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THE TIME-DEPENDENT SCHRODINGER EQUATION

JESSE GELL-REDMAN, SEAN GOMES, AND ANDREW HASSELL

ABSTRACT. We study the time-dependent Schrédinger operator P = Dy + Ay +
V acting on functions defined on R™*!, where, using coordinates z € R™ and
t € R, D, denotes —i0, Ay is the positive Laplacian with respect to a time
dependent family of non-trapping metrics g:;(z,t)dz‘dz’ on R™ which are equal
to the Euclidean metric outside of a compact set in spacetime, and V = V(z,t)
is a potential function which is also compactly supported in spacetime. In this
paper we introduce a new approach to studying P, by finding pairs of Hilbert
spaces between which the operator acts invertibly.

Using this invertibility it is straightforward to solve the ‘final state problem’
for the time-dependent Schrodinger equation, that is, find a global solution u(z, t)
of Pu = 0 having prescribed asymptotics as t — +00. These asymptotics are of

the form

u(z, ) ~ (),
where fy, the ‘final state’ or outgoing data, is an arbitrary element of a suitable
function space W¥*(R™); here k is a regularity parameter simultaneously mea-
suring smoothness and decay at infinity. We can of course equally well prescribe
asymptotics as t — —oo; this leads to incoming data f—. We consider the ‘Poisson
operators’ P+ : f+ — w and precisely characterise the range of these operators
on WF (R™) spaces. Finally we show that the scattering map, mapping f— to f4,
preserves these spaces.
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1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. Introduction. In this article we develop Fredholm theory for the time-depend-
ent Schrodinger equation on R™*! = R? x R;, with time-dependent coefficients. We
begin by studying the inhomogeneous problem

10
Putert) = (g1 + gy + VD) ) a8 = (a1 (1)
where Ay ;) denotes the positive Laplacian with respect to the metric g(t), and we
assume that

gij(t) — 0;; and V' are compactly supported in spacetime, and
g(t) is a nontrapping metric on R" for every time t. (1.2)

The condition of compact support is chosen for convenience; it could be weakened to
symbolic-type decay estimates (in spacetime) of g;; — d;; and the potential function
V. The stronger assumption is made in order to introduce the Fredholm approach
to the time-dependent Schrodinger operator in a relatively simple, but still variable-
coefficient, setting. We do not make the assumption that V is real valued.

It was proven by Lascar in [25] that solutions u to (1.1) satisfy a propagation of
singularities result which is analogous to the classical theorem of Hérmander [16]
but adapted to the parabolic nature of the equation, i.e. where time derivatives are
first order but spatial derivatives are second order, so both D; and A, contribute to
the principal symbol of P. Lascar’s result implies in particular that if Pu is smooth,
then singularities of u propagate along g(t)-geodesics in space, at a fixed time ¢, i.e.
with ‘infinite speed’.

In this paper we prove microlocal propagation estimates for P that are valid
uniformly out to spacetime infinity. This is done by adapting propagation estimates,
including so-called ‘radial point estimates’, of Melrose [27] and Vasy [36] (which
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are themselves a microlocal version of the classical Mourre estimate [28]) to this
setting. In particular, we prove estimates for u in terms of v = Pu in weighted
parabolic Sobolev spaces H;;llr (R™*1), defined in Section 2, thus taking into account
both the (parabolic) regularity, as measured by s, and spacetime growth or decay, as
measured by [. One essential feature is that we need to work with variable spacetime
orders, which will vary ‘microlocally’, that is, vary in phase space not just physical
spacetime, as will be explained shortly. We will always use a sans-serif font such as
r to denote variable orders. We define, for arbitrary fixed differential order s and
suitable variable orders r4, Hilbert spaces Y%+ = Hgarri (R™1) and X%+ given by

X% = {u € HylF (R') | Pu € Hy M= (R}, (1.3)

par

with the corresponding inner products and norms. Our first main result is then the
following mapping property for P:

Theorem 1.1. Assume that g(t) and V satisfy the conditions above. For all s € R,
for each choice of sign & and all weight functions ry satisfying the conditions in
Section 5.2, the map

P xsrs o ysThretl (1.4)

1s invertible.

Theorem 1.1, proved in Section 6.1 below, implies the existence of two inverses
(which we will call propagators) of P, namely

P_;l . ys—l,r++1 — XS+

and

P—l . ys—17r,+1 XS,
These are in fact ‘forward’ and ‘backward’ propagators. To explain this, consider
v € CX(R"1). If one denotes by T the initial and final times of the support of v,

Ty =sup{t: 3(z,t) € suppv}, T = inf{t: I(z,t) € suppv},

there are two special solutions to (1.1), the forward solution u4 and the backward
solution u_, which are the unique solutions satisfying (respectively) suppuy C {t >
T_} and suppu_ C {t < T, }. The inverse mappings Py’ of (1.4), which we refer to
as the forward (+)/ backward (+) propagators, take v to P;lv =uy, P v =u_,
in this instance lying in X'®'™ for arbitrary s (since v is assumed smooth). The
asymptotic behavior of uy as t — £oo in the regions |z|/|t| < C is (see Section 6.3)

(it ()t o, H <0< (15)
where fi are Schwartz. The role of the spacetime decay/growth weight function ry
is precisely to allow only one of these behaviours; namely, for example choosing +,
the weight function ry is subject to a threshold condition which allow expansions
such as (1.5) for ¢ — +o00, but not such expansions as t — —oo. For r_, the reverse
is true. See Section 5.2 for the precise conditions on r.

Let us elaborate on how the variable spacetime orders ry allow or disallow ex-
pansions such as (1.5). Given fi € S(R™), we note that (1.5) is in the weighted
space (z,t) ' L?(R"*1) for [ < —1/2, but not for I = —1/2. The value —1/2 is thus a
threshold value; whether the spacetime weight is greater or less than this threshold
value determines whether (1.5) for f # 0 is possible for a function in the corre-
sponding weighted space. Microlocally the expression (1.5) is concentrated at the
‘outgoing radial set’ R4 for ¢ — +o0 and the ‘incoming radial set’ R_ for t — —o0;
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these are the limiting points of bicharacteristics of P at spacetime infinity, that is,
the initial/final points of bicharacteristics of P on the compactified phase space.
(By a bicharacteristic of P we mean an integral curve of the Hamilton vector field
of p = o(P) contained within the characteristic set char(P) = {p = 0}.) The key
property of the weight r is therefore that ry is less than —1/2 on R4 but greater
than —1/2 on R_, thereby allowing elements of X'*"+ to have asymptotics (1.5) as
t — +oo but not for t —+ —oo. For r_, the reverse is true.

The above discussion may give the impression that the ri could be chosen to
depend only on ¢, and therefore, these weights do not need to vary ‘microlocally’. In
fact, this is not the case. Along bicharacteristics at fibre-infinity (that is, where the
frequency variables are infinite), the time ¢ is fixed and can be any finite value, so the
value of ¢t cannot be used to distinguish between these two sets. What determines
whether we are at R4 is the relative orientation of the spatial variable z and its
dual variable ¢. Let 2 = z/|z| and ¢ = ¢/|¢|. At the incoming radial set, we have
Z- é = —1 while at the outgoing radial set, we have 2 - f = +41. Thus r4 need to
be functions of both z and ¢ (at least), and in particular, the weights must vary
nontrivially in phase space, not just in spacetime.

Theorem 1.1 immediately implies that we can solve the ‘final state problem’ with
prescribed outgoing data fy in the sense of (1.5). For now we only consider Schwartz
f+; in Theorem 1.3 we will treat distributional fi.

Theorem 1.2. Given f € S(R™) there is a unique solution to the equation Pu =0
with asymptotics (1.5) as t — +oo. Moreover, for every real s, and variable orders
ry satisfying the conditions in Section 5.2, u lies in the space

X5 4 - (1.6)

We write uw = Py f+ and refer to P4+ as the outgoing Poisson operator.

Similarly, given f_ € S(R™) there is a unique solution @ to Pu = 0, also lying
in (1.6), with asymptotics (1.5) as t — —oo. We write & = P_ f_ and call P_ the
mcoming Poisson operator.

See Section 6.3 for the simple proof in the case of Schwartz data. Thus, global
solutions to Pu = 0 do not lie in one or other of our function spaces, but in the sum
of the two. Given a (suitable) global solution, this decomposition is easily effected
using a microlocal partition of unity, Id = Q_ + @, where () is microlocally equal
to the identity near R_ and microlocally trivial near R. Then u = Q1u+ Q_u is
a decomposition such that QLu € X*"+.

One of the main goals of this work is to establish foundational theory for a mi-
crolocal/Fredholm approach to the nonlinear Schréodinger equation along the lines
of [10, 11] for the nonlinear Helmholtz equation, which in turn was inspired by works
[15], [8] on nonlinear wave equations. The first step in this direction has been taken
in [9]. To this end, we include module regularity estimates which typically arise in
microlocal approaches to nonlinear analysis. The notion of module regularity was
formalized in [12] although it goes back much further; for example, the definition of
Lagrangian distribution given by Hérmander in [17] (which he credits to Melrose) is
in terms of module regularity. In the present context, it is closely related to Klain-
erman’s vector field method [24]. Thus we also prove refined mapping properties
for P in which the spaces X*™, Y5~Lr++1 are replaced by spaces in which regular-
ity is measured with respect to iterated application of elements in the module of
operators which are characteristic on R4. We distinguish between the module N
of operators which are characteristic at both radial sets R4 simultaneously and the
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larger modules of operators M, and M_ vanishing at Ry and R_, respectively.
The module N' = M N M_ is generated (up to precomposition by globally elliptic
operators) by a finite collection of operators which correspond directly to the natu-
ral invariance properties of the free Schrodinger equation; these are the generators
of translation, of rotations, and of Galilean transformations. We let Hil;”’k denote

the elements of the space Hf,glr(R”H) with k orders of small module regularity and
 additional orders of module regularity with respect to M4 (see Definition 4.4).

Defining, analogously to (1.3), i’l;ﬁ’k = H35F and
Xi,l;n,k _ {U c Hil;n,k | Pu € Hifl,lJrl;n,k}’ (17)
then for suitable [ and k we also obtain a Hilbert space isomorphism
P stz,l;li,k s yifl,lJrl;n,k; (18)

see Proposition 6.3.

If k is at least 1, then it turns out that we can take the spacetime order [ in
(1.8) to be constant in the range —3/2 < | < —1/2. The reason for this is that
(choosing the + sign arbitrarily) the My module is elliptic at R_, so M4-module
regularity of order x > 1 in effect raises the spacetime regularity weight at R_ by
one, thus raising it above the threshold value of —1/2 (since ! > —3/2). On the other
hand, the regularity at R will still be below threshold (since [ < —1/2) as M is
characteristic there. Being able to take a constant spacetime order is advantageous
when proving multiplicative properties, as has been explained in [15], and will be
important in our planned future work on the nonlinear Schréodinger equation.

Moreover, the consideration of module regularity spaces enables us to prove a
precise scattering result in terms of natural spaces W¥(R") of incoming/outgoing
data of solutions to Pu = 0. Here k € Z is a regularity index, measuring both
smoothness and decay at infinity, and is such that NyWF(R") = S(R"™), while
UpWE(R?) = S’(R"). The WF(R") for k > 1 are themselves module regularity
spaces, relative to a module N induced by the small module N/ mentioned above
(see Section 7.1). In fact, these modules are such that the free Poisson operator
Po, i.e. the Poisson operator from Theorem 1.2 for the flat Euclidean metric with
V =0, intertwines N' and N. We then show that the Poisson operators P+ extend
from Schwartz space to all tempered distributions, and we precisely characterise the
range of Px on W¥(R"). In the theorem below, the weight functions ry are chosen
as in Section 5.2, in particular they are equal to —1/2 off a neighborhood of the
radial sets on the characteristic set:

Theorem 1.3. For k € N, the range of the Poisson operator P, on WF(R") is
precisely

{u c Xi/l"ﬁkao(RnJrl) 4 Xi/Qv"—§k70(Rn+l) ’ Pu = 0}?

i.e. that is, those elements of XY/ + XY/~ in the kernel of P having module
reqularity of order k.
For k < —1, the range of P on WF(R™) is precisely the elements of ker P in

{u e Hk+1/2,k71/2(]Rn+1) | Pu — 0}

par

Provided that k > 2, the global solution u = P4 fy admits the asymptotic (1.5) in
the precise sense that

lim (4mit)2e Py, (2t¢, 1) = f4(0) (1.9)

t—+o00

as a limit in the space <§>1/2+€Wk*2(R2).
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Remark 1.1. The difference between the two cases k > 0 and £ < —1 in Theorem 1.3
is that, in the latter case, the spacetime regularity k& — 1/2 is everywhere below
threshold, so nothing special happens at the radial sets, while in the former case,
the spacetime regularity must drop to below threshold at the radial sets. In both
cases, given a solution to Pu = 0, its outgoing data is in W¥(R") if and only if it is
microlocally in H{f;l/ 2h=1/2 (R™*1) away from the radial sets.

Moreover, we show that the scattering map, which maps the incoming data f_ of
global solutions u to the outgoing data f,, preserves the spaces WF(R"):

Theorem 1.4. The scattering map S, initially defined for f— € S(R™), extends to
a bounded map from WE(R™) to itself for each k € Z.

1.2. Parabolic calculus. We begin by developing the calculus of parabolic pseu-
dodifferential operators on R™T!. These are quantizations of symbols Sg’rl(R"H),
of fibre (or differential) order m and spacetime order [, defined using the stan-
dard spacetime weight function (1 4 |z|? + ¢2)!/2 and the parabolic weight function
(1+ |¢[* + 72)Y/* in the dual variables — see (2.2) for the precise definition. Thus,
unlike usual pseudodifferential operators, classical parabolic pseudodifferential op-
erators do not have principal symbols that are homogeneous functions on 7, { in the
standard sense but instead are homogeneous with respect to the parabolic scaling

(¢, 1) = (cC, 1), e>0. (1.10)

In addition, the behavior in the spacetime variables (z, t) is assumed to be uniformly
symbolic in the usual sense. All of this is accomplished through the introduction of
radial compactification of spacetime and parabolic compactification of the scatter-
ing cotangent bundle, SCT;ar(R”+1). As in other Fredholm analysis of non-elliptic
operators, it is convenient to have variable order Sobolev spaces at our disposal, and
in our case, it is only necessary to have variable spacetime decay order. We thus
define spaces of pseudodifferential operators, Upa, (R™F1), for constant s € R and r a
classical symbol of order (0,0) (see Definition 2.3). Here s is the order of (parabolic)
differential regularity and r is the spacetime decay order. Then choosing an elliptic
and invertible element A of this space, we define

Her = {ue HMN | Au e L2}, (1.11)

par par

for any sufficiently large M, N. In this space, the (parabolic) differential order is
fixed at s, but the order of decay at spacetime infinity varies microlocally.

The Schrédinger operator is a differential operator of order (2,0) lying in this
parabolic calculus, whose characteristic set char(P) contains two disjoint ‘radial
sets’ R4+ mentioned above. These are submanifolds of sources (—) and sinks (+)
for the rescaled Hamilton flow on the characteristic set char(P). We show that
this parabolic calculus enjoys structures and features similar to those of Melrose’s
scattering calculus, including extensions of the notions of characteristic set and
rescaled-Hamilton flow to the boundaries, introduced by compactification, at both
spacetime and fiber infinity. As in the scattering calculus, this allows one to formu-
late and prove propagation estimates, including at the radial sets R, uniformly up
to spacetime and fibre infinity. By adapting positive commutator estimates intro-
duced originally by Hérmander, and developed by Melrose [27] and Vasy [36], to the
parabolic calculus, we prove microlocal propagation estimates for P in each region
of phase space, which we put together to obtain global Fredholm estimates. These
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take the form, in the setting of Theorem 1.1,

el o < c(yypuHH;;l,r+H + uuHH%N), we XS (1.12)
together with the dual estimate
lull oo < (Pl s + il e ), we 20 (113)
par par ar

Here s is arbitrary and M, N should be thought of as very negative, so that Hpay"
embeds compactly into H%}N (thus, we require M < s and N < infry, and simi-
larly for the second estimate). For convenience, we assume here that the potential
function V is real, so that P = P*. As shown by Vasy, these estimates imply that
P is a Fredholm map from

S,r s—1,ry+1 s—1,ry+1
{ue HyjF | Pue Hy o™ }—>Hpar £

par

that is, between X*™+ and Y*~1#+! in our notation. Moreover, the index of P,
mapping between these spaces, is zero. So P is invertible between these spaces if
and only if its null space is trivial. This triviality is easy to show by considering the
evolution in time of the spatial L? norm of global solutions — see Section 6.1.

1.3. Relation to previous literature. There have been many approaches to solv-
ing variable-coefficient time-dependent Schrodinger equations, including via ODE
methods in Banach spaces [22], approximating Feynman integrals [7], via oscillatory
integrals [34, 21, 18, 13] or via the FBI transform (e.g. [32]). Our approach is, to
the best of our knowledge, essentially different to any previous method for treating
the time-dependent Schrodinger equation, although inspired by previous Fredholm
treatments of non-elliptic problems for the wave equation [36, 2, 15, 8] and the
Helmholtz equation [11]. The first example of Fredholm theory used to treat a non-
elliptic problem appears to be Faure and Sjostrand’s treatment of Anosov flows in [6].
This appears at first sight to be very different in nature to subsequent treatments,
but Dyatlov and Zworski [5] showed that this example in fact fits into the general
framework set out by Vasy in [36]. Fredholm theory in a Lorentzian (hence non-
elliptic) setting was considered by Bar and Strohmaier in [1]. Very recently, Sussman
has used microlocal propagation estimates to study the Klein-Gordon equation [33].

Our work builds off the results of Lascar on inhomogeneous pseudodifferential
operators and the geometric microlocal scattering theory of Melrose [25, 27]. The
former develops a general theory of operators with inhomogeneous symbols, and
extends many of the standard structures and theorem in microlocal analysis to these
operators, including propagation of singularities. Lascar’s work is local in nature,
and does not lead directly to quantitative global estimates. The global microlocal
perspective imparts exactly that; as in Melrose’s work, the notion of (parabolic)
wavefront set of distributions on spacetime can be extended up to and including the
introduced boundary via radial compactification. We also use the module regularity
formalism introduced by the third author with Melrose and Vasy in [12].

There is a vast literature on scattering theory for the Schrodinger equation, that
we will not attempt to discuss here. See for example the monographs [29], [40, 41]
or [3]. Relatively little of this literature treats the case of time dependent metrics
or potentials. Yafaev [19, 39] wrote several studies on wave operators for time-
dependent potentials (including periodic potentials), and Chapter 3 of [3] is devoted
to time-decaying potentials. Rodnianski and Schlag [30] considered rough and time-
dependent potentials, and more recently Soffer and Wu [31] proved local decay for
NLS with time-dependent potentials.
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Asymptotic decay of solutions to Schrédinger’s equation is a widely studied topic,
going back at least to Jensen and Kato [20]. There, as in the general results on
the scattering operator in [23], the Hamiltonians under consideration are time-
independent.

This work is intended to be a foundation for a wide-ranging program of research
into nonlinear Schrédinger operators with nonlinearity polynomial in 4 and u. We
expect that our method will be advantageous for analyzing the large-time asymp-
totics of solutions. Indeed, combining the linear theory in the present work with
a multiplication result for module regularity spaces, along the lines of [11] in the
Helmbholtz case, has led directly to a small-data result for NLS [9]. We expect large
data results in the defocusing case should be achievable by combining our techniques
with a priori estimates on solutions provided by Strichartz or Morawetz estimates.
In the focusing case, we anticipate that the method — after some further develop-
ment — will be effective in analyzing the interaction of solitons and radiation. This
will require developing a Fredholm approach to ‘three-body-type’ potentials, which
is a topic of independent interest and one currently being pursued.

1.4. Structure of the paper. In Section 2, we discuss the compactification of
phase space and set up the parabolic scattering calculus. We obtain standard results
for composition, L?-boundedness for zeroth order operators, and elliptic parametri-
ces, and define weighted parabolic Sobolev spaces including variable order weights.

In Section 3, we discuss the geometry of the characteristic variety char(P) in our
compactified phase space, and particularly properties of the Hamilton vector field
relative the radial sets R.. This geometry, particularly the fact that R_ is a source,
and R4 a sink, for the (rescaled) bicharacteristic flow, is crucial for the estimates
in Section 5.

In Section 4 we introduce the modules M+ and N with respect to which we shall
prove module regularity estimates, and derive a basic positivity property that makes
the iterative module regularity argument possible.

In Section 5 we give the microlocal propagation estimates that we need to assemble
the global Fredholm estimate, as in (1.12), (1.13). These estimates are actually
proved in Section 8 for general operators in the calculus obeying some structural
conditions.

