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Abstract. Let F be a totally real number field and n ě 3. Let Π and π be cuspidal
automorphic representations for PGLn`1pF q and PGLn´1pF q, respectively, that are un-
ramified and tempered at all finite places. We prove simultaneous non-vanishing of the
Rankin–Selberg L-values Lp1{2,Π b rσq and Lp1{2, σ b rπq for certain sequences of σ vary-
ing over cuspidal automorphic representations for PGLnpF q with conductor tending to in-
finity in the level aspect and bearing certain local conditions. Along the way, we also
prove a reciprocity formula for the average of the product of Rankin–Selberg L-functions
Lp1{2,Π b rσqLp1{2, σ b rπq over a conductor aspect family of σ.
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1. Introduction

1.1. Motivation: non-vanishing of the central L-values. Fix a set of complex numbers
s :“ ts1, . . . , sku with <psiq “ 0 and a natural number n ě 2. It is a folklore conjecture that
there are infinitely many cuspidal automorphic representations σ for GLpnq over a number
field F with a fixed central character such that the L-values Lp1{2` si, σq do not vanish for
1 ď i ď k.
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Naturally, for a given n there is an upper bound of k in terms of n for which the current
technology is potent enough to prove the above conjecture. This is because the product
L-function

ś

i Lp1{2` si, σq, whose degree is kn, has growing complexity as k grows. Thus,
finding large k in terms of n for which we can verify this conjecture becomes a natural and
challenging problem.

In this paper one of the main theorems (Theorem 2, Corollary 3), informally, yields that
k can be taken as large as 2n for general n. More precisely: the product

ś

i Lp1{2 ` si, σq
can also be viewed as the GLpnq ˆ GLpkq Rankin–Selberg L-function Lp1{2, σ b Esq where
Es is the minimal parabolic Eisenstein series ‘k

i“1|.|
si . At this point it becomes natural to

ask about the non-vanishing of the Rankin-Selberg L-function Lp1{2,Σb σq where Σ is any
automorphic representation for GLpkq. This includes the case where Σ is an Eisenstein series
and the one where Σ is a cuspidal representation. Presumably, the problem is, arithmetically,
the most difficult when Σ is cuspidal (so that Lp1{2,Σ b σq is not necessarily factorable)
and the least difficult when Σ is a minimal Eisenstein series (so that Lp1{2,Σb σq is totally
factorable).

In this paper, we answer the question affirmatively when Σ is the GLp2nq Eisenstein series
Π ‘ π where Π and π are certain cuspidal representations for GLpn ` 1q and GLpn ´ 1q,
respectively. In terms of factorization, this is the second most difficult case, right after the
cuspidal case. In particular, this answers the question affirmatively when Σ is a cuspidal
representation of GLpn` 1q or GLpn´ 1q.

We stress that even the non-vanishing of Lp1{2,Σb σq when Σ is a cuspidal automorphic
representation for GLpn ` 1q is new for n ą 2. For comparison, Tsuzuki [61] proves non-
vanishing for Σ being a minimal Eisenstein series of GLpn´1q. Finally, in low degree, slightly
better results are known. For n “ 2, Blomer–Li–Miller [15] show non-vanishing for k “ 4
but with Σ cuspidal and for n “ 1, Luo [43] shows that one may take k “ 3 for characters
of suitably factorable moduli.

1.2. Reciprocity formulæ. One of the main inputs going into the proof of simultaneous
non-vanishing is a reciprocity formula. A reciprocity formula, in our context, describes an
identity between moments of L-values attached to two apparently different families of auto-
morphic representations. The reciprocity formulæ, apart from being aesthetically pleasing,
often allow one to understand averages of L-values without (or only mildly) dealing with the
geometric side of a trace formula. Instead, the formulæ arrange it so that the complexity of
the families of L-functions drops from one side to the other, much akin to what happens in
the Poisson and Voronoi summation formulæ.

To demonstrate the complications of studying the geometric side of a trace formula in
high-rank groups, it suffices to look at the Kuznetsov trace formula: while in GLp2q, there is
a good amount of literature dedicated to sums of Kloosterman sums and many applications
thereof, for GLp3q the study of these objects is no easy matter, as can be perceived, for
example, from the works of Blomer and Buttcane, e.g. [9]. Some applications can be seen in
[7, 11, 10]. For larger n we refer to [8, 23] as examples of application of Kuznetsov formula
where the geometric side needed careful analysis.
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One of our main results, Theorem 1, describes a higher-rank reciprocity formula which
proves a relation between moments of Rankin–Selberg L-values for GLp2nq ˆ GLpnq over
two different families of representations.

1.2.1. A recapitulation of previous formulæ.

Different groups: Motohashi and generalizations. Motohashi’s formula is the first kind of
spectral identity to appear in the literature. It is also the most studied one and has several
interesting applications. The story begins with the work of Motohashi [50], where he proved
a formula of the shape

ż

R
|ζp1{2` itq|4hptq dt “

ÿ

f

Lp1{2, fq3qhptjq ` p. . .q,

where the sum on the right-hand side runs over cusp forms of PGLp2q. We have swept under
the rug via the symbol p. . .q the contribution of the Eisenstein series and some degenerate

terms. Moreover, the transformation h ù qh is explicitly given via a series of integral
transformation. This allowed Motohashi to give an asymptotic formula for the fourth-power

moment of the Riemann zeta function. Certain special cases of the reverse transform qh ù h
are known. In particular, this was used by Ivić [29] in order to obtain Weyl-type subconvex
bound for Lp1{2, fq in the spectral aspect. Around the same time, Conrey and Iwaniec
[21] studied a similar problem in the level aspect, with forms twisted by quadratic Dirichlet
characters. Even though they did not phrase their results in such terms, a reciprocity
formula can be inferred from their proof. An almost exact formula (with an error term)
was later found by Petrow [54]. More recently, Petrow and Young (cf. [55] and [56]) have
vastly generalized Conrey and Iwaniec’s work to general Dirichlet characters. Here, again
there is no effort in producing exact formulæ but one can notice that an underlying version of
Motohashi’s formula is used (in both directions!). A bit later, and with a different application
in mind, Blomer et al. [12] have yet another form of the identity. Finally, a period theoretic
interpretation was given by Reznikov [58]; see also [47]. Explicit versions were later obtained
by Nelson [52] and Wu [63]. There also are cuspidal versions of Motohashi’s formula where
the cube of Lp1{2, fq gets replaced by a Rankin-Selberg L-function and the left-hand side gets
replaced by a mixed-moment of L-functions of degrees 3 and 1. In this setting, asymptotic
formulæfor the right-hand side were initially obtained by Li [42] in the t-aspect) and Blomer
[6] in the level aspect. Although the latter hinted on a spectral identity, the first explicit
formula in the context was given by Kwan [40], via a period-theoretic approach.

Same group: GLp4qˆGLp2q ù GLp4qˆGLp2q. In this case, we talk about a formula where
in both sides we average over (possibly different) families of automorphic representations of
the same group, namely GLp2q. Moreover the degree of the L-functions is also the same,
namely 8. We divide them, however, in three different cases according to how the L-function
factorizes and this corresponds to the number of partitions of 4 as a sum of two non-negative
integers.



4 SUBHAJIT JANA AND RAMON NUNES

(1) 4 “ 2` 2. This is probably the most natural situation. It amounts to studying the
fourth moment of Lp1{2, σq or the second moment of Lp1{2, σ b σ0q over a family of
σ, where σ0 is a fixed automorphic form of GLp2q. If one is to be rigorous, the latter
does not exactly fit the description above as we may have to deal with certain periods
which are only related to L-functions up to taking the square of its absolute value (cf.
[27]). In the fourth-moment case, this dates back to unpublished work of Kuznetsov
and Motohashi; see [51]. In the Rankin-Selberg case, a reciprocity formula is implicit
in [47], and an explicit version can be found in [1]. Later, a period approach to
the equality was developed by Zacharias in [65] and [66]. The latter also deals with
regularization and contains a Weyl-type subconvex bound for Lp1{2, σq, where σ is
a PGLp2q cuspidal representation of prime level tending to infinity.

We may think the above example as the n “ 2 case for a general reciprocity formula
GLp2nq ˆGLpnq ù GLp2nq ˆGLpnq. For n ą 2, one can see a certain glimpse of a
reciprocity formula in the works of Blomer [5] and the first named author [37]. Here
one has to be even more flexible when employing the term “reciprocity” as on one
side of the formula the periods are neither known nor expected to be related to L-
functions. Nevertheless these results fit in the overall strategy where one can bypass
the need of a delicate study of geometric side (in the sense of the trace formula).

(2) 4 “ 3` 1. Here we are concerned with averages of

Lp1{2,Πb rσqLp1{2, σq,

where Π is a fixed representation of GLp3q. In the particular case where Π is the
symmetric square of some representation of GLp2q, these averages have been stud-
ied in connection to quantum unique ergodicity and the L4-norm problem; see for
instance [26] and the references therein. Here, the first instances of spectral fomrulæ
appeared in the works of Blomer and Khan; see [13] and [14]. However, some of the
ideas involved in proving such formulæcan be traced back to works o Li [41] and Khan
[39]. In both [13] and [14], the main applications are when Π is an Eisenstein series,
where one may obtain strong exponents in the subconvexity problem for GLp2q. In
[53], the second named author proved a version of the main result in [13] valid for
number fields via a period theoretic approach. This is not a complete generalization
of [13] for two reasons: it does not allow for general weight functions and the fixed
GLp3q representation needs to be cuspidal.

(3) 4 “ 4. Let Π be a fixed automorphic representation of GLp4q, then we are interested
in studying the first moment of Lp1{2,Πb σq as σ varies. A reciprocity formula was
found by Blomer, Li and Miller [15]. This case is the hardest one as it involves the
least factorable L-function. In order to grasp the difficulty, it is worth mentioning that
the authors of [15] do not have applications to subconvexity. Their only application
is to non-vanishing and it is important to point out that their analysis is finer than
usual as they only win by a logarithmic power, instead of the more usual polynomial
saving.
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In this work, we give a generalization of the work in [53] (hence of [13, 14]) to a spectral
sum over GLpnq with L-functions of degree 2n2, such as in [37] but in a more unbalanced
situation.

1.3. Main results. Let F be a number field and S be a finite set of places of F containing all
the archimedean places. Let Π and π be cuspidal automorphic representations for GLpn`1q
and GLpn ´ 1q over F , respectively, with trivial central characters and unramified outside
S. Let Φ P Π and φ P π be cusp forms. Also, let s “ ps1, s2q be a pair of complex numbers
and Λ denote completed L-functions. Our main object of study is the following average of
L-functions.

(1) Mps,Φ, φq :“

ż

gen

Λps1,Πb rσqΛps2, σ b rπq

Lpσq
HSpσ; Φ, φ, sq dσ,

where the integral is taken with respect to an automorphic Plancherel measure over the
generic automorphic spectrum of GLpnq with trivial central character (cf. §4.2 for a discus-
sion on the measure dσ). The factor HSpσq :“ HSpσ; Φ, φ, sq is a certain weight function
depending on the S-adic components of Φ, φ, and σ. We refer to §6.1 for the definition. The
factor Lpσq is a certain harmonic weight which appears in e.g. the Kuznetsov formula; see
(24) for the definition. For example, if σ is cuspidal then Lpσq is proportional to Lp1, σ,Adq.

Finally, for any pair of complex numbers s “ ps1, s2q, we shall write

(2) qs “ pqs1, qs2q :“

ˆ

1` pn´ 1qs2 ´ s1

n
,
pn` 1qs1 ` s2 ´ 1

n

˙

.

We also write Πpw˚qΦ as qΦ where

(3) w˚ :“

¨

˝

In´2

1
1

˛

‚

which is a Weyl element in GLpnq. Our first main result is the following reciprocity formula.

Theorem 1. Let s P C2 such that
1

2
ď <ps1q,<ps2q,<pqs1q,<pqs2q ă 1.

Then, we have the equality

Mps,Φ, φq “ N ps,Φ, φq `Mpqs, qΦ, φq

where
N ps,Φ, φq “ Rpqs, qΦ, φq `Dpqs, qΦ, φq ´Rps,Φ, φq ´Dps,Φ, φq.

and Rps,Φ, φq and Dps,Φ, φq are given by (48) and (29), respectively.

As in [53], we choose the vectors Φ and φ in a such a way that the left-hand side picks
up forms of conductors up to a certain height and the right-hand side can be asymptotically
computed.
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For an automorphic representation σ we define σf to be the finite part bvă8σv. For a

prime ideal p0 in F , we also define σ
pp0q

f :“ bvă8
v‰p0

σv, the finite part of σ outside p0 and

correspondingly, we write

cpσ
pp0q

f q :“
ź

p0‰pă8

pcpσpq, Cpσ
pp0q

f q :“
ź

p0‰pă8

Cpσpq;

see §3.8 for the definitions. Note that these products converge absolutely as cpσpq “ 0 and
Cpσpq “ 1 for almost all v.

Theorem 2. Let n ě 3 and F be a totally real number field. Let Π and π be cuspidal
automorphic representations for GLn`1pF q and GLn´1pF q, respectively, with trivial central
characters such that both Π and π are unramified and tempered at every non-archimedean
place. Further assume that p0 is a prime not dividing the discriminant of F and τ is a
supercuspidal representation of GLnpFp0q with trivial central character.

Then for every δ ą 0 there exists η ą 0 so that for any integral ideal q of the finite adeles
such that q, p0, and the discriminant of F are pairwise coprime, we have

ÿ

σ cuspidal; σp0“τ ;

cpσ
pp0q
f q|q, Cpσ

pp0q
f qěNpqq1{2´δ

Lp1{2,Πb rσqLp1{2, σ b rπq

Lp1, σ,Adq
Hqpσqh8pσq

“
D8pF, nq
εp0p1, τ b rτq

Lp0p1,Πb rπqLp0pn{2, rΠq

Lp0p1` n{2, rπq
`OΠ,πpNpqq

´η
q.

Here Hqpσq and h8pσq are certain test functions at the q-adic places and 8-adic places
defined in (39) and (38), respectively, εp0 denotes the p0-adic epsilon factor. On the other
hand, D8pF, nq is a constant which depends on the archimedean component of the test vectors,
in particular on h8 and n and the number field F . Moreover, we construct h8 in a way so
that D8pF, nq — 1.

The analogous theorem for n “ 2 is done in [53]. Our proof also works for n “ 2, but a
certain care is needed to compute the degenerate terms.

In particular, we have the following corollary.

Corollary 3. Let F , q, p0, τ , Π, and π be as above. Assume Npqq is sufficiently large.
Then there exists at least one cuspidal representation σ with trivial central character, such

that σp0 “ τ and Cpσ
pp0q

f q | q with Cpσ
pp0q

f q ě Npqq1{2´δ so that both Lp1{2,Π b rσq and
Lp1{2, σ b rπq do not vanish.

Remark 1.1. An important distinction between Corollary 3 and [53, Corollary 1.3] is the
need for an auxiliary prime at which the varying representations are supercuspidal. This
difference is necessary for n ě 3 as we cannot easily bound the contribution of the contin-
uous spectrum, so we artificially introduce this local condition to annihilate the continuous
spectrum. The same kind of restriction also appears in [61].
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On the other hand, the temperedness assumption in Corollary 3 is rather of a technical
nature. From the proof one will see that one also may allow Π and π to be θ-tempered (see
§3 for definition) for some very small θ.

1.4. Sketch of the proof: strong Gelfand formations. Before we proceed to proving
our results, we would like to present another point of view on spectral reciprocity formulæ,
which is due to Reznikov [58], which also serves as a high-level sketch of our proof. The key
concept here is that of a Strong Gelfand Formation. First, we say that a pair of reductive
groups pG,Hq over a number field is a strong Gelfand pair if for every place v and every
pair of irreducible (admissible) representations Π and σ of GpFvq and HpFvq, respectively,
we have that the space of HpFvq-invariant maps from Π to σ is at most one-dimensional.
Now let G, H1, H2 and J be reductive groups with natural embeddings as below.

G

H1

. �

>>}}}}}}}}
H2

0 P

``AAAAAAAA

J
. �

>>}}}}}}}}0 P

``AAAAAAAA

Then we say that pG,H1, H2, Jq is a strong Gelfand formation if the pairs pG,Hiq and pHi, Jq
are strong Gelfand pairs, for i “ 1, 2.

