
DIFFUSE TRACES AND HAAR UNITARIES

HANNES THIEL

Abstract. We show that a tracial state on a unital C∗-algebra admits a Haar

unitary if and only if it is diffuse, if and only if it does not dominate a tracial

functional that factors through a finite-dimensional quotient. It follows that a
unital C∗-algebra has no finite-dimensional representations if and only if each

of its tracial states admits a Haar unitary.

More generally, we study when nontracial states admit Haar unitaries. In
particular, we show that every state on a unital, simple, infinite-dimensional

C∗-algebra admits a Haar unitary.

We obtain applications to the structure of reduced free products. Notably,
the tracial reduced free product of simple C∗-algebras is always a simple C∗-

algebra of stable rank one.

1. Introduction

Let A be a unital C∗-algebra with a tracial state τ : A→ C. A unitary u ∈ A is
called a Haar unitary (with respect to τ) if τ(uk) = 0 for k ∈ Z\{0}. Equivalently,
the sub-C∗-algebra C∗(u) of A generated by u is isomorphic to C(T) and the
restriction of τ to C∗(u) corresponds to the normalized Lebesgue measure on T.

Haar unitaries play important roles in various constructions and structure re-
sults in operator algebras, starting with the fundamental fact that they are natural
generators of diffuse abelian *-subalgebras in separable, tracial von Neumann al-
gebras. Haar unitaries also naturally arise in reduced group C∗-algebras, in group
von Neumann algebras, and as generators of the irrational rotation C∗-algebras.

Popa’s solution, [Pop87], to the commutant modulo compact operators prob-
lem for general von Neumann algebras relies on the construction of suitable Haar
unitaries in II1 factors. This construction was later refined, [Pop95], to prove the ex-
istence of free independent sequences of Haar unitaries for irreducible subfactors of
II1 factors. Haar unitaries also play a prominent role in Voiculescu’s free probability
theory, [Dyk93], [DH01], in particular as the unitaries in the polar decompositions
of R-diagonal elements, [NS97], [NS06, Section 15].

The main result of this paper characterizes when τ admits a Haar unitary:

Theorem A (5.4). The following are equivalent:

(1) τ is diffuse (the normal extension τ : A∗∗ → C vanishes on every minimal
projection; see Paragraph 3.1)

(2) τ does not dominate a nonzero tracial functional that factors through a
finite-dimensional quotient of A;

(3) there exists a unital (maximal) abelian sub-C∗-algebra C(X) ⊆ A such that
τ induces a diffuse measure on X;
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(4) there exists a Haar unitary in A (with respect to τ).

Corollary B (5.5, 5.6). A unital C∗-algebra has no finite-dimensional representa-
tions if and only if each of its tracial states admits a Haar unitary.

In particular, every tracial state on a unital, simple, infinite-dimensional C∗-
algebra is diffuse and admits a Haar unitary.

In Section 8, we apply these results to reduced group C∗-algebras. First, we
see that a discrete group G is infinite if and only if the canonical tracial state on
the reduced group C∗-algebra C∗red(G) admits a Haar unitary; see Proposition 8.1.
Thus, if G is an infinite, locally finite group, then C∗red(G) contains a Haar unitary,
while there exists no Haar unitary in C[G]; see Example 8.2. We also obtain a
characterization of nonamenability:

Proposition C (8.3). A discrete group G is nonamenable if and only if every
tracial state on C∗red(G) admits a Haar unitary.

In Section 9, we obtain applications to reduced free products. Given unital C∗-
algebras A and B with faithful tracial states τA and τB , respectively, it is a well-
studied problem to determine when the reduced free product of (A, τA) and (B, τB)
is simple or has stable rank one; see [DHR97, Dyk99]. By [Dyk99, Theorem 2],
a sufficient condition is that there is an abelian subalgebra C(X) ⊆ A such that
τA induces a diffuse measure on X, and that B 6= C. Theorem A shows that the
condition on A is satisfied if and only if τA is diffuse; see Theorem 9.1. As an
important special case, we get:

Corollary D (9.2). Let A and B be unital, simple C∗-algebras with tracial states
τA and τB . Assume that A 6= C and B 6= C. Then the reduced free product of
(A, τA) and (B, τB) is simple, has stable rank one and a unique tracial state.

It follows that the class of unital, simple, stable rank one C∗-algebras with unique
tracial state is closed under formation of reduced free products; see Corollary 9.3.

Special cases of Theorem A have been shown before. Under the additional as-
sumption that the C∗-algebra is abelian, it follows from [DHR97, Proposition 4.1(i)].
For normal traces on von Neumann algebras, it is also well-known. In fact, given
a normal trace τ on a diffuse von Neumann algebra M , every maximal abelian
subalgebra (masa) D ⊆ M is a diffuse sub-von Neumann algebra. It follows that
τ |D is a diffuse trace and thus admits a Haar unitary (for instance by [DHR97,
Proposition 4.1(i)]). In particular, every masa in M contains a Haar unitary.

We point out that the analogous result does not hold for C∗-algebras: Given
a diffuse trace on a unital C∗-algebra A, not every masa of A needs to contain a
Haar unitary; see Example 5.7. This also indicates why the construction of a Haar
unitary for a given diffuse trace is rather delicate.

Methods. The most difficult implication in Theorem A is to show that a diffuse
tracial state τ on a unital C∗-algebra A admits a Haar unitary. It suffices to con-
struct a positive element in A with spectrum [0, 1] on which τ induces the Lebesgue
measure. To find such element, we first establish a correspondence between positive
elements in A and certain maps from (−∞, 0] to the lattice O(A) of open projec-
tions. More precisely, a positive element a induces a map fa : (−∞, 0] → O(A),
that sends t ≤ 0 to the support projection of (a+ t)+, and one can describe explic-
itly which maps (−∞, 0] → O(A) arise this way; see Proposition 2.6. Further, a
positive element a has spectrum sp(a) = [0, 1] and τ induces the Lebesgue measure
on sp(a) if and only if the associated map fa satisfies τ(fa(t)) = 1+t for t ∈ [−1, 0].

To obtain the desired map f : (−∞, 0] → O(A), it suffices to construct open
projections pt for dyadic rationals in [−1, 0] such that τ(pt) = 1 + t and such that
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pt′ is compactly contained in pt in the sense of Definition 2.1, denoted pt′ ≺ pt,
whenever t′ < t. Such projections could easily be obtained by successive interpola-
tion if we could show that for given p ≺ q in O(A) and t with τ(p) < t < τ(q), there
exists r ∈ O(A) such that p ≺ r ≺ q and τ(r) = t. In Lemma 4.5, we establish
an approximate version of this interpolation result, which suffices to construct the
desired map (−∞, 0]→ O(A).

The crucial assumption in Lemma 4.5 is that τ has ‘no gaps’ in the sense that for
every open projection p, the set {τ(p′) : p′ ∈ O(A), p′ ≤ p} is dense in [0, τ(p)]. The
key observation is that this ‘no gaps’ property holds if (and only if) τ is nowhere
scattered, which means that it gives no weight to scattered ideal-quotients; see Def-
inition 3.5. This even holds for arbitrary positive functionals, and in Theorem 4.11
we provide several characterizations for a functional to be nowhere scattered. The
final ingredient is that a diffuse trace is nowhere scattered; see Proposition 3.9.

Notation. Given a C∗-algebra A, we use A+ to denote the positive elements in A.
By an ideal in a C∗-algebra we always mean a closed, two-sided ideal. Given a ∈ A,
we use sp(a) to denote its spectrum, and we let supp(a) denote the support pro-
jection in A∗∗. Given a Hilbert space H, B(H) denotes the C∗-algebra of bounded,
linear operators on H, and K(H) is the ideal of compact operators.

2. Open projections

Let A be a C∗-algebra. A projection p ∈ A∗∗ is said to be open if there exists an
increasing net in A+ that converges to p in the weak*-topology; a projection p ∈ A∗∗
is said to be closed if 1 − p is open; see [Ake69, Definition II.1]. Given an open
projection p, the sub-C∗-algebra pA∗∗p ∩ A of A is hereditary and p is the weak*-
limit of any approximate unit of pA∗∗p∩A. Conversely, given a hereditary sub-C∗-
algebra B ⊆ A, there exists a (unique) open projection p such that B = pA∗∗p∩A.
For details we refer to [Ped79, p.77f].

We let O(A) denote the collection of open projections in A∗∗, and we consider
it as a subset of the complete lattice Proj(A∗∗) of projections in A∗∗. By [Ake69,
Proposition II.5], the infimum of an arbitrary family of closed projections is again
closed. Given any projection p ∈ A∗∗, this allows one to define its closure p as
the smallest closed projection that majorizes p. Dually, O(A) is closed under ar-
bitrary suprema in Proj(A∗∗). Given a family (pj)j of open projections, the open
projection

∨
j pj corresponds to the hereditary sub-C∗-algebra of A generated by

A∩
⋃
j pjA

∗∗pj . We note that the infimum
∧
j pj in Proj(A∗∗) is in general strictly

larger than the open projection∨{
p ∈ O(A) : p ≤ pj for all j

}
,

which corresponds to the hereditary sub-C∗-algebra A∩
⋂
j pjA

∗∗pj . Thus, O(A) is

naturally isomorphic to the lattice of hereditary sub-C∗-algebras studied in [AB15].

Definition 2.1. We define an auxiliary relation ≺ on O(A) by setting p ≺ q for
p, q ∈ O(A) if there exists a ∈ A+ with p ≤ a ≤ q.

One can show that p ≺ q if and only if p is compactly contained in q in the
sense of [ORT11, Definition 3.6]. Using Theorem II.5 and Lemma III.1 in [Ake71],
it follows that p ≺ q if and only if p ≤ q and there exists b ∈ A+ such that p ≤ b.
Thus, if A is unital, then p ≺ q if and only if p ≤ q.

Lemma 2.2. Let a be a positive, contractive element, and let e be a projection in
a C∗-algebra. Then e ≤ a if and only if e = ea. Further, we have a ≤ e if and only
if a = ae.
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Proof. If e ≤ a ≤ 1, then e ≤ eae ≤ e and so

[e(1− a)1/2][e(1− a)1/2]∗ = e(1− a)e = 0.

Hence, e(1 − a)1/2 = 0, which implies e(1 − a) = 0, that is, a = ea. Conversely, if
e = ea, then e = aea ≤ a2, and so e = e1/2 ≤ (a2)1/2 = a.

Further, if a ≤ e, then 0 ≤ (1 − e)a(1 − e) ≤ (1 − e)e(1 − e) = 0 and so
[a1/2(1 − e)]∗[a1/2(1 − e)] = 0. Hence a1/2(1 − e) = 0, and we get a(1 − e) = 0,
that is, a = ae; see [Bla06, Proposition II.3.3.2]. Conversely, if a = ae, then
a = eae ≤ e2 = e. �

It follows from Lemma 2.2 that open projections p, q satisfy p ≺ q if and only
if there exists a positive element a such that p = pa and a = aq. The next result
summarizes basic properties of the relation ≺.

