼ y if there exist cocycle pairs d1, d2 ∈ EG(α, β) such that
x ⊕ d1 ∼h y ⊕ d2. For an (α, β)-Cuntz pair consisting of (φ,u) and (ψ, v),
we denote its associated equivalence class in KKG(α, β) by [(φ,u), (ψ, v)].

We will prove a cancellation result for certain Cuntz pairs that provides
a slightly different picture of KKG (Proposition 1.12) without having to
stabilize with cocycle pairs as in Thomsen’s description of KKG. For the
readers unfamiliar with Cuntz’s picture of KK-theory, we include some self-
contained (though not too elaborate) arguments for the reader’s convenience
proving the abelian group structure for the classes of Cuntz pairs.

Proposition 1.9 (cf. [43, Lemma 1.3.6]). There exist strictly continuous
maps of isometries S1 : [0, 1) → M(K) and S2 : (0, 1] → M(K) satisfying
S

(0)
1 = 1, S(1)

2 = 1, and S(t)
1 S

(t)∗
1 + S

(t)
2 S

(t)∗
2 = 1 for all t ∈ (0, 1).

Proof. After identifying M(K) with the algebra of bounded operators on the
Hilbert space L2[0, 1] (with respect to the Lebesgue measure), one defines
for all ξ ∈ L2[0, 1] and s ∈ [0, 1]

S
(t)
1 (ξ)(s) =


ξ((1−t)−1s)√

1−t , s ≤ 1 − t

0 , s > 1 − t,

and

S
(t)
2 (ξ)(s) =


ξ(t−1(s+t−1))√

t
, s ≥ 1 − t

0 , s < 1 − t.

Then it is easy to check that these define isometries whenever t ∈ [0, 1] is
so that either one of these operators is defined. Evidently one has S(0)

1 = 1
and S(1)

2 = 1. The range of S(t)
1 is the subspace L2[0, 1 − t] for t < 1 and the

range of S(t)
2 is the subspace L2[1 − t, 1] for t > 0. The claim follows. □

Lemma 1.10. Let A be a separable C∗-algebra and B a σ-unital C∗-algebra.
Let α : G↷ A and β : G↷ B be two actions.

(i) For every x ∈ EG(α, β) and d ∈ DG(α, β), x⊕ d is homotopic to x.
(ii) The quotient EG(α, β)/∼h is an abelian group under Cuntz addition.

The neutral element is represented by any element in DG(α, β).
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Proof. For notational convenience, we shall assume that β is strongly stable.
(i): Choose three cocycle representations

(φ,u), (ψ, v), (θ, x) : (A,α) → (M(B), β)

in order to write x =
(
(φ,u), (ψ, v)

)
and d =

(
(θ, x), (θ, x)

)
. Using Propo-

sition 1.9, we choose strictly continuous maps of isometries S1 : [0, 1) →
M(K) ⊆ M(B)β and S2 : (0, 1] → M(K) ⊆ M(B)β satisfying S

(0)
1 = 1,

S
(1)
2 = 1, and S

(t)
1 S

(t)∗
1 + S

(t)
2 S

(t)∗
2 = 1 for all t ∈ (0, 1). For each t ∈ (0, 1],

we may consider the element

EG(α, β) ∋ xt =
(
(φ,u) ⊕

S
(t/2)
1 ,S

(t/2)
2

(θ, x), (ψ, v) ⊕
S

(t/2)
1 ,S

(t/2)
2

(θ, x)
)
.

Because of the strict continuity of the involved maps and S
(0)
1 = 1, it also

follows that S(t)
2 S

(t)∗
2 → 0 strictly as t → 0. This continuous family of Cuntz

pairs thus converges to x0 = x as t → 0. This provides a homotopy between
x = x0 and x1 = x⊕

S
(1/2)
1 ,S

(1/2)
2

d, proving the claim.
(ii): Since it is somewhat clear from earlier remarks, we will omit the

proof that Cuntz addition descends to a well-defined associative binary op-
eration on EG(α, β)/∼h. We may already conclude from the first part that
every degenerate element induces a (right) neutral element in the semigroup
EG(α, β)/∼h. It suffices to prove that for any x, y ∈ EG(α, β), one has
x ⊕ y ∼h y ⊕ x and that there exists x′ ∈ EG(α, β) such that x ⊕ x′ is
homotopic to an element in DG(α, β).

Choose isometries r1, r2 ∈ M(B)β with r1r
∗
1 + r2r

∗
2 = 1, and let us agree

on forming Cuntz sums with this specific pair. Define for t ∈ [0, 1] the
isometries r(t)

1 = (1 − t)1/2r1 + t1/2r2 and r(t)
2 = −t1/2r1 + (1 − t)1/2r2, which

also satisfy the O2-relation. These define norm-continuous maps, and we
may hence observe that

x⊕r1,r2 y = x⊕
r

(0)
1 ,r

(0)
2
y ∼h x⊕

r
(1)
1 ,r

(1)
2
y = x⊕r2,r1 y = y ⊕r1,r2 x.

If we write x =
(
(φ,u), (ψ, v)

)
, we claim that x′ =

(
(ψ, v), (φ,u)

)
does the

trick. Indeed, the homotopy between x ⊕r1,r2 x
′ to an element in DG(α, β)

is witnessed by the element X ∈ EG(α, β[0, 1]) given by

Xt =
(
(φ,u) ⊕r1,r2 (ψ, v), (ψ, v) ⊕

r
(t)
1 ,r

(t)
2

(φ,u)
)
, t ∈ [0, 1].

Computing that this is indeed a Cuntz pair is straightforward. □

Definition 1.11. We say that an (α, β)-Cuntz pair
(
(φ,u), (ψ, v)

)
is an-

chored if the associated cocycle pair (u, v) is homotopic to (1,1). Let
EG0 (α, β) denote the set of all anchored Cuntz pairs.

In the above definition, we picture in our mind’s eye the cocycle pair (1,1)
as the anchor, and the homotopy of cocycle pairs as the chain connecting our
Cuntz pair to the anchor. Note that such a homotopy from

(
(0,u), (0, v)

)
to

(
(0,1), (0,1)

)
can be chosen such that the entire homotopy is of the form

[0, 1] ∋ s 7→
(
(0,us), (0, vs)

)
by simply taking any homotopy and considering

the induced cocycle pair.
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Proposition 1.12. Let π : EG(α, β)/∼ → KKG(α, β) be Thomsen’s natural
isomorphism from [54, Theorem 3.5].

(i) The classes of cocycle pairs inside EG(α, β)/∼h form a subgroup.
(ii) The inclusion EG0 (α, β) ⊆ EG(α, β) induces an isomorphism of abelian

groups EG0 (α, β)/∼h
∼= EG(α, β)/∼.

(iii) For x, y ∈ EG0 (α, β), one has π([x]) = π([y]) if and only if x ∼h y.
In summary, KKG(α, β) can be canonically identified with the set of homo-
topy classes of anchored (α, β)-Cuntz pairs.

Proof. Part (i) follows because cocycle pairs are closed under Cuntz sums
and inverses, the latter being evident due to the proof of Lemma 1.10. Part
(iii) is a direct consequence of (ii).

(ii): By the definition of the relation ∼ and Lemma 1.10, the quotient
EG(α, β)/∼ is nothing but the group quotient of EG(α, β)/∼h modulo the
subgroup Hβ spanned by (homotopy classes of) cocycle pairs. We have an
idempotent group endomorphism p : EG(α, β)/∼h → Hβ induced by the
assignment

(
(φ,u), (ψ, v)

)
7→

(
(0,u), (0, v)

)
. By definition, EG0 (α, β) is the

set of those elements in EG(α, β) whose homotopy class belongs to the kernel
of p. By the basic algebra of abelian groups, the claim follows. □

The following argument is most likely well-known, but we record it here
as it will come in handy later.

Proposition 1.13. Let (φ,u), (ψ, v) : (A,α) → (M(B ⊗ K), β ⊗ idK) be
two cocycle representations that form an (α, β)-Cuntz pair. For any unitary
u ∈ U(1 + B ⊗ K), one has that

(
(φ,u),Ad(u) ◦ (ψ, v)

)
is homotopic to(

(φ,u), (ψ, v)
)
.

Proof. By Lemma 1.10, there is a homotopy from
(
(φ,u),Ad(u) ◦ (ψ, v)

)
to(

(φ,u),Ad(u) ◦ (ψ, v)
)

⊕ 0 =
(
(φ⊕ 0,u ⊕ 1),Ad(u⊕ u∗) ◦ (ψ ⊕ 0, v ⊕ 1)

)
.

The unitary u ⊕ u∗ ∈ U(1 + B ⊗ K) is norm-homotopic to the unit inside
this unitary group; for instance, if the Cuntz sum is formed via r1, r2, then
the assignment

[0, 1] ∋ t 7→ 1 − t+ tr1ur
∗
1 +

√
t(1 − t)(r2(u∗ − 1)r∗

1 − r1(u− 1)r∗
2) + tr2u

∗r∗
2

is such a homotopy. This yields a homotopy between(
(φ⊕0,u⊕1),Ad(u⊕u∗)◦(ψ⊕0, v⊕1)

)
and

(
(φ⊕0,u⊕1), (ψ⊕0, v⊕1)

)
.

The latter Cuntz pair is homotopic to
(
(φ,u), (ψ, v)

)
by Lemma 1.10. □

We will in various instances make use of the following useful fact due to
Kasparov concerning quasicentral approximate units that are approximately
invariant under a group action.

Lemma 1.14 (see [36, Lemma 1.4]). Let β : G ↷ B be an action on
a σ-unital C∗-algebra. Then for any separable C∗-subalgebra D ⊆ M(B),
there exists a countable, increasing approximate unit of positive contractions
hn ∈ B satisfying

lim
n→∞

∥[hn, d]∥ = 0
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for all d ∈ D, and
lim
n→∞

max
g∈K

∥hn − βg(hn)∥ = 0

for all compact sets K ⊆ G.

To conclude this section, we establish the following fact for later use.
Although it is probably known to some experts, we decided to include an
elementary and self-contained proof for the reader’s convenience. The argu-
ment itself is adapted from the proof of [8, Lemma 3.26].

Theorem 1.15. Let H be an infinite-dimensional separable Hilbert space.
There exists a unital representation θ : C[0, 1] → B(H) and a norm-continuous
unitary path w : [0, 1] → U(C ⊕ H) with w0 = 1 such that
(e1.1) ev1 ⊕θ = Ad(w1) ◦ (ev0 ⊕θ)
and
(e1.2)

[
wt, (ev0 ⊕θ)(C[0, 1])

]
⊆ K(C ⊕ H), t ∈ [0, 1].

Here the direct sum refers to the ordinary direct sum of ∗-representations.

Proof. We note that since the Hilbert space H is uniquely determined up to
isometric isomorphism, it suffices to prove the claim for a concrete choice of
H, which we will specify below. We will construct three self-adjoint unitaries
w(i) ∈ U(C ⊕ H) such that

(e1.3) [w(i), (ev0 ⊕θ)(C[0, 1])] ⊆ K(C ⊕ H), i = 1, 2, 3

and so that w1 := w(3)w(2)w(1) satisfies (e1.1). Then any product of unitary
paths from w(i) to 1 inside C∗(w(i)) (which exist since each w(i) is self-
adjoint), will produce a path (wt)t∈[0,1] from w1 to 1 satisfying (e1.2).

Let X := {(l, k) : l ∈ N0, k ∈ {0, . . . , 2l − 1}} and decompose X =
X1 ⊔X2 ⊔X3 by X1 := {(0, 0)},

X2 := {(l, k) ∈ X : k even, l ̸= 0}, X3 := {(l, k) ∈ X : k odd}.
Define (diagonal) representations π, ρ : C[0, 1] → B(ℓ2(X)) by

π(f)δ(l,k) = f(k2−l)δ(l,k), ρ(f)δ(l,k) = f((k + 1)2−l)δ(l,k)

for f ∈ C[0, 1] and (l, k), with subrepresentations πj , ρj : C[0, 1] → B(ℓ2(Xj))
for j = 1, 2, 3. Similarly, we define a representation η3 : C[0, 1] → B(ℓ2(X3))
by

η3(f)δ(l,k) = f((k − 1)2−l)δ(l,k), f ∈ C[0, 1], (l, k) ∈ X3.

It is easy to see that (π, ρ), (πj , ρj) for j = 1, 2, 3, and (π3, η3) all define
Cuntz pairs. Define

H := ℓ2(X) ⊕ ℓ2(X3) and θ := π ⊕ ρ3.

We will now produce the unitaries w(1), w(2), w(3) as described above.
Let U ∈ U(ℓ2(X), ℓ2(X3)) be given by Uδ(l,k) = δ(l+1,2k+1). Then

Uπ(f)δ(l,k) = f(k2−l)δ(l+1,2k+1) = η3(f)δ(l+1,2k+1) = η3(f)Uδ(l,k)

for f ∈ C[0, 1] and (l, k) ∈ X, so AdU ◦ π = η3. Similarly,

Uρ(f)δ(l,k) = f((k + 1)2−l)δ(l+1,2k+1) = ρ3(f)δ(l+1,2k+1) = ρ3(f)Uδ(l,k)
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for f ∈ C[0, 1] and (l, k) ∈ X, so AdU∗ ◦ ρ3 = ρ. Define

w(1) := 1C ⊕
(

0 U∗

U 0

)
∈ U(C ⊕ ℓ2(X) ⊕ ℓ2(X3))

which is a self-adjoint unitary. By the above computations we have

Adw(1) ◦ (ev0 ⊕θ) = Adw(1) ◦ (ev0 ⊕π ⊕ ρ3) = ev0 ⊕ρ⊕ η3.

Since (π, ρ) and (ρ3, η3) form Cuntz pairs, it follows that Adw(1) ◦ (ev0 ⊕θ)
and ev0 ⊕θ form a Cuntz pair, and therefore (e1.3) is satisfied.

For w(2), we decompose

C ⊕ H = C ⊕ C ⊕ ℓ2(X2) ⊕ ℓ2(X3) ⊕ ℓ2(X3)

where we used that ℓ2(X1) = C. Let w(2) be the (self-adjoint) unitary which
swaps the two copies of C and of ℓ2(X3). Then

Adw(2) ◦ ev0 ⊕ρ⊕ η3 = ρ1 ⊕ ev0 ⊕ρ2 ⊕ η3 ⊕ ρ3.

As above, one sees that Adw(2) satisfies (e1.3) (since everything that could
form a Cuntz pair, does form a Cuntz pair).

To define w(3) we let V ∈ U(ℓ2(X2), ℓ2(X3)) be given by

V δ(l,k) = δ(l,k+1), (l, k) ∈ X2.