It is well-known that if pG,Hq is a Gelfand pair, Π and σ are automorphic representations
of G and H, respectively, and Φ P Π and ξ P σ are automorphic forms, then the period

ż

rHs

Φphqξphq dh,

where rHs :“ HpF qzHpAq, can often be linked to an L-function, e.g. via Rankin–Selberg
method or the Ichino–Ikeda formula. For the purpose of the sketch we assume that such
quotients are compact. Therefore, in order to obtain a reciprocity formula one might consider
Φ P Π and φ P π automorphic forms of G and J , respectively, and consider the period
ş

rJs
Φpjqφpjq dj. Spectrally expanding the vector Φ in the spaces of automorphic forms in

H1 and H2, one should get
ÿ

ξ1

ˆ
ż

rH1s

Φξ1

˙ˆ
ż

rJs

ξ1φ

˙

“
ÿ

ξ2

ˆ
ż

rH2s

Φξ2

˙ˆ
ż

rJs

ξ2φ

˙

,

where ξi runs through an orthonormal basis of automorphic forms for Hi.
The reciprocity formula which we prove here can be seen as a special case of the above

discussion where take G “ GLpn`1q, H1 “ GLpnq, J “ GLpn´1q, and H2 “ w˚GLpnqw˚´1,

with w˚ as in (3). For these groups, inclusion is given by h ãÑ

ˆ

h
1

˙

which is an embedding

of GLpnq inside GLpn` 1q.
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1.5. A closely related work. While this article was at the final stage of preparation, a
preprint by Miao [46] has been posted on arXiv, obtaining a similar reciprocity formula to our
Theorem 1. The author starts, as we do, from the identity in Proposition 5.1. The author also
predicts an application of the reciprocity formula to non-vanishing. We decided nevertheless
to keep our own proof of the reciprocity formula as we could not match our degenerate term
to any term in [46] and that term is the source of the main term in Theorem 2.

1.6. What’s next?

1.6.1. Global.

(1) The question of generalizing the above results to Π and π that are general (not nec-
essarily cuspidal) automorphic representations is a quite natural one. The difficulty
comes from the fact that, in this case the period Pps,Φ, φq, defined in (27) and from
whose properties we deduce the reciprocity in Theorem 1, does not converge. A rem-
edy to this lack of convergence should follow from a suitable notion of regularization.
The works of Ichino–Yamana [28] and Zydor [67] could be of help in finding out this
suitable notion. It is important to remark that we do not require simply the conclu-
sions from these papers. Instead we need to understand how the various truncation
operators interact when averaged over the spectrum of GLpnq.

(2) Finally, after staring at the list of different reciprocity formulæ for GLp2q one might
wonder whether we could have a general reciprocity formulæ for the average of

Lp1{2,Πb rσqLp1{2, σ b rπq,

where, for given n´1 ě r ě 2, Π and π are automorphic representations of GLpn`rq
and GLpn ´ rq, respectively. Unfortunately, it is not clear to us how to generalize
our method in any straightforward way. The main reason is the more complicated
nature of Rankin–Selberg zeta integrals for GLpnq ˆGLpmq when n´m ą 1, which
involves extra integration over unipotent groups. Similarly, one may wonder whether
one may replace Π ‘ π by a GLp2nq cuspidal representation to obtain a reciprocity
formula for GLp2nq ˆGLpnq, thus generalizing the n “ 2 case from [15].

1.6.2. Local.

(1) Recall the local weight factors HSpσq and corresponding weight factor qHSpσq :“

HSpσ; qΦ, φ,qsq in the dual side of the reciprocity formula in Theorem 1. There is an

implicit integral transform which relates HS and qHS governed by the Weyl element in
(3). For various analytic question in automorphic forms, one requires nice properties
of these test functions e.g. non-negativity and richness; see [50, 52].

(2) For n “ 2 Blomer–Khan [13] explicitly determined the integral transform relating the
local weight functions in both sides of the reciprocity formula via classical methods
e.g. Kuznetsov and Voronoi summation formulæ. It is natural to wonder whether
one can deduce the same in our higher-rank case via the method of integral represen-
tations. The test functions are determined by the local Whittaker functions chosen as
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test vectors in §6.1. We think one can produce the transform via the analysis of a cer-
tain local Bessel distribution, invoking, in particular, the local GLpn`1qˆGLpn´1q
functional equation which is governed by the Weyl element (3). However, we were un-
successful in this endeavor. The reason, partly, seems to be that we are dealing with
a period on GLpn`1qˆGLpn´1q which does not resemble the GLpn`1qˆGLpn´1q
zeta integral.

(3) On the other hand, via the theory of Kirillov models one will be able to show that
the family of local weights is quite abundant, in the sense of [52].

(4) More importantly, we would like to construct test vectors which produce a non-
negative local weight. This seems to be difficult due to the unbalanced (that is,
correlation of L-functions of degrees npn ` 1q and npn ´ 1q) nature of the moment
considered in Theorem 1), unlike the balanced moment (that is, correlation of L-
functions of degree 2n) as considered in [37] where non-negativity of the local weight
functions was immediate.

(5) Finally, we may wonder if we can obtain a similar result as in Theorem 2 in the
archimedean aspect as well. One of the main ingredient to prove Theorem 2 is the
classical non-archimedean newvector theory of [35] which allows us to pick up the
family considered in Theorem 2. In principle we can, at least at the real places, via
the analogous archimedean newvector theory as in [38]. However, we do not pursue
that in this article.

1.7. Structure of the paper. We fix notations and conventions that are used throughout
the text in §2. Preliminaries on automorphic forms, Whittaker models and integral represen-
tations of L-functions in the local and global settings are recalled in §3 and §4, respectively.

In §5, we use spectral theory and the theory of integral representations of L-functions to
relate the average of L-functions Mps,Φ, φq to a period of Φ and φ over GLpn´ 1q up to a
degenerate term coming from regularizing the zeta integral on the smaller group. It becomes
clear that the reciprocity formula follows from a certain identity of periods, also deduced in
the same section.

Everything up until this point works for general vectors Φ and φ. In §6.2, we describe our
choices of local vectors used in the proof of Theorem 2. For these choices, we study in §7
and §8 the local factors appearing on the original and dual sides, respectively. We use these
vectors to pick up the family of representations considered in Theorem 2. This is one of the
most technical parts of the paper.

In §9, we show a meromorphic continuation of the term Mps,Φ, φq to a neighborhood of
s “

`

1
2
, 1

2

˘

. This adds an extra term Rps,Φ, φq, called the residue term (since it appears after
an application of the residue theorem), and we estimate its contribution when the vectors
are as in §6.2.

In §10, we show that the degenerate term can be factored into a product of local integrals
and study these local factors, first the unramified computation and later with the choices
from §6.2. This is the source of the main term in Theorem 2. The estimates to the residue
and degenerate terms are only given for the term in the dual side since they vanish in the
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original side, which we show in §11. This is the point where we make use of the auxiliary
prime p0. The proofs of the main results are also given in §11.
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2. General Notations

The letter F denotes a local of global number field. In the beginning of each section we
define F explicitly. For any place v of a global field F we denote by Fv the localization of F
at v. Similarly, for any global object G (e.g. an L-function) we denote the v-adic component
(if defined) of G by Gv (e.g. a v-adic L-factor). If clear from the context, we suppress the
subscript v from the notation Gv. We denote the adele ring of F by A.

For any n ě 1 by Gn we denote the algebraic group GLpnq. We embed Gn ãÑ Gn`1 in the
upper-left corner. We denote the subgroup of upper triangular unipotent matrices in Gn by
Nn. Also, by Zn we denote the center of Gn. For any ring R, we have ZnpRq – Rˆ – G1pRq,
so often we identify ZnpRq with G1pRq. We denote the long Weyl element of Gn by wn which
is given by the matrix whose anti-diagonal elements are 1 and all other elements are 0.

We fix Haar measures on GnpRq, NnpRq, and G1pRq which we denote by dg, dn, and
dˆz, respectively. We also fix GnpRq-invariant quotient measures on ZnpRqzGnpRq and
NnpRqzGnpRq which, abusing notations, we denote by dg. Again, if clear from the context,
we suppress the index n from the notations.

Let An be the group of diagonal matrices in Gn which is isomorphic to G1pRq
n. If F is

a local field then we denote the standard maximal compact subgroup of GnpF q by Kn. We
have the Iwasawa decomposition GnpF q “ NnpF qAnpF qKn. Using Iwasawa parametrization
we write

dg “ δ´1
paq dn dˆa dk,

where δ is the modular character of the group NnpRqAnpRq given by

δpaq “
n
ź

j“1

|aj|
n´2j`1, a “ diagpa1, . . . , anq

and dˆa “
śn

i“1 dˆai. Also, here dk denotes the probability Haar measure on Kn.
We follow an ε-convention, as usual in analytic number theory, which allows us to change

the values of ε (which is typically very small) from line to line. We also adopt the usual
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Vinogradov notations ! and ". Moreover, we write A — B to mean |B| ! |A| ! |B|. Our
convention is that the implied constants in the Vinogradov notations are allowed to depend
on the global field and the ambient group.

3. Local Preliminaries

In this section we work over a general local field F of characteristic zero, archimedean or
non-archimedean, without mentioning the field explicitly. If F is non-archimedean we let v
be its valuation, o its ring of integers, p the maximal ideal in o, and Nppq the order of its
residue field.

For the group Gn we mostly write G, unless there is a source of confusion. We adopt he
same convention for subgroups of G.

The letter π will denote an irreducible admissible representation of G.

3.1. Measure normalizations. Let | ¨ |F denote an absolute value on F . In particular,
| ¨ |C “ | ¨ |2R. When there is no confusion we will drop the subscript F . On F we fix a
translation invariant measure dx so that if F is non-archimedean then volpo, dxq “ 1. We
fix dˆx :“ ζF p1q

dx
|x|

to be the Haar measure on Fˆ where ζF is the zeta function attached to

F .

3.2. Additive character. We fix an additive character ψ0 of F . If F is non-archimedean
then we assume that ψ0 is unramified, i.e. trivial on o. We define an additive character of
N by

ψpnpxqq :“ ψ0

˜

n´1
ÿ

i“1

xi,i`1

¸

, npxq :“ pxi,jqi,j P N.

We denote restriction of ψ to smaller unipotent subgroups also by the same letter.

3.3. Gamma factors and analytic conductors. For every irreducible representation π
we attach local γ, L, ε factors which are related by

γps, πq :“ εps, πq
Lp1´ s, rπq

Lps, πq
,

where rπ is the contragredient of π. We refer to [20, §3] for the description of the local factors.
We also attach a local analytic conductor Cpπq to π. If F is archimedean one defines Cpπq

via the Langlands parameters of π; see [30, eq. (31)]. If F is non-archimedean then one
defines Cpπq via the invariance property under the Hecke congruence subgroups, as in [35];
see §3.8. We record that if F is non-archimedean and π is unramified then Cpπq “ 1.

If πi are representations of Gni for i “ 1, 2. We also attach an analytic conductor Cpπ1bπ2q

of the Rankin–Selberg product π1 b π2. Then one has

(4) Cpπ1 b π2q ! Cpπ1q
n2Cpπ2q

n1

where the implied constant is absolute; see [25, Appendix A].
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One can analytically relate the local γ factor and the analytic conductor of a representation
(see [38] for some discussion on this). We have the asymptotic expansion

γp1{2` s, πq “ γp1{2, πqCpπq´s `Oπpsq,

as sÑ 0. More precisely,

(5) γp1{2` s, πq — Cpπ b | det |=psqq´<psq,

as long as s is away from the poles and zeros of the γ factor.

3.4. Sobolev norms. We follow [47, §2.3.3] to define a Sobolev norm on unitary represen-
tations. First, we define a Laplacian D on C8pGq.

If F is archimedean then we define

D :“ 1´
ÿ

X

X2,

where tXu is an orthonormal basis of the Lie algebra of G with respect to the standard
Killing form.

Let F be non-archimedean. Let Krms denote the principal congruence subgroup of level
m and erms denote the orthogonal projector on the orthogonal complement of Krm ´ 1s-
invariant vectors inside the space of Krms invariant vectors. We define the Laplacian on G
by

D :“
8
ÿ

m“0

Nppqmerms.

Note that
ř8

m“0 erms is the identity operator. We also note that D is invertible and a large
enough power of D´1 is of trace class.

Finally, we define the order d Sobolev norm of v P π by

Sdpvq :“ }Ddv}π.

We refer to [47, §2.4] for useful properties of the Sobolev norm.

3.5. Whittaker and Kirillov models. For the details of this subsection we refer to [3] for
non-archimedean case and [33, §3] for archimedean case.

We recall the notion of genericity for an irreducible representation π of G. We call π to
be generic if

HomG

`

π, IndGNψq
˘

‰ t0u,

where

IndGNψ :“ tW P C8pGq with moderate growth | W pngq “ ψpnqW pgq, n P N, g P Gu.

We also know that if π is generic then the above Hom-space is one-dimensional. We always
identify π with its image under a non-zero element of the Hom-space, which we call the
Whittaker model of π under ψ.
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The theory of Kirillov models asserts that the restriction

W ÞÑ

"

g ÞÑ W

„ˆ

g
1

˙*

is injective. Furthermore, for any φ P C8c pNn´1zGn´1, ψq there is a unique Wφ P π such that

Wφ

„ˆ

g
1

˙

“ φpgq,

and the map φ ÞÑ Wφ is continuous.
If π is generic and unitary then we put a unitary inner-product on π by setting

xW1,W2y0 :“

ż

Nn´1zGn´1

W1

„ˆ

g
1

˙

W2

„ˆ

g
1

˙

dg,

for any two W1,W2 P π.
We work with a specific normalization of the inner product in this paper. We fix

(6) xW1,W2y :“

#

ζF pnq
Lp1,πbrπq

xW1,W2y0 if F is non-archimedean

xW1,W2y0 if F is archimedean

In the non-archimedean case, the inner-product is built so that if π is unramified and W P π
is spherical, then }W }2 “ |W p1q|2. Note that such normalization is purely for cosmetic pur-
poses so that the harmonic weights in (1) remain independent of the set of ramified places
S; see Lemma 4.1. On the other hand, in the archimedean case such normalization is not
necessary as we are concerned about the “finite part” of the L-functions, as in Theorem 2,
as opposed to completed L-functions.

We recall the Langlands classification of the unitary representations of G. Let P be
the standard parabolic subgroup of G attached to the partition n “

řk
i“1 ni. Let πi be

any essentially square-integrable representation of Gni . For any k-tuple ps1, . . . , skq P Ck

we consider the unitarily normalized induction IndGP
Âk

i“1 πi b | det |si . Then any unitary
representation π of G is the unique irreducible constituent of such an induction and is denoted
by

Ðk
i“1 πi b | det |si . We define π to be θ-tempered (resp. tempered) if maxki“1 |<psiq| ď θ

(resp. 0).
In this paper, we will always assume that θ ă 1{2 whenever it appears. Note that it

is known that the local components of a unitary automorphic representation are always θ-
tempered for some θ ă 1{2.

We need the following bound for Whittaker functions. Although the bound may very well
be available in the literature (in a scattered way), we were unable to find a proper reference
to the result in the θ-tempered case that works for general local fields. We state the result
now and prove it later after developing the necessary tools.
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Lemma 3.1. Let W P π be θ-tempered. If g “ ak with a “ diagpa1, . . . , anq then for any
large N ą 0 and small η ą 0

W pgq !N,η | detpa{anq|
´θδ1{2´η

paq
n´1
ź

i“1

minp1, |ai{ai`1|
´N
qSdpW q,

for some d ą 0 depending only on N and the group.

This result is proved for a real place in [38, Lemma 5.2] in the tempered case and in [37,
Lemma 7.2] in the θ-tempered case.

3.6. Whittaker–Plancherel formula. We record the relevant formulation of the Whittaker–
Plancherel formula. We refer to [62, Chapter 5] for the archimedean case and [4, Theorem
2.3.2] for the non-archimedean case.

Let pG be the unitary dual of G i.e. pG is the set of all isomorphism classes of unitary

irreducible representations of G. we equip pG with a local Plancherel measure dµloc which is
compatible with the Haar measure dg on G in the sense of Harish-Chandra:

(7) fp1q “

ż

pG

Tracepπpfqq dµloc
pπq, f P C8c pGq.

It is known that dµloc is supported only on the irreducible generic tempered representations
of G. Let ξ P C8pNzG,ψq be an element in the Harish-Chandra Schwartz space (adapted to
Whittaker models), in the sense of [62, §4]. Then we have the following absolutely convergent
spectral decomposition:

(8) ξpgq “

ż

pG

ÿ

WPBpπq

W pgq

ż

NzG

ξphqW phq dh dµloc
pπq,

where Bpπq is an orthonormal basis of π. The above sum does not depend on the choice of
the orthonormal basis.

We record a useful lemma.

Lemma 3.2. For each d1, d2 ą 0 there is an L ą 0 such that
ż

pG

Cpπqd1

ÿ

vPBpπq

Sd2pvqS´Lpvq dµloc
pπq ă 8.

Here Bpπq is an orthonormal basis of π consisting of eigenvectors of D.

Proof. If F is archimedean the proof can be done as in [38, Lemma 3.3], verbatim.
Let F be non-archimedean. We denote by cpπq the conductor exponent of π (see §3.8 for

the definition). Using [47, 2.6.3 Lemma] we see that the integral in the lemma is bounded
by

ż

pG

Nppqd1cpπq
8
ÿ

m“cpπq

Nppqmpd2´LqNppqmd3 dµloc
pπq,
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for some d3 ą 0. For any L1 ą 0 there is a large L ą 0 such that the inner sum is
OpNppq´L

1cpπqq. Thus it is enough to prove that
ż

pG

Nppq´Acpπq dµloc
pπq “

8
ÿ

`“0

Nppq´`Aµloc
´

tπ P pG | cpπq “ `u
¯

ă 8,

for large enough A ą 0. Thus it suffices to show that there is a fixed B ě 0 so that

µloc
´

tπ P pG | cpπq ď `u
¯

! Nppq`B.