Lemma 2.3. Let A be a C∗-algebra. Then the following statements hold:

(1) Let p, q, r, s ∈ O(A) satisfy p ≤ q ≺ r ≤ s. Then p ≺ s.
(2) Let p, q ∈ O(A) satisfy p ≺ q. Then there exists q′ ∈ O(A) with p ≺ q′ ≺ q.

Proof. Statement (1) is obvious. To verify (2), let a ∈ A+ satisfy p ≤ a ≤ q. Then
p = pa and a = aq. Let f, g : R → [0, 1] be continuous functions such that f takes
the value 0 on [0, 12 ] and the value 1 on [1,∞), while g takes the value 0 on {0}
and the value 1 on [ 12 ,∞). Note that fg = f . Set q′ = supp(f(a)) ∈ O(A). Then
p ≤ f(a) ≤ q′ ≤ g(a) ≤ q, which shows that p ≺ q′ ≺ q. �

The following definition is inspired by the notion of paths in Q-semigroups (cer-
tain directed complete, partially ordered, abelian semigroups equipped with an
auxiliary relation) from [APT20, Paragraph 2.12].

Definition 2.4. A path in O(A) is an order-preserving map f : (−∞, 0] → O(A)
satisfying the following conditions:

(1) f(t) = sup{f(t′) : t′ < t} for every t ∈ (−∞, 0];
(2) f(t′) ≺ f(t) for all t′ < t in (−∞, 0].

We say that a path f is bounded if there exist t ∈ (−∞, 0] such that f(t) = 0. We
then define the length of f as l(f) := sup{|t| : f(t) 6= 0}.

Every positive element in A defines a bounded path in O(A):

Lemma 2.5. Let A be a C∗-algebra and a ∈ A+. Define fa : (−∞, 0]→ O(A) by

fa(t) := supp((a+ t)+)

for t ∈ (−∞, 0]. Then fa is a bounded path in O(A) with length l(fa) = ‖a‖.
Below, we show that every bounded path in O(A) is induced by an element

in A+. It follows that positive elements in A correspond to bounded paths in
O(A). However, the (pointwise) order on paths does not correspond to the usual
order on A+, but to the spectral order introduced by Olsen in [Ols71]. We note
that the next result is closely related to [Ake71, Theorem I.1].

Proposition 2.6. Let A be a C∗-algebra and let f : (−∞, 0]→ O(A) be a bounded
path. Then there exists a unique positive element a ∈ A such that f = fa, that is,
f(t) = supp((a+ t)+) for every t ∈ (−∞, 0].

Proof. Uniqueness: Let a, b ∈ A+. By [Ols71, Theorem 3], a is dominated by b in
the spectral order if and only if an ≤ bn for every n ≥ 1. In particular, fa ≤ fb
implies a ≤ b, and fa = fb implies a = b.

Existence: Set Z≤0 := Z ∩ (−∞, 0]. Let n ≥ 1. For each k ∈ Z≤0, using that

f(k−12n ) ≺ f( k
2n ), we obtain an,k ∈ A+ such that

f(k−12n ) ≤ an,k ≤ f( k
2n ).
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For t ≤ k−1
2n , we have f(t) ≤ an,k. By Lemma 2.2, this implies that an,k commutes

with f(t). Similarly, we obtain that an.k commutes with f(t) for every t ≥ k
2n . In

particular, an,k commutes with f( l
2n ) for every l ∈ Z≤0. We set

an :=

0∑
k=−∞

1
2n an,k,

which is a finite sum since an,k = 0 for k < 2nl(f), where l(f) is the lenght of f .

We deduce that an commutes with f( l
2n ) for every l ∈ Z≤0.

For each m ≥ n, we have∑
k∈Z≤0

1
2n f(k−12n ) ≤ am ≤

∑
k∈Z≤0

1
2n f( k

2n ).(1)

Hence, ‖an−an+1‖ ≤ 1
2n for each n, and it follows that (an)n is a Cauchy sequence.

We set a := limn an, which is a positive element in A.
Let n ≥ 1. It follows from (1) that

0∑
j=−∞

1
2n f( j−12n ) ≤ a ≤

0∑
j=−∞

1
2n f( j

2n ).

For each j, since am commutes with f( j
2n ) for m ≥ n, it follows that a commutes

with f( j
2n ). Consequently, a commutes with

∑0
j=−∞

1
2n f( j−12n ). Given commuting

self-adjoint elements x, y in a C∗-algebra that satisfy x ≤ y, and given t ∈ R,
it follows that (x + t)+ ≤ (y + t)+. (For noncommuting elements, this does not
necessarily hold.) Given k ∈ Z≤0, we have 0∑

j=−∞

1
2n f( j

2n )

− k
2n


+

=

k−1∑
j=−∞

1
2n f( j

2n ),

and therefore
k−1∑
j=−∞

1
2n f( j

2n ) ≤ (a− k
2n )+ ≤

k∑
j=−∞

1
2n f( j

2n ).

It follows that

f(k−12n ) ≤ supp((a− k
2n )+) ≤ f( k

2n )

for every n ≥ 1 and every k ∈ Z, k ≤ 0. Using condition (1) in the definition of a
path, we obtain

f( k
2n ) = sup

l≥1
f( 2lk−1

2n+l ) ≤ supp((a− k
2n )+),

and so supp((a− k
2n )+) = f( k

2n ) for every n ≥ 1 and every k ∈ Z, k ≤ 0. It follows
that f agrees with fa at every nonpositive dyadic number. Since both f and fa are
paths, we deduce that f = fa. �

3. Diffuse and nowhere scattered functionals

In this section, we first recall basic properties of diffuse and atomic functionals.
We then introduce the main technical concept of this paper: a positive functional
is nowhere scattered if it gives no weight to scattered ideal-quotients; see Defini-
tion 3.5. Equivalently, the functional gives no weight to elementary ideal-quotients,
or it vanishes on minimal projections in quotients of the algebra; see Proposition 3.7.
(A projection p in a C∗-algebra A is said to be minimal it p 6= 0 and pAp = Cp.) In
the next section, we prove that nowhere scattered functionals admit Haar unitaries.

We show that every diffuse functional is nowhere scattered; see Proposition 3.9.
A C∗-algebra is type I if and only if every of its nowhere scattered states is diffuse;
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see Proposition 3.12. In forthcoming work, we will study the class of C∗-algebras
with the property that every positive functional is nowhere scattered.

3.1. Let A be a C∗-algebra. By a positive functional on A we mean a positive,
linear map ϕ : A→ C. Every positive functional is bounded and therefore extends
uniquely to a normal, positive functional A∗∗ → C which we also denote by ϕ.

A positive functional ϕ is diffuse if ϕ(e) = 0 for every minimal projection e
in A∗∗. Equivalently, ϕ(zat) = 0, where zat ∈ A∗∗ denotes the supremum of all
minimal projections in A∗∗. A positive functional ϕ is atomic if ϕ(1 − zat) = 0.
The notions of atomic and diffuse functionals on a C∗-algebra were introduced by
Pedersen in [Ped71] using the concept of Baire operators. It is straightforward to
verify that the definitions in [Ped71] are equivalent to the ones above, and also
equivalent to [Jen77, Definition 1.1].

By [Ped71, Proposition 4], a positive functional ϕ is atomic if and only if ϕ =∑∞
k=1 αkϕk for a sequence (ϕk)k of pure states and positive coefficients (αk)k with∑
k αk <∞; see also [Jen77, Theorem 1.2].
Every positive functional ϕ admits a unique decomposition as a sum of an atomic,

positive functional ϕa and a diffuse, positive functional ϕd. With zat ∈ A∗∗ as
above, we have

ϕa(a) = ϕ(azat), and ϕd(a) = ϕ(a(1− zat))
for a ∈ A. It follows that a positive functional is diffuse if and only if it does not
dominated a nonzero multiple of a pure state.

In the next result, we use πϕ : A → B(Hϕ) to denote the GNS-representation
associated to a positive functional ϕ, and we let πϕ(A)′′ ⊆ B(Hϕ) denote the
generated von Neumann algebra. Recall that a von Neumann algebra is diffuse if
it contains no minimal projections. It is called atomic (sometimes ‘purely atomic’)
if its unit is the supremum of minimal projections; equivalently, it is a product of
type I factors.

Lemma 3.2. Let ϕ : A → C be a positive functional on a C∗-algebra A. Then ϕ
is diffuse (atomic) if and only if πϕ(A)′′ is diffuse (atomic).

Proof. Let sϕ denote the support projection of ϕ in A∗∗, and let c(sϕ) denote its
central cover. We have

πϕ(A)′′ ∼= c(sϕ)A∗∗;

see for example [Bla06, III.2.2.23f]. Let zat ∈ A∗∗ denote the supremum of all
minimal projections in A∗∗.

Now ϕ is diffuse if and only if ϕ(zat) = 0, which is equivalent to sϕ ≤ 1 − zat.
Since zat is central, this is also equivalent to c(sϕ) ≤ 1 − zat. Given a central
projection z ∈ A∗∗, note that zA∗∗ is diffuse if and only if z ≤ 1− zat. Thus, ϕ is
diffuse if and only if c(sϕ)A∗∗ is diffuse. The atomic case is proved analogously. �

Example 3.3. Let X be a locally compact, Hausdorff space. Positive functionals
on C0(X) naturally correspond to bounded, positive Borel measures on X. Given
a measure µ, the corresponding functional ϕµ : C0(X) → C is given by ϕµ(f) =∫
X
f(x)dµ(x). Then ϕµ is diffuse if and only if µ is diffuse, that is, has not atoms.

3.4. A C∗-algebra A is scattered if every positive functional on A is atomic; see
[Jen77, Definition 2.1]. This is known to be equivalent to many other properties.
For example, A is scattered if and only if every self-adjoint element in A has count-
able spectrum, if and only if A has a composition series (Kα)0≤α≤β such that the
successive quotients Kα+1/Kα are elementary (a C∗-algebra is elementary if it is
isomorphic to the algebra of compact operators on some Hilbert space); see [GK18,
Theorem 1.4] and [Jen78, Theorem 2].
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Given a C∗-algebra A, an ideal-quotient of A is a (closed, two-sided) ideal of a
quotient of A. Using the correspondence between ideals (quotients) of a C∗-algebra
and open (closed) subsets of its primitive ideal space, it follows that ideal-quotients
of A correspond to locally closed subsets of the primitive ideal space of A.

Definition 3.5. A positive functional ϕ : A → C on a C∗-algebra A is nowhere
scattered if ‖ϕ|I‖ = ‖ϕ|J‖ for all ideals I ⊆ J ⊆ A such that J/I is scattered.

Remark 3.6. Let ϕ : A → C be a positive functional on a C∗-algebra A. Given
ideals I ⊆ J ⊆ A, let p, q ∈ O(A) be the corresponding central open projections.
Then ‖ϕ|I‖ = ϕ(p) and ‖ϕ|J‖ = ϕ(q). Thus, we have ‖ϕ|I‖ = ‖ϕ|J‖ if and only if
ϕ(p) = ϕ(q), that is, ϕ(q − p) = 0.

