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Abstract. We compute the intersection multiplicities of special cy-
cles in Lubin-Tate spaces, and formulate a new arithmetic fundamental
lemma relating these intersections to derivatives of orbital integrals.
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1. Introduction

We compute the intersection multiplicity of special cycles in Lubin-Tate
deformation spaces. Interpolating ideas from [HS19, Li21, Zh12], we formu-
late a new arithmetic fundamental lemma expressing the intersection as the
derivative of an orbital integral. The results and conjectures of [Li21] are
special cases of those presented here.

1.1. An intersection problem. Fix a nonarchimedean local field F (of any

characteristic), let F̆ be the completion of its maximal unramified extension,
and let k be the residue field of OF̆ .

Suppose G is a one-dimensional formal OF -module of height 2h over k,
and denote by X → Spf(OF̆ ) the Lubin-Tate deformation space of G. Being
(noncanonically) isomorphic to the formal spectrum of a power series ring
OF̆ [[T1, . . . , T2h−1]], it is a formal scheme of dimension 2h.

Let K1 and K2 be separable quadratic field extensions of F , and fix OF -
algebra maps

(1.1.1) Φ1 : OK1 → EndOF
(G), Φ2 : OK2 → EndOF

(G).

B.H. was supported in part by NSF grants DMS-1801905 and DMS-2101636.
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The deformation space of G with its extra OKi-action is a closed formal
subscheme fi : Yi ↪→ X.

The formal subschemes Y1 and Y2 each have dimension h, and so it is
natural to consider the intersection multiplicity

(1.1.2) I(Φ1,Φ2) = lenOF̆
H0(X, f1∗OY1 ⊗OX

f2∗OY2).

In this generality (1.1.2) could be infinite; this would be the case, for exam-
ple, if K1 = K2 and Φ1 = Φ2.

One of the main results of this paper is a formula for the above intersection
multiplicity. The formula involves a polynomial invariant associated to the
pair (Φ1,Φ2), which we now describe.

1.2. Invariant polynomials. Suppose for the moment that K1 and K2

are any quadratic étale F -algebras. Equivalently, Ki is either a quadratic
Galois extension, or Ki

∼= F ×F . Denote by σi ∈ Aut(Ki/F ) the nontrivial
automorphism.

The automorphism group of the F -algebra K = K1 ⊗F K2 contains the
Klein four subgroup {id, τ1, τ2, τ3} ⊂ Aut(K/F ) with nontrivial elements

(x⊗ y)τ1 = x⊗ yσ2 , (x⊗ y)τ2 = xσ1 ⊗ y, (x⊗ y)τ3 = xσ1 ⊗ yσ2 .

Denote by K3 ⊂ K the subalgebra of elements fixed by τ3. The picture,
along with generators of the automorphism groups, is

(1.2.1) K

K1

τ1

K2

τ2

K3

τ3

F.

σ1
σ2

σ3

Elementary algebra shows that K1
∼= K2 if and only if K3

∼= F × F . If
K1 and K2 are nonisomorphic field extensions, then K is a biquadratic field
extension of F , and K3 is its unique third quadratic subfield.

Now suppose B is any central simple F -algebra of dimension 4h2, and
that we are given F -algebra embeddings

(1.2.2) Φ1 : K1 → B, Φ2 : K2 → B.

From this data we construct in §2.2 a distinguished element s in the central
simple K3-algebra C = B ⊗F K3, and show that its reduced characteristic
polynomial is a square. The invariant polynomial

Inv(Φ1,Φ2)(T ) ∈ K3[T ]

is its unique monic square root.
The pair (Φ1,Φ2) is regular semisimple (Definition 2.5.1) if s ∈ C× and the

subalgebra K3[s] ⊂ C is an étale K3-algebra of dimension h. This is our way
of making precise the notion that the pair (Φ1,Φ2) is in general position;
see also Proposition A.2.2. As evidence that the invariant polynomial is



INTERSECTIONS IN LUBIN-TATE SPACE 3

a natural quantity to consider, we prove in Corollary 2.5.8 that the B×-
conjugacy class of a regular semisimple pair is completely determined by its
invariant polynomial.

1.3. The intersection formula. Now return to the setting of §1.1, and
apply the constructions of §1.2 to the central division algebra

B = EndOF
(G)⊗ F

to obtain a degree h polynomial Inv(Φ1,Φ2) with coefficients in K3.
To any OF -algebra embeddings

Ψ1 : OK1 →M2h(OF ), Ψ2 : OK2 →M2h(OF ),

we may associate in the same way a degree h polynomial Inv(Ψ1,Ψ2) with
coefficients in K3. More generally, for any g ∈ GL2h(OF ) we may form the
conjugate embedding gΨ2g

−1 and the polynomial Inv(Ψ1,gΨ2g−1). Let

R(g) = Res
(
Inv(Φ1,Φ2), Inv(Ψ1,gΨ2g−1)

)
∈ K3

be the resultant. It follows from Proposition 2.3.3 that R(g)2 ∈ F , and we
define

|R(g)| =
√
|R(g)2|.

Here the absolute value on F is normalized by |π| = q−1, where π ∈ OF is
a uniformizing parameter and q is the cardinality of the residue field.

Theorem A. If (Φ1,Φ2) is regular semisimple then |R(g)| ≠ 0 for all g ∈
GL2h(OF ), and the intersection multiplicity (1.1.2) satisfies

I(Φ1,Φ2) = c(0) · |d1d2|−
h2

2 ·
∫
GL2h(OF )

dg

|R(g)|
.

In particular, the left hand side is finite. Here di ∈ OF is any generator of
the discriminant of Ki/F , and

c(0) =
#GL2h(OF /πOF )

#GLh(OK1/πOK1) ·#GLh(OK2/πOK2)
.

Theorem A is a special case of Theorem 4.4.2, which gives a more general
intersection formula for cycles on covers of X obtained by adding Drinfeld
level structures. When K1 = K2, it specializes to the main result of [Li21].

1.4. Matching and fundamental lemmas. Let us return to the general
situation of §1.2, where K1 an K2 are quadratic étale F -algebras. From the
pair (K1,K2) we constructed a diagram (1.2.1) of étale F -algebras. There
is another diagram of étale F -algebras, in some sense dual to the first.

Having already constructed K3 from the pair (K1,K2), we may set

K0 = F × F
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and repeat the construction of (1.2.1) with the pair (K1,K2) replaced by
(K0,K3). Using the canonical isomorphism K0 ⊗F K3

∼= K3 × K3, the
resulting picture is

(1.4.1) K3 ×K3

K0

ν0

K3

ν3

K3

ν0◦ν3

F,

σ0
σ3

σ3

where (x, y)ν0 = (xσ3 , yσ3) and (x, y)ν3 = (y, x). To be completely explicit:
the middle inclusion of K3 into K3 × K3 is given by z 7→ (z, z), while the
inclusion on the right is z 7→ (z, zσ3).

The key point is that the pairs (K1,K2) and (K0,K3) give rise to the
same third quadratic algebra K3. The constructions described in §1.2 work
equally well with the pair (K1,K2) replaced by (K0,K3), and associate to
any pair of F -algebra embeddings

(1.4.2) Φ0 : K0 →M2h(F ), Φ3 : K3 →M2h(F )

a degree h monic polynomial Inv(Φ0,Φ3)(T ) ∈ K3[T ].
Suppose the pairs (Φ1,Φ2) and (Φ0,Φ3) of (1.2.2) and (1.4.2) are regular

semisimple and matching, in the sense that they have the same invariant
polynomial. Suppose also that the extension K/K3 is unramified.

In Definition 3.2.4 we associate an orbital integral O(Φ0,Φ3)(f ; s, η) to any
compactly supported function

(1.4.3) f : GL2h(OF )\GL2h(F )/GL2h(OF ) → C.
Here η : K×

3 → {±1} is the unramified quadratic character determined by
K/K3, and s is a complex variable. We propose two conjectures on the
behavior of this orbital integral at s = 0.

Suppose first that the central simple algebra in (1.2.2) is B =M2h(F ). In
Definition 3.1.1 we associate to (1.4.3) another orbital integral O(Φ1,Φ2)(f),
and conjecture that

(1.4.4) O(Φ0,Φ3)(f ; 0, η) = ±O(Φ1,Φ2)(f).

This is the biquadratic fundamental lemma of Conjecture 3.4.1. The am-
biguity in sign arises because O(Φ0,Φ3)(f ; s, η) depends on some additional
choices, which make its value at s = 0 well-defined only up to ±1. When
K1 = K2 the biquadratic fundamental lemma is equivalent to the Guo-
Jacquet fundamental lemma proposed in [Guo96].

Now suppose that the central simple algebra in (1.2.2) is the division
algebra B = EndOF

(G) ⊗ F of (1.1.1). Because EndOF
(G) is a (noncom-

mutative) discrete valuation ring, the pair (Φ1,Φ2) of (1.2.2) automati-
cally satisfies the integrality conditions of (1.1.1). In this case, we show
in Proposition 3.3.3 that the matching of (Φ0,Φ3) with (Φ1,Φ2) implies
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the vanishing of O(Φ0,Φ3)(f ; s, η) at s = 0 for all f . When f = 1 is the
characteristic function of GL2h(OF ), the work of Zhang [Zh12], its descen-
dants [LZ17, Mih17, RTZ13, Zh19], and the relative trace formula approach
to the Gross-Kohnen-Zagier theorem [HS19], suggests one should have an
arithmetic biquadratic fundamental lemma of (roughly) the form

(1.4.5)
d

ds
O(Φ0,Φ3)(1; s, η)

∣∣
s=0

?
= I(Φ1,Φ2) log(q).

The equality (1.4.5) was conjectured by the authors in an earlier version
of this paper, but it was explained to us by Andreas Mihatsch that this is a
bit too naive. The correct conjecture should involve identifying the Lubin-
Tate space X = X(0) as one connected component of a larger Rapoport-Zink
space

X• =
⊔
ℓ∈Z

X(ℓ),

extending the definition of the cycles Yi → X to cycles Y •
i → X•, and re-

placing the right hand side of (1.4.5) with an intersection number taking all
connected components into account (carefully, as simply adding the inter-
section multiplicities on all components will always result in ∞). The reader
can find the precise statement of this corrected version of (1.4.5) stated as
Conjecture 4.5.2.

Remark 1.4.1. When h ∈ {1, 2}, the authors have verified both the bi-
quadratic fundamental lemma (at least when f = 1 is the characteristic
function of GL2h(OF )) and the arithmetic biquadratic fundamental lemma
(1.4.4). The calculations for h = 1 appear in §5. Calculations for h = 2 will
appear in future work.

1.5. Global analogues. The results and conjectures of this work are purely
local in nature, but we wish to give the reader at least some indication of
their global analogues. As this is purely for motivational purposes, the
following discussion will be somewhat impressionistic.

The global problem to which the biquadratic fundamental lemma (1.4.4)
should be applied is purely representation-theoretic. Suppose we start with
a global field F and a central simple F -algebra B of dimension 4h2. Let K1

and K2 be quadratic étale F -algebras, let K0 and K3 be as in (1.4.1), and
suppose we are given pairs of F -algebra embeddings (Φ1,Φ2) and (Φ0,Φ3)
as in (1.2.2) and (1.4.2).

Let A be the adele ring of F . Suppose we are given a cuspidal automorphic
representation πB of B×

A , and let π be its Jacquet-Langlands lift to GL2h(A).
The idea is that the biquadratic fundamental lemma should imply period
relations of the form∫

[H1]
f1(h1) dh1

∫
[H2]

f2(h2) dh2 =

∫
[H0]

f0(h0) dh0

∫
[H3]

f3(h3) · η(h3) dh3
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for suitable f1, f2 ∈ πB and f0, f3 ∈ π. Here

H1, H2 ⊂ B× and H0, H3 ⊂ GL2h(F )

are the centralizers of the various Φi’s, so that Hi
∼= GL2h(Ki), and

[Hi] = Hi(F )\Hi(A)/A×.

The character η : H3(A) → {±1} is determined by the extensionK/K3, as in
(3.2.3). In the special case where B =M2(F ), F has positive characteristic,
and π is unramified, such a period relation appears as [HS19, Theorem D].

It is expected (and sometimes known) that the four periods above are re-
lated to special values of L-functions [FJ93, FMW18, Guo96]. For example,
the period integral over [H0] is related to the central value of the standard
L-function of π.

Now we turn to the global analogue of the arithmetic biquadratic funda-
mental lemma (1.4.5). Here one expects a formula relating central deriva-
tives of L-functions to intersections of special cycles on unitary Shimura
varieties, in the spirit of the Gross-Zagier [GZ86] and (especially) Gross-
Kohnen-Zagier [GKZ87] theorems on the Néron-Tate pairings of Heegner
points in a modular Jacobian.

Take F to be a quadratic imaginary field, and let K1 and K2 be quartic
CM fields, each containing F . Suppose we are given a hermitian space Wi

over Ki of dimension h, whose signature at one archimedean place of its
maximal totally real subfield is (h− 1, 1), and whose signature at the other
place is (h, 0). One can associate to the unitary group U(Wi) a Shimura
variety Yi of dimension h− 1.

If we view eachWi as an F -vector space, and apply TrKi/F to the hermit-
ian form, we obtain a hermitian space Vi over F of signature (2h− 1, 1). To
the unitary group U(Vi) we can associate a Shimura variety Xi of dimension
2h− 1, and the inclusion U(Wi) ⊂ U(Vi) defines a morphism Yi → Xi.

Suppose further that V1 ∼= V2, so that X1
∼= X2. Call this common

hermitian space V , and this common Shimura variety X. We now have two
cycles Y1 and Y2 of codimension h on X.

The idea, roughly speaking, is that the Beilinson-Bloch height pairing
of Y1 and Y2 in the codimension h Chow group of X should be related to
derivatives of L-functions. For certain cuspidal automorphic representations
π of U(V ) one should able to project Y1 and Y2 onto the π-component of the
Chow group, and the height pairing of these two projections should essen-
tially be the central derivative of the standard L-function of π, multiplied
by a period of π over a smaller unitary group U(W3) ⊂ U(V ), whereW3 is a
hermitian space of dimension h over K3. The main result of [HS19] provides
some evidence that such a relation should hold.

If one chooses a prime p that is split in F , but with each prime above it
nonsplit in both K1 and K2, the above global cycles Y1, Y2 → X become
(after applying the Rapoport-Zink uniformization theorem) the cycles on
Lubin-Tate space whose intersection is the subject of (1.4.5).
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2. Invariants of algebra embeddings

In this section only, we allow F to be any field whatsoever. We will attach
a polynomial to any pair of F -algebra embeddings (Φ1,Φ2) as in (1.2.2).
When the pair is regular semisimple, in a sense we will make precise, the
pair is determined up to conjugacy by this polynomial.

2.1. Noether-Skolem plus epsilon. Suppose A is a semisimple F -algebra
of finite dimension; in other words,

A ∼= A1 × · · · ×Ar

where each Ai is a finite dimensional simple F -algebra (whose center may
be strictly larger than F ). Let B be a central simple F -algebra.

Theorem 2.1.1 (Noether-Skolem). Suppose φ,φ′ : A → B are F -algebra
homomorphisms, let B(φ) = B with its left A-module structure induced by
φ, and let B(φ′) = B with its left A-module structure induced by φ′. If

B(φ) ∼= B(φ′)

as A-modules, then φ and φ′ are conjugate by an element of B×.

Proof. If A is a simple algebra then the hypothesis B(φ) ∼= B(φ′) is auto-
matically satisfied, and this is the usual Noether-Skolem theorem [SP, Tag
074Q]. The proof of this mild generalization follows the same argument, and
we leave the details as an exercise to the reader. □

Suppose L is a finite étale F -algebra; in other words, a finite product of
finite separable field extensions.

Definition 2.1.2. By an F -algebra embedding L→ B we mean an injective
map of F -algebras making B into a free L-module.

Corollary 2.1.3. Any two F -algebra embeddings L→ B are B×-conjugate.