In Section 6 we show invertibility of P both in the case of weighted parabolic
Sobolev spaces with variable weights, and in the case of module regularity spaces.
This establishes Theorem 1.1. We deduce solvability of the final state problem for
Schwartz outgoing data, proving Theorem 1.2.

In Section 7, we define the spaces W¥(R™) of incoming and outgoing boundary
data, and analyze the Poisson operator and scattering map on these spaces, proving
Theorems 1.3 and 1.4.

In the appendix, Section 8, we prove various propagation estimates which we
apply to P, including radial points estimates and module regularity propagation
estimates. To maximize the utility of these results, we work in a general setting
analogous to that of [38], in which we assume only that the operator under consid-
eration has a non-degenerate characteristic set with smooth submanifolds of radial
sets.

1.5. Acknowledgements. The authors thank Andras Vasy and Peter Hintz for
their encouragement and for several enlightening conversations. They also thank
MATRIX for its hospitality during the workshop “Hyperbolic Differential Equations
in Geometry and Physics” during April 2022.
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2. SCATTERING CALCULUS AND PARABOLIC SCATTERING CALCULUS

2.1. Definition of the parabolic scattering calculus. In order to make use of
propagation estimates in our present setting, it is necessary for us to work with a
calculus of pseudodifferential operators which contains P = D; + A, Dy = —i0; as
an operator of principal type.

Such a calculus must be anisotropic, so that Dy and A can be viewed as operators
of the same order. Anisotropic calculi with this property are considered in [25], [16],
as well as propagation estimates at “interior” points. We shall require a “scattering”
(in the sense of Melrose) version of this calculus in order to obtain propagation
estimates along bicharacteristics lying in the boundary of the radial compactification
(in each factor) of T*R™+1 & Rn+1 x RA+L,

We denote the elements of T*R"*! as (z,t,(,7) where z,{ € R® and t,7 € R. Our
parabolic pseudodifferential calculus will consist of operators which are quantizations
of symbols defined with respect to an anisotropic weight function R = R((,7),
defined by

R*=|¢*+7% R>0. (2.1)

Definition 2.1. For m,l € R, a € C°°(T*R"*!), define the seminorms,

Ha”gggrl,]\/ = Z sup

+1
o +k-+|8]+j<n T"R"

(2, )~ Ul=R Ry == VAI=20 920 9 Dl a2, 1, ¢, ) |

We denote the Fréchet space defined by these seminorms by

S{Qﬁ(T*RnH) = {a € C®(T*R") : HaHS}Z}l,N < 00, for all N € Ny}. (2.2)

This is a statement about decay of a and its derivatives in both the spacetime
and momentum variables. In the momentum variables, the parabolic nature of the
calculus is encoded by the use of the ‘parabolic radial variable’ R on the RHS.
Note also that differentiation in 7 produces additional decay ~ (R)~2? compared
to (R)~! produced by differentiation in (. We remark that R is comparable to
max({¢), (/|7])). Thus, for example, an a € Spa grows at most like |7|*/2 in the
region |¢|?/|7| < 2 and at most like || in the region |7|/[¢|? < 2.

Note that the residual symbol space is exactly the Schwartz functions:

S—oo,—oo(T*Rn—l—l) — mSm,l(T*Rn—l—l) _ S(Rn+1 > Rn—i—l)'

par par
m,l

A careful development of the local properties of the pseudodifferential calculus ob-
tained by quantizing these symbols can be found in [25], [16]. We briefly summarize
some of its properties.

Definition 2.2. The class \I/gg;rl(R”H) of parabolic pseudodifferential operators cor-
responding to Sg;’rl(T*R"“) are the operators Op(a) with Schwartz kernels

Op(a)(z,t,2',t') = (2#)_”_1/ G2 =g (5 ¢ ¢ 7 dC dr (2.3)

Rn+1

for some a € S&’!(T*R”H), where Op denotes left quantization and the integral
(2.3) is interpreted in the distributional sense.

We also denote Diffgglf (R™1) denote the set of differential operators in \I'g;[ﬁ (R,
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FiGURE 1. The radially compactified spacetime. The function
ppase = (1 4 2 + |2|?)~1/2 defines (i.e. vanishes at) spacetime in-
finity. The radial set R4 lies over the top hemisphere, while the
radial set R_ lies over the bottom hemisphere.

Some results about operators A € \I/g;[rl(R”H) can be obtained easily from the

containment

m,l n
S1/2,0(R Hy, m>0

m/2,l rpyn
Sl/é@ R™H, m <0

Sml R ¢ { (2.4)

where Sg%’,l (R™1) are the standard scattering symbol spaces, as follows immediately
from the definition. Thus e.g. we conclude that A maps S(R"*1) to itself.

2.2. Compactification of phase space. As in the standard scattering calculus
(see [27]), we compactify T*R"T! =2 R+ x R"*1 in each factor, but, as we describe
now, we do so inhomogeneously in the dual (momentum) variables.

We compactify the spacetime factor using the standard radial compactification,
namely using the map Z = (z,t) € R*H!
_ 1 Z n+1
@) = (e ) €

where S"*! is the unit sphere in R"*2 and Sﬁ“ the half sphere with first coordinate
nonnegative. Since 1y is a diffeomorphism onto the interior of (S7*1)°, we may
take the closure, that is, Si“ itself, as our compactification. Topologically, the
compactification is a closed ball — see Figure 1. We abuse notation and allow Z to
denote the corresponding interior point (7). With this notation, the function

1
(1+12]2)1/2

extends smoothly to all of STF'H and is a boundary defining function (bdf) of 8S1+1
(meaning 85’_?“ = {pbase = 0} and dppase is non-vanishing over 851“). A function
f € C=(ST) thus equivalently satisfies that f(Z) is smooth and on |Z| > C,
fec>(o,1) X &Sﬁﬂ). It is straightforward to show that away from Z = 0,

(2.5)

Pbase = (26)

Pbase
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1/]Z| is also a boundary defining function, so smoothness of f means that, with
Z2=17/\z|,

F(1/12),2) ~ Y1217 ai(2)
j=0

where Z € 851“ and a; € C°°(851+1).
For the other factor, Rgtl, we consider a ‘parabolic sphere’ given by
Spait = (G0, ¢, 1) € R [ GG+ [T+ 72 =1, o > 0} (2.7)
Consider the smooth mapping

. mnt+1 n+1
1/12 : RC,T — Spm,’_,'_

given by

1 ¢ T n
%(Cﬁ) = <(1 +R4>1/4a (1 +R4)1/4> (1 +R4)1/2> € Sp;l_",l+ (28)

Sg;}+)° (using

the fact that R* is a smooth function). This defines our parabolic compactification
of the fibres R?’tl, namely we take the closed parabolic half-sphere Sg;;ﬁr as the
compactification. This shows that

psp = (1+ R~ (2.9)

is a boundary defining function for the boundary of this compactified space, which
we shall call ‘fibre-infinity’. Natural ‘angular’ variables are induced by smooth
coordinates on the boundary of the parabolic half-sphere, extended into the interior
by requiring them to be invariant under the parabolic scaling (1.10). In the region
I¢|2/|7] < 2, |7| > 1 we can use the angular coordinates ¢;/+/|7| and the ‘radial’
(i.e. homogeneous of degree 1 with respect to the parabolic scaling) coordinate \/m ,
while in the region |7|/|¢|?> < 2, |¢| > 1, we can assume without loss of generality that
|C1] > max; |(;]/2 locally, and then we can use angular coordinates (;/(1, j =2,...,n
together with 7(; 2 and the radial coordinate ¢;. We will call the first region 7-
dominant, and the second type of region (-dominant. (Of course there is an overlap
region which is both 7-dominant and ¢(-dominant.)

We thereby obtain a compactification T, Rn+1

par

where R is as in (2.1). This is a diffeomorphism onto the interior (

P = (1,92): TR — SO s g4t = T RHL (2.10)

This is a manifold with corners of codimension two, the boundary being a union of
two boundary hypersurfaces

oT* Rntl = {Pbase = 0} U {pﬁb = 0} = %aseT;aar"H U aﬁbe:aar""l, (2.11)

par

where

GbaseT;;arR”“ ~ 85’1“ X Sg;;ﬁr is “spacetime infinity”

and

T T ~ qntl n+l - oo
g Ty R o STT5 x9S s “fiber infinity”.

Similar to how we write the variables (z,t) collectively as Z, we shall write ({,7)
collectively as . We also write

B = R = (|¢|" +7%)"/*
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(this would more correctly be denoted |®|,ar or similar, but we prefer the simpler
notation), and somewhat imprecisely write d for a set of n angular variables, which
can take various forms as described above. We also write (®) := (1 + R*)!/4.

As in the standard scattering calculus, classical symbols can be defined using
smooth functions on T;aTR”H. To be absolutely concrete, a function ag lies in
O (T, R*1) if and only if ag is smooth in the interior of T;arR”H and satisfies
the following,

e Spatial infinity/momentum interior: On sets |Z| > C, |®| < C, the
function ag is a smooth funtion of ppase = (Z) 71, 7, ®;

e Spatial interior/momentum infinity: On sets |Z| < C, |®| > C,
ap is a smooth function of Z, pgy, = 1/(P), P;

e Spatial infinity/momentum infinity (the corner): On sets |Z] > C,
|| > C, ap is a smooth function of ppase, Pfib, 7, 0.

It is straightforward to show that if ag € C°°(T*,,R**1) then agoyp~t € C°(T*R"*1)

par

. . . 0.0
in fact lies in Spar.

Definition 2.3. Still with ® = ({,7), asymbol a € Spr,ré’rl(R”“) is said to be classical
if

(Z2)7H®) ™ = phase P @ € (T, RTH),
meaning it extends to the boundary as a smooth function on this space. We de-
note the set of classical symbols by st (R™*1) and the set of pseudodifferential

par,cl

operators obtained by quantizing such operators by \IJ;naf Cl(R”“).

Remark 2.1. The more general symbols in Definition 2.1 can also be characterized
by a regularity condition when they are thought of as functions on T;arR”“, namely
they are conormal to the boundary with the appropriate weights.

2.3. Symbols, ellipticity, operator wavefront sets and Hamilton vector
fields. We have the principal symbol mapping

O Vot (R — Sl /s b=t = ST, (2.12)
with kernel equal to \Ilg;?l’l_l. Restricting attention to classical operators, given
Op(a) = A,0p(b) = B € \Ifg;’id(R"H), we have

mi(4) = omi(B) = ((2)7(@)7"a) gz _goer = ((D7H@) ) Iy goir:

This allows us to view the principal symbol of a classical operator — renormalized
by suitable powers of the boundary defining functions of fibre and spacetime infinity
— as a function on the boundary of compactified phase space, 9T}, R L

The appropriate notion of ellipticity in this calculus is uniform in the spacetime

weight function. Thus, we say A € \Ilgﬁuf is globally elliptic if
omi(A)(Z,®) > C(Z)(®)™. (2.13)

More generally we consider microlocal ellipticity at a boundary point of the com-
pactified parabolic cotangent bundle, ¢ € 9T* R"*1. We say that A € \IJggi is

par

(microlocally) elliptic at ¢, and write ¢ € ell,, ;(A), if this estimate holds in a neigh-

borhood of ¢ in T, R" L. To clarify this we can write down the estimates at the

three regions of phase space we considered above.
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(1) For ¢ in the spacetime interior (and therefore at fibre infinity), points in
phase space are in ell,, ;(A) if and only if A is elliptic there in the standard
parabolic sense, i.e. for ¢ = (Zp, <i>0), q € ell,,;(A) if and only if for some
C,e >0, a(Z,®) > C|®|™ for |B] > e, |Z — Zo|,|® — Do| < e.

(2) At spacetime infinity with ® finite, ¢ = (ZO, D) lies in ell,, ;(A) if and only
if for some C,e > 0, a(Z,®) > C|Z|' for |Z| > e, |Z — Zo|,|® — ®| < e.

(3) At the corner, ¢ = (Zy, o) lies in ell;, 1(A) if and only if for some C,e > 0,
a(Z,®) > C|Z'|®|™ for | Z|,|®| > ™1, |Z — Zol,|® — D| < e.

The elliptic set of A is by definition an open set. The characteristic set is simply
the complement of the elliptic set (hence closed):

chary,  (A) = 0T, R™\ el (A). (2.14)

We will almost always drop the subscripts m,l and write ell(4) and char(A) for
these sets.

For classical operators, it is convenient to think of the properties of these symbols
in terms of the boundary restriction of the reweighted function ag = (Z)~H{®) ™a.

Specifically, for A = Op(a) € gt , and ag as above we have

par,c

ell(A) = {q € aT,,,,R" ™ : ag(q) # 0},

par
char(A) = {q € 0T ,,,R"™ : ag(q) = 0},

thus char(A) is simply the vanishing locus of the smooth function ag.
It is sometimes convenient to reweight a classical symbol only in the base variables.
Hence, for A = Op(a), a € ™ (R we shall define

par,cl

(2.15)

O'base,l(A) = [p%:)asea] |abaseW7 (216)

par

which is a classical symbol of order m on the fibres of OpaseT R L. (This was
denoted opagem,i(A) in [11].)

In the standard scattering calculus, the fiber principal symbol is, in a sense, the
usual principal symbol, and, if the symbol is classical, it can be represented by a
homogeneous function. In our parabolic setting a related statement is true, namely
in bounded spacetime sets, away from zero momentum, the principal symbol of fibre
order m of a classical symbol in this calculus is represented by a unique function
homogeneous of degree m, in the parabolic sense, i.e.

A >0, a(t, z, \21,\0) = AN™alt, z,7,¢). (2.17)

Indeed, this function is the unique function a homogeneous of degree m such that
(®)~™a has the appropriate boundary value at fibre infinity. However, if the symbol
is not classical, the symbol at spacetime infinity is usually not represented by a
homogeneous function in the fiber variables.

The concept of operator wavefront set, also known as microlocal support, also
carries over directly. Namely, if A = Op(a), then the operator wavefront set WF'(A)
is the essential support of a, i.e. the subset of 9T}, R"™! whose complement consist
of points ¢ such that “a is trivial in an open neighborhood of ¢”. The meaning
of this statement is that there is a neighbourhood U C T}, R™*! of ¢ such that
a|garsrn+1 18 Schwartz, i.e. vanishes to all orders together with all its derivatives.

m,l

In particular, for A € Upyr,
WF(A) =2 = Aec U 20

par
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meaning A = Op(a) for a € S(R™™! x R"*1) and therefore WF’'(A) = @ implies that
A maps tempered distributions to Schwartz functions, A: &'(R"*!) — S(R™H1).

As in the standard scattering setting, given a € S par, Cl(IR”“), an appropriate
rescaling of the standard Hamilton vector field H, extends smoothly to the whole
of T;aarﬂ. This can be seen from the following lemma which characterizes the
asymptotic behaviour of the linear vector fields on R+,

Lemma 2.4. Let pyase, prib be boundary defining functions for C° (T, R"1) (see
below (2.10)) and let 0, and 9, denote vector fields tangent to the spheres S% and

Sg , respectively. Then

0z;,0¢; € span (To R ) (PhaseOphase Pbasedy PibOpgs pende, ),
while
0r € SPAN. oo (Tx RAFT) <p§’ibaﬂﬁb7 pi%ba@>
Proof. Since the spacetime compactification here is the standard radial compactifi-

cation, the statement for the spacetime vector fields 0z follows from the standard
scattering case, and indeed there are no p?ib(?pﬁb or pﬁbaé, terms. Here one simply

writes the vector fields in polar coordinates |Z|, Z with ppase = 1/(Z).
For the fiber variables, differentiating (2.1) shows

Orpsiv € p?ibCOO(T;aarJrl) aT(Cipﬁb)? 8‘,—(7',0?‘1]0) € pi%bcoo (T;aar+1)
which implies the statement for 0, and
O, pan € PinC™ (Tiae R, O, (Gipan), Oc; (7o) € pnC™ (T R*H),

which implies the statement for 8@.. ]

Given a classical symbol a € ™" (R”H), recalling that

par cl

_@Q_@2+Z":(@a da 0y
oot dtor 500G 0y 050G

define the (parabolically) rescaled Hamilton vector field vector field
Hml pﬁb pbaseH (218)

From Lemma 2.4, we see that Hy' b extends smoothly to Ty, R and is tangent to
the boundary. Moreover, the fact that the components of 0, vanish an order faster
at fiber infinity than the components of the other vector fields implies that at fiber
infinity, the terms with 0, do not contribute to leading order there, i.e.

n
1 1 1-1
Ht’;n |{Pﬁb:0} pg{) Prase Z 8Cj aazj B azj aaﬁj
j=1
We also have, as in the standard scattering setting, that the flow of H," . preserves

the characteristic set of Op(a).

Proposition 2.5. Let a € Spar G(R™) be classical. Then HI is tangent to the

characteristic set chary, (Op(a)), provided that this set is a submanifold.
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Definition 2.6. For A € U™
by

b, CI(R"H), A = Op(a), the radial set of A is defined

R(A) = {q € char,, ;(A) : H™ vanishes at ¢}. (2.19)
Equivalently, R(A) is the set of stationary points of the flow of Hy"' on char, ;(A).

We will also require parabolic pseudodifferential operators of variable spacetime
order.

Definition 2.7. Given a weight function r € Spar o> @ classical symbol of order

(0,0), and § € (0,1/2), we define the following weighted symbol class
St = {a € C®(T*R™ 1) : \62‘858?81@\ < (z)r~ =0 (al+k)+3(181+27) (@ ym—I181-27}

(2.20)
We will variously call r a spacetime weight, or a (variable) spacetime order.

,par

Remark 2.2. One can see the necessity of the 6 > 0 loss to treat non-constant
re 5% by considering (z)". Indeed,

par,cl
0uu(2)7 = r{2) 0., (2) + (=) log ()t

and similar estimates for further derivatives show that this function lies in S 5. par for
any ¢ > 0, but not 6 = 0 when r is nonconstant.

Quantisation of symbols in S}" spar for arbitrary ¢ € (0,1/2) Works in exactly the
same way as for constant order symbols, giving rise to a class W} 5 par of variable

order operators in our parabolic pseudodifferential calculus. We note that we have
a similar containment as in (2.4), namely

Rn+1 >0
Sm r(Rn+1) { 1/2 5( ) m = (221)

2
par Sln;é 6V(Rn+1) m<0
2.4. Composition, L>-boundedness, Sobolev spaces, and elliptic regular-
ity. We derive standard properties of the parabolic scattering calculus.

Proposition 2.8. Let Op(a) = A € V"

Then
e AB ¢ \Ilg";a’;”‘ T (RO
® Om+m/ r+r (AB) - Gm,r(A)O-m/,r’(B);

e The commutator [A, B] is in the space W

" (R™1) and Op(b) = B € g (R,

1 par d,par

m+m/—1,r+r' —1+5

5 par , and

Tt 15504, B]) = +{o,b)
where {a,b} denotes the Poisson bracket:
{a,b} = H,V (2.22)
Proof. This can be obtained cheaply from (2.21) and the standard expansion of the

symbol of a product.
O

The elliptic set ell,, ((A) for variable order operators A is defined just as for the
constant spacetime order case. The microlocal elliptic parametrix construction goes
through in this context and we conclude:
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Proposition 2.9. Let A € UL (R"*) and let K be a compact subset of elly, ((A).

Then there is B € W; 70" (R"*) such that

KNWF/(AB - Id) = KNWF/(BA - Id) = @.

The global version of this proposition and the Hormander “square root trick”
then imply that

A e ¢oo

par

(R™™) — A: L?> — L? is bounded. (2.23)

Note this also follows from the containment (2.4).
We define the parabolic weighted Sobolev spaces, initially with constant orders,
analogously to the standard scattering spaces by

Definition 2.10.
Hg;rl = {u e SR : Au € L*(R™) for all A € \I/g;f .
Note that the operator
Ay = O0p((Z)"™(®)7!) = (2,t) " FH(®) ' F.

lies in =™~ and is manifestly invertible. For any M, N € R it therefore defines
an isomorphism

Am,l: H%}L N H}])\g;i—m,lri-l’
and we define a topology on H%}L by

”uHH;';}l = ||A—m,—luHL2' (2.24)

Forany A € \I’gfa[ﬁ (R™*1) and u € H%}L, (2.23) and Proposition 2.8 yield the estimate
[Aull s mp—t = [[(A-nrsm, 1AM L) A-pr—pull 2 < Cllull ace,
and thus:

Proposition 2.11. Let A € UWI(R™). Then for any M,L € R, A: H)ZF —

Hé‘ﬁ;m’L" s bounded.

Propositions 2.9 and 2.11 together yield the following result.

Proposition 2.12. Suppose P € \Ilggﬁ and Q,G € \I’g’a?r such that P and G are
elliptic on WF'(Q). Then if GPu € Hga_rm’r_l, we have Qu € H®" with the estimate

|Qullzg, < CUGPUl ot + ull ) (2.25)

par

for any M, N € R.
Variable order Sobolev spaces can be defined similarly.