Proposition 3.7. Let A be a C∗-algebra, and let ϕ : A→ C be a positive functional.
Then the following are equivalent:

(1) ϕ is nowhere scattered;
(2) ‖ϕ|I‖ = ‖ϕ|J‖ for all ideals I ⊆ J ⊆ A such that J/I is elementary;
(3) for every ideal I ⊆ A and every minimal projection e ∈ A/I, we have

ϕ(e) = 0 (viewing e ∈ A/I ⊆ (A/I)∗∗ ⊆ A∗∗).

Proof. To show that (3) implies (2), let I ⊆ J ⊆ A be ideals such that J/I is
elementary. Let p, q ∈ O(A) denote the central, open projections corresponding
to I and J . We can choose an approximate unit of finite-rank projections (eλ)λ
in J/I. It follows from the assumption that ϕ(eλ) = 0 for each λ. We get

ϕ(q − p) = ϕ
(

sup
λ
eλ
)

= 0.

To show that (2) implies (1), let I ⊆ J ⊆ A be ideals such that J/I is scattered.
Let π : J → J/I denote the quotient map. By [Jen78, Theorem 2], there exists a
composition series (Kα)0≤α≤β for J/I such that Kα+1/Kα is elementary for each
α < β. In particular, K0 = {0} and Kβ = J/I. For each α ≤ β, let pα ∈ O(A) be
the central open projection corresponding to the ideal π−1(Kα).

Using transfinite induction, we show that ϕ(pα − p0) = 0 for each α ≤ β. This
is clear for α = 0. Assuming that it holds for some α, we use that Kα+1/Kα is
elementary and thus ϕ(pα+1 − pα) = 0 to deduce that ϕ(pα+1 − p0) = 0. If α is a
limit ordinal and we have ϕ(pα′ − p0) = 0 for every α′ < α, then

ϕ(pα − p0) = ϕ

(
sup
α′<α

(pα′ − p0)

)
= sup
α′<α

ϕ(pα′ − p0) = 0.

Thus, ϕ(pβ − p0) = 0, and so

‖ϕ|I‖ = ϕ(p0) = ϕ(pβ) = ‖ϕ|J‖.
To show that (1) implies (3), let I ⊆ A be an ideal, and let e ∈ A/I be a

minimal projection. Let π : A → A/I denote the quotient map. Let K ⊆ A/I
denote the sub-C∗-algebra generated by all minimal projections in A/I. By [GK18,
Theorem 1.2], K is scattered and an ideal of A/I. Thus, if p and q denote the
central, open projections corresponding to the ideals I and π−1(K), then ϕ(q−p) =
0. Since e ≤ q − p, it follows that ϕ(e) = 0. �

Lemma 3.8. Let A be a C∗-algebra, let B ⊆ A be a hereditary sub-C∗-algebra,
and let ϕ : A→ C be a nowhere scattered, positive functional. Then ϕ|B is nowhere
scattered.

Proof. We use the characterization of unscattered functionals through minimal pro-
jections in quotients from condition (3) in Proposition 3.7. Let I ⊆ B be an ideal,
and let e ∈ B/I be a minimal projection. We need to show that ϕ|B(e) = 0. Let
J ⊆ A be the ideal of A generated by I, and let π : A → A/J denote the quotient
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map. We have I = B ∩ J , and so π(B) is a hereditary sub-C∗-algebra of A/J and
π(B) ∼= B/I. Thus, e is also a minimal projection of A/J . Since ϕ is nowhere
scattered, we get ϕ(e) = 0, and so ϕ|B(e) = 0. �

Proposition 3.9. Every diffuse, positive functional is nowhere scattered.

Proof. Let A be a C∗-algebra, and let ϕ : A → C be a diffuse, positive functional.
Let I ⊆ A be an ideal, and let e ∈ A/I be a minimal projection. Then e is also a
minimal projection in (A/I)∗∗, and thus in A∗∗. Since ϕ is diffuse, we get ϕ(e) = 0.
By Proposition 3.7, it follows that ϕ is nowhere scattered. �

The converse of Proposition 3.9 does not hold. In fact, we will show that a
C∗-algebra is not type I if and only if it has a nowhere scattered state that is pure
(and therefore not diffuse); see Proposition 3.12.

A nowhere scattered functional is diffuse if it is also tracial (Proposition 5.3) or
if it is a normal functional on a von Neumann algbera (Lemma 7.1).

Lemma 3.10. Let ϕ be a pure state on a C∗-algebra A, and let πϕ : A → B(Hϕ)
be the induced GNS-representation. Then ϕ is nowhere scattered if and only if
πϕ(A) ∩ K(Hϕ) = {0}.

Proof. Set L := ker(πϕ). The restriction of a pure state to an ideal is either a pure
state or zero. Thus, given an ideal I ⊆ A, we either have ‖ϕ|I‖ = 1 (which happens
precisely if I is not contained in L) or ϕ|I = 0 (which happens if and only if I ⊆ L).

To show that forward implication, assume that πϕ(A)∩K(Hϕ) 6= {0}. Since πϕ
is irreducible, it follows that K(Hϕ) ⊆ πϕ(A); see [Bla06, Corollary IV.1.2.5] Set
J := π−1ϕ (K(Hϕ)). Then J/L ∼= K(Hϕ) is elementary and ‖ϕ|L‖ = 0 < 1 = ‖ϕ|J‖,
showing that ϕ is not nowhere scattered.

To show the converse implications, assume that ϕ is not nowhere scattered.
Choose ideals I ⊆ J ⊆ A such that J/I is scattered and such that ‖ϕ|I‖ < ‖ϕ|J‖.
This forces ‖ϕ|J‖ = 1, and consequently J is not contained in L. It follows that the
restriction of πϕ to J is a nonzero, irreducible representation. Since J is scattered,
and therefore of type I, it follows that πϕ(J) contains a nonzero, compact operator.
Hence, πϕ(A) ∩ K(Hϕ) 6= {0}. �

Lemma 3.11. Let ϕ and ψ be positive functionals on a C∗-algebra satisfying ψ ≤ ϕ.
Assume that ϕ is nowhere scattered. Then ψ is nowhere scattered.

Proof. Let I ⊆ J ⊆ A be ideals such that J/I is scattered. Let p and q be the
central, open projections corresponding to I and J , respectively. Then

‖ψ|J‖ − ‖ψ|I‖ = ψ(q − p) ≤ ϕ(q − p) = ‖ϕ|J‖ − ‖ϕ|I‖ = 0,

as desired. See also Remark 3.6. �

Proposition 3.12. Let A be a C∗-algebra. Then A is of type I if and only if every
nowhere scattered state on A is diffuse.

Proof. To prove the forward implication, assume that A is of type I. By Propo-
sition 3.9, it remains to verify that every nowhere scattered functional is diffuse.
To prove the contraposition, let ϕ be a positive functional on A that is not diffuse.
Then there exists a pure state ψ and t > 0 such that ψ ≤ tϕ; see Paragraph 3.1.
Since A is type I, we have πψ(A) ∩ K(Hψ) 6= {0} and it follows from Lemma 3.10
that ψ is not nowhere scattered. By Lemma 3.11, neither is tϕ, which implies
that ϕ is not nowhere scattered.

To show that backward implication, assume that A is not of type I. Then there
exists a pure state ϕ such that πϕ is not GCR, that is, πϕ(A) ∩ K(Hϕ) = {0}. By
Lemma 3.10, ϕ is nowhere scattered, yet not diffuse. �
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4. Haar unitaries characterize nowhere scattered functionals

The main result of this section is Theorem 4.11, which provides several charac-
terizations for a functional to be nowhere scattered. Most interestingly, a positive
functional A→ C is nowhere scattered if and only if the minimal unitization of ev-
ery hereditary sub-C∗-algebra of A contains a Haar unitary. It follows in particular
that every positive functional on a unital, simple, infinite-dimensional C∗-algebra
admits a Haar unitary; see Corollary 4.14.

Every positive functional ϕ : A → C extends uniquely to a normal, positive
functional A∗∗ → C, which we also denote by ϕ. The induced map O(A) →
[0,∞), p 7→ ϕ(p), is order-preserving and satisfies ϕ(supj pj) = supj ϕ(pj) for every
increasing net (pj)j in O(A). Given p ∈ O(A), it is easy to see that p is the
supremum of the set {p′ ∈ O(A) : p′ ≺ p}. However, this set is not necessarily
upward-directed. Nevertheless, we have:

Proposition 4.1. Let ϕ : A → C be a positive functional, let p, q ∈ O(A) satisfy
p ≺ q, and let ε > 0. Then there exists q′ ∈ O(A) such that

p ≺ q′ ≺ q, and ϕ(q)− ε ≤ ϕ(q′).

In particular, we have

ϕ(q) = sup
{
ϕ(q′) : q′ ∈ O(A), q′ ≺ q

}
.

Proof. Choose a ∈ A+ such that p ≤ a ≤ q. Let C∗(a, q) denote the sub-C∗-
algebra of A∗∗ generated by a and q, and let sp(a) denote the spectrum of a, which
is a closed subset of [0, 1]. There is a natural isomorphism between C∗(a, q) and
C(sp(a)). The restriction of ϕ to C∗(a, q) induces a measure µϕ on sp(a), which
we view as a measure on [0, 1]. Choose s, t such that

0 ≤ s < t ≤ 1, and µϕ((s, t)) < ε.

Then choose continuous functions f, g, h : [0, 1] → [0, 1] that take the value 0 on
[0, s], that take the value 1 on [t, 1], and that satisfy f = fg and g = gh. The
elements f(a), g(a) and h(a) belong to A+ and satisfy

p ≤ f(a), f(a) = f(a)g(a), and g(a) = g(a)h(a) ≤ q.
Set z := supp(q − h(a)) ∈ A∗∗. To see that z is an open projection, let (bj)j

be an increasing net in A+ with q = supj bj . Then ((q − h(a))bj(q − h(a))j is an

increasing net in A+ with supremum (q − h(a))2. Then

z = supp
(
q − h(a)

)
= supp

(
(q − h(a))2

)
= sup

j
supp

(
(q − h(a))bj(q − h(a))

)
,

which shows that z ∈ O(A). We have q − h(a) ≤ z and therefore

µϕ([t, 1]) ≤ ϕ(q − h(a)) ≤ ϕ(z).

Set w := supp(f(a)) ∈ O(A). We have f(a) ≤ w and therefore

µϕ([0, s]) ≤ ϕ(f(a)) ≤ ϕ(w).

Note that f(a) = f(a)g(a) implies that w = wg(a). Similarly, it follows from
q − h(a) = (q − g(a))(q − h(a)) that z = (q − g(a))z. Hence,

wz = w(q − g(a))z = 0.

We have µϕ([0, 1]) = ϕ(q) and therefore

ϕ(w + z) ≥ µϕ([0, s] ∪ [t, 1]) = µϕ([0, 1])− µϕ((s, t)) > ϕ(q)− ε.
Let (cj)j be an increasing net in A+ with supremum z. Using that ϕ(z) =

supj ϕ(cj), choose j such that

ϕ(q)− ε < ϕ(w) + ϕ(cj).



10 HANNES THIEL

For each δ > 0 let (cj − δ)+ be the element obtained by applying functional
calculus for the function t 7→ max{0, t− δ} to zj . Using that cj = supδ>0(cj − δ)+,
choose δ > 0 such that

ϕ(q)− ε < ϕ(w) + ϕ
(
(cj − δ)+

)
.