Proof. Take A = L in Theorem 2.1.1. □

Remark 2.1.4. The corollary is false if we drop the freeness condition in
Definition 2.1.2. For example, the F -algebra maps F ×F →M3(F ) defined
by

(x, y) 7→

x x
y

 and (x, y) 7→

x y
y


are not GL3(F )-conjugate.
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2.2. Invariant polynomials. Fix a positive integer h, and let B be a cen-
tral simple F -algebra of dimension 4h2. Let K1 and K2 be quadratic étale
extensions of F as in (1.2.1). Our goal is to attach to any pair of F -algebra
embeddings

(2.2.1) Φ1 : K1 → B, Φ2 : K2 → B.

a degree h monic polynomial with coefficients in K3. This generalizes
constructions of [HS19] in the special case h = 1, and constructions of
[Guo96, Li21] in the special case K1

∼= K2. See §A.2.
The construction of this polynomial uses the K3-algebra

C = B ⊗F K3.

The canonical maps

(2.2.2) K1 ⊗F K3
x1⊗x3 7→x1x3−−−−−−−−→ K, K2 ⊗F K3

x2⊗x3 7→x2x3−−−−−−−−→ K

are both isomorphisms, and so the F -algebra embeddings (2.2.1) extend
uniquely to K3-algebra embeddings

(2.2.3) Φ1,Φ2 : K → C.

Lemma 2.2.1. If y ∈ K is a K3-algebra generator then

Φ1(y)− Φ2(y
τ3) = Φ2(y)− Φ1(y

τ3),(2.2.4)

and for all x ∈ K we have

(Φ1(y)− Φ2(y
τ3)) · Φ2(x) = Φ1(x) · (Φ1(y)− Φ2(y

τ3))(2.2.5)

(Φ1(y)− Φ2(y
τ3)) · Φ1(x) = Φ2(x) · (Φ1(y)− Φ2(y

τ3))

(Φ1(y)− Φ2(y)) · Φ2(x) = Φ1(x
τ3) · (Φ1(y)− Φ2(y))

(Φ1(y)− Φ2(y)) · Φ1(x) = Φ2(x
τ3) · (Φ1(y)− Φ2(y)).

Proof. The two maps (2.2.3) have the same restriction to K3, and so

Φ1(y + yτ3) = Φ2(y + yτ3)

Φ1(yy
τ3) = Φ2(yy

τ3).

The relation (2.2.4) is clear from the first of these. If we write x ∈ K as
x = ay + b with a, b ∈ K3, then the first equality of (2.2.5) follows from

(Φ1(y)− Φ2(y
τ3)) · Φ2(y) = Φ1(y)Φ2(y)− Φ2(yy

τ3)

= Φ1(y)Φ2(y)− Φ1(yy
τ3)

= Φ1(y) · (Φ1(y)− Φ2(y
τ3)).

The other equalities in (2.2.5) are proved in the same way. □

Fix a y ∈ K such that K = K3[y]. Noting that (y − yτ3)2 ∈ K×
3 , define

(2.2.6) s =
(Φ1(y)− Φ2(y

τ3))2

(y − yτ3)2
∈ C
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and

(2.2.7) t =
Φ1(y)Φ2(y)− Φ2(y)Φ1(y)

(y − yτ3)2
∈ C.

Proposition 2.2.2. The elements (2.2.6) and (2.2.7) do not depend on the
choice of K3-algebra generator y ∈ K, and satisfy

(2.2.8) s · Φi(x) = Φi(x) · s, t · Φi(x) = Φi(x
τ3) · t

for all x ∈ K. In particular, the first equality implies that st = ts.

Proof. For the independence of s and t on y, we will actually prove something
slightly stronger: the elements

(2.2.9) s =
−(y1y

τ3
2 + y2y

τ3
1 ) + Φ1(y1)Φ2(y2) + Φ2(y

τ3
2 )Φ1(y

τ3
1 )

(y1 − yτ31 )(y2 − yτ32 )

and

(2.2.10) t =
Φ1(y1)Φ2(y2)− Φ2(y2)Φ1(y1)

(y1 − yτ31 )(y2 − yτ32 )

are independent of the choices of K3-algebra generators y1, y2 ∈ K, and
agree with (2.2.6) and (2.2.7). Indeed, by direct calculation one can see that
the right hand sides of (2.2.9) and (2.2.10) are unchanged by substitutions
of the form y1 7→ a1y1 + b1 and y2 7→ a2y2 + b2 with a1, a2 ∈ K×

3 and
b1, b2 ∈ K3, and hence both are independent of the choices of y1 and y2. If
we set y1 = y2 = y then (2.2.9) simplifies to

s =
(Φ1(y)− Φ2(y

τ3)) · (Φ2(y)− Φ1(y
τ3))

(y − yτ3)2

which is equal to (2.2.6) by (2.2.4). Similarly, the right hand side of (2.2.10)
simplifies to (2.2.7).

It follows from (2.2.5) that Φi(x) commutes with (Φ1(y)−Φ2(y
τ3))2, and

so also commutes with s. This proves the first equality in (2.2.8). The
second is proved in the same way, after noting that (2.2.7) can be rewritten
as

□(2.2.11) t =
(Φ1(y)− Φ2(y))(Φ1(y)− Φ2(y

τ3))

(y − yτ3)2
.

Proposition 2.2.3. The reduced characteristic polynomial Ps ∈ K3[T ] of
s ∈ C is a square, and if we write Ps = Q2

s then Qs(s) = 0 in C.

Proof. The claim can be checked after extending scalars to a separable exten-
sion, so we may assume that F itself is separably closed. Fix isomorphisms
K1

∼= F × F and B ∼=M2h(F ) in such a way that Φ1 : K1 →M2h(F ) is

Φ1(a, b) =

(
aI

bI

)
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where I ∈ Mh(F ) is the identity matrix. Using (2.2.8), one can see that
s, t ∈ C ∼=M2h(K3) have the form

s =

(
s+

s−

)
t =

(
u

v

)
for some u,v, s± ∈Mh(K3). The condition that s and t commute translates
to s+u = us− and vs+ = s−v.

Let P±
s be the characteristic polynomial of s±. As Ps = P+

s P
−
s , to prove

the proposition it suffices to prove P+
s = P−

s . If t ∈ C is invertible then so are
u and v, hence s+ and s− are similar. The general case is by a Zariski density
argument. For any g ∈ GL2h(F ) we may form the elements s, t ∈ M2h(K3)
associated to the pair (Φ1, gΦ2g

−1), and view them as functions of g. We
have seen that P+

s = P−
s for all g in the open dense subset defined by

det(t) ̸= 0, so the same equality also holds at g = I. □

We define the invariant polynomial of (Φ1,Φ2) to be the degree h poly-
nomial Qs of Proposition 2.2.3. In other words:

Definition 2.2.4. The invariant polynomial

(2.2.12) Inv(Φ1,Φ2) ∈ K3[T ]

of the pair (2.2.1) is the unique monic square root of the reduced character-
istic polynomial of s ∈ C.

Remark 2.2.5. If Φ1 and Φ2 are simultaneously conjugated by an element
of B×, then s, t ∈ C are simultaneously conjugated by that same element.
Thus the invariant polynomial only depends on the B×-conjugacy class of
(Φ1,Φ2).

Remark 2.2.6. The centralizer C(Φi) of the image of Φi : K → C is a central
simple K-algebra of rank h2, and s ∈ C(Φi) by (2.2.8). The same argument
used in the proof of Proposition 2.2.3 shows that the invariant polynomial is
equal to reduced characteristic polynomial of s when viewed as an element
of either one of the K-algebras C(Φ1) or C(Φ2).

Remark 2.2.7. We always allow the possibility thatK1 = K2, but be warned:
when K1 = K2 the two isomorphisms in (2.2.2) are not equal, as they arise
from embeddings K1 → K and K2 → K with different images. Because
of this, even if the two F -algebra maps in (2.2.1) are equal, the K3-algebra
maps in (2.2.3) will not be.

2.3. The functional equation. We will show that the invariant polyno-
mial Inv(Φ1,Φ2)(T ) ∈ K3[T ] of Definition 2.2.4 satisfies a functional equation
in T 7→ 1− T .

By mild abuse of notation, we denote again by σ3 the F -linear automor-
phism id⊗ σ3 of C = B ⊗F K3.
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Lemma 2.3.1. The element s ∈ C of (2.2.6) satisfies

sσ3 =
(Φ1(y)− Φ2(y))

2

(y − yτ3)2
.

Proof. Recall from Proposition 2.2.2 that s is independent of the choice of
K3-algebra generator y ∈ K in (2.2.6). As yτ1 is also such a generator, we
therefore have

s =
(Φ1(y

τ1)− Φ2(y
τ2))2

(yτ1 − yτ2)2
.

Now note that every a ∈ K satisfies Φi(a)
σ3 = Φi(a

τi), so that[
Φ1(y

τ1)− Φ2(y
τ2)

]σ3 = Φ1(y)− Φ2(y),

and that σ3 = τ1|K3 , so that[
(yτ1 − yτ2)2

]σ3 =
[
(yτ1 − yτ2)2

]τ1 = (y − yτ3)2.

Applying σ3 to the above expression for s therefore proves the claim. □

Proposition 2.3.2. The elements s and t satisfy

s+ sσ3 = 1, ssσ3 + t2 = 0.

Proof. Abbreviate α = Φ1(y)− Φ2(y) and, recalling (2.2.4),

β = Φ1(y)− Φ2(y
τ3) = Φ2(y)− Φ1(y

τ3).

The relation (2.2.5) shows that

αβ = Φ1(y)β − Φ2(y)β = βΦ2(y)− βΦ1(y) = −βα,

from which it follows that α2 + β2 = (α+ β)2 = (y − yτ3)2. Combining this
with Lemma 2.3.1 yields

s+ sσ3 =
β2

(y − yτ3)2
+

α2

(y − yτ3)2
= 1.

In particular s and sσ3 commute. Using the formula for t found in (2.2.11),
we obtain

sσ3s+ t2 =
α2β2

(y − yτ3)4
+

αβαβ

(y − yτ3)4
=
α(αβ + βα)β

(y − yτ3)4
= 0,

completing the proof. □

Proposition 2.3.3. The invariant polynomial Inv = Inv(Φ1,Φ2) satisfies the
functional equation

(−1)h · Inv(1− T ) = Invσ3(T ),

where Invσ3 is obtained from Inv by applying the nontrivial automorphism
σ3 ∈ Aut(K3/F ) coefficient-by-coefficient.
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Proof. In general, if a, b ∈ C satisfy a + b = 1, then their reduced charac-
teristic polynomials Pa, Pb ∈ K3[T ] satisfy Pa(1−T ) = Pb(T ). Indeed, after
extending scalars one may assume that C ∼=M2h(K3), and that a and b are
upper triangular matrices. In this case the claim is obvious.

Applying this to the relation s+ sσ3 = 1 of Proposition 2.3.2 shows that

Ps(1− T ) = P σ3s (T ),

and taking the unique monic square root of each side proves the claim. □

2.4. The elements w and z. The elements s and t defined by (2.2.6) and
(2.2.7), being independent of the choice of y ∈ K used in their construction,
are canonically attached to the pair of embeddings (2.2.1). However, they
have the disadvantage that they live in the base change C = B⊗F K3 rather
than in B itself.

We now construct substitutes for s and t that live in B, but which depend
on noncanonical choices. Namely, fix F -algebra generators x1 ∈ K1 and
x2 ∈ K2, and define

w = Φ1(x1)Φ2(x2) + Φ2(x
σ2
2 )Φ1(x

σ1
1 ) ∈ B(2.4.1)

z = Φ1(x1)Φ2(x2)− Φ2(x2)Φ1(x1) ∈ B.(2.4.2)

If we view both x1 = x1 ⊗ 1 and x2 = 1⊗ x2 as elements of K = K1 ⊗K2,
then

x1x
σ2
2 + x2x

σ1
1 ∈ K3 and (x1 − xσ11 )(x2 − xσ22 ) ∈ K×

3 ,

and so both may be viewed as central elements in C. Similarly, we view
w, z ∈ C.

Proposition 2.4.1. The elements (2.2.6) and (2.2.7) satisfy

s =
−(x1x

σ2
2 + x2x

σ1
1 ) +w

(x1 − xσ11 )(x2 − xσ22 )
and t =

z

(x1 − xσ11 )(x2 − xσ22 )
.

Proof. Take y1 = x1 and y2 = x2 in (2.2.9) and (2.2.10). □

Proposition 2.4.2. The elements w and z commute, and satisfy

w · Φi(x) = Φi(x) ·w, z · Φi(x) = Φi(x
σi) · z

for all x ∈ Ki. Moreover, they are related by

z2 = w2 − Tr(x1)Tr(x2)w +Tr(x21)Nm(x2) + Tr(x22)Nm(x1),

where Tr and Nm denote the trace and norm from K1 or K2 to F , as ap-
propriate.

Proof. Everything except the final claim follows from Proposition 2.4.1 and
the analogous properties of s and t proved in Proposition 2.2.2. For the final
claim define elements u, v ∈ K3 by

u = x1x
σ2
2 + x2x

σ1
1 and v = (x1 − xσ11 )(x2 − xσ22 ),
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so that vs = w − u and z2 = v2t2 by Proposition 2.4.1. Using the relation
ssσ3 = −t2 from Proposition 2.3.2 and vσ3 = vτ1 = −v, we compute

z2 = v2t2 = (vs)(vs)σ3 = (w − u)(w − uσ3).

To obtain the desired formula for z2, expand the right hand side and use
the relation uσ3 = uτ1 = xσ11 x

σ2
2 + x2x1. □

2.5. Regular semisimple pairs. We have already noted in Remark 2.2.5
that the invariant polynomial of the pair (Φ1,Φ2) fixed in §2.2 depends only
on its B×-conjugacy class. In this subsection we will show that for a pair
that is regular semisimple, in the following sense, the invariant polynomial
of Definition 2.2.4 determines the conjugacy class.

Definition 2.5.1. The pair (Φ1,Φ2) is regular semisimple if s ∈ C× and
K3[s] ⊂ C is an étale K3-subalgebra of dimension h.

Remark 2.5.2. In Proposition A.2.2 we will show that Definition 2.5.1 is
compatible with the usual notion of regular semisimple from geometric in-
variant theory.

Remark 2.5.3. Using the relation t2 = −ssσ3 of Proposition 2.3.2, we see
that s ∈ C× if and only if t ∈ C×.

The following proposition shows that one can characterize regular semisim-
ple pairs using the invariant polynomial.

Proposition 2.5.4. The pair (Φ1,Φ2) is regular semisimple if and only if
for every F -algebra map ρ : K3 → F alg the image

Invρ(Φ1,Φ2)
(T ) ∈ F alg[T ]

of the invariant polynomial has h distinct nonzero roots.

Proof. Recall from Proposition 2.2.3 that s ∈ C is a zero of the invariant
polynomial Qs = Inv(Φ1,Φ2), and so there is a surjection

(2.5.1) K3[T ]/(Qs)
T 7→s−−−→ K3[s].

If (Φ1,Φ2) is regular semisimple then the surjection (2.5.1) is an isomor-
phism for dimension reasons, and so the domain is an étale F -algebra in
which T is a unit. It follows that Qρs has h distinct nonzero roots for any
ρ : K3 → F alg.

For the converse, suppose that Qρs has h distinct nonzero roots for any ρ.
Let Ms ∈ K3[T ] be the minimal polynomial of s ∈ C, so that Ms | Qs, and
(2.5.1) factors as

K3[T ]/(Qs) → K3[T ]/(Ms)
T 7→s−−−→ K3[s]

with the second arrow an isomorphism. By elementary linear algebra, the
roots ofMρ

s in F alg are the same as the roots of the characteristic polynomial
P ρs = Qρs ·Qρs of s ∈ Cρ ∼=M2h(F

alg), which are same as the roots of Qρs . It
now follows from our assumptions on Qs that Ms = Qs, and so (2.5.1) is an
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isomorphism whose domain is an étale F -algebra of dimension h in which T
is a unit. Thus (Φ1,Φ2) is regular semisimple. □

The F -subalgebra generated by Φ1(K1) ∪ Φ2(K2) ⊂ B is denoted

F (Φ1,Φ2) ⊂ B.

Recall the elements w, z ∈ F (Φ1,Φ2) of (2.4.1) and (2.4.2), and set

L = F [w] ⊂ B.

Although the element w depends on the choices of x1 ∈ K1 and x2 ∈ K2,
the subalgebra L does not. For example, using Proposition 2.4.1 we see that

(2.5.2) L⊗F K3 = K3[w] = K3[s] ⊂ C

does not depend on the choices of x1 and x2 (because s does not), and L is
characterized as the elements in (2.5.2) fixed by the F -linear automorphism
σ3 = id⊗ σ3 of C = B ⊗F K3.