Let f :“ pvolpK0pp
`qqq´11K0pp`q “ f ˚ f where ˚ denotes convolution. Note that for cpπq ď `,

from newvector theory (see §3.8), we obtain that

tracepπpfqq “
ÿ

vPBpπq

}πpfqv}2 ě }πpfqv0}
2
“ }v0}

2
“ 1

where v0 P π is a unit newvector. Now applying Harish-Chandra Plancherel formula, as in
(7), we obtain

Nppq`pn´1q
" pvolpK0pp

`
qqq

´1
ě µloc

tπ P pG | cpπq ď `u,

as required. �

3.7. Local zeta integral and functional equation. For this subsection we refer to [20,
§3] for a detailed discussion.

Let Π and π be irreducible generic representations of Gn`1 and Gn, respectively, realized
in the Whittaker models with respect to the same additive character. For <psq sufficiently
large, we define the local zeta integral of V P Π and W P π by

(9) Ψps, V,W q :“

ż

NnzGn

V

„ˆ

g
1

˙

W pgq| detpgq|s´1{2 dg.

If Π and π are unitary then the above integral converges for <psq ą 1. One can then
meromorphically continue Ψ to the whole complex plane.

Let ωπ be the central character of π. We have the local functional equation

(10) Ψp1´ s, rV ,ĂW q “ ωπp´1qnγps,Πb π̄qΨps, V,W q,

where ĂW P rπ denotes the contragredient of W defined by ĂW pgq :“ W pwng
´tq and similarly

for rV ; see [20, Theorem 3.2].

Lemma 3.3. Let V P Π and W P π such that both Π and π are varying over some families
of representations. Also let s P C be a regular point of the zeta integral Ψp., V,W q. Then for
each d ą 0 there is a d1 ą 0 such that

Ψp1{2` s, V,W q !s Sd1pV qS´dpW q,

where the dependency of the implicit constant on s is at most polynomial.
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Proof. We first show the standard fact that any Whittaker function decays rapidly along any
positive root: for any N :“ pN1, . . . , Nn´1q and a “ diagpa1, . . . , anq then

(11) W paq !N

n´1
ź

i“1

minp1, |ai{ai`1|
´NiqSdpW q,

for some d ą 0 depending only on N . The proof uses unipotent equivariance and smoothness
of the Whittaker function.

If F is archimedean we may choose an element Y (depending on N1, . . . , Nn´1) in the Lie
algebra of Gn such that

dπpY qW paq “
n´1
ź

i“1

pai{ai`1q
NiW paq.

The claim follows from the Sobolev inequality dπpY qW paq ! SdpW q, for some d ą 0.
If F is non-archimedean then the invariance of W under some open-compact subgroup of

Gn implies that

(12) W paq “ 0, if |ai| ą c|ai`1| for some i,

where c depends only on the level of the open-compact subgroup under which W is invariant,
i.e. a certain Sobolev norm of W . Then the claim follows again from the Sobolev inequality.

Now let <psq be large enough so that we can write Ψp1{2 ` s, V,W q as the absolutely
convergent integral

ż

NnzGn

V

„ˆ

g
1

˙

W pgq| detpgq|s dg.

Let F be archimedean. We integrate by parts with respect to D sufficiently many, say d,
times to obtain that the above equals

ż

NnzGn

Dd

ˆ

V

„ˆ

g
1

˙

| detpgq|s
˙

D´dW pgq dg.

It is straightforward to check that D| detpgq|s “ ppsq| detpgq|s for a certain polynomial ppsq.
Let ωπ be the central character of π. We use Iwasawa coordinates in NnzGn to write the
above integral as

ÿ

jďd

pjpsq

ż

An´1ˆKn

ż

Fˆ
DjV

»

–

¨

˝

z

ˆ

a
1

˙

k

1

˛

‚

fi

fl | detpaq|s|z|nsωπpzq

D´dW

„ˆ

a
1

˙

k



dˆz
dˆa

| detpaq|δpaq
dk,

for some polynomials pjpsq, j ě 1.
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We make the change of variables k ÞÑ

ˆ

k1

1

˙

k and integrate over k1 P Kn´1 to obtain

that the above is, up to an absolute constant, equal to a finite sum of terms of the form

ÿ

jďd

pjpsq

ż

Kn

ż

Nn´1zGn´1

ż

Fˆ
DjV

»

–

¨

˝

z

ˆ

h
1

˙

k

1

˛

‚

fi

fl | detphq|s´1
|z|nsωπpzq

D´dW

„ˆ

h
1

˙

k



dˆz dh dk.

We apply the Cauchy–Schwarz inequality on the h-integral and use the unitarity of π to
obtain that the absolute value of the above expression is bounded by

S´dpW q

ż

Kn

¨

˝

ż

Nn´1zGn´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Fˆ
DeV

»

–

¨

˝

z

ˆ

h
1

˙

k

1

˛

‚

fi

fl | detphq|<psq´1

|z|n<psqωπpzq dˆz
ˇ

ˇ

2
dh

¯1{2

dk.

Using rapid decay estimate of V from (11) we see that the above integral is absolutely
convergent for <psq large enough, and it is bounded by Sd1pV q for a certain d1.

Now let F be non-archimedean and <psq be sufficiently large. First, we assume that V
and W are K-type vectors, i.e., D-eigenvectors. Then if the level of V is smaller than that
of W , the zeta integral vanishes and the assertion follows.

Now let the level of V be larger than that of W . We write the zeta integral in the Iwasawa
coordinates as

ż

Kn

ż

An

Π

ˆ

k
1

˙

V

„ˆ

a
1

˙

πpkqW paq| detpaq|s
dˆa

δpaq
dk.

Using rapid decay of V as in (12) we may restrict the inner integral to a1 ! ¨ ¨ ¨ ! an where
the the implied constants depend only on the level of V and polynomially so. We use the
Sobolev inequality to bound πpkqW paq !Kn SdpW q for some d ą 0. So the zeta integral
becomes absolutely convergent for some large <psq and bounded by

Sd1pV qSdpW q ! Sd2pV qS´dpW q,

for some d1 and d2 depending on d. Thus the claim follows for V,W being D-eigenvectors.
The general claim now follows from [47, §2.4.4, S4d].

So far we have proved that for a general local field F and <psq sufficiently positive the
assertion in the lemma follows. Now if <psq is sufficiently negative then we use the local func-
tional equation (10), and the bounds in (5) and (4) to conclude that Ψp1{2`s, V,W q satisfies
the claim in the lemma (by absorbing the powers of the conductor into the Sobolev norms).
We conclude our proof by an application of the Phragmén–Lindelöf convexity principle. �
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Proof of Lemma 3.1. We follow the proofs in [37, Lemma 7.2] and [38, Lemma 5.2]. Using
[47, §2.4.1, S1b] we reduce to the case of k “ 1.

We argue by induction on n. The n “ 2 case is in [47, Proposition 3.2.3]. We now prove
the inductive step.

Note that in the archimedean case there exists a differential operator Y such that

dπpY qW paq “ pan´1{anqW paq.

We define W1 :“ dπpY NqW . Thus it is enough to show that

W1paq !N,η | detpaq|´θδ1{2´η
paq

n´2
ź

i“1

minp1, |ai{ai`1|
´N
qSdpW1q,

as SdpW1q ! Sd1pW q for some d1 ą d.
In the non-archimedean case, we reduce to showing the above by appealing to the invari-

ance of W under sum open-compact subgroup and unipotent equivariance.
Let ωπ be the central character of π and ra :“ diagpa1, . . . , an´1q. Using the Whittaker–

Plancherel formula (8) we write

| detpa{anq|
sW1paq “ ωπpanqW1pa{anq| detpra{anq|

s
“

ωπpanq

ż

{Gn´1

ÿ

W 1PBpπ1q

W 1
pra{anqΨp1{2` s,W1,W 1q dµloc

pπ1q,

which is valid for sufficiently large <psq.
The right-hand side is absolutely convergent, which can be seen by applying Lemma 3.3

and Lemma 3.2. Thus it is analytic in s in some right half-plane. Note that the poles of the
integrand in the right-hand side as a function of s may at most come from the poles of the
zeta integral as the Whittaker functions are analytic [32]. It is known that Ψp1{2`s,W1,W 1q

is a holomorphic multiple of the local L-factor Lp1{2` s, πb π1q; see e.g. [20, Theorem 3.5].
As π is θ-tempered and π1 is tempered, the L-factor is holomorphic for <psq ą ´1{2` θ. So
we may analytically continue the integrand of the right-hand side until <psq “ ´1{2` θ` η
for any η ą 0.

We apply the inductive hypothesis on W 1 (note that π1 is tempered), thus deducing that

W 1
pra{anq !N,η δ

1{2´η
praq

n´2
ź

i“1

minp1, |ai{ai`1|
´N
qSd1pW

1
q,

for some d1 ą 0. We use

δpaq “ | detpra{anq|δpra{anq



RECIPROCITY AND NON-VANISHING 19

and Lemma 3.3 to obtain that

W1paq !N,η | detpa{anq|
´θδ1{2´η

paq
n´2
ź

i“1

minp1, |ai{ai`1|
´N
q

ż

{Gn´1

ÿ

W 1PBpπ1q

Sd1´LpW
1
qSdpW1q dµloc

pπ1q,

where d depends on L,N . Taking L large enough and applying Lemma 3.2 we see the that
last integral is convergent and we conclude. �

Remark 3.1. From the proof of Lemma 3.1 it can be noted that the exponent θ of | det |

in the bound of W , as in the statement of the lemma, can be modified to ´rθ where rθ is the
minimum of the magnitudes of the real parts of the Langlands parameters of π.

3.8. Newvectors. Let F be non-archimedean and π be generic with trivial central character.
Let K0pp

jq be the Hecke-congruence subgroup of Gn, i.e. consist of matrices in Gnpoq whose
last rows modulo pj are congruent to p0, . . . , 0, ˚q.

Let cpπq be the minimal non-negative integer j such that the K0pp
jq-fixed subspace πK0ppjq

is non-zero. It is a theorem by Casselman [18] (for n “ 2) and Jacquet–Piatetski-Shapiro–

Shalika [35] (for general n) that πK0ppcpπqq is one dimensional (also, see [45, 34] where an error
in [35] has been corrected). Any non-zero vector in this fixed space is called a newvector.
Also, cpπq and Cpπq :“ Nppqcpπq are called the conductor exponent and (analytic) conductor
of π, respectively.

In this paper we denote the newvector W P π such that W p1q “ 1 by Wπ. Newvectors
often serve the purpose of test vectors for the Rankin–Selberg periods. In this paper we use
two such instances, hence record them here.

Let σ and Π be any irreducible generic representations of Gn and Gn`1, respectively.

Further assume that at least one of Π and σ is unramified. We consider the vector W
pcpσqq
Π ,

given by (32). From [16, Theorem 1.1], we have

(13) Ψps,W
pcpσqq
Π ,Wσq “

Lps,Πb σ̄q

rGnpoq : K0ppcpσqqs
.

Note that, this generalizes classical test vector result in [35] which considers the case of
unramified σ.

The L-functions attached to π can be given by

Lps, πq “
n
ź

i“1

p1´Nppq´sαiq
´1,

for a certain α :“ tαiu P Cn. If π is also unramified then αi ‰ 0 and are called the Satake
parameters attached to π.

The description of Wπ restricted to AnpF q, which is due to Shintani [60] for unramified π
and Miyauchi [48] for general π, is as follows:
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Let m :“ pm1, . . . ,mnq P Zn and

a “ diagpy1, y2, . . . , ynq,

with vpyiq “ mi. Then

(14) Wπpaq “

#

δ1{2paqλπpmq, if m1 ě ¨ ¨ ¨ ě mn

0, otherwise,

where λπpmq is the Schur polynomial with index m and evaluated at α, i.e.

λπpmq :“
detprαmi`n´ij s1ďi,jďnq

detprαn´ij s1ďi,jďnq
.

If π is θ-tempered then maxit|αi|u ď Nppqθ. Consequently, it follows from the highest weight
theory for Upnq that

(15) λπpmq ! Nppqθ
ř

imi ,

where the implied constant is at most a polynomial in m.
We also record that if π is unitary and unramified then

(16) }Wπ}
2
“ 1,

which follows by directly calculating the L2-norm using the description in (14). On the other
hand, if π is ramified, then from the description of Wπ as in [48, Theorem 4.1] one computes

xWπ,Wπy0 “

n
ź

i,j“1

p1´ βiβjNppq
´1
q
´1

for some βi P C. If π is θ-tempered for some 0 ď θ ă 1{2 (e.g., appears as a local component
of a generic standard automorphic representation) then there exists an absolute δ ą 0 such
that |βi| ď Nppq1{2´δ; see, e.g., [17, eq.(2)]. Moreover, θ-temperedness of π ensures the
existence of an absolute δ1 ą 0 so that

Lp1, π b π̃q “
n2
ź

i“1

p1´ β1jNppq
´1
q
´1

for some β1i satisfying |β1i| ď Nppq1´δ
1

; see e.g., [17, eq.(4)]. Thus we obtain

(17) }Wπ}
2
“

ζF pnq

Lp1, π b rπq
xWπ,Wπy0 — 1

where the implied constants only depend on n, δ, δ1 and in particular, not on p, π.
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4. Global Preliminaries

In this section, we let F be a number field and A its ring of adeles. By Gn we denote
the algebraic group GLpnq over F . For any subgroup H ă Gn defined over F , we denote

by rHs the quotient HpF qzHpAq. We also define r rHs to be the quotient ZHpAqHpF qzHpAq
where ZH is the center of H. We may give a GnpAq-invariant finite measure on rĂGns which
is compatible with the product measure on GnpAq and we denote it by dg. When there is
no confusion we might suppress the index n from the notation.

4.1. Classification of automorphic spectrum. We give a quick description of the stan-
dard automorphic representations i.e. those which appear in the spectral decomposition of

L2pr rGsq. We refer to [47, §2.2.1] and [49] for details.
Let Y pGq be the set of pairs pM,σq where M is the Levi part of a standard parabolic

subgroup G and σ is an isomorphism class of discrete series of MpAq. Here by discrete series
we mean the automorphic forms on rM s such that for all ϕ P σ the integral

}ϕ}2σ :“

ż

rĂMs

|ϕpxq|2 dx

is finite.
We let XpGq be the quotient of Y pGq by the equivalence relation defined as follows:

pM,σq „ pM 1, σ1q if there exists a Weyl element w such that wMw´1 “ M 1 and wσ – σ1.

For every χ P XpGq we define Ipχq to be the unitarily normalized induction Ind
GpAq
NM pAqMpAqσ

where NM is the unipotent radical attached to M . Langlands’ classification asserts that any
standard automorphic representation is isomorphic to the unique irreducible constituent rχ
of the induction Ipχq.

Let us now start with a cuspidal data χ “ pM,σq, i.e. σ being a cuspidal automorphic
representation of MpAq, and proceed with the same construction as above to obtain rχ. An-
other theorem of Langlands asserts that any generic (see below) automorphic representation
is isomorphic to such a rχ.

Finally, we denote by Xp rGq the subset of isomorphism classes of χ in XpGq so that Ipχq
is ZG-invariant.

4.2. Spectral decomposition. We define a norm on Ipχq by

}f}2Ipχq :“

ż

K

}fpkq}2σ dk,

where K :“
ś

vKv where Kv is the standard maximal compact of GnpFvq. Finally, we define
an intertwiner (by averaging over P pF qzGpF q and analytic continuation)

Eis : Ipχq Ñ C8prGsq.



22 SUBHAJIT JANA AND RAMON NUNES

Then for any element ξ P C8pr rGsq with sufficient decay at the cusp (e.g. a cusp form) we
have the pointwise Plancherel decomposition

(18) ξpxq “

ż

Xp rGq

ÿ

fP rBpIpχqq

xξ,EispfqyL2pr rGsq

xf, fyIpχq
Eispfqpxq dµaut

pχq.

Here rBpIpχqq denotes an orthogonal basis of Ipχq and dµautpχq denotes the automorphic

Plancherel measure on Xp rGq compatible with dg. The right-hand side above does not

depend on the choice of orthogonal basis rB. Also, the right-hand side converges absolutely
and uniformly on compacta. For more details we refer to [47, §2.2.1].

Often, we use the shorthand for (18), writing

ξpxq “

ż

aut

ÿ

ϕP rBpπq

xξ, ϕy

}ϕ}2
ϕpxq dπ.

In practice, we mostly vary π over the generic spectrum only, in which case we replace
ş

aut

above by
ş

gen
.