Definition 2.13. Let r be a classical symbol in Sg;lor satisfying r > [ and let A be a

fixed, classical, globally elliptic element of \Ifgnl’);r with § € (0,1/2). We define

H™r = {u e H™! . Au e LA(R"1)}

par par
We equip Hpay with the norm

[l prge = Mlwll gy + (1A 2 (2.26)

This imparts a Hilbert space structure on Hpay, and moreover this structure is

independent of the choice of [ and A. To see the independence we note that by the
standard elliptic parametrix construction we can choose B such that I = BA+ R
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with B € \IIIZJ?’J and R € W'~ for any other A € U™ we can write Ay =
ABAu + ARu and use that AB € \Ilg’gar to bound

[Aull S llull gt + (| Aull 2

Remark 2.1. Proposition 2.11 and Proposition 2.12 hold for variable order operators
A, P € VUpw with only minor modifications to the proof. See for example [38,
Proposition 5.15].

3. GEOMETRY OF THE TIME-DEPENDENT SCHRODINGER EQUATION

3.1. Characteristic variety. Let P denote the operator D; +A,+V, where D; =
—i0;, Ay is the (positive) Laplacian on R" with respect to a metric g = g(t) and
the metric ¢ and potential V are as in Section 1.1. The operator P lies in Diff%?

par
and has principal symbol (written using the Einstein summation convention)

02,0(P) :p(Z,t,C,T> =T +gw(zvt)CZCJ

In this section we will study this operator using the structures developed in the
previous section; in particular we will identify its (parabolic) characteristic set, its
radial set, and explain the Hamiltonian dynamics thereon.

Recall that the characteristic set, defined in (2.14), is a subset of the boundary
of the compactified parabolic cotangent bundle, and therefore has a component at
spacetime infinity and a component at fibre infinity, which intersect at the corner
(both spacetime and fibre infinity).

By assumption, in a neighbourhood of spacetime infinity the operator P coincides
with Py = D; + Ay, where A is the (positive) flat Laplacian. The symbol of
this operator is 7 + |¢|?, and thus at spacetime infinity and in regions of bounded
® = (¢, 7), the characteristic set char(Pp) is given simply by 7 = —|¢|2. Obviously,
where where (7, () is finite, this set is a smooth submanifold of T}, R"*1. Near fibre
infinity (and still near spacetime infinity), we use coordinates pg;, and ‘angular’
variables 7/R? and ¢/R, where R = (|¢|* + 72)'/* as usual. In these coordinates,
the characteristic set is

{T/R2 = _|C/R’2} N aTSaarH-

Noting that (7/R?)? + (|¢|?>/R?)? = 1, we see that 7/R?> = 271/ and |¢|/R =
2-1/4 on the characteristic set, so the differential of the function 7/R? + |¢/R|? is
nonvanishing and hence the zero locus is a smooth submanifold in a neighbourhood
of fibre infinity (near spacetime infinity), meeting fibre infinity transversally.

In a bounded spacetime region, near fibre infinity, the characteristic variety can
be similarly written

{r/R? = —g" (2,t)(C/R)i(¢/R);} N 0T, R7FL, (3.1)
which again shows that the characteristic variety is a smooth codimension one sub-

manifold of 0T}, R™"*1 in this region.

3.2. Hamilton vector field. The Hamilton vector field of P is
0 » 0 0g" 0 0gY 0

Hy= — +2¢7 (2, )Cim— — (il — (il 3.2

=g T E NG g T s i ae, (3:2)

In bounded regions of spacetime, the fiber rescaled Hamilton vector field is simply

%Hp. Restricting this to fibre infinity, that is, taking the limit as R — oo, we
see that the coefficients of J; and 9, vanish. Thus the flow at fibre-infinity takes
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place at one moment of time, say t = to (reflecting ‘infinite propagation speed’ for
the time-dependent Schrodinger equation). If we let ¢’ = (/R then we obtain the
rescaled flow equations

ag” (Zv tO)
0z,

which we recognize as the geodesic equations for the metric g(tg) at the fixed time
to. Moreover, from (3.1) and the uniform comparability of g(¢¢) with the flat metric
on bounded regions of spacetime, we see that |(’| is bounded below, so this rescaled
Hamilton vector field is nonvanishing over the spacetime interior. Recalling also
the nontrapping assumption (1.2), we see that the operator P is an operator of real
principal type in the sense of Duistermaat-Hormander [4, Definition 6.3.2] over the
spacetime interior: the Hamilton vector field is nonvanishing everywhere, and the
bicharacteristics exit every compact set in a finite time.

2 =292, t0)¢, (= GG

3.3. Radial sets. We now determine the radial set (see Definition 2.6) for P, and
the nature of the Hamilton flow in a neighbourhood of the radial set.

As has just been shown, the rescaled Hamilton vector field in the spacetime
interior is nonvanishing. Radial points, if they exist, therefore lie over spacetime
infinity, that is, in Opase T, R* 1. We will show

par

Proposition 3.1. The radial set R of P is a disjoint union R = RLUR_ of smooth
submanifolds of Opase™}; R7+L of dimension n. The component R is a family of

ar
global sinks for the rescaled Hamilton vector field H§,07 and R_ is a family of global
sources for this rescaled Hamilton vector field. FEvery bicharacteristic v(s) of P
(meaning a flowline of Hg,o within the characteristic variety char(P)) converges to
R+ as s =00 and to R— as s = —00.

Proof. To prove this, we start by noting that in a neighbourhood of spacetime
infinity, P coincides with Py = D; + Ay, where Ay is the flat (positive) Laplacian
on R™. Thus we only need to consider the Hamilton flow for this flat model, which
is

B, B,
Hyy = 5 +2C- . (3.3)

We first consider the region spacetime region {|t| > ¢|z|,t > C} for arbitrary
C,e > 0. In terms of Figure 1, this is strictly in the ‘northern hemisphere’. In this
region, w := z/t is a coordinate on the spacetime boundary, we take ppase = 1/t as
a boundary defining function, and we rescale the Hamilton vector field by dividing
by ppbase, Or equivalently multiplying by ¢; that is, we consider

0

9
= Lot —.
bor T21C 5,

Using coordinates (ppase, w,(,7) which are valid near spacetime infinity and for
bounded ® = ((, 1), this is

tho =

0 0
*pbaseai + (26; - w) ’ %

base

Then changing coordinates to (ppase, W, ¢, 7) where w = w — 2(, we obtain

0 0
_w.i

—Pbase apbase o’
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Thus the radial set in this region, which we denote R, is given by ppase = 0, = 0

and 7 + [¢|?> = 0 (which is just the condition of lying in char(Fp)). It is clear that

the rescaled Hamilton vector field is a sink near R. Thus, in this region, we have
jw]? z

w
_= 8.56:7 :—7 = 5 == —. 4
Ri = {ppme =0, (= 5, 7=~} w=2 (3.4)

Noting that w is a coordinate on spacetime infinity in this region, we see that the
radial set Ry is a graph over spacetime infinity in this region. Since ( = w/2, we can
equally well use ( as a coordinate. This structure reflects the fully dispersive nature
of the Schrodinger equation: each frequency propagates in a different direction or
at a different speed, and therefore ends up at a different point of spacetime infinity.

There is an analogous radial set over the ‘southern hemisphere’ (in terms of
Figure 1), where we restrict to {|t| > ¢|z|,t < —C'}. As we will shortly show, this is
a different component of the radial set, which we denote R_. If we now redefine our
coordinates so that pp,se = —1/t (so that it is a nonnegative function), w = z/|t|
and w = w + 2(, we have

|w]?

w
R- :{pbase:O7 <:_§7 T:_T} (35)

which is a graph over (part of) the southern hemisphere. The rescaled Hamilton
vector field |t|Hp, takes the form

0 0

Phases—— + B 5
e a:Obase

ow’

i.e. it is a source near R_.

We now consider the case where |z| > C|t| and |z| > C, that is, near the ‘equator’
in terms of Figure 1. Working in a small neighbourood of the equator, we may
suppose without loss of generality that the first spatial coordinate z; is positive,
and satisfies z; > 1/2max; |2;|. In that case, we may take the spacetime boundary
defining function ppase to be 1/z1. We also write s = t/2 and v; = z;j/z for j > 2.
First working in a region where ® is bounded, we rescale the Hamilton vector field
by dividing by pbase, that is, multiplying by z;. Using coordinates (ppase, S, vj, C, ),
we have

_ 9 0
pbalserO = (1 — 28(1)% + ; (QCj — 241’03‘)87% — 2(1pbasem.

We are interested in the region where s is small, otherwise the previous calculation
applies. In order for this vector field to vanish, we see from the J; coefficient that
when s is small, necessarily |(;| is large, and either positive or negative depending on
the sign of s. First taking the case that (; is large and positive, we use fibre boundary
defining function pg, = 1/¢; and coordinates w; = ¢;/¢; and o = 7/|¢|*>. We further
rescale the Hamilton vector field by multiplying by pg,. An easy computation shows

0

pbalsepﬁpro = (Pﬁb — 28)% + Z (2(.,0] — 21}‘7)872)] — 2Pbase@.

Jj=2
Changing variables to § = 2s — pgp, U = vj — wj, this vector field expressed in
coordinates (8, 0, Pase, Pfib, Wj, o) takes the form

_0 _ 0 0
— 25@ -2 ;U‘jaﬂj — 2pbaseT. (36)

base
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Pfib

('

F1GURE 2. Near the “equator” ¢ = 0 in the boundary, the radial sets
remain disjoint and intersect the corner normally. In this figure the
fibre over the equator is represented by the vertical line, with fibre
infinity represented by the two straight bold lines. The sign of ¢/r
determines whether we are over the northern (+) or the southern
(—) hemisphere.

In this region, where ¢; >> 0, the radial set is given by {ppase = 0,5 =0,0; = 0,0 =
—1}. These equations define a submanifold of dimension n inside %aseT;arR”H,
which is transverse to fibre infinity. It is not hard to check that where s is strictly
positive, this set coincides with the set R defined in (3.4). We write the equations

for R4+ using more natural coordinates in this region as

R+ = {pbase =0, s= Pﬁb/Q, é =z, 7-/|<.|2 = _1} (37)

The rescaled Hamilton vector field in (3.6) is clearly a sink at R4 in this region.
Notice that the projection to spacetime infinity gives the closed northern hemisphere,
since s = pgp/2 > 0 in (3.7). Wherever s is strictly positive, R4 is a graph, but it
fails to be so at the boundary s = 0: the graph ‘turns vertical’ at the equator, and
has a boundary at fibre-infinity. See Figure 2.

We next take the case that (i is very negative. In this case we use fibre boundary
defining function pg, = —1/¢; and coordinates w; = ¢;/|¢1] and o = 7/|¢|?>. We
rescale the Hamilton vector field by multiplying by (the new) pg, and repeat the
calculation. We obtain the vector field

) 0 9
~1
pbasepﬁpro = (pﬁb + 28)5 + ]Z; (2w]' + 21)]‘)87%' + 2pbasem.
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This time we change variables to 5 = 2s + pg1,, U; = vj + w; then in coordinates
(5,75, Pase, Pfibs Wj, o) we have the vector field

0 0 0
2s— +2 2 . .
888 + Z Vja— 8 + pbasea (3 8)

base
This part of the radial set com(:ldes with R_ where s < 0, and can be expressed as

— = {pbase =0, s = —pgn/2, (=%, 7/|¢]* = —1}. (3.9)
Comparing (3.7) and (3 9), we see that the two sets are disjoint. In fact, we have
¢ = % for R, while ¢ = —% for R_. The rescaled Hamilton vector field is, visibly
from (3.6) and (3.8), a source at R_, and a sink at R in this region (whlch is
another way to see the disjointness of the two components). Moreover, s > 0 for
Ry, while s < 0 for R_, so Ry lies over the closed northern hemisphere and R4
lies over the closed southern hemisphere, with both reaching fibre-infinity (but in
disjoint sets as just described) over the equator. This is illustrated in Figure 2.

It remains to prove the last statement in the Proposition. For this we need the
nontrapping assumption, that is, that for each fixed tp, the metric g(¢y) is non-
trapping: every geodesic for g(tp) in T*R™ reaches spacetime infinity both forwards
and backwards. That means, in particular, that every bicharacteristic ~(s) for P
coincides with a bicharacteristic for Py when s is sufficiently negative or sufficiently
positive. Recalling the discussion at the end of Section 3.1, it follows that it suffices
to prove the statement for F.

Now because the rescaled Hamilton vector field has a smooth extension to the
boundary of the compactified parabolic cotangent bundle, which is tangent to the
boundary, it suffices to prove the statement for flow lines in the interior, and take a
limit as the flow lines approach the boundary. So we consider an interior flow line
for Py, contained within {pg = 0}. These take the form for some tg, 2o, (o,

t(s)=to+s, z(s)=z20+2s, C=C, T=—|C>
As s — 400 we see that z/t converges to 2(y, while 7 is fixed at —|¢o|?. Moreover,
2(s) — Co. We see that this converges to a point of R. Similarly, as s — —oo, we

have z/[t| = —2Co, T = —|Co|? and 2(s) — —(p so this converges to a point of R_.
([l

The final task in this section is to observe the Lagrangian nature of the radial
sets. Let R4 denote the (n + 1)-dimensional submanifold of T3, R™"*1 uniquely
determined by the following two conditions:

e R are invariant under spacetime dilation, Z — aZ for a € R, and
e The intersection of Ry with 9 ase T R T RH s Ry,

Lemma 3.2. The submanifolds R+ defined above are Lagrangian submanifolds for
the standard symplectic form Zj d¢j Adzj +dr Ndt on T, R+

par

Proof. Since R4 are smooth submanifolds with boundary, of the correct dimension,
it is only necessary to verify the Lagrangian condition, i.e. that the symplectic
form vanishes when restricted to R4, in the interior of R4. In this region we can
use the coordinates (w = z/t,p = 1/t,(,7), as in the beginning of the proof of
Proposition 3.1. In these coordinates R is given by
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and the symplectic form restricted to R4 is

2
/\dz—i—d(—u)/\dt — At Adz— ;dz/\dt:O.

a 4¢2 2t2

)

4. MODULE REGULARITY

4.1. Test modules. In addition to the parabolic scattering Sobolev spaces consid-
ered in Definition 2.10 and their variable order analogues in Definition 2.13, we shall
require the notion of iterated regularity with respect to a test module of pseudo-
differential operators, introduced in [12]. In this section we shall work exclusively
with pseudodifferential operators with classical symbols, ¥ (R”H) (see Defini-

tion 2.3).

par cl

(R™*1) is a vector

(R™1), is finitely

Definition 4. 1 A test module of operators contained in \Iipar o

subspace of ¥ (R"+1) that contains and is a module over U2

par, cl par,cl

generated over o (R™1), and is closed under commutators.

par, cl

Consider an arbitrary test module M C gl

\Il:)alr o Where Ay = Id. Powers of the module can be defined in the natural way.

with generating set A = (A;)}L, C

par, cl’

Definition 4.2. For arbitrary x € N we define M” to be the \Ilg;?r—module generated
by the set

{Aq = A : o] < K}, (4.1)
where o = (o, ..., ay) is a multi-index and A% denotes the composition
A% = AJPAT LAY

Notice that the ordering of the factors is immaterial due to the fact that the module
is by definition closed under commutators.

Equivalently, M" is the module generated by all k-fold products of elements of
M.

Let M be a test module. We define Sobolev spaces of functions with additional
regularity with respect to M as follows.

Definition 4.3. Let s and [ be real numbers, and s a natural number. We define
the space of functions with M-module regularity of order x in Hg;fr(R”Jrl) by
HP = {u e HSL(R™Y) : Au e HEL for all A € M"}. (4.2)

par par

Concretely, u € H/S\’/i;” if and only if A% € HS’alr for all a with |a] < k. It shall be
useful to assume additional regularity with respect to a fixed submodule N' C M
with generating set B = (Bj)é\io. To this end, we introduce the the following
refinement of (4.2).

Definition 4.4. We define the space of functions with M-module regularity of order
# and N-module regularity of order k in Hi(R™1) by

Hyoh = {u e H3L(R™ ) : ABu € HE for all A€ M* and Be N} (4.3)

par par
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We suppress the N in our notation, as in this paper it will only ever be used with
the specific module NV from Definition 4.5. Concretely, u € Hyy Lk if and only if
A*BPu € Hit for all a, 8 with |a| < k and |8 < k.

We equip the spaces H sibir Hﬂ;”’k with a Hilbert space structure by fixing a
choice of generators A, B and taking
[ull? s = 1A% (4.4)
HY H
la|<r
and
g i= S0 3 [ABu)2 (4.5)
la|<k |BI<k

Remark 4.1. Definition 4.3 and Deﬁnition 4.4 generalise in the natural way to the
case of variable spacetime weight r € \I/par

4.2. The modules My and N. We now introduce two specific modules M., and
a common submodule N that shall be the modules of interest in this paper.

Definition 4.5. If R = R(P) = R4+ U R_ is the radial set for the operator P
considered in (1.1) and (1.2), we define M by

My :={Aec ! (R™) | Ry C char(A)}. (4.6)

par,cl

We also define
N=M,NM_ (4.7)

and we write H"* for the module regularity space (4.3) when M = My is as in
(4.5) and NV is as in (4.7).

Remark 4.2. Since R is contained in OpaseT i R" !, the condition (4.6) is simply
the condition that opase,1(a) vanishes on R4 (see discussion at the beginning of
Section 2.3, up to equation (2.16)), where A = Op(a).

Proposition 4.6. The modules ML, and therefore also N, are test modules in the
sense of Definition 4.1.

(R™*1) that contain and

par, Cl It remains to show that these are finitely generated and
are closed under commutators.

Closedness under commutators follows from Lemma 3.2. Indeed, if A; and Ao
are two module elements, then we can find A;, i = 1,2, that differ from A; by an
element of \I'gaor CI(R”H) and have symbol invariant under the scaling Z — aZ near
spacetime infinity. Indeed, recalling the definition of opase; from (2.16), we just take

Proof. 1t is clear that M are vector subspaces of ‘prar o

are modules over U

the symbol of fl so that opage 1([1 ) is invariant under the scaling and to agree with
Obase,1(A;) at spacetime infinity. It is clear that A; are also in the module. Then the
symbols of A; and A, vanish on R4. We now use the standard fact in symplectic
geometry that if a Hamiltonian is constant on a Lagrangian submanifold, then its
Hamilton vector field is tangent to this submanifold. (Proof: it suffices to show for a
model Lagrangian, say L = {(0,£)} C T*R} .. Any Hamiltonian constant on L takes
the form ) 2;b;(x, ). Then the Hamiltonian vector field is b;0¢; + x;Hp, which is
tangent to L. ) Denoting the symbols of A; by a;, it follows that Hg, Gz vanishes on
R. This is the principal symbol of i[A;, Ag], so it follows that opase(i[A1, Aa])
vanishes at R4, so this operator is also in the module. But [A;, Ag] differs from
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[A1, As] by an operator of order (0,0), so we see that [A;, A] also lies in the module
M.
The proof that ML are finitely generated is postponed to Proposition 4.7. g

To show that the modules M4 are finitely generated, we will exhibit an explicit
set of generators. To begin with, we introduce some useful cutoff functions. Taking
X(s) € C*(R) to be 0 for s € (—o0,1/3] and 1 for s € [2/3,00), we define

Xpol,+ = X <<tZ>> (4.8)
t

Xpol,— = X <—<Z>> (4.9)

Xeq = 1-—- Xpol,+ — Xpol,— (4'10)
where x(1/|w|) is extended to be 1 at w = 0. These functions can be regarded
as cutoffs to neighbourhoods of polar and equatorial regions of the boundary of
space-time.

Due to the parabolic nature of our calculus, we also need to work with microlocal
square roots of D;. This requires pseudodifferential cutoffs based on the sign of 7.

To this end we introduce )
-
;= = . 4.11
v ( <RZ>) -t

We also define an elliptic element Ey, = Op((R2)%/2) € ¥ , and operators

par,c
By :=0p(bs), bs=(2-&F|2[V—T)XrXeq € S;;lr’d. (4.12)

Our candidate generating sets are then as follows.
gi = {ZiDzj — ZjDZm tDzi — Zi/Q, <Z>E,1P, El, tXpoLiFEla Bi} (413)

Proposition 4.7. The sets G+ generate M. The set G+ NG_, consisting of all
but the last two generators in (4.13), generates N.