Proposition 2.5.5. If the pair (Φ1,Φ2) is regular semisimple, the following
properties hold.

(1) The element z ∈ B is a unit.
(2) The F -algebra L is étale of dimension h.
(3) The centralizer of F (Φ1,Φ2) ⊂ B is L.
(4) The centralizer of L ⊂ B is F (Φ1,Φ2).
(5) The ring F (Φ1,Φ2) is a quaternion algebra over its center L. Writ-

ing L ∼=
∏
Li as a product of fields, this means that each F (Φ1,Φ2)⊗L

Li is a central simple Li-algebra of dimension 4.
(6) The ring B is free as an F (Φ1,Φ2)-module.

Proof. For property (1), note that t ∈ C× by Remark 2.5.3, and so z ∈ B×

by Proposition 2.4.1. For property (2), the K3-algebra (2.5.2) is étale of
dimension h by hypothesis, and so L is étale over F of the same dimension.
The remaining properties rely on the following lemma.

Lemma 2.5.6. There is a separable field extension F ′/F such that, abbre-
viating

B′ = B ⊗F F
′, L′ = L⊗F F

′,

there exists an isomorphism B′ ∼=M2h(F
′) identifying

L′ =


x1I2 . . .

xhI2

 : x1, . . . , xh ∈ F ′

 .

Here I2 ∈M2(F
′) is the 2× 2 identity matrix.

Proof. Let Pw ∈ F [T ] be reduced characteristic polynomial of w ∈ B, and
let Qw ∈ F [T ] be its minimal polynomial. We know from Proposition 2.4.1
that

w = c+ ds ∈ C



INTERSECTIONS IN LUBIN-TATE SPACE 15

for scalars c ∈ K3 and d ∈ K×
3 . This implies that Pw(c + dT ) ∈ K3[T ]

is the reduced characteristic polynomial of s, while Qw(c + dT ) ∈ K3[T ] is
its minimal polynomial. These latter polynomials are precisely the Ps and
Qs of Proposition 2.2.3 (the first by definition of Ps, and the second by the
proof of Proposition 2.5.4). As Ps = Q2

s, we deduce that Pw = Q2
w.

Choose any F ′/F large enough that B′ ∼=M2h(F
′). Let V be the unique

simple leftB′-module; in other words, the standard representation ofM2h(F
′).

It follows from Pw = Q2
w that the list of invariant factors of the matrix

w ∈ B′ can only be Qw | Qw. Thus

(2.5.3) V ∼= L′ ⊕ L′

as a left modules over the subring L′ = F ′[w] ⊂ B′.
Using (2), we may enlarge F ′ to assume that L′ ∼= F ′ × · · · × F ′ (h

factors). If e1, . . . , eh ∈ L′ are the orthogonal idempotents inducing this
decomposition, it follows from (2.5.3) that

V = e1V ⊕ · · · ⊕ ehV

with each summand a 2-dimensional F ′-subspace on which L′ acts through
scalars. Choose a basis for each summand, and use this to identify B′ ∼=
EndF ′(V ) ∼=M2d(F

′). This isomorphism has the desired properties. □

Now we complete the proof of Proposition 2.5.5. Keep the notation of the
lemma, and abbreviate

F ′(Φ1,Φ2) = F (Φ1,Φ2)⊗F F
′.

By Proposition 2.4.2, w commutes with the image of Φi : Ki → B, and
hence F (Φ1,Φ2) is contained in the centralizer of L. Hence F ′(Φ1,Φ2) is
contained in the centralizer of L′, or, in other words,

(2.5.4) F ′(Φ1,Φ2) ⊂M2(F
′)× · · · ×M2(F

′)︸ ︷︷ ︸
h times

,

embedded block diagonally into M2h(F
′).

The F ′-subalgebra on the left hand side of (2.5.4) contains

L′ ∼= F ′ × · · · × F ′︸ ︷︷ ︸
h times

,

as well as Φ1(K1), and a unit z ∈ F ′(Φ1,Φ2) such that zΦ1(x) = Φ1(x
σ1)z

for all x ∈ K1 (Proposition 2.4.2). From this, it is not hard to see first that
equality holds in (2.5.4), and then that the F ′-algebras

L′ ⊂ F ′(Φ1,Φ2) ⊂ B′

satisfy the obvious analogues of properties (3)-(6). The F -algebras

L ⊂ F (Φ1,Φ2) ⊂ B

therefore satisfy those properties, completing the proof. □
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We next show that when (Φ1,Φ2) is regular semisimple, the isomorphism
class of F (Φ1,Φ2) as an F -algebra is completely determined by the invariant
polynomial.

Proposition 2.5.7. Assume that (Φ1,Φ2) is regular semisimple. If B′ is a
central simple F -algebra of the same dimension as B, and if we are given
F -algebra embeddings

Φ′
1 : K1 → B′, Φ′

2 : K2 → B′

such that Inv(Φ1,Φ2) = Inv(Φ′
1,Φ

′
2)
, then there is an isomorphism of F -algebras

F (Φ1,Φ2) ∼= F (Φ′
1,Φ

′
2)

identifying Φ1 = Φ′
1 and Φ2 = Φ′

2.

Proof. The validity of the proposition does not depend on the choices of
x1 ∈ K1 and x2 ∈ K2 made in §2.4. If char(F ) ̸= 2 we choose them so that

xσ11 = −x1 and xσ22 = −x2.
If char(F ) = 2, we use the surjectivity of Tr : Ki → F to choose them so
that

xσ11 = x1 + 1 and xσ22 = x2 + 1.

In either case, for i ∈ {1, 2} we define ai, bi ∈ F by

xσii = aixi + bi ∈ Ki.

Using only the data Inv(Φ1,Φ2) and the choices of x1 and x2, we will con-
struct an abstract F -algebra F(φ1, φ2) and embeddings φi : Ki → F(φ1, φ2)
in such a way that

F(φ1, φ2) ∼= F (Φ1,Φ2)

and φi is identified with Φi. Once this is done, the claim follows immediately:
by symmetry (note that (Φ′

1,Φ
′
2) is also regular semisimple, by Proposition

2.5.4 and the assumption on the matching of invariant polynomials), there
is an analogous isomorphism F(φ1, φ2) ∼= F (Φ′

1,Φ
′
2).

Let w, z ∈ B be the elements (2.4.1) and (2.4.2). We saw in the proof of
Lemma 2.5.6 that the minimal polynomial Qw ∈ F [T ] of w is related to the
invariant polynomial Inv(Φ1,Φ2) ∈ K3[T ] by a change of variables

Inv(Φ1,Φ2)(T ) = Qw(c+ dT ),

where the scalars c ∈ K3 and d ∈ K×
3 depend on the choices of x1 ∈ K1 and

x2 ∈ K2, but not on the pair (Φ1,Φ2). Thus the F -algebra

L = F [W ]/(Qw(W ))

of dimension h, where F [W ] is a polynomial ring in one variable, depends
only on Inv(Φ1,Φ2) and the choices of x1 and x2. There is a surjective mor-
phism L → L characterized by W 7→ w.

Now let

F(φ1, φ2) = L[Z,X1, X2]
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be the free L-algebra generated by three noncommuting variables, modulo
the two-sided ideal generated by the relations

• X2
i − Tr(xi)Xi +Nm(xi) = 0,

• Z2 =W 2 − Tr(x1)Tr(x2)W +Tr(x21)Nm(x2) + Tr(x22)Nm(x1),
• ZXi = (aiXi + bi)Z,
• Z =W − [a2X2 + b2][a1X1 + b1]−X2X1.

The first of these relations allows us to define

φi : Ki → F(φ1, φ2)

by φi(xi) = Xi. Moreover, there is a unique surjection

(2.5.5) F(φ1, φ2) → F (Φ1,Φ2),

satisfying W 7→ w, Z 7→ z, and Xi 7→ Φi(xi). Indeed, one only needs to
check that w, z, and Φi(xi) satisfy the same four relations as W , Z, and
Xi. The first relation is clear, the second and third are found in Proposition
2.4.2, and the fourth follows directly from (2.4.1) and (2.4.2), which imply

w − z = Φ2(x
σ2
2 )Φ1(x

σ1
1 ) + Φ2(x2)Φ1(x1)

= [a2Φ2(x2) + b2][a1Φ1(x1) + b1] + Φ2(x2)Φ1(x1).

We next claim that F(φ1, φ2) is generated as an L-algebra by Z and X1

alone. To see this, rewrite

Z =W − [a2X2 + b2][a1X1 + b1]−X2X1

as

(2.5.6) W − Z = X2 · (a1a2X1 +X1 + b1a2) + (a1b2X1 + b1b2),

and recall our particular choices of x1 and x2. If char(F ) ̸= 2 then

a1a2x1 + x1 + b1a2 = 2x1 ∈ K×
1 ,

while if char(F ) = 2 then

a1a2x1 + x1 + b1a2 = 1 ∈ K×
1 .

In either case, applying φ1 shows that a1a2X1+X1+b1a2 is a unit in F [X1],
allowing us to solve (2.5.6) for X2 in terms of W , Z, and X1.

Finally, from the relations satisfied by X1 and Z it is clear that

L[Z,X1] = L+ LX1 + LZ + LX1Z

as L-modules, and so the F -dimension of L[Z,X1] = F(φ1, φ2) is at most
4h. As the F -algebra F (Φ1,Φ2) has dimension 4h by Proposition 2.5.5, the
surjection (2.5.5) is an isomorphism. □

Corollary 2.5.8. Suppose we are given F -algebra embeddings

Φ1,Φ
′
1 : K1 → B, Φ2,Φ

′
2 : K2 → B

such that (Φ1,Φ2) and (Φ′
1,Φ

′
2) are both regular semisimple. Then (Φ1,Φ2)

and (Φ′
1,Φ

′
2) have the same invariant polynomial if and only if they lie in the
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same B×-conjugacy class. In other words, if and only if there is a b ∈ B×

such that

bΦ1b
−1 = Φ′

1 and bΦ2b
−1 = Φ′

2.

Proof. One direction is Remark 2.2.5, so assume that (Φ1,Φ2) and (Φ′
1,Φ

′
2)

have the same invariant polynomial. By Proposition 2.5.7, there is an iso-
morphism

F (Φ1,Φ2) ∼= F (Φ′
1,Φ

′
2)

identifying Φ1 = Φ′
1 and Φ2 = Φ′

2. By Theorem 2.1.1 (whose hypothe-
ses are satisfied by Proposition 2.5.5), the inclusions F (Φ1,Φ2) → B and
F (Φ′

1,Φ
′
2) → B are B×-conjugate, and the proposition follows. □

Remark 2.5.9. If h = 1, so that B is a quaternion algebra over F , the
invariant polynomial has the form

Inv(Φ1,Φ2)(T ) = T − ξ

for some ξ ∈ K3 satisfying (by Proposition 2.3.3) TrK3/F (ξ) = 1. The proof

that ξ determines the B×-conjugacy class of (Φ1,Φ2) already appears in
[HS19], although the construction of ξ described there is quite different.

3. The biquadratic fundamental lemma

From this point on we assume that F is a nonarchimedean local field,
and fix quadratic étale F -algebras K1 and K2. In this section we define two
kinds of orbital integrals, and formulate a conjectural fundamental lemma
relating them.

3.1. Orbital integrals for (Φ1,Φ2). Given F -algebra embeddings

Φ1 : K1 →M2h(F ), Φ2 : K2 →M2h(F ),

let Hi ⊂ GL2h(F ) be the centralizer of Φi(Ki)
×. If we use Φi to view F 2h

as a Ki-module, the natural action of Hi on F
2h determines isomorphisms

H1
∼= GLh(K1), H2

∼= GLh(K2),

well-defined up to conjugacy.
Assume that (Φ1,Φ2) is regular semisimple, in the sense of Definition

2.5.1. This implies, by Proposition 2.5.5, that F (Φ1,Φ2) ⊂ M2h(F ) has
centralizer an étale F -algebra L ⊂M2h(F ) of dimension h. In particular

(3.1.1) L× = H1 ∩H2

is a torus.

Definition 3.1.1. Given a compactly supported f as in (1.4.3), define the
orbital integral

O(Φ1,Φ2)(f) =

∫
H1∩H2\H1×H2

f(g−1
1 h−1

1 h2g2) dh1 dh2,



INTERSECTIONS IN LUBIN-TATE SPACE 19

where g1, g2 ∈ GL2h(F ) are chosen to satisfy the integrality condition

Φi(OKi) ⊂ giM2h(OF )g
−1
i ,

and H1 ∩H2 ⊂ H1 ×H2 is embedded diagonally.

Remark 3.1.2. The Φi(OKi)-stable lattices Λ ⊂ F 2h form a single Hi-orbit,
and the Haar measure on Hi is normalized by

vol(StabHi(Λ)) = 1.

The Haar measure on H1 ∩H2 is normalized, using (3.1.1), by vol(O×
L ) = 1.

Remark 3.1.3. The orbital integral is independent of the choice of g1 and g2.
Moreover, if we set g = g−1

1 g2 and H ′
i = g−1

i Higi, the change of variables

hi 7→ gihig
−1
i puts the orbital integral into the more familiar form

O(Φ1,Φ2)(f) =

∫
{(h1,h2) : gh2=h1g}\H′

1×H′
2

f(h−1
1 gh2) dh1 dh2.

3.2. Orbital integrals for (Φ0,Φ3). As in §1.4, we may set

K0 = F × F

and repeat the construction of (1.2.1) with the pair (K1,K2) replaced by
(K0,K3). This gives another diagram of F -algebras (1.4.1). Repeating the
constructions of §2.2, we associate to any pair of F -algebra embeddings

Φ0 : K0 →M2h(F ), Φ3 : K3 →M2h(F )

a degree h monic polynomial Inv(Φ0,Φ3) ∈ K3[T ] satisfying the functional
equation

(−1)h · Inv(Φ0,Φ3)(1− T ) = Invσ3(Φ0,Φ3)
(T ).

Denote by Hi ⊂ GL2h(F ) the centralizer of Φi(Ki)
×. If we use Φi to view

F 2h as a Ki-module, then choices of Ki-bases determine isomorphisms

(3.2.1) H0
∼= GLh(K0), H3

∼= GLh(K3).

Composing the absolute value | · | : F× → R× with the character

H0
∼= GLh(K0) = GLh(F )×GLh(F )

(a,b)7→det(a)
det(b)−−−−−−−−→ F×

determines a character, again denoted

(3.2.2) | · | : H0 → R×.

We denote by η : K×
3 → {±1} the character associated to the étale qua-

dratic extension K/K3 by class field theory (if K3
∼= F × F , then class

field theory associates to K/K3 a quadratic character on each copy of F×,
and η is defined as their product), and note that η|F× is the trivial char-
acter. Composing η with the determinant H3

∼= GLh(K3) → K×
3 yields a

character, again denoted

(3.2.3) η : H3 → {±1}.
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Remark 3.2.1. The character (3.2.3) admits two natural extensions to GL2h(F ),
given by the compositions

GL2h(F )
det−−→ F× ηKi/F−−−−→ {±1}

for i ∈ {1, 2}, where ηKi/F is the quadratic character associated to Ki/F .

Remark 3.2.2. In contrast, the character (3.2.2) does not extend to GL2h(F ).
Indeed, if z ∈ GL2h(F ) is any element such that z · Φ0(x) = Φ0(x

σ0) · z for
all x ∈ K0, then conjugation by z preserves H0, but

|zh0z−1| = |h0|−1.

For the remainder of this subsection we assume that (Φ0,Φ3) is regular
semisimple. By Proposition 2.5.5, the subalgebra F (Φ0,Φ3) ⊂ M2h(F ) has
centralizer an étale F -algebra L of dimension h, and hence

(3.2.4) L× = H0 ∩H3

is a torus.

Lemma 3.2.3. The characters (3.2.2) and (3.2.3) are trivial on (3.2.4).

Proof. We used choices of isomorphisms (3.2.1) to define the characters in
question, but it is easy to see that the resulting characters do not depend
on these choices. We are therefore free to make them in a particular way.