4.3. Fourier expansion of automorphic forms. Let ψ0 : F zA Ñ Cˆ be an additive
character. For concreteness, we chose ψ0, as in [47], to be the additive character eQ ˝ tr,
where eQ is the only additive character of QzAQ whose restriction to R is x ÞÑ expp2πixq
and tr : A Ñ AQ is the adelic extension of tr : F Ñ Q. We extend ψ0 to a character ψ of
NpAq as in §3.2. We define the ψ-Whittaker space by

Wpψq :“ tW P C8pGpAqq with moderate growth | W pngq “ ψpnqW pgq, n P NpAq, g P GpAqu
on which GpAq acts by right translation.

For any automorphic representation π we define an intertwiner π ÑWpψq by

π Q ϕ ÞÑ Wϕ :“

ż

rNs

ϕpn.qψpnq dn.

We call π to be generic if the above intertwiner does not vanish identically. The theory
of Whittaker model asserts that if π is irreducible and generic then the above intertwiner
is unique up to scalars and, in fact, defines a GpAq-equivariant embedding. We call the
image Wpπ, ψq of π under the above intertwiner the Whittaker model of π. For generic π
we identify π with its Whittaker model.

Given an automorphic form ϕ in a generic representation π of GnpAq we can write its
Fourier expansion using Wϕ. For example, if ϕ is cuspidal then we write (see [20, Theorem
1.1])

(19) ϕpgq “
ÿ

γPNnpF qzPnpF q

Wϕpγgq “
ÿ

γ1PNn´1pF qzGn´1pF q

Wϕ

„ˆ

γ1

1

˙

g



.

The above Fourier expansions converge absolutely and uniformly on compacta. Here Pn is
the standard Mirabolic subgroup of GLpnq defined by GLpn´ 1q¸Un and Un is the unipotent
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radical of the parabolic in GLpnq attached to the partition n “ pn´ 1q ` 1. In other words,
Pn is the stabilizer of p0, . . . , 0, 1q of the right action of Gn on the row vectors; thus consists
of matrices in GLpnq with last row being p0, . . . , 0, 1q.

If ϕ is non-cuspidal then the Fourier expansion of ϕ is more complicated. We do not need
full Fourier expansion for non-cuspidal automorphic form; interested readers may look at
[28, Proposition 4.2]. However, we do need a partial Fourier expansion with respect to the
unipotent subgroup Un. From abelian Fourier theory we have

(20) pϕ´ ϕUnqpgq “
ÿ

γPPn´1pF qzGn´1pF q

WUn
ϕ

„ˆ

γ
1

˙

g



.

Here ϕUn is the the constant term of ϕ along Un defined by

ϕUnpgq :“

ż

rUns

ϕpugq du,

and WUn
ϕ is a partial Whittaker function defined by

(21) WUn
ϕ pgq :“

ż

rUns

ϕpugqψpuq du “

ż

rUns

pϕpugq ´ ϕUnpugqqψpuq du,

which follows as ϕUn is left Un-invariant.

4.4. Global Zeta Integral and L-functions. We give a quick description of the global
theory of GLpn` 1q ˆGLpnq zeta integrals; for details see [20, §2]. Let Π and π be generic
representations of Gn`1pAq and GnpAq, respectively. Let Φ P Π and ϕ P π be two automor-
phic forms with Whittaker functions WΦ and Wϕ, respectively. We define the global Hecke
zeta integral of Φ and φ by

Ψps,WΦ,Wϕq :“

ż

NnpAqzGnpAq
WΦ

„ˆ

g
1

˙

Wϕpgq| detpgq|s´1{2 dg.

The above converges absolutely for sufficiently large <psq. If Π is cuspidal then the above
integral is also equal to the absolutely convergent integral

ż

rGns

Φ

„ˆ

g
1

˙

ϕpgq| detpgq|s´1{2 dg,

which can be seen after inserting the Fourier expansion of Φ and φ, and unfolding.
If Φ and ϕ are factorable vectors then the global zeta integral factors into local zeta

integrals as

Ψps,WΦ,Wϕq “
ź

v

Ψvps,WΦ,v,Wϕ,vq,

where the local zeta integral Ψv is defined as in (9), and WΦ “
ś

vWΦ,v, similarly for Wϕ.
Once again the product converges absolutely for sufficiently large <psq.
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If Φ, ϕ and ψ are unramified at the places outside of a finite set S, and further, if
WΦ,v “ WΠv and Wϕ,v “ Wπv for v R S then (see [20, Theorem 3.3])

(22) Ψps,WΦ,Wϕq “ Λps,Πb πq
ź

vPS

Ψvps,WΦ,v,Wϕ,vq

Lvps,Πv b πvq
,

where Lv denotes the v-adic local L-factor and Λ denotes the global completed Rankin–
Selberg L-function of Π b π̄. We refer to [20, Theorem 4.2] for meromorphic properties of
the Rankin–Selberg L-functions.

We write ΛS for the partial L-function removing all v-adic Euler factors for v P S. If
S “ tv | 8u then we write, as usual in analytic number theory, L for ΛS.

We attach a global analytic conductor Cpπq to an automorphic representation π, analo-
gously to its L-function Λps, πq :“ Λps, π b 1q. If π is unramified at the places outside of a
finite set S, then Cpπq “

ś

vPS Cpπvq where Cpπvq is the local conductor as defined in §3.3.
We also have the convexity bound

(23) Lp1{2, πq !ε Cpπq
1{4`ε,

which follows from the functional equation of Λps, πq and the Phragmén–Lindelöf convexity
principle.

If Φ is cuspidal then the integral
ż

rGns

Φ

„ˆ

g
1

˙

ϕpgq| detpgq|s´1{2 dg

converges absolutely for any ϕ and any s P C. Moreover, if ϕ is generic then the above
equals Ψps,WΦ,Wϕq. This way we may analytically continue Ψps,WΦ,Wϕq for any cuspidal
Φ.

However, if Φ is not cuspidal then the above integral is not convergent. One needs to
regularize the integral, as in [28], to give it a meaning and then the regularized integral will
again be equal to the global zeta integral.

In this paper we do not need the general regularization scheme but only need to regularize
the above integral when ϕ is cuspidal. This “naive” regularization is comparatively easier
and we describe it in §4.6 below.

4.5. Harmonic weights. We describe the harmonic weights that appear in the Kuznetsov
trace formula. The harmonic weights relate the unitary inner products on a generic unitary
automorphic representation and that of its Whittaker model.

Let π be a generic irreducible unitary automorphic representation such that π is unramified
outside a finite set of places S which also contains the archimedean places. Let ϕ1, ϕ2 P π so
that Wϕ1,v “ Wϕ2,v “ Wπv for all v R S. By Schur’s lemma there exists a positive constant
LSpπq such that for any two ϕ1, ϕ2 P π,

(24) xϕ1, ϕ2yπ “ LSpπq
ź

vPS

xWϕ1,v,Wϕ2,vyπv
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where x, yπv is as in (6). If π is cuspidal then a standard Rankin–Selberg argument shows
that LSpπq is independent of S and

(25) LSpπq “ Lpπq “ cF,GLp1, π,Adq,

where cF,G is a positive constant depending on the number field F and the group G. If π
is non-cuspidal then we have that LSpπq is again independent of S and proportional to the
first non-zero Laurent coefficient of Lps, π b rπq around s “ 1.

Lemma 4.1. Let M be a Levi of G attached to the partition n “ n1`¨ ¨ ¨`nk and π :“ bki“1πi
be a cusp form on M such that πi’s are pairwise non-isomorphic. Let Π :“ ‘k

i“1πi be the
Eisenstein representation attached to the cuspidal data pM,πq. Then

LSpΠq “ LpΠq “ dF,M lim
sÑ1

Lps,Πb rΠq

ζF psqk
,

where ζF psq is the Dedekind zeta function attached to F and dF,M is a positive constant
depending only on F and M .

If πi are not pairwise non-isomorphic then LpΠq will be proportional to limsÑ1ps ´

1qk
1

Lps,Π b rΠq where k1 is the order of the pole of Lps,Π b rΠq at s “ 1. However, we
do not need that result here, so we do not prove it.

For π as in Lemma 4.1 we define the global Casselman–Shalika factor

cspπq “
ź

1ďiăjďk

Lp1, πi b rπjq.

Note that as πi are pairwise non-isomorphic the above quantity is well-defined. Similarly,
we define the partial factor csSpπq and the local factor cspπvq. Note that, we can also write
assertion of Lemma 4.1 as

LpΠq “ d1F,M |cspπq|
2

k
ź

i“1

Lp1, πi,Adq,

for some positive constant d1F,M .
This result is probably known to the experts. However, we were unable to find a reference

which points us to the constant with the precision we need (e.g. to define (48)).

Proof. Without loss of generality we let S contain the ramified places of F including the
archimedean places as well.

Let f P IpM,πq be any nonzero element and Eispfq be the corresponding Eisenstein series.
Then from [59, Proposition 7.3.1] we have

WEispfq “
ź

v

WEispfq,v, WEispfq,v “ W Jac
fv ,

where fv P Ind
GpFvq
MpFvq

pπvq and πv is realized in its Whittaker model. Here, W Jac
fv

is Jacquet’s

functional as defined in [22, §1.4].
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If φ P π we assume that Wφ,v “ Wπv when v is an unramified place. Then it follows from
[59, Proposition 7.1.4] that

W Jac
fv p1q “ cspπvq

´1,

for v R S. Hence, using (16) we have

(26) }W Jac
fv }

2
Πv “

1

|cspπvq|2
.

for all v R S.
Moreover, we have a factorization [22, §11]

WEispcsSpπqfq “ csSpπqWEispfq “
ź

vRS

cspπvqW
Jac
fv

ź

vPS

W Jac
fv .

We choose ϕ1 “ ϕ2 “ EispcsSpπqfq in (24).
Using the definition of harmonic weights in (24) we have

}fpgq}2π “
k
ź

i“1

Lpπiq
ź

vPS

}fvpgvq}
2
πv .

From [22, Proposition A.2] and (6) we have for non-archimedean v

Lvp1,Πv b rΠvq}W
Jac
fv }

2
Πv “

ź

i

Lvp1, πi,v b rπi,vq

ż

P pFvqzGpFvq

}fvpgvq}
2
πv dgv.

In other words, for non-archimedean v
ż

P pFvqzGpFvq

}fvpgvq}
2
πv dgv “ |cspπvq|

2
}W Jac

fv }
2
Πv .

Thus using (26) we obtain that the right-hand side is 1 for all v R S.
On the other hand, for archimedean v similarly using [22, Proposition A.2] and (6) we get

ż

P pFvqzGpFvq

}fvpgvq}
2
πv dgv “

ζvpnq
ś

i ζvpniq
}W Jac

fv }
2
Πv .

Thus we have

}f}2IpM,πq “

ż

P pAqzGpAq
}fpgq}2π dg “

k
ź

i“1

Lpπiq
ź

vPS
v non-archimedean

}W Jac
fv }

2
Πv |cspπvq|

2
ź

vPS
v archimedean

}W Jac
fv }

2
Πv .

Replacing f by csSpπqf we obtain

}csSpπqf}2IpM,πq “

k
ź

i“1

Lpπiq|cspπq|2
ź

vPS

}W Jac
fv }

2
Πv .

Finally, using description of Lpπiq for cuspidal πi as in (25) we conclude. �
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4.6. Regularization. To prove the reciprocity formula in Theorem 1 we need to express
the global L-function of σ b π as a period integral on GLpnq ˆ GLpn ´ 1q while σ is not
necessarily cuspidal. In this case, the usual GLpnq ˆ GLpn ´ 1q zeta integral may not be
absolutely convergent. This is why we need to regularize the global zeta integral to relate it
with the Rankin–Selberg L-functions.

Proposition 4.1. Let ϕ be an generic automorphic form on GnpAq and φ be a cusp form
on Gn´1pAq. Then for s P C with <psq sufficiently large

ż

rGn´1s

ˆ

ϕ

„ˆ

g
1

˙

´ ϕUn

„ˆ

g
1

˙

φpgq

˙

| detpgq|s´1{2 dg

is absolutely convergent and equals Ψps,Wϕ,Wφq.

To prove this proposition we need some preparatory results on the decay properties of
WUn
ϕ which will be used to deal with several convergence issues.

Lemma 4.2. Let ϕ be any vector in a generic automorphic representation σ of GnpAq and
ϕUn be its constant term along Un. Let X be any element in the universal enveloping algebra
of

ś

v|8GnpFvq. Then for all large N , and for z P rZn´1s and g P GnpAq we have

dσpXq pϕ´ ϕUnq

„ˆ

z
1

˙

g



!X,N,g |z|
´N ,

where the dependency on g is at most polynomial in the coordinates of the toric part of g
according to an Iwasawa decomposition.

Proof. This is a special case/reformulation of [49, Lemma I.2.10]. �

Lemma 4.3. Let z P rZn´1s, g P Gn´1pAq and γ P Pn´1pF qzGn´1pF q. Then for all large
M,N

WUn
ϕ

„ˆ

zγg
1

˙

!M,N,g p1` |z|q
´N
|γ|´MF

where | ¨ |F denotes any fixed norm of F n´1 and the dependency on g is at most polynomial
as in the previous lemma.

Proof. We use the formulation in (21) to write

WUn
ϕ

„ˆ

zγg
1

˙

“

ż

Fn´1zAn´1

pϕ´ ϕUnq

„ˆ

In´1 x
1

˙ˆ

zγg
1

˙

ψ0pen´1xq dx,

where en´1 is the vector p0, . . . , 0, 1q P An´1. Conjugating, using automorphicity of ϕ, and
changing variables we write the above as

| detpzq|

ż

Fn´1zAn´1

pϕ´ ϕUnq

„ˆ

z
1

˙ˆ

g x
1

˙

ψ0pen´1γzxq dx.
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From abelian Fourier theory and Lemma 4.2 we deduce that the above integral is bounded
by

p1` |z|q´N |en´1γ|
´M
F

for all large M,N . We conclude the proof by noting that en´1γ uniquely determines γ P
Pn´1pF qzGn´1pF q. �

Proof of Proposition 4.1. Rapid decay of the cusp form φ on r rGn´1s and Lemma 4.2 yield
the absolute convergence in the Lemma for sufficiently large <psq.

To prove the equality between the integral in the proposition and Ψps,Wϕ,Wφq we first,
using (20), write the integral as

ż

rGn´1s

ÿ

γPPn´1pF qzGn´1pF q

WUn
ϕ

„ˆ

γg
1

˙

φpgq| detpgq|s´1{2 dg.

Again rapid decay of φ on r rGn´1s and Lemma 4.3 yield absolute convergence of the above
joint integral and sum for large <psq. This allows us to unfold and write the above as

ż

Pn´1pF qzGn´1pAq
WUn
ϕ

„ˆ

g
1

˙

φpgq| detpgq|s´1{2 dg.

Now we insert the Fourier expansion of φ as in (19) into the above equation to write the
same as

ż

Pn´1pF qzGn´1pAq
WUn
ϕ

„ˆ

g
1

˙

ÿ

γPNn´1pF qzPn´1pF q

Wφpγgq| detpgq|s´1{2 dg.

Once again, applying Lemma 4.3 for WUn
ϕ along with Lemma 3.1 for Wφ we deduce that the

above joint sum and integral converge absolutely. This allows us to unfold once again to
write the above as

ż

Nn´1pF qzGn´1pAq
WUn
ϕ

„ˆ

g
1

˙

Wφpgq| detpgq|s´1{2 dg.

Finally, using Nn´1pAq-equivariance of Wφ we fold the above integral as
ż

Nn´1pAqzGn´1pAq

ˆ
ż

rNn´1s

WUn
ϕ

„ˆ

ng
1

˙

ψpnq dn

˙

Wφpgq| detpgq|s´1{2 dg.

We conclude by noting that the inner integral evaluates to Wϕ

„ˆ

g
1

˙

. �

5. Global Set-up

In this section we work globally and adopt the notations as described in the beginning of §4.
Let Π and π be cuspidal automorphic representations of Gn`1pAq and Gn´1pAq, respectively,
with trivial central characters. Let Φ P Π and φ P π be two cusp forms.
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5.1. Reciprocity as a period identity. We first show an identity between two periods of
the automorphic forms Φ and φ. This identity is the point of departure for the reciprocity
formula.

For s P C2 we define

(27) Pps,Φ, φq :“

ż

rGn´1s

ż

rG1s

Φ

»

–

¨

˝

zh
z

1

˛

‚

fi

flφphq| detphq|s1`s2´1
|z|nps1´1{2q dˆz dh.

As Φ is cuspidal, rapid decay of Φ ensures that the above integral converges absolutely for
any s P C2.

Proposition 5.1. For any s P C2 we have

Pps,Φ, φq “ Ppqs, qΦ, φq,

for qΦ :“ Πpw˚qΦ where w˚ and qs are given by (3) and (2), respectively.