Then for f ∈ C[0, 1] and (l, k) ∈ X2 we get

V ρ2(f)δ(l,k) = f((k + 1)2−l)δ(l,k+1) = π3(f)δ(l,k+1) = π3(f)V δ(l,k),

and

V π2(f)δ(l,k) = f(k2−l)δ(l,k+1) = η3(f)δ(l,k+1) = η3(f)V δ(l,k).

Hence AdV ◦ ρ2 = π3 and AdV ∗ ◦ η3 = π2. Define

w(3) = 1C⊕C ⊕
(

0 V ∗

V 0

)
⊕ 1ℓ2(X3) ∈ U(C⊕C⊕ ℓ2(X2) ⊕ ℓ2(X3) ⊕ ℓ2(X3))

which is self-adjoint. Since ev0 = π1 and ρ1 = ev1, we get

Adw(3) ◦ (ρ1 ⊕ ev0 ⊕ρ2 ⊕ η3 ⊕ ρ3) = ev1 ⊕π ⊕ ρ3 = ev1 ⊕θ.

As above, it follows that Adw(3) satisfies (e1.3). In conclusion, with w1 :=
w(3)w(2)w(1) we get

Adw1 ◦ (ev0 ⊕θ) = ev1 ⊕θ,

and each w(i) is self-adjoint satisfying (e1.3), as desired. □

For the rest of the paper, our blanket assumption will be (unless specified
otherwise) that G is a second-countable locally compact group, that A is a
separable and B a σ-unital C∗-algebra, and that α : G↷ A and β : G↷ B
are continuous actions.
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2. From homotopy to stable operator homotopy

Notation 2.1. We will denote the corona algebra ofB by Q(B) = M(B)/B.
We will not give the quotient map M(B) → Q(B) a name, but for an ele-
ment b ∈ M(B) or a C∗-algebra D ⊆ M(B), we will write b̄ or D̄ for the
image under the quotient map. Likewise, if φ : A → M(B) is a map, we
will write φ̄ for its composition with the quotient map. If β : G ↷ B is an
action, then β̄ is the induced (algebraic) action on Q(B).

Notation 2.2. Given an action β : G↷ B on a C∗-algebra, denote

Mβ(B) = {x ∈ M(B) | {x− βg(x)}g∈G ⊆ B}.

Then Mβ(B) is a unital C∗-subalgebra of M(B) that contains the genuine
fixed point subalgebra M(B)β. In fact, under the quotient map M(B) →
Q(B), it is the preimage of the C∗-algebra Q(B)β̄, so there is an equivariant
short exact sequence

0 // B //Mβ(B) // Q(B)β̄ // 0.

As a consequence, the restriction of β to Mβ(B) is necessarily point-norm
continuous; see [2, Theorem 2.1].

Notation 2.3. For a cocycle representation (φ,u) : (A,α) → (M(B), β),
denote

D(φ,u) = Mβu(B) ∩ {x ∈ M(B) | [x, φ(A)] ⊆ B}.
ThenD(φ,u) is a unital C∗-algebra. In fact, under the quotient map M(B) →
Q(B), D(φ,u) is the preimage of the C∗-algebra D̄(φ,u) =

(
Q(B) ∩ φ̄(A)′)β̄u ,

so there is a short exact sequence

0 // B // D(φ,u) //
(
Q(B) ∩ φ̄(A)′)β̄u // 0.

Proposition 2.4. Suppose β is strongly stable and let (φ,u) : (A,α) →
(M(B), β) be a cocycle representation. A unitary v ∈ U(M(B)) belongs
to D(φ,u) if and only if (φ,u) forms an (α, β)-Cuntz pair together with the
cocycle representation (ψ, v) = Ad(v) ◦ (φ,u) = (Ad(v) ◦ φ, vu•β•(v)∗).

Proof. One always has

ψ(a) − φ(a) = [v, φ(a)]v∗, a ∈ A.

So this difference is always in B if and only if [v, φ(a)] ∈ B for all a ∈ A.
Furthermore, we have

vg − ug = vugβg(v)∗ − ug = (v − βug (v)) · βug (v)∗ug.

So this difference is always in B if and only if {v − βug (v)}g∈G ⊆ B. In
conclusion, we see that (φ,u) and (ψ, v) form an (α, β)-Cuntz pair if and
only if v ∈ D(φ,u). □

The following is a Cuntz–Thomsen picture analog of the better-known
concept of (stable) operator homotopy in Kasparov’s original approach to
KK-theory; see for example [1, Section 17.2] or [43, Definition 2.1.16].
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Definition 2.5. Suppose β is strongly stable. Let (φ,u), (ψ, v) : (A,α) →
(M(B), β) be two cocycle representations. We say (φ,u) and (ψ, v) are
operator homotopic, if there exists a unitary u ∈ U0(D(φ,u)) such that
(ψ, v) = Ad(u) ◦ (φ,u). We call (φ,u) and (ψ, v) stably operator homotopic,
if there exists some cocycle representation (κ, x) : (A,α) → (M(B), β) such
that (φ,u) ⊕ (κ, x) and (ψ, v) ⊕ (κ, x) are operator homotopic.

It is evident from Proposition 2.4 that if (φ,u) is stably operator ho-
motopic to (ψ, v), then they necessarily form an (α, β)-Cuntz pair, which
is homotopic to a degenerate Cuntz pair in the sense of Definition 1.8. In
particular, the class in KKG(α, β) represented by this pair of cocycle rep-
resentations must vanish. In the spirit of similar results in the literature
focusing on more special cases, the main achievement in this section is that
the converse also holds. That is, for any anchored (α, β)-Cuntz pair, its
associated class in KKG(α, β) is trivial precisely when the pair of cocycle
representations is stably operator homotopic.

We recall Kasparov’s technical theorem [36, Theorem 1.4]. (
:
It

:::
is

::::::
worth

::::::::
pointing

::::
out

:::::
that

::::
the

::::::
proof

:::::
given

::::::
there

:::::
(due

:::
to

:::::::
Higson

:::::
[28])

:::
is

::::
not

:::
as

::::
bad

::
as

::::
the

::::::
name

::::::::::
suggests;

:::
it

::::::
arises

:::
as

:::
a

::::::::::
somewhat

::::::::::
elaborate

::::::::::::
application

:::
of

Lemma 1.14
::::::
whose

::::::
proof

::
in

::::::::::::
Kasparov’s

::::::::
original

:::::::
paper

:::
fits

::::
on

::::
two

:::::::
pages.

The way it is stated here is a slight reformulation compared to how it is
stated in the reference. The only difference is that

::::::
There

:::
are

::::
two

:::::::::::
differences

::
we

::::::
want

::
to

::::::
point

::::
out.

::::::::
Firstly,

:
the element M in our statement is the square-

root of the element M1 and N is the squareroot of M2 in [36, Theorem 1.4]. )
It is worth pointing out that the proof given there (due to Higson [28]) is not
as bad as the name suggests; it arises as a somewhat elaborate application
of whose proof in Kasparov’s original paper fits on two pages

:::::::::
Secondly,

::::
the

::::
map

::
f

::::::
below

:::::::::
(denoted

::
as

:::
φ

::
in

::::
the

:::::::
original

:::::::::
version)

::
is

:::::::
allowed

:::
to

:::::
have

::
a

:::::
more

:::::::
general

::::::::
domain

::
as

::::::::
opposed

:::
to

::::
just

::::
the

::::::
acting

:::::::
group

:::
G.

:::::
This

::
is

::::::::::
motivated

:::
by

:::
the

::::
fact

:::::
that

::::
the

:::::
only

:::::::::
property

::::::
about

::::
the

::::::::
domain

:::::
ever

:::::
used

::
in

::::
the

::::::::
original

:::::
proof

::
of

::::
the

:::::::::
theorem

::
is

:::::
that

::
it

::
is

:::::::::::
σ-compact.

Theorem 2.6. Let G be a second-countable, locally compact group. Let
B be a σ-unital C∗-algebra and β : G ↷ B a continuous action. Let
f : G → M(B) be a bounded strictly continuous map, and E1, E2 ⊂ M(B)
two σ-unital C∗-subalgebras such that E1 · E2 ⊆ B, and E1 is β-invariant
with β|E1 point-norm continuous. Suppose that

:::
Let

:::
X

::
be

::
a
:::::::
locally

:::::::::
compact,

::::::::::
σ-compact

::::::::::
Hausdorff

::::::
space.

::::::::
Suppose

:::::
that

::::::::::::::
f : X → M(B)

:::
is

:
a
::::::::
bounded

::::::::
strictly

::::::::::
continuous

:::::
map

::::::
such

::::
that

::::
for

:::
all

:::::::::
a ∈ E1,

::::
the

::::::
maps

:
a · f and f · a define

::::
take

:::::::
values

:::
in

:::
B

::::
and

::::
are

:
norm-continuous maps on G for all a ∈ E1 ::

on
::
X. Let furthermore ∆ ⊆ M(B) be a separable

:::::::::::::::
norm-separable subset with

[∆, E1] ⊆ E1. Then there exist two positive contractions N,M ∈ Mβ(B)
with N2 +M2 = 1 and satisfying

ME1 ⊆ B, NE2 ⊆ B, [M,∆],
:::::::

[N,∆] ⊆ B,

and such that the functions N · f and f ·N define norm-continuous maps on
G

:
X

:
with values in B.

Notation 2.7. The given representation and unitary path from Theorem 1.15
will play an important role for the rest of this section, in the sense as we
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are about to specify now. For a C∗-algebra B, we will for t ∈ [0, 1] also (by
slight abuse of notation) denote by evt : B[0, 1] → B the obvious evaluation
map. For a given separable infinite-dimensional Hilbert space H, we keep in
mind that B(H) = M(K(H)). Given an action β : G ↷ B, we may tensor
the representation from Theorem 1.15 with the identity map on B and the
corresponding unitary path with the unit of M(B) to get the equivariant
representation

θ ⊗ idB : (B[0, 1], β[0, 1]) → (M(K(H) ⊗B), id ⊗β)
and a norm-continuous unitary path

w ⊗ 1 : [0, 1] → U(M(K(C ⊕ H) ⊗B))id ⊗β

with w0 = 1 such that obviously
(ev1 ⊕θ) ⊗ idB = Ad(w1 ⊗ 1) ◦

(
(ev0 ⊕θ) ⊗ idB

)
and [

wt ⊗ 1,
(
(ev0 ⊕θ) ⊗ idB

)
(B[0, 1])

]
⊆ K(C ⊕ H) ⊗B, t ∈ [0, 1].

Now let us additionally assume that β is strongly stable. Choose a sequence
rn ∈ M(B)β of isometries for n ≥ 0 such that 1 =

∑∞
n=0 rnr

∗
n in the strict

topology. Let us also define the isometry r∞ =
∑∞
k=0 rk+1r

∗
k ∈ M(B)β,

which then fits into the equation r0r
∗
0 + r∞r

∗
∞ = 1. Let {ek,l | k, l ≥ 0} ⊂

K(C⊕ H) be a set of generating matrix units such that e0,0 is the orthgonal
projection onto C ⊕ 0. Then {ek,l | k, l ≥ 1} necessarily generates the C∗-
subalgebra K(H). We have two equivariant isomorphisms

Λ0 : K(C ⊕ H) ⊗B → B, Λ1 : K(H) ⊗B → B

determined by the formulas
Λ0(ek,l ⊗ b) = rkbr

∗
l (k, l ≥ 0), and Λ1(ek,l ⊗ b) = rk−1br

∗
l−1 (k, l ≥ 1).

One has the identity r∞Λ1(ek,l⊗b)r∗
∞ = Λ0(ek,l⊗b) for all k, l ≥ 1, which im-

plies r∞Λ1(_)r∗
∞ = Λ0(0 ⊕ idK(H)⊗B). We extend Λ0 and Λ1 to equivariant

isomorphisms between the multiplier algebras as well.
We consider the non-degenerate equivariant ∗-homomorphism

θB = Λ1 ◦ (θ ⊗ idB) : B[0, 1] → M(B)
and the norm-continuous unitary path

wBt = Λ0(wt ⊗ 1) ∈ M(B)β, t ∈ [0, 1].
We then observe for all f ∈ B[0, 1]

Λ0 ◦
(
(evt ⊕θ) ⊗ idB

)
(f)

= Λ0(e0,0 ⊗ f(t)) + Λ0
(
0 ⊕ (θ ⊗ idB)(f)

)
= r0f(t)r∗

0 + r∞Λ1((θ ⊗ idB)(f))r∗
∞

= (evt ⊕r0,r∞θ
B)(f).

In summary, we have used Theorem 1.15 and the strong stability of β to con-
struct a non-degenerate equivariant ∗-homomorphism θB : (B[0, 1], β[0, 1]) →
(M(B), β) and a norm-continuous unitary path wB : [0, 1] → U(M(B)β)
with wB0 = 1 and such that

ev1 ⊕r0,r∞θ
B = Ad(wB1 ) ◦ (ev0 ⊕r0,r∞θ

B)
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and [
wBt , (ev0 ⊕r0,r∞θ

B)(B[0, 1])
]

⊆ B, t ∈ [0, 1].
This witnesses the fact that the endpoint evaluation maps ev0, ev1 : B[0, 1] →
B are stably operator homotopic. The construction outlined above depends
on the choice of the isometries rj , but only up to equivalence with a uni-
tary in U(M(B)β). We will subsequently abuse notation and simply write
w in place of wB. We will also write Ei = evi ⊕r0,r∞θ

B for i = 0, 1. Each
of evi, θB and Ei is a non-degenerate β-equivariant ∗-homomorphism from
B[0, 1] to M(B). In particular they extend uniquely to unital equivariant
∗-homomorphisms from M(B[0, 1]) to M(B) that are strictly continuous on
bounded sets. We also denote their extensions by evi, θB and Ei.

The following technical lemma is the key ingredient in the main result
of this section, Theorem 2.9. Its punny name is a not so subtle nod to the
circumstances related to the lemma’s discovery. We record the statement in
a somewhat more general and explicit form than we need it for the rest of
the paper, keeping in mind potential further applications. For example, the
lemma below could easily be used to not only prove the principle “homotopy
implies stable operator homotopy”, but also its appropriate analogs in other
variants of the (equivariant) KK-groups, such as the nuclear or ideal-related
versions.
Lemma 2.8 (KKarantine lemma). Suppose that β is strongly stable. Let(
(Φ,U), (Ψ,V)

)
be an (α, β[0, 1])-Cuntz pair such that

(φ,u) := ev0 ◦(Φ,U) = ev1 ◦(Φ,U) = ev0 ◦(Ψ,V).
Define (ψ, v) := ev1 ◦(Ψ,V) and let E0 and θB be as in Notation 2.7. Then

(κ, x) := θB ◦ (Ψ,V) ⊕ E0 ◦ (Φ,U) : (A,α) → (M(B), β)
is a cocycle representation, and (φ,u)⊕(κ, x) and (ψ, v)⊕(κ, x) are operator
homotopic.
Proof. That (κ, x) is a cocycle representation follows since θB and E0 are
unital, equivariant and strictly continuous on bounded sets.