Using the embedding Φi : Ki → M2h(F ), we may view the standard
representation F 2h as a free Ki-module of rank h. We claim that there is
an F -subspace V ⊂ F 2h such that the natural maps

K0 ⊗F V → F 2h and K3 ⊗F V → F 2h

are isomorphisms. Indeed, using Proposition 2.5.5 it is not hard to see that
F 2h is free of rank one over both K0 ⊗F L and K3 ⊗F L. There is therefore
a Zariski dense set of elements e ∈ F 2h such that

(K0 ⊗F L)e = F 2h = (K3 ⊗F L)e,

and for any such e the subspace V = Le has the required properties.
Let f1, . . . , fh be an F -basis for the subspace V ⊂ F 2h. These same

vectors form a basis for both the K0-module and K3-module structures on
F 2h. If we use this basis to define the isomorphisms (3.2.1), then both
isomorphisms identify L× = H0∩H3 with a subgroup of GLh(F ). It is clear
from their constructions that (3.2.2) and (3.2.3) have trivial restriction to
this subgroup. □

The preceding lemma allows us to make the following definition.

Definition 3.2.4. For every compactly supported function (1.4.3), define
the orbital integral

O(Φ0,Φ3)(f ; s, η) =

∫
H0∩H3\H0×H3

f(g−1
0 h−1

0 h3g3) · |h0|s · η(h3) dh0 dh3,
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where g0, g3 ∈ GL2h(F ) are chosen to satisfy the integrality conditions

(3.2.5) Φi(OKi) ⊂ giM2h(OF )g
−1
i ,

and H0 ∩H3 ⊂ H0 ×H3 is embedded diagonally.

Remark 3.2.5. The Haar measures on H0, H3, and H0 ∩H3 are normalized
as in Remark 3.1.2.

Remark 3.2.6. The orbital integral depends on the choices of g0 and g3
satisfying (3.2.5), but not in a significant way. Different choices have the
form g′i = zigiki with zi ∈ Hi and ki ∈ GL2h(OF ), and such a change
multiplies the orbital integral by η(z3)|z0|−s. In particular, the value of the
orbital integral at s = 0 is well-defined up to ±1.

Proposition 3.2.7. If K/K3 is ramified, then O(Φ0,Φ3)(f ; s, η) = 0 for every
f as in (1.4.3).

Proof. For any u ∈ H3 ∩ g3GL2h(OF )g
−1
3 , making the change of variables

h3 7→ h3u in Definition 3.2.4 shows that

O(Φ0,Φ3)(f ; s, η) = η(u) ·O(Φ0,Φ3)(f ; s, η).

Recalling that g3 was chosen so that

Φ3(OK3) ⊂ g3M2h(OF )g
−1
3 ,

we may use Φ3 to view g3O2h
F as a free OK3-module of rank h. Our assump-

tion on η guarantees the surjectivity of

H3 ∩ g3GL2h(OF )g
−1
3 = AutOK3

(g3O2h
F )

det−−→ O×
K3

η−→ {±1},

and so we may choose u as above with η(u) = −1. □

Still assuming that (Φ0,Φ3) is regular semisimple, we show that the orbital
integral of Definition 3.2.4 satisfies a functional equation in s 7→ −s. This
will be needed in the proof of Proposition 3.3.3 below.

Let g0, g3 ∈ GL2h(F ) be as in (3.2.5). We can use both the embedding
Φi : Ki → M2h(F ) and its Galois conjugate Φi ◦ σi to make the OF -lattice
giO2h

F into an OKi-module. These two OKi-modules are isomorphic, and it

follows that there is a ui ∈ giGL2h(OF )g
−1
i such that

uiΦi(x)u
−1
i = Φi(x

σi)

for all x ∈ Ki.
As in (2.4.2), fix an F -algebra generators x0 ∈ K0 and x3 ∈ K3, and

define

(3.2.6) z = Φ0(x0)Φ3(x3)− Φ3(x3)Φ0(x0) ∈M2h(F ).

Recall from Proposition 2.3.2 that zΦi(x) = Φi(x
σi)z for all x ∈ Ki, so that

zui commutes with the image of Φi. From Proposition 2.5.5 we know that
det(z) ̸= 0, and so zui ∈ Hi.
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Proposition 3.2.8. For any Hecke function f as in (1.4.3), we have the
functional equation

O(Φ0,Φ3)(f ; s, η) = |zu0|s · η(zu3) ·O(Φ0,Φ3)(f ;−s, η).

Proof. If we define another Hecke function f∗ by

f∗(g) = f(g−1
0 u−1

0 g0 · g · g−1
3 u3g3),

then

O(Φ0,Φ3)(f ; s, η)

=

∫
H0∩H3\H0×H3

f(g−1
0 h−1

0 h3g3) · |h0|s · η(h3) dh0 dh3

=

∫
H0∩H3\H0×H3

f∗(g−1
0 u0h

−1
0 h3u

−1
3 g3) · |h0|s · η(h3) dh0 dh3

= |zu0|sη(zu3)
∫
H0∩H3\H0×H3

f∗(g−1
0 z−1h−1

0 h3zg3) · |h0|s · η(h3) dh0 dh3,

where the final equality is obtained by the substitution hi 7→ hizui. Making
the further substitution hi 7→ zhiz

−1, and using Remarks 3.2.1 and 3.2.2,
yields

O(Φ0,Φ3)(f ; s, η) = |zu0|s · η(zu3) ·O(Φ0,Φ3)(f
∗;−s, η).

Now note that g−1
0 u−1

0 g0 and g−1
3 u−1

3 g3 lie in GL2h(OF ), and so f∗ = f . □

3.3. Matching pairs. Suppose we are given F -algebra embeddings

Φ0 : K0 →M2h(F ), Φ1 : K1 → B

Φ3 : K3 →M2h(F ), Φ2 : K2 → B,

where B is a central simple F -algebra of dimension 4h2. Assume that both
(Φ0,Φ3) and (Φ1,Φ2) are regular semisimple.

Definition 3.3.1. The pairs (Φ0,Φ3) and (Φ1,Φ2) match if

Inv(Φ0,Φ3) = Inv(Φ1,Φ2).

Denote by w12, z12 ∈ B the elements (2.4.1) and (2.4.2) corresponding to
the pair (Φ1,Φ2), to distinguish them from the similarly defined elements
w03, z03 ∈ M2h(F ) corresponding to (Φ0,Φ3). These depend on choices of
F -algebra generators xi ∈ Ki for i ∈ {0, 1, 2, 3}, which we now choose in a
compatible way. If char(F ) ̸= 2, first choose x1 and x2 in such a way that
xσii = −xi and then set

x0 = (1,−1) ∈ K0, x3 = x1 ⊗ x2 ∈ K3 ⊂ K1 ⊗F K2.

If char(F ) = 2, first choose x1 and x2 so that xσii = xi + 1 and then set

x0 = (0, 1) ∈ K0, x3 = x1 ⊗ 1 + 1⊗ x2 ∈ K3 ⊂ K1 ⊗F K2.

We now have F -subalgebras

F [w12, z12] ⊂ B, F [w03, z03] ⊂M2h(F ).
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Our particular choices of generators are justified by the following result.

Lemma 3.3.2. If (Φ0,Φ3) and (Φ1,Φ2) match, there is an isomorphism of
F -algebras

F [w12, z12] ∼= F [w03, z03]

sending w12 7→ w03 and z12 7→ z03.

Proof. The proof of Lemma 2.5.6 explains how to reconstruct the minimal
polynomials of w12 ∈ B and w03 ∈M2h(F ) from the invariant polynomials
Inv(Φ1,Φ2) and Inv(Φ0,Φ3), using the scalars c12, d12, c03, d03 ∈ K3 character-
ized by the equalities

w12 = c12 + d12s12, w03 = c03 + d03s03

of Proposition 2.4.1. We have chosen (x1, x2) and (x0, x3) in such a way
that c12 = c03 and d12 = d03, and so the matching of invariant polynomials
implies the matching of minimal polynomials. Therefore there exists an
isomorphism of (étale, by Proposition 2.5.5) F -algebras

(3.3.1) F [w12] ∼= F [w03]

sending w12 7→ w03. Using Proposition 2.4.2 one sees that z12 and z03
have the same (quadratic) minimal polynomial over (3.3.1), and the lemma
follows. □

Proposition 3.3.3. Assume that B is a division algebra. If (Φ0,Φ3) and
(Φ1,Φ2) match, then

O(Φ0,Φ3)(f ; 0, η) = 0

for all f as in (1.4.3).

Proof. Identifying K1 and K2 with their images under Φi : Ki → B, and
using Propositions 2.3.2 and 2.5.5, we find inside of B the diagram of field
extensions

K1[w12]

2

F [w12, z12]

2

K2[w12]

2

F [w12]

K1

h

2

K2

h

2

F

h

of the indicated degrees. Let σi be the nontrivial automorphism of Ki[w12]
fixing F [w12], and recall from Proposition 2.4.2 that

z212 ∈ F [w12]

and z12a = aσiz12 for all a ∈ Ki[w12].
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If z212 were a norm from Ki[w12], say z212 = aaσi , then

(z12 − a)(z12 + aσi) = 0

would contradict B being a division algebra. This gives the final equality in

ηKi/F (−det(z03)) = ηKi/F (−NmF [w03,z03]/F (z03))

= ηKi/F (−NmF [w12,z12]/F (z12))

= ηKi/F (NmF [w12]/F (z
2
12))

= ηKi[w12]/F [w12](z
2
12)

= −1,

where η• denotes the character associated to a quadratic extension by local
class field theory, and we have used Lemma 3.3.2.

To complete the proof, we may assume (after Proposition 3.2.7) that
K/K3 is unramified. This implies that at least one of K1 or K2 is unramified
over F . Without loss of generality, let us suppose K1 is unramified.

If u3 ∈ GL2h(F ) is as in Proposition 3.2.8, so that det(u3) ∈ O×
F , then

Remark 3.2.1 provides the first equality in

η(z03u3) = ηK1/F (det(z03u3)) = ηK1/F (det(z03)) = −1.

The claim now follows from the functional equation of Proposition 3.2.8. □

3.4. The central value conjecture. Assume that K/K3 is unramified,
and suppose we are given F -algebra embeddings

Φ0 : K0 →M2h(F ), Φ1 : K1 →M2h(F ),

Φ3 : K3 →M2h(F ), Φ2 : K2 →M2h(F ).

Conjecture 3.4.1 (Biquadratic fundamental lemma). If the pairs (Φ0,Φ3)
and (Φ1,Φ2) are regular semisimple and matching (Definitions 2.5.1 and
3.3.1), then for any f as in (1.4.3) we have

±O(Φ0,Φ3)(f ; 0, η) = O(Φ1,Φ2)(f).

Remark 3.4.2. When K1
∼= K2, Proposition A.3.3 implies that this conjec-

ture is equivalent to the Guo-Jacquet fundamental lemma, which was proved
by Guo [Guo96] when f = 1 is the characteristic function of GL2(OF ).

There is one case in which the biquadratic fundamental lemma is trivial.

Proposition 3.4.3. If either one of K1 or K2 is isomorphic to F ×F , then
Conjecture 3.4.1 is true.

Proof. Assume for simplicity that K1
∼= F ×F , the other case being entirely

similar. In this case there are isomorphisms

K1
∼= K0, K2

∼= K3, K ∼= K2 ×K2
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(which we now fix), and the character η : K×
3 → {±1} is trivial. Thus we

need only prove the equality∫
H0∩H3\H0×H3

f(g−1
0 h−1

0 h3g3) dh0 dh3

=

∫
H1∩H2\H1×H2

f(g−1
1 h−1

1 h2g2) dh1 dh2

for any Hecke function (1.4.3).
Recalling Remark 3.2.6, both integrals are independent of the choices of

g0, g1, g2, g3 ∈ GL2h(F ) satisfying

Φi(OKi) ⊂ giM2h(OF )g
−1
i .

More to the point, the integral on the left is unchanged if we replace the
pair (Φ0,Φ3) by a pair that is GL2h(F )-conjugate to it. Corollary 2.5.8
implies that (Φ0,Φ3) and (Φ1,Φ2) are conjugate, and the equality of integrals
follows. □

4. Intersections in Lubin-Tate space

We continue to let F be a nonarchimedean local field, and now assume
that K1 and K2 are separable quadratic field extensions of F .

In the Lubin-Tate deformation space of a formal OF -module, one can
construct cycles of formal OK1-modules and OK2-modules. We prove a
formula expressing the intersection multiplicities of such cycles in terms of
the invariant polynomials of §2.2; when K1 = K2, this recovers the main
result of [Li21]. We then state a conjectural arithmetic fundamental lemma,
in the spirit of [Zh12], relating the intersection multiplicity to the central
derivative of an orbital integral.

4.1. Initial data. Let F̆ be the completion of the maximal unramified ex-
tension of F , and let k be the residue field of OF̆ . Choose an extension of
the reduction OF → k to a ring homomorphism

(4.1.1) OK → k.

In particular, k is both an OK1-algebra and an OK2-algebra.
Fix a pair (G,M) in which

• G is a formal OF -module over k of dimension 1 and height 2h,
• M is a free OF -module of rank 2h.

Fix also pairs (H1,N1) and (H2,N2) in which

• Hi is a formal OKi-module over k of dimension 1 and height h,
• Ni is a free OKi-module of rank h.

Remark 4.1.1. A one dimensional formal OF -module G over an OF -algebra
A is always assumed to be strict, in the sense that the induced action OF →
EndA(Lie(G)) ∼= A agrees with the structure map. A similar assumption is
made for formal OKi-modules, which is why we have fixed an OK-algebra
structure (4.1.1) on k.
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There are OF -linear isomorphisms G ∼= Hi and M ∼= Ni. Rather than
fixing such isomorphisms, we work in slightly more generality and fix pairs
(ϕ1, ψ1) and (ϕ2, ψ2) of invertible elements

ϕ1 ∈ HomOF
(H1,G)[1/π], ψ1 ∈ HomOF

(N1,M)[1/π],(4.1.2)

ϕ2 ∈ HomOF
(H2,G)[1/π], ψ2 ∈ HomOF

(N2,M)[1/π].

Denote by ht(ϕi) the height of ϕi as a quasi-isogeny of formal OF -modules,
and define

ht(ψi) = ordF (det(ηi ◦ ψi))
for any OF -linear isomorphism ηi : M ∼= Ni.

Remark 4.1.2. Although for now we work in the generality described above,
eventually we will assume that

ϕi : Hi
∼= G and ψi : Ni

∼= M

are OF -linear isomorphisms, so that ht(ϕi) = 0 = ht(ψi). The reader will
lose little by restricting to this special case throughout.

Define central simple F -algebras

B(G) = EndOF
(G)[1/π], B(M) = EndOF

(M)[1/π]

of dimension 4h2. The first is a division algebra. The second is isomorphic
to M2h(F ), but we do not fix such an isomorphism.

The data (4.1.2), together with the natural actions of OKi on Hi and Ni,
determine F -algebra embeddings

Φ1 : K1 → B(G), Ψ1 : K1 → B(M)(4.1.3)

Φ2 : K2 → B(G), Ψ2 : K2 → B(M).

The constructions of (2.2.12) then provide us with monic degree h polyno-
mials

Inv(Φ1,Φ2) ∈ K3[t], Inv(Ψ1,Ψ2) ∈ K3[t].

We denote by

(4.1.4) R(Φ1,Φ2,Ψ1,Ψ2) = Res
(
Inv(Φ1,Φ2), Inv(Ψ1,Ψ2)

)
∈ K3

their resultant, and, when no confusion can arise, abbreviate this to

R = R(Φ1,Φ2,Ψ1,Ψ2).

It follows from the functional equations (Proposition 2.3.3) satisfied by both
invariant polynomials that Rσ3 = (−1)h · R. In particular R2 ∈ F , and we

abbreviate |R| =
√

|R2|.

Proposition 4.1.3. If (Φ1,Φ2) is regular semisimple, then |R| ≠ 0.