Proof. This is a straightforward generalization of [53, Proposition 5.1] and the proof follows
the same lines. Indeed, by making use of the automorphicity of Φ we have

Φ

»

–

¨

˝

hz
z

1

˛

‚

fi

fl “ qΦ

»

–z

¨

˝

hz
1

1

˛

‚

ˆ

z´1In

1

˙

fi

fl

We insert the above in the integral in (27). Then using the central invariance of Φ and
φ, along with the change of variables h ÞÑ hz´1 followed by z ÞÑ z´1, we arrive at the
conclusion. �

5.2. Spectral decomposition of the period. Recall that Φ is a cusp form on Gn`1pAq.
We start by projecting Φ to the space of center invariant automorphic forms on GnpAq. For
s P C, we define

AsΦpgq “ | detpgq|s´1{2

ż

rG1s

Φ

„ˆ

zg
1

˙

|z|nps´1{2q dˆu, g P GnpAq.

Once again the above converges absolutely due to the rapid decay of Φ.
Note that AsΦpgq is ZnpAqGnpF q-left invariant. We also notice that since Φ is smooth

and of rapid decay, then so is AsΦ on ZnpAqzGnpAq. We spectrally decompose AsΦ over the
standard automorphic representations of ZnzGn, as in (18), to obtain

AsΦpgq “

ż

aut

ÿ

ϕP rBpσq

xAsΦ, ϕy

}ϕ}2
ϕpgq dσ.

It follows directly from the definition of As that we have

xAsΦ, ϕy “

ż

rGns

Φ

„ˆ

g
1

˙

ϕpgq| detpgq|s´1{2 dg,
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which, due to rapid decay of Φ, converges absolutely for all s P C. Using Fourier expansion
of Φ as in (19) we see that the above expression vanishes unless σ is generic. This can be
seen similarly as in [37, Lemma 4.1]. In this case it is equal to Ψps,WΦ,Wϕq; see §4.4. As a
consequence, we may rewrite the spectral decomposition of AsΦ as

AsΦpgq “

ż

gen

ÿ

ϕP rBpσq

Ψps,WΦ,Wϕq

}ϕ}2
ϕpgq dσ.

The above is entire as a function of s P C.
Let rUn be the image of Un under the embedding Gn ãÑ Gn`1 and let Φ

rUn
denote the

constant term along rUn, that is,

Φ
rUn
pgq :“

ż

rUns

Φ

„ˆ

u
1

˙

g



, g P Gn`1pAq.

Note that rUn is not a unipotent radical of any parabolic of Gn`1, so the above integral need
not vanish identically. Since rUns is compact, working as above, we spectrally decompose
AsΦrUn

to obtain

AsΦpgq ´AsΦrUn
pgq “

ż

gen

ÿ

ϕP rBpσq

Ψps,WΦ,Wϕq

}ϕ}2
pϕpgq ´ ϕUnpgqq dσ.

Once again the above converges absolutely and hence is entire as a function of s P C.
Recall that φ P π is a cusp form. Let s :“ ps1, s2q P C2 with <ps2q being sufficiently large.

We take g “

ˆ

h
1

˙

for h P Gn´1pAq in the above equation and integrate the both sides

against φ| det |s2´1{2 over h P rGn´1s. Using Proposition 4.1 we write that

(28)

ż

rGn´1s

ˆ

As1Φ

„ˆ

h
1

˙

´As1Φ
rUn

„ˆ

h
1

˙˙

φphq| detphq|s2´1{2 dh

“

ż

gen

ÿ

ϕP rBpσq

Ψps1,WΦ,WϕqΨps2,Wϕ,Wφq

}ϕ}2
dσ.

Both sides are absolutely convergent for any s P C2 with sufficiently large <ps2q. Thus the
expressions are entire in s1 and holomorphic in s2 in a right half plane.

We define the degenerate term by

(29) Dps,Φ, φq :“

ż

rG1s

ż

rGn´1s

Φ
rUn

»

–

¨

˝

zh
z

1

˛

‚

fi

flφphq| detphq|s1`s2´1
|z|nps1´1{2q dh dz.

Once again, rapid decay of Φ ensures that the integral in (29) converges absolutely for any
s P C2.
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For any s P C2 we also define

(30) Mps,Φ, φq :“

ż

gen

Λps1,Πb rσqΛps2, σ b rπq

Lpσq
HSpσ;WΦ,Wφ, sq dσ,

where HSpσ;WΦ,Wφ, sq is as defined in §6.1. Note that the above expression is well-defined
whenever s2 is not a pole of Λps2, σ b π̃q. Precisely, it is defined for s1 P C and <ps2q ‰ 1;
see §9 for more details.

Proposition 5.2. Let Φ P Π, φ P π, and s P C2. Recall P, D, and L from (27), (29), and
(24), respectively. Let S be a finite set of places such that both Φ, φ, F are unramified at all
v R S. Moreover, let WΦ,v “ WΠv and Wφ,v “ Wπv for v R S. Then

Pps,Φ, φq ´Dps,Φ, φq “Mps,Φ, φq,

for s1 P C and sufficiently large <ps2q.

Proof. Note that P as in (27) can be written as
ż

Gn

As1Φ

„ˆ

h
1

˙

φphq| detphq|s2´1{2 dh.

Similarly, we write (29) as

Dps,Φ, φq “
ż

Gn

As1Φ
rUn

„ˆ

h
1

˙

φphq| detphq|s2´1{2 dh.

We also choose rBpσq in (28) so that the only vectors for which Ψps1,WΦ,Wϕq is non-vanishing
satisfy Wϕ,v “ Wσv for all v R S. Finally, using (24) and (22) we conclude the proof. �

6. Choice of the Vectors in the Local Factors

6.1. The local factor. Let Π and π be cuspidal automorphic representations of Gn`1pAq
and Gn´1pAq, respectively. Let σ be a generic unitary automorphic representation of GnpAq.

Let S be a finite set of places of F . Let v P S. For W1 P Πv and W2 P πv, and s P C2 we
define

(31) Hvpσvq “ Hvpσv;W1,W2, sq :“
ÿ

WPBpσvq

Ψvps1,W1,W qΨvps2,W,W2q

Lvps1,Πv b rσvqLvps2, σv b rπvq
,

where Ψv is the v-adic zeta integral defined in (9). Here Bpσvq is an orthonormal basis of σv
under the unitary inner product defined in §3.5. The right-hand side does not depend on a
choice of Bpσvq. We also define

hvpσvq :“ Lvps1,Πv b rσvqLvps2, σv b rπvqHvpσvq.

and
HSpσq “ HSpσ; Φ, φ, sq :“

ź

vPS

Hvpσv;WΦ,v,Wφ,v, sq,

which are the local factor used in Theorem 1.
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Lemma 3.3 and Lemma 3.2 imply that the right-hand side of (31) is absolutely convergent
for sufficiently large <psq. As a function of s the function Hpσ;W1,W2, sq can be analytically
continued to all of C2 which follows from the fact that

Ψvps,W1,W q

Lvps,Πv b rσvq
,

Ψvps,W,W2q

Lvps, σv b rπvq

are entire functions of s.

6.2. Choices of vectors. Let q be an ideal of
ś

vă8 ov and p0 be a fixed prime such that
q, p0, and the discriminant ∆F of F are pairwise coprime. We let

S :“ tp0u Y tv | qu Y tv | ∆F u Y tv | 8u.

We assume that Π and π are unramified at all v ă 8.
We choose factorable cusp forms Φ P Π and φ P π by specifying their local Whittaker

components WΦ,v P Πv and Wφ,v P πv. For all v R S we choose WΦ,v “ WΠv and Wφ,v “ Wπv .
The choices at v P S are described below.

6.2.1. At the places v | q. For any f P Zě0 and any prime p we define

(32) W
pfq
Πp
pgq :“ Nppq´pn´1qf

ż

Fn´1
p

WΠp

¨

˝g

¨

˝

In´1 β
1

1

˛

‚

˛

‚1on´1pβpf q dβ,

for g P Gn`1pFpq.

Let pv be the maximal ideal of ov. Let q “
ś

v|q p
fv
v . For all v | q we choose WΦ,v “ W

pfvq
Πv

.

On the other hand, for all v | q we choose Wφ,v “ Wπv .

6.2.2. At the places v | ∆F . At these places we need care due to the fact that the underlying
additive character for the Whittaker model is not unramified. That is, ψvpxq “ ψFvpλvxq
for some λv P Fv such that |λv|

´1 “ ∆v is the v-part of the discriminant ∆F and ψFv is the
standard unramified additive character of Fv, i.e. trivial on ov. Let

arpλvq “ diagpλr´1
v , . . . λv, 1q, r ě 1.

Then, we take

(33) WΦ,vpgq :“ WΠvpan`1pλvqgq, Wφ,vpgq :“ Wπvpan´1pλvqgq.

To avoid confusion, WΠv and Wπv are the usual newvectors, i.e. they are realized in the
Whittaker model with respect to ψFv .
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6.2.3. At the place v “ p0. Let τ be a fixed supercuspidal representation of GnpFvq with
trivial central character. For normalization purposes we choose τ so that

Lvps, τ b rτq “ ζvpnsq.

Such a τ exists; see [64, §2.1].
It is known that the normalized newvector Wτ P C

8
c pZnpFvqNnpFvqzGnpFvq, ψvq, i.e. Wτ

is compactly supported on ZnpFvqNnpFvqzGnpFvq; see [19, Corollary 6.5]. We choose WΦ,v

so that

(34) WΦ,v

„ˆ

zh
1

˙

:“ 1zPoˆvWτ phq, z P G1pFvq, h P ZnpFvqzGnpFvq.

Note that the (34) uniquely determines WΦ,v due to the theory of Kirillov models; see §3.5.
Once again, we choose Wφ,v “ Wπv .

6.2.4. At the archimedean places v | 8. For each v | 8, we choose Wφ,v P πv as a smooth
vector such that Wφ,vp1q “ 1. We also fix a sufficiently small ε ą 0 and a ball B Ă

Nn´1pFvqzGn´1pFvq around the identity with sufficiently small radius, so that

(35) |Wφ,vphq ´ 1| ă ε, @h P B.

Using the theory of Kirillov models, we choose WΦ,v P Πv so that WΦ,v |GnpFvq is given by a
fixed non-negative element in C8c pNnpFvqzGnpFvq, ψvq such that

(36) G1pFvqˆNn´1pFvqzGn´1pFvq Q pz, hq ÞÑ Wφ,v

»

–

¨

˝

zh
z

1

˛

‚

fi

fl is supported on B0ˆB,

where B0 Ă G1pFvq is a ball around 1 with sufficiently small radius. Moreover, we normalize
WΦ,v by imposing that

(37)

ż

Nn´1pFvqzGn´1pFvq

ż

G1pFvq

Wφ,v

»

–

¨

˝

zh
z

1

˛

‚

fi

fl dˆz dh “ 1.

We use the shorthand

(38) h8pσq :“
ź

v|8

hv

ˆ

σv;WΦ,v,Wφ,v,

ˆ

1

2
,
1

2

˙˙

,

where hv is defined in §6.1, and

(39) Hqpσq :“
ź

v|q

Hv

ˆ

σv;W
pfvq
Πv

,Wπv ,

ˆ

1

2
,
1

2

˙˙

,

if q “
ś

v|q p
fv
v .
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7. Local Weight Function: Original Moment

In this section, let v be a non-archimedean place and F be the corresponding local field
whose ring of integer is o with maximal ideal p. The letters Π, σ, and π denote irreducible
generic unitary representations of Gn`1pF q, GnpF q, and Gn´1pF q, respectively. Similarly, L,
γ,... etc. denote local L-factors, local γ-factors... etc. We drop F from the notations if there
is no confusion.

We fix a 0 ď ϑ ă 1{2. Further assume that Π and π are tempered and unramified. Also,
let σ be a ϑ-tempered representation of Gn with conductor exponent cpσq.

The goal of this section is to analyse Hpσq for the choices of the local vectors as in §6.2
at the non-archimedean places v | q, v | ∆F , and p0.

7.1. At the places v | q. We devote this subsection to prove the following proposition.
Recall the definition of the local factor Hv from (31).

Proposition 7.1. Recall the choices of test vectors from §6.2 for v | q. We have

Hvpσv;WΦ,v,Wφ,v, sq

$

’

’

’

&

’

’

’

%

!ε Nppvq
fvε`cpσvqNppvq

´n cpσvq`fv
2 if cpσvq ă fv

“
1

ηppfvv q}Wσv}
2

if cpσvq “ fv

“ 0 if cpσvq ą fv

for <psq “
`

1
2
, 1

2

˘

. Here ηppf q :“ rGnpoq : K0pp
f qs — Nppqfpn´1q.

From §6.2 we have

Hvpσv;WΦ,v,Wφ,v, sq “ Hpσ;W
pfq
Πv
,Wπv , sq.

For the rest of this subsection we suppress the notation for the place v.

First we explicitly write W
pfq
Π defined in (32) as follows. Note that the Fourier transform

of 1or is itself. Thus,

(40) W
pfq
Π

„ˆ

g
1

˙

“ WΠ

„ˆ

g
1

˙

1on´1p`pgqp´f q,

where `pgq denotes the row vector constructed from the left-most n´ 1 elements of the last
row of g.

Lemma 7.1. Let W P σ. Then

Ψps1,W
pfq
Π ,W q “ Ψps1,W

pfq
Π , Pf pW qq,

where Pf is the orthogonal projection onto σK0ppf q. In particular, Ψps1,W
pfq
Π ,W q vanishes

unless cpσq ď f
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Proof. Let <ps1q be sufficiently large. Using (40) and sphericality of WΠ we write the zeta
integral in Iwasawa coordinates as

ż

An

WΠ

„ˆ

a
1

˙

| detpaq|s1´1{2

ż

Kn

1on´1p`pkqanp
´f
qW pakq dk

dˆa

δpaq
.

Recall from the description of the spherical Whittaker function in (14) that the above
vanishes unless an P o. Hence the inner Kn-integral is just a multiple of Pe, where e “
maxp0, f ´ vpanqq. The main formula now follows since PePf “ Pe for e ď f and via mero-

morphic continuation. Finally, we conclude by recalling that σK0ppf q is zero if cpσq ą f . �

Lemma 7.2. Recall that σ is a ϑ-tempered representation with conductor exponent cpσq. We
have

γp1{2` s, σq — Nppq´cpσq<psq.

for s P C with 0 ď <psq ă 1{2´ ϑ.

Proof. Recall that

γp1{2` s, σq “ εp1{2` s, σq
Lp1{2´ s, rσq

Lp1{2` s, σq
,

with
εp1{2` s, σq “ εp1{2, σqNppq´cpσqs,

and |εp1{2, σq| “ 1 as σ is unitary.
Also, there exist tαiu

m
i“1, tβiu

m
i“1 P Cm with m ď n such that maxit|αi|, |βi|u ď Nppqϑ and

Lps, σq “
m
ź

i“1

p1´Nppq´sαiq
´1, Lps, rσq “

m
ź

i“1

p1´Nppq´sβiq
´1.

Thus for s as in the lemma we have

Lp1{2´ s, rσq, Lp1{2` s, σq — 1.

Combining all the bounds we conclude. �

Note that if π1 is an unramified representation of PGLprq with Langlands parameters
tνiu

r
i“1 then

γps, π1 b σq “
r
ź

i“1

γps` νi, σq.

Moreover, if π1 is tempered, i.e. <pνiq “ 0, then Lemma 7.2 implies that

(41) γp1{2` s, π1 b σq — Nppq´rcpσq<psq,

whenever 0 ď <psq ă 1{2´ ϑ.

Lemma 7.3. Fix e ě cpσq and let W P σ be any K0pp
eq-invariant unit vector. Then

Ψp1{2` s2,W,Wπq ! Nppqpe´cpσqqε,

for <ps2q “ 0.
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Proof. Let 0 ă <ps2q ă 1{2´ ϑ.

Note that K0pp
eq-invariance of W implies that if W

„ˆ

h
1

˙

is nonzero then en´1h P

on´1. Thus the integral of Ψp1{2 ` s2,W,W2q can be written as the absolutely convergent
integral

ż

Nn´1zGn´1

W

„ˆ

h
1

˙

1on´1pen´1hqWπphq| detphq|s2 dh.

The absolute convergence follows from Lemma 3.1. By the Cauchy–Schwarz inequality and
the unitarity of W , we conclude that the above expression has its absolute value bounded
by the square root of

ż

Nn´1zGn´1

1on´1pen´1hq|Wπphq|
2
| detphq|2<ps2q dh.

Lemma 3.1 confirms that the above integral converges absolutely as <ps2q ą 0 and equals
Lp2<ps2q, π b rπq [20, Theorem 3.3]. Thus we have Ψps2,W,Wπq ! 1.

Now we focus on Ψp1{2´s2,W,Wπq. We apply GLpnqˆGLpn´1q local functional equation
to obtain that Ψp1{2´ s2,W,Wπq equals

γp1{2` s2, rσ b πq

ż

Nn´1zGn´1

ĂW

„ˆ

h
1

˙

ĂWπphq| detphq|s2 dh.