Let e : [0, 1] → [0, 1] be a continuous function with e(0) = 0 and taking the
value 1 on [δ, 1]. Then

supp
(
(zj − δ)+

)
≤ e
(
(zj − δ)+

)
≤ z, w ≤ g(a), and zg(a) = 0.

Thus, q′ := supp((zj − δ)+) + w is an open projection satisfying

q′ ≤ e
(
(zj − δ)+

)
+ g(a) ≤ q

and thus q′ ≺ q. Further, we have

p ≤ f(a) ≤ w ≤ q′

and thus p ≺ q′. Lastly, we have

ϕ(q)− ε < ϕ(w) + ϕ
(
(cj − δ)+

)
≤ ϕ(w) + ϕ

(
supp((cj − δ)+)

)
= ϕ(q′),

as desired. �

Given a positive functional ϕ : A→ C, it is well-known that the set

Lϕ :=
{
a ∈ A : ϕ(a∗a) = 0

}
is a closed, left ideal; see [Ped79, Theorem 3.3.3]. Since a ∈ A satisfies ϕ(a∗a) = 0
if and only if ϕ(supp(a∗a)) = 0, we have Lϕ :=

{
a ∈ A : ϕ(supp(a∗a)) = 0

}
.

Analogously, L∗ϕ = {a ∈ A : ϕ(supp(aa∗)) = 0} is a closed, right ideal, and

Lϕ ∩ L∗ϕ =
{
a ∈ A : ϕ(supp(a∗a)) = ϕ(supp(aa∗)) = 0

}
is a hereditary sub-C∗-algebra of A. The next result shows that Lϕ ∩ L∗ϕ is even
a (closed, two-sided) ideal if 0 is isolated in ϕ(O(A)). It actually suffices that
ϕ(O(A)) contains a sufficiently large gap near zero.

Lemma 4.2. Let A be a C∗-algebra, let ϕ : A→ C be a nonzero, positive functional,
and let δ ∈ (0, ‖ϕ‖) such that (δ, 2δ] ∩ ϕ(O(A)) = ∅. Then

I :=
{
a ∈ A : ϕ(supp(aa∗)), ϕ(supp(a∗a)) ≤ δ

}
is an ideal in A.

Proof. Set

U :=
{
p ∈ O(A) : ϕ(p) ≤ δ

}
, and z :=

∨
U ∈ O(A).

Given p, q ∈ U , we have

ϕ(p ∨ q) ≤ ϕ(p+ q) ≤ 2δ.

The assumption on the gap in ϕ(O(A)) implies that p ∨ q belongs to U . Thus, U
is upward-directed and using that ϕ : A∗∗ → C is a normal functional, we get

ϕ(z) = ϕ(
∨
U) = sup

p∈U
ϕ(p) ≤ δ.

Thus, z is the largest element in U . It follows that I is the hereditary sub-C∗-
algebra of A corresponding to z.

To show that I is a two-sided ideal, let U0(Ã) denote the subgroup of unitaries
in the minimal unitization of A that are connected to the unit. Given a ∈ I and
u ∈ U0(Ã), choose a continuous path [0, 1] → U0(Ã), t 7→ ut, with u0 = 1 and
u1 = u. For t ∈ [0, 1], we have

supp(utaa
∗ut) = utsupp(aa∗)ut.
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Thus, t 7→ supp(utaa
∗ut) is a continuous path of open projections in A∗∗, and so

t 7→ ϕ(supp(utaa
∗ut)) is a continuous map [0, 1]→ R. The gap in ϕ(O(A)) implies

that
ϕ(supp(uaa∗u)) ≤ δ.

Since also ϕ(supp(a∗uua)) = ϕ(supp(a∗a)) ≤ δ, we deduce that ua belongs to I.

Using that every element in Ã is a finite linear combination of elements in U0(Ã),
it follows that I is a left ideal. Analogously, we obtain that I is a right ideal. �

Lemma 4.3. Let A be a C∗-algebra, let ϕ : A→ C be a nonzero, positive functional,
and let δ ∈ (0, ‖ϕ‖) such that (δ, 2δ]∩ϕ(O(A)) = ∅. Then there exists an ideal I ⊆ A
such that A/I is finite-dimensional and ‖ϕ|I‖ < ‖ϕ‖.

Proof. Set
I :=

{
a ∈ A : ϕ(supp(aa∗)), ϕ(supp(a∗a)) ≤ δ

}
,

which is an ideal in A by Lemma 4.2. Let z ∈ A∗∗ denote the corresponding central,
open projection. By assumption, we have δ < ‖ϕ‖ and therefore

‖ϕ|I‖ = ϕ(z) ≤ δ < ‖ϕ‖.
Set δ0 := ϕ(z). Then (δ0, 2δ] ∩ ϕ(O(A)) = ∅. Set B := A/I, and let π : A → B

denote the quotient map. Using the natural identification of B∗∗ with (1− z)A∗∗,
we define ψ : B → C as the composition

B ⊆ B∗∗ ∼= (1− z)A∗∗ ⊆ A∗∗ ϕ−→ C.
Claim: The functional ψ : B → C is faithful. To prove the claim, let b ∈ B+

satisfy ψ(b) = 0. Lift b to find a ∈ A+ with π(a) = b. Let p ∈ O(A) be the support
projection of a. The natural isomorphism (1− z)A∗∗ ∼= B∗∗ identifies (1− z)p with
the support projection of b, and we get

ϕ
(
(1− z)p

)
= ψ

(
supp(b)

)
= 0.

Since p ≤ z + (1− z)p, we obtain that

ϕ(p) ≤ ϕ(z) + ϕ
(
(1− z)p

)
= δ0 ≤ δ.

We get a ∈ I and so b = 0, which proves the claim.
Claim: We have (0, 2δ − δ0] ∩ ψ(O(B)) = ∅. To prove the claim, assume that

p ∈ O(B) satisfies ψ(p) ∈ (0, 2δ − δ0]. We identify B∗∗ with (1− z)A∗∗ ⊆ A∗∗. Set
p̄ := z + p. Then p̄ is the open projection in A∗∗ corresponding to the hereditary
sub-C∗-algebra π−1(pB∗∗p ∩B) ⊆ A. We have

ϕ(p̄) = ϕ(z + p) = δ0 + ψ(p) ∈ (δ0, 2δ].

This contradicts that (δ0, 2δ] ∩ ϕ(O(A)) = ∅. The claim is proved.
It follows from the above claims that ψ : B → C is faithful and that 0 is isolated

in ψ(O(B)). Let us show that this implies that every positive element in B has
finite spectrum. To reach a contradiction, let b ∈ B+ have infinite spectrum sp(b).
This allows us to choose a countable family (fk)k∈N of nonzero, continuous func-
tions fk : sp(b) → [0, 1] such that fkfl = 0 if k 6= l. Then the open projections
supp(fk(b)) ∈ O(B) are pairwise orthogonal and satisfy supp(fk(b)) ≤ supp(b),
which implies that ∑

k∈N
ψ(supp(fk(b))) ≤ ψ(supp(b)).

On the other hand, since 0 6= fk(b) ≤ supp(fk(b)), and since ψ is faithful, we have
0 < ψ(supp(fk(b)) for each k. This implies that {ψ(supp(fk(b)) : k ∈ N} contains
arbitrarily small positive elements, contradicting that 0 is isolated in ψ(O(B)).

Using that a C∗-algebra is finite-dimensional if (and only if) every of its positive
elements has finite spectrum, we deduce that B is finite-dimensional. �
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Given p ∈ O(A), we use [0, p] to denote the set {q ∈ O(A) : q ≤ p}.

Lemma 4.4. Let A be a C∗-algebra, and let ϕ : A → C be a nowhere scattered,
positive functional. Then ϕ([0, p]) is dense in [0, ϕ(p)] for every p ∈ O(A).

Proof. Let p ∈ O(A). To reach a contradiction, assume that ϕ([0, p]) is not dense
in [0, ϕ(p)]. Choose t ∈ [0, ϕ(p)) and δ > 0 satisfying (t, t+ 2δ) ∩ ϕ([0, p]) = ∅. We
may assume that

t = sup
{
ϕ(p′) : p′ ∈ [0, p], ϕ(p′) ≤ t

}
,

which allows us to choose p′ ∈ O(A) satisfying p′ ≤ p and t − δ < ϕ(p′). Apply
Proposition 4.1 to obtain p′′ ∈ O(A) satisfying

p′′ ≺ p′, and t− δ < ϕ(p′′).

Then p′′ ≤ p′ ≤ p, and we set q := p − p′′, which is an open projection. We have
ϕ(p) ≥ t+ 2δ and ϕ(p′′) ≤ t, and therefore

ϕ(q) = ϕ(p)− ϕ(p′′) ≥ ϕ(p)− ϕ(p′′) ≥ t+ 2δ − t = 2δ.

Claim: We have (δ, 2δ]∩ϕ([0, q]) = ∅. To prove the claim, assume that an open
projection q′ ≤ q satisfies ϕ(q′) ∈ (δ, 2δ]. Since p′′ and q are orthogonal and satisfy
p′′ + q ≤ p, we get that p′′ + q′ ∈ [0, p]. On the other hand,

ϕ(p′′ + q′) = ϕ(p′′) + ϕ(q′) ∈ (t− δ, t] + (δ, 2δ] ⊆ (t, t+ 2δ],

which contradicts that (t, t+ 2δ] ∩ ϕ([0, p]) = ∅. This proves the claim.
Set B := qA∗∗q ∩ A, the hereditary sub-C∗-algebra of A corresponding to q.

By construction, the restriction of ϕ to B satisfies the assumptions of Lemma 4.3.
Hence, ϕ|B is not nowhere scattered, which contradicts Lemma 3.8. �

Lemma 4.5. Let A be a C∗-algebra, let ϕ : A→ C be a positive functional. Assume
that ϕ([0, z]) is dense in [0, ϕ(z)] for every z ∈ O(A). Let p, p̃, q ∈ O(A) and
t, t̃ ∈ [0, 1] satisfy

p ≺ p̃ ≺ q, and ϕ(p̃) ≤ t < t̃ ≤ ϕ(q).

Then there exist r, r̃ ∈ O(A) satisfying

p ≺ r ≺ r̃ ≺ q, and t ≤ ϕ(r) ≤ ϕ(r̃) ≤ t̃.

Proof. Choose ε > 0 such that
t < t̃− 2ε.

Apply Proposition 4.1 to obtain e ∈ O(A) such that

p ≺ e ≺ p̃, and ϕ(p̃)− ε ≤ ϕ(e).

Then e ≺ q, which allows us to set z := q − e ∈ O(A). We have q ≤ p̃ + z and
therefore

0 < t̃− ϕ(p̃) ≤ ϕ(q)− ϕ(p̃) ≤ ϕ(z).

By assumption, we obtain z′ ∈ O(A) such that

z′ ≤ z, and ϕ(z′) ∈ (t̃− ϕ(p̃)− ε, t̃− ϕ(p̃)].