Proof. First suppose that K1 ̸∼= K2, so that K3 is a field. If |R| = 0 then
R = 0, and so the polynomials Inv(Φ1,Φ2) and Inv(Ψ1,Ψ2) share a common
root in an algebraic closure of K3.
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Consider the F -subalgebra

F (Φ1,Φ2) ⊂ B(G)

generated by Φ1(K1) ∪ Φ2(K2). As B(G) is a division algebra, Proposition
2.5.5 implies that F (Φ1,Φ2) is a quaternion division algebra over its center
L = F [w], which is a degree h field extension of F . In particular, the minimal
polynomial of w over F is irreducible. As in the proof of Lemma 2.5.6, this
minimal polynomial is related to the invariant polynomial Qs = Inv(Φ1,Φ2)

by a change of variables, and so Inv(Φ1,Φ2) is itself irreducible.
As Inv(Φ1,Φ2) and Inv(Ψ1,Ψ2) have the same degree, share a common root,

and the first is irreducible, they must be equal. By Proposition 2.5.7, the
F -subalgebra

F (Ψ1,Ψ2) ⊂ B(M)

is also quaternion division algebra over L, and so any representation of it
has F -dimension a multiple of 4h. As B(M) ∼= M2h(F ), we have arrived at
a contradiction.

Now suppose that K1
∼= K2, so that K3

∼= F × F . This case is not really
different. If we write R = (R1, R2) ∈ F × F , the relation Rσ3 = (−1)hR
noted above implies R1 = (−1)hR2. Thus if |R| = |R1| · |R2| vanishes both
R1 = 0 and R2 = 0.

As K3[T ] ∼= F [T ]× F [T ], we may view Inv(Φ1,Φ2) and Inv(Ψ1,Ψ2) as pairs
of polynomials with coefficients in F . The argument above shows that each
component of Inv(Φ1,Φ2) is irreducible, and the vanishing of R1 and R2 imply
that those components agree with the components of Inv(Ψ1,Ψ2). This again
implies that F (Ψ1,Ψ2) is a quaternion division algebra over a degree h field
extension of F , contradicting F (Ψ1,Ψ2) ⊂M2h(F ). □

4.2. Height calculations. Define a formal OF -module

X = HomOF
(M,G)

over k, noncanonically isomorphic to G2h. That is to say, X is the formal
scheme over k whose functor of points assigns to an Artinian k-algebra the
OF -module

X(A) = HomOF
(M,G(A)).

Similarly, for i ∈ {1, 2} define formal OF -modules

Yi = HomOKi
(Ni,Hi), Yi = HomOKi

(Ni,Hi),

where Hi = Hi endowed with its conjugate OKi-action. Each is noncanoni-
cally isomorphic to Gh. There are natural morphisms

Yi

si &&

Yi

sixx
HomOF

(Ni,Hi),
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and the composition

(4.2.1) Yi ×Yi
si×si−−−→ HomOF

(Ni,Hi)
x 7→ϕi◦x◦ψ−1

i−−−−−−−−→ HomOF
(M,G) = X

defines a quasi-isogeny

(4.2.2) ∆i ∈ HomOF
(Yi ×Yi,X)[1/π].

Proposition 4.2.1. The quasi-isogeny (4.2.2) has height

ht(∆i) = h2 · ordF (di) + 2h · ht(ϕi)− 2h · ht(ψi),
where di ∈ OF is a generator of the discriminant of Ki/F .

Proof. By choosing an OF -basis 1, η ∈ OKi , we identify the natural map

(4.2.3) HomOKi
(OKi ,Hi)×HomOKi

(OKi ,Hi) → HomOF
(OKi ,Hi)

with the morphism of formal OF -modules

(4.2.4) Hi ×Hi
(x,y)7→(x+y,ηx+ησiy)−−−−−−−−−−−−−−→ Hi ×Hi.

The different Di of Ki/F is generated by η−ησi , and so the kernel of (4.2.4)
is the image of

Hi[Di]
x 7→(x,−x)−−−−−−→ Hi ×Hi.

It follows that the isogenies (4.2.3) and (4.2.4) have OF -height h · ordF (di).
As Ni is free of rank h over OKi , we deduce that that first arrow in (4.2.1) is
an isogeny of OF -height h

2 ·ordF (di). The claim follows easily from this. □

The quasi-isogenies (4.2.2) for i ∈ {1, 2} determine an element

∆−1
2 ◦∆1 ∈ HomOF

(Y1 ×Y1,Y2 ×Y2)[1/π],

which is encoded by four components. The two that interest us are

(4.2.5) α12 ∈ HomOF
(Y1,Y2)[1/π], β12 ∈ HomOF

(Y1,Y2)[1/π].

Similarly,
∆−1

1 ◦∆2 ∈ HomOF
(Y2 ×Y2,Y1 ×Y1)[1/π]

is encoded by four components, and the two that interest us are

(4.2.6) α21 ∈ HomOF
(Y2,Y1)[1/π], β21 ∈ HomOF

(Y2,Y1)[1/π].

Lemma 4.2.2. We have the equalities

ht(α12) = ht(β12) and ht(α21) = ht(β21).

Proof. We first claim that there is a γ ∈ B(G)× such that

Φ1(x
σ1) = γ · Φ1(x) · γ−1, Φ2(y

σ2) = γ · Φ2(y) · γ−1.

for all x ∈ K1 and y ∈ K2. (We remark that if the pair (Φ1,Φ2) is regular
semisimple, the element z ∈ B(G) defined by (2.4.2) is a unit by Proposition
2.5.5, and Proposition 2.4.2 allows us to take γ = z). Abbreviate B = B(G).
The embeddings Φ1 and Φ2 of (4.1.3) determine two Z/2Z-gradings, exactly
as in (A.1.2),

B = BΦ1
+ ⊕BΦ1

− , B = BΦ2
+ ⊕BΦ2

− .
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These satisfy

BΦ1
− = (BΦ1

+ )⊥, BΦ2
− = (BΦ2

+ )⊥,

where ⊥ is orthogonal complement with respect to the nondegenerate bilin-
ear form (b1, b2) 7→ Trd(b1b2) determined by the reduced trace Trd : B → F .

If BΦ1
− ∩ BΦ2

− = 0 then BΦ1
− + BΦ2

− = B. Applying ⊥ to both sides of this

last equality yields BΦ1
+ ∩ BΦ2

+ = 0, which contradicts 1 ∈ BΦ1
+ ∩ BΦ2

+ . Any

nonzero γ ∈ BΦ1
− ∩ BΦ2

− is contained in B× (recall that B is a division
algebra) and satisfies the desired properties.

Using the quasi-isogenies of (4.1.2), we obtain quasi-isogenies

γ1 = ϕ−1
1 ◦ γ ◦ ϕ1 ∈ EndOF

(H1)[1/π]

γ2 = ϕ−1
2 ◦ γ ◦ ϕ2 ∈ EndOF

(H2)[1/π],

which do not commute with the actions of OK1 and OK2 . Instead, they
define quasi-isogenies

γ1 ∈ HomOK1
(H1,H1)[1/π], γ1 ∈ HomOK1

(H1,H1)[1/π],

γ2 ∈ HomOK2
(H2,H2)[1/π], γ2 ∈ HomOK2

(H2,H2)[1/π],

which in turn determine quasi-isogenies

Γ1 ∈ HomOF
(Y1,Y1)[1/π], Γ1 ∈ HomOF

(Y1,Y1)[1/π],

Γ2 ∈ HomOF
(Y2,Y2)[1/π], Γ2 ∈ HomOF

(Y2,Y2)[1/π],

all of the same height, and making the diagram

Y1 ×Y1

∆1

��

(a,b) 7→(Γ1(b),Γ1(a)) // Y1 ×Y1

∆1

��
X

γ // X

Y2 ×Y2

∆2

OO

(a,b) 7→(Γ2(b),Γ2(a))

// Y2 ×Y2

∆2

OO

commute. The commutativity implies that β12 ◦Γ1 = Γ2 ◦α12, so ht(α12) =
ht(β12). The equality ht(α21) = ht(β21) is proved similarly. □

Proposition 4.2.3. The heights of (4.2.5) and (4.2.6) are related to the
resultant (4.1.4) by

ht(α12) + ht(α21) = ordF (R
2) = ht(β12) + ht(β21).

Proof. If we define idempotent elements

e1, f1, e2, f2 ∈ EndOF
(X)[1/π]
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by the commutativity of the diagrams

Yi ×Yi
(a,b)7→(a,0) //

∆i

��

Yi ×Yi

∆i

��

Yi ×Yi
(a,b)7→(0,b) //

∆i

��

Yi ×Yi

∆i

��
X

ei // X X
fi // X,

then the composition

Y1 ×Y1
∆1−−→ X

f2e1+e2f1−−−−−−→ X
∆−1

2−−−→ Y2 ×Y2

is given by (a, b) 7→ (β12(b), α12(a)). It follows that

ht(α12) + ht(β12) = ht(f2e1 + e2f1) + ht(∆1)− ht(∆2).

The same equality holds with the indices 1 and 2 switched everywhere.
Adding these together and using Lemma 4.2.2 shows that

(4.2.7) 2ht(α12) + 2ht(α21) = ht(f2e1 + e2f1) + ht(f1e2 + e1f2).

Some elementary algebra shows that ei and fi are the images of (1, 0) and
(0, 1), respectively, under

Ki ×Ki
∼= Ki ⊗F Ki

Φi⊗Ψi−−−−→ B(G)⊗F B(M)op ∼= EndOF
(X)[1/π]

where the first isomorphism is the inverse of

Ki ⊗F Ki
a⊗b7→(ab,abσi )−−−−−−−−−→ Ki ×Ki,

and op indicates the opposite algebra.
Extend (4.1.3) to K3-algebra embeddings

Φi : K → C(G) = B(G)⊗F K3

Ψi : K → C(G) = B(G)⊗F K3

as in (2.2.3), and denote by Nrd : C(G) ⊗K3 C(M)op → K3 the reduced
norm as a central simple K3-algebra. If we fix any K3-algebra generator
y ∈ K, the images of these idempotents in C(G) ⊗K3 C(M)op are given by
the explicit formulas

ei = [Φi(y − yτ3)⊗ 1]−1 · [Φi(y)⊗ 1− 1⊗Ψi(y
τ3)]

fi = [Φi(y − yτ3)⊗ 1]−1 · [Φi(y)⊗ 1− 1⊗Ψi(y)].

In general, if a ∈ C(G) and b ∈ C(M)op have reduced characteristic
polynomials Pa, Pb ∈ K3[t], then

Res(Pa, Pb) = Nrd(a⊗ 1− 1⊗ b).

Indeed, after extending scalars we may assume that both C(G) and C(M)op

are matrix algebras. If a and b are diagonalizable then the equality is obvi-
ous, and the general case follows by a Zariski density argument.

The construction (2.2.6) attaches to (Φ1,Φ2) and (Ψ1,Ψ2) elements

sΦ ∈ C(G) and sΨ ∈ C(M)op,
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whose reduced characteristic polynomials PsΦ , PsΨ ∈ K3[T ] are the squares
of the invariant polynomials of (Φ1,Φ2) and (Ψ1,Ψ2), respectively. Thus

R4 = Res(Inv2(Φ1,Φ2)
, Inv2(Ψ1,Ψ2)

)

= Res(PsΦ , PsΨ)

= Nrd(sΦ ⊗ 1− 1⊗ sΨ).

It follows from Proposition 2.3.2 that

−(sΦ ⊗ 1− 1⊗ sΨ) = (1− sΦ)⊗ 1− 1⊗ (1− sΨ) = sσ3Φ ⊗ 1− 1⊗ sσ3Ψ ,

and using this and Lemma 2.3.1 we find

(4.2.8) R4 = Nrd

[
(Φ1(y)− Φ2(y))

2

(y − yτ3)2
⊗ 1− 1⊗ (Ψ1(y)−Ψ2(y))

2

(y − yτ3)2

]
.

Define S, T ∈ C(G)⊗K3 C(M)op by

S = [Φ1(y)− Φ2(y)]⊗ 1 + 1⊗ [Ψ1(y)−Ψ2(y)]

= [Φ1(y − yτ3)⊗ 1] · e1 − [Φ2(y − yτ3)⊗ 1] · e2
T = [Φ1(y)− Φ2(y)]⊗ 1− 1⊗ [Ψ1(y)−Ψ2(y)]

= [Φ1(y − yτ3)⊗ 1] · f1 − [Φ2(y − yτ3)⊗ 1] · f2.

On the one hand, we have

ST = [Φ1(y)− Φ2(y)]
2 ⊗ 1− 1⊗ [Ψ1(y)−Ψ2(y)]

2,

and comparison with (4.2.8) shows that

(4.2.9) R4 =
Nrd(ST )

Nrd(Φ1(y − yτ3)⊗ 1) ·Nrd(Φ2(y − yτ3)⊗ 1)
.

On the other hand,

ST = STe2 + STf2

= −[Φ2(y − yτ3)⊗ 1] · e2 · f1 · [Φ1(y − yτ3)⊗ 1] · e2
− [Φ2(y − yτ3)⊗ 1] · f2 · e1 · [Φ1(y − yτ3)⊗ 1] · f2

= −[Φ2(y − yτ3)⊗ 1] · (e2f1 + f2e1) · [Φ1(y − yτ3)⊗ 1] · (e1f2 + f1e2).

Combining this with (4.2.9) shows that

R4 = Nrd(f2e1 + e2f1) ·Nrd(f1e2 + e1f2),

and combining this with (4.2.7) proves the proposition. □

4.3. Cycles on a formal module. We now use the calculations of §4.2 to
compute the intersection multiplicity of two cycles on the formal scheme

X ∼= Spf(k[[x1, . . . , x2h]]).

For i ∈ {1, 2}, we use the quasi-isogeny ∆i of (4.2.2) to define

(4.3.1) fi ∈ HomOF
(Yi,X)[1/π]



32 BENJAMIN HOWARD AND QIRUI LI

as the composition

Yi
y 7→(y,0)−−−−−→ Yi ×Yi

∆i−→ X.

Choosing ki ∈ Z large enough that πki clears the denominator in (4.3.1), we
obtain finite morphisms

(4.3.2) Y1

πk1f1 !!

Y2

πk2f2}}
X.

Remark 4.3.1. If ϕi and ψi are chosen as in Remark 4.1.2 then one can take
ki = 0, and the resulting maps fi : Yi → X are closed immersions.

We wish to compute the intersection multiplicity of Y1 and Y2, viewed
as codimension h cycles on X. This is, by definition, the dimension of the
k-vector space of global sections of the OX-module tensor product of

F1 = (πk1f1)∗OY1 and F2 = (πk2f2)∗OY2 .

Of course the sheaf Fi depends on the choices of ki, ϕi, and ψi, but we
suppress this from the notation. The following theorem gives an explicit
formula for this dimension in terms of the resultant (4.1.4).

Theorem 4.3.2. Recall that q = |π|−1 is the cardinality of the residue field
of OF , and that d1, d2 ∈ OF generate the discriminants of K1/F and K2/F .
The intersection multiplicity of the cycles (4.3.2) is

dimkH
0
(
X,F1 ⊗F2

)
=
q2h

2(k1+k2) · qh·[ht(ϕ1)+ht(ϕ2)−ht(ψ1)−ht(ψ2)]

|R| · |d1d2|h2/2
.

In particular, the left hand side is finite if and only if |R| ≠ 0.

Proof. The proof will follow easily from the height calculations of §4.2 and
the following lemma, which shows that fi admits a particularly nice factor-
ization

Yi
Ai−→ Zi ↪→ X

as a quasi-isogeny of formal OF -modules followed by a closed immersion.

Lemma 4.3.3. There is a (non-unique) decomposition X = Zi × Zi of
formal OF -modules such that the quasi-isogeny ∆i has the form(

Ai Bi
0 Di

)
: Yi ×Yi → Zi × Zi

for some

Ai ∈ HomOF
(Yi,Zi)[1/π]

Bi ∈ HomOF
(Yi,Zi)[1/π]

Di ∈ HomOF
(Yi,Zi)[1/π].
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Proof. LetNi = Ni, but endowed with its conjugateOKi action. As EndOF
(G)

is the unique maximal order in B(G), the map Φi of (4.1.3) restricts to
Φi : OKi → EndOF

(G). Let Gi = G endowed with this action of OKi . Tracing
through the definitions, we have canonical identifications of quasi-isogenies

Yi ×Yi

∆i

��

HomOKi
(Ni ×Ni,Hi)

x 7→ϕi◦x◦γi
��

X HomOKi
(OKi ⊗OF

M,Gi),

where γi is the Ki-linear composition

Ki ⊗F M[1/π]
id⊗ψ−1

i−−−−−→ Ki ⊗F Ni[1/π]
x⊗n7→(xn,xσin)−−−−−−−−−−→ Ni[1/π]×Ni[1/π].