Proof. We omit the proof that G_ generates M_ as it is similar to the proof that
G+ generates M.
We recall from Section 3.3 that in the ‘north polar’ region w = z/t < C, t > 0,
R_ is empty and R is given by (3.4):
2
Ry = oo =0, (=2 =0y = =0, w=2¢, 1= I} (@19)
Similarly in the ‘south polar’ region w = z/|t| < C, t < 0, R4 is empty and R_ is
given by (3.4):
2
R- = {pbase =0, C = _%’ T= _‘U:l’} = {pbase =0, w= _2<7 T = _K‘z}
(4.15)
On the other hand, in the region near the equator, assuming without loss of gener-
ality that z; >> 0 is dominant, then R is contained where (; is dominant, but it
may be either positive (near R, ) or negative (near R_). In either case we can use
coordinates ppase = 1/21, pan = £1/C1, vj = 2zj/2z1 and wj = (/¢ for j > 2, and
s=t/z1, 0 =7/|¢|®>. Then , R4 is given by (3.7),

R = {ppase = 0, s = £pgp/2, ¢ = +2, 7/|C> = —1}. (4.16)
The proof of Proposition 4.7 is in several steps. We first record that

each element of G4 is characteristic on R4. (4.17)
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We omit this straightforward computation. It follows that each element of G NG_
is characteristic on R.

We next claim that, to show that G, generates M, and G, NG_ generates N, it
suffices to prove three properties of these generating sets:

For all ¢ € OpaseT,, R\ R, there is an element of G; N G_ elliptic at ¢, (4.18)

par
For all ¢ € R_, there is an element of G, elliptic at ¢, and (4.19)

For any ¢ € R, there are n + 1 elements of Gy NG_, say Ay,..., Apt1,
such that the functions ppaseprnoi,1(Ai), viewed as functions (4.20)

on Opasel o R T* R"*1 have linearly independent differentials at g.

We now prove this claim in the case of Gy and M,. By (4.17), all elements of
the module generated by G, are characteristic at R4 and hence belong to M by
(4.6). Conversely, we must show that any element of M is a linear combination of
elements of G4 with coefficients in ‘Ilpar 4(R™1). So let A be an arbitrary element
of MJr It suffices to show that OA is in the module generated by G, for any
0 e \I/par o With arbitrarily small microsupport. Thus it suffices to prove assuming
that the microsupport of A is contained in a small neighbourhood of a point ¢ €
abauseirf)kar]Rn—s_1 .

If g is not in R4, then by (4.18) and (4.19), there is an element E of G, elliptic
at ¢, and we can assume the microsupport of A is contained in the elliptic set of E.
Then by the standard elliptic construction, we have A = QF + R where () € VA

and R € \I/par )1, hence A is in the module generated by G, .

If g is in R4, then there exist Ay,...,Ap41 € G4 as in (4.20). Since R4 C
(‘?baseTpar]R”+1 is a smooth submanifold of codimension n + 1, it follows that a; =
PbasePib01,1(A1), .., Anr1 = PbasePribo1,1(Ans1) are defining functions for R4 lo-
cally. That means that any function a vanishing on R and supported sufficiently

close to ¢ can be expressed

par,cl

n+1
6= b, (4.21)
j=1
locally near g, for some smooth functions b;. In particular, given arbitrary A € M,
this is true for @ = ppasepano1,1(4A). We can extend the b;, which are smooth
functions on Opase T, R, to classical symbols of order (0,0) on Tp, R let B;
be the left quantization of these symbols. Then (4.21) implies

n+1
A= ZB]'AJ' + A/, A S \Ilpar ol
j=1
Since E7 € G is elliptic as an element of \I/par o> similarly to the first case, we can
write A’ = Q'E; + R’ where Q' € par qand R € \I/par . Putting these together
we have
n+1
A=Y "BjAj+QFE +F
j=1

which shows that A is in the module generated by G, proving the claim in this
case.

The proof of the claim for G, N G_ and A is similar, but we only need to use
(4.18) and (4.20) in this case.
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It remains to show (4.18) — (4.20). We consider different regions of the boundary
of phase space in turn.

First, consider the interior of fibre infinity. This region is disjoint from R. We
observe that generator E; € G4 NG_ is elliptic, establishing (4.18) in this region (and
therefore, vacuously, also (4.20)). This reduces us to the study of OpaseT R,
that is, to spacetime infinity.

Second, consider the north polar region where |w| < C, w = z/t, and t > 0. In
this region, R = R4 locally and is given by (4.14). Consider the n + 1 generators
A =2tD,, — zj,i=1...n,and Ap41 = (Z)E_1 P, from Gy NG_. As we are away
from fibre-infinity we can consider opase1(4;) = t7101,1(A;). These functions are
2¢; — w; and 7 + |¢|?, up to a smooth nonvanishing factor. The set of common
zeroes is therefore precisely R. Moreover, these functions have linearly independent
differentials at each point of R. This proves (4.18) and (4.20) in this region, while
(4.19) is vacuously true in this region.

Third, consider the south polar region where |w| < C and ¢ < 0. In this region,
R = R_ locally. The n + 1 generators in the previous paragraph as in the previous
paragraph are such that the common zero set of their symbols is precisely R_, and
their differentials are linearly independent. This proves (4.18) and (4.20) in this
region. To prove (4.19) it is straightforward to compute that for every ¢ € R_ in
this region, either txpo1,+£1 or By is elliptic at ¢q. This is clear for the first operator,
wherever xpo1,+ > 0. If this factor vanishes, necessarily we are close to the equator.
Then consider By. We express the symbol b of this operator, using (4.12), as

. 7 (¢l +7)
by = |z|[¢] ((Z C—1)+ W)XTXGCI' (4.22)

Dividing by |2|[¢] we obtain a smooth function on T, R"*1 in this region. The
second term vanishes on Ry + R_ due to the factor |(|> + 7. The second factor
vanishes on R4 but is nonzero on R_, as 2 - f — 1= —2on R_. This establishes
(4.19).

Fourth, consider the region near the equator where without loss of generality,
we assume z7 > 0 is a dominant z-variable. Then we use coordinates as described
above (4.16). We notice that if ¢ € Opase T, R+ in this region is such that ¢; is not

par
dominant as a momentum variable at ¢, then ¢ ¢ R as Z = +( according to (4.16).
We now observe that if (j, j > 2, is dominant at ¢ then the operator 21D, — z;D.,
is elliptic at g, while if no ¢ variable is dominant at ¢ then |((q)|?/7(q¢) = 0 and
hence (Z)E~'P is elliptic at ¢, proving (4.18). So consider the case where (; is
dominant and pgp, = +1/(; where the sign is taken so that pgp > 0 in either case.
Then we consider the n — 1 generators 21D, — z;D.,, together with (ZYE~'P and
tD,, — z1/2. After multiplying by ppasepsib, the symbols of these operators become
tw; —vj, 0 + 1 and s F pap/2. We see that the reweighted symbols of these n + 1
generators have common zero locus equal to R, and their differentials are linearly
independent. This establishes (4.18) and (4.20) in this region. To complete the
argument we observe that B, is elliptic for ¢ € R_ in this region, as follows from
the discussion of (4.22), which establishes (4.19).

O

4.3. Positivity properties. When proving positive commutator estimates for mod-
ule regularity spaces, the following notions of positivity are extremely useful.
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Definition 4.8. Let M be a finitely generated \Ilg’a?r—module, with generators Ay =

Id, Aq,..., Ay C \Il:);ryd. We say M is P-positive on the subset S C char(P) of
0,1

spacetime infinity if for each j, there exist Cj;, € \Il%,’fr and C]’- € Wpar such that we
have

N
i(Z)[Aj, P =) CjrA,+CjP (4.23)
k=0
with
Ubase,l,O(Cjk)|S =0forj ?é k (4.24)
and
Re(gbase,l,O(ij))|S > 0. (425)

Similarly, we say that M is P-negative on S if the same conditions are satisfied with
the inequality (4.25) reversed. We say M is P-critical on S if M is both P-positive
and P-negative on S.

We conclude the section by showing that the modules M and N satisfy positivity
properties phrased using Definition 4.8. We shall exploit these in Section 5.4.

Proposition 4.9. The modules defined in Definition 4.5 enjoy the following posi-
tivity properties.

(i) My is P-positive at Ry ;

(ii) M_ is P-negative at R_;

(iii) N is P-critical at R = R4y UR_.

Proof. The commutators of the first two differential generators with Py = Ag + Dy,
where Ay is the flat Euclidean (positive) Laplacian, are as follows:

[ZiDzj — ZjDziy Po] = O, (426)
tD.; — 2;/2, Po] = 0, (4.27)
As g is Euclidean outside of a compact set in space-time, we have that Py — P
is a compactly supported differential operator in \Iff,’;roo. This implies that the
commutators
i(Z)[2D.; — 2;D.,, P] (4.28)
and
i(Z)[tD.; — 2j/2, P] (4.29)
are compactly supported differential operators in \Ifg’a?oo. They can both be written
in the form CE + R for some C € U™ and R € Wy~ ™ by using the ellipticity
of the generator £, moreover opase1,1(C) vanishes on R in both instances as C' €
\IJ;;’a;oo. The generator involving P has commutator

i(Z)[(Z)E_\P,P| = i{Z)[(Z)E_1, P|P (4.30)

which is also of the required form as [(Z)E_,, P] € U2,
The elliptic generator Fj itself is of lower order (1,0), and so the corresponding
commutator can also be written in the form

i(Z)[E1,P] = CE, + R (4.31)

where C € \Il%);?r and R € Upar ™. As P = Py outside of a compact set in space-
time, the Poisson bracket {o(FE),o(P)} vanishes identically near the boundary of
the space-time compactification. Consequently C' has base symbol vanishing on R.
These computations establish that N is P-critical at R.
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We now consider the two additional generators of M. For A € \Il%)lalr = Op(a),
we have o2([A, P]) = iHpa = i(0; + 2¢ - 0;)a in a neighbourhood of spacetime
infinity, and so applying this to the generator with symbol

a=t{R*)Y2x 01—

N Obtaii Z)o20([A, P)) (4.32)
— _(RY)1/2 [Xpol,—<Z> +y <<—Zt>> (—t — t!ZJ;; 2%z - C)} (4.33)
=B ey <<—Zt>> <—t - t|z<|;>+2 2% - <> (4.34)

The prefactor of a is non-negative on the support of a. The term <R2>1/ 2\ (— 7 Zt>2>

is of lower order (—oo, —1). The remaining terms can be written as

o2t (272 —t2
w2 () () (439)
and since
22‘ — 22 z
t é#' ®_ <22t>2.(t<—z/2) (4.36)

the term in (4.35) is a sum of Sé;g—multiples of o20(tD,, — 2i/2), with each of the

S;;S coefficients vanishing on R, due to the cutoff factor.
Thus we have shown

N
i(Z)02,0([A, P)) = cjeo10(Ak) (4.37)

for cj1, € 511),13 with opase 1,0(cjk) = 0 on R4. Quantising each symbol in this identity,
we see that tFqxpo1,— satisfies the required positivity condition.
Finally we compute i(Z)o([By, P]) using the Poisson bracket. We have

i(Z)o([By, P))
= —(Z)(8+2¢ - 0:) (2 € — |2V =) XrXeq)
= —XAAZ)(0 + 2 - 02) (<z- — [2[V=7)Xeq)

- —x(2) ((2|<|2 S (4.38)

~ gl () (B2 i)

The second term in the final equation is in the form Y77, ¢;(t(; — z;/2) + ¢/ with

cj,c € Sé’a(i and with every ¢; and ¢ vanishing on R.y. The remaining term in (4.38)
can be written in the form

2y xea(Z) (m? Ve

P E(z ¢ —|z|V=T1) (4.39)

) = 2XTXeq<Z> ’Z‘

— 2x7Xeq{Z) (T + [¢[). (4.40)

Since the first term is a positive S%;g multiple of o(By) and the second is a Sg;}r
multiple of o(P), quantising this identity leads to the required positivity condition
for B.
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Taking the opposite sign choices in the final two generators leads to an almost
identical computation, with the different sign leading to a conclusion of P-negativity
rather than P-positivity. g

Remark 4.3. The notion of module regularity can be generalised to the setting where
the A; are only assumed to lie in \Ilf)gfj for collections of positive integers (sj)éy: 0

and (lj)évzo. In this setting, it can be useful to work with a reduced version M*) of
the module powers in Definition 4.2 where the indices « in the generating set are

restricted to those with A* € Wiy, This approach has been pursued in [9].

4.4. Density. For use in the proof of Theorem 6.3, we prove the following density

result for module regularity spaces Hi’r;”’k.

Proposition 4.10. Suppose that the variable order r is constant in a neighbourhood
of the radial sets. Then the space S(R™ 1) of Schwartz functions is dense in Hir;“’k
for all s € R and k,x € N.

Proof. By microlocalizing, we can reduce to the following special cases:

(i) Proving the same statement for constant spacetime weight r;
(ii) Proving the statement for variable order but for £ = x = 0, that is, with
module regularity absent.

Indeed, near the radial sets our spacetime weight r is constant by assumption,
while away from the radial sets, both the large and small modules are elliptic (see

(4.18) and (4.19)), in which case the module regularity space is microlocally identical

to Hsz;i;k—i—m,r—l—k—&—ff.

In case (i), we first consider the case s =r = 0. We let T, for € > 0, be a family
of parabolic scattering pseudodifferential operators of order (—oo, —c0) such that
the S%%-seminorms of 7. are uniformly bounded, and 7. — Id strongly. For exam-
ple, one can take T. = Op(e~(z°+*)e==(CI"+7)) " Then it is not difficult to show
that for any Ay,...,A; € bl the multi-commutator [Aj, [Ag, ... [A;,T,]...]]

par,cl’
tends to zero strongly; we omit the proof. Given u € Hi’om’k, we define u; =

Tj-1u € S. Then u; — u in L?, since T, — Id strongly. Moreover, for any product
Ai...AyBi...By of at most k elements of M4 and at most x elements of N, we

find that
A1 e Aqu PN Bq/Uj = A1 N Aqu e Bq/ijl’U, = Tj71A1 N Aqu e Bq/u

+ commutator terms. (4.41)

The first term on the RHS tends to Ay ... AyBy ... Byu as j — oo. The commutator
factors all tend to zero strongly. We move these factors to the left, at the cost of
double commutators, which we move to the left at the cost of triple commutators,
and so on. Eventually, we arrive at a sum of terms, the left factor of which is
a multicommutator of module elements with 7}-1 and the remaining factors are
module elements. All of these multicommutator factors tend to zero strongly, and
they act on a fixed function in L?, using the fact that « has module regularity of
order (k,x). All terms other than the first one above therefore tend to zero in L?
as j — oo. We deduce that
Al...Aqu...Bq/uj —)Al...Aqu...Bq/u asj — Q.

We deduce that u; — u in the topology of Hi’o“’i’
s=r=0.

k, proving the density in the case



30 JESSE GELL-REDMAN, SEAN GOMES, AND ANDREW HASSELL

For general constant s and r, we choose an elliptic, invertible operator F' € \IIEZL o
(To do this, we start with an elliptic operator of the form Op"(f) where f is a real
elliptic symbol of order (s,r); then Op”(f) is formally self-adjoint and Fredholm,
hence has a finite dimensional kernel, which consists of Schwartz functions due to
elliptic regularity. Then F' = Op®(f) + II, where II is orthogonal projection onto
the null space, is invertible, and II is an operator of order (—oc, —00), so F' € ¥>"

par,cl
as required.) Given u € H""™" we have Fu € HY"™*. We choose Schwartz u;
converging to Fu in Hi’ow’k. Then we claim that F~lu; converges to u in HERF

The proof is a standard commutation argument, which we omit. This completes the
proof in case (i).

In case (ii), so now r can be a variable order, we choose an elliptic invertible
operator of order (s, r) as above. Then given u € Hpar, Fu is in L?. We approximate
Fuin L? by the Schwartz sequence uj = Tj-1F'u as above, and then F_luj converges
to u in the topology of Hpyy. This proves case (ii). O

5. FREDHOLM ESTIMATES

In this section, we show that the operator P = D; + Ay, + V is a Fredholm map
between suitable function spaces, following closely the methodology introduced in
[36], and followed in [11], in which microlocal estimates, including radial points
propagation estimates, are combined to prove global Fredholm estimates.

5.1. Microlocal propagation estimates. Here we collect together various mi-
crolocal estimates for P. These are proved in Section 8 for a general class of oper-
ators. Here we restate these estimates in the special case of the operator P under
consideration.

We can distinguish four different estimates, each valid in a particular microlocal
region. The first region is the elliptic region ell(P). In this case we obtain an
estimate without loss of spacetime or differential order. This was already stated
as Proposition 2.12 but for ease of reference we restate it here. The second region
is near the characteristic variety char(P) and away from the radial sets. This is
the region of principal-type propagation, and is essentially Hormander’s original
‘propagation of singularities’ (really propagation of regularity) estimate from [16].
The third region is near the radial sets. In this case, there are two estimates required,
depending on whether the spacetime regularity order is greater than or less than the
threshold value of —1/2 (see the discussion in the Introduction). From the technical
point of view, the significance of the threshold value is precisely the different form
that the radial point estimates necessarily take in the two cases.

The elliptic estimate, Proposition 2.12 in the particular case of our Schrodinger
operator P = Dy + A, + V takes the following form.

Proposition 5.1 (Elliptic estimate). Suppose that Q,G € \Ilg;ﬂ(R”*l) are such
that P and G are elliptic on WEF'(Q), let r be an arbitrary spacetime order, and
let s, M, N € R. Then there exists C > 0 such that, if GPu € HS;rQ’r, we have
Qu € HS;{r with an estimate

1Qull gz, < CUIGPul| o2 + [[ull graev)- (5.1)

par

Remark 5.1. For non-experts in microlocal analysis, we mention that this estimate
is the microlocal analogue of the standard elliptic estimate in classical PDE theory:
if ¢, g are two CZ° functions with supp ¢ C {g > 0} and if P is a differential operator
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of order 2 with smooth coefficients that is elliptic on the support of g, then we have
for any M € R the estimate (in standard Sobolev spaces)

lqullzs < CUlgPull a2 + l[ull gra)- (5.2)

The estimate is of course only interesting when M is smaller than s. We think of
the symbols of @ and G in (5.1) as cutoff functions, analogous to ¢ and ¢ in (5.2),
but on phase space rather than just on spacetime.

The propagation of singularities (regularity) estimate, Proposition 8.1, reads as
follows. Note the loss of one order of regularity in both the spacetime order r and
the differential order s, reflecting the fact that the characteristic variety char(P)
meets both spacetime-infinity and fibre-infinity.

Proposition 5.2 (Propagation of regularity). Let Q,Q’,G € \113;3 be operators of
order (0,0) with G elliptic on WF'(Q). Let s, M and N be real numbers and let r be a
variable spacetime order that is non-increasing in the direction of the bicharacteristic
flow of P.

Furthermore, suppose that for every a € WF'(Q) N char(P) there exists o/ such
that Q' is elliptic at o and there is a forward bicharacteristic curve v of P from o
to a such that G is elliptic on ~.

Then there exists C > 0 such that, if GPu € HS;UH and Q'u € Hpay, we have
Qu € Hpyr with an estimate

1Qull gy, < CUIQull gy

par par

+ ”GPUHHSQYMH + HUHH%YN) (5.3)

Remark 5.2. Figure 3 illustrates the setup of Proposition 5.2. In words, the Propo-
sition states that regularity of the function u (in both the spacetime and differential
order) propagates from the microsupport of @', that is WF’(Q’), to the microsupport
of Q, provided that the regularity is not greater at WF’(Q) than at the correspond-
ing points of WF'(Q’) (we cannot inexplicably gain regularity!) and provided that
Pu is sufficiently regular in a microlocal neighbourhood of all the bicharacteristics
that traverse between WF'(Q') and WF'(Q).

FiGURE 3. The hypotheses of Proposition 5.2 is that for each a €
supp(q) N char(P) there is a bicharacteristic segment ~y, contained
within supp(g), connecting o/ € supp(q’) to . Notice that we only
need this condition for o € char(P), otherwise the stronger elliptic
estimate is available.

Notice that the estimate above only gives a trivial estimate if WF'(Q) meets the
radial set. This is because the bicharacteristic flow is stationary on the radial sets,
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so we would need @’ also elliptic at the radial set, which means the conclusion would
be no stronger than the assumption.

For estimates valid near the radial points, we refer to Propositions 8.3 and 8.2 in
the Appendix, based on estimates due to Melrose [27] and Vasy [36], adapted here to
the parabolic calculus. Specializing to the case of the time dependent Schrodinger
operator P = A+ Dy +V € \1112)’3%, and iterating the results to give an arbitrary gain
of regularity compared to the background regularity assumption, gives the following
results. We state them for constant orders for simplicity, as that is all that our
arguments require.