The above integral is absolutely convergent which follows from Lemma 3.1. Also from (41)
we obtain that the above gamma factor is bounded by Nppq´<ps2qpn´1qcpσq.

We note that K0pp
eq-invariance of W implies that ĂW

„ˆ

h
1

˙

is nonzero then en´1h P

p´e. So the above integral can be written as
ż

NnzGn

ĂW

„ˆ

h
1

˙

1on´1pen´1hp
e
qĂWπphq| detphq|s2 dh.

We again apply the Cauchy–Schwarz inequality on the h-integral. Using that }W } “ }ĂW } “
1 and Lp1, σ b rσq — 1 we obtain that the above is bounded in absolute values by the square
root of

ż

Nn´1zGn´1

1on´1pen´1hp
e
q|ĂWπphq|

2
| detphq|2<ps2q dh.

Changing variable h ÞÑ hp´e we see that the above is Nppq2pn´1q<ps2qeLp2<ps2q, πb rπq. Thus
for <ps2q ą 0 we have

(42) Ψp1{2´ s2,W,Wπq ! Nppqpn´1q<ps2qpe´cpσqq.

Using the Phragmén–Lindelöf convexity principle with <ps2q “ ε we may conclude. �
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Lemma 7.4. Let ξ be any irreducible generic tempered unramified representation of Gn´1.
Let χ be any unitary character of Fˆ and l P Zě0. Then the integral

ż

vpzq“l

χpzq

ż

An´1

WΠ

»

–

¨

˝

az
z

1

˛

‚

fi

flWξpaq| detpaq|s´1 dˆa

δpaq
dˆz

is absolutely convergent for <psq ą 0 and is OpNppq´lpn{2´εqq.

Proof. Note that as ξ is tempered and <psq ą 0 Lemma 3.1 implies absolute convergence of
the integral in the lemma.

Using Shintani’s formula (14) we bound the above integral in absolute value by

Nppq´nl{2
ÿ

m1ě...ěmn´1ěl

|λΠpm, l, 0qλξpmq|Nppq
´<psq

ř

imi .

Temperedness of Π and (15) implies that λΠpm, l, 0q ! Nppqεp
ř

imi`lq and similarly, λξpmq !
Nppqεp

ř

imiq. Thus we obtain that the above infinite sum is convergent if <psq ą 0 and is
bounded. �

Lemma 7.5. Let W P σK0ppeq be any unit vector for some e ě cpσq. Also let ξ be as in
Lemma 7.4. Then the integral

ż

An´1

W

„ˆ

a
1

˙

Wξpaq| detpaq|´s
dˆa

δpaq

is absolutely convergent for 0 ă <psq ă 1{2´ ϑ and is OpNppq<psqpn´1qpe´cpσqqq.

Proof. This follows from the proof of Lemma 7.3, in particular, from (42). �

Lemma 7.6. Let W P σK0ppeq be any unit vector for some e ě cpσq. Let l P Zě0 and ωσ be
the central character of σ. Then for <psq “ 0 the integral

ż

vpzq“l

|z|nsωσpzq

ż

An´1

WΠ

»

–

¨

˝

az
z

1

˛

‚

fi

flW

„ˆ

a
1

˙

| detpaq|s
dˆa

δpaq| detpaq|
dˆz

is absolutely convergent and is OpNppq´nl{2`εpe´cpσq`lqq.

Proof. Absolute convergence follows from Lemma 3.1.
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We choose some 0 ă η ă 1{2 ´ ϑ. We use non-archimedean Kontorovich–Lebedev–
Whittaker transform [24] to write the integral as

1

pn´ 1q!

ż

τPpS1qn´1

ż

vpzq“l

|z|nsωσpzq

ż

An´1

WΠ

»

–

¨

˝

a1z
z

1

˛

‚

fi

flWσpτqpa1q| detpa1q|η`s´1 dˆa1

δpa1q
dˆz

ż

An´1

W

„ˆ

a2

1

˙

Wσpτqpa
2
q| detpa2q|´η

dˆa2

δpa2q

ź

i‰j

pτi ´ τjq
dτ1

τ1

. . .
dτn´1

τn´1

.

Here by dτj we denote the 2πi-normalized Lebesgue measure on S1 and Wσpτq is the nor-
malized spherical vector of the representation whose Langlands parameters are given by
τ .

Note that the choice of η ensures absolute convergence of all the integrals. We use Lemma
7.4 to bound the outer An´1ˆF

ˆ-integral by Nppq´lpn{2´εq and Lemma 7.5 to bound the inner
An´1-integral by Nppqηpn´1qpe´cpσqq. Bounding the pS1qn´1-integral trivially we conclude. �

Lemma 7.7. Let W P σ be a unit vector. Then

Ψp1{2` s1,W
pfq
Π ,W q ! Nppqcpσq`εfNppq´n

cpσq`f
2 ,

for <ps1q “ 0.

Proof. Using (40) and Iwasawa coordinates we write

Ψp1{2` s1,W
pfq
Π ,W q “

ż

Fˆ
ωσpzq

ż

An´1

WΠ

»

–

¨

˝

az
z

1

˛

‚

fi

fl ||z|n detpaq|s1

ż

Kn

W

„ˆ

a
1

˙

k



1on´1p`pkqzp´f q dk
dˆa

δpaq| detpaq|
dˆz.

In the innerKn-integral support condition of 1on´1 forces lpkq P ppeqn´1 where e :“ maxp0, f´
vpzqq. Hence that integral can be written as

ż

K0ppeq

W

„ˆ

a
1

˙

k



dk “ volpK0pp
e
qqPepW q,

where Pe is as in Lemma 7.1. Since Pe is an orthogonal projection, we can write
ż

K0ppeq

W

„ˆ

a
1

˙

k



dk “ cepW qW
peq

„ˆ

a
1

˙

for some unit vector W peq P σ̄K0ppeq and

cepW q ! volpK0pp
e
qq — Nppq´epn´1q.



RECIPROCITY AND NON-VANISHING 39

Moreover, if vpzq ě f ` 1 then the above Kn integral vanishes unless cpσq “ 0. Thus we

write Ψp1{2` s1,W
pfq
Π ,W q as

f
ÿ

e“cpσq

cepW q

ż

vpzq“f´e

ωσpzq

ż

An´1

WΠ

»

–

¨

˝

az
z

1

˛

‚

fi

fl

W peq

„ˆ

a
1

˙

||z|n detpaq|s1
dˆa

δpaq| detpaq|
dˆz

` δcpσq“0c0pW q

ż

zPpf`1

ωσpzq

ż

An´1

WΠ

»

–

¨

˝

az
z

1

˛

‚

fi

fl

W p0q

„ˆ

a
1

˙

|z|n detpaq|s1
dˆa

δpaq| detpaq|
dˆz.

We let <ps1q “ 0. Using Lemma 7.6, we bound the first summand by

f
ÿ

e“cpσq

Nppq´pn´1qeNppq´npf´eq{2Nppqεpf´cpσqq ! Nppq´nf{2´pn{2´1qcpσq`εf ,

and the second summand by

δcpσq“0

8
ÿ

l“f`1

Nppq´lpn{2´εq ! δcpσq“0Nppq
´pf`1qpn{2´εq.

Combining the above, we conclude the proof. �

Proof of Proposition 7.1. Case cpσq ă f : By Lemma 7.1 we can instead sum over BpσK0ppf qq

in the definition of Hpσq. We now apply Lemma 7.7, Lemma 7.3, and the fact that for
<ps1q “ <ps2q “ 1{2

Lps1,Πb rσq, Lps2, σ b rπq — 1.

We conclude by noting that the dimension of σK0ppf q is a polynomial in cpσq and f ; see [57].

Case cpσq “ f : We take BpσK0ppf qq consisting of the single vector Wσ

}Wσ}
. Thus we obtain

Hpσ;W
pfq
Π ,Wπ, sq “ }Wσ}

´2 Ψps1,W
pfq
Π ,Wσq

Lps1,Πb rσq

Ψps2,Wσ,Wπq

Lps2, σ b rπq
.

Applying (13) we conclude the proof for this case.
Case cpσq ą f : Lemma 7.1 implies the case cpσq ą f immediately. �
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7.2. At the places v | ∆F . Recall the choices of the test vectors in (33). Since the test
vectors differ from the spherical ones only by a multiplication on the left, it follows that

WΦ,v is right invariant by

ˆ

k
1

˙

, k P Kn. Therefore, for a K-isotypic vector W P σv

the zeta integral Ψps1,WΦ,v,W q vanishes unless W is spherical. Hence, Hvpσv;WΦ,v,Wφ,v, sq
vanishes unless σv is unramified in which case Hvpσvq has only one summand. The vector
corresponding to this summand has to be given, up to normalization, by a left translate of
Wσv , the newvector for the unramified character.

In fact, we have

Hpσ;WΦ,v,Wφ,v, sq “ }W }
´2 Ψvps1,WΦ,v,W q

Lps1,Πv b rσvq

Ψvps2,W,Wφ,vq

Lvps2, σv b rπvq
,

where (see §6.2.2)

W pgq :“ Wσvpanpλvqgq.

It follows by changing variables that
$

’

&

’

%

Ψvps1,WΦ,v,W q “ |λv|
µ1ps1qΨvps1,WΠv ,Wσvq “ ∆

´µ1ps1q
v Lvps1,Πv b rσvq,

Ψvps2,W,Wφ,vq “ |λv|
µ2ps2qΨvps2,Wσv ,Wπvq “ ∆

´µ2ps2q
v Lvps2, σv b rπvq,

}W }2 “ |λv|
µ}Wσv}

2 “ ∆´µ
v ,

where µ1 and µ2 are affine functions whose complex coefficients only depend on n; and µ is
a constant only depending on n. Altogether, we get that

(43) Hvpσv;WΦ,v,Wφ,v, sq “ ∆´µHpsq
v ,

where µH is an affine functions whose complex coefficients depend only on n. We use the
shorthand µH for µH

`

1
2
, 1

2

˘

.

7.3. At the place v “ p0. Recall the choices of the local test vectors at v “ p0 from §6.2.

Proposition 7.2. We have

Hvpσv;WΦ,v,Wφ,v, sq “

#

εvp1, τ b rτq if σv “ τ,

0 otherwise;

for s “
`

1
2
, 1

2

˘

.

The proof of this lemma is essentially contained in [36, §6.2]. We give a sketch of the proof
for the sake of completeness.

Proof. For W P Bpσvq using (34) we write

Ψp1{2,WΦ,v,W q “

ż

ZnNnzGn

Wτ pgqW pgq dg.
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The above integral is absolutely convergent as Wτ is compactly supported in ZnNnzGn. Thus
it defines a Gn-invariant sesquilinear pairing between τ and σv. By Schur’s lemma, this
pairing must vanish identically unless σv “ τ . In the latter case the pairing is proportional
to the unitary inner product in τ as defined in §3.5.

If σv “ τ we choose an orthonormal basis Bpσvq containing Wτ

}Wτ }
. As Ψp1{2,WΦ,v,W q

vanishes for W orthogonal to Wτ , we obtain

Hvpσv;WΦ,v,Wφ,v, sq “ }Wτ}
´2

ż

ZnNnzGn

|Wτ pgq|
2 dg.

The above follows from (13) and the fact that Lvps,Π b rτq “ 1. We evaluate the above
integral appealing to [36, Lemma 6.2] and conclude. �

8. Local Weight Function: Dual Moment

In this section we adopt the same notations as in §7. In particular, σ is an irreducible
generic unitary ϑ-tempered representation of GnpF q for some 0 ď ϑ ă 1{2.

Recall w˚ from the statement of Proposition 5.1. Let W1 P Π and W2 P π, and s P C2.
We define the dual local factor by

qHpσq “ qHpσ;W1,W2, sq :“ Hpσ; Πpw˚qW1,W2, sq

where Hpσq is as in (31).

The goal of this section is to analyse qHpσq, as in Proposition 8.1, for the choices of the
local vectors as in §6.2 at the places v | q.

We suppress the subscript v as usual.
For W P σ we define

(44) |W pfq
pgq “ Nppq´pn´1qf

ż

Fn´1

W

„

g

ˆ

In´1 β
1

˙

1on´1pβpf q dβ.

Clearly, for g P Gn´1,

(45) |W pfq

„ˆ

g
1

˙

“ W

„ˆ

g
1

˙

1on´1pen´1gp
´f
q,

where en´1 is the standard row vector p0, . . . , 0, 1q.

Lemma 8.1. Recall the vector W
pfq
Π from (32). Then qHpσ;W

pfq
Π ,Wπ, sq vanishes unless σ

is unramified in which case

qHpσ;W
pfq
Π ,Wπ, sq “

Ψps2,|W
pfq
σ ,Wπq

Lps2, σ b rπq
,

where |W
pfq
σ is defined as in (44).
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Proof. As WΠ is spherical on Gn`1 we write

W
pfq
Π pgw˚q “ Nppq´pn´1qf

ż

Fn´1

WΠ

»

–gw˚

¨

˝

In´1 β
1

1

˛

‚

fi

fl1on´1pβpf q dβ

“ Nppq´pn´1qf

ż

Fn´1

WΠ

»

–g

¨

˝

In´1 β
1

1

˛

‚

fi

fl1on´1pβpf q dβ.

Let <ps1q and <ps2q be sufficiently large. Changing variables we write Ψps1,Πpw
˚qW

pfq
Π ,W q

as

Nppq´pn´1qf

ż

Fn´1

Ψps1,WΠ, σpu´βqW q1on´1pβpf q dβ,

where uβ “

ˆ

In´1 β
1

˙

. Let Bpσq be an orthonormal K-isotypic basis. We multiply the

above integrand by Ψps2,W,Wπq and sum over the basis

"

σ

ˆˆ

In´1 β
1

˙˙

W

*

WPBpσq
.

By linearity of the zeta integral, this yields

qHpσq “
ÿ

WPBpσq

Ψps1,WΠ,W q

Lps1,Πb rσq

Ψps2,|W
pfq,Wπq

Lps2, σ b rπq
.

By Lemma 7.1, Ψps1,WΠ,W q vanishes unless σ is unramified in which case we may replace
the above sum by a sum over W P BpσKnq, which we may take to consist only of the vector
Wσ (recall (16)). Applying (13) and meromorphic continuation we conclude the proof. �

Lemma 8.2. Let σ be unramified. We have

Ψp1{2` s2,|W
pfq
σ ,Wπq ! Nppq´fpn´1qp1{2´ϑq,

for <ps2q “ 0.

Proof. Using Lemma 3.1 we write the zeta integral as the absolutely convergent integral
ż

Nn´1zGn´1

|W pfq
σ

„ˆ

g
1

˙

Wπpgq| detpgq|s2 dg.

Using (45) and sphericality of the vectors Wσ and Wπ we write the above as
ż

An´1

Wσ

„ˆ

a
1

˙

Wπpaq| detpaq|s2
ż

Kn´1

1on´1pen´1kan´1p
´f
q dk

dˆa

δpaq
.

The inner Kn´1-integral vanishes unless vpan´1q ě f in which case the integral evaluates to
1. Using Shintani’s formula (14) for the spherical vectors we may write the above as

ÿ

m1ě¨¨¨ěmn´1ěf

λσpm, 0qλπpmqNppq
´p1{2`s2q

ř

imi .
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Using (15) we obtain

λσpm, 0q ! Nppqpϑ`εq
ř

imi ,

and temperedness of π implies that λπpmq ! Nppqε
ř

imi . Thus we get the absolute value of

Ψp1{2` s2,|W
pfq
σ ,Wπq is bounded by

ÿ

m1ě¨¨¨ěmn´1ěf

Nppq´p1{2´ϑ´εq
ř

imi ! Nppq´fpn´1qp1{2´ϑ´εq,

which follows as ϑ ă 1{2. �

Proposition 8.1. Fix 0 ď ϑ ă 1{2 and let σ be a ϑ-tempered representation. Then
qHpσ;W

pfq
Π ,Wπ, sq vanishes unless σ is unramified in which case

qHpσ;W
pfq
Π ,Wπ, sq ! Nppq´fpn´1qp1{2´ϑ´εq,

for <psq “
`

1
2
, 1

2

˘

.

Proof. As π is tempered and σ is ϑ-tempered with ϑ ă 1{2 we have Lps2, σ b rπq — 1 for
<ps2q “ 1{2. We conclude using Lemma 8.1 and Lemma 8.2. �

9. The Residue Term: Dual Side

Recall Mps,Φ, φq from (30) which is originally defined for sufficiently large <psq. The goal
of this section is to meromorphically continue Mps,Φ, φq on the right of <psq “

`

1
2
, 1

2

˘

.
We use the shorthand “<psiq ą c for i “ 1, 2” as “<psq ą c” and similarly for the symbols

ě, ă, ď and “. Our aim is to prove the following proposition.