For the rest of the proof, we
::::
shall

::::
use

::::
the

::::::::::
notation

::::::::
x ≡B y

:::
for

:::::
two

::::::::::
multipliers

:::::::::::::
x, y ∈ M(B)

:::
to

:::::
mean

:::::
that

:::::::::::
x− y ∈ B.

::::
We adopt the choices and

notation from the last paragraph in Notation 2.7. It shall be understood that
Cuntz sums of elements are formed with the pair of isometries r0 and r∞ as
defined there, unless we specify otherwise. Then Ξ : M2(M(B)) → M(B)
given by

Ξ
(
a b
c d

)
= r0ar

∗
0 + r0br

∗
∞ + r∞cr

∗
0 + r∞dr

∗
∞

is an (equivariant) isomorphism with Ξ(M2(B)) = B. In particular one has
b1 ⊕ b2 = Ξ(diag(b1, b2)) for all b1, b2 ∈ M(B). Define

(θ, y) := (φ,u) ⊕ (κ, x) = E0 ◦ (Ψ,V) ⊕ E0 ◦ (Φ,U)
and note that

(ψ, v) ⊕ (κ, x) = E1 ◦ (Ψ,V) ⊕ E1 ◦ (Φ,U) = Ad(w1 ⊕ w∗
1) ◦ (θ, y).

(Strictly speaking, the left-most Cuntz addition “⊕” appearing in these par-
ticular instances here has to be performed with different isometries than
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the pair r0, r∞ chosen before to achieve these equations.) Here we use
Ad(w1) ◦ E0 = E1 and E0 ◦ (Φ,U) = E1 ◦ (Φ,U). We claim that the uni-
tary w1 ⊕w∗

1 is homotopic to the unit within D(θ,y), which will complete the
proof. We shall now construct such a homotopy.

Denote f = E0 ◦ V : G → U(M(B)), which is a strictly continuous β-cocycle
:::
We

:::::
first

::::::::
observe

::::
that

:
since E0 is unital, equivariant

:::::::::::
equivariant,

:::::::
unital and

strictly continuous on bounded sets. Define a separable
:
,
:::
the

:::::
map

::::::::::::::::::::::
E0 ◦ V : G → U(M(B))

:
is
::
a
::::::::
strictly

:::::::::::
continuous

::::::::::
β-cocycle.

:::::::
Define

::
a

:
subset of M(B) via

∆ = E0 ◦ Ψ(A) ∪ {wt}t∈[0,1] .,

::::::
which

::
is

::::::::::::::::
norm-separable

:::::
since

:::
A

:::
is

::::::::::
separable

::::
and

:::
w

::
is
::::::::::::::::::

norm-continuous.
Define C∗-subalgebras of M(B) via

E1 = E0(B[0, 1]) +B and E2 =
⋃

0≤t≤1
(wt)−◦0 ◦ Ψ(A).

::::
and

E2 = C∗
(
wt(E0 ◦ Ψ)(a)w∗

t − (E0 ◦ Ψ)(a) | a ∈ A, t ∈
:::::::::::::::::::::::::::::::::::::::::::::::::

[0, 1
:::

]
)
.

:

:::::::::::::
Furthermore,

:::
we

::::::
define

::
a
:::::
map

:

f :
::

[0, 1
:::

]×G → M(B), f(t, g) = E0(Vg)wtE0(Vg)∗ − wt,
::::::::::::::::::::::::::::::::::::::::::::::

::::::
which

::
is

::::::::
strictly

:::::::::::
continuous

::::::
since

::::::::::::::
multiplication

:::
is

:::::::
strictly

::::::::::::
continuous

:::
on

::::::::
bounded

:::::
sets.

::
We clearly have that E2 is separable and E1 is σ-unital,

β-invariant and β|E1 :
.
::::
E1:::

is
:::::
also

:::::::::
invariant

:::::::
under

::::
the

:::::::
cocycle

:::::::::::
perturbed

::::::
action

::::::
βE0(V)

:::::
and

:::::::::
βE0(V)|E1 :

is point-norm continuous. By the choice of the
unitaries wt, they commute with elements of E1 modulo B, hence we see that
[∆, E1] ⊆ E1and also .

:::
It

::::
also

:::::::
follows

::::
for

:::::::::
arbitrary

:::::::::
elements

:::::::::::::::
z ∈ M(B[0, 1])

::::
and

::::::::::
b ∈ B[0, 1]

:::::
that

:

(wtE0(z)w∗
t − E0(z))E0(b) = wtE0(zb)w∗

t − E0(zb) + wtE0(z)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::

[w∗
t , E0(b)

::::::::
] ∈ B.
:::::

:
If
::
z
:::
is

::::::::::::
additionally

::::::::
assumed

:::
to

:::
be

::
a

::::::::
unitary,

:::::
then

:::::::
further

:

(E0(z)wtE0(z)∗ − wt)E0(b)
= E0(z)(wtE0(z)∗w∗

t − E0(z)∗)wtE0(b)
= E0(z)(wtE0(z)∗w∗

t − E0(z)∗)[wt, E0(b)]
+E0(z)(wtE0(z)∗w∗

t − E0(z)∗)E0(b)wt ∈ B.
::::::::::::::::::::::::::::::::::::::::::::::

::::::::::::
Analogously

:::
one

::::
has

::::
also

::::::::::::::::::::::::::::::
E0(b)(E0(z)wtE0(z)∗ − wt) ∈ B.

:::::::
These

::::::::::::
observations

::::::::::::
immediately

::::::
imply

:

E1 · E2 ⊆ B∪
⋃

0≤t≤1
and E1·

:::::::::::
f(wt[0, 1

:::
]×G
:::

)−◦0∪
:
f(B[0, 1]×G

:::
)·E1
:::

⊆ B.

Because the β[0, 1]-cocycle V is strictly continuous
:::
and

::::
the

::::::
path

::
w
:::::

was
::::::::::::::::
norm-continuous, the maps of the form e · f and f · e are clearly norm-
continuous on G

:::::::::
[0, 1] ×G for all e ∈ E1.

::
In

:::::
fact,

::::
this

::
is

:::
an

:::::
easy

::::::::::::
consequence

::
of

::::
the

::::
fact

:::::::
(which

::
is
::::::::::::
elementary

::
to

::::::::
prove),

::::
that

::
if
:::
X

::
is
::

a
::::::::::::
topological

::::::
space,

::::::::::
f : X → B

::
is
:::::::::::::::::
norm-continuous

::::
and

:::::::::::::::
g : X → M(B)

::
is
:::::::
stricly

:::::::::::
continuous

::::
and
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:::::::::
bounded,

:::::
then

:::
the

::::::
maps

:::::::::::::
x 7→ f(x)g(x)

::::
and

::::::::::::::
x 7→ g(x)f(x)

:::
are

:::::::::::::::::
norm-continuous.

In particular, this allows us to apply Kasparov’s technical Theorem 2.6 to
this setupand ,

::::::
with

:::
the

::::::::
cocycle

::::::::::
perturbed

:::::::::
G-action

:::::::
βE0(V)

:::
on

:::
B.

:::::
We find

positive contractionsN,M ∈ Mβ(B)
:::::::::::::::::::
N,M ∈ MβE0(V)(B) withN2+M2 = 1

such that
(e2.1) ME1 ⊆ B, NE2 ⊆ B, [M,∆],

:::::::
[N,∆] ⊆ B,

and moreover the maps N · f and f · N are norm-continuous maps on
G

:::::::::
[0, 1] ×G

:
with values in B.

::::
Note

:::::
that

::::
M

::::
and

:::
N

::::::::::
commute,

:::::
and

:::::
that

::::::::::::
[M,E2] ⊆ B

::::
and

:::::::::::::
[N,E1] ⊆ B.

:
We consider the unitary

U = Ξ
(

N M
−M N

)
∈ U(Mβ(B)).

A trivial computation shows for all x, y ∈ M(B) that

(e2.2) UΞ
(
x 0
0 y

)
U∗ = Ξ

(
NxN +MyM MyN −NxM
NyM −MxN MxM +NyN

)
.

If one has y ∈ ∆ and y − x ∈ E2, then the properties in condition (e2.1)
imply

:::::::::
condition

::::::
(e2.1)

::::::::
implies

::::
that

:

(e2.3) UΞ
(
x 0
0 y

)
U∗ ≡ B

:
Ξ

(
y 0
0 x

)
B.

In particular it follows for any a ∈ A
:::
and

:::::
any

::::::::
t ∈ [0, 1]

:
that the pair of

elements x = Ad(wt) ◦ E0 ◦ Ψ(a) and y = E0 ◦ Ψ(a) satisfies this property.
Furthermore, since N acts like a unit on E1 modulo B, we have that U acts
like a unit on Ξ(M2(E1)) modulo B. Keeping in mind that E0 ◦(Φ−Ψ)(A) ⊆
E1, we compute for all a ∈ A and all t ∈ [0, 1] that modulo B, one has

:::
one

:::
has

:

UΞ
(

Ad(wt) ◦ E0 ◦ Ψ(a) 0
0 E0 ◦ Φ(a)

)
U∗

≡B Ξ
(

0 0
0 E0 ◦ (Φ − Ψ)(a)

)
+ UΞ

(
Ad(wt) ◦ E0 ◦ Ψ(a) 0

0 E0 ◦ Ψ(a)

)
U∗

(e2.3)
≡ B Ξ

(
E0 ◦ Ψ(a) 0

0 [Ad(wt) − id] ◦ E0 ◦ Ψ(a) + E0 ◦ Φ(a)

)
By the choice of the unitary path w, we have that [Ad(wt)−id]◦E0(B[0, 1]) ⊆
B. Since Φ(a) and Ψ(a) agree modulo B[0, 1], we have that

[Ad(wt) − id] ◦ E0 ◦ (Ψ − Φ)(a) ∈ B,

and therefore, the last expression above agrees modulo B with

Ξ
(

E0 ◦ Ψ(a) 0
0 Ad(wt) ◦ E0 ◦ Φ(a)

)
.

Since a ∈ A was arbitrary, we get for all t ∈ [0, 1] that the unitary
(1 ⊕ w∗

t )U(wt ⊕ 1)
commutes with the range of the map θ = E0 ◦ Ψ ⊕ E0 ◦ Φ modulo B.

Now let g ∈ G and t ∈ [0, 1] be given. We may consider equation (e2.2)
for x = Ad(wt) ◦ E0(Vg) and y = E0(Vg) = fg:::::

want
::
to

::::::
show

::::
that

::::
the

::::::::
unitary
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::::::::::::::::::
(1 ⊕ w∗

t )U(wt ⊕ 1)
::
is

:::::::::
invariant

::::::
under

:::
the

::::::::
cocycle

::::::::::
perturbed

::::::
action

:::
βy

:::::::
modulo

::
B,

:::::::
where

:::::::::::::::::::
y = E0 ◦ V ⊕ E0 ◦ U. Since wt ∈ ∆ commutes with both N and M

modulo Band Nfg, fgN ∈ B, we can see that modulo B one has
(e2.4)

(1⊕w∗
t )

:::::
U(wt⊕

::::
1) =

:::
ΞU∗

(
Nwt M

−w∗
tMwt w∗

tN

)
≡ B

:
Ξ

(
Nwt M
−M w∗

tN

)
.

Similarly as above, we keep in mind E0(Ug − Vg) ∈ E1 and use this to
compute

::::::
Recall

::::
that

::::
the

:::::::::
elements

::::::
M,N

::::
are

:::::
fixed

:::
by

::::
the

::::::
action

::::::
βE0(V)

:
mod-

ulo B that Since g ∈ G was arbitrary, we get for all t ∈ [0, 1] that the unitary

(1 ⊕ w∗
t )U(wt ⊕ 1)

commutes with the range of the cocycle E0 ◦ V ⊕ E0 ◦ U = y modulo B. Since
wt ∈ M(B)β

:
U

:
and U ∈ Mβ(B), we get for all g ∈ G the equation modulo B

::
V

:::
are

:::::::::
assumed

::
to

:::::
agree

::::::::
modulo

:::::::
B[0, 1],

::::
the

:::::
map

:::::::::::::::::::::::::::::
g 7→ VgU∗

g = 1 + (Vg − Ug)U∗
g

:::::
takes

::::::
values

::
in

:::::::::::
1 +B[0, 1]

::::
and

::::::
hence

:::::::::::::::::::::
E0(VgU∗

g) ∈ (1 + E1).
::::::
Using

::::::::::::
furthermore

::::
that

:::
wt::

is
::::::
fixed

:::
by

::
β,

:::
we

:::::::::
compute

:

βyg

(
(1 ⊕ w∗

t )U(wt ⊕ 1)
)

(e2.4)
≡ B Ξ

 E0(Vg)βg(Nwt)E0(Vg)∗ E0(Vg)βg(M)E0(Ug)∗

−E0(Ug)βg(M)E0(Vg)∗ E0(Ug)βg(w∗
tN)E0(Ug)∗


≡B Ξ

 NE0(Vg)wtE0(Vg)∗ ME0(VgU∗
g)

−E0(UgV∗
g)M E0(Ug)w∗

t E0(Vg)∗NE0(VgU∗
g)


(e2.1)

≡ B Ξ

 NE0(Vg)wtE0(Vg)∗ M

−M E0(Ug)w∗
t E0(Vg)∗NE0(VgU∗

g)


= Ξ

 NE0(Vg)wtE0(Vg)∗ M

−M E0(UgV∗
g)

(
E0(Vg)w∗

t E0(Vg)∗N
)
E0(VgU∗

g)

 .

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::
We

:::::
note

:::::
that

βygN: E0((⊕w∗
t )U(wt⊕)) ≡Vg(⊕w∗

t )U(wt⊕)E0(
:
Vg)∗≡ (⊕w−Nw

:::::t
∗)U= N

::::
f(wt⊕t, g

::
)∈ B

:::
.