Set f := p̃ ∨ z′ ∈ O(A). Then

ϕ(f) = ϕ(p̃ ∨ z′) ≤ ϕ(p̃) + ϕ(z′) ≤ ϕ(p̃) + t̃− ϕ(p̃) = t̃.

On the other hand, we have e+ z′ ≤ f and therefore

ϕ(f) ≥ ϕ(e) + ϕ(z′) ≥ ϕ(p̃)− ε+ t̃− ϕ(p̃)− ε = t̃− 2ε > t.

We also have p ≺ p̃ ≤ f . Applying Proposition 4.1 twice, we find r̃ and then r such
that

p ≺ r ≺ r̃ ≺ f, and t < ϕ(r).

Then r and r̃ have the desired properties. �
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Lemma 4.6. Let A be a C∗-algebra, let ϕ : A→ C be a positive functional. Assume
that ϕ([0, p]) is dense in [0, ϕ(p)] for every p ∈ O(A). Then there exist a path
f : (−∞, 0]→ O(A) (in the sense of Definition 2.4) satisfying f(−‖ϕ‖) = 0 and

ϕ(f(t)) = ‖ϕ‖+ t

for t ∈ [−‖ϕ‖, 0]. By Proposition 2.6, f corresponds to a positive element a ∈ A
with spectrum [0, ‖ϕ‖] on which ϕ induces the Lebesgue measure.

Proof. We may assume that ϕ is nonzero, and by rescaling we may also assume

that ‖ϕ‖ = 1. Using Lemma 4.5, we inductively find p
(n)
k , p̃

(n)
k ∈ O(A) for n ≥ 1

and k = 1, . . . , 2n such that

p
(n)
1 ≺ p̃(n)1 ≺ p(n)2 ≺ p̃(n)2 ≺ . . . ≺ p(n)2n ≺ p̃

(n)
2n ≺ 1

for each n ≥ 1, and such that

p
(n)
k ≺ p(n+1)

2k ≺ p̃(n+1)
2k ≺ p(n+1)

2k+1 ≺ p̃
(n+1)
2k+1 ≺ p

(n)
k+1

and
k−1
2n < ϕ(p

(n)
k ) ≤ ϕ(p̃

(n)
k ) ≤ k−1

2n + 1
2n+1

for each n ≥ 1 and k = 1, . . . , 2n.
Given n ≥ 1 and k ∈ {1, . . . , 2n}, we have

p
(n)
k ≺ p(n+1)

2k ≺ p(n+2)
22k ≺ ... ≺ p(n+m)

2mk ≺ . . .
and we set

g( k
2n ) := sup

m
p
(n+m)
2mk ∈ O(A).

Note that this is well-defined, since if k
2n = k′

2n′
for some other k′, n′ ≥ 1, then the

sequence (p
(n′+m)
2mk′ )m either contains (p

(n+m)
2mk )m as a subsequence (if n′ ≤ n) or vice

verse (if n ≤ n′). Setting g(0) = 0, we have defined g(t) for every dyadic rational
in [0, 1].

Claim 1: Let n ≥ 1 and k ∈ {1, . . . , 2n}. Then ϕ(g( k
2n )) = k

2n . Indeed, for each
m ≥ 1, we have

k
2n −

1
2n+m = 2mk−1

2n+m ≤ ϕ
(
p
(n+m)
2mk

)
≤ 2mk−1

2n+m + 1
2n+m+1 ≤ k

2n ,

and therefore

ϕ
(
g( k

2n )
)

= ϕ
(

sup
m
p
(n+m)
2mk

)
= sup

m
ϕ
(
p
(n+m)
2mk

)
= k

2n .

Claim 2: Let t′, t ∈ [0, 1] be dyadic rationals satisfying t′ < t. Then g(t′) ≺ g(t).

To prove the claim, choose n ≥ 1 and k′, k ∈ {0, . . . , 2n} such that t′ = k′

2n and

t = k
2n . For each m ≥ 1, we have

p
(n+m)
2mk′ ≺ p

(n+m−1)
2m−1k′+1 ≺ p

(n+m−2)
2m−2k′+1 ≺ . . . ≺ p

(n+1)
2k′+1 ≺ p

(n)
k′+1

and therefore

g(t′) = g( k
′

2n ) = sup
m
p
(n+m)
2mk′ ≤ p

(n)
k′+1 ≤ p

(n)
k ≺ p(n+1)

2k ≤ sup
m
p
(n+m)
2mk = g( k

2n ) = g(t),

which proves the claim.
We now define f : (−∞, 0]→ O(A) by f(t) = 0 for t ≤ −1 and by

f(t) := sup
{
g( k

2n ) : k
2n < 1 + t

}
for t ∈ (−1, 0]. It is straightforward to verify that f is order-preserving, and that
f(t) = sup{f(t′) : t′ < t} for every t.

To verify condition (2) of Definition 2.4, let t′ < t ≤ 0. If t′ ≤ −1, then
f(t′) = 0 ≺ f(t). Otherwise, choose dyadic rationals s′, s ∈ (0, 1] such that

1 + t′ ≤ s′ < s < 1 + t.
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Using Claim 2, we get

f(t′) ≤ g(s′) ≺ g(s) ≤ f(t).

Finally, let t ∈ (−1, 0]. Choose an increasing sequence (sk)k of dyadic numbers
in [0, 1 + t) with supremum 1 + t. Then f(t) = supk g(sk). Using Claim 1, we get

ϕ(f(t)) = ϕ
(

sup
k
g(sk)

)
= sup

k
ϕ(g(sk)) = sup

k
sk = 1 + t.

By Proposition 2.6, there is a unique positive element a ∈ A such that f(t) =
supp((a+ t)+) for each t ≤ 0. Let σ(a) denote the spectrum of a, and let µ be the
measure on σ(a) induced by ϕ. For every t ≥ 0, we have

µ((t,∞) ∩ σ(a)) = ϕ(supp((a− t)+)) = ϕ(f(−t)) = 1− t,

which implies that σ(a) = [0, 1] and that µ is the Lebesgue measure on σ(a). �

Combining Lemmas 4.4 and 4.6, we obtain:

Proposition 4.7. Let A be a C∗-algebra, and let ϕ : A→ C be a nowhere scattered,
positive functional. Then there exists a positive element a ∈ A with spectrum
[0, ‖ϕ‖] on which ϕ induces Lebesgue measure.

It will be convenient to generalize the notion of Haar unitaries to the setting of
positive functionals that are not necessarily states or tracial.

Definition 4.8. Let A be a unital C∗-algebra, and let ϕ : A → C be a positive
functional. A Haar unitary in A with respect to ϕ is a unitary u ∈ A such that
ϕ(uk) = 0 for every k ∈ Z \ {0}.

Proposition 4.9. Let A be a unital C∗-algebra, and let ϕ : A → C be a positive
functional. Then the following are equivalent:

(1) There exists a Haar unitary in A with respect to ϕ.
(2) There exists a positive element a ∈ A with spectrum [0, ‖ϕ‖] on which ϕ

induces the Lebesgue measure.
(3) There exists a unital, abelian sub-C∗-algebra C(X) ⊆ A such that ϕ induces

a diffuse measure on X.
(4) There exists a maximal abelian subalgebra (masa) D ⊆ A such that ϕ in-

duces a diffuse measure on the spectrum of D.

Proof. The statements hold for ϕ = 0. We may thus assume that ϕ is nonzero. To
show that (2) implies (1), let a ∈ A be as in (2). Set u := exp(2πi a

‖a‖ ), which is a

unitary in A. Given k ∈ Z \ {0}, we have

ϕ(uk) =

∫ ‖a‖
0

exp(2πi t
‖a‖ )

kdt = ‖a‖
∫ 1

0

exp(2πit)kdt = 0.

It is clear that (4) implies (3). To show that (3) implies (2), let C(X) ⊆ A be
as in the statement. Set ψ := ϕ|C(X) : C(X)→ C. By assumption, ψ is diffuse (see
also Example 3.3). By Proposition 3.9, ψ is nowhere scattered. Since, ‖ψ‖ = ‖ϕ‖,
by applying Proposition 4.7, we obtain the desired positive element in C(X). (This
also follows from [DHR97, Proposition 4.1(i)].)

To show that (1) implies (4), let u ∈ A be a Haar unitary. Then C∗(u), the sub-
C∗-algebra of A generated by u, is naturally isomorphic to C(T), and ϕ induces
the multiple of the Lebesgue measure on T with total mass ‖ϕ‖. Choose any
masa D ⊆ A that contains u, and let X be a compact, Hausdorff space such that
D ∼= C(X). The inclusion C(T) ∼= C∗(u) ⊆ D ∼= C(X) corresponds to a surjective,
continuous map X → T, and since ϕ induces a diffuse measure on T, it also does
on X. (See also Lemma 5.2.) �
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Lemma 4.10. Let A be a unital C∗-algebra, let ϕ : A→ C be a positive functional
that admits a Haar unitary, and let I ⊆ A be an ideal such that A/I is scattered.
Then ‖ϕ|I‖ = ‖ϕ‖.

Proof. Let π : A → A/I denote the quotient map. Choose a Haar unitary u in A
with respect to ϕ, and let B ⊆ A be the sub-C∗-algebra generated by u. Then
B ∼= C(T), and the measure µ induced by ϕ on T is a multiple of the Lebesgue
measure.

The ideal I ∩B of B corresponds to a proper open subset U ⊆ T such that the
quotient π(B) of B is naturally isomorphic to C(T \U). Since A/I is scattered, so
is π(B), and it follows that T \U is countable. Hence, µ(T \U) = 0, which implies
that µ(U) = µ(T). We deduce that

‖ϕ|I‖ ≥ ‖ϕ|I∩B‖ = µ(U) = µ(T) = ‖ϕ‖
which implies the desired equality ‖ϕ|I‖ = ‖ϕ‖. �

In the next result, given a hereditary subalgebra B ⊆ A with corresponding open

projection p ∈ A∗∗, we view the minimal unitization of B as B̃ = B + Cp ⊆ A∗∗.

Theorem 4.11. Let A be a C∗-algebra, and let ϕ : A→ C be a positive functional.
Then the following are equivalent:

(1) ϕ is nowhere scattered.
(2) For every p ∈ O(A), ϕ([0, p]) is dense in [0, ϕ(p)].
(3) For every p ∈ O(A) and t ∈ [0, ϕ(p)) there exists p′ ∈ O(A) with p′ ≺ p

and ϕ(p′) = t.
(4) For every hereditary sub-C∗-algebra B ⊆ A there exists a Haar unitary

in B̃.
(5) For every ideal I ⊆ A there exists a Haar unitary in Ĩ.

Proof. By Lemma 4.4, (1) implies (2). By Lemma 4.6, (2) implies (3). It is clear
that (3) implies (2), and that (4) implies (5).

To show that (5) implies (1), let I ⊆ J ⊆ A be ideals such that J/I is scattered.