Proposition 5.3 (Below threshold radial point estimate). Let s, r, M, N be real

numbers with r < —%. Assume there exists a neighbourhood U of R+ and Q',G €
WYY such that for every a € char(P) N U \ R the bicharacteristic v through o
enters ell(Q') whilst remaining in ell(G). Then there exists Q € Wony elliptic on R+
and a constant C' > 0 such that if u € Him™, Q'u € Hih and GPu € Hin""*,
then Qu € Hf,g} with an estimate

1Qull gy < CUIQull g + IGPull g + [ull yasv)- (5:4)

par par

Proposition 5.4 (Above threshold radial point estimate). Suppose s, s', r, ', M

and N be real numbers satisfying r > r’ > —% and s > s'. Assume that G € \I’gzﬂ

1s elliptic at R4. Then there exists Q € \I/glfr elliptic at R+ and a constant C > 0

such, that, if u € HAGN, Gu € Higl and GPu € Hin™, then Qu € H3h with an
estimate
1Qull g < CUIGPul| s 1rer + [|Gull

par

pt el gany). (5.5)
Remark 5.3. We see that the below threshold estimate (5.4) looks the same as (5.3)
but with the additional assumption that r is below the threshold value of —1/2. On
the other hand, the above threshold estimate is a bit different: we do not need to
assume that we have microlocal regularity at the same order (s,r) on some other
set WF'(Q), but instead, we do need to assume a priori that we have regularity at
some order (s',r") where 1’ is already above threshold. The proposition then tells
us we can bootstrap this to (s, r)-regularity, provided that Pu is suitably regular.
This difference is crucial as it means that we have a starting place for proving (s, r)-
regularity: that is, we can deduce (s,r) regularity, say for a solution to Pu = 0,
without having to already know it somewhere else. This explains why our function
spaces introduced below in (5.7), (5.8) impose above threshold regularity at one of
the radial sets. On the other hand, to propagate regularity all the way to the other
radial set the regularity needs to be below threshold at the other radial set so that
Proposition 5.3 can be applied.

5.2. Global Fredholm estimate — variable order case. In this subsection,
we combine the estimates in the preceding subsection into a single global estimate
that will suffice to establish the Fredholm property for P = A, + D; 4+ V as a map
between two suitable variable order Sobolev spaces. We choose real two constants
[,m with | < —1/2 < m — that is, [ is below, and m above, threshold — and fix a
weight function ry € Sg;ﬂ with the properties

(1) r+(z,§) € [lvm];

(ii) ry = [ in a neighbourhood U, of Ry and r; = m in a neighbourhood U_ of

R—;
(iii) ry is nonincreasing along the bicharacteristics of P
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and take
ro=—-1—ry. (5.6)
In some cases, it is convenient to assume additionally that
(iv) I >—=3/2and m <[+ 1.
Remark 5.4. Proposition 3.1 shows that assumption (iii) is compatible with (i) and
(ii).

We then define the variable order Sobolev spaces

Yo = Hix (5.7)
and
XorE = {ue YW Pue Hi b=ty (5.8)

We then have the following global Fredholm estimate for P.

Proposition 5.5. For the above choice of weight functions ry satisfying (i) — (iii)
above, arbitrary s € R, M < s, N <, and all u € X*"* we have

Jll ez < CUPulasosn + ull o) (5.9)

Proof. We shall prove (5.9) in the case of the weight function r,. The proof for r_
is essentially identical, with the roles of R. swapped.
We begin by choosing Q1, @2, @3, Q4,G1,G2,G3,G4 € \I/g’a?r such that
i) Gj is elliptic on WF'(Q;),
(i) P is elliptic on WF'(Q1),
(iii) WF'(Q3) € WF'(Gs) C Uy,
(iv) WF/(Q4) C WF’(G4) cu_,

(v) WF'(Q2) is disjoint from R4,

(vi) Every « in a punctured neighbourhood of Ry on char(P) lies on forward
bicharacteristic v from a point o’ € ell(Q2), with the bicharacteristic lying
entirely in ell(G3),

(vii) Every a € WF'(Q2) Nchar(P) lies on a forward bicharacteristic v from a point
o/ € ell(Qy4), with the bicharacteristic lying entirely in ell(G2),

(vili) Q1+ Q2 + Q3+ Q4 =1d.

We can now apply Proposition 5.4 using the operators Q4 and G4. We can replace

the spacetime order r with the variable weight r in this estimate, as r, is constant

(equal to m) in WF’(G4). This yields the estimate

1Qaulls,ry < CUIGsPUlls—2,r,41 + |Gaulls o + [Jullar,n) (5.10)
for any M, N,s,s’ € R and —1/2 < r' < m. Similarly, we apply Proposition 5.3 to
the operators @3, Q2 to give

1Qsulls,r, < CUIQ2ullsr, + [[GsPulls—1,rp 41 + [[ullar,n)- (5.11)

Away from the radial sets, we can control ||Q u| and ||Q2u| using the microlocal
elliptic estimate of Proposition 5.1 and the real principal type propagation result of
Proposition 5.2 respectively. For the latter, we use WEF’(Q4) as a source of regularity,
given the dynamical condition (vii). Consequently we have an estimate

1Q2ulls.r, < CQuullsry +[|G2Pulls—1.ry+1 + [Jullarn)- (5.12)
In the elliptic region, we weaken (5.1) to
1Quullsry < C|GLPulls—1,ry 41 + [Jullarn) (5.13)

so that the norm of G1Pu agrees with the norms for G; Pu with i = 2...4.
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Without loss of generality, we can assume that the constants C' in estimates (5.10)
— (5.13) are equal, and exceed 1. Then, we estimate

lullsy < NQuullsyy +2C)Qoullsr, + [Qaullsr, +4C%(|Quullsr,
and combine the estimates in (5.13), (5.12), (5.11) and (5.10). This combination
allows us to absorb the Qsu and Q4u terms on the RHS by those on the LHS. This
gives (with a new constant C)
srr < CUIPUls- 141 + Gatllg s + ullagn). (5.14)
For ' = (—=1/2,m) and appropriate choices of s’ € (M, s) and n € (0,1), Sobolev
interpolation and Young’s inequality then give

IGaulls o < |1Gaull o | Gaullfy v (5.15)

[l

1
< Sllullsm + Cllullary (5.16)

for a suitable constant C. As ry = m on WF'(G4), we can replace the constant
order m with the weight r; and absorb this term into the left-hand side of (5.14),
allowing us to conclude (5.9). O

We now show, following [17, Theorem 21.7] and [37, Section 4.3], that the estimate
of Proposition 5.5 implies that P is a Fredholm map.

Proposition 5.6. For s € R, the map P : X®™+ — Ys~Lr=+1 for either sign choice
is a Fredholm map of index zero.

Proof. The argument is essentially identical for the two sign choices, and so we can
take the positive sign without loss of generality. On ker(P) C X' the estimate
(5.9) simplifies to

[l grare < Cllull g (5.17)

From compactness of the embedding HS;{;‘ C Hé\ng, it follows that the identity map
restricted to ker(P) C H%}N is compact, and so ker(P) is finite-dimensional.

Next we show that the range of P is closed. To this end, we take a sequence of
u; € X*™ with u; € ker(P)% and Pu; converging to some f in HS;’”H. Then
first we observe that ||u;|[as,n is uniformly bounded. If this were not the case, then
we could pass to a subsequence with [|u;||a, v — 0o and then making the rescaling
G = u;/||luj|lam,N, an application of (5.9) to @; together with the compactness
of the embedding HS:;J C H%}N allows us to deduce convergence in Hggr* of a
subsequence ; to a limit v € ker(P). As u; € ker(P)*, it follows that v = 0,
which is a contradiction as we have ||| a,n = 1 by construction. The boundedness
of |luj||ar,n just demonstrated immediately implies boundedness of ||u;||s,r, +1 from

(5.9). Once more exploiting the compactness of the embedding Hf;;;;“ C H%}N, it
follows that a subsequence u; is convergent in Hé\ng. Since Pu; is convergent in

HS;rl’“’H, (5.9) implies that this subsequence is convergent to some u in X'+ with
Pu = f hence proving that the range of P is closed.

Next we show that the cokernel of P is finite-dimensional. We may identify
coker(P) with the set of v € (Hg;rl’r*H)* = Hg;rs’r_ such that P*v = 0. Since P* is
equal to P with the potential replaced by its complex conjugate, the same argument
used to establish finite dimensionality of ker(P) can be used (with s replaced by
1 — s and with the opposite sign choice for our spacetime weight), provided we take
M < min(s,1 —s).
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It remains to show that the index is zero. We note that P* is simply P with the
potential replaced by its complex conjugate. We can form a linear homotopy between
P and P*; this is a continuous family of operators mapping X+ — Ys~Lr=+1 gince
the potential is smooth and compactly supported. Hence the index is constant along
this path. It follows that ind(P) = ind(P*). On the other hand, ind(P) = —ind(P*)
for any Fredholm operator, so we conclude that ind(P) = 0. O

5.3. Module regularity estimates away from radial sets. The microlocal es-
timates of Section 5.1 have analogues in the setting of Sobolev spaces with module
regularity, as introduced in Definition 4.5. We state these results for the particular
operator P = A, 4+ D; + V. First we prove an analogue of Proposition 5.1.

Proposition 5.7. Suppose Q,G € \I/par are such that P and G are elliptic on
WF'(Q), let r be an arbitrary variable order, and let M, N € R. Then if GPu €

Hj’;Z,r;mk’ we have Qu € Hft’rm’k with the estimate

1Qull o < CUIGPuUl ys-2eons + ull ). (5.18)

Proof. An elliptic parametrix construction allows us to write
Q=CGP+R (5.19)
where C € \I/;,fr’o satisfies WF'(C') € WF/(Q). Then for a collection Ay, Ao, ..., Ay,
of elements of M4 and a collection By, B, ..., By, of elements of N, we can compute
Ar...Ap,B1...Bp,Qu=A,...A,,By...Bp,(CGP + R)u (5.20)
=CAy...Ap, B ...B,,GPu+ Ru (5.21)

+ZA1 A;4[C Aj)Ajr .. Ay By ... By,GPu (5.22)

+ Z Ay... Ay By...B; 1[C,Bj]|Bji1 ... Bn,GPu. (5.23)

We can move the commutators to the left of the final two terms by incurring terms
involving a double commutator and one fewer module generator in the product that
does not lie in a commutator. Iterating this process, we obtain

Ay... Ay By...Bp,Qu=CAy... Ay By ...B,,GLu+ Ru (5.24)
+ ch [T 4GPu (5.25)
AdS
where S ranges over all nonempty subsets of {A1, ..., A,,, B1,...,Bp,},and Csis a

multi-commutator involving only C' and operators from S. In particular, this means

that the operator Cy lies in \I/;a%;o and so the Hsgr norm of the multi-commutator

terms as well as that of the first RHS term in (5.24) is controlled by Ha """,
After fixing M, N € R, we conclude

|A1... Ay, By ... anQu”H;,arr < C(HGPUHH:S[Z“”"“ + HUHHPJ)\;N) (5.26)

Summing over all choices of A; and B; from our generating set completes the proof.
O

We also have a module regularity version of Proposition 5.2. As we will only
apply this result away from the radial set of P, we include this as an additional
convenient assumption.
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Proposition 5.8. Let Q,Q',G € \I/gfr be operators of order (0,0) with G elliptic

on WF'(Q), and such that WF'(Q'), WF'(G) are disjoint from the radial set R.
Let r be a variable spacetime order that is mon-increasing in the direction of the
bicharacteristic flow of P.

Furthermore, suppose that for every o € WF'(Q) N char(P) there exists o/ such
that Q' is elliptic at o/ and there is a forward bicharacteristic curve v of P from o
to a such that G is elliptic on ~.

Then if GPu € HS~Lrthsk gnd Q'u € HS"F  we have Qu € H5"F with the
estimate

”QuHHir;n,k S C’(HQ/UHHir;K,k + HGPUHH;SE*LH’RNJC + HUHH%;N)
for any M, N € R.
Proof. From (4.18), for any B € Wpa with WF/(B)NR = (), we can use a microlocal

partition of unity to write B = By + ... + B, where each WF'(B,) is contained
in ell(4;) for some A; € N. As such we have that the norms HijHHi,m,k and

| Bjvl| yystntkrinsr are equivalent. Summing in j we obtain equivalence between
par

”B’UHHir;n,k and ||BUHHS$R+1€,T+K+1¢. We can then directly apply Proposition 5.2 to

complete the proof, noting that the operators Q,Q’,G in these two propositions

enjoy this same microsupport condition. O

5.4. Module regularity estimates near the radial sets. We now adapt Propo-
sition 5.3 and Proposition 5.4 to the module regularity spaces Hﬂ:k and the par-
ticular operator P = A, + D; + V.

Proposition 5.9. Suppose r < —1/2. Assume that there exists a neighbourhood U
of Ry and Q',G € ‘Ilg;?r such that for every o € char(P)NU\Ry the bicharacteristic
~ through o enters ell(Q') whilst remaining in ell(G). Then there exists Q € Wi
elliptic on Ry such that if u € H%}N, Q'u e Hi’r;“’k, and GPu € Hiﬁl’rﬂ;”’k, then
Qu € Hfr’“”’k with an estimate

HQUHHir;N,k S C(HQ/uHHirm,k + ||GPU||H3‘_71,7”+1;K,,I€ + HUHH%;N) (527)

Proposition 5.10. Suppose r > 1’ > —1 and s > s'. Assume that G € W0 s
M,N
H )

elliptic at Ry. Then there exists Q € qlg’aor elliptic at R+ such that, if w € Hpai ',
Gu € Hi’T "k ond GPu € Hj_fl’ﬂrl;”’k, then Qu € H_S‘_’T;'{’k with an estimate
1Qull s rine < CUIGPUl| gatrrinie + Gl g rrins + lull ga). (5.28)
The statements of Proposition 5.9 and Proposition 5.10 also hold with H;, R4
replaced with H_, R+ with the obvious modifications to their proof.

Proof. The proof of Proposition 5.9 and Proposition 5.10 proceeds along similar lines
to the proofs of Proposition 5.3 and Proposition 5.4, by iterative use of a positive
commutator estimate. The commutator i([A, P] + (P — P*)A), as in (8.8), where
A€ \111233;1’2T+1 has principal symbol a defined in (8.7), is replaced by

i[ALAAL, Pl +2Im VAL AA, (5.29)

where a = (a/, ) € NV+1 5 NV'+1 and

N N’
A, = AYBY = [ A% [ B} (5.30)
7=0 k=0
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is a product of the generators of M that lies in MY N*.

We treat the addition of the A, factors in an inductive manner, and suppose that
the conclusions of Proposition 5.9 and Proposition 5.10 hold for all (', k") < (k, k),
that is for all pairs (k', k) # (k, k) with k¥’ < k and k¥’ < k. The case (s, k) = (0,0)
is of course provided by Propositions 5.3 and 5.4.

Using (4.23) we obtain

i[AGAAL, P| = A:;(A(Z ajcjj)pbaseAa + Azpbase(z ajc;j)A)Aa

J J
+ Z AzACaﬁpbaseAﬁ + Z A?f;’pbasecgﬁAAa (5'31)
|B|=la| B |B1=|a|, B0
+ A%i[A, P14,
+ AL AE,P + PE,*AA,

where

(1) B, € MENF with (v, k') < (k, k),

(2) Ubase,l,l(caﬁ)’R+) =0,

(3) Re(‘jbase,l,l(ij))|72ﬂL > 0.
The first term has nonnegative symbol on Ry from Proposition 4.9, the second
term has sign determined by that of i[A, P], which has symbol (8.10), the terms in
the third line are characteristic on R4 by Proposition 4.9 and finally the remaining
terms are regarded as error terms. The identity (5.31) is analogous to [11, Eq.
(3.23)].

We now assume that we are in the below threshold case, that is r < —1/2.

In order to concisely write down the contribution of the first two lines of (5.31) to
the commutator estimates, we introduce a matrix of operators in \IIIZD‘Z}QT, with rows
and columns indexed by multi-indices a with |o¢/| = k and |o/'| = k. We introduce
the notation for the indexing set

Ser:=f{a=(,a") e NN NNHL L |of| = &, || = k). (5.32)
For o, B € Sy 1, the aforementioned matrix of operators is given by
o (A(Z] ajcjj)pbase + Pbase(Zj O‘jcjj)A (= B)
op ACaﬁpbase + pbaseczﬁA (04 7é 5)
Now let o € Hi’l;”’k and take v, = A .
We compute formally, referring to Section 8 for the regularization arguments

needed to justify various steps in the computation. In matrix notation, we have
obtained the identity

Z (i[AX AA,, Pl v’y = (C'v,v) + ((i[A, P] @ T)v, v)

(5.33)

aESmk

(5.34)
+2Re( Y (va, AE,Pu))
aGSmk
where I indicates the Sy ;| x | Sy x| identity matrix. Using (8.21), we obtain
S (i[ALAA, Plu o) = {(C' + (B{By — BiBa + F + R) ® I)u, v)
aES&k
(5.35)

+2Re( Y (va, AE,PU)).

aES&k
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From the nonnegativity conditions on the Cj;,C,g, and the strict positivity of
the symbol of By, we see that the matrix C’ + BB ® [ is diagonal with strictly
positive entries on R4. As such, we may write

C'+ BB ®l=B*B+R (5.36)

where the symbol of B is a positive matrix on R4 and R is a matrix of operators
in \I/%Z?l’zr_l. This allows us to write (5.35) as (dropping the I tensor factor for
brevity)

Y (W i[ALAA,, Plu') = ||Bol|* — || Bool|* — (Fo,v) + (=R + R)v,v)

OJESK’}C

(5.37)
+ 2Re( Z (Va, AEoPu'))

CYES,.@’]C

We estimate the ||Bv||? term by using identity (5.37) and bounding all the other
terms that appear there.

We first estimate the commutator term (u',i[A} AA,, P],u'). To do this, we use
the identity

(i[AX AA,, Pl u') = —2Im(AA ', Ao Pu') — (0, (P — P*) A AA).

The second term is trivial to estimate, since the symbol of a has disjoint support

from that of V. —V = P — P*| so the operator (P — P*)A,AA, is order (—oo, —00).

This term is therefore bounded by ||u||§{M ~ for any M and N. The first term is
par

estimated using

2(AALPY, Aat!)| = 2(p /2 AY2 A, p 2 AV2 A P (5.38)

base base

Summing over « and applying a weighted Young inequality gives the upper bound
for the commutator term of

1/2 — —-1/2
e "0l + €7 32 oo A AP I yymo + Iolifaen. (5.39)

€Sy k

We choose Q" € \Ifg’aor to be microlocally the identity on WF/(A). The terms F, R
and R in (5.37) are estimated as in (8.18) and (8.19) giving

[(Fv, o) H (R, )| < O(IGPol s HIQ ] s+ ol e ) (5.40)
ar par ar

The term || Bawvl|? is estimated as in (8.21), using the standard propagation estimate

of Proposition 8.1. This comes at the cost of a HQ’UH%IS,T term on the RHS.
par

It remains to consider the term in the last line of (5.37). The weighted Young
inequality gives

1/2 —1/2
2 N (e, AEPU) =2 Y (2 AY 00, pp P AV B, P (5.41)
OéESmk aESn,k
1/2 — —-1/2
< €||pbz/a,seA1/2U”iIP1)ér270 et Z Hpbas/e Al/QEaPu/HZ;;r/%
OZES,.@’]C

(5.42)
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We combine (5.37),(5.39), (5.41) to bound Buv, in particular we have

2 /0012 2 1,112 2
1Bull” < CUIQ vl + I1GPUIl e ar + IQTI o120 + 0 pae ) (5.43)
1/2
+ 26 pphae A 20]1% 120 (5.44)

par

_ j : —1/2 z : —1/2
+ € ! Hpbas/e Al/QAaPu/HQ —-1/2,0 + Hpba,s{e Al/zEO{PUIHQ —-1/2,0
Hpar Hpar
OLESN’]C OLGS,“]c

(5.45)

We now choose ) € \Ilg}g to be microlocally equal to the identity near R and
such that WF’(Q) is contained in the elliptic set of B. Then for any M, N there is

C such that
1Qull g < 1Bl gy + 1w/l s

par par

From the definition (4.5) of the norm in Sobolev spaces with module regularity, an
estimate for 37 s  [[Aa@Qu/[| in fact gives an estimate on [[Qu'[|sxk. On the
" +

other hand, A,Qu’ = Qu+[A4, Qv and the last term is microsupported away from
the radial set, so we can estimate the Hpy norm of [A,, Qu’ by

HQ/U/HHS,;:,R,I@ + HGPUI”HS;I,T+1;R,I@ + HUIHHIJ)\QI%N, (546)

using Proposition 5.8. We argue similarly with the other terms. Hence we obtain
the estimate expressed in terms of module regularity spaces:

QU 12 < CUQY 2+ IGPU e+ 1Q 12 s+ 19 )

1/2
+ 26”pbg/iseA1/2ulHi{l/Q,O;Fu,k
+
_ —-1/2 —-1/2
+e 1< Z H,Obas/e Al/QAaPUIHi{—l/Q,o + Z ||pbas/e Al/QEaPul‘ﬁ{—l/Q,o)-

Oées,g,k par OLESKJC bar

(5.47)
The term in the second line is bounded by
Q"4 I3 roe < A2 (1 i+ Q" = Q) (5.48)

and the Qu’ term can be absorbed into the left-hand side for sufficiently small ¢,

while the (Q"” — Q)u’ term can be estimated as in (5.46) as Q" — @ is microsupported

away from R . The terms in the final line are controlled by HGPU/HHSA,TH;K,;Q from
+

the ellipticity of G on WF'(A). This yields the estimate
HQulHHir;n,k S C(HQIUIHHi’T;H’k + ”GPU/HHi717T+1;”’k + HQ//u,HHi—l/2,r—1/2;n,k

+ \|u’||H§§;N). (5.49)

Iterating the estimate as in Remark 8.3, the lower-order term is subsumed into the
||| s~ term and we obtain
par

Qo < C(HQ'U’HHi,r;N,k FIGPU v + 1| gag). (5:50)

We now consider u satisfying the conditions of Proposition 5.9. By the inductive
assumption, we know that Qu is in H}"" K for all (1K) < (k,k). We now
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regularize u by letting v’ = u/(n) = Syu for each n > 0, where

S?] _ Op( Phbase Pfib )
Pbase T 1 Pfib + 1

It is easy to check that S, is in \If;alf_l for each n > 0, and \Ifg’fr in a uniform sense,
that is, with seminorms uniformly bounded as n — 0. Moreover, S, tends to the

identity operator in the strong operator topology of \prar, and in the operator norm
topology in Wpay © for any ¢ > 0. Then Qu/(n) is in HY TR for each m > 0 and
the above estimate (5 50) is valid. Then we examine the behaviour of the terms
asn — 0. Let Q, Q', G satisfy the same conditions as @,Q’ and G but with
WEF’ (Q) contained in the elliptic set of ) and similarly for the other operators.
Then the assumption that Q'u € HY" K implies that Q'v/ is uniformly in HY™ k
Similarly, because GPu is in H}~ Lk , GPu/ is uniformly in H}~ Lr+ds “k. We
deduce from (5.50) (with operators Q, Q' and G) that Qu’ is uniformly in HY™ k.