Proposition 9.1. Recall P, D, and M from (27), (29), and (30), respectively. Then we
have

P ´D “M`R,
where R is defined in (48). All of the above are evaluated at ps,Φ, φq with 1{2´ε ď <psq ă 1
and are holomorphic in this region. Moreover, if the local components of Φ and φ are chosen
as in §6.2 then

R
ˆˆ

1

2
,
1

2

˙

, qΦ, φ

˙

!Π,π Npqq
´fppn´2q{2´εq,

where qΦ is as in Proposition 5.1.

9.1. Analytic continuation. We recall the definition of M below:

Mps,Φ, φq “

ż

gen

Λps1,Πb rσqΛps2, σ b rπq

Lpσq
HSpσ;WΦ,Wφ, sq dσ.

Using the parametrization of the generic spectrum via cuspidal data (cf. §4.1) we decompose
M “ M0 `M1, where M1 corresponds to the contribution coming from the parabolic
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Q attached the partition n “ pn ´ 1q ` 1 and M0 :“ M ´M1. we further decompose
M1 “M2 `Mπ where Mπ corresponds to the the Eisenstein spectrum attached to

(46) σpπ, zq :“ I
`

M,π ¨ | det |z b | ¨ |´pn´1qz
˘

, z P iR,

where M – Gn´1 ˆG1 is the Levi of Q and M2 :“M1 ´Mπ. In other words,

(47) Mπps,Φ, φq :“ cQ

ż

<pzq“0

Λps1,Πb Čσpπ, zqqΛps2, σpπ, zq b rπq

Lpσpπ, zqq
HSpσpπ, zqq dz,

where cQ is a positive constant depending only on Q (see [2, Main Theorem]) and dz is the
2πi-normalized Lebesgue measure on iR.

Note that Λps,Πb rσq is an entire function of s and Λps, σb rπq is an entire function of s if
σ is not of the form (46), which follows from [20, Theorem 4.2]. Applying positivity of Lpσq
for unitary σ (see §4.5) and entireness of HSpσq as a function of s (see §6.1) we obtain that
M0 and M2 are entire functions of s.

The above argument also implies that M, as defined in (30), is also holomorphic for s1 P C
and 1{2 ď <ps2q ă 1.

We now perform the meromorphic continuation of Mπps,Φ, φq which is originally defined
for large <psq to <psq ě 1{2 (actually, for all s1 P C). The argument is a generalization of
[53, Proposition 9.1].

Lemma 9.1. Let any v P S and W1 P Πv and W2 P πv. Then the local factor Hvpσpπv, zq;W1,W2, sq,
originally defined for z P iR and large <psq, can be meromorphically continued as a function
of z, s1, s2 to all of C3 such that it is holomorphic for s P C2 and sufficiently small |<pzq|.

The proof can be extracted from [22]. We prove it here for completeness and readers’
convenience.

Proof. From the definition of the local weight in (31) we know that Hvpσvq does not depend
on the choice of basis Bpσvq. We construct a basis Bpσpπv, zqq for z P iR via flat sections, as
follows.

Let τ
pKXMq
πv ,z be the restriction of τπv ,z :“ πv b | det |z

Â

| ¨ |´pn´1qz to K XM . Thus τ
pKXMq
πv ,z

is independent of z and so we call it τ
pKXMq
πv . We construct τ

pKq
πv :“ IndKKXMτ

pKXMq
πv which

is, consequently, independent of z. We choose an orthonormal basis Bpτ pKqπv q of τ
pKq
πv . For all

η P Bpτ pKqπv q we choose a function ξπv ,z,η on GpFvq which satisfies

ξπv ,z,ηpnmkq “ δ
1{2`z
Q pmqτπv ,zpmqηpkq, n P NQ,m PM,k P K,

where NQ is the unipotent radical attached to Q and δQ is the modular character attached
to Q.

Let W Jac be Jacquet’s functional from the induced model to the Whittaker model; see [22,
§1.4] and [32]. Then it is known from [22, Proposition A.2] that

ζxW Jac
ξπv,z,η1

,W Jac
ξπv,z,η2

y0 “ xξπv ,z,η1 , ξπv ,z,η2y “ xη1, η2y,
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where ζ is an absolute constant. In particular, from (6) we conclude that }W Jac
ξπv,z,η

}2 does
not vanish when z varies in a small enough neighbourhood of the imaginary axis.

We rewrite the definition (31) of Hvpσpπv, zq;W1,W2, sq as

ÿ

ηPBpτ pKqπv q

Ψv

´

s1,W1,W
Jac
ξ
rπv,´z,η

¯

Ψv

´

s2,W
Jac
ξπv,z,η

,W2

¯

}W Jac
ξπv,z,η

}2Lvps1,Πv b σprπv,´zqqLvps2, σpπv, zq b rπq
.

From [31, Corollaire 3.5] (also see [32, Theorem 4]) it is known that W Jac
ξπv,z,η

is entire in z. We

work as in §6.1 to conclude the proof noting the meromorphic properties of Lvp1, σpπv, zq b
σprπv,´zqq. �

We define the residue term Rps,Φ, φq to be
(48)

rF,Q
Λps1 ` s2 ´ 1,Πb rπqΛps1 ` s2 ´ 1` np1´ s2q,Πq

Λp1` np1´ s2q, πq
HSpσpπv, 1´ s2qqL8pσpπ, 1´ s2qq,

where
L8pσpπ, zqq :“

ź

v|8

Lvp1, πv,AdqLvp1` nz, πvqLvp1´ nz, rπvq

and rF,Q is a certain positive constant depending only on F and Q that can be explicitly com-
puted in terms of the residues of the Dedekind zeta function and the automorphic Plancherel
density (only depends on Q, n).

Lemma 9.2. The function Mπps,Φ, φq, initially defined for large <psq, admits a meromor-
phic continuation to <psq ą 1

2
´ε and is given by the sum of Rps,Φ, φq and the right-hand side

of (47), where Rps,Φ, φq is given by (48). In particular, both the summands are holomorphic
on <psq “ 1{2.

Proof. Using (46) we rewrite (47) as

Mπps,Φ, φq “ cQ

ż

<pzq“0

Λps1 ´ z,Πb rπqΛps2 ` z, π b rπq

ˆ
Λps1 ` pn´ 1qz,ΠqΛps2 ´ pn´ 1qz, rπq

Lpσpπ, zqq
HSpσpπ, zqq dz.

Let δ ą 0 be sufficiently small in terms of all parameters. We use the positivity of Lpσpπ, zqq
on z P iR to define a continuous even function κ : R ÞÑ p0, δq so that Lpσpπ, zqq does not
vanish for ´2κp=pzqq ă <pzq ă 0.

We notice that we can analytically continue Mπps,Φ, φq to <psq ą 1, since in that region,
the integrand is holomorphic in s. Now, suppose that

1 ă <psq ă 1` κp=psqq.
We shift the contour of the integral defining Mπps,Φ, φq to <pzq “ ´κp=pzqq. We pick up
a simple pole in this process at z “ 1 ´ s2 which is from Λps2 ` z, π b rπq. This is due to
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the fact that Λps1 ´ z,Π b rπq, Λps1 ` pn ´ 1qz,Πq, and Λps2 ´ pn ´ 1qz, rπq are entire in s
and z. Moreover, Lemma 9.1 and our choice of δ ensures that HSpσpπ, zqq{LSpσpπ, zqq is
holomorphic as a function of z in the δ-neighbourhood of 0.

We call the residue at z “ 1´s2 to be Rps,Φ, φq as in (48). The expression in (48) follows
from

Lpσpπ, zqq “ dF,MLp1, π,AdqLp1` nz, πqLp1´ nz, rπq,

which follows Lemma 4.1.
Moreover, we observe that in view of our choice of κ, the shifted integral defines a holo-

morphic function in the region

1´ κp=psqq ă <psq ă 1` κp=psqq.
We now take s satisfying 1´κp=psqq ă <psq ă 1. We may shift the contour back to the line
<pzq “ 0, crossing no poles in the process. This proves the desired formula for

1´ κp=psqq ă <psq ă 1.

We note from (47) that M is holomorphic in 1{2 ´ ε ă <psq ă 1. This follows from
the holomorphicity of the Rankin–Selberg L-functions and the same in z of the factor
HSpσpπ, zqq{Lpσpπ, zqq on <pzq “ 0.

Similarly, meromorphicity (and holomorphicity on <psq “ 1{2) of R, as in (48), in the
same region follows from that of the local L-factors and the proof of Lemma 9.1. �

9.2. Local computations for the residue term at v | q. Recall the choice of the test
vectors at v | q from §6.2. In this subsection, we analyse the v-adic local components in the

residue term in (48) for s “
`

1
2
, 1

2

˘

and Φ replaced by qΦ which is defined in Proposition 5.1.
In the rest of this subsection we will only work v-adically and suppress the subscript v.

Once again, we meromorphically continue qHpσpπ, zqq for these choices from z P iR to
z P C. However, the method is different than that in the proof of Lemma 9.1.

Lemma 9.3. We have

qHpσpπ, 1{2q;W
pfq
Π ,Wπ, sq “

Ψps,|W
pfq
σpπ,1{2q,Wπq

Lps, σpπ, 1{2q b rπq
,

where |W pfq is given by (44).

Proof. Let z P iR so that σpπ, zq is unitary. We apply Lemma 8.1 to obtain

qHpσpπ, zq;W
pfq
Π ,Wπ, sq “

Ψps,|W
pfq
σpπ,zq,Wπq

Lps, σpπ, zq b rπq
.

Using holomorphicity of |W
pfq
σpπ,zq and Lps, σpπ, zq b rπq´1 in z, and holomorphicity of the

above ratio in s we analytically continue the above ratio. Hence we conclude upon taking
z “ 1{2. �

We need the following strengthened version of Lemma 8.2.
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Lemma 9.4. Let σ be any unramified representation (not necessarily unitary) of GnpF q with

trivial central character and |W pfq be given as in (44). Then we have

Ψps,|W
pfq
σ ,Wπq

Lps, σ b rπq
“

minpf,n´1q
ÿ

k“0

p´1qkekpArπqλrσpf ´ k, 0, . . . , 0q

Nppqpfpn´1q`kqs
,

for any s P C. Here ekpAπq denotes the k-th elementary symmetric polynomial evaluated on
the Satake parameters Aπ of π.

Proof. By entireness of the ratio in the left-hand side above in s P C it is enough to prove
the formula for large <psq.

Using (45) we have

Ψps,|W pfq
σ ,Wπq “

ż

aPAn´1

vpan´1qěf

Wσ

„ˆ

a
1

˙

Wπpaq| detpaq|s´1{2 dˆa

δpaq
.

We now apply Shintani’s formula (14), leading to

(49) Ψps,|W pfq
σ ,Wπq “

ÿ

m1ě...ěmn´1ěf

λσpm, 0qλrπpmq

Nppqs
ř

imi
.

Let Aσ be the Satake parameters of σ and fix an ordered n-tuple α “ pα1, . . . , αnq P Cn such
that Aσ “ tαju

n
j“1 as a multiset. We assume that α is regular, that is, αi ‰ αj for i ‰ j and

prove the lemma. The general result will follow by continuity.
Expanding the determinant in the numerator of λσ along the bottom row and using the

well-known formula for the Vandermonde determinant

Vnpαq :“
ź

1ďiăjďn

pαi ´ αjq,

we deduce that

λσpm, 0q “
n
ÿ

j“1

p´1qn`jα´1
j λσpjqpmqVn´1pα

pjqq

Vnpαq
,

where by αpjq we denote the pn ´ 1q-tuple obtained from α by removing αj and by σpjq the
local representation whose Satake parameters is the multiset corresponding to αpjq. Moreover,
notice that

λσpjqpmq “ α´fj λσpjqpm1 ´ f, . . . ,mn´1 ´ fq.

Applying this and the equality
ÿ

m1ě...ěmn´1ě0

λσpjqpmqλrπpmq

Nppqs
ř

imi
“ Lps, σpjq b rπq

to (49) gives

Ψps,|W pfq
σ ,Wπq “

n
ÿ

j“1

p´1qn`jα´f´1
j Vn´1pα

pjqqLps, σpjq b rπq

Nppqpn´1qfsVnpαq
.
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Since σ is unramified, we have the factorization

Lps, σ b rπq “ Lps, σpjq b rπqLps, rπ b χjq,

where χj is the unramified character for which χjppq “ αj. Therefore,

Ψps,|W pfq
σ ,Wπq “ Lps, σ b rπq

n
ÿ

j“1

p´1qn`jα´f´1
j Vn´1pα

pjqqLps, rπ b χjq
´1

Nppqfpn´1qsVnpαq
.

Expanding Lps, rπ b χjq
´1 and changing the order of summation, we deduce that

Ψps,|W pfq
σ ,Wπq “ Lps, σ b rπq

n´1
ÿ

k“0

p´1qkekpArπq

Nppqpfpn´1q`kqs

n
ÿ

j“1

p´1qn`jαk´f´1
j Vn´1pα

pjqq

Vnpαq
.

Let α´1 denote the n-tuple tα´1
j u

n
j“1. Notice that the inner-most summand can be written

as

p´1qj`1

`

α´1
j

˘f´k`n´1
Vn´1ppα

´1qpjqq

Vnpα´1q
.

Thus, for f ě k, we write the inner-most sum as

λ
rσpf ´ k, 0, . . . , 0q

by expanding the numerator of the Schur polynomial along the top row.
Otherwise, we have 0 ď f ´ k`n´ 1 ă n´ 1 and using the very same idea we may relate

this sum to a quotient of two determinants and where the numerator has two equal rows and
thus it vanishes.

Altogether this leads to

Ψps,|W pfq
σ ,Wπq “ Lps, σ b rπq

minpf,n´1q
ÿ

k“0

p´1qkekpArπqλrσpf ´ k, 0, . . . , 0q

Nppqpfpn´1q`kqs
,

which concludes the proof. �

Lemma 9.5. We have

qHpσpπ, 1{2q;W
pfq
Π ,Wπ, sq ! Nppq´fppn´2q{2´εq

for s “
`

1
2
, 1

2

˘

.

Proof. Using Lemma 9.3 and Lemma 9.4 for σ “ σpπ, 1{2q and the given s we obtain

qHpσpπ, 1{2q;W
pfq
Π ,Wπ, sq “

minpf,n´1q
ÿ

k“0

p´1qkekpArπqλ Čσpπ,1{2q
pf ´ k, 0, . . . , 0q

Nppqpfpn´1q`kq{2
.

Now it follows from the equality of L-functions

Lps, Čσpπ, 1{2qq “ Lps´ 1{2, rπqζps` pn´ 1q{2q
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that

λ
Čσpπ,1{2q

pf ´ k, 0, . . . , 0q “
f´k
ÿ

j“0

λ
rπpj, 0, . . . , 0q|p

j
|
´1{2

|pf´k´j|pn´1q{2.

The right-hand side above is ! Nppqpf´kqp1{2`εq as π is tempered. Hence, we conclude. �

9.3. Proof of Proposition 9.1. The first assertion follows from Proposition 5.2 and Lemma
9.2 along with the discussion preceding it.

From the definitions (27) and (29), respectively, it is clear that P and D are entire in s
as Φ and φ are cuspidal. The argument preceding Lemma 9.2 implies that M is entire in s1

and is holomorphic on the region 1{2 ď <ps2q ă 1. This implies that R is holomorphic on
the same region.

The final assertion on R follows from the definition of R in (48) upon applying Lemma 9.5
and that L8pσpπ, 1{2qq ! 1 along with holomorphicity of the local weights on <psq “ 1{2,
as in Lemma 9.1, and of the Rankin–Selberg L-functions.

10. The Degenerate Term: Dual Side

In this section we use the same notations as in the beginning of §5. The goal of this section
is to study the degenerate term defined in (29), as follows. The following proposition can be
thought as a generalization of [53, Proposition 9.1].

Proposition 10.1. Let Φ and φ be given as in §6.2. Recall qΦ from Proposition 5.1. We
have

D
ˆˆ

1

2
,
1

2

˙

, qΦ, φ

˙

“ ∆´µΩ

F D8
Lp0p1,Πb rπqLp0pn{2, rΠq

Lp0p1` n{2, rπq
,

where µΩ is a constant depending only on n and D8 is as defined in (51).
Moreover, we choose the local test vectors at the archimedean places in such a way so that

D8 — 1.

First, we define a local factor which will be served as the local component of the degenerate
term. For W1 P Πv and W2 P πv we define Ωvps,W1,W2q by

(50)

ż

Nn´1pFvqzGn´1pFvq

ż

G1pFvq

W1

»

–

¨

˝

zh
z

1

˛

‚

fi

flW2phq| detphq|s1`s2´1
|z|nps1´1{2q dˆz dh.

It follows from Lemma 3.1 that the integral in (50) converges absolutely for <psq ě 1{2.
We also define

(51) D8psq “ D8
`

s,bv|8WΦ,v,bv|8Wφ,v

˘

:“
ź

v|8

Ωvpqs,WΦ,v,Wφ,vq.

We abbreviate D8
`

1
2
, 1

2

˘

as D8.
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Lemma 10.1. Recall qs from (2). Then for any Φ P Π and φ P π we have

Dps,Φ, φq “
ź

v

Ωvpqs,WqΦ,v,Wφ,vq

for sufficiently large <pqsq.