By assumption, there exists a Haar unitary in J̃ . If J is unital, then J̃ = J and

then J̃/I = J/I. If J is nonunital, then J̃/I is naturally isomorphic to the forced

unitization of J/I. Thus, in either case, J̃/I is scattered. Applying Lemma 4.10 at
the first step, we get

‖ϕ|I‖ = ‖ϕ|J̃‖ = ‖ϕ|J‖.
To show that (2) implies (4), let B ⊆ A be a hereditary sub-C∗-algebra. Consider

the restriction ψ := ϕ|B . Then for every p ∈ O(B), ψ([0, p]) is dense in [0, ψ(p)].
Applying Lemma 4.6, we obtain b ∈ B+ with spectrum [0, ‖ψ‖] on which ψ induces

Lebesgue measure. Using that ‖ψ|B̃‖ = ‖ψ‖, it follows from Proposition 4.9 that B̃
contains a Haar unitary with respect to ψ, and hence with respect to ϕ. �

Corollary 4.12. Let A be a unital C∗-algebra that has no (nonzero) scattered ideal-
quotients. Then every positive functional on A is nowhere scattered and therefore
admits a Haar unitary.

Example 4.13. A C∗-algebra A is purely infinite if it has no one-dimensional
representations, and if an element a ∈ A+ lies in the ideal generated by b ∈ A+ if
and only if there exists a sequence (rn)n in A such that limn→∞ ‖a − rnbr∗n‖ = 0;
see [KR00, Definition 4.1]. By [KR00, Theorem 4.19], pure infiniteness passes to
ideals and quotients. It follows that purely infinite C∗-algebras are not scattered,
and that a purely infinite C∗-algebra has no scattered ideal-quotients.

Hence, by Corollary 4.12, every state on a unital, purely infinite C∗-algebra
admits a Haar unitary.
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We point out the following important special case of Corollary 4.12.

Corollary 4.14. Let A be a unital, simple, nonelementary C∗-algebra. Then every
positive functional ϕ : A→ C admits a Haar unitary.

Corollary 4.15. Let A be a unital C∗-algebra. Assume that A contains a unital
sub-C∗-algebra B ⊆ A such that B has no scattered ideal-quotients. (For example,
B is simple and nonelementary.) Then every positive functional ϕ : A→ C admits
a Haar unitary.

Example 4.16. Let A be a unital C∗-algebra of real rank zero that has no finite-
dimensional representations. By [ER06, Corollary 2.4], A contains a unital, simple,
nonelementary sub-C∗-algebra. Hence, by Corollary 4.15, every positive functional
on A admits a Haar unitary.

Example 4.17. Let (δn)n∈Z be the standard orthonormal basis of `2(Z), and let
U ∈ B(`2(Z)) be the bilateral shift satisfying Uδn = δn+1. Let ϕ : B(`2(Z))→ C be
the vector state induced by δ0, that is, ϕ(a) = 〈aδ0, δ0〉 for a ∈ B(`2(Z)). Then

ϕ(Uk) = 〈Ukδ0, δ0〉 = 〈δk, δ0〉 =

{
0, if k 6= 0

1, if k = 0.

which shows that U is a Haar unitary with respect to ϕ. However, the ideal I :=
K(`2(Z)) of compact operators is elementary and satisfies ‖ϕ|I‖ = ‖ϕ‖. Thus, ϕ is
not nowhere scattered.

This shows that a positive functional admitting a Haar unitary is not necessarily
nowhere scattered. In the next section, we show that this phenomenon does not
occur for tracial functionals.

5. Traces admitting Haar unitaries

In this section, we prove the main result of this paper: A tracial state on a unital
C∗-algebra admits a Haar unitary if and only if it is diffuse; see Theorem 5.4.

By a trace on a C∗-algebra A we mean a positive functional τ : A → C that
is tracial: τ(ab) = τ(ba) for all a, b ∈ A. Every trace τ : A → C is bounded and
therefore extends uniquely to a normal trace A∗∗ → C that we also denote by τ .
Recall that τ is diffuse if τ(e) = 0 for every minimal projection e ∈ A∗∗.

Lemma 5.1. Let A be a C∗-algebra and let τ : A→ C be a trace. Then the following
are equivalent:

(1) τ is diffuse;
(2) τ does not dominate a nonzero trace that factors through a finite-dimen-

sional quotient of A;
(3) there is no surjective ∗-homomorphism π : A → Mn(C) (for some n ≥ 1)

such that τ dominates a nonzero multiple of trn ◦π. where trn denotes the
tracial state on Mn(C).

Proof. To show that (1) implies (2), assume that τ is diffuse, and let I ⊆ A be an
ideal such that A/I is finite-dimensional. Let z ∈ A∗∗ be the central, open projec-
tion corresponding to I. We have natural isomorphisms (1 − z)A∗∗ ∼= (A/I)∗∗ ∼=
A/I. Since τ vanishes on minimal projections, we get τ(1 − z) = 0. It follows
that τ does not dominate a nonzero trace that factors through the quotient map
A→ A/I.

It is clear that (2) implies (3). To show that (3) implies (1), let e ∈ A∗∗ be a
minimal projection. To reach a contradiction, assume that τ(e) > 0. Let c(e) ∈ A∗∗
be the central cover of e. Then c(e)A∗∗ is a type I factor. Since τ restricts to a
nonzero trace on c(e)A∗∗, we have c(e)A∗∗ ∼= Mn(C) for some n. It follows that the
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map π : A→Mn(C), a 7→ c(e)a, is surjective. For each a ∈ A+, we have a ≥ c(e)a
in A∗∗ and therefore

τ(a) ≥ τ(c(e)a) = τ(c(e)) · (trn ◦π)(a).

Since τ(c(e)) ≥ τ(e) > 0, we have shown that τ dominates a nonzero multiple of
trn ◦π, contradicting the assumption (3). �

Lemma 5.2. Let A be a C∗-algebra, let τ : A→ C be a trace, and let B ⊆ A be a
sub-C∗-algebra such that τ |B is diffuse and ‖τ |B‖ = ‖τ‖. Then τ is diffuse.

Proof. The inclusion map B → A induces a natural injective ∗-homomorphism
B∗∗ → A∗∗. We let p ∈ A∗∗ denote the projection that is the image of the unit
of B∗∗. Note that p is the weak*-limit of any positive, increasing approximate unit
of B in A∗∗. It follows that

τ(p) = ‖τ |B‖ = ‖τ‖ = τ(1),

and thus τ(1− p) = 0.
To show that τ is diffuse, let e ∈ A∗∗ be a minimal projection, and let c(e) be

its central cover. To reach a contradiction, assume that τ(e) > 0. Then c(e)A∗∗ is
a type I factor with a nonzero trace, and so c(e)A∗∗ ∼= Mn(C) for some n. We let
π : A→Mn(C) denote the surjective ∗-homomorphism a 7→ c(e)a.

We distinguish two cases. If π(B) = {0}, then c(e)p = 0, and it follows that

e ≤ c(e) ≤ 1− p
and therefore τ(e) = 0.

If π(B) is nonzero, then π(B) is a nonzero finite-dimensional quotient of B. Set
J := ker(π), which is an ideal in A. We naturally identify J∗∗ = (1 − c(e))A∗∗.
Note that the projection p ∈ A∗∗ is the open projection corresponding to BAB, the
hereditary sub-C∗-algebra generated by B. It follows that (1 − c(e))p is the open
projection inA∗∗ corresponding to J∩BAB. Using that J∩BAB = (J∩B)A(J∩B),
we see that (1−c(e))p belongs toB∗∗ – it is the open projection inB∗∗ corresponding
to the ideal J ∩B ⊆ B.

Hence, the nonzero projection c(e)p belongs to B∗∗, and we have natural iso-
morphisms c(e)pB∗∗ ∼= (B/(J ∩B))∗∗ ∼= π(B)∗∗ ∼= π(B). Using that τ |B is diffuse
we deduce that τ(c(e)p) = 0. It follows that τ(c(e)) = 0 and so τ(e) = 0. �

Proposition 5.3. A trace on a C∗-algebra is diffuse if and only if it is nowhere
scattered.

Proof. Let A be a C∗-algebra, and let τ : A → C be a trace. If τ is diffuse, then
it is nowhere scattered by Proposition 3.9. To show the converse, assume that τ is
nowhere scattered. By Proposition 4.7, there exists a ∈ A+ with spectrum [0, ‖ϕ‖],
on which ϕ induces Lebesgue measure. Let B ⊆ A be the sub-C∗-algebra generated
by a. Then B is commutative and ϕ|B is diffuse (see also Example 3.3). We have
‖ϕ|B‖ = ‖ϕ‖, whence it follows from Lemma 5.2 that τ is diffuse. �

We summarize our findings:

Theorem 5.4. Let τ : A → C be a trace on a C∗-algebra. Then the following are
equivalent:

(1) τ is diffuse;
(2) the weak*-closure of A in the GNS-representation induced by τ is a diffuse

von Neumann algebra;
(3) τ is nowhere scattered;
(4) τ does not dominate a nonzero trace that factors through a finite-dimen-

sional quotient of A;
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(5) there exists a ∈ A+ with spectrum [0, ‖τ‖] on which τ induces the Lebesgue
measure;

(6) there exists a masa C(X) ⊆ Ã such that τ induces a diffuse measure on X;

(7) there exists a Haar unitary in Ã.

Proof. By Lemma 3.2, (1) and (2) are equivalent. By Proposition 5.3, (1) and (3)
are equivalent. By Lemma 5.1, (1) and (4) are equivalent. By Proposition 4.7, (3)
implies (5). By Proposition 4.9, (5) implies (6), and (6) is equivalent to (7).

Lastly, let us show that (6) implies (1). If A is unital, this follows from Lemma 5.2

(see also Example 3.3). If A is nonunital, consider the map C(X)→ Ã→ Ã/A ∼= C,
which corresponds to evaluation at some x ∈ X. Note that A ∩ C(X) is naturally
isomorphic to C0(X \{x}). Since the measure on X induced by τ is diffuse, it gives
zero mass to {x}. It follows that ‖τ |A∩C(X)‖ = ‖τ |C(X)‖ = ‖τ‖ and that τ |A∩C(X)

is diffuse. Hence, τ is diffuse by Lemma 5.2. �

Corollary 5.5. A unital C∗-algebra has no finite-dimensional representations if
and only if each of its tracial states admits a Haar unitary.

Corollary 5.6. Every trace on a unital, simple, nonelementary C∗-algebra is dif-
fuse and admits a Haar unitary.

We end this section with an example of a diffuse trace on a unital C∗-algebra
and a masa that contains no Haar unitary.

Example 5.7. Let S : `2(N)→ `2(N) be the one-sided shift, and let T := C∗(S) ⊆
B(`2(N)) be the Toeplitz algebra. The compact operators K := K(`2(N)) are an
ideal in T with T /K ∼= C(T), where T ⊆ C denotes the unit circle. We consider the
masa `∞(N) ⊆ B(`2(N)) and set B := `∞(N) ∩ T . Then K ∩ B = c0(N) ⊆ `∞(N).
Since the commutant of c0(N) in B(`2(N)) is `∞(N), we see that B is a masa in T .