Using the Iwasawa decomposition in GL2h(Ki), we may find a decomposition
of OKi-modules

OKi ⊗OF
M ∼= P× Q

such that γi(Q[1/π]) ⊂ Ni[1/π]. This induces a decomposition of the lower
right corner of the diagram, and the induced decomposition of the lower left
corner has the desired properties. □

The isogeny πkiAi : Yi → Zi is a finite flat morphism of degree

ei
def
= q2h

2ki+ht(Ai).

Thus (πkifi)∗OYi
∼= Oei

Zi
as OX-modules, and

F1 ⊗F2
∼= (OZ1 ⊗OZ2)

e1e2 .

The tensor product on the right is the structure sheaf of

Z1 ×X Z2 = ker(Z1 → X → Z2),

which, by the definition of height, is the formal spectrum of a k-algebra of

dimension qht(Z1→X→Z2). Thus

dimkH
0
(
X,F1 ⊗F2

)
= e1e2 · dimkH

0(X,OZ1 ⊗OZ2)

= q2h
2(k1+k2) · qht(A1)+ht(A2) · qht(Z1→X→Z2).

The composition

Y1
A1−−→ Z1 → X → Z2

D−1
2−−−→ Y2

is precisely the map α12 of (4.2.5), and so

ht(Z1 → X → Z2) = ht(α12)− ht(A1) + ht(D2)

= ht(α12)− ht(A1)− ht(A2) + ht(∆2).

This leaves us with

(4.3.3) dimkH
0
(
X,F1 ⊗F2

)
= q2h

2(k1+k2)qht(α12)+ht(∆2).
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As the same reasoning holds with the indices 1 and 2 reversed throughout,

(4.3.4) dimkH
0
(
X,F1 ⊗F2

)
= q2h

2(k1+k2)qht(α21)+ht(∆1).

Multiplying (4.3.3) and (4.3.4) together and using Proposition 4.2.3 yields

dimkH
0
(
X,F1 ⊗F2

)
= q2h

2(k1+k2)q
ht(α12)+ht(α21)+ht(∆1)+ht(∆2)

2

= q2h
2(k1+k2)q

ordF (R2)+ht(∆1)+ht(∆2)

2

= |R|−1 · q2h2(k1+k2)q
ht(∆1)+ht(∆2)

2 .

Theorem 4.3.2 now follows from the formulas for ht(∆1) and ht(∆2) found
in Proposition 4.2.1. □

4.4. Cycles on the Lubin-Tate tower. Assume now that the elements
(4.1.2) are chosen as in Remark 4.1.2. In other words, for i ∈ {1, 2} we fix
OF -linear isomorphisms

ϕi : Hi
∼= G and ψi : Ni

∼= M.

Let Nilp(OF̆ ) be the category of OF̆ -schemes on which the uniformizer
π ∈ OF is locally nilpotent. For any S ∈ Nilp(OF̆ ) we abbreviate

S̄ = S ×Spec(OF̆ ) Spec(k).

Associated to the pair (G,M) and an integer m ≥ 0 one has the Lubin-
Tate deformation space

X(πm) → Spf(OF̆ )

classifying triples (G, ϱ, tm) over S ∈ Nilp(OF̆ ) consisting of

• a formal OF -module G over S,
• an OF -linear quasi-isogeny ϱ : GS̄ → GS̄ of height 0,
• an OF -linear Drinfeld level structure tm : π−mM/M → G[πm].

For each i ∈ {1, 2} the above isomorphisms ϕi and ψi determine a closed
formal subscheme

(4.4.1) fi(m) : Yi(π
m) ↪→ X(πm),

defined as the locus of points (G, ϱ, tm) for which there exists a (necessarily
unique) action OKi → EndOF

(G) making both

Hi,S

ϕi−→ GS
ϱ−→ GS

and

π−mNi/Ni
ψi−→ π−mM/M

tm−→ G[πm]

OKi-linear.
We think of Y1(π

m) and Y2(π
m) as cycles on X(πm). Their intersection

multiplicity is, by definition, the length of the OF̆ -module of global sections
of the tensor product of coherent OX(πm)-modules

F1(π
m) = f1(m)∗OY1(πm) and F2(π

m) = f2(m)∗OY2(πm).
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Proposition 4.4.1. If |R| ≠ 0, then

lenOF̆
H0

(
X(πm),F1(π

m)⊗F2(π
m)

)
= |R|−1 · |d1d2|−h

2/2

for all m≫ 0.

Proof. Because we have now chosen the data (4.1.2) as in Remark 4.1.2, we
may take k1 = k2 = 0 throughout §4.3. Theorem 4.3.2 implies that the
k-vector space H0(X,F1 ⊗F2) has finite dimension, and so [Li21, Theorem
4.1] implies that there is an isomorphism of OF̆ -modules

H0
(
X(πm),F1(π

m)⊗F2(π
m)

) ∼= H0(X,F1 ⊗F2)

for all m≫ 0. Now use the equality of Theorem 4.3.2. □

For any g ∈ B(M)×, we can replace the embedding Ψ2 : K2 → B(M)
with its conjugate gΨ2g

−1 in (4.1.4) to define

(4.4.2) R(g) = R(Φ1,Φ2,Ψ1, gΨ2g
−1) ∈ K3.

As in §4.1, R(g)2 ∈ F and we abbreviate

|R(g)| =
√
|R(g)2|.

If (Φ1,Φ2) is regular semisimple, then |R(g)| ≠ 0 by Proposition 4.1.3.

Theorem 4.4.2. Suppose m ≥ 0, and set

U(πm) = ker
(
AutOF

(M) → AutOF
(M/πmM)

)
⊂ B(M)×.

If the pair (Φ1,Φ2) is regular semisimple, then

lenOF̆
H0

(
X(πm),F1(π

m)⊗F2(π
m)

)
=
c(m) · |d1d2|−h

2/2

vol(U(πm))

∫
U(πm)

dg

|R(g)|
.

In particular, the left hand side is finite. Here we have defined c(m) = 1 if
m > 0, and

c(0) =
#AutOF

(M/πM)

#AutOK1
(N1/πN1) ·#AutOK2

(N2/πN2)
.

Proof. This follows from Proposition 4.4.1, exactly as in the proof of [Li21,
Proposition 6.6]. □

4.5. The central derivative conjecture. We change the setup slightly
from §4.1. Fix OF -linear isomorphisms

ϕ1 : H1
∼= G, ϕ2 : H2

∼= G

such that the induced F -algebra embeddings

Φ1 : K1 → B(G), Φ2 : K2 → B(G)

form a regular semisimple pair (Φ1,Φ2).
Suppose we are also given F -algebra embeddings

Φ0 : K0 →M2h(F ), Φ3 : K3 →M2h(F )
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such that the pair (Φ0,Φ3) is regular semisimple and matches (Φ1,Φ2) in
the sense of Definition 3.3.1. As B(G) is a division algebra, Proposition 3.3.3
implies that

O(Φ0,Φ3)(f ; 0, η) = 0

for all f as in (1.4.3). In particular, this holds when f is the characteristic
function of GL2h(OF ), which we denote by 1 : GL2h(F ) → C.

We now consider a modified version of the constructions of §4.4, in which
no Drinfeld level structure is added, but the quasi-isogeny ϱ in the moduli
problem is allowed to be of arbitrary height.

Let X• be the formal scheme over OF̆ classifying pairs (G, ϱ) consisting of
a formal OF -module G over S ∈ Nilp(OF̆ ) and an OF -linear quasi-isogeny
ϱ : GS̄ → GS̄ . For every ℓ ∈ Z the open and closed formal subscheme

X(ℓ) ⊂ X•

defined by ht(ϱ) = ℓ is isomorphic to the formal spectrum of a power series
ring in 2h− 1 variables over OF̆ .

For i ∈ {1, 2}, let K̆i be the completion of the maximal unramified ex-
tension of Ki. Consider the formal OK̆i

-scheme Y •
i classifying pairs (H, ϱ)

consisting of a formal OKi-module H over S ∈ Nilp(OK̆i
) and an OKi-linear

quasi-isogeny ϱ : Hi,S̄ → HS̄ . Denote by

(4.5.1) fi : Y
•
i → X•

the morphism of OF̆ -schemes sending (H, ϱ) to the formal OF -module G =
H endowed with the quasi-isogeny

GS̄
ϕ−1
1−−→ Hi,S̄

ϱ−→ HS̄ = GS̄ .

The restriction of Y •
i to the connected component X(ℓ) is denoted

Y
(ℓ)
i = Y •

i ×X• X(ℓ).

Note that some Y
(ℓ)
i may be empty.

Proposition 4.5.1. The morphism (4.5.1) is a closed immersion. More-

over, the pair Y
(0)
i ⊂ X(0) is canonically identified with the pair Yi(π

m) ⊂
X(πm) from the previous subsection determined by m = 0.

Proof. Similar to (4.4.1), we may define a closed formal subscheme

Y •
i,naive ⊂ X•

as the locus of points (G, ϱ) in X• for which there exists a (necessarily
unique) action OKi → EndOF

(G) making

Hi,S

ϕi−→ GS
ϱ−→ GS

OKi-linear. Essentially by definition, the morphism (4.5.1) factors through
this closed formal subscheme.
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The ring OKi acts on the Lie algebra of the universal object over Y •
i,naive.

As this Lie algebra is a line bundle on Y •
i,naive, this action must be through

some OF -algebra morphism

OKi → OY •
i,naive

.

This morphism endows Y •
i,naive with the structure of a formal scheme not

just over OF̆ , but over OKi ⊗OF
OF̆ . One can check (this is essentially the

strictness condition implicit in the definition of Y •
i , as in Remark 4.1.1) that

the diagram

Y •
i

fi //

��

Y •
i,naive

��
Spf(OK̆i

) // Spf(OKi ⊗OF
OF̆ )

is cartesian, where the bottom horizontal arrow is induced by the map
OKi ⊗OF

OF̆ → OK̆i
sending α ⊗ x 7→ αx. As this bottom arrow is a

closed immersion, so is the top one, and hence so is (4.5.1).
If Ki/F is ramified, the bottom horizontal arrow in the diagram is an

isomorphism, and hence so is the top horizontal arrow. On the other hand,
if Ki/F is unramified then

Spf(OK̆i
) → Spf(OKi ⊗OF

OF̆ )
∼= Spf(OF̆ ) ⊔ Spf(OF̆ )

is an isomorphism onto one of the two components, and the top horizontal
arrow is an open and closed immersion.

When m = 0 the equality X(πm) = X(0) holds simply by definition, and
similarly for

Yi(π
m) = Y •

i,naive ⊗X• X(0).

The previous paragraph shows that

Y
(0)
i ⊂ Y •

i,naive ⊗X• X(0)

as a union of connected components. As the underlying reduced scheme of
X(0) is a point, any closed formal subscheme of it is connected. In particular
the right hand side of the above inclusion is connected. The formal scheme

Y
(0)
i is nonempty, as it contains the k-valued point (Hi, id), and so the

inclusion is an equality. □

We would like to relate the derivative of O(Φ0,Φ3)(f ; s, η) at s = 0 to the
intersection multiplicity of the cycles Y •

1 and Y •
2 on X•, but this is not

defined because Y •
1 ×X• Y •

2 is an infinite disjoint union of Artinian schemes.
We must carefully take connected components into account.

Let L ⊂ B(G) be the the centralizer of F -subalgebra generated by Φ1(K1)∪
Φ2(K2). Recall from Proposition 2.5.5 that it is an étale F -algebra of di-
mension h. The group B(G)× acts on X• by changing the quasi-isogeny ϱ
in the moduli problem, and the action of the subgroup L× preserves each of
the closed subschemes Y •

i ⊂ X•.
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Conjecture 4.5.2 (Arithmetic biquadratic fundamental lemma). If K/K3

is unramified then

±1

log(q)

d

ds
O(Φ0,Φ3)(1; s, η)

∣∣
s=0

=
∑

X(ℓ)∈L×\π0(X•)

lenOF̆
H0

(
X(ℓ), f1∗OY

(ℓ)
1

⊗O
X(ℓ)

f2∗OY
(ℓ)
1

)
,

where the sum is over a set of representatives X(ℓ) for the L× orbits of
connected components of X•. We remark that there are only finitely many
such orbits, as there are 2h orbits under the action of the subgroup F×.

Remark 4.5.3. In the special case where K1
∼= K2, Conjecture 4.5.2 is equiv-

alent to the linear arithmetic fundamental lemma of [Li21, Conjecture 1]
(which should be corrected to incorporate all connected components of X•,
as we have done above). This equivalence uses Proposition A.3.3 below, as
the orbital integrals O(Φ0,Φ3)(f ; s, η) defined here do not quite agree with
the orbital integrals of [Li21].

5. Calculations when h = 1

Assume that h = 1. We will prove Conjecture 3.4.1 when f = 1 is
the characteristic function of GL2(OF ), and also prove Conjecture 4.5.2.
Throughout, we assume that F is a local field, and that K1 and K2 are
quadratic étale extensions such that K/K3 is unramified.

5.1. Preliminaries. In §5.1 we assume that K1 and K2 are fields, with
K1/F unramified and K2/F ramified. In particular, K = K1 ⊗F K2 is a
biquadratic field extension of F . Fix OF -algebra generators x1 ∈ OK1 and
x2 ∈ OK2 with

ordK1(x1) = 0, ordK2(x2) = 1.

Let B be a central simple F -algebra of dimension 4. Thus B is either
the algebra M2(F ), or the unique quaternion division algebra over F . Fix
F -algebra embeddings

Φ1 : K1 → B, Φ2 : K2 → B.

As in (2.4.1) and (2.4.2), define elements of B by

w = Φ1(x1)Φ2(x2) + Φ2(x
σ2
2 )Φ1(x

σ1
1 )

z = Φ1(x1)Φ2(x2)− Φ2(x2)Φ1(x1).

Similarly, let s ∈ C = B ⊗F K3 be as in (2.2.6),

Proposition 5.1.1. We have s ∈ K×
3 , and Inv(Φ1,Φ2)(T ) = T − s.

Proof. Recall from §2.2 that Inv(Φ1,Φ2)(T ) ∈ K3[T ] is monic of degree h = 1,
and satisfies Inv(Φ1,Φ2)(s) = 0. Hence s ∈ K3 and

Inv(Φ1,Φ2)(T ) = T − s.
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The relation s + sσ3 = 1 of Proposition 2.3.2 shows that s ̸= 0. As our
assumptions on K1 and K2 imply that K3 is a field, we have s ∈ K×

3 . □

Corollary 5.1.2. The pair (Φ1,Φ2) is regular semisimple.

Proof. Use Proposition 5.1.1 and the criterion of Proposition 2.5.4. □

Lemma 5.1.3. We have w, z2 ∈ F , and

(5.1.1) z2 = w2 + π · (aw + b)

for some a, b ∈ OF satisfying ord(a) ≥ ord(b) = 0. Moreover, z ∈ B×.

Proof. Consider the element

(5.1.2)
Tr(x21)

Nm(x1)
+

Tr(x22)

Nm(x2)
=

(x1 − xσ11 )2

x1x
σ1
1

+
(x2 + xσ22 )2

x2x
σ2
2

.

The first term on the right hand side lies in O×
F , while

ordK2(x2 + xσ22 ) = 2ordF (x2 + xσ22 ) > 1 = ordK2(x2)

implies that the second term on the right lies in πOF . Thus (5.1.2) lies in
O×
F . Combining this with the relation

Tr(x21)Nm(x2) + Tr(x22)Nm(x1) = Nm(x2)Nm(x1)

(
Tr(x21)

Nm(x1)
+

Tr(x22)

Nm(x2)

)
,

we find that

ordF
(
Tr(x21)Nm(x2) + Tr(x22)Nm(x1)

)
= 1.

Combining this with Proposition 2.4.2 shows that (5.1.1) holds with

a = −Tr(x1)Tr(x2)

π
, b =

Tr(x21)Nm(x2) + Tr(x22)Nm(x1)

π
.

Recall from Proposition 2.4.2 that w commutes with both Φ(K1) and
Φ(K2). Each of these subalgebras is equal to its own centralizer in B, and
hence w ∈ Φ(K1)∩Φ(K2) = F . The inclusion z2 ∈ F follows from this and
(5.1.1). For the final claim, Proposition 5.1.1 tells us that s ∈ K×

3 , hence
t ∈ C× by Proposition 2.3.2, hence z ∈ B× by Proposition 2.4.1. □

Lemma 5.1.4. If B is a matrix algebra then ordF (z
2) is even. If B is a

division algebra then ordF (z
2) is odd.