:::::::::
Therefore

:

βyg

(
(1 ⊕ w∗

t )U(wt ⊕ 1)
)

≡B Ξ
(
Nwt M
−M E0(UgV∗

g)w∗
tNE0(VgU∗

g)

)
.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
Using

::::::
again

:::::
that

::::::::::::::::::::
E0(VgU∗

g) ∈ (1 + E1),
:::
we

:::::
have

:::::
that

:::::
both

::
wt::::

and
:::
N

:::::::::
commute

::::
with

:::::
such

:::
an

::::::::
element

::::::::
modulo

:::
B,

:::::::
which

:::::
leads

:::
to

βyg

(
(1 ⊕ w∗

t )U(wt ⊕ 1)
)

≡B Ξ

 Nwt M

−M w∗
tN


(e2.4)

≡ B (1 ⊕ w∗
t )U(wt ⊕ 1).
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Due to all the properties we have verified for U so far, we may
::::::
finally

:
con-

clude that
(1 ⊕ w∗

t )U(wt ⊕ 1) ∈ D(θ,y), t ∈ [0, 1].
Since w0 = 1, this is in particular the case for U itself. Note also that both
::::::::::
Moreover,

:::::
since

:::::::::::::::
Adw1 ◦ E0 = E1:::::

and
:::::::::::::::::::::::::::::::::::::
E0 ◦ (Φ,U) = E1 ◦ (Φ,U) = E0 ◦ (Ψ,V),

:
it
:::
is

::::::::::
immediate

:::
to

::::::
check

:::::
that w1 ⊕ 1 and 1 ⊕ w1 are elements of D(θ,y).

We can readily observe that U+U∗ ≥ 0, so the spectrum of U is contained
in the right-half circle. Let us denote by log : C \ R− → C the standard
holomorphic branch of the logarithm. We then define a norm-continuous
unitary path V : [0, 3] → U(D(θ,y)) via

Vt =


exp(t log(U)) , 0 ≤ t ≤ 1
(1 ⊕ w∗

t−1)U(wt−1 ⊕ 1) , 1 ≤ t ≤ 2
(1 ⊕ w∗

1) exp((3 − t) log(U))(w1 ⊕ 1) , 2 ≤ t ≤ 3.

Evidently we have V0 = 1 and V3 = w1 ⊕ w∗
1. In summary, the cocycle

representations (φ,u) and (ψ, v) are indeed stably operator homotopic and
the proof is complete. □

Theorem 2.9. Suppose β is strongly stable. Let (φ,u), (ψ, v) : (A,α) →
(M(B), β) be two cocycle representations that form an anchored (α, β)-
Cuntz pair. If [(φ,u), (ψ, v)] = 0 ∈ KKG(α, β), then (φ,u) and (ψ, v)
are stably operator homotopic.

Proof. Since
(
(φ,u), (ψ, v)

)
,
(
(φ,u), (φ,u)

)
∈ EG(α, β) are anchored and

vanish in KKG(α, β), it follows from Proposition 1.12 that they are ho-
motopic. So there is an (α, β[0, 1])-Cuntz pair

(
(Φ,U), (Ψ,V)

)
such that

(φ,u) = ev0 ◦(Φ,U) = ev1 ◦(Φ,U) = ev0 ◦(Ψ,V) and (ψ, v) = ev1 ◦(Ψ,V).
Lemma 2.8 implies that (φ,u) and (ψ, v) are stably operator homotopic. □

3. Absorption of cocycle representations

In this section, we consider various more notions of equivalence and sube-
quivalence between cocycle representations (A,α) → (M(B), β), some of
which we are about to introduce. These are similar (but not identical) to
the notions of equivalence considered in [53, Section 2]. Compared to the
original work of Dadarlat–Eilers, the content of this section should be seen
as a dynamical generalization of a number of technical lemmas in [10, Sub-
section 2.3] and those in some references invoked therein. There are a lot
of similarities to some results and their proofs in [57], with the important
difference that said reference only deals with genuinely equivariant repre-
sentations. The following is an analog of [9, Definition 2.1].

Definition 3.1. Let (φ,u), (ψ, v) : (A,α) → (M(B), β) be two cocycle
representations. We write (φ,u) ∼asymp (ψ, v), if there exists a norm-
continuous path u : [0,∞) → U(M(B)) such that

• ψ(a) = lim
t→∞

utφ(a)u∗
t for all a ∈ A;

• ψ(a) − utφ(a)u∗
t ∈ B for all a ∈ A and t ≥ 0;

• lim
t→∞

max
g∈K

∥vg − utugβg(ut)∗∥ = 0 for all compact sets K ⊆ G;
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• The map [(t, g) 7→ vg − utugβg(ut)∗] takes values in B.

In view of Proposition 2.4, if
(
(φ,u), (ψ, v)

)
is a Cuntz pair, then the

second and fourth bullet points above are equivalent to saying that the
range of u is in the C∗-algebra D(φ,u).

Similarly to how we formed Cuntz sums of two elements, we may form
infinite sums by a similar method if the underlying action is strongly stable.

Definition 3.2. Suppose that β is strongly stable. Let tn ∈ M(B)β be any
sequence of isometries such that

∑∞
n=1 tnt

∗
n = 1 in the strict topology. Then

we have a β-equivariant ∗-homomorphism

ℓ∞(N,M(B)) → M(B), (bn)n≥1 7→
∞∑
n=1

tnbnt
∗
n,

which is jointly strictly continuous on the unit ball of ℓ∞(N,M(B)) and does
not depend on the choice of tn up to unitary equivalence with a unitary in
M(B)β.(Similarly as before, if vn ∈ M(B)β is another sequence of isometries
satisfying the same relation, then the unitary defined as the strict limit
w =

∑∞
n=1 tnv

∗
n implements this equivalence.) For any sequence of cocycle

representations (φ(n),u(n)) : (A,α) → (M(B), β), we may hence define the
countable sum

(Φ,U) =
∞⊕
n=1

(φ(n),u(n)) : (A,α) → (M(B), β)

via the pointwise strict limits

Φ(a) =
∞∑
n=1

tnφ
(n)(a)t∗n, Ug =

∞∑
n=1

tnu
(n)
g t∗n.

Up to equivalence with a unitary in M(B)β, this cocycle representation does
not depend on the choice of (tn)n. In particular, in the special case that
(φ(n),u(n)) = (φ,u) for all n, we denote the resulting countable sum by
(φ∞,u∞) and call it the infinite repeat of (φ,u).

Definition 3.3. Let (ψ, v) : (A,α) → (M(B), β) be a cocycle represen-
tation, and let C be a family of cocycle representations from (A,α) to
(M(B), β). We say that (ψ, v) is weakly contained in C, written (ψ, v) ≼ C,
if the following is true.

For all compact sets K ⊆ G, F ⊂ A, every ε > 0, and every contraction
b ∈ B there exist (φ(1),u(1)), . . . , (φ(ℓ),u(ℓ)) ∈ C and a collection of elements

{cj,k | j = 1, . . . , N, k = 1, . . . , ℓ} ⊂ B

satisfying

(e3.1) max
g∈K

∥∥∥b∗vgβg(b) −
ℓ∑

k=1

N∑
j=1

c∗
j,ku

(k)
g βg(cj,k)

∥∥∥ ≤ ε

and

(e3.2) max
a∈F

∥∥∥b∗ψ(a)b−
ℓ∑

k=1

N∑
j=1

c∗
j,kφ

(k)(a)cj,k
∥∥∥ ≤ ε.
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In particular, if C consists of a single cocycle representation (φ,u), then we
write (ψ, v) ≼ (φ,u), in place of (ψ, v) ≼ {(φ,u)}, and in this case one can
choose ℓ = 1 above.

Remark 3.4. It is straightforward to verify that ≼ is a reflexive and tran-
sitive relation on the set of all cocycle representations.

When G = {1} and A,φ, ψ are all unital, then the above recovers “ap-
proximate domination” as u.c.p. maps, as for example considered in [15,
Definition 3.1]. On the other hand, when A = C, B = K, β = idK and φ,ψ
are unital, then the above recovers weak containment of unitary represen-
tations G → U(H) ⊂ M(K), where H is an infinite-dimensional separable
Hilbert space. This is a consequence of comparing Corollary 3.12 below with
Voiculescu’s theorem [59] and its known variant for unitary representations.

The following is a dynamical analog of [10, Definition 2.11].

Definition 3.5. Let (φ,u), (ψ, v) : (A,α) → (M(B), β) be two cocycle
representations. We say that (ψ, v) is contained in (φ,u) at infinity, if the
following is true. For all compact sets K ⊆ G, F ⊂ A, every ε > 0, and
every contraction b ∈ B there exists an element x ∈ B satisfying

max
g∈K

∥b∗vgβg(b) − x∗ugβg(x)∥ ≤ ε,

max
a∈F

∥b∗ψ(a)b− x∗φ(a)x∥ ≤ ε,

and
∥x∗b∥ ≤ ε.

If we compare Definition 3.5 with Definition 3.3, then we can readily see
that if (ψ, v) is contained in (φ,u) at infinity, then (ψ, v) is weakly contained
in (φ,u).

Remark 3.6. Note that by considering the case where 1 ∈ K in (e3.1) we
obtain ∥b∗b −

∑ℓ
j=1

∑N
k=1 c

∗
j,kcj,k∥ ≤ ε. Consequently, it easily follows that

(ψ, v) ≼ (φ,u) if and only if (ψ†, v) ≼ (φ†,u), where
(φ†,u), (ψ†, v) : (A†, α†) → (M(B), β)

are the induced unital cocycle representation out of the proper unitization.
Similarly, (ψ, v) is contained in (φ,u) at infinity if and only if (ψ†, v) is con-
tained in (φ†,u) at infinity. This is in stark contrast to the non-equivariant
case where this subtlety has led to false statements in the literature, such
as the one addressed by the first named author in [14].

We make a few basic observations about weak containment.

Proposition 3.7. Let
(φ,u), (ψ, v), (ψ(n), v(n)) : (A,α) → (M(B), β)

be cocycle representations for all n ∈ N.
(i) If we have for all a ∈ A, b ∈ B and compact sets K ⊆ G that

lim
n→∞

(
∥
(
ψ(a) − ψ(n)(a)

)
b∥ + max

g∈K
∥(vg − v(n)

g )b∥
)

= 0,

then (ψ, v) ≼ {(ψ(n), v(n))}n∈N.
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(ii) If there is a sequence of unitaries un ∈ U(M(B)) such that ψ =
lim
n→∞

Ad(un)◦φ in the point-strict topology and v• = lim
n→∞

unu•β•(un)∗

strictly and uniformly over compact sets, then (ψ, v) ≼ (φ,u).
If furthermore β is strongly stable, then

(iii) One has (ψ, v) ≼ {(ψ(n), v(n))}n∈N if and only if (ψ, v) ≼
∞⊕
n=1

(ψ(n), v(n)).

(iv) One has (φ∞,u∞) ≼ (φ,u).

Proof. (i): Let K ⊆ G, F ⊂ A, b ∈ B and ε > 0 be given. By assumption,
using that {βg(b) : g ∈ K} is compact, we may choose j ≥ 1 such that

max
g∈K

∥b∗vgβg(b) − b∗v(j)
g βg(b)

∥∥∥ ≤ ε

and

max
a∈F

∥b∗ψ(a)b− b∗ψ(j)(a)b
∥∥∥ ≤ ε.

Thus ℓ = N = 1 and c1,1 = b have the desired property as required by
Definition 3.3, which shows (ψ, v) ≼ {(ψ(n), v(n))}n∈N.

(ii): It is trivial that two unitarily equivalent cocycle representations are
weakly contained in each other. Thus the claim is a straightforward conse-
quence of (i).

(iii): Let tk ∈ M(B)β be a sequence of isometries such that
∑∞
k=1 tkt

∗
k = 1

in the strict topology. Denote (Ψ,V) =
⊕∞

k=1(ψ(k), v(k)), where the sum is
formed via this sequence. Suppose a quadruple (K,F , b, ε) is given. Without
loss of generality, let us assume that F is a subset of the unit ball of A.

For the “if” part, suppose we have contractions d1, . . . , dn ∈ B with

max
g∈K

∥∥∥b∗vgβg(b) −
n∑
j=1

d∗
jVgβg(dj)

∥∥∥ ≤ ε

and

max
a∈F

∥∥∥b∗ψ(a)b−
n∑
j=1

d∗
jΨ(a)dj

∥∥∥ ≤ ε.

Choose N ∈ N such that

(e3.3) max
1≤j≤n

∥(1 −
N∑
k=1

tkt
∗
k)dj∥ ≤ ε/2n.

Then if we set cj,k = t∗kdj for j = 1, . . . , n and k = 1, . . . , N , we observe for
all g ∈ K that

n∑
j=1

N∑
k=1

c∗
j,kv

(k)
g βg(cj,k) =

n∑
j=1

N∑
k=1

d∗
j tkv

(k)
g t∗kβg(dj)

(e3.3)=ε

n∑
j=1

d∗
jVgβg(dj) =ε b∗vgβg(b).
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Similarly we compute for all a ∈ F that
n∑
j=1

N∑
k=1

c∗
j,kψ

(k)(a)cj,k =
n∑
j=1

N∑
k=1

d∗
j tkψ

(k)(a)t∗kdj

(e3.3)=ε

n∑
j=1

d∗
jΨ(a)dj =ε b∗ψ(a)b.

This verifies (ψ, v) ≼ {(ψ(n), v(n))}n∈N.
For the “only if” part, suppose we have found n,N ≥ 1 and cj,k ∈ B for

the quadruple (K,F , b, ε) as required by Definition 3.3. Set dj,k = tkcj,k ∈ B.
Similarly as above we have for all a ∈ A

n∑
j=1

N∑
k=1

d∗
j,kΨ(a)dj,k =

n∑
j=1

N∑
k=1

c∗
j,kψ

(k)(a)cj,k =ε b
∗ψ(a)b

and for all g ∈ K that
n∑
j=1

N∑
k=1

d∗
j,kVgβg(dj,k) =

n∑
j=1

N∑
k=1

c∗
j,kv

(k)
g βg(cj,k) =ε b

∗vgβg(b).

This shows (ψ, v) ≼ (Ψ,V).
(iv) is a trivial consequence of (iii). □

We need the following fundamental technical lemma, which we will use in
a crucial step later. It is a generalization of a statement that appeared in the
literature before, usually in a somewhat different form, both in the context
of KK-theory and the classification theory of purely infinite C∗-algebras;
see for example [48, Lemma 6.3.7] or [39, Lemma 2.4].

Lemma 3.8. Let B be any C∗-algebra and κ ∈ Aut(B) an automorphism,
which we extend canonically to an automorphism on M(B). Let b1, b2 ∈
M(B) be two elements, and s ∈ M(B) an isometry. Suppose that r1, r2 ∈
M(B)κ are two isometries fixed by κ that satisfy r1r

∗
1 + r2r

∗
2 = 1. Further-

more, suppose that [b1, rj ] = 0 = [b1, r
∗
j ] for j = 1, 2. Then the element

u = (r1r
∗
1 + r2sr

∗
2)s∗ + r2(1 − ss∗) ∈ M(B)

is a unitary, and it satisfies

∥ub2κ(u)∗ − (b1 ⊕r1,r2 b2)∥ ≤ 5 · max
{

∥sb1 − b2κ(s)∥, ∥κ(s)b∗
1 − b∗

2s∥
}
.

Furthermore, if sb1 − b2κ(s) ∈ B and κ(s)b∗
1 − b∗

2s ∈ B, then also

ub2κ(u)∗ − (b1 ⊕r1,r2 b2) ∈ B.