We let π : T → C(T) denote the quotient map. Let τ : C(T)→ C be induced by
the normalized Lebesgue measure on T. Set ϕ := τ ◦ π, which is a diffuse tracial
state on T . Let (en)n∈N be the standard basis in `2(N). We claim that

ϕ(a) = lim
n→∞

〈aen, en〉

for each a ∈ T . Indeed, one can directly verify this for each Sk(S∗)l for k, l ≥ 0,
and since finite linear combinations of such elements are dense in T , the formula
holds for every a ∈ T . It follows that B = c0(N) + C1, and π(B) ⊆ C(T) contains
only the constant functions.

Thus, every unitary u ∈ B satisfies |ϕ(u)| = 1. In particular, B contains no
Haar unitary. To find a Haar unitary for ϕ, consider the function v : T → T
satisfying v(z) = z2 for z with positive imaginary part, and satisfying v(z) = z−2

for z with negative imaginary part. Since v is of the form v = exp(ia) for a
positive element a ∈ C(T), we can lift v to a unitary u ∈ T with π(u) = v. Then
ϕ(uk) = τ(vk) =

∫
T v(z)kdz = 0 for k ∈ Z \ {0}.

6. States admitting Haar unitaries

Let ϕ : A → C be a positive functional on a unital C∗-algebra. In this section,
we study when ϕ admits a Haar unitary. By Lemma 4.10, a necessary condition is
that ϕ gives no weight to scattered quotients of A. We conjecture that this is also
sufficient:

Conjecture 6.1. Let A be a unital C∗-algebra, and let ϕ : A → C be a positive
functional. Then ϕ admits a Haar unitary if and only if there is no ideal I ⊆ A
such that A/I is scattered and ‖ϕ|I‖ < ‖ϕ‖.
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We confirm the conjecture in the case that ϕ is tracial (Theorem 5.4), and if A
is a von Neumann algebra (Proposition 7.3).

Recall that a topological space X is said to be T1 if for every x ∈ X the set {x}
is closed.

Lemma 6.2. Let ϕ : A → C be a positive functional on a C∗-algebra A whose
primitive ideal space is T1. Then ϕ is nowhere scattered if and only if ϕ does not
dominate a nonzero positive functional that factors through an elementary quotient.

Proof. The forward implication is clear. To show the converse, assume that ϕ gives
no weight to elementary quotients. Using that the primitive ideal space is T1, it
follows that ϕ gives no weight to elementary ideal-quotients. By Proposition 3.7,
this implies that ϕ is nowhere scattered. �

Proposition 6.3. Let A be a unital C∗-algebra whose primitive ideal space is T1,
and let ϕ : A→ C be a positive functional. Then the following are equivalent:

(1) ϕ is nowhere scattered;
(2) ϕ admits a Haar unitary;
(3) ϕ does not dominate a nonzero positive functional that factors through a

finite-dimensional quotient.

If A is also of type I, then these conditions are also equivalent to:

(4) ϕ is diffuse.

Proof. By Theorem 4.11, (1) implies (2). By Lemma 4.10, (2) implies (3). Since
every unital, elementary C∗-algebra is a matrix algebra and therefore finite-dimen-
sional, it follows from Lemma 6.2 that (3) implies (1). If A is also of type I, then
the equivalence of (1) and (4) follows from Proposition 3.12. �

Example 6.4. Recall that a C∗-algebra A is liminal (also called CCR) if for every
irreducible representation π : A → B(H) we have π(A) = K(H). Every liminal
C∗-algebra is type I and its primitive ideal space is T1. A unital C∗-algebra is
liminal if and only if every of its irreducible representations is finite-dimensional.
Proposition 6.3 verifies Conjecture 6.1 for liminal C∗-algebras.

Recall that a C∗-algebra A is subhomogeneous if there exists n ∈ N such that
every irreducible representation of A is at most n-dimensional. Every subhomoge-
neous C∗-algebra is liminal. We obtain in particular that a positive functional on a
unital, subhomogeneous C∗-algebra admits a Haar unitary if and only if it does not
dominate a nonzero positive functional that factors through a finite-dimensional
quotient.

7. States on von Neumann algberas

In this section, we study when (normal) states on von Neumann algebras admit
Haar unitaries. We first show that a normal state is diffuse if and only if it is nowhere
scattered. We deduce that normal states on diffuse von Neumann algebras admit
Haar unitaries. However, it turns out that diffuseness is not necessary. Indeed,
the main result of this section, Theorem 7.4, shows that every state on a von
Neumann algebra without finite-dimensional representations admits a Haar unitary.
In particular, every state on B(H) admits a Haar unitary; see Remark 7.5.

Lemma 7.1. Let M be a von Neumann algebra, and let ϕ : M → C be a normal,
positive functional. Then the following are equivalent:

(1) ϕ is diffuse (in the sense of Paragraph 3.1);
(2) ϕ(e) = 0 for every minimal projection e ∈M ;
(3) ϕ is nowhere scattered.
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Proof. By Proposition 3.9, (1) implies (3). By Proposition 3.7, (3) implies (2). To
show that (2) implies (1), assume that ϕ vanishes on every minimal projection in
M , and let e be a minimal projection in M∗∗. Given a Banach space E, we use
κE : E → E∗∗ to denote the natural inclusion. Let M∗ denote the predual of M
and set

π := κ∗M∗ : M∗∗ ∼= (M∗)
∗∗∗ → (M∗)

∗ ∼= M.

Then π is a ∗-homomorphism satisfying π ◦ κM = idM .
Set ē := π(e). Then ē is a projection in M . To see that it is minimal, let x ∈M .

Since e is minimal in M∗∗, there exists λ ∈ C such that exe = λe. Then

ēxē = π(e)π(x)π(e) = π(exe) = π(λe) = λē.

Thus, either ē is zero, or ē is a minimal projection in M . In either case, we have
ϕ(ē) = 0. Using that ϕ belongs to M∗, we get

ϕ(e) = 〈κM∗(ϕ), e〉M∗∗∗ ,M∗∗ = 〈ϕ, κ∗M∗(e)〉M∗,M = ϕ(ē) = 0. �

Recall that a von Neumann algbera is said to be diffuse if it contains no minimal
projections.

Proposition 7.2. A von Neumann algebra M is diffuse if and only if every normal
state on M is diffuse.

Proof. The forward implication follows from Lemma 7.1. To show the converse,
assume that M is not diffuse. Choose a minimal projection e in M , and let c(e) be
its central cover. Then c(e)M is a type I factor summand. Let H be a Hilbert space
such that c(e)M ∼= B(H), and choose a unit vector ξ ∈ e(H). The corresponding
vector state ϕ0 : B(H) → C, a 7→ 〈aξ, ξ〉 is normal and satisfies ϕ0(e) = 1. Then
M → C, a 7→ ϕ0(c(e)a), is a normal state that is not diffuse. �

Let M be a diffuse von Neumann algebra, and let ϕ : M → C be a normal state.
It follows from Lemma 7.1 and Proposition 7.2 that ϕ is nowhere scattered and
therefore admits a Haar unitary by Theorem 4.11. This is well-known and follows
for instance using that every maximal abelian sub-C∗-algebra (masa) D ⊆ M is a
diffuse, abelian von Neumann algebra, that ϕ|D is a normal trace, and that every
normal trace on a diffuse, abelian von Neumann algebra admits a Haar unitary.

Thus, every masa D ⊆ M contains a Haar unitary with respect to ϕ. (For C∗-
algebras, this does not hold; see Example 5.7.) We note that this only holds for
normal states. Indeed, given a masa D ⊆ M , we may choose a pure state on D
and extend it to a state ψ on M . Then D contains no Haar unitary with respect
to ψ. Nevertheless, in many cases we can find a different masa that contains a Haar
unitary for ψ. Indeed, in Theorem 7.4 we will show that this is always possible
if M has no finite-dimensional representations.

Example 4.17 shows that a normal state on a von Neumann algebra may admit
a Haar unitary without being diffuse.

Proposition 7.3. Let M be a von Neumann algebra, and let ϕ : M → C be a
positive functional. Then the following are equivalent:

(1) ϕ admits a Haar unitary;
(2) ϕ does not dominate a nonzero positive functional that factors through a

finite-dimensional quotient of M .

Proof. By Lemma 4.10, (1) implies (2). To show the converse, assume that ϕ gives
no weight to finite-dimensional quotients of M . For each n ≥ 1, let zn be the central
projection in M such that znM is the type In summand of M . It follows from the
assumption that the restriction of ϕ to znM gives no weight to finite-dimensional
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quotients. Since every irreducible representation of znM is n-dimensional, we can
apply Proposition 6.3 (see also Example 6.4) to obtain a Haar unitary un ∈ znM .

Set z<∞ :=
∑∞
n=1 zn and z∞ := 1 −

∑∞
n=1 zn. Set u :=

∑∞
n=1 un ∈ z<∞M .

Under the identification of z<∞M with
∏∞
n=1 znM , the unitary u corresponds to

(un)∞n=1. It follows that u is a Haar unitary in z<∞M .
If z∞ = 0, then u is the desired Haar unitary. So assume that z∞ 6= 0. Then

z∞M admits no finite-dimensional representations. It follows that z∞M contains a
unital, simple, nonelementary sub-C∗-algebra, for example the hyperfinite II1 fac-
tor R (we sketch the argument below). Hence, the restriction of ϕ to z∞M admits
a Haar unitary v; see Corollary 4.15. (Since von Neumann algebras have real rank
zero, this also follows from Example 4.16.) Now u+ v is the desired Haar unitary.

To complete the argument, let us show that a von Neumann algebra N admits a
unital embedding ofR if and only if N admits no finite-dimensional representations.
The forward implication is clear. For the backward implication, we can use type
decomposition to reduce to the cases that N is properly infinite or type II1.

If N is properly infinite, then it follows from Propositions V.1.22 and V.1.36 in
[Tak02] that N ∼= N⊗̄B(`2(N)). Using that R unitally embeds into B(`2(N)), we
get a unital embedding R ⊆ N .

If N is type II1, then one can apply [Tak02, Proposition 1.35] to construct an
increasing sequence (An)n of unital subalgebras of N with An ∼= M2n(C). Consider
N0 := (

⋃
nAn)′′ ⊆ N . We use the center valued trace T : N → Z(N); see [Tak02,

p.312ff] for details. Since T is normal and maps each An into scalar multiples of
the unit, it follows that T maps N0 into C ⊆ N as well. Thus, N0 admits a faithful,
normal, tracial state, and we see that this is also the unique normal tracial state
on N0 using that each An has a unique tracial state and that

⋃
nAn is σ-weakly

dense in N0. This shows that N0 is a II1 factor. Since N0 is AFD, we have N0
∼= R

by Murray-von Neumann’s uniqueness of the separable, AFD II1 factor R. �

Theorem 7.4. Let M be a von Neumann algebra. Then the following are equiva-
lent:

(1) M has no finite-dimensional representations;
(2) every state on M admits a Haar unitary;
(3) every tracial state on M admits a Haar unitary.

Proof. It is clear that (2) implies (3), and that (3) implies (1). By Proposition 7.3,
(1) implies (2). �

Remark 7.5. Let H be a separable, infinite-dimensional Hilbert space. By Theo-
rem 7.4, every state on B(H) admits a Haar unitary and consequently restricts to a
diffuse state on some masa. This should be contrasted with the result of Akemann
and Weaver, [AW08], that the continuum hypothesis implies the existence of a pure
state on B(H) that does not restrict to a pure state on any masa.