It follows that Qu’ has a weak limit in H"™" * as well as converging strongly to Qu

s—2,r—2;k,k

in a weaker topology, say H using the inductive assumption on u and the

norm convergence of .S, in ‘lipaf . Now redefining Q to be Q, it follows that Qu is

in Hi’”“’k and satisfies the estimate (5.27).

We now turn our attention to the above threshold case, that is Proposition 5.10.
From (4.19), the module M is elliptic at R_ and hence on U_ for sufficiently
small U_. Consequently all functions in (5.28) are microlocalised to regions where
the norms HY""™ * and Hka’rJrk“i’O
to treat the case k = 0.

We can now run the same argument as in the below threshold case, however using
(8.13) rather than (8.21) to handle the commutator [A, P] in (5.34) as we are now
working in a neighbourhood of the source R_.

The difference this makes to (5.37) is that both the B and B terms in the first
line will now be positive, and so the Bov term can be dropped without the need for
an application of the propagation theorem Proposition 8.1.

Note that since k = 0, we need only consider A, that are products of elements
of NV, and so Proposition 4.9 still applies to show that opase1.1(Cjj)|zr_ = 0 in this
case. The rest of the proof proceeds in parallel with the below threshold case.

The analogues of Proposition 5.9 and Proposition 5.10 in the module regularity
spaces H*""F and switched roles of the radial set components R have an almost
identical proof. The primary difference is that the module M_ is P-negative by
Proposition 4.9, and so the matrices of operators C’ is now negative-definite. In the
below-threshold argument, this leads to a change in the sign of the ||Bv||? in (5.37).
However, we have also switched the roles of the source R_ and sink R, giving
corresponding changes to the signs of the second line of (5.37), and so the proof
goes through without further changes. The above-threshold argument is adapted
similarly. O

are equivalent for any s, € R and so it suffices

5.5. Global module regularity estimates. We can combine our microlocal prop-
agation estimates on module regularity spaces in the same way as in Proposition 5.6
to obtain global (semi-)Fredholm estimates.

Proposition 5.11. (i) Constant spacetime order. Fiz constants s € R and | €
(=3/2,—1/2). Then for any k > 0 and k > 1, any real numbers M and N, and any
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s,l;k,k

u e X , we have an estimate

el e < CUPullyr s + lullar): (5.51)

(ii) Variable spacetime order. Let ry satisfy assumptions (i) — (iii) and (5.6) of
Section 5.2. Then for any k > 0 and k > 0, any real numbers M and N, and any
u € XJ™, we have an estimate

HUHXi,ri;n,k S C’(Hpu”yi—l,ri+l;n,k + HuHHpj)\g’rN) (552)

Proof. We combine our estimates in the same way as in the proof of Proposition 5.5,
using Proposition 5.7, Proposition 5.8, Proposition 5.9 and Proposition 5.10 which
replace Proposition 5.1, Proposition 5.2, Proposition 5.3 and Proposition 5.4 re-
spectively. We note that in case (i), since [ is below threshold, we cannot apply
Proposition 5.10 directly at the above-threshold radial set. However, at the above
threshold radial set, the module M is elliptic. So the estimate is equivalent to the
estimate obtained by increasing [ by 1 and reducing x by 1. This is the reason for
the assumption that £ > 1: we must have at least one order of module regularity at
the radial set R+ to ensure that u is above threshold there. ]

6. SOLVABILITY OF THE TIME-DEPENDENT EQUATION

6.1. Invertibility on variable order spaces. In this section, we prove Theorem
1.1, which we restate and slightly extend as follows.

Theorem 6.1. Let P be as in (1.1) and (1.2), and assume ry are variable orders
satisfying (i) — (i) in Section 5.2. Then for any s € R, the mappings (1.4) are
tnvertible.

The inverse Pyt to (1.4) with the + sign, and the inverse P! to (1.4) with the
— sign, are defined independently of the choices of s and r4, in the following sense.
Suppose that v € Ys~ L1y —Lri+1 for s, s" and two different choices ry, v, both
satisfying assumptions (i) — (iii) of Section 5.2, and suppose that u = P,;lv € X5+
and u' = Pr71v € X5 . Then u = o', with a similar statement holding for the —
case.

Proof. Since Proposition 5.6 established that P is a Fredholm operator of index zero
acting from X*"+ — Ys~Lretl it suffices to show that ker(P) = 0. The argument
is essentially identical for the two sign choices so without loss of generality we take
a solution v € X*"*+ to Pu = 0 and show that u = 0.

First, since Pu = 0, Proposition 5.1 shows that « is microlocally trivial in the
elliptic region. So consider the characteristic set char(P). As rp = m > —1/2
in a neighbourhood of R_, u is microlocally above threshold in a neighbourhood
of R_. An application of Proposition 5.4 allows us to deduce that in fact w« is
microlocally in Hgéf for all S, L € R in a neighbourhood of R_. From Proposition
5.2, it follows in fact this regularity propagates everywhere except, possibly, R;
that is, u is microlocally in Hfi;f for all S, L € R everywhere except possibly at R .
In particular, u is Schwartz in cones {(z,t) € R**1 : ¢ < 0, |2|/|t| < C} for arbitrary
C > 0. Moreover, provided L < —1/2, by Proposition 5.3, this regularity propagates
into Ry, so that u is in Hli;r‘l/ 2-e globally, for any € > 0. In particular, this tells
us that u is (locally in t) a smooth function of ¢ with values in (z)1/2+L2(R?).
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We take the spatial Fourier transform of u(¢, -) for each ¢ and write it in the form
e*i“qza(t, ¢). That is,

w(zt) = (27)" / (== g ¢ 1) de. (6.

Moreover, if T_ < 0 is such that the metric g(¢) is flat, and the potential V (¢, -
vanishes, for t <T_, then we have Pyu =0 for t <T_, Wthh implies that a((,t)
a—(¢) is independent of ¢ for t < T_.

We now make use of module regularity spaces. In particular, the microlocal
triviality of u near R_ can be interpreted as u having module regularity of all orders
microlocally near R, that is, u € H S—1/2=aKK g all S, K, K > 0 microlocally
near R_. Similar to the dlscussmn above this module regularity propagates, thanks
to Propositions 5.7 and Proposition 5.9, everywhere, up to and including R, so
ue HY 727K globally for all S,K, K > 0.

In particular we can apply module elements D, and 2tD,, — z; arbitrarily many

= =

times to u, while remaining in the space Hpar Y272 On the RHS of (6.1) and for
t <T_ this amounts to applying (; and D, respectively, to a. We conclude that

¢ (¢*Dla-(Q)) € HT/2*(R") for all multi-indices a, 4.

We conclude that a_ is a Schwartz function.
We have shown that for ¢t < T_, u can be represented

u(z,t) = (2m)" / e/t q_(¢) d,

where a_(() is Schwartz. Such an integral has a classical stationary phase expansion,
with leading term

(471'2'25)7”/26“2‘2/“&_(%), t — —oo.

Since u was previously shown to be Schwartz in the cone {(z,t) € R""! : ¢t <
0,|z|/|t| < C}, we deduce that a_({) = 0 for |(| < C/2. As C is arbitrary, we
conclude that a_ is identically zero, and hence so is u(z,t) for ¢t < 7T_.

Since we can apply module elements Dz and 2tD,, — z; arbitrarily many times

to u, while remaining in the space Hpa]r 1/2-¢ , this implies that both u(¢,-) and
Dtu( -) are L? in space for each t. Hence the squared norm E(t) := [Ju(-, t)H%z(dgt)
is a non-negative differentiable function of ¢ that vanishes for ¢ < —T". We can write

B(t) = / (e, 1) 2p(z, 1) d

where pdz is the Riemannian measure for g(t), with p(z,t) a smooth positive func-
tion equal to 1 outside a compact set. We can compute dE(t)/dt by differentiating
under the integral sign. Cancellation occurs as in the standard proof of conservation
of L?-mass for Py, and we are left with

/| |2‘9” ) 4 < CE)

for a global constant C’. Hence F = 1dentlcally by Gronwall, from which we
conclude that u = 0 identically. This establishes triviality of ker(P), and hence
invertibility of (1.4).

Finally, we show that the values of P~! and P;l are defined independently of s

and r satisfying the assumptions of Section 5.2. Focusing on P;l, choose any pair
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of pairs s,r, and s, r/ satisfying assumptions (i) — (iii) with constants (I,m) and
(I',m') respectively, and let | € Sg;ﬁ(R"“) be a function satisfying assumptions
(i) — (iii) for some weights (I”,m”) such that r < min(ry,r’,). Then P : X5 -
YL+l g also invertible by the proof above, and since XS Xst C X5 the
uniqueness holds.

O

6.2. Invertibility on module regularity spaces. We can use Theorem 1.1 to
obtain an invertibility theorem regarding P as a map between Sobolev spaces with
module regularity, as in (1.7) and (1.8).

First, we record the following inclusion between module regularity spaces and
variable order spaces.

Proposition 6.2. Assume that ry and | satisfies assumptions (i) — (iv) of Sec-
tion 5.2. For k > 1, we have the inclusion
bk
HY™  C Hoit (6.2)

Proof. Tt suffices to establish (6.2) for kK = 1,k = 0. Let u € Hi’l;l’o and fix a
neighbourhood U C s¢T*R"*t! of Ry on which ry = [, and form a finite cover of

seT*Rn+1 consisting of U, Uy, ... Uy, where each Uj is disjoint from Ry and such
that each Uj lies in ell(A4;) for some A; € M.
We then quantise a partition of unity subordinate to this cover, and denote the

microlocal cutoffs by Q,Q1,...,Qm € \Ifg’aor. Now since u € Hggfr, we have Qu €
Hé’alr. Since ry =1 on WF'(Q), it follows that Qu € Hpy, .
On the other hand, since Aju € Hf)gfr, and WF'(Q,) C ell(A,), microlocal elliptic

regularity implies Q;u € HS;UH C Hpyy for each j, where the final containment
is a consequence of [ + 1 > m = max(r4) using assumption (iv). O

Theorem 6.3. Fiz s € R and | € (—3/2,—1/2). Let X3"F and Y 155F be s
in (1.7) and (1.8). Then for any k > 0 and k > 1, the map

P Xi’l;”’k N yifl,Hl;n,k (6.3)

1s a Hilbert space isomorphism.
For any k > 0 and k > 0, provided that ry satisfy assumptions (i) — (iii) and
(5.6),
Pxph i btk (6.4)
are Hilbert space isomorphisms.
Proof. We choose ry to satisfy assumptions (i) — (iv) of Section 5.2 with respect to
[, which is possible since | > —3/2. Then Proposition 6.2 gives inclusions Hi’l;”’k C

Hyt and HEVHERF o gl b Hence by Theorem 1.1 we have the following
diagram

s,l;k,k s—1,l+1;k,k
Xy Vi
j j (6.5)
X ——— Vo
We now show the restriction of P to Xj’l;”’k yields an isomorphism (6.3) by showing

it is a bounded bijection. Boundedness is immediate from the definition of these
spaces, and injectivity is immediate from the injectivity of the second row of (6.5).
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It remains to prove surjectivity of P : Xi’l;“’k — yj‘1’l+1;””“. Let f be an element

of yi_l’lﬂ;“’k. We exploit the density of Schwartz functions S(R"*1) in yi_l’lﬂ;”’k,
as shown in Proposition 4.10. So let f; be Schwartz functions converging to f in
yj‘l’l“?“”“. We define u; := P;lfj. Then, according to the propagation estimates
of Section 5.1, u; is microlocally trivial away from the below-threshold radial set
R+. (To see this, note that we can take the order r or r in Propositions 5.1, 5.2 and
5.4 to be arbitrarily large outside any neighbourhood of the below-threshold radial
set, here R.) Moreover, we can interpret this as arbitrary module regularity away
from R, and then by Proposition 5.9, this module regularity propagates into R .
Thus u; is in Xj’l;ﬁl’k/ for arbitrary (k’, k). In particular, from (5.51) (taking M < s
and N < —1/2) and Theorem 6.1, we have

Huz — uj”Xj,l;n,k — 0 as i,j — 0. (6.6)

Thus, u; is a Cauchy sequence in Xi’lm’k, and hence has a limit u € Xf_’l”{’k

. . . Lk ke —1,04+1;k.k
since P is continuous Xj’ R yj e Lin, ,

Pu = P(lim u;) = lim Pu; = lim f; = f,
j—00 j—00

Jj—00

. Finally,

showing that P is surjective on module regularity spaces.
The second statement follows via similar reasoning.

Remark 6.1. The corresponding proof of invertibility on module regularity spaces in
[11] has a gap. In [11, Proof of Theorem 2.4], the analogue of estimate (5.51), that
is, [11, Equation (3.31)], is asserted without first establishing a priori that w is in
the appropriate space Xi’f;ﬁ’k. The gap may be filled by arguing as above, that is,
using the density of Schwartz functions in this space and then considering a Cauchy
sequency of Schwartz functions converging to Pu. The authors thank Yilin Ma for
bringing this gap to our attention.

O

6.3. The final state problem for Schwartz data. Let f lie in the Schwartz
space S(R™). Define the “free Poisson operator”

Po(f) = (2m) " / TP F(QdC = (FL PO (2,0 (67)

This gives the unique solution to Pyu = (D¢ + Ag)u = 0 whose incoming and
outgoing data are f, meaning
; i1\1/2 p—it|C|? = i
tl}gloo(élmt) e Pof(2t(,t) = tl&rinoo
z/2t—(¢

(armity"/ 2= 40Py F (2 1) = £(C), (6.8)

as follows easily from the stationary phase lemma applied to the ¢ integral in (6.7).
It is also the operator which solves the free Schrédinger initial value problem for
initial data f

We now define the Poisson operators for the perturbed operator P = D;+A,+V.

Definition 6.4. Let P be as in the Introduction. Define the Poisson operators
P—a P—‘r by

P_f=Pof — PL'PPof = (7>0 - PP - Po>7’o)f7 6.9)

6.9

Pof =Pof — P PPof = (Py— PP~ Ry)Po ) .
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where P;l, resp. P~! are the outgoing, resp. incoming propagators for P (see
Theorem 6.1).

Proposition 6.5. The operator Py solves the final state problem for f € S(R"),
meaning PP+ f =0 and

I dmit)/2e /4 t) = 6.10

Lo dm ity e P £ ) = £(0) (6.10)

Proof. This is a consequence of Theorem 7.11 below, but can be seen directly for
Schwartz data quite easily. Indeed, for f € S(R™),

PP_f=PPof — (P —Py)Pof = (P — Py)Pof — (P — Fy)Pof =0,

where we used PyPy = 0. In the region |z|/[t| < C,t < T_, similar to the proof of
Proposition 6.1, the correction term uy := P;l(P — Py)Pof is Schwartz. Indeed, we
know that u is above threshold at R_ as it is in the image of P;l, so we can take s
and r as large as we like in (5.5), since (P — Py)Pyf is compactly supported, giving
microlocal regularity of any order in a neighbourhood of R_. Using Proposition 5.2
this then propagates to char(P) \ R4, while microlocal regularity in the elliptic
region is immediate from Proposition 5.1. Therefore, P_f is a solution to the
equation which agrees with Py f to infinite order in |z|/t < C,t < T_, for arbitrary
C, and thus (6.10) (for t — —o0) follows from (6.8). A similar argument applies to
Py. O

7. POISSON OPERATOR AND SCATTERING MAP

7.1. Mapping properties of the free Poisson operator. We will now discuss
finer mapping properties of the Poisson operator and scattering operator.

Throughout this section, we assume that ry satisfy (i) — (iii) at the beginning of
Section 5.2, with [ = —1/2 — ¢ and m = —1/2 + ¢ for some small € > 0, as well as
(5.6). In addition, we assume that both ry are equal to —1/2 on char(P) outside
small neighbourhoods of the radial sets. We then define

Frmin, = Min(ry, r_),
Fmaz = max(ry,r_)

and note that ryin + fmee = —1 due to (5.6).
We begin with an identity that we will find useful on several occasions. To state
it, we choose microlocal cutoffs Q_ and @4 such that Q_ + Q4+ = Id, and so that

@— is microlocally equal to the identity in a neighbourhood of R_ and microlocally
trivial in a neighbourhood of R (and, consequently, vice versa for Q).

(7.1)

Lemma 7.1. Let Q_,Qy be a microlocal partition as described above. Then for
any u € S'(R"1) satisfying Pu = 0, we have

u=(P;'— PY[P,Q1]u. (7.2)

Proof. We observe that ()i u is microlocally trivial near R_. We can therefore
find a variable order ty satisfying (i) — (iii) of Section 5.2 and a real s such that
Qiu € HS;;;F. By Theorem 6.1, P;l is a left inverse to P on this space, so we have

Qiu= P 'PQu.
Similarly, we have
Q_u= P 'PQ_u.
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Since Pu = 0 we have PQiu = [P,Q+]u and PQ_u = [P,Q_]u. As we have
Q+ + Q- =1d, we find [P,Q+] = —[P,Q-] and so we obtain
u=Qru+Q_u=P'[P.QiJu+ P2 [P,Q_Ju= (P — P-1)[P,Q4]u.
]

Due to our assumptions on ry, we can impose the additional assumption that
r+ = —1/2 on WF'([P,Q4]). (7.3)

We will then say that Q_, Q)+ is a microlocal partition adapted to the variable orders
r4.

The following lemma establishes a fundamental mapping property of the free
Poisson operator Py on variable order spaces.

Lemma 7.2. The mapping
Po: LA(Rg) — HY2 i (R™) N ker (Dy + Ag) (7.4)
1s a bounded isomorphism.
Proof. We start with the identity
PoPg = i(2m) " ((Po) ;' — (Ro)~"), (7.5)

as can be verified by explicit computation. In fact, both represent the Fourier
multiplier (27)'~"§(7 + |¢|?). For any s € R,

(PO)_T_I—(PO):li HS—eraz—H(Rn—l-l) N = CH S (RTH—I)_'_HS,L (Rn+1) C HS min (Rn—l-l)‘

par par par par

We apply a TT* argument to this bounded mapping, for which we require the range
to be contained in the dual of the domain, i.e.

Hs,rmm (RnJrl) C (HS;rl,rmMJrl(RnJrl))*.

par

Choosing s = 1/2, then since —rpqz — 1 = Fpin, we see that the desired containment
holds, and thus P maps H@lr/ 2’rm‘””H(]R”“) into L?(R™). Dually, we conclude that
Po maps L?(R") into Héég omin (RUALY,

The operator Py is obviously injective, as the restriction to ¢ = 0 is the inverse
Fourier transform. So it remains only to show that it is surjective. Thus, let

u € Héé? min (RPFHD) N ker (Dy + Ag). We employ a microlocal partition adapted to
the ry and combine (7.2) (for the free operator P) and (7.5) to obtain
u = —i(2m)"PyP;[Po, Q+]u.