Proof. First, let us verify that u is indeed a unitary. We have

u∗u = s(r1r
∗
1 + r2s

∗sr∗
2)s∗ + (1 − ss∗) = 1

and
uu∗ = r1r

∗
1s

∗sr1r
∗
1 + r2sr

∗
2s

∗sr2s
∗r∗

2 + r2(1 − ss∗)r∗
2

= r1r
∗
1 + r2r

∗
2 = 1.
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Set ε = max
{
∥sb1 − b2κ(s)∥, ∥κ(s)b∗

1 − b∗
2s∥

}
. We compute(

b1 ⊕r1,r2 b2
)
κ(u)

=
(
r1b1r

∗
1 + r2b2r

∗
2
)
κ(u)

= r1b1r
∗
1κ(s)∗ + r2b2r

∗
2κ(u)

= r1r
∗
1b1κ(s)∗ + r2b2(1 − κ(s)κ(s)∗) + r2b2κ(s)r∗

2κ(s)∗

=2ε r1r
∗
1b1κ(s)∗ + r2(b2 − sb1κ(s)∗) + r2sb1r

∗
2κ(s)∗

= r1r
∗
1b1κ(s)∗ + r2(b2 − sb1κ(s)∗) + r2sr

∗
2b1κ(s)∗

=2ε r1r
∗
1b1κ(s)∗ + r2(1 − ss∗)b2 + r2sr

∗
2s

∗b2
=ε (r1r

∗
1s

∗ + r2(1 − ss∗) + r2sr
∗
2s

∗)b2 = ub2.

We also see from this calculation that if sb1 − b2κ(s) ∈ B and κ(s)b∗
1 − b∗

2s ∈
B, then the intermediate differences in these calculations are also elements
of B. We may now multiply everything with κ(u)∗ from the right and obtain
the desired statement. □

This leads to the following sufficient criterion for the absorption of cocycle
representations:

Lemma 3.9. Let (φ,u), (ψ, v) : (A,α) → (M(B), β) be two cocycle repre-
sentations. Suppose there is a sequence of isometries sn ∈ M(B) satisfying

• lim
n→∞

∥snψ(a) − φ(a)sn∥ = 0 for all a ∈ A;
• snψ(a) − φ(a)sn ∈ B for all a ∈ A and n ≥ 1;
• lim
n→∞

sup
g∈K

∥snvg − ugβg(sn)∥ = 0 for all compact sets K ⊆ G;

• The map [g 7→ snvg − ugβg(sn)] takes values in B for all n ≥ 1.
• s∗

n+1sn = 0 for all n ≥ 1.
Suppose that there exists a unital inclusion O2 ⊆ M(B)β that commutes
with the ranges of ψ and v. Then (φ,u) ∼asymp (ψ, v) ⊕ (φ,u).

Proof. We may employ the same trick as in [9, Lemmas 2.2+2.3] and (as a
consequence of the last bullet point) extend the sequence (sn)n to a norm-
continuous path of isometries (st)t≥1 by defining

sn+t = (1 − t)1/2sn + t1/2sn+1 for all n ≥ 1 and t ∈ [0, 1].

By the properties of sn assumed above, this continuous path is seen to satisfy
the following properties:

(e3.4) lim
t→∞

∥stψ(a) − φ(a)st∥ = 0 for all a ∈ A;

(e3.5) stψ(a) − φ(a)st ∈ B for all a ∈ A and t ≥ 1;

(e3.6) lim
t→∞

sup
g∈K

∥stvg − ugβg(st)∥ = 0 for all compact sets K ⊆ G;

(e3.7) [(t, g) 7→ stvg − ugβg(st)] takes values in B.

By assumption, we may pick a pair of isometries r1, r2 ∈ M(B)β with
r1r

∗
1 + r2r

∗
2 = 1 commuting with the ranges of ψ and v. Define a norm-

continuous path of unitaries u : [1,∞) → U(M(B)) via

ut = (r1r
∗
1 + r2str

∗
2)s∗

t + r2(1 − sts
∗
t ) ∈ M(B).
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By Lemma 3.8, these are indeed unitaries. When we apply the lemma for
idB in place of κ, then conditions (e3.4) and (e3.5) ensure that we have

lim
t→∞

∥utφ(a)u∗
t − (ψ ⊕r1,r2 φ)(a)∥ = 0

for all a ∈ A, and that the expressions appearing in the norm are elements
in B. When we apply the lemma for κ ∈ {βg}g∈G, we can use conditions
(e3.6) and (e3.7) along with the identities v∗

g = βg(vg−1) and u∗
g = βg(ug−1)

to compute
lim
t→∞

max
g∈K

∥utugβg(ut)∗ − (vg ⊕r1,r2 ug)∥

≤ 5 lim
t→∞

sup
g∈K

(
∥stvg − ugβg(st)∥ + ∥βg(st)v∗

g − u∗
gst∥

)
= 5 lim

t→∞
sup
g∈K

(
∥stvg − ugβg(st)∥ + ∥stvg−1 − ug−1βg−1st∥

)
= 0

for every compact set K ⊆ G. Furthermore the expressions appearing in
the norms are elements of B. This finishes the proof. □

Remark 3.10. Since it is useful for our companion paper [18], let us observe
a few things about the statement in Lemma 3.9. Firstly, if there exists a
unital inclusion O∞ ⊆ M(B)β that commutes with the ranges of φ and u,
then modulo passing to a different sequence of isometries, the last bullet
point is redundant. This is because given isometries R1, R2 in this copy of
O∞ with R∗

1R2 = 0, one may replace sn by R1sn when n is odd and by R2sn
when n is even. This does not disturb any of the first four bullet points, but
forces the property s∗

n+1sn = 0 in the last bullet point.
Secondly, we may consider what happens in a special case of Lemma 3.9.

In addition to the inclusion O∞ ⊆ M(B)β above, assume that (φ,u) and
(ψ, v) are proper cocycle morphisms (see [53, Definition 1.10(iii)]), meaning
that φ and ψ have values in B, and u and v have values in U(1 + B). In
this case, we may assume s1 = R1 and carry out the rest of the proof as
before. This gives rise to a norm-continuous path of unitaries u : [1,∞) →
U(M(B)) witnessing (φ,u) ⊕ (ψ, v) ∼asymp (φ,u) that additionally satisfies
u1 ∈ M(B)β. Since the cocycles u and v have values in U(1 + B), the
relation utugβg(ut)∗ − (vg ⊕ ug) ∈ B for all g ∈ G amounts to ut ∈ Mβ(B).

Lemma 3.11. Suppose β is strongly stable. Let (φ,u), (ψ, v) : (A,α) →
(M(B), β) be two cocycle representations. The following are equivalent:

(i) (ψ, v) is contained in (φ,u) at infinity;
(ii) (ψ∞, v∞) is contained in (φ,u) at infinity;
(iii) there exists an isometry S ∈ M(B) such that

ψ∞(a) − S∗φ(a)S ∈ B for all a ∈ A

and the map [
g 7→ v∞

g − S∗ugβg(S)
]

takes values in B and is norm-continuous.
(iv) (φ,u) ∼asymp (ψ∞, v∞) ⊕ (φ,u).

Proof. We will proceed in the order (i)⇒(ii)⇒(iii)⇒(i) and (iii)⇔(iv). For
the rest of the proof, we let tn ∈ M(B)β be a sequence of isometries with
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n=1 tnt

∗
n = 1 in the strict topology. All infinite repeats are understood to

be formed via this sequence.
(i)⇒(ii): Let compact sets K ⊆ G, FA ⊂ A, and ε > 0 be given. Without

loss of generality assume K = K−1 and FA = F∗
A is in the unit ball of A.

Suppose that FB ⊂ B is a compact set and b ∈ B is a contraction.
LetN ∈ N such that ∥b−

∑N
j=1 tjt

∗
jb∥ ≤ ε/8 and pick a positive contraction

b0 ∈ B such that ∥b0t
∗
jb− t∗jb∥ ≤ ε/(8N) for j = 1, . . . , N . Then

(e3.8) ∥b− b0,Nb∥ ≤ ε/4 for b0,N =
N∑
j=1

tjb0t
∗
j .

Using the statement in (i), we may recursively choose contractions x1, . . . , xN ∈
B satisfying
(e3.9) max

1≤j≤N
max
g∈K

∥b0vgβg(b0) − x∗
jugβg(xj)∥ ≤ ε/4;

(e3.10) max
1≤j≤N

max
a∈FA

∥b0ψ(a)b0 − x∗
jφ(a)xj∥ ≤ ε/4;

(e3.11) max
1≤j≤N

max
1≤l<j

(
max
a∈FA

∥x∗
jφ(a)xl∥ + max

g∈K
∥x∗

jugβg(xl)∥
)

≤ 2−N2
ε/4;

(e3.12) max
1≤j≤N

max
c∈FB

∥x∗
jc∥ ≤ ε/N.

We define an element x ∈ B via x =
∑N
j=1 xjt

∗
j . We observe max

c∈FB
∥x∗c∥ ≤ ε

as a consequence of (e3.12). We have for all g ∈ K that

x∗ugβg(x) =
N∑

j,k=1
tjx

∗
jugβg(xk)t∗k

(e3.11)= ε/4

N∑
j=1

tjx
∗
jugβg(xj)t∗j

(e3.9)=ε/4

N∑
j=1

tjb0vgβg(b0)t∗j = b0,Nv
∞
g βg(b0,N ).

If we consider this computation, we shall multiply both sides with b∗ from
the left and with βg(b) from the right, and use (e3.8) to obtain

max
g∈K

∥b∗v∞
g βg(b) − (xb)∗ugβg(xb)∥ ≤ ε.

Moreover we have for all a ∈ FA that

x∗φ(a)x =
N∑

j,k=1
tjx

∗
jφ(a)xkt∗k

(e3.11)= ε/4

N∑
j=1

tjx
∗
jφ(a)xjt∗j

(e3.10)= ε/4

N∑
j=1

tjb0ψ(a)b0t
∗
j = b0,Nψ

∞(a)b0,N .

Similarly as above we consider this computation, multiply both sides with
b∗ from the left and with b from the right, and use (e3.8) to obtain

max
a∈FA

∥b∗ψ∞(a)b− (xb)∗φ(a)(xb)∥ ≤ ε.

Clearly we have maxc∈FB ∥(xb)∗c∥ ≤ maxc∈FB ∥x∗c∥ ≤ ε. Thus the element
xb ∈ B satisfies the properties as required by Definition 3.5 in place of x.
This verifies condition (ii).
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(ii)⇒(iii): Let FA ⊂ A be a self-adjoint compact set in the unit ball whose
closed linear span is A. This exists by the separability of A. Fix a constant
0 < ε < 1

2 . Choose an increasing sequence 1G ∈ Kn ⊆ G of compact sets
with G =

⋃
n≥1 int(Kn).

By Lemma 1.14, B admits a countable, increasing, approximately βv
∞-

invariant approximate unit (en)n≥1 of positive contractions that is quasicen-
tral relative to ψ∞(A). We denote f1 = e

1/2
1 and fn = (en − en−1)1/2 for

n ≥ 2. By passing to a subsequence of the en, if necessary, we may assume

(e3.13) max
g∈Kn

∥fn − βv
∞
g (fn)∥ ≤ 2−(n+1)ε

and

(e3.14) max
a∈FA

∥[ψ∞(a), fn]∥ ≤ 2−nε

for all n ≥ 1. By our choice of fn, we can apply condition (ii) inductively and
find a sequence of contractions xn ∈ B satisfying the following properties
for all n ≥ 1:

(e3.15) max
g∈Kn

∥fnv∞
g βg(fn) − x∗

nugβg(xn)∥ ≤ 2−(n+1)ε;

(e3.16) max
g∈Kn

(
∥x∗

nugβg(xj)∥ + ∥βg(xn)∗u∗
gxj∥

)
≤ 2−(2+j+n)ε, j < n;

(e3.17) max
a∈FA

∥fnψ∞(a)fn − x∗
nφ(a)xn∥ ≤ 2−nε;

(e3.18) max
a∈FA

∥x∗
nφ(a)xj∥ ≤ 2−(1+n+j)ε, j < n;

(e3.19) ∥x∗
nej∥ ≤ 2−nε, j ≤ n.

We claim that the series X =
∑∞
n=1 xn converges in the strict topology and

therefore yields an element X ∈ M(B). Indeed, by using (e3.15) (with
g = 1), we have for any pair of natural numbers k ≤ ℓ that∥∥∥ ℓ∑

n=k
x∗
nxn −

ℓ∑
n=k

f2
n

∥∥∥ ≤
ℓ∑

n=k
2−(n+1)ε ≤ 2−kε.

Since we have
∑∞
j=1 f

2
j = 1 in the strict topology, we conclude that the

sequence of partial sums ℓ 7→
∑ℓ
n=1 x

∗
nxn satisfies the Cauchy criterion in

the strict topology. If b ∈ B is a contraction, this implies for all pairs of
natural numbers k ≤ ℓ that∥∥∥ ℓ∑

n=k
xnb

∥∥∥2
=

∥∥∥b∗
( ℓ∑
j,n=k

x∗
nxj

)
b
∥∥∥

(e3.16)
≤

ℓ∑
j,n=k
j<n

2−(2+j+n)ε+
∥∥∥b∗

( ℓ∑
n=k

x∗
nxn

)
b
∥∥∥

≤ 2−kε+
∥∥∥b∗

( ℓ∑
n=k

x∗
nxn

)
b
∥∥∥.
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In particular, the sequence ℓ 7→
( ∑ℓ

n=1 xn
)
b satisfies the Cauchy criterion.

Note that this last computation is valid even when choosing b = 1, so we
see that ℓ 7→

( ∑ℓ
n=1 xn

)
is a norm-bounded sequence. On the other hand,

condition (e3.19) implies that the sequence ℓ 7→
( ∑ℓ

n=1 x
∗
n

)
ej satisfies the

Cauchy criterion for all j ≥ 1. Since the sum is uniformly bounded in norm
and the ej were an approximate unit of B by assumption, we may conclude
with a standard ε/2-argument that the sequence ℓ 7→

( ∑ℓ
n=1 x

∗
n

)
b satisfies

the Cauchy criterion for all b ∈ B. We may hence conclude that the series in
question converges in the strict topology, or in other words, that X exists.

Next we check that X satisfies similar properties as required by the ele-
ments S in the statement of (iii). As in the proof of [35, Theorem 5], we
check for all a ∈ FA the equality modulo B

X∗φ(a)X =
∞∑

k,n=1
x∗
kφ(a)xn

(e3.18)
≡

∞∑
n=1

x∗
nφ(a)xn

(e3.17)
≡

∞∑
n=1

fnψ
∞(a)fn

(e3.14)
≡ ψ∞(a).