Proof. The essential point is the relation zΦ1(x) = Φ1(x
σ1)z of Proposition

2.4.2. If ordF (z
2) is even then, as K1/F is unramified, there is an x ∈ K1

such that xxσ1 = z2. This implies

(Φ1(x)− z)(Φ1(x
σ1) + z) = 0,

and so B ∼= M2(F ). Conversely, if B ∼= M2(F ) then pick any nonzero
v ∈ F 2. The embedding Φ1 : K1 →M2(F ) makes F 2 into a K1-vector space
of dimension 1, and so zv = Φ1(x)v for some x ∈ K1. This implies

z2v = zΦ1(x)v = Φ1(x
σ1)zv = Φ1(xx

σ1)v,

and so z2 = xxσ1 . Thus ordF (z
2) is even. □
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5.2. Calculation of an orbital integral. We keep the notation and as-
sumptions of the previous subsection. In particular, we continue to assume
that K1/F is unramified, while K2/F is ramified.

If we view x1 ∈ OK1 and x2 ∈ OK2 as elements of K, then

x3 = x1x
σ2
2 + xσ11 x2 ∈ K3

generates K3 as an F -algebra. In fact, it is easy to see that

ordK3(x3) = 1

and hence OK3 = OF [x3], as K3/F is ramified. Recalling that K0 = F ×F ,
define

Φ0 : K0 →M2(F ), Φ3 : K3 →M2(F )

by

Φ0(a, b) =

(
b 0
0 a

)
, Φ3(x3) =

(
w 1
m Tr(x3)−w

)
,

where m = w · (Tr(x3)−w)−Nm(x3) ∈ F.

Lemma 5.2.1. The pair (Φ0,Φ3) matches (Φ1,Φ2).

Proof. Set x0 = (0, 1) ∈ K0, and let

w′ = Φ0(x0)Φ3(x3) + Φ3(x
σ3
3 )Φ0(x

σ0
0 ) ∈M2(F )

be the element associated to the pair (Φ0,Φ3) by (2.4.1). Using

Φ0(x0)Φ3(x3) =

(
w 1
0 0

)
, Φ3(x

σ3
3 )Φ0(x

σ0
0 ) =

(
0 −1
0 w

)
we see that w′ = w.

Recalling Proposition 2.4.1, consider the elements

s =
−(x1x

σ2
2 + x2x

σ1
1 ) +w

(x1 − xσ11 )(x2 − xσ22 )
, s′ =

−(x0x
σ3
3 + x3x

σ0
0 ) +w′

(x0 − xσ00 )(x3 − xσ33 )

of K3 ⊂M2(K3) associated to the pairs (Φ1,Φ2) and (Φ0,Φ3).
Somewhat confusingly, s and s′ are viewed as elements of the rightmost

copies of K3 in the diagrams (1.2.1) and (1.4.1), which we identify. In
particular, one must be mindful of the conventions explained after (1.4.1).
If we identify K0 and K3 as subalgebras of K3 × K3 via x0 7→ (0, 1) and
x3 7→ (x3, x3), then

x0x
σ3
3 + x3x

σ0
0 = (x3, x

σ3
3 ) ∈ K3 ×K3

is identified with the element x3 = x1x
σ2
2 +xσ11 x2 in the other copy of K3 in

the diagram (1.4.1). In other words,

x0x
σ3
3 + x3x

σ0
0 = x1x

σ2
2 + xσ11 x2.

Similarly,

(x0 − xσ00 )(x3 − xσ33 ) = (xσ33 − x3, x3 − xσ33 ) ∈ K3 ×K3
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is identified with xσ33 − x3 = (x1 − xσ11 )(x2 − xσ22 ) in the rightmost copy of
K3 in the diagram (1.4.1). In other words,

(x0 − xσ00 )(x3 − xσ33 ) = (x1 − xσ11 )(x2 − xσ22 ).

Having now shown that s = s′, the pairs (Φ1,Φ2) and (Φ0,Φ3) match. □

Proposition 5.2.2. If 1 is the characteristic function of GL2(OF ), then

O(Φ0,Φ3)(1; s, η) =


1 if ordF (w) = 0

1− q−s if ordF (w) > 0

0 if ordF (w) < 0.

Note that when ordF (w) ≥ 0, both Φ0(OK0) and Φ3(OK3) are contained in
M2(OF ). This allows us to take g0 = g3 = 1 in (3.2.5), and so remove the
ambiguity in the orbital integral noted in Remark 3.2.6.

Proof. In the notation of (3.2.1), we have H0 = Φ0(K
×
0 ) and H3 = Φ3(K

×
3 ).

As K3/F is ramified, and x3 ∈ K3 is a uniformizing parameter, we have

F×\K×
3 = O×

F \(O
×
K3

⊔ x3O×
K3

).

Choosing a g3 ∈ GL2(F ) such that

Φ3(OK3) ⊂ g3M2(OF )g
−1
3 ,

the orbital integral of Definition 3.2.4 simplifies to

O(Φ0,Φ3)(1; s, η) =

∫
F×\(F××F××K×

3 )
1(Φ0(a, b)

−1Φ3(x)g3)η(x)|a/b|s da db dx

=

∫
F××F××O×

K3

1(Φ0(a, b)
−1Φ3(x)g3)|a/b|s da db dx

−
∫
F××F××O×

K3

1(Φ0(a, b)
−1Φ3(x3x)g3)|a/b|s da db dx

=

∫
F××F×

1(Φ0(a, b)
−1g3)|a/b|s da db

−
∫
F××F×

1(Φ0(a, b)
−1Φ3(x3)g3)|a/b|s da db.(5.2.1)

If ordF (w) ≥ 0 then we may take g3 = 1, and compute∫
F××F×

1(Φ0(a, b)
−1)|a/b|s da db = 1.

If ordF (w) = 0 then

Φ3(x3) ∈
(
1 0
u π

)
GL2(OF )

for some u ∈ O×
F , and one easily checks that∫
F××F×

1(Φ0(a, b)
−1Φ3(x3))|a/b|s da db = 0.
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If ordF (w) > 0 then we instead have

Φ3(x3) ∈
(
1 0
0 π

)
GL2(OF ),

and one easily checks that∫
F××F×

1(Φ0(a, b)
−1Φ3(x3))|a/b|s da db = q−s.

Combining these calculations with (5.2.1) proves the claim for ordF (w) ≥ 0.
Now suppose ordF (w) < 0. In this case we may choose

g3 =

(
1 w
0 m

)
∈M2(F ).

Direct calculation shows that

g3 ̸∈ Φ0(a, b)GL2(OF ), Φ3(x3)g3 ̸∈ Φ0(a, b)GL2(OF )

for all a, b ∈ F×, and so (5.2.1) vanishes. □

5.3. Central values. In this subsection we let K1 and K2 be any quadratic
étale F -algebras, and fix F -algebra embeddings

Φ0 : K0 →M2(F ), Φ1 : K1 →M2(F )

Φ3 : K3 →M2(F ), Φ2 : K2 →M2(F ).

Theorem 5.3.1. If (Φ0,Φ3) and (Φ1,Φ2) are regular semisimple and match-
ing, then

±O(Φ0,Φ3)(1; 0, η) = O(Φ1,Φ2)(1).

Proof. If either one ofK1 orK2 is the split algebra F×F , the claim is known
by Proposition 3.4.3. If K1 and K2 are both unramified field extensions,
then K1

∼= K2 and the result is known by work of Guo (Remark 3.4.2). Our
assumption that K/K3 is unramified excludes the possibility that K1 and
K2 are both ramified field extensions.

This leaves us with the case in which K1 and K2 are both fields, and
exactly one of them is ramified over F . Under this assumption we will prove
a more precise statement: if there is a maximal order inM2(F ) that contains
both Φ1(OK1) and Φ(OK2), then both sides of the desired equality are equal
to 1. If no such maximal order exists, then both sides are 0.

Without loss of generality, assume that K1 is unramified and K2 is ram-
ified. Let x1 ∈ K1, x2 ∈ K2, w ∈ F and z ∈M2(F ) be as in §5.1.

Assume there is a maximal order in M2(F ) that contains both Φ1(OK1)
and Φ(OK2). In particular ordF (w) ≥ 0, and the calculations of §5.2 that

±O(Φ0,Φ3)(1; 0, η) = 1.

After conjugating (Φ1,Φ2) by an element of GL2(OF ), we may assume that
this maximal order is M2(OF ), and the orbital integral of Definition 3.1.1
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simplifies to

O(Φ1,Φ2)(1) =

∫
F×\(K×

1 ×K×
2 )

1(Φ1(h
−1
1 )Φ2(h2)) dh1 dh2

=

∫
(O×

F \O×
K1

)×K×
2

1(Φ1(h
−1
1 )Φ2(h2)) dh1 dh2

=

∫
K×

2

1(Φ2(h2)) dh2

= 1.

Now suppose there is no maximal order inM2(F ) containing both Φ1(OK1)
and Φ2(OK2). Replacing the pair (Φ1,Φ2) by a conjugate, we may assume
that Φ1(OK1) ⊂M2(OF ), and then

O(Φ1,Φ2)(1) =

∫
F×\(K×

1 ×K×
2 )

1
(
Φ1(h

−1
1 )Φ2(h2)g2

)
dh1 dh2

=

∫
(O×

F \O×
K1

)×K×
2

1
(
Φ1(h

−1
1 )Φ2(h2)g2

)
dh1 dh2

=

∫
K×

2

1
(
Φ2(h2)g2

)
dh2(5.3.1)

for any g2 ∈ GL2(F ) such that

Φ2(OK2) ⊂ g2M2(OF )g
−1
2 .

Using the fact that K2/F is ramified, we may scale g2 by an element of
Φ2(K

×
2 ) to assume that ordF (det(g2)) = 0.

If (5.3.1) is nonzero, there there is some h2 ∈ K×
2 such that

Φ2(h2)g2O2
F = O2

F .

On the other hand, Φ2(h2) ∈ g2M2(OF )g
−1
2 , satisfies

Φ2(h2)g2O2
F ⊂ g2O2

F ,

and equality holds as

ordF (det(Φ2(h2))) = ordF (det(Φ2(h2)g2)) = 0

Thus O2
F = g2O2

F , which implies g2 ∈ GL2(OF ), which implies Φ2(OK2) ⊂
M2(OF ). This contradicts our hypothesis on the pair (Φ1,Φ2), and we
conclude that (5.3.1) is equal to 0.

Still assuming there is no maximal order inM2(F ) containing both Φ1(OK1)
and Φ2(OK2), we claim that

(5.3.2) ordF (w) < 0.

Indeed, if ordF (w) ≥ 0 then Lemma 5.1.3 and the relation

z · Φ1(x1) = Φ1(x
σ1
1 ) · z
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of Proposition 2.4.2 imply that

SpanOF
{1, z,Φ1(x1), zΦ1(x1)} ⊂M2(F )

is an OF -subalgebra. It follows that there is a maximal order R ⊂ M2(F )
that contains w, z, and all of Φ1(OK1). Our assumption that K1/F is
unramified implies x1 − xσ11 ∈ O×

F , and so the relations

w − z = Φ2(x
σ2
2 )Φ1(x

σ1
1 ) + Φ2(x2)Φ1(x1)

= Tr(x2)Φ1(x
σ1
1 ) + Φ2(x2)Φ1(x1 − xσ11 )

imply Φ2(x2) ∈ R. Thus R contains both Φ1(OK1) and Φ2(OK2), contrary
to our hypotheses. Hence (5.3.2) holds, and the vanishing of O(Φ0,Φ3)(1; 0, η)
follows from the calculations of §5.2. □

5.4. Central derivatives. Now return to the setting of §4.5, with h = 1.
Thus G is formal OF -module over k of height 2, and we are given F -algebra
embeddings

Φ1 : K1 → B(G), Φ2 : K2 → B(G)

forming a regular semisimple pair (Φ1,Φ2), with corresponding closed im-
mersions f1 : Y

•
1 → X• and f2 : Y

•
2 → X• of formal schemes over OF̆ .

The étale F -algebra L appearing in Conjecture 4.5.2, being of dimension
h = 1, is just F itself. This allows us to takeX(0) andX(1) as representatives
for the L× orbits of π0(X

•), and Conjecture 4.5.2 is a consequence of the
following result.

Theorem 5.4.1. Given F -algebra embeddings

Φ0 : K0 →M2(F ), Φ3 : K3 →M2(F )

with (Φ0,Φ3) matching (Φ1,Φ2), we have

±1

log(q)

d

ds
O(Φ0,Φ3)(1; s, η)

∣∣
s=0

= lenOF̆
H0

(
X(0), f1∗OY

(0)
1

⊗O
X(0)

f2∗OY
(0)
2

)
and

H0
(
X(1), f1∗OY

(1)
1

⊗O
X(1)

f2∗OY
(1)
2

)
= 0.

Proof. Note that B(G) is a quaternion division algebra over F , and so K1

and K2 are fields. If Ki/F is unramified, then any quasi-isogeny of formal
OKi-modules has even height when viewed as a quasi-isogeny of underlying
formal OF -modules. It follows that the image of

fi : Y
•
i → X•

only meets those X(ℓ) with ℓ even. We deduce that if either of K1 or K2 is
unramified then

f1∗OY
(1)
1

⊗O
X(1)

f2∗OY
(1)
2

= 0.

If K1 and K2 are both unramified over F , then K1
∼= K2 and the claim

follows from the calculations of §7 of [Li21]. Our assumption that K/K3 is
unramified excludes the possibility that K1 and K2 are both ramified, and
so it only remains to consider the case in which one of K1 and K2 is ramified
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and the other is unramified. We will prove that in this case both sides of
the first equality in the theorem are equal to 1.

Without loss of generality we may assume that K1 is unramified and K2

is ramified. Let x1 ∈ OK1 and x2 ∈ OK2 be as in §5.1, and let

w = Φ1(x1)Φ2(x2) + Φ2(x
σ2
2 )Φ1(x

σ1
1 )

z = Φ1(x1)Φ2(x2)− Φ2(x2)Φ1(x1)

be the corresponding elements of B(G). The unique maximal order of B(G)
must contain both Φ1(OK1) and Φ2(OK2), and so also contains w and z.
By Lemma 5.1.3, we therefore have w ∈ OF and z2 ∈ OF , and

z2 = w2 + π · (aw + b)

for some a, b ∈ OF satisfying ord(a) ≥ ord(b) = 0. If ordF (w) = 0, this
would imply ordF (z

2) = 0, contradicting Lemma 5.1.4. Therefore

(5.4.1) ordF (w) > 0,

and the results of §5.2 imply

(5.4.2)
±1

log(q)

d

ds
O(Φ0,Φ3)(1; s, η)

∣∣
s=0

= 1.

Now fix F -algebra embeddings

Ψ1 : K1 →M2(F ), Ψ2 : K2 →M2(F )

satisfying Ψi(OKi) ⊂M2(OF ). As in (4.4.2), for any g ∈ GL2(OF ) let

R(g) = Res
(
Inv(Φ1,Φ2), Inv(Ψ1,gΨ2g−1)

)
∈ K3.

We claim that

(5.4.3) ordK3(R(g)) = −ordF (d1d2),

where di ∈ OF generates the discriminant of Ki/F . (Of course d1 is a unit.)
Define elements of M2(OF ) by

w′ = Ψ1(x1)Ψ2(x2) + Ψ2(x
σ2
2 )Ψ1(x

σ1
1 )

z′ = Ψ1(x1)Ψ2(x2)−Ψ2(x2)Ψ1(x1).

If s ∈ C and s′ ∈ M2(K3) denote the elements constructed from (Φ1,Φ2)
and (Ψ1,Ψ2) as in (2.2.6), then Propositions 5.1.1 and 2.4.1 imply

(5.4.4) R(1) = Res(T − s, T − s′) = s− s′ =
w −w′

(x1 − xσ11 )(x2 − xσ22 )
.