We notice that [Py, @+]u is in Hp_alr/z’l/z(]R”H) using (7.3), and thus is contained

in H;alr/Q’rmMH(R”H) also by (7.3). Thus, f := —i(27)"Ps[Po, Q+]u is in L? using
the mapping property of Pg just proved. It follows that u = Pyf where f € L2,
proving the surjectivity. O

Recall the small module N defined in Definition 4.5. Consider the generators
Id, 2D, — 2D, 2tD, —z;, D., FE_1(z,t)h. (7.6)

with E_; € 10 globally elliptic.
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We have intertwining relations of these generators with the Poisson operator Py
(the third and fourth of which were already used in the proof of Theorem 6.1):

IdPyf = Po(Id f)
(2jD., — 21Dz, )Pof = Po((¢jDe, — GD¢;) f)
(2tD.; — zj)Pof = Po(D¢; f) (7.7)
D, Pof =Po(Cf)
E_1(z,t)PyPy = 0.

The Poisson operator thus intertwines the action of these generators with the
following operators on R%:

Id, (D¢ — QD¢ Deyy o G- (7.8)

It is trivial to check that these operators are in Wi (R™) and are closed under

commutators. They therefore generate a module which we denote N. We let /\Afg@n
denote the finite set of generators in (7.8). (We remark here that we replaced the
generator Ey of N with the D, in (7.6) for convenience. The reason for doing so is
that, if we take By = (14 D7 + A2)Y/4, then this is intertwined with (1 + 2|¢|*)1/4.
We find it more convenient to replace this with factors (; which lead to the same

module A/ )

This leads to the definition of spaces of incoming/outgoing data W* (RF) that
will be suitable domain spaces for the free Poisson operator viewed as mapping into
module regularity spaces.

Definition 7.3. For k € N, we define the Hilbert space W¥ (R?) by

WHRE) = {f € LA(RE,dQ) | Ar-.. Ajf € L*(RE,dQ)V A € Nyen, 1 < i < j < k).
(7.9)
The norm in this Hilbert space is defined by

£ =1l Ar ... A £113,

where the sum is over all j-tuples (A1, ..., A;) of generators for 0 < j < k. (when
j = 0 this is of course just the L? norm of f.)
For k € N, we define the spaces of negative order by

WHRE) ={feS'RY) | f= > A Ajfaya | far..a, € LP(REdC)}.

Al,...,A]’E.&\/’gen
J<k

The squared norm of f in this Hilbert space is the infimum of

Z ||fA17--~7Aj Hg

A A,
over all representations of f in this form, where (A, ..., A;) are distinct j-tuples of
elements of Nye, with 1 < j <.

Standard considerations show that WW™*(R") is the dual space of W¥(R™). Re-

calling that Hf\}r;k(R”H) denotes the module regularity space of order k with respect
to N, we show

Proposition 7.4. For k € N, the mapping
Po: WHRE) — H /> (R™1) M ker (D + Ao) (7.10)
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s a bounded isomorphism.

Moreover, if Q € \Ifg’aor (R™1Y 4s such that the intersection of its microsupport with
the characteristic variety is contained in the set where rp, = —1/2 (which implies
that it is microsupported away from the radial sets), then for all integers k € 7
(positive or negative) we have

QPo: Wk(R?) N Hk+l/2,k71/2(Rn+l) (7.11)

par

1s bounded.

Proof. The first statement follows immediately from Lemma 7.2 and commutation
identities (7.7). The second statement for £ > 0 follows from the first and the
observation that the module N is elliptic on the microsupport of @, so k orders
of module regularity gains us k in both the differential and spacetime orders of
regularity. For k > 0, by definition of the space W™F(R™) it suffices to consider
f of the form f = ST Ay ... A;f where A; € Nyen, j < k and f' € L%, Using the
commutation properties, Py f is equal to a sum of up to k£ module elements applied to

Pof’, which we know lies in the space Hég fmin (R Since these module elements
are order (1,1), we find that QPyf is in the space H;éf_k’_lﬂ_k(R”“). O

7.2. Perturbed Poisson operators. We now turn to the perturbed Poisson op-
erators P_, P+ from Definition 6.4. We have an analogue (in fact, a slight strength-
ening) of Proposition 7.4 for the perturbed Poisson operators. The following propo-
sition is the same as the first part of Theorem 1.3.

Proposition 7.5. For k € N, the range of each Poisson operator P+ on WF(R™)
s precisely

{’U, c Xi/erJr;k,O(Rn—i-l) + Xi/er—;kyo(Rn-Q—l) ’ Pu — O}, (7'12)

i.e. that is, those elements of XY/2"+ + XY~ in the kernel of P having module
reqularity of order k.
For k < —1, the range of P+ on WF(R™) is precisely

{u € HEFV2R=12(RHL) | Py = 0. (7.13)

For either sign of k, we characterise the range of P+ on WF(R™) as those elements
of the null space of P that are microlocally in Hg;l/lkflm(]l%”ﬂ) on char(P) \ R.
That is, provided @) € \I!g;?r is microsupported away from the radial sets, the map

QPy: Wk<R2L> N Hk+l/2,k—1/2(Rn+1) (7.14)

par

1s bounded.

Proof. We first prove the statement (7.14). This will be deduced from (7.10), the

identity (6.9) relating the free and perturbed Poisson operator, and mapping prop-

erties of the resolvent. We consider only P, as the argument for P_ is analogous.
Let f € WE(R™). By (6.9) we have

Prf="Pof - P-'PPof, (7.15)

and we have already shown the required regularity for the Py f term on the RHS in
Proposition 7.4. We now consider the other term on the RHS.

Since P — Py is compactly supported in spacetime, one can choose a G € \Ilg’aor
which is supported near spacetime infinity and microsupported near R such that
G(P — Py) = 0. Thus GPPyf = G(P — Py)Pof = 0. Since u/ = P"*PPyf is above
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threshold near R, the estimate in Proposition 5.4 applies to v/, so for any Q with

WF'(Q) C ell(G) we have that for any K, S, M, N € R and r’ above threshold,
51
|QP="PPofllys.x

< C(||GPP:1P730f|]H§a_r1,K+1 +IGPT PP f| e + ||p;1P730f\|H%;N)

par

= C(IGP=M(P = Ro)Pof |y + 1P (P = Po)Pof | yag )

where the last line follows since GPP-'PPyf = GPPyf = 0. This estimate shows

that after applying @, the second term on the RHS in (7.15) is in H{i;f( for arbi-
trary S and K and is therefore microlocally trivial close to Ry. Hence the sum
u of the two terms on the RHS of (7.15) satisfies the required regularity, namely
H{f;ﬁl/ 2h=1/ 2(R”H) regularity, in a small deleted neighbourhood of R . Because
u = P f satisfies Pu = 0, we can apply propagation of regularity, that is Theo-
rem 5.2, to deduce the same regularity everywhere on char(P)\ R. This establishes
(7.14).

We next show that the range of Py is included in (7.12), when & > 0. Let
u = P, f. We choose a microlocal partition adapted to ry and apply (7.2). Notice

that [P, Q4] has order (1,—1) so the term [P, Q]u is in Hg;rl/z’kH/Q(R”H) using

(7.14). This clearly belongs to both y;l/”*“;’“’o and y;l/““;"“o since both ry
are equal to —1/2 on the microsupport of [P, @]. Applying Theorem 6.3, we find
that u lies in (7.12).

To show that the range of Py for k < 0 lies in (7.13), we start the same way:
we use (7.2) again, and the fact that the term [P,Q]u is in Hg;lﬂ’k“/g(R”H)
using (7.14). In this case we apply the resolvent mapping property on variable
order spaces, Theorem 6.1, with a judicious choice of ri. Namely, for the operator
P;l, we choose ri to be equal to k — 1/2 on all bicharacteristic segments between
WF/([P,Q+]) and Ry, and for R_, we make a similar choice for r_ (with R_
replacing R). The sum of the two spaces Hg;lm’r* (R + Hg;lﬂ’r’ (R"H1) is
then equal to (7.13).

It remains to show that the Poisson operator Py maps surjectively to the spaces
in (7.12) and (7.13). This is postponed until after Proposition 7.10. O

Remark 7.1. There is an apparent problem with (7.15): it looks at first sight as
though P, f is less regular (in the differential sense) than Pyf since applying P
loses two orders of regularity and P~! gains back only one order. We circumvent
this difficulty by using the compact support of P — Py and propagation of regularity.
If P — Py were not compactly supported — even if it decayed quite rapidly at
spacetime infinity — this argument could not be used. Instead, we would need to
use an approximate Poisson operator adapted to P, similarly to what is done for
the Helmholtz equation in [26]. The issue is that the free Poisson operator has
the ‘wrong phase function’, adapted to Py not P, and only if these two operators
agree near spacetime infinity can we effectively treat the Poisson operator P, as a
perturbation of the free Poisson operator.

Remark 7.2. It is interesting that one can bootstrap from small module regularity
(as in (7.10)) to full module regularity (as in (7.14)). This arises because all the
modules are elliptic on char(P) \ R, so small module regularity and large module
regularity are equivalent there.
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Corollary 7.6. P* maps S(R"™1) to S(R™).

Proof. Dualizing (7.13), we find that P* maps H§;1/2’k+1/2(R”+1) to WFE(R™) for
k > 1. Taking the intersection over all such k yields the corollary. O

We now prove an analogue of Proposition 3.4 of [10].

Proposition 7.7. Let v € H_a%;;(/””“;k(R”“) with k > 2 and € > 0. Then uy =

D
P;lv is such that the limits
Liup(Q) =, ETOO(““)”/Q@_“'C P (2tC, 1) (7.16)
and
Lous(Q):= _lzinoo(47rit)"/26_“|q2u+(2t§, £) (7.17)

exist in (§>1/2+5Wk_2(]R2L), with the limit (7.17) identically zero.
Moreover, we have estimates

H£+U+H<_>l/2+awk—2 S C‘|U||H1/27;maz+1;1,k7
) et , (7.18)
£/~ A (1, 1) — Loiutlliyizrepyn—2=0(""), t—o00

for ' sufficiently small. A similar statement is true for u_ := P~‘v, with a zero
limit Liu_ ast — 400 and a (potentially) nonzero limit L_u_ ast — —oo.

Proof. We prove the statement only for w; as the proof for u_ is essentially the
same with the incoming and outgoing radial sets switched. Define

@(C,t) = (4mit)"2e =Py, (2tC, 1).

We will compute the partial derivative of @((,t), i.e. with ¢ fixed, which we denote
by Dy|¢ to avoid confusion with the partial derivative with respect to ¢ with z fixed.
Then, using ¢ = z/(2t) and D, = P — D, - D,, we can write

Dyleii(¢, 1) = (4mit)/ 2748 2—7} — ¢ + (5 - D. + Dy) us (216, )

— (4mit)/2eitIS (P 72D, — %) (tD, — %))u+(2tg,t) (7.19)

— (4mit)/2e it <U(2t§,t) - (t_Q(tDz - §> (D, — %)) u+(2tC,t)>

We recognize the factor tD,, — z;/2 as an element of the module N/. So we are now
in a similar position to the proof in [11]. By Theorem 6.3, u, € H%™+%2 which
allows us to conclude that the second term in the parenthesis has

((tDz - g) -(tD, — %)) Wy (24, 1) € HOT+00

Moreover, from the assumption on v, using: (1) U9 C N, (2) that rye, = —1/24-¢
near the radial sets, and (3) that N is elliptic away from the radial sets, we have

v e Hp—alrlx}baw-i-l;Q(RnJrl) - Hg;:x/_z-‘rl;l(RnJrl) - Hgé¥/2+5 _ <(t, Z)>71/275L2(dtd2)
Thus,on 0 < T <t
Dyia(C,1)|¢ € ((t,2)) Y2752 L2 (dtdz) + ((t, 2))Y/2Hee/2 (1) "2 L2 (dtdz)
C t~V2==()V2HE L2 (dtd¢).  (7.20)
This is in
£ LT, o0)i; () V2 L2 (RY)
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for 0 < &’ < . We can thus integrate the t-derivative, for fixed ¢, of @, viewed as a
function of ¢ with values in (¢)V/ 2+5L2(R?), out to infinity, showing that the limit

exists. Moreover, the convergence is at a rate of O(t*‘gl) as we see by integrating
Dy| ¢t back from ¢ = oo.

Now to prove the result for k& > 2, we observe that applying module element
2tD, —z; to uy is equivalent to applying D¢, to 4. In the same way, applying module
element 2;D,; — z; D, to uy is equivalent to applying (;D¢; — (; D¢, to a. Moreover,
since 2tD,, — z; and D,, are both module elements, it follows that multiplication
by z = (2tD,, — z;) — 2t - D,, maps u to <t>Hg;§1/2_6. Since multiplication by (t)
commutes with both 2¢D,, — z; and D,,, we can iterate this argument, showing that

for || < k, and ¢ large, multiplication by z% maps to (t)'anggl/?‘s, and hence,

—1/2—¢

multiplication by (* maps to Hg;;r for t > 1. This means that we can apply

compositions of up to k generators of N to @, improving (7.20) to
Dyct € t7YV2=( ) VA EWR2(atdg). (7.21)

Repeating the argument above shows that the limit (7.16) exists in the (¢)1/2+E)k—2
topology, and thus the limit lies in (C>1/2+€Wk_2(]R’g).

Exactly the same argument shows that the limit of (7.17) exists as t — —o0.
However, because v is obtained by applying the outgoing propagator P;l to v, u
is above threshold (that is, in HS;;I/ 2+6) microlocally away from R;. So in any
region of the form ¢ < —1, |¢| < R, we have «/ € t'/2~¢L?(dtdz), which amounts
to @ being in t'/275L2(dtd() for (t,¢) € (—oo,—1] x B(0, R). This is incompatible
with the existence of the limit £_w in (7.17) unless the limit function vanishes in
B(0, R). Since R is arbitrary this proves that £_u = 0.

O

Corollary 7.8. The incoming and outgoing Poisson operators P_, Py satisfy
ﬁ,P, == £+P+ == Id . (722)
Proof. This is an immediate consequence of (6.8) and Proposition 7.7. g

In preparation for Proposition 7.10 we prove the following pairing formula. In
order to state the result, recall from Proposition 7.7 that if Pu = v € S(R"™1), then
the limits £, v and £_u exist in the space (¢)'/?*t*WF for arbitrary k.

Lemma 7.9. Suppose that vy and ug are two functions on R such that Pu; €
S(R™1). We denote by fijE the limits Lyu;. Then the following identity holds:

/ (ur (Poz) — (Pur)izs) dg(t) dt = (2;) / O - T (OF Q) de.
Rn+1 RE

(7.23)

Proof. According to Theorem 6.3, the u; are in H;ﬁ’;mi";N for every N, i.e. they

have infinite (small-)module regularity. Following the proof of Proposition 7.7, there-
fore, u has an expansion as t — +oo, which we write in the form

uj = (4mit) T2/ (fii(c) + Oy (t_5/)>, ¢ = 2% t—too.  (7.24)
In addition we have an L?-estimate on the size of u; of the form

w; € (2, )2V N L2 (dz dt), ¢ = % R>1. (7.25)
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The additional factors of (¢)~V arise from module regularity, as we have already
seen in the proof of Proposition 7.7. In addition, we observe that the same estimate
holds for any module derivative of u. In particular, we also have

D,u; € ((2,0))272(Q) "N L2 (dz dt), g:%? R>1. (7.26)

To prove (7.23) we choose a cutoff function x € C2°(R) identically equal to 1 near
zero, and write

e =x(%), xs=x( i )

R 2R?
where R is a large parameter. We can write the LHS of (7.23) as
lim <<thzu1, Pruy) — (Pul,Xthu2>). (7.27)
R—oo

where x(s) € C°(R) is identically equal to 1 for s € [—1,1] and vanishing outside
[—2,2]. Since P* is the formal adjoint of P, we can shift derivatives from one
side of the inner product to the other and the only non-cancelling terms will be
those where a derivative hits one of the x factors. For large R, the support of the
derivative of x(t/R)x(|z|/R?) is in the region where P = P, so it suffices to assume
that P = Py=Dy+> ;D D,,.

First consider shifting one z-derivative. We have

<XtXZu17 DZjDZju2> — <XtXZDZjula DZ]'U2> + <Xt(DZjXZ)u17 DZju2>'

Adding this to the contribution of the second inner product in (7.27), two terms
cancel and we are left with

(Xt(Dz;xz)u1, Dz ug) — (D u1, xe(Dz, x2)u2)

as the contribution arising from integrating by parts in z. We estimate the mag-
nitude of these inner products using Cauchy-Schwartz and (7.25), (7.26). Noticing
that [¢| > R and ((z,t)) < CR? on the support of x;x, the ({)~" factors can
be replaced by RN, and {((z,t))/?*¢ is bounded by (C'R?)'/2*¢ on the support of
xtXz- Taking N sufficiently large, we see that these inner products tend to zero as
R — o0.

What remains is the result when a D;-derivative hits the y; factor, namely
t dt
lim —i/x'(R)X(QIZR’Q)uluzdz =

R—o0

We substitute (7.24) for u; and notice that only the leading order asymptotic of each
contributes to the limit. Moreover, the y, factor is 1 on a ball B(0,2R) in the ¢
variable, so this factor tends to 1 pointwise. We further write dz = (2t)"d(, change
integration variable to ¢ and we obtain (7.23), since

/OOO X(s)ds = 1, /0 X(s)ds = —1.

We will also need the following operator identity.
Proposition 7.10. We have the identity
PLPy =P_P: =i2r) " (P;' — P, (7.28)
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Proof. We first note that we have already shown that each of these three operators
is bounded from H;alr/ 2’rm‘”“'Jrl(R’“”rl) to Hééf fmin (RPF1) " So to prove the equality,
we need only consider the action on a dense subspace, such as S(R*1).

We thus consider v € S(R"*1) and let uy = Py v, u— = P~'v and u = uy —u_,
which therefore solves Pu = 0.

We now apply the pairing formula (7.23) with u; = P_a, for some a € S(R
and with us = u_ as defined above, i.e. us = P~'v. Then we find that Pu; =
fi =aand f; =0, so we obtain

n)’
0,

(P—a,v)r2@n+1y = i(2m)""(a, f37) L2 (mn),

from which follows P*v = i(27)~"f, . We may also express u = P_f, as u is the
unique solution to Pu = 0 with incoming data f, . We conclude that

P_P*v =i(2m) "P_fy =i(2n) "u=1i(2r) " (P ' — P- M),

proving the proposition. ]

Completion of the proof of Proposition 7.5. We need to show that P, with domain
WF(R™) surjects onto (7.12) when k > 0 and (7.13) when k < —1. To do this, we
let u be an element of (7.12) and use (7.2) together with (7.28) to write

u = —i(2m)"PyPLIP, Q4]u. (7.29)
Thus, it clearly suffices to show that P} [P, Qi]u is in WE. Observe that, since

[P, Q4] has order (1, —1), and is microsupported away from the radial sets, [P, Q+]u

is in H{f;l/ 2k+1/2 (R"*1). We choose a microlocal cutoff Q that is microsupported
away from the radial sets, and microlocally the identity on WF'([P, Q+]), and write

w = —i(2m)" (7&7)_‘;@*[13, Qi lu+ Py PrId—QY)[P, Q+]u>. (7.30)

Using the dual of (7.14) (with k replaced by —k), we find that PIQ*[P, Q4]u is
in W* as required. On the other hand, by the microlocal support assumptions,
(Id —Q*)[P, Q+]u is in S(R™1!), and by Corollary 7.6, we have P} (Id —Q*)[P, Q+]u
is in S(R™), which is even better.

Surjectivity for (7.13) is proved in exactly the same way. O

Proof of Theorem 1.3. The combination of Propositions 7.5 and 7.7 establishes
Theorem 1.3. U

7.3. Scattering map. The following theorem is a slight elaboration of Theorem 1.4.

Theorem 7.11. The scattering map, defined initially for f € WF(R™) with k > 2
by
S(f)y=lim  (4mit)"2e P £z 1) € (OTWFHRY)

t—00, z/2t—(C
in fact satisfies that
S: WER™) — WF(R™) (7.31)
1s bounded, and extends naturally to a continuous mapping for all k € Z.

Proof. Let f € WFE(R™), and let u = P_f. As in the previous proof, we use (7.2)
together with (7.28) to express

w = —i(2m)"P_P* [P, Q+Ju = —i(2m)" P, P[P, Q1 Ju. (7.32)
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It follows that the outgoing data for u is Lyu = —i(27)" P[P, Q+]u. That is,
the scattering map S has the form (similarly to [35, Proposition 5.1])

S = —i(2m)"PL[P,Q4]P-. (7.33)

Next, Corollary 7.6 shows that, up to an operator mapping W¥*(R") to S(R") for

any k € N, this is equal to

2R PIQIP,Q4 QP (7.34)
where @, Q' are operators of order (0,0) that are microlocally the identity on
WEF'([P, A]) and microlocally trivial in a neighbourhood of the radial sets.