Here we used that the pointwise differences between the involved terms in
each step are absolutely convergent series in B. We see that X∗φ(a)X −
ψ∞(a) ∈ B holds for all a ∈ FA. By the choice of FA, the latter relation
extends to all a ∈ A. Next, given any element g ∈ G, let j ≥ 1 be the
smallest number with g ∈ Kj . Then we have

X∗ugβg(X) =
∞∑

k,n=1
x∗
kugβg(xn)

(e3.16)=2−jε

∑
k,n<j

x∗
kugβg(xn) +

∑
n≥j

x∗
nugβg(xn)

(e3.15)=2−jε

∑
k,n<j

x∗
kugβg(xn) +

∑
n≥j

fnv
∞
g βg(fn)

(e3.13)=2−jε

∑
k,n<j

x∗
kugβg(xn) +

∑
n≥j

f2
nv

∞
g

= v∞
g +

( ∑
k,n<j

x∗
kugβg(xn) −

∑
n<j

f2
nv

∞
g

)
.

In each of these approximation steps, we see that all the maps on G defined
by the intermediate differences take values in B and are continuous. So
indeed the assignment [g 7→ v∞

g − X∗ugβg(X)] takes values in B and is
continuous. If furthermore g = 1G, then j = 1 above, so the very last term
in the above calculation vanishes and we conclude X∗X ∈ 1 +B and

∥1 −X∗X∥ < 2ε < 1.

We claim that the isometry S = X|X|−1 does the trick. From the above we
can immediately conclude ψ∞(a) − S∗φ(a)S ∈ B for all a ∈ A, as well as
v∞
g − S∗ugβg(S) ∈ B for all g ∈ G. Since

v∞
g − S∗ugβg(S)

= v∞
g − |X|−1X∗ugβg(X|X|−1)

= v∞
g −X∗ugβg(X) +X∗ugβg(X(1 − |X|−1)) + (1 − |X|−1)X∗ugβg(X|X|−1)
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and |X| ∈ 1 +B, the strict continuity of the cocycles forces the assignment
[g 7→ v∞

g − S∗ugβg(S)] to be continuous in norm.
(iii)⇒(i): Let S ∈ M(B) be an isometry as in the statement of (iii). Let

b ∈ B be a contraction. Recall that ψ∞(•) =
∑∞
j=1 tjψ(•)t∗j and v∞

• =∑∞
j=1 tjv•t

∗
j . Define xn = Stnb. Then clearly x∗

nb → 0.
As t∗nψ∞(a)tn = ψ(a) for all n ≥ 1 and a ∈ A, we get

∥x∗
nφ(a)xn − b∗ψ(a)b∥ = ∥b∗t∗n(S∗φ(a)S − ψ∞(a)︸ ︷︷ ︸

∈B

)tnb∥ → 0.

Similarly we get for any compact set K ⊆ G that
max
g∈K

∥x∗
nugβg(xn) − b∗vgβg(b)∥ = max

g∈K
∥b∗t∗n(S∗ugβg(S) − v∞

g )tnb∥ → 0.

Here we used the continuity assumption in (iii) to conclude that the terms
appearing in the middle bracket form a compact subset inside B. We see
that (ψ, v) is contained in (φ,u) at infinity.

(iii)⇒(iv): We consider the double-infinite repeat

(ψ∞)∞(a) =
∞∑

n,m=1
tntmψ(a)t∗mt∗n

for all a ∈ A, and analogously define (v∞)∞. Since (ψ∞,u∞) is unitarily
equivalent to

(
(ψ∞)∞, (u∞)∞)

, we may conclude the existence of an isome-
try S ∈ U(M(B)) such that

S∗φ(a)S − (ψ∞)∞(a) ∈ B and S∗ugβg(S) − (v∞)∞
g ∈ B

for all a ∈ A and g ∈ G, and such that the right-most term defines a norm-
continuous map on G. For any n ≥ 1, we have t∗n(ψ∞)∞(a)tn = ψ∞(a) and
t∗n(v∞)∞

g tn = v∞
g . Furthermore we have t∗nbtn → 0 for all b ∈ B. This allows

us to conclude that the sequence of isometries sn = Stn satisfies

B ∋ t∗n
(
S∗φ(a)S − (ψ∞)∞(a)

)
tn = s∗

nφ(a)sn − ψ∞(a) n→∞−→ 0
for all a ∈ A. Analogously we conclude

B ∋ t∗n
(
S∗ugβg(S) − (v∞)∞

g

)
tn = s∗

nugβg(sn) − v∞
g

n→∞−→ 0
for all g ∈ G, and this convergence is uniform over compact subsets of G.

As in [35] or the proof of [10, Proposition 2.15], we observe
(snψ∞(a) − φ(a)sn)∗(snψ∞(a) − φ(a)sn)
= (s∗

nφ(a∗a)sn − ψ∞(a∗a)) + (ψ∞(a∗) − s∗
nφ(a∗)sn)ψ∞(a)+

+ψ∞(a∗)(ψ∞(a) − s∗
nφ(a)sn),

which leads to lim
n→∞

∥snψ∞(a) −φ(a)sn∥ = 0 for all a ∈ A. We also see that
snψ

∞(a) − φ(a)sn ∈ B for all a ∈ A. Similarly we observe
(snv∞

g − ugβg(sn))∗(snv∞
g − ugβg(sn))

= 2 · 1 − v∞∗
g · s∗

nugβg(sn) − βg(sn)∗u∗
gsn · v∞

g ,

which leads to lim
n→∞

max
g∈K

∥snv∞
g −ugβg(sn)∥ = 0 for all compact sets K ⊆ G.

We also see that the map [g 7→ snvg − ugβg(sn)] takes values in B.
By construction, the isometries sn have pairwise orthogonal ranges. In

order to complete the proof of the claim with Lemma 3.9, it suffices to see
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that there is an inclusion O2 ⊆ M(B)β that commutes with the ranges of
ψ∞ and v∞. This is indeed witnessed by the two isometries

ri =
∞∑
n=1

t2n−it
∗
n ∈ M(B)β, i = 0, 1,

which satisfy the O2-relation and commute with all such infinite repeats due
to the simple observation that( ∞∑

j=1
tjxt

∗
j

)
ri =

∞∑
n=1

t2n−ixt
∗
n = ri

( ∞∑
j=1

tjxt
∗
j

)
, i = 0, 1,

for all x ∈ M(B).
(iv)⇒(iii): Consider the isometry t∞ =

∑∞
k=1 tk+1t

∗
k, which fits into the

equation t1t
∗
1 + t∞t

∗
∞ = 1. Let U : [0,∞) → M(B) be a norm-continuous

path witnessing the relation (φ,u) ∼asymp (φ,u) ⊕ (ψ∞, v∞) in the sense of
Definition 3.1. In particular, the unitary U0 satisfies the properties

U∗
0φ(a)U0 −

(
φ(a) ⊕t1,t∞ ψ∞(a)

)
∈ B, a ∈ A,

and
U∗

0ugβg(U0) −
(
ug ⊕t1,t∞ v∞

g ) ∈ B, g ∈ G.

We set S = U0t∞. This is an isometry, and it has the properties that
S∗φ(a)S − ψ∞(a) = t∗∞

(
U∗

0φ(a)U0 −
(
φ(a) ⊕t1,t∞ ψ∞(a)

))
t∞ ∈ B

for all a ∈ A, and
S∗ugβ(S) − v∞

g = t∗∞
(
U∗

0ugβg(U0) −
(
ug ⊕t1,t∞ v∞

g

))
t∞ ∈ B

for all g ∈ G. Moreover, because of [53, Proposition 6.9], the middle ex-
pression in the brackets defines a norm-continuous map on G, hence the
assignment [g 7→ S∗ugβ(S) − v∞

g ] is also norm-continuous. This finishes the
proof. □

Corollary 3.12. Suppose β is strongly stable. Let (φ,u), (ψ, v) : (A,α) →
(M(B), β) be two cocycle representations. Then (ψ, v) ≼ (φ,u) if and only
if (φ∞,u∞) ∼asymp (ψ∞, v∞) ⊕ (φ∞,u∞).

Proof. For the rest of the proof, we fix a sequence of isometries tn ∈ M(B)β
with 1 =

∑∞
n=1 tnt

∗
n in the strict topology, and every instance of an infinite

repeat shall use this sequence to define it.
Let us first show the “if” part. Using Proposition 3.7 and that ∼asymp

clearly implies weak containment, we can see that
(ψ, v) ≼ (ψ∞, v∞) ≼ (ψ∞ ⊕ φ∞, v∞ ⊕ u∞) ≼ (φ∞,u∞) ≼ (φ,u).

So let us show the “only if” part. Suppose (ψ, v) ≼ (φ,u). By Lemma 3.11,
we need to show that (φ∞,u∞) contains (ψ, v) at infinity.

Let K ⊆ G,F ⊂ A and ε > 0 be given. Without loss of generality,
we assume 1G ∈ K. Given a contraction b ∈ B, we may then choose
contractions d1, . . . , dn ∈ B as in Definition 3.3. Let N ∈ N be large enough
such that ∥(1 −

∑N
n=1 tnt

∗
n)b∥ ≤ ε. We define

x =
n∑
j=1

tN+jdj ∈ B.
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As we have x∗(1−
∑N
n=1 tnt

∗
n) = x∗ by construction, it satisfies ∥x∗b∥ ≤ ε∥x∥.

Given g ∈ K, we have

x∗u∞
g βg(x) =

n∑
j=1

d∗
jugβg(dj) =ε b

∗vgβg(b).

The case g = 1G shows ∥x∗x− b∗b∥ ≤ ε, so x is close to a contraction when
ε is chosen small. For all a ∈ F , we have

x∗φ∞(a)x =
n∑
j=1

d∗
jφ(a)dj =ε b

∗ψ(a)b.

As the quadruple (K,F , ε, b) was arbitrary, we see that the condition as
required by Definition 3.5 is satisfied so that (φ∞,u∞) contains (ψ, v) at
infinity. □

Definition 3.13. Suppose β is strongly stable. Let C be a set of cocycle
representations from (A,α) to (M(B), β) that is closed under unitary equiv-
alence with respect to unitaries in M(B)β. We say that C is σ-additive, if
for every sequence (φ(n),u(n))n∈N in C, the Cuntz sum⊕

n∈N
(φ(n),u(n)) : (A,α) → (M(B), β)

also belongs to C. We say that a cocycle representation (θ, x) ∈ C is absorbing
in C, if (θ ⊕ φ, x ⊕ u) ∼asymp (θ, x) for all (φ,u) ∈ C.

Example 3.14. It is clear from the definition that for any family of σ-
additive sets of cocycle representations in the above sense, their intersection
is also σ-additive. Keeping this in mind, the following sets of cocycle repre-
sentations from (A,α) to (M(B), β) are σ-additive, as well as any intersec-
tion of such sets with each other.
• The set of all cocycle representations (φ,u) : (A,α) → (M(B), β). An

absorbing element in this class will simply be called an absorbing cocycle
representation.

• Assuming A is unital, the set of all cocycle representations (φ,u) :
(A,α) → (M(B), β) such that φ is unital.

• The set of all cocycle representations (φ,u) : (A,α) → (M(B), β) such
that φ is weakly nuclear.

• The set of all cocycle representations (φ,u) : (A,α) → (M(B), β) such
that φ weakly belongs to a predetermined closed operator convex cone of
completely positive maps A → B; cf. [38, 17].

Remark 3.15. Let us equip the set of all cocycle representations (φ,u) :
(A,α) → (M(B), β) with the topology of point-strict convergence in the
first variable, and uniform strict convergence over compact sets of G in
the second variable. Let us denote this topology on the set of all cocycle
representations by τ(α, β). As we assume that B is σ-unital, the strict
topology is metrizable on the unit ball of M(B). As A is assumed to be
separable and G is second-countable, it follows that the topology τ(α, β) is
metrizable. If it is moreover the case that B is separable, then M(B) is
strictly separable and the topology τ(α, β) is automatically separable.
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The following existence result for absorbing elements generalizes [56, The-
orems 2.4+2.7], [17, Theorem 3.14], [57, Theorem 5.7] and various similar
results scattered throughout the literature. (At first glance one might think
that the cited theorem is partially stronger than the one proved here when
it applies, but this is the case only to the extent that the underlying ∗-
homomorphism A → M(B) can be chosen to be extendible in [57].) We note
that our proof is partially new, but the new part is based only on a string
of very elementary observations (plus some previous results in this section),
which yields a drastic simplification even in the classical non-equivariant case
that is well-known in the literature. In particular, compared to the known
proofs, it is not necessary to invoke the Kasparov–Stinespring dilation for
completely positive maps.

Theorem 3.16. Suppose β is strongly stable. Let C be a σ-additive set of
cocycle representations from (A,α) to (M(B), β). If C is τ(α, β)-separable,
then there exists an absorbing element in C. In particular, if B is separable,
then all σ-additive sets of cocycle representations have an absorbing element.

Proof. As C is σ-additive, it follows from Corollary 3.12 that if there exists
some (θ, x) ∈ C such that (φ,u) ≼ (θ, x) for every (φ,u) ∈ C, then its infinite
repeat (θ∞, x∞) is absorbing. By the assumption that C is separable with
respect to τ(α, β), we can find a sequence of elements (θ(n), x(n)) ∈ C with
the following property. Given any cocycle representation (φ,u) ∈ C, any
compacts sets K ⊆ G, FA ⊂ A, b ∈ B, and ε > 0, there exists some n such
that

max
a∈FA

∥(φ(a) − θ(n)(a))b∥ ≤ ε and max
g∈K

∥(ug − x(n)
g )b∥ ≤ ε.

But due to Proposition 3.7, this implies (φ,u) ≼
⊕∞

n=1(θ(n), x(n)) =: (θ, x)
for every (φ,u) ∈ C. This completes the proof. □

Corollary 3.17. Suppose B is separable and β is strongly stable. Let (θ, y) :
(A,α) → (M(B), β) be an absorbing cocycle representation (which exists by
Theorem 3.16). Then:

(i) Every element x ∈ EG(α, β)/∼h can be expressed as the equivalence
class of an (α, β)-Cuntz pair

(
(φ,u), (θ, y)

)
for some absorbing cocycle

representation (φ,u) : (A,α) → (M(B), β).
(ii) Every element z ∈ KKG(α, β) can be expressed as the equivalence

class of an anchored (α, β)-Cuntz pair
(
(φ,u), (θ, y)

)
for some absorb-

ing cocycle representation (φ,u) : (A,α) → (M(B), β).