As above, Lemma 5.1.3 implies that w′ ∈ OF and (z′)2 ∈ OF satisfy

(z′)2 = (w′)2 + π · (aw′ + b)

for some a, b ∈ OF with ord(a) ≥ ord(b) = 0. If ordF (w
′) > 0 then

ordF ((z
′)2) = 1, contradicting Lemma 5.1.4. Hence ordF (w

′) = 0. Com-
bining this with (5.4.1) and (5.4.4) shows that

ordK3(R(1)) = −ordK3((x1 − xσ11 )(x2 − xσ22 )).



46 BENJAMIN HOWARD AND QIRUI LI

Elementary calculation shows that the right hand side is −ordF (d1d2), com-
pleting the proof of (5.4.3) when g = 1. The proof for general g ∈ GL2(OF )
proceeds by replacing Ψ2 with gΨ2g

−1 throughout the argument.
Using (5.4.3), the m = 0 case of Theorem 4.4.2 reduces to

lenOF̆
H0

(
X(0), f1∗OY

(0)
1

⊗OX
f2∗OY

(0)
1

)
= |d1d2|−

1
2

∫
GL2(OF )

dg

|R(g)|
= 1,

and comparison with (5.4.2) completes the proof. □

Appendix A. Comparisons with earlier work

When K1 = K2 our results and conjectures reduce to those of [Li21], but
some aspects of this are not completely obvious. In this appendix we provide
some results to help guide the reader in the comparison between this paper
and [Li21].

One consequence of the comparison is Proposition A.2.2, which shows
that our notion of regular semisimplicity from Definition 2.5.1 is equivalent
to the more familiar notion from geometric invariant theory.

A.1. An alternate construction of s. Return to the setting of §2.2. Thus
F is an arbitrary field, B is a central simple F -algebra of dimension 4h2,
and we are given F -algebra embeddings

Φ1 : K1 → B, Φ2 : K2 → B

in which each Ki is a quadratic étale F -algebra.
We provide a different construction of the element

s ∈ C = B ⊗F K3

defined by (2.2.6). This will allow us to compare our invariant polynomials
with the invariant polynomials defined (in the special case K1 = K2) in
[Li21], and to compare our definition of regular semisimple pair with the
more common one from geometric invariant theory.

The K3-algebra embeddings Φ1,Φ2 : K → C of (2.2.3) are conjugate by
Corollary 2.1.3, and hence there is a c ∈ C× such that

(A.1.1) Φ2(x) = c−1 · Φ1(x) · c.

There is a Z/2Z-grading C = C+ ⊕ C− in which

C+ = {a ∈ C : ∀y ∈ K, Φ1(y) · a = a · Φ1(y)}(A.1.2)

C− = {a ∈ C : ∀y ∈ K, Φ1(y) · a = a · Φ1(y
τ3)}.

Denote by c± the projection of c to C±.

Proposition A.1.1. The element c+ − c− ∈ C is invertible, and

s = (c+ + c−)
−1 · c+ · (c+ − c−)

−1 · c+.
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Proof. If y ∈ K× is any element with y + yτ3 = 0, then

c+ − c− = Φ1(y)
−1 · (c+ + c−) · Φ1(y) ∈ C×,

proving the first claim.
For the second claim, fix a K3-algebra generator y ∈ K. The element c

was chosen so that Φ1(y) · (c+ + c−) = (c+ + c−) · Φ2(y), and therefore

(A.1.3) c+(Φ1(y)− Φ2(y)) = c−(Φ2(y)− Φ1(y
τ3)).

Adding c+(Φ2(y)− Φ1(y
τ3)) to both sides of (A.1.3), we find

c+Φ1(y − yσ3) = (c+ + c−)(Φ2(y)− Φ1(y
τ3)).

Subtracting c+(Φ1(y)− Φ2(y
τ3)) from both sides of (A.1.3), we find

c+Φ2(y − yτ3) = (c+ − c−)(Φ1(y)− Φ2(y
τ3)).

Rewrite these two equalities as

(c+ + c−)
−1 · c+ = (Φ2(y)− Φ1(y

τ3)) · Φ1(y − yτ3)−1

(c+ − c−)
−1 · c+ = (Φ1(y)− Φ2(y

τ3)) · Φ2(y − yτ3)−1

to see that (c+ + c−)
−1 · c+ · (c+ − c−)

−1 · c+ is equal to

(Φ2(y)− Φ1(y
τ3)) · Φ1(y − yτ3)−1 · (Φ1(y)− Φ2(y

τ3)) · Φ2(y − yτ3)−1,

and use (2.2.5) to see that this last expression is equal to (2.2.6). □

A.2. Invariant polynomials revisited. We now use Proposition A.1.1 to
compare our invariant polynomial with the notion of invariant polynomial
from [Li21, Definition 1.1]. Let E be a quadratic étale F -algebra, fix an
F -algebra embedding

Φ : E → B,

and let B = B+ ⊕B− be the corresponding Z/2Z-grading, as in (A.1.2).

Definition A.2.1. The invariant polynomial Mg of g ∈ B×, with respect
to Φ : E → B, is the unique monic square root of the reduced characteristic
polynomial of

sg = (g+ + g−)
−1g+(g+ − g−)

−1g+ ∈ B,

where g± ∈ B± is the projection of g.

To explain the connection with Definition 2.2.4, set K1 = E and K2 = E,
and define

Φ1 = Φ : K1 → B and Φ2 = g−1Φg : K2 → B.

Let σ ∈ Aut(E/F ) be the nontrivial automorphism, and identify

K = K1 ⊗F K2
∼= E × E

via a ⊗ b 7→ (ab, abσ). The subalgebra K3 ⊂ K is identified with F × F ⊂
E × E, and so C = B ×B. The embeddings

Φ1,Φ2 : E × E → B ×B
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of (2.2.3) take the explicit form

Φ1(a, b) = (Φ1(a),Φ1(b)), Φ2(a, b) = (Φ2(a),Φ2(b
σ)).

Compare with Remark 2.2.7.
We may choose the element c of (A.1.1) in the form c = (g, g′) ∈ B××B×

for some g′ ∈ B×, and (by Proposition A.1.1) the element s ∈ C of (2.2.6)
is s = (sg, sg′). What this shows is that the invariant polynomial

Inv(Φ1,Φ2) ∈ K3[T ] = F [T ]× F [T ]

of Definition 2.2.4 is related to that of Definition A.2.1 by

(A.2.1) Inv(Φ1,Φ2) = (Mg,Mg′).

Note that Mg′(T ) = (−1)hMg(1 − T ) by the functional equation of Propo-
sition 2.3.3.

We now use the above discussion and a result of Guo [Guo96] to compare
Definition 2.2.4 with the usual notion of regular semisimple from geomet-
ric invariant theory. For the rest of this subsection we assume that F is
algebraically closed. For i ∈ {1, 2} denote by

Xi = {Φi : Ki → B}

the set of all F -algebra embeddings of Ki into B. There is a natural action
of the group G = B× on Xi by conjugation, and hence a diagonal action of
G on X1 ×X2.

Proposition A.2.2. A point (Φ1,Φ2) ∈ X1 ×X2 is regular semisimple in
the sense of Definition 2.2.4 if and only if its G-orbit is Zariski closed of
maximal dimension.

Proof. As we are assuming that F is algebraically closed, we may fix iso-
morphisms B ∼= M2h(F ) and Ki

∼= F × F . There is a standard embedding
Φ : F × F →M2h(F ) defined by

Φ(a, b) =

(
aIh

bIh

)
,

which determines base point Φ ∈ Xi with stabilizer

H =

{(
A

B

)
: A,B ∈ GLh(F )

}
⊂ GL2h(F ) ∼= G.

Using Corollary 2.1.3 we identify G/H ∼= Xi as algebraic varieties (one may
take this as the definition of the algebraic structure on Xi).

Consider the diagram

(A.2.2) G\(G×G)

∼=
��

G×G //oo G/H ×G/H

∼=
��

G X1 ×X2
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in which the vertical isomorphism on the left sends (g1, g2) 7→ g−1
1 g2. The

group H ×H acts on G on the right by g · (h1, h2) = h−1
1 gh2. The group G

acts diagonally on G×G by left multiplication, while H ×H acts by right
multiplication. It is easy to see that the above diagram induces bijections{

H ×H
orbits in G

}
∼=

{
G×H ×H

orbits in G×G

}
∼=

{
G orbits in
X1 ×X2

}
sending g 7→ (1, g) 7→ (Φ, gΦg−1). Under both bijections, closed orbits
correspond to closed orbits (use the fact that both horizontal arrows in
(A.2.2) are smooth, so images of open sets are open). The stabilizers (in
H × H, G × H × H, and G, respectively) of g ∈ G, (g, 1) ∈ G × G and
(Φ, gΦg−1) ∈ X1 × X2 have the same dimension, as all are isomorphic to
H∩gHg−1. Thus, under these bijections, closed orbits of maximal dimension
correspond to closed orbits of maximal dimension.

The closed H × H orbits in G of maximal dimension were classified by
Guo [Guo96], but we follow the discussion of this classification found in
[LM23, §2]. Guo’s result, in the form of [LM23, Lemma 2.2], implies that
the H × H orbit of g ∈ G is closed of maximal dimension if and only if
its invariant polynomial (in the sense of Definition A.2.1) with respect to
Φ : F × F → M2h(F ) has h distinct roots, all different from 0 and 1. Let
us denote this invariant polynomial by Mg(T ), and note that it agrees with
the polynomial Inv′(g, T ) in [LM23, Remark 2.4].

Now start with a pair (Φ1,Φ2) ∈ X1×X2 whoseG orbit corresponds under
the above bijections to the H × H orbit of g ∈ G. By Proposition 2.5.4,
the pair (Φ1,Φ2) is regular semisimple if and only if each of the polynomials
Mg(T ) and Mg(1− T ) in

Inv(Φ1,Φ2)(T )
(A.2.1)
=

(
Mg(T ), (−1)hMg(1− T )

)
∈ F [T ]× F [T ]

has h distinct nonzero roots. This is equivalent to Mg(T ) having h distinct
roots, all different from 0 and 1. By Guo’s result, this last condition is
equivalent to the H ×H orbit of g ∈ G being closed of maximal dimension,
which is equivalent to the G orbit of (Φ1,Φ2) ∈ X1 × X2 having the same
property. □

A.3. The Guo-Jacquet orbital integral. Here we explain the connection
between the orbital integrals of Definition 3.2.4 and those defined in [Guo96,
Li21]. This is necessary to justify Remarks 3.4.2 and 4.5.3. Throughout, F
is a local field, E is either F × F or an unramified separable quadratic field
extension, and

ηE/F : F× → {±1}
is the associated quadratic character. As in the proof of Proposition A.2.2,
the centralizer in GL2h(F ) of the standard embedding Φ : F ×F →M2h(F )
is the subgroup

H =

{(
A

B

)
: A,B ∈ GLh(F )

}
.
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Set K1 = E and K2 = E. With this choice we have

K3 = F × F = K0,

and the character η : K×
3 → {±1} determined by the quadratic extension

K/K3 is

η(a, b) = ηE/F (ab).

Fix a g ∈ GL2h(F ), and define

Φ0 : K0 →M2h(F ) and Φ3 = gΦg−1 : K3 →M2h(F ).

The centralizers in GL2h(F ) of their images are

H0 = H and H3 = gHg−1.

We assume throughout that the pair (Φ0,Φ3) is regular semisimple in the
sense of Definition 2.5.1. By (A.2.1) and Proposition 2.5.4, this is equivalent
to the polynomial Mg(T ) ∈ F [T ] of Definition A.2.1 having h distinct roots,
all different from 0 and 1.

For every compactly supported f as in (1.4.3), define the Guo-Jacquet
orbital integral

(A.3.1) Og(f ; s, ηE/F ) =

∫
Ig\(H×H)

f(h−1gh′) · |hh′|s · ηE/F (h′) dh dh′.

Here ηE/F is viewed as a character of H by ηE/F (h) = ηE/F (det(h)), the

character | · | : H → C× is defined by∣∣∣∣(A B

)∣∣∣∣ = ∣∣∣∣det(A)det(B)

∣∣∣∣ ,
and

Ig = {(h, h′) ∈ H ×H : hg = gh′}.

(Our convention for |h| differs from the one used in [Li21, (1.6)] by an inverse,
so our orbital integral differs from that one by the substitution s 7→ −s.)

Remark A.3.1. The group Ig is abelian. In fact, (h, h′) 7→ h defines an
isomorphism Ig ∼= H0 ∩H3, and the right hand side is the unit group of an
étale F -algebra L ⊂M2h(F ) of dimension h. See (3.1.1).

Remark A.3.2. The integral (A.3.1) is well-defined because the characters

(h, h′) 7→ ηE/F (h
′), (h, h′) 7→ |h|, (h, h′) 7→ |h′|

are all trivial on the subgroup Ig ⊂ H × H. See Lemma 3.2.3 and the
previous remark.

The Guo-Jacquet orbital integral (A.3.1) and the orbital integral of Def-
inition 3.2.4 do not agree. Nevertheless, the following holds.
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Proposition A.3.3. We have the equality

O(Φ0,Φ3)(f ; 0, η) = Og(f ; 0, ηE/F ).

If (Φ0,Φ3) matches a pair (Φ1,Φ2) of embeddings of E into a division algebra
(so that the two sides of the above equality vanish by Proposition 3.3.3), then

d

ds
O(Φ0,Φ3)(f ; s, η)

∣∣
s=0

=
d

ds
Og(f ; 2s, ηE/F )

∣∣
s=0

.

Proof. We may choose g0 = 1 and g3 = g in Definition 3.2.4, so that

O(Φ0,Φ3)(f ; s, η) =

∫
(H0∩H3)\(H0×H3)

f(h−1
0 h3g) · |h0|s · η(h3) dh0 dh3.

Making the substitution h = h0 and h′ = g−1h3g, we find

O(Φ0,Φ3)(f ; s, η) =

∫
Ig\(H×H)

f(h−1gh′) · |h|s · ηE/F (h′) dh dh′,

exactly as in Remark 3.1.3. This last expression is not equal to the Guo-
Jacquet orbital integral

Og(f ; s, ηE/F ) =

∫
Ig\(H×H)

f(h−1gh′) · |hh′|s · ηE/F (h′) dh dh′,

but they visibly agree at s = 0, proving the first claim.
From now on we assume that (Φ0,Φ3) matches a pair (Φ1,Φ2) of em-

beddings of E into a division algebra. Consider the partition H × H =⊔
m∈ZΩ(m) defined by

Ω(m) = {(h, h′) ∈ H ×H : |h′| = |h| · |ϖm|},

where ϖ ∈ F× is a uniformizing parameter. It follows from Remark A.3.2
that each Ω(m) ⊂ H ×H is stable under both left and right multiplication
by the subgroup Ig, and clearly

Og(f ; s, ηE/F ) =
∑
m

|ϖ|ms
∫
Ig\Ω(m)

f(h−1gh′) · |h|2s · ηE/F (h′) dh dh′.

If we can prove that

(A.3.2)

∫
Ig\Ω(m)

f(h−1gh′) · ηE/F (h′) dh dh′ = 0

for all m ∈ Z, then we are done by

d

ds
Og(f ; s, ηE/F )

∣∣
s=0

=
∑
m

d

ds

[∫
Ig\Ω(m)

f(h−1gh′) · |h|2s · ηE/F (h′) dh dh′
]
s=0

=
d

ds
O(Φ0,Φ3)(f ; 2s, ηE/F )

∣∣
s=0

.
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We will prove (A.3.2) by imitating the proof of O(Φ0,Φ3)(f ; 0, η) = 0 from
Proposition 3.3.3. Let z = z03 ∈M2h(F ) be as in (3.2.6), and set

u =

(
Ih

Ih

)
∈ GL2h(OF ).

As in the discussion leading to Proposition 3.2.8, if we set u0 = u and
u3 = gug−1 then zui ∈ Hi. This implies both zu ∈ H and g−1zgu ∈ H, and
allows us to define

γ = (zu, g−1zug) ∈ Ig.

Because Ig is abelian (Remark A.3.1), left multiplication by γ commutes
with the left multiplication action of Ig on Ω(m). Making the substitution
(h, h′) 7→ γ · (h, h′) shows that∫

Ig\Ω(m)
f(h−1gh′) · ηE/F (h′) dh dh′

= ηE/F (zu)

∫
Ig\Ω(m)

f(h−1gh′) · ηE/F (h′) dh dh′.

The equality (A.3.2) follows from this and the relation ηE/F (zu) = −1 from
the proof of Proposition 3.3.3. □
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