The mapping property then follows from Proposition 7.5. In fact, Q'P_ maps
WF to Hg;lﬂk Y2, the operator [P,Q4] is order (1,—1) so maps to Hgarl/z k172,
and then the adjoint operator P} () maps to WF. Thus S (defined this way) extends
to a map on all W¥. This completes the proof.

O

8. APPENDIX: GLOBAL PROPAGATION OF REGULARITY AND FREDHOLM
ESTIMATES

In this appendix we prove the general propagation of regularity results on the full
phase space T, © R

We treat more general parabolic differential operators L € ¥ par d and establish
two microlocal estimates controlling u in terms of itself and Lu. The first of these
estimates, Proposition 8.1, is microlocalised to the subset of the characteristic variety
char(L) where the renormalised Hamiltonian vector field H™! of L is nonvanishing,
and amounts to the standard propagation of regularity theorem in the parabolic
setting. The second estimate is microlocalised to a neighbourhood of the radial
set R where H™! vanishes, and in this region we employ radial set estimates as
introduced by Melrose [27].

8.1. Positive commutator estimates away from radial sets. In the subset of
char(L) where the renormalised Hamiltonian vector field H™! is nonvanishing, we
have positive commutator estimates analogous to Hormander’s propagation theorem
for real principal type operators.

Proposition 8.1. Let L € \Ilpar o be an operator of real principal type and let

Q,Q .G e \Ilpar with G elliptic on WF'(Q).

Assume that m is a variable spacetime order that is nonincreasing in the direc-
tion of the bicharacteristic flow of L. Furthermore, suppose that for every a €
WF'(Q)Nchar(L) there exists o such that Q' is elliptic at o/ and there is a forward
bicharacteristic curve v of L from o' to a such that G is elliptic on .

Then if GLu € Hf)arkH M=+l ond Q'u € Hpar, we have Qu € Hpyy with the
estimate

1Qull gz < CUIQ Ul prgm + G Luull s rrmerin + [l paen)

par — par

for any M, N € R.

The proof of Proposition 8.1 is essentially identical to that of [38, Theorem 5.4].
The only difference is that the boundary defining function for the fiber compact-
ification pg}, is in our setting given by the quasi-homogeneous (1 + R4)_1/ 4 as in
(2.1), and so the Sobolev spaces in the theorem become the parabolic Sobolev spaces

considered in this paper.
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Remark 8.1. When WF/(Q), WF'(Q') and WF'(G) are disjoint from the corner of
the compactified phase space Tp, R™* 1 Proposition 8.1 can be obtained as a di-
rect consequence of standard propagation theorems valid on the boundary faces
Opase Ty R™ T and Oy Tk, R" 1. The original propagation theorem due to Hor-
mander [16], as first used by Melrose [27] in the scattering setting, is valid on the
interior of Opasel’ ;arR”H where the anisotropic nature of ¥, plays no role. On

the other hand, the propagation theorem is proven for ¥, and general anisotropic

pseudodifferential calculi on the interior of the boundary face JgpTp, R in [25].

8.2. Positive commutator estimates near the radial sets. In this section
we write down the microlocal propagation estimates for a general operator L €
;r;f o(R™1) with real principal symbol near its radial set Ry, (see Definition 2.6).
The proofs of these results are essentially identical to the positive commutator
estimates in the standard scattering calculus, and we follow the presentation of
[38],[14],[27].
We are interested in the study of propagation estimates near a radial set Ry ex-
tending into the corner of the compactified phase space 17, R"* 1. 'We shall consider

the case of a radial set Ry, C Opasel, ;arR”H that meets the other boundary face
Opib T R* 1 transversally.
Let L € U™ _ have real principal symbol p, and let p denote pg’gseplﬁbp (where

par,cl
Phase and pgp, are defined by (2.6) and (2.9)), which by the assumption of classicality
of L is a smooth function on T, R 1.

We recall from Section 2 that the vector field
H™ = p " Prse L (8.1)

extends to a smooth vector field tangent to the boundary faces of T*R". By defi-
nition, Ry, is the subset of char(L) where H™! vanishes. We assume that Ry, is a
smooth submanifold of char(L) of codimension k that meets 8ﬁbTEbR”H transver-
sally. As we have seen, this assumption holds for our specific operator P with k = n.
As a submanifold of Oy T*R"™t1, Ry, can be characterized by

Rp ={pr, =0, p=0}, (8:2)

where pr, is a quadratic defining function for Ry, as a submanifold of char(L), that
is, pr = Z?Zl p?zb ;» with the pr, ; a collection of k£ smooth functions vanishing on
‘R with linearly independent differentials.

Our main assumption on Ry will be that it is either a source or a sink of the
Hamilton vector field. To explain what this means concisely, we adopt the con-
vention in the remainder of this Section that in all future occurrences of + and
F, the top sign choice corresponds to the sink situation and the bottom corre-
sponds to the source situation. By a source/sink we mean that H m’ZpRL is non-
negative /nonpositive in a neighbourhood of the radial set, and that H™!pp.ge is
‘strictly’ nonnegative/nonpositive in the sense that

Hm,lpbase = :Fﬁpbase (83)

where 8 € C®(T*R"*1) is strictly positive on Ry. As a consequence of this first
condition, taking ¢ € C2°(]0,00)), equal to 1 near 0 and decreasing, then

b1 1= \JEH™ ((pR + Pae)) (8.4)
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is non-negative, smooth, and vanishes near the radial set. Furthermore, we require
that

H™ pgr, = F2BB1 6, (85)
with 81 € C®°(T*R"+1) vanishing on R. We introduce p,q € C®(9(T*R"+1)) by
setting

P = Opar,m—1,i— 1( (L L*)) = iﬁqpflibmpllaasle (8.6)

Finally we choose ¢g € C°(R) 1dentlcally 1 near, and supported sufficently close to
0. We shall use ¢g o p to localize near the characteristic set char(L) = p~1(0).

In the specific case of the operator P = D; + A, + V, we have seen via explicit
calculation in Section 3.3 that its rescaled Hamilton vector field is a sink near R4
and a source near R_. Moreover, those calculations shows that § = 2 on the radial
set, while it is clear that 51 and ¢ are both zero near the spacetime boundary. Thus
all these conditions are fulfilled for the operator P.

In order to prove microlocal estimates near the radial set, we need to come up
with an operator A so that its commutator with L, or more exactly the operator on
the LHS of (8.8), has a positive symbol at the radial set. To this end, we now define

= ¢(PR + pzbase)zéo(ﬁ)Qpl;alsepf;bm ) (87)
which we may assume is supported in a given small neighbourhood U of R, and
compute the principal symbol

0m+m’—l,l+l’—1([A7 L] + (L — L*)A) = —(HL(I + 2ﬁa), (88)
where A € \Ilggr’l/ is the symmetric operator with principal symbol a given by
) 5 . .

We have
H _ 1= l—mHm,l
La pbasepﬁb
= Phe P " (2065H™ pr + 20° oy H™'p)
+ pbasepﬁbm¢2¢0( pl:alse_lpﬁ]? H™ pbase m pbasepﬁb le lPﬁb)
= ppl UL pem= L (4960202 1 202 hodh H™' P + I g2 62 8 + 2m/ 6292 551).

Hence we can express (8.8) as

- (HLG + Qﬁa) - pbalscl +1p{;l;m e

x (206867 — 202000h H™'p F 67633 F 2m/ 6 63861 F 20a6°8) . (8.10)

Recall that ¢y cuts off near char(L), and ¢ cuts off near R where ¢] = 0. Hence
the first term in (8.10) is supported in a punctured neighbourhood of the radial set,
and the second term involving ¢, is supported away from the characteristic set. The
latter is easily treated by using microlocal elliptic estimates.

The sum of the final three terms in (8.10) has sign determined by that of

F (' +2m/ By + 29). (8.11)

In particular, if I’ + 2m/; + 2¢ > 0 on R, then this sign matches that of the first

term in (8.10). (Notice that in the case of the specific operator P, this quantity is
just F1')

We require that the quantity (8.11) has a definite sign in order to run the positive

commutator argument, drawing different conclusions in the two sign cases. Suppose



FREDHOLM ANALYSIS FOR THE TIME-DEPENDENT SCHRODINGER EQUATION 57

that we want to estimate u (or a microlocalized version of u) in the Hpgr norm. This
requires that we choose m’ and I’ (the orders of A) to satisfy

2s=m+m' -1, 2r=101+1-1 (8.12)

and recalling that 81 vanishes on R, we require (eliminating !’ from (8.11) that
r + g — 51 has definite sign on R. We obtain estlmates for both signs, but the
estimates have slightly different characters. If r+¢q — T is positive, then we obtain

microlocal regularity if we assume a priori that u is microlocally in HS;;’ for some
' € [r—1/2,r) for which we still have 7' +q¢— 5% > 0. If this quantity is negative, we
obtain instead propagation of regularity ‘towards the radial set from a punctured
neighbourhood of the radial set.

In the case of the particular operator P, we have ¢ = 0 and 0 so the condition
becomes that r — (—1/2) has definite sign. This shows that » = —1/2 is a threshold
value of the spacetime order, where different behaviours occur above and below this
value.

Returning to the general operator L, in the case r + g > 1—717 we use (8.10) and
formally compute

(i(([A, L]+ (L — L") A)u, u)

(that is, ignoring regularity conditions for pairing distributions, and integrating by
parts) to obtain

F 2Im(Au, Lu) = || Byul|* + || Bou|® + (Fu,u) + (Ru, u). (8.13)
Here Bj = Op(b;), F = Op(f), where, using (8.12) to replace m’ and I’ by s and r,

by = ¢¢0\/,3(27“ —l+1+ 2ﬁ1(28 —m + 1) + 2(]),0];;6/){;5 (8.14)
= /200001 pp 05 (8.15)
f = 22000, (H™' D) oy 20 i (8.16)

2s—1,2r—1
and R € Wpar .
In the special case Lu = 0 for example, (8.13) then yields the estimate

1Brull® < [(Fu,u)| + [(Ru, u)| (8.17)

Let Q = ABy € \I/par where A = Op(p},..pk,) and take Q" € \I/par elliptic on
WEF’(A). We make the assumption that Q"u € H*~ 1/27" a5 foreshadowed above. As
WF'(F ) C WF/(A) C U is disjoint from the characteristic set of L, we may choose

Q € Wpa such that WF'(Q) C ell(Q”) and @ is microlocally equal to the identity
on WF/(F'). We can then estimate, for arbitrary M, N,

[(Fuu)] < C((Fu, Qu| + [[ul2 )
2 A 2 2
< C(IFul? i + 1 QulZ s + )
< O(IGLUl e irroris + 1Q s + e ) (8:18)

using the fact that we can invert elliptic operators microlocally — see Proposi-
tion 2.9. So, for example, we invert GL microlocally on WF/(F) to write F =
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AGL + R’ with A € U2:™* L and R’ € U2 ™. The last term in (8.17) can be
estimated similarly:

(B )| < O (IR, oo +1QuIZ s+ i B )

) ) (8.19)
< 1" ) )
< C(IQ "l 1yser + lulpae

where M, N € R are again arbitrary. Inserting these estimates into (8.17), we obtain

Qullgg < COGLU ymorrson 4 1Q"ul o + il ). (520

par

In the second case with r + ¢ < 1—71’ the above calculation is similar, but (8.13)
is replaced with

F 2Im(Au, Lu) = — || Byu||® + || Boul|* + (Fu, u) + (Ru, u) (8.21)
where (8.14) is replaced by

b1 = ddor/B(l—2r — 1 —2B1(25 —m + 1) — 2¢) py. Pt (8.22)

The changed sign of B relative to B; means that we additionally need microlocal
control of u on WF’(Bz), which lies in a punctured neighbourhood of the radial set
R. This can be achieved by using the standard propagation estimate of Proposition
8.1 away from the radial set, and leads to an additional term [Q'u g3y in the

estimate, provided @’ and G satisfy the bicharacteristic condition in Proposition
8.1.

One can also relax the assumption Lu = 0 to GLu € Him™ "~ which only
leads to the additional consideration of the term (Au, Lu) in (8.13) and (8.21). We
absorb the contribution of this term into the positivity of b1, by replacing the symbol
by with b2 = b? — dapl 2 pir =2 > 0 for sufficiently small 5. Then we have

1Brul|? < 8[| AAYul? + [(Fu, u)| + [(Ru, w)| + 2[Im{A u, AYV2Lu)|  (8.23)

where A = Op(pgésze_rpg{:ﬂ_s) and A2 is given by (8.9). Taking A an elliptic

parametrix to A, we have

[(AY?u, AV2 Lu)| < [(AAY2u, AAY? Lu))| (8.24)
5

< =

2

1 -~
|AAY 2% + %HAAlﬂLuHZ (8.25)

and the first of these terms is absorbed by the first term on the right hand side of
(8.23), whilst the latter is bounded (recalling G is elliptic on U D WF'(A)) by

C
2% ||GLU||HS;m+1,T—l+1 + CHUHH%;N.

We now state and prove the propagation result in the two cases. Our assump-
tions are as above for both results; that is, we assume that L € \I'g;’id(R”“) is
a classical pseudodifferential operator in the parabolic scattering calculus that has
real principal symbol, such that its radial set Ry, is a codimension k submanifold
of char(L) contained in dyasel s, R™T! that meets Gyasel g, R"T! transversally. We
assume that R, is either a source or a sink for the rescaled Hamilton vector field
in the sense described above, and for either the top (sink) or bottom (source) sign
choices in (8.4), (8.3), (8.5), we assume that ¢;,5; are smooth and vanish near R
and on R respectively, and that § is smooth and positive on R.
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Proposition 8.2. Suppose L € \I/gg’f(R"H) is as above. For the q defined in (8.6),

suppose that r + q < 1771 on Rr. Assume that there exists a neighbourhood U of

Ry and Q',Q",G € \Ilg;ﬂ(R”*l), with U C ell(Q") and such that for every o €
p~H0)NU \ Ry the bicharacteristic v through o enters ell(Q') whilst remaining in
ell(G). Then there exists Q € lllg}g(]R”H) elliptic on R, such that if w € HN,
Qu € H", Q"u € HY27=Y2 gnd GLu € HS ™ =14L then Qu € HS" and
there is C' > 0 such that

1Qull gy < CUIQ gy + 1GLull gz r—rer + 1Q ] osyzir—syz + [lull garv).-
(8.26)

Proposition 8.3. Suppose L € \Ifg;’f?d(R”H) is as above. For the q defined in
-1 =1

(8.6), suppose ©+q > 5= on Ry and moreover r+q > - on Ry for some
e [r—1/2,7). Assume that Q",G € WS (R"Y) are elliptic at Ry. Then there
erists Q € \DSQ(R”H), elliptic at Ry, such that if u € HN Gu e Hg;l/lr and
GLu € Hg;rmﬂ’r_lﬂ, then Qu € Hpye and there is C > 0 such that

HQ“HHS;{, < C(HGLUHH;;m+1,r—l+1 + “Q//u“H;;l/Q,T, + Hu”HéV{rN) (8'27)
Remark 8.2. In the statement of Proposition 8.3, we could take Q" = G. However,
in order to treat the proofs of these two results jointly, it helps to state the result
as above.

Proof. The proof of these two results largely amounts to regularising the commutator
estimates outlined above in order to legitimately obtain the equality (8.13).

Note that a priori, the conditions of Proposition 8.3 only imply that Lu and Au
have orders (s —m +1,r — 1+ 1) and (s — 1/2 — m/,7’ — ') in WF'(A), summing
to (=1/2,7" —r) (using (8.12)), and so (Au, Lu) is not a priori well-defined. This
requires some regularization procedure added to the formal calculations above.

To deal with this issue, we replace the symbol a in (8.7) with

e = Pe(Ppme) P (P )?a = (1 + eppis)” (1 +epgh)a (8.28)

for ¢ > 0. Thus for each fixed ¢, the order of A. obtained from a. analogously to
(8.9) has been shifted by (—1/2,7" — r) relative to A.
These regularising functions have the property that

T .
‘P/s/ﬁﬂa < : mln{l, pbase} (829)

and
I
Pe/Pe < 7 -min{1, priv}. (8.30)

Due to the regularisation, the pairing (A.u, LU) is now well defined for ¢ > 0,
however the formal integration by parts, i.e. the identity

(Lu, Acu) — (Acu, Lu) = (AL — L*Ac)u, w) (8.31)

still remains to be justified for fixed € > 0. To do this, we use the functions
Ve, Pe just defined and raise them to a sufficiently high fixed power K: let I'} =
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OP(¢f (Ppase) 21 (P ), and compute
(Lu, Acu) — (Acu, Lu) = lim (D1 Lu, Acu) — (TeAcu, Lu) )
t—0
= lim (AT, L — LT Al )u, u)
t—0

We have
AL — L'TyAe =T (AL — LY AL) + [Ao, Ty L — [L*, T ] A.. (8.32)

As I'; is uniformly bounded in \I/g’fr (in the sense of having symbol with uniformly
bounded seminorms), and converges to Id as ¢ — 0 in WHy for any p > 0, we have
strong convergence A.I'y\L — L*T'yA. — A.L — L* A, which implies (8.31) is valid for
each € > 0.

As before, we compute the symbol —(Hpa. + 2pa.) of the commutator expression
i([Ae, L] + (L — L*)A.) where A is symmetric with principal symbol a..

The calculation proceeds as before from (8.10), however in each term there is the
regularising factor ¢2@2, and there are two additional terms from H™! falling on

the regularisers. These two terms are:

F 2 o™ S22 2 (L) Pe) * Prsel (8.33)

and

FApi T ok T P 0302 RE - (BL)%<) - P BB (8.34)
In the case r + ¢ < l_Tl, these new terms in fact have the same sign as the ‘main’
term || Byul|?, and can thus be dropped from the commutator estimate.

In the case r + ¢ > l—le these new terms have the opposite sign of || Bjul|?, but
can be absorbed into the b; term as in (8.23). To see this, we use (8.29) and (8.30)
to obtain the estimate . .

20 | Ao
Pe Pe

Since the expression underneath the square root in (8.14) remains positive near Ry,

if we replace the r with an 7/, it follows that, provided we have ' +¢q > Z_Tl, the two

—7' + B (8.35)

additional terms can be absorbed into the positive expression b?.

The remaining terms in (8.13), (8.21) are now generally e-dependent, which we
denote with a subscript. Replacing WF'(A) and WF’(F') with their uniform versions
WF'(A:), WF'(F.) (in the sense of [38, Sect. 4.4]), then all estimates go through
uniformly in € to give

Qi < COIGLul st oton + Q" ul o syser + lal as) — (8:36)

par

for fixed C' and all € > 0 in the case r + ¢ > ' + ¢ > Z_Tl

From weak compactness of the unit ball in H*" as € — 0 we thus obtain a limit
limg; ;0 Qeu in H>". However, we know that Q.u converges strongly (and a fortiori
weakly) to Qu in H s=e'r=¢' for any ¢/ > 0. It follows that limit obtained from weak
compactness is Qu, and hence Qu lies in H®" satisfying the required estimate

1Qullrg; < CUCLull gzmsrr-von + Q" ull yasyom + Jull ). (8:37)

par

In the case r + ¢ < 1—717 the exact same argument goes through, with the addi-
tional term || Bau||? in (8.21) controlled using Proposition 8.1 and giving rise to the
additional term [|Q"ul| s, in Proposition 8.2.

]
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Remark 8.3. The conclusions of Propositions 8.3 and 8.2 lend themselves to itera-
tion. In fact, if we know that Q'u (microsupported away from the radial set, say)
and GLu have regularity (s*,r*) and (s* —m + 1,r* — [ + 1) respectively, then we
can apply (8.26) over and over, starting at the assumed regularity (M, N), to obtain
regularity (s*,7*) for Qu, provided that r*+¢ < (I—1)/2. Similarly, if GLu has very
high regularity, say of order (s* —m + 1,r* — [+ 1) where s* and r* are very large,
then we simply apply (8.27) over and over, gaining up to 1/2 in both spacetime and
fibre regularity until we reach s* and r*, provided we know a priori that we have
regularity (so,ro) with 79 + ¢ > (I — 1)/2. The results obtained by such iteration
are stated for the specific operator P in Propositions 5.4 and 5.3. Notice that the
Q" term is not needed in the below-threshold case as it can be iteratively lowered
in regularity until it is subsumed into the ||u|| g~ term.

Remark 8.4. The example of the free Schrodinger operator Py shows that these
propositions cannot be improved much. Consider a solution u to Pyu = 0 given by
Pof for f Schwartz, as in (6.7). The function u is microlocally trivial outside the
radial set R, and is in Hpyy for every r < —1/2, but not for r > —1/2. It shows that

the a priori condition that u € Hg;f " for some ¥ > —1 /2 in Propositions 8.3 and
5.4 cannot be removed in order to gain additional regularity at the radial set, and
also shows that regularity gain in Propositions 8.2 and 5.3 cannot be pushed above
the threshold level of —1/2.
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