Proof. In light of Proposition 1.12, part (ii) is a special case of (i), so we
shall prove the latter. Let us write x =

[
(ψ, v), (κ, x)

]
for an arbitrary

(α, β)-Cuntz pair of cocycle representations. Since (θ, y) is absorbing, it
absorbs (κ, x), i.e., we find a norm-continuous path of unitaries w : [0,∞) →
U(M(B)) satisfying

lim
t→∞

(
∥w∗

t (κ⊕ θ)(a)wt − θ(a)∥ + max
g∈K

∥w∗
t (xg ⊕ yg)βg(wt) − yg∥

)
= 0

for all a ∈ A and every compact set K ⊆ G, and so that the expressions in
the norms above belong to B pointwise. By these properties, we have that
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the two cocycle representations

(θ, y) and Ad(w∗
0) ◦ (κ⊕ θ, x ⊕ y)

form an (α, β)-Cuntz pair that is homotopic to a degenerate one. Hence we
observe the following equality of homotopy classes:[

(ψ, v), (κ, x)
]

=
[
(ψ ⊕ θ, v ⊕ y), (κ⊕ θ, x ⊕ y)

]
=

[
Ad(w∗

0) ◦ (ψ ⊕ θ, v ⊕ y),Ad(w∗
0) ◦ (κ⊕ θ, x ⊕ y)

]
=

[
Ad(w∗

0) ◦ (ψ ⊕ θ, v ⊕ y),Ad(w∗
0) ◦ (κ⊕ θ, x ⊕ y)

]
+

[
Ad(w∗

0) ◦ (κ⊕ θ, x ⊕ y), (θ, y)
]

=
[
Ad(w∗

0) ◦ (ψ ⊕ θ, v ⊕ y), (θ, y)
]
.

Therefore the cocycle representation (φ,u) = Ad(w∗
0) ◦ (ψ ⊕ θ, v ⊕ y) has

the desired property. Since (θ, y) was absorbing, clearly so is (φ,u) by
construction. This finishes the proof. □

4. Criteria for asymptotic unitary equivalence

In this section we provide a general argument showing that if one com-
pares two cocycle representations forming a Cuntz pair, then strong asymp-
totic unitary equivalence (see below) is implied by an a priori weaker notion
of equivalence, which is in turn implied by operator homotopy. This will
provide the final technical ingredient towards our main result in the next
section, and replaces all the arguments related to derivations [9, Subsection
2.3] appearing in the prior proof of the stable uniqueness theorem.

Definition 4.1. Let (φ,u), (ψ, v) : (A,α) → (M(B), β) be two cocycle
representations. We say that (φ,u) and (ψ, v) are properly asymptotically
unitarily equivalent, if there exists a norm-continuous path u : [0,∞) →
U(1 +B) such that

lim
t→∞

∥ψ(a) − utφ(a)u∗
t ∥ = 0

for all a ∈ A and

lim
t→∞

max
g∈K

∥vg − utugβg(ut)∗∥ = 0

for all compact sets K ⊆ G. If one may arrange u0 = 1, then we call (φ,u)
and (ψ, v) strongly asymptotically unitarily equivalent.

Lemma 4.2. Let B be a σ-unital C∗-algebra with an action β : G↷ B. Let
D ⊆ M(B) be a separable C∗-subalgebra. Let u : [0,∞) → U(Mβ(B)) be a
norm-continuous path of unitaries with u0 = 1 such that u|[1,∞) is constant
and [ut, D] ⊆ B for all t ∈ [0, 1]. Suppose that max0≤t≤1 ∥ut − 1∥ < 2.
Then for all sequences of εn > 0, compact subsets Fn ⊂ B, Gn ⊂ D + B
and Kn ⊆ G, where n ≥ 0, there exists a norm-continuous path of unitaries
v : [0,∞) → U(1 +B) with v0 = 1 such that

max
n≤t≤n+1

(
max
b∈Fn

∥(v∗
t ut−1)b∥+max

d∈Gn

∥[v∗
t ut, d]∥+ max

g∈Kn

∥v∗
t ut−βg(v∗

t ut)∥
)

≤ εn

for all n ≥ 0.
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Proof. Without loss of generality, we may assume that both Fn and Gn
consist of contractions. Note that the set of all elements x ∈ Mβ(B) with
[x,D] ⊆ B forms a C∗-algebra. Because the distance from the path u to the
unit is uniformly bounded away from 2, we can apply functional calculus
and find a norm-continuous path of self-adjoints a : [0, 1] → Mβ(B) with
a0 = 0 and

max
0≤t≤1

∥at∥ < π, [at, D] ⊆ B, and ut = exp(iat), t ∈ [0, 1].

For convenience, let us define at = a1 for t ≥ 1.
By approximating the exponential function via its partial power series, it

is completely standard to show the following fact. For every ε > 0, there
exists δ > 0 such that the following properties hold for any pair of elements
c, d ∈ A in any Banach algebra A:
• If ∥c∥ ≤ 2π and ∥d∥ ≤ δ, then ∥ exp(c+ d) − exp(c)∥ ≤ ε.
• If ∥c∥, ∥d∥ ≤ π, then ∥[c, d]∥ ≤ δ implies ∥ exp(c) exp(d) − exp(c+d)∥ ≤ ε.
• If ∥c∥ ≤ 1 and ∥d∥ ≤ 2π, then ∥[c, d]∥ ≤ δ implies ∥[c, exp(d)]∥ ≤ ε.
• If ∥c∥ ≤ 1 and ∥d∥ ≤ 2π, then ∥dc∥ ≤ δ implies ∥(exp(d) − 1)c∥ ≤ ε.
For every n ≥ 0, we apply this fact to choose a constant δ = δn with εn/8 in
place of ε. By Lemma 1.14, it is possible to find an increasing approximate
unit hn ∈ B with maxg∈K ∥hn − βg(hn)∥ → 0 for every compact set K ⊆ G,
and moreover satisfying the quasicentrality condition

lim
n→∞

max
0≤t≤1

∥[at, hn]∥ = 0 = lim
n→∞

∥[d, hn]∥

for all d ∈ D. By linear interpolation, we may extend this sequence to an
increasing norm-continuous map of positive contractions h : [0,∞) → B
with the same asymptotic properties. In particular we observe

lim
s→∞

max
g∈K

∥(at − hsaths) − βg(at − hsaths)∥

= lim
s→∞

max
g∈K

∥(1 − h2
s) (at − βg(at))︸ ︷︷ ︸

∈B

∥ = 0

for every compact set K ⊆ G, and uniformly over all t ∈ [0, 1]. Similarly
one has for all d ∈ D +B that

lim
s→∞

max
g∈K

∥
[
(at − hsaths), d

]
∥

= lim
s→∞

max
g∈K

∥(1 − h2
s) [at, d]︸ ︷︷ ︸

∈B

∥ = 0

for every compact set K ⊆ G and uniformly over all t ∈ [0, 1].
By reparameterizing h and/or cutting away an initial segment of the in-

terval, if necessary, we may ensure that the following estimates are true for
every n ≥ 0:
(e4.1) sup

n≤t≤n+1
max
b∈Fn

∥(at − htatht)b∥ ≤ δn;

(e4.2) sup
n≤t≤n+1

∥[at, htatht]∥ ≤ δn;

(e4.3) sup
n≤t≤n+1

max
g∈Kn

∥(at − htatht) − βg(at − htatht)∥ ≤ δn;
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(e4.4) sup
n≤t≤n+1

max
d∈Gn

∥
[
(at − htatht), d

]
∥ ≤ δn.

We define vt = exp(ihtatht) ∈ U(1 + B) and claim that this satisfies the
required properties. Since a0 = 0, we have v0 = 1. Due to the choice of the
constant δn, we can compute for all n ≥ 0, t ∈ [n, n+ 1] and b ∈ Fn that

v∗
t utb = exp(−ihtatht) exp(iat)b

(e4.2)=εn/8 exp(i(at − htatht))b
(e4.1)=εn/8 b.

Furthermore we compute for all n ≥ 0, t ∈ [n, n+ 1] and g ∈ Kn that

βg(v∗
t ut)

(e4.2)=εn/8 βg(exp(i(at − htatht))) = exp(iβg(at − htatht))
(e4.3)=εn/8 exp(i(at − htatht))

(e4.2)=εn/8 v
∗
t ut.

Lastly we compute for all n ≥ 0, t ∈ [n, n+ 1] and d ∈ Gn that

[v∗
t ut, d] (e4.2)=2εn/8

[
exp(i(at − htatht)), d

] (e4.4)=εn/8 0.

The claim follows via the triangle inequality. □

Lemma 4.3. Let B be a σ-unital C∗-algebra with an action β : G↷ B. Let
D ⊆ M(B) be a separable C∗-subalgebra. Let U : [0,∞) → U(Mβ(B)) be a
norm-continuous path of unitaries with U0 = 1 and [Ut, D] ⊆ B for all t ≥ 0.
Then there exists a norm-continuous path of unitaries v : [0,∞) → U(1+B)
with v0 = 1 such that

lim
t→∞

∥(v∗
tUt − 1)b∥ = 0 = lim

t→∞
∥
[
v∗
tUt, d

]
∥

for all b ∈ B and d ∈ D, and

lim
t→∞

max
g∈K

∥v∗
tUt − βg(v∗

tUt)∥ = 0

for every compact set K ⊆ G.

Proof. Since B is σ-unital, it has a strictly positive element h ∈ B, which we
fix for the rest of the proof. The first of the above limit properties holds if
it holds for h in place of b. Using that D is separable, we choose a compact
subset G ⊂ D of contractions whose linear span is dense in D. The second
of the above limit properties holds if it holds for d ∈ G.

By using the fact that U is uniformly continuous on bounded intervals,
we are able to find an increasing sequence 0 = t0 < t1 < t2 < . . . of real
numbers with tn → ∞ such that

max
tn≤s≤tn+1

∥Us − Utn∥ < 2, n ≥ 0.

After reparametrizing the path, if necessary, we may assume tn = n for all
n ≥ 1. Let us define for every n ≥ 0 a norm-continuous path of unitaries
U (n) : [0,∞) → U(Mβ(B)) via

U
(n)
t =


Un+1U

∗
n , t > n+ 1

UtU
∗
n , n ≤ t ≤ n+ 1

1 , t < n.
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By construction we thus have for all n ≥ 0 and t ≤ n+ 1 the equality

Ut = U
(n)
t U

(n−1)
t · · ·U (0)

t .

LetKn ⊆ G be an increasing sequence of compact sets withG =
⋃
n≥0 int(Kn).

We consider the compact sets Fk
n ⊂ B for natural numbers n ≤ k via

Fk
n =

{
U

(n−1)
t · · ·U (0)

t h | t ≤ k
}

∪
{
U

(n−1)
t · · ·U (j+1)

t (U (j)
t βg(U (j)

t )∗ − 1) | 0 ≤ j < n, g ∈ Kk, t ≤ k
}

∪
{
U

(n−1)
t · · ·U (j+1)

t (βg(U (j)
t )U (j)∗

t − 1) | 0 ≤ j < n, g ∈ Kk, t ≤ k
}
.

Here we implicitly follow the convention that the product U (n−1)
t · · ·U (j+1)

t is
understood as the unit when j = n−1, as the upper indices are supposed to
descend from left to right and we end up with the empty product. Note that
since the unitary path U takes values in Mβ(B), the elements U (j)

t βg(U (j)
t )∗

and βg(U (j)
t )U (j)∗

t appearing in this set belong to 1 +B, hence indeed Fk
n ⊂

B. We also consider the compact subsets Gkn ⊂ D +B for n ≤ k via

Gkn =
{
U

(n−1)
t · · ·U (0)

t dU
(0)∗
t · · ·U (n−1)∗

t | d ∈ G, t ≤ k + 1
}
.

We apply Lemma 4.2 for every n ≥ 0 and choose a unitary path v(n) :
[0,∞) → U(1 + B) such that v(n)|[0,n] = 1 and for every natural number
k ≥ n, we have (note that for k < n, the norms appearing here are zero)

(e4.5) max
k≤t≤k+1

max
b∈Fk

n

∥(v(n)∗
t U

(n)
t − 1)b∥ ≤ 2−(n+k);

(e4.6) max
k≤t≤k+1

max
g∈Kk

∥(v(n)∗
t U

(n)
t ) − βg(v(n)∗

t U
(n)
t )∥ ≤ 2−(n+k);

(e4.7) max
k≤t≤k+1

max
d∈Gk

n

∥
[
v

(n)∗
t U

(n)
t , d

]
∥ ≤ 2−(n+k);

Finally, we define v : [0,∞) → U(1 +B) via

vt = v
(n)
t v

(n−1)
t · · · v(0)

t , n ≤ t ≤ n+ 1.

We claim that this map satisfies the desired properties.
We first estimate for all t ∈ [k, k + 1] that

∥(v∗
tUt − 1)h∥

= ∥(v(0)∗
t v

(1)∗
t · · · v(k)∗

t U
(k)
t U

(k−1)
t · · ·U (0)

t − 1)h∥
(e4.5)

≤ 2−2k + ∥(v(0)∗
t v

(1)∗
t · · · v(k−1)∗

t U
(k−1)
t U

(k−2)
t · · ·U (0)

t − 1)h∥
(e4.5)

≤ 2−2k + 2−(2k−1) + ∥(v(0)∗
t v

(1)∗
t · · · v(k−2)∗

t U
(k−2)
t U

(k−3)
t · · ·U (0)

t − 1)h∥

≤ . . . ≤
2k∑
ℓ=k

2−ℓ ≤ 21−k.
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Similarly we have for all t ∈ [k, k + 1] and d ∈ G that
∥
[
v∗
tUt, d

]
∥

= ∥d− v∗
tUtdU

∗
t vt∥

= ∥d− v
(0)∗
t · · · v(k)∗

t U
(k)
t · · ·U (0)

t dU
(0)∗
t · · ·︸ ︷︷ ︸

∈Gk
k

U
(k)∗
t v

(k)
t · · · v(0)

t ∥

(e4.7)
≤ 2−2k

+∥d− v
(0)∗
t · · · v(k−1)∗

t U
(k−1)
t · · ·U (0)

t dU
(0)∗
t · · ·︸ ︷︷ ︸

∈Gk
k−1

U
(k−1)∗
t v

(k−1)
t · · · v(0)

t ∥

(e4.7)
≤ 2−2k + 2−(2k−1)

+∥d− v
(0)∗
t · · · v(k−2)∗

t U
(k−2)
t · · ·U (0)

t dU
(0)∗
t · · ·U (k−2)∗

t v
(k−2)
t · · · v(0)

t ∥

≤ . . . ≤
2k∑
ℓ=k

2−ℓ ≤ 21−k.

Now we want to prove for every g ∈ Kk the inequality
∥v∗
tUt − βg(v∗

tUt)∥ ≤ 3 · 21−k, t ∈ [k, k + 1].
This would clearly finish the proof. For convenience, let us set

X
(j,k)
t = v

(k−j)∗
t · · · v(k)∗

t U
(k)
t · · ·U (k−j)

t for 0 ≤ j ≤ k and t ∈ [0,∞).