8. Traces on reduced group C*-algebras

Let G be a discrete group, and let `2(G) be the associated Hilbert space with
canonical orthonormal basis (δg)g∈G. The left-regular representation λG is the
representation of G on `2(G) that maps g ∈ G to the unitary ug ∈ B(`2(G))
satisfying ugδh := δgh for h ∈ G. The sub-C∗-algebra of B(`2(G)) generated by
{ug : g ∈ G} is called the reduced group C∗-algebra of G, denoted by C∗red(G). The
vector δ1 ∈ `2(G) induces a canonical tracial state τG : C∗red(G)→ C given by

τG(a) := 〈aδ1, δ1〉
for a ∈ C∗red(G). We have τG(u1) = 1 and τG(ug) = 0 for g ∈ G \ {1}. It follows
that ug is a Haar unitary with respect to τG if and only if g has infinite order in G.
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The von Neumann algebra generated by {ug : g ∈ G} is called the group von
Neumann algebra of G, denoted L(G).

Proposition 8.1. Let G be a discrete group. Then the following are equivalent:

(1) G is infinite;
(2) the trace τG : C∗red(G)→ C is diffuse;
(3) the trace τG : C∗red(G)→ C admits a Haar unitary;
(4) L(G) is diffuse.

Proof. By [Dyk93, Proposition 5.1], (1) implies (4). Conversely, if G is finite,
then L(G) is finite-dimensional and therefore not diffuse. By Theorem 5.4, (2)
and (3) are equivalent. Note that L(G) is the weak*-closure of C∗red(G) under
the GNS-representation induced by τG. Therefore, (2) and (4) are equivalent by
Lemma 3.2. �

Example 8.2. Let G be an infinite, discrete group. Then τG admits a Haar unitary.
However, if G is a torsion group (such as G = T/Z), then none of the canonical
unitaries ug (g ∈ G) is a Haar unitary since every element in G has finite order.

If G is locally finite, then even more is true: There exists no Haar unitary for τG
in the group algebra C[G]. Indeed, given u ∈ C[G], since u has finite support and
since G is locally finite, there exists a finite subgroup F ⊆ G such that u belongs
to C[F ]. But C[F ] is a finite-dimensional algebra and therefore does not contain
Haar unitaries. Thus, to find a Haar unitary for τG, one really needs to go to the
completion C∗red(G) of C[G].

Proposition 8.3. Let G be a discrete group. Then the following are equivalent:

(1) G is nonamenable;
(2) C∗red(G) has no finite-dimensional representations;
(3) every trace on C∗red(G) admits a Haar unitary.

Proof. The equivalence between (1) and (2) is well-known. For the convenience of
the reader, let us sketch the proof. In one direction, if G is amenable, then the
trivial representation is weakly contained in λG, which induces a one-dimensional
representation of C∗red(G). Conversely, if C∗red(G)→Mn(C) is a (unital) representa-
tions, then the composition with the unique tracial state on Mn(C) is an amenable
trace on C∗red(G), which implies that G is amenable by [BO08, Proposition 6.3.2].

By Corollary 5.5, (2) and (3) are equivalent. �

8.4. Let G be a discrete group. Consider the following properties:

(1) G contains a subgroup isomorphic to F2, the free group on two generators;
(2) C∗red(G) contains a unital, simple, nonelementary sub-C∗-algebra;
(3) every state on C∗red(G) admits a Haar unitary;
(4) C∗red(G) has no finite-dimensional representations;
(5) G is nonamenable.

Then the following implications hold:

(1)⇒ (2)⇒ (3)⇒ (4)⇔ (5).

Indeed, (1) implies that the simple, nonelementary C∗-algebra C∗red(F2) unitally
embeds into C∗red(G); by Corollary 4.15, (2) implies (3); and by Proposition 8.3,
(3) implies (4), which is equivalent to (5).

Recall that G is C∗-simple if C∗red(G) is simple. Obviously, every C∗-simple
group satisfies (2). By [OO14], there exist C∗-simple groups that have no noncyclic,
free subgroups. Hence, the implication ’(1)⇒(2)’ cannot be reversed. What about
the other implications? Conjecture 6.1 predicts that (4) implies (3). Does (3)
imply (2)?
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9. Structure of reduced free products

Let A and B be unital C∗-algebras with faithful tracial states τA and τB , re-
spectively. The reduced free product of (A, τA) and (B, τB) is the (unique) unital
C∗-algebra C with faithful tracial state τC and unital embeddings A ⊆ C and
B ⊆ C such that τC restrict to the given traces on A and B, such that A and B
generated C as a C∗-algebra, and such that A and B are free with respect to τC ,
that is, τC(c1c2 · · · cn) = 0 whenever τC(cj) = 0 for all j and either c1, c3, . . . ∈ A
and c2, c4, . . . ∈ B, or vice versa; see Lecture 7, and in particular Definition 7.10 in
[NS06] for details.

One can think of this construction as a generalization of the free product of
groups: Given discrete groups G and H, the reduced free product of the reduced
group C∗-algebras C∗red(G) and C∗red(H) with respect to their canonical tracial
states is naturally isomorphic to C∗red(G ∗H).

It is a well-studied problem to determine when a reduced free product C is simple
or has stable rank one (that is, the invertible elements in C are dense). In [Avi82],
Avitzour introduced the condition, later named after him, that there are unitaries
u, v ∈ A and w ∈ B satisfying

τA(u) = τA(v) = τA(uv) = 0, and τB(w) = 0.

By [Avi82, Proposition 3.1], Avitzour’s condition implies that C is simple and has
a unique tracial state. By [DHR97, Theorem 3.8], Avitzour’s condition also implies
that C has stable rank one.

It is clear that Avitzour’s condition is satisfied if τA and τB admit Haar unitaries.
Thus, it follows from Theorem 5.4 that the reduced free product of two C∗-algebras
with respect to diffuse (faithful) tracial states is a simple C∗-algebra of stable rank
one and with unique tracial state. Using a result of Dykema, [Dyk99, Theorem 2],
it even suffices that one trace is diffuse and the other algebra is nontrivial:

Theorem 9.1. Let A and B be unital C∗-algebras with faithful tracial states τA
and τB, respectively. Assume that τA is diffuse and that B 6= C. Then the reduced
free product of (A, τA) and (B, τB) is simple, has stable rank one and a unique
tracial state.

Proof. By Theorem 5.4, A contains a unital, commutative sub-C∗-algebra C(X)
such that τA induces a diffuse measure on X. This verifies the assumptions of
[Dyk99, Theorem 2], which proves the result. �

Corollary 9.2. Let A and B be unital, simple C∗-algebras with tracial states τA
and τB, respectively. Assume that A 6= C and B 6= C. Then the reduced free product
of (A, τA) and (B, τB) is simple, has stable rank one and a unique tracial state.

Proof. If A is infinite-dimensional, then τA is diffuse by Corollary 5.6 and the result
follows from Theorem 9.1. The same argument applies if B is infinite-dimensional.
If both A and B are finite-dimensional, then A ∼= Mm(C) and B ∼= Mn(C) for
some m,n ≥ 2, and in this case one can directly verify that Avitzour’s condition is
satisfied; see [DHR97, Proposition 4.1(iv)] �

Corollary 9.3. The class of unital, simple, stable rank one C∗-algebras with unique
tracial state is closed under reduced free products.

Proof. Let A and B be two C∗-algebras in the considered class. If A ∼= C, then the
reduced free product is isomorphic to B, which belongs to the class, and similarly
if B ∼= C. We may therefore assume that A 6= C and B 6= C. Now the result follows
from Corollary 9.2. �
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9.4. Let A and B be unital C∗-algebras with faithful states ϕ and ψ, respectively.
Let (C, γ) be the reduced free product of (A,ϕ) and (B,ψ), which is defined anal-
ogously to the tracial setting. One can show that γ is tracial if and only if ϕ and ψ
are.

The centralizer of A with respect to ϕ is defined as

Aϕ :=
{
a ∈ A : ϕ(ab) = ϕ(ba) for all b ∈ A

}
.

Note that Aϕ is a unital sub-C∗-algebra of A, and the restriction of ϕ to Aϕ is
tracial. In this setting, Avitzour’s condition is that there exist unitaries u, v ∈ Aϕ
and w ∈ Bψ satisfying

ϕ(u) = ϕ(v) = ϕ(uv) = 0, and ψ(w) = 0.

Avitzour’s condition still implies that the reduced free product is simple. By
[Dyk99, Proposition 3.2], C is also simple if B 6= C and if there is a unital sub-C∗-
algebra C(X) ⊆ Aϕ such that ϕ induces a diffuse measure on X. By Theorem 5.4,
the condition on Aϕ is satisfied if and only if ϕ|Aϕ

is a diffuse trace. In particular,
we obtain that C is simple if ϕ is a diffuse trace on Aϕ and B 6= C.

Proposition 9.5. Let A and B be unital, simple, nonelementary C∗-algebras with
states ϕ and ψ, respectively, and let (C, γ) be their reduced free product. If ϕ and ψ
are tracial, then C has stable rank one. If ϕ or ψ is not tracial, then C is properly
infinite.

Proof. The first statement follows from Corollary 9.2. To show the second state-
ment, assume that ϕ or ψ is not tracial. Then γ is not tracial either. By Corol-
lary 4.14, ϕ and ψ admit Haar unitaries. They do not necessarily lie in the central-
izers of ϕ and ψ, but this is also not required to apply [DR98, Theorem 4], which
gives that C is properly infinite. �

Problem 9.6. Describe when the centralizer of a state contains a Haar unitary.

Remark 9.7. Let M be a von Neumann algebra, and let ϕ : M → C be a faithful,
normal state. The centralizer Mϕ (defined as in the C∗-case) is a von Neumann
subalgebra. If M is a factor of type II or type IIIλ for λ ∈ [0, 1), then Mϕ is diffuse;
see [MU14, Lemma 2.2]. In this case, it follows that Mϕ contains a Haar unitary.

In general, this is not true. Indeed, as shown in Section 3 of [HT70], there exists a
faithful, normal state ϕ on the (unique) hyperfinite III1 factor such that Mϕ = C1;
see also [MU14, Example 2.7]. The construction actually shows that there exists a
state on the CAR algebra with trivial centralizer.
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[Tak02] M. Takesaki, Theory of operator algebras. I, Encyclopaedia of Mathematical Sciences
124, Springer-Verlag, Berlin, 2002, Reprint of the first (1979) edition, Operator Algebras

and Non-commutative Geometry, 5.

Hannes Thiel Mathematisches Institut, Fachbereich Mathematik und Informatik der
Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany.

Email address: hannes.thiel@posteo.de

URL: www.hannesthiel.org


	1. Introduction
	Methods
	Notation

	2. Open projections
	3. Diffuse and nowhere scattered functionals
	4. Haar unitaries characterize nowhere scattered functionals
	5. Traces admitting Haar unitaries
	6. States admitting Haar unitaries
	7. States on von Neumann algberas
	8. Traces on reduced group C*-algebras
	9. Structure of reduced free products
	References