Note that X(k,k)
t = v∗

tUt when t ∈ [k, k + 1]. We will show inductively that
for all natural numbers j ≤ k, all t ∈ [k, k + 1] and g ∈ Kk we have the
inequality

(e4.8) ∥X(j,k)
t − βg(X(j,k)

t )∥ ≤ 3
2k∑

n=2k−j
2−n.

The case j = k then evidently yields the desired inequality and would com-
plete the proof. For all the computations below, let us fix some k ≥ 0,
g ∈ Kk and t ∈ [k, k + 1]. We first observe that when j < k, we have

∥(X(j,k)
t − 1)

(
U

(k−j−1)
t βg(U (k−j−1)

t )∗ − 1
)
∥

= ∥(v(k−j)∗
t · · · v(k)∗

t U
(k)
t · · ·U (k−j)

t − 1)
(
U

(k−j−1)
t βg(U (k−j−1)

t )∗ − 1
)
∥

(e4.5)
≤ 2−2k

+∥(v(k−j)∗
t · · · v(k−1)∗

t U
(k−1)
t · · ·U (k−j)

t − 1)
(
U

(k−j−1)
t βg(U (k−j−1)

t )∗ − 1
)
∥

(e4.5)
≤ 2−2k + 2−(2k−1)

+∥(v(k−j)∗
t · · · v(k−2)∗

t U
(k−2)
t · · ·U (k−j)

t − 1)
(
U

(k−j−1)
t βg(U (k−j−1)

t )∗ − 1
)
∥

≤ . . .

≤
2k∑

n=2k−j
2−n ≤ 2−(2k−j−1).

In a completely analogous fashion we may also estimate

∥
(
U

(k−j−1)
t βg(U (k−j−1)

t )∗ − 1
)
(X(j,k)

t − 1)∥
= ∥(X(j,k)∗

t − 1)
(
βg(U (k−j−1)

t )U (k−j−1)∗
t − 1

)
∥

= ∥(1 −X
(j,k)
t )

(
βg(U (k−j−1)

t )U (k−j−1)∗
t − 1

)
∥ ≤ 2−(2k−j−1).
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These two estimates lead to the inequality

∥X(j,k)
t U

(k−j−1)
t βg(U (k−j−1)

t )∗ − U
(k−j−1)
t βg(U (k−j−1)

t )∗X
(j,k)
t ∥

= ∥(X(j,k)
t − 1)

(
U

(k−j−1)
t βg(U (k−j−1)

t )∗ − 1
)

−
(
U

(k−j−1)
t βg(U (k−j−1)

t )∗ − 1
)
(X(j,k)

t − 1)∥
≤ 2 · 2−(2k−j−1).

Let us now prove (e4.8) by induction over j ≤ k. We begin with j = 0. Here
we directly have ∥(v(k)∗

t U
(k)
t ) − βg(v(k)∗

t U
(k)
t )∥ ≤ 2−2k by (e4.6), so there is

nothing to show. Let us proceed with the induction step, and assume that
the claimed estimate (e4.8) holds for some natural number j < k. In order
to get it for j + 1, we use the induction hypothesis and the other estimate
from above and compute

∥X(j+1,k)
t − βg(X(j+1,k)

t )∥
= ∥v(k−j−1)∗

t X
(j,k)
t U

(k−j−1)
t − βg

(
v

(k−j−1)∗
t X

(j,k)
t U

(k−j−1)
t

)
∥

≤ 3
2k∑

n=2k−j
2−n

+∥v(k−j−1)∗
t X

(j,k)
t U

(k−j−1)
t − βg(v(k−j−1)∗

t )X(j,k)
t βg(U (k−j−1)

t )∥

= 3
2k∑

n=2k−j
2−n

+∥X(j,k)
t U

(k−j−1)
t βg(U (k−j−1)

t )∗ − v(k−j−1)βg(v(k−j−1)∗
t )X(j,k)

t ∥
(e4.6)

≤ 2−(2k−j−1) + 3
2k∑

n=2k−j
2−n

+∥X(j,k)
t U

(k−j−1)
t βg(U (k−j−1)

t )∗ − U
(k−j−1)
t βg(U (k−j−1)

t )∗X
(j,k)
t ∥

≤ 3
2k∑

n=2k−j−1
2−n.

As pointed out above, the proof is complete by considering j = k. □

The following two corollaries represent the main technical achievement of
this section.

Corollary 4.4. Let A be a separable C∗-algebra and B a σ-unital C∗-algebra.
Let α : G↷ A and β : G↷ B be two actions, and let

(φ,u), (ψ, v) : (A,α) → (M(B), β)

be two cocycle representations. Suppose that there exists a norm-continuous
path of unitaries U : [0,∞) → U(D(φ,u)) with U0 = 1 and

lim
t→∞

(
∥ψ(a) − Utφ(a)U∗

t ∥ + max
g∈K

∥vg − Utugβg(Ut)∗∥
)

= 0

for all a ∈ A and every compact set K ⊆ G. Then (φ,u) and (ψ, v) are
strongly asymptotically unitarily equivalent.

Proof. By definition of the C∗-algebra D(φ,u) ⊆ M(B), we have Ut ∈
Mβu(B) and [Ut, φ(A)] ⊆ B for all t ≥ 0. Using Lemma 4.3 for βu in
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place of β and φ(A) in place of D, we may find a norm-continuous path of
unitaries v : [0,∞) → U(1 +B) with v0 = 1 such that

lim
t→∞

∥[v∗
tUt, φ(a)]∥ = 0

for all a ∈ A, and
lim
t→∞

max
g∈K

∥v∗
tUt − βug (v∗

tUt)∥ = 0

for every compact set K ⊆ G. This implies for all a ∈ A that
ψ(a) = lim

t→∞
Utφ(a)U∗

t = lim
t→∞

vt(v∗
tUt)φ(a)(v∗

tUt)∗v∗
t = lim

t→∞
vtφ(a)v∗

t .

Similarly we observe for all g ∈ G that
vg = lim

t→∞
Utugβg(Ut)∗ = lim

t→∞
Utβ

u

g (Ut)∗ug

= lim
t→∞

vt(v∗
tUt)βug (v∗

tUt)∗βug (vt)∗ug = lim
t→∞

vtugβg(vt)∗,

and this convergence is uniform over compact subsets of G. This shows that
v is a path of unitaries witnessing the claim that (φ,u) and (ψ, v) are indeed
strongly asymptotically unitarily equivalent. □

Corollary 4.5. Let A be a separable C∗-algebra and B a σ-unital C∗-algebra.
Let α : G↷ A and β : G↷ B be two actions, and let

(φ,u), (ψ, v) : (A,α) → (M(B), β)
be two cocycle representations. If (φ,u) and (ψ, v) are operator homotopic,
then they are strongly asymptotically unitarily equivalent.

5. The dynamical stable uniqueness theorem

Definition 5.1. Let (φ,u), (ψ, v) : (A,α) → (M(B), β) be two cocycle rep-
resentations. Suppose that there exists a unital inclusion O2 ⊆ M(B)β.
Then we call (φ,u) and (ψ, v) stably properly (resp. strongly) asymptotically
unitarily equivalent, if there exists a cocycle representation (κ, x) : (A,α) →
(M(B), β) such that (φ,u) ⊕ (κ, x) is properly (resp. strongly) asymptoti-
cally unitarily equivalent to (ψ, v) ⊕ (κ, x).

Lemma 5.2. Suppose β is strongly stable. Let (φ,u), (ψ, v) : (A,α) →
(M(B), β) be two cocycle representations. If (φ,u) and (ψ, v) are prop-
erly asymptotically unitarily equivalent, then they form an (α, β)-Cuntz pair(
(φ,u), (ψ, v)

)
that is homotopic to

(
(0,1), (0,1)

)
.

Proof. Let {ut}t≥1 ⊂ U(1 + B) be a continuous unitary path witnessing
the assumption. Under the quotient map M(B) → Q(B), one trivially has
ūt = 1 for all t ≥ 1, so the relation limt→∞ ∥ψ(a) − utφ(a)u∗

t ∥ = 0 implies
ψ̄(a) = φ̄(a) for all a ∈ A. In other words, one has ψ(a) − φ(a) ∈ B for
all a ∈ A. By repeating this argument for the cocycles, we likewise see that
vg−ug ∈ B for all g ∈ G. Hence (φ,u) and (ψ, v) indeed form a Cuntz pair.

If we set

(φ(t),u(t)) =
{

Ad(u1/t) ◦ (φ,u) , t ∈ (0, 1]
(ψ, v) , t = 0,

then [0, 1] ∋ t 7→
(
(φ(t),u(t)), (ψ, v)

)
defines a homotopy between a degener-

ate Cuntz pair and the pair
(

Ad(u1) ◦ (φ,u), (ψ, v)
)
. Since u1 ∈ U(1 +B),
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the latter Cuntz pair is homotopic to
(
(φ,u), (ψ, v)

)
by Proposition 1.13,

which with Lemma 1.10 finishes the proof. □

The following generalizes [9, Lemma 3.4].

Lemma 5.3. Suppose that there exists a unital inclusion O2 ⊆ M(B)β. Let
four cocycle representations

(φ,u), (ψ, v), (ρ,w), (θ, x) : (A,α) → (M(B), β)
be given. If (φ,u) ⊕ (ρ,w) is strongly asymptotically unitarily equivalent to
(ψ, v) ⊕ (ρ,w) and (ρ,w) ∼asymp (θ, x), then it follows that (φ,u) ⊕ (θ, x) is
strongly asymptotically unitarily equivalent to (ψ, v) ⊕ (θ, x).

Proof. Let {ut}t≥1 ⊂ U(1 + B) be a norm-continuous path with u0 = 1
witnessing that (φ⊕ρ,u⊕w) and (ψ⊕ρ, v⊕w) are strongly asymptotically
unitarily equivalent. Let {vt}t≥1 ⊂ U(M(B)) be a norm-continuous path
witnessing (ρ,w) ∼asymp (θ, x) in the sense of Definition 3.1. Then evidently
wt = (1 ⊕ vt)ut(1 ⊕ v∗

t ) defines a norm-continuous unitary path in U(1 +B)
with w0 = 1, and it satisfies for all a ∈ A that

∥(ψ ⊕ θ)(a) − wt(φ⊕ θ)(a)w∗
t ∥

= ∥(ψ ⊕ θ)(a) − (1 ⊕ vt)ut(1 ⊕ v∗
t )(φ⊕ θ)(a)(1 ⊕ vt)u∗

t (1 ⊕ v∗
t )∥

≤ ∥v∗
t θ(a)vt − ρ(a)∥ + ∥(ψ ⊕ θ)(a) − (1 ⊕ vt)ut(φ⊕ ρ)(a)u∗

t (1 ⊕ v∗
t )∥

≤ ∥θ(a) − vtρ(a)v∗
t ∥ + ∥(ψ ⊕ ρ)(a) − ut(φ⊕ ρ)(a)u∗

t ∥
+∥(ψ ⊕ θ)(a) − (1 ⊕ vt)(ψ ⊕ ρ)(a)(1 ⊕ v∗

t )∥
≤ 2∥θ(a) − vtρ(a)v∗

t ∥ + ∥(ψ ⊕ ρ)(a) − ut(φ⊕ ρ)(a)u∗
t ∥ → 0.

Likewise we see for every compact set K ⊆ G that
max
g∈K

∥(vg ⊕ xg) − wt(ug ⊕ xg)βg(wt)∗∥

= max
g∈K

∥(vg ⊕ xg) − (1 ⊕ vt)ut(ug ⊕ v∗
t xgβg(vt))βg(ut)∗(1 ⊕ βg(vt)∗)∥

≤ max
g∈K

(
∥v∗
t xgβg(vt) − wg∥

+∥(vg ⊕ xg) − (1 ⊕ vt)ut(ug ⊕ wg)βg(ut)∗(1 ⊕ βg(vt)∗)∥
)

≤ max
g∈K

(
∥xg − vtwgβg(vt)∗∥ + ∥(vg ⊕ wg) − ut(ug ⊕ wg)βg(ut)∗∥

+∥(vg ⊕ xg) − (1 ⊕ vt)(vg ⊕ wg)(1 ⊕ βg(vt)∗)∥
)

= max
g∈K

(
2∥xg − vtwgβg(vt)∗∥ + ∥(vg ⊕ wg) − ut(ug ⊕ wg)βg(ut)∗∥

)
→ 0.

This shows our claim. □

We finally have everything ready to state and prove our main result:

Theorem 5.4. Let A be a separable and B a σ-unital C∗-algebra, and let G
be a second-countable locally compact group. Let α : G↷ A and β : G↷ B
be two continuous actions. Let

(φ,u), (ψ, v) : (A,α) → (M(B ⊗ K), β ⊗ idK)
be two cocycle representations that form an anchored (α, β)-Cuntz pair.
Then the following are equivalent:

(i)
[
(φ,u), (ψ, v)

]
= 0 in KKG(α, β).

(ii) (φ,u) and (ψ, v) are stably operator homotopic.
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(iii) (φ,u) and (ψ, v) are stably strongly asymptotically unitarily equiva-
lent.

(iv) (φ,u) and (ψ, v) are stably properly asymptotically unitarily equiva-
lent.

If B is separable, then these statements are further equivalent to
(v) For every absorbing cocycle representation

(θ, y) : (A,α) → (M(B ⊗ K), β ⊗ idK),
one has that (φ,u) ⊕ (θ, y) is strongly asymptotically unitarily equiv-
alent to (ψ, v) ⊕ (θ, y).

Proof. The implication (i)⇒(ii) is Theorem 2.9. The implication (ii)⇒(iii) is
clearly a consequence of Corollary 4.5. The implication (iii)⇒(iv) is trivial,
and (iv)⇒(i) follows from Lemma 5.2.

Now let us also assume that B is separable. By Theorem 3.16, there exists
an absorbing cocycle representation (θ, y) as in the statement, one of which
we shall now choose. Therefore clearly (v)⇒(iii). So it suffices to show
(iii)⇒(v). Assuming that (φ,u) and (ψ, v) are stably strongly asymptoti-
cally unitarily equivalent, let (κ, x) : (A,α) → (M(B ⊗ K), β ⊗ idK) be any
cocycle representation such that (φ,u) ⊕ (κ, x) is strongly asymptotically
unitarily equivalent to (ψ, v) ⊕ (κ, x). Then (φ,u) ⊕ (κ, x) ⊕ (θ, y) is also
strongly asymptotically unitarily equivalent to (ψ, v) ⊕ (κ, x) ⊕ (θ, y). Since
(θ, y) is absorbing, we have (κ, x) ⊕ (θ, y) ∼asymp (θ, y). Hence the claim
follows directly from Lemma 5.3. The proof is complete. □
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