Proof. Working as in the proof of Proposition 5.1 we may deduce that

(52) Dps,Φ, φq “
ż

rGn´1s

ż

rG1s

qΦ#

»

–

¨

˝

zh
z

1

˛

‚

fi

flφphq| detphq|qs1`qs2´1
|z|npqs1´1{2q dˆz dh.

where qs is as in (2) and

Φ#pgq :“

ż

rqUns

Φpugq du

such that qUn :“ w˚´1
rUnw

˚ which consists of matrices of the form
¨

˝

In´1 x
1

1

˛

‚, x PMpn´1qˆ1.

We first compute the Fourier–Whittaker expansion of qΦ#. Using (19) we write

qΦ#pgq “
ÿ

γPNnpF qzGnpF q

ż

rqUns

W
qΦ

„ˆ

γ
1

˙

ug



du.

We notice that for γ P GnpF q,

W
qΦ

»

–

ˆ

γ
1

˙

¨

˝

In´1 x
1

1

˛

‚g

fi

fl “ ψ0p`pγqxqWqΦ

„ˆ

γ
1

˙

g



,

where `pγq denote the row matrix formed by the left most n´ 1 entries of the last row of γ.
Integrating both sides above over x in pF zAqn´1 we conclude in the above Fourier–Whittaker

expansion of qΦ# we must have `pγq “ 0; equivalently, γ P NnpF qzG1pF qPnpF q. Using the
isomorphism NnzG1Pn – Nn´1zGn´1 ˆG1 we write

qΦ#pgq “
ÿ

γPNn´1pF qzGn´1pF q

ÿ

qPG1pF q

W
qΦ

»

–

¨

˝

qγ
q

1

˛

‚g

fi

fl .

Inserting the above expansion in (52) and executing an unfolding-folding we obtain that
Dps,Φ, φq can be written as

ż

Nn´1pAqzGn´1pAq

ż

G1pAq
W

qΦ

»

–

¨

˝

zh
z

1

˛

‚

fi

flWφphq| detphq|qs1`qs2´1
|z|npqs1´1{2q dˆz dh.
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The above expression converges absolutely for sufficiently large <pqsq. Also the above is
Eulerian and can be factored as

ś

v Ωvpqs,WqΦv
,Wφvq. �

In the next subsections we will analyse the local integrals Ωv at various v and for the test
vectors chosen in §6.2.

10.1. At the places v | q. In this subsection, we work at the place v and unless otherwise
stated the objects below are v-adic.

Lemma 10.2. Let f P Zě0. Recall Ω from (50) and W
pfq
Π from (32). We have

Ωps,W
pfq
Π ,Wπq “

Lps1 ` s2,Πb rπqLpns1, rΠq

L ppn` 1qs1 ` s2, rπq

for s P C2 with large <psq.

Proof. First, it follows from (40) that for h P Gn´1 and z P G1, one has

W
pfq
Π

»

–

¨

˝

zh
z

1

˛

‚

fi

fl “ WΠ

»

–

¨

˝

zh
z

1

˛

‚

fi

fl .

Therefore, it suffices to take f “ 0.
We use (14) and see that

(53) Ωps,WΠ,Wπq “
ÿ

m1ě...ěmn´1ě0
lě0

λΠpm1 ` l, . . . ,mn´1 ` l, l, 0qλrπpmq

Nppqps1`s2q
ř

imi`nls1
.

We now proceed as in the proof of Lemma 9.4 and follow the notations there.
Let α “ pα1, . . . , αn`1q be an ordered pn` 1q-tuple of complex numbers such that tαju

n`1
j“1

is the multiset of Satake parameters of Π. Here, as in Lemma 9.4, we first suppose that α is
regular and deduce the general result by continuity.

Using the representation of λΠ in terms of Schur polynomials we obtain that the summand
above is

λΠpm1 ` l, . . . ,mn´1 ` l, l, 0q “
n`1
ÿ

j“1

p´1qn`j`1
α´l´1
j λΠpjqpm, 0qVnpα

pjqq

Vn`1pαq
.

Using this in (53), changing the order of summation and performing the sum over m, we
obtain

Ωps,WΠ,Wπq “

n`1
ÿ

j“1

p´1qn`j`1Lps1 ` s2,Π
pjq b rπqVnpα

pjqq

Vn`1pαq

ÿ

lě0

α´l´1
j

Nppqlns1
.

Let χj be the unramified character of Fˆ such that χjppq “ αj. Since Π is unramified, we
have the factorization

Lps,Πb rπq “ Lps,Πpjq b rπqLps, rπ b χjq.
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Hence, we have

Ωps,WΠ,Wπq “ Lps1 ` s2,Πb rπq
n`1
ÿ

j“1

p´1qn`j`1Lps1 ` s2, rπ b χjq
´1Vnpα

pjqq

Vn`1pαq

ÿ

lě0

α´l´1
j

Nppqlns1
.

Expanding the term Lps1 ` s2, rπ b χjq
´1 and changing the order of summation the above

can be written as

Lps1 ` s2,Πb rπq
n´1
ÿ

k“0

p´1qkekpArπqNppq
´kps1`s2q

ÿ

lě0

1

Nppqlns1

n`1
ÿ

j“1

p´1qn`j`1
αk´l´1
j Vnpα

pjqq

Vn`1pαq
,

where ekpAπq denotes the k-th elementary symmetric polynomial on the Satake parameters
Aπ of π.

Working as in Lemma 9.4 we deduce that the inner-most sum vanishes unless l ě k in
which case the sum evaluates to

λ
rΠpl ´ k, 0, . . . , 0q.

Thus we obtain that

Ωps,WΠ,Wπq “ Lps1 ` s2,Πb rπq
n´1
ÿ

k“0

p´1qkekpArπqNppq
´kppn`1qs1`s2q

ÿ

lě0

λ
rΠpl, 0 . . . , 0q

Nppqlns1

Noting that

L ppn` 1qs1 ` s2, rπq
´1
“

n´1
ÿ

k“0

p´1qkekpArπqNppq
´kppn`1qs1`s2q

and

Lpns1, rΠq “
ÿ

lě0

λ
rΠpl, 0 . . . , 0q

Nppqlns1
,

we conclude the proof. �

10.2. At the places v | ∆F . Recall from §6.2 that in this case our choice of test vectors is
given by (33), so that in this case Ωvps,WΦ,v,Wφ,vq is given by

ż

An´1

ż

G1

WΠv

»

–an`1pλvq

¨

˝

za
z

1

˛

‚

fi

flWπvpan´1pλvqaq| detpaq|s1`s2´1
|z|nps1´1{2q dˆz

dˆa

δpaq
.

Now it follows from the change of variables λvan´1pλvqa ÞÑ a and λvz ÞÑ z that the above
equals

|λv|
µΩpsqΩvps,WΠv ,Wπvq,

where µΩpsq is an affine function whose coefficients are complex numbers depending only on
n. Recall that |λv|

´1 “ ∆v is the v part of the discriminant. Also notice that Lemma 10.2
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also includes the unramified computation as a special case by simply taking f “ 0. This
implies that

(54) Ωvps,WΦ,v,Wφ,vq “ ∆´µΩpsq
v

Lvps1 ` s2,Πv b rπvqLvpns1, rΠvq

Lv ppn` 1qs1 ` s2, rπvq
.

10.3. A combined result. By putting together Lemma 10.2 and (54), and taking into
consideration that both formulæ apply for the unramified places v R S, we have the following
lemma.

Lemma 10.3. For large <psq we have

Ωvps,WΦ,v,Wφ,vq “ ∆´µΩpsq
v

Lvps1 ` s2,Πv b rπvqLvpns1, rΠvq

Lv ppn` 1qs1 ` s2, rπvq

for v ă 8 and v ‰ p0 where the local vectors are as in §6.2.

10.4. At the place p0. Recall the choices of the test vectors at v in §6.2.

Lemma 10.4. We have

Ωvps,WΦ,v,Wφ,vq “ 1

for any s P C2.

Proof. From (34) we have

Ωvps,WΦ,Wφq “

ż

Nn´1pFvqzGn´1pFvq

Wτ

„ˆ

h
1

˙

Wπvphq| detphq|s1`s2´1 dh.

The above is absolutely convergent for all s which follows from compact support of Wτ in
the domain of integration. From (13) we conclude that the above integral is Lvps1 ` s2 ´

1{2, τ b rπvq. As τ is supercuspidal and πv is unramified this local L-factor is equal to 1,
which follows from [48]. �

10.5. At the archimedean places. Let v | 8. Recall the choices of the test vectors at v
in §6.2.

Lemma 10.5. Let s “
`

1
2
, 1

2

˘

. Then for WΦ,v and Wφ,v as in §6.2.4 we have

Ωvps,WΦ,v,Wφ,vq — 1,

where the implied constants depend at most on the archimedean components of Π and π.

Proof. Note that

Ωvps,WΦ,v,Wφ,v “

ż

Nn´1pFvqzGn´1pFvq

ż

G1pFvq

WΦ,v

»

–

¨

˝

zh
z

1

˛

‚

fi

flWφ,vphq dˆz dh.
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Using the normalizations and supports of WΦ,v and Wφ,v specified in §6.2.4 we write the
above as

1`

ż

B

ż

B0

WΦ,v

»

–

¨

˝

zh
z

1

˛

‚

fi

fl

´

Wφ,vphq ´ 1
¯

dˆz dh,

and the second summand in the last expression can be bounded by ε. Making ε sufficiently
small we conclude. �

10.6. Proof of Proposition 10.1. Let <psq be large enough. Using Lemma 10.1, Lemma
10.2, and Lemma 10.4 we obtain

Dpqs, qΦ, φq “ ∆
´µΩpsq
F D8psq

Lp0ps1 ` s2,Πb rπqLp0pns1, rΠq

Lp0 ppn` 1qs1 ` s2, rπq
,

where D8psq is defined in (51). Both sides above are holomorphic in <psq ě
`

1
2
, 1

2

˘

which
follows from holomorphicity and non-vanishing of L-functions in the region of absolute con-
vergence and Lemma 9.1. We conclude by inserting s “

`

1
2
, 1

2

˘

, defining µΩ :“ µΩ

`

1
2
, 1

2

˘

, and
appealing to Lemma 10.5.

11. Proofs of the Main Results

In this section we put together all of our previous results and finally prove the main

theorems. We use the shorthand M for Mps,Φ, φq and |M for MpqΦ, φ,qsq, where qΦ and qs
are given in Proposition 5.1. Similar notations are used for the functions P , D and R.

11.1. Proof of Theorem 1. From Proposition 9.1 we have

P “M`R`D
in the region 1{2 ď <psq ă 1. Now, Proposition 5.1 tells us that

P “ qP .
We apply Proposition 9.1 to qP with 1{2 ď <psq ă 1. Thus we obtain

M “ |M` qR` qD ´R´D,
which proves Theorem 1.

11.2. A few lemmas.

Lemma 11.1. Let v be any place. Then for any W1 P Πv and W2 P πv we have

Hvpσv;W1,W2, sq !W1,W2,N Cpσvq
´N

for any s P C2.

This lemma allows us to truncate the Plancherel integral so the archimedean parameters
have essentially bounded size.
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Proof. We use Lemma 3.3 in the definition (31). We see that it suffices to show that for any
N and d there exists an M such that

ÿ

WPBpσvq

S´MpW qSdpW q ! Cpσvq
´N .

If v is non-archimedean the proof of the above is contained in the proof of Lemma 3.2. If v
archimedean then we argue as in the proof of [38, Lemma 3.3] and conclude via [47, Lemma
2.6.6]. �

From now on let F be totally real. Recall that σf :“ bvă8σv, Cpσfq :“
ś

vă8Cpσvq.

Lemma 11.2. Let q be an integral ideal of the finite adeles of F with norm Npqq and let
X “ pXvqv|8 where Xv ą 1 for v | 8. We define

Fq,X :“

"

σ unitary generic automorphic representation

of GnpAq with trivial central character

ˇ

ˇ

ˇ

ˇ

Cpσfq | Npqq; Cpσvq ă Xv, v | 8

*

.

Then
ż

Fq,X

1

Lpσq
dσ !ε pNpqqXq

n´1`ε,

where X :“
ś

v|8Xv.

The proof is essentially the same as that of [38, Theorem 9]; see also [36, Theorem 7]. We
give a sketch of the proof for the sake of completeness.

Proof. Let q :“
ś

vă8 pfvv with fv ě 0. For each v ă 8 we construct a test function αv on
GnpFvq which is an L1-normalized characteristic function of K0pp

fv
v q.

For each v | 8 we fix sufficiently small τv ą 0 and construct an approximate archimedean
congruence subset K0pXv, τvq Ă GnpFvq as in [38, (1.4)]. We also construct a test function
αv on GnpFvq which is an L1-normalized smoothened characteristic function of K0pXv, τvq.

Let α˚v be the self-convolution of αv, that is,

α˚vpgq :“

ż

GnpFvq

αvphqαvpgh
´1
q dh.

We define

Jσvpα
˚
vq :“

ÿ

WPBpσvq

σvpα
˚
vqW p1qW p1q

where Bpσvq is an orthonormal basis of σv. Applying the definition of α˚v and changing the
basis to tσvphqW uWPBpσvq we also see that

Jσvpα
˚
vq “

ÿ

WPBpσvq

|σvpαvqW p1q|
2
ě 0.
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Now for each v ă 8 we fix Bpσvq Q Wσv

}W }σv
. Classical non-archimedean newvector theory [35]

and the normalization of the newvector, Wσvp1q “ 1, imply that

σvpαvqWσvp1q “ volpK0pp
fv
v qq

´1

ż

K0pp
fv
v q

Wσvphq dh “ δcpσvqďfv .

Thus, applying (17) we have

Jσvpα
˚
vq ě

|σvpαvqWσvp1q|
2

}Wσv}
2

" 1, if cpσvq ă fv for v ă 8,

where the implied constant is uniform of v. A similar statement holds when v | 8, as can
be observed in [38, Proof of Theorem 9]. That is, we have

Jσvpα
˚
vq " 1 if Cpσvq ă Xv for v | 8.

Thus, combining the estimates at each place and applying the well-known bound K#tv|qu "K,ε
Npqq´ε for a fixed positive constant K, we obtain

(55)
ź

v

Jσvpα
˚
vq "ε Npqq

´ε.

Now we work as in the [38, Proof of Theorem 9]. Consider the function

GnpAq Q x2 ÞÑ
ÿ

γPGnpF q

˜

ź

v

α˚v

¸

px´1
1 γx2q.

If xi P rNns then the support condition of α˚v implies that the γ sum above can be restricted
to NnpF q. Now spectrally decomposing the above and integrating against ψvpx

´1
1 x2q over

xi P rNns we obtain

ÿ

γPNnpF q

ż

rNns2

˜

ź

v

α˚v

¸

px´1
1 γx2q dx1 dx2 “

ż

σ

ś

v Jσvpα
˚
vq

Lpσq
dσ.

By (55), we obtain
ż

Fq,X

1

Lpσq
dσ !ε Npqq

ε

ż

σ

ś

v Jσvpα
˚
vq

Lpσq
dσ “ Npqqε

ź

v

ż

NnpFvq

α˚vpnvqψvpnvq dnv.

The last product of integrals can be bounded by

!
ź

v|q

volpK0pp
fv
v qq

´1
ź

v|8

volpK0pXv, τvqq
´1
!
ź

v|q

Nppvq
fvpn´1q

ź

v|8

Xn´1
v .

The right-hand side above equals pNpqqXqn´1. �
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11.3. Proof of Theorem 2. As before, q “
ś

v|q p
fv
v is an ideal of oF of norm Npqq. We

fix a set of places S, as in §6.2,

S “ tp0u Y tv | qu Y tv | ∆F u Y tv | 8u.

Our point of departure is Theorem 1 with S as above, s “
`

1
2
, 1

2

˘

, and cusp forms Φ and φ
with local components as in §6.2. Once again, we suppress Φ, φ and s from the notations.

Recall that

σ
pp0q

f :“
â

p0‰vă8

σv, cpσ
pp0q

f q :“
ź

p0‰vă8

pcpσvq, Cpσ
pp0q

f q :“
ź

p0‰vă8

Cpσvq.

Finally, recall the notations Hqpσq and h8pσq from (39) and (38), respectively.

Lemma 11.3. Recall M from (30) and τ from §6.2. For all 0 ă δ ď 1{2 there exists δ1 ą 0
such that

M “ κF,n
ÿ

σ cuspidal; σp0“τ ;

cpσ
pp0q
f q|q, Cpσ

pp0q
f qěNpqq1{2´δ

Lp1{2,Πb rσqLp1{2, σ b rπq

Lp1, σ,Adq
εp0p1, τbrτqHqpσqh8pσq`OΠ,πpNpqq

´δ1
q,

for some positive constant κF,n depending on the number field F and n.

Proof. Applying Proposition 7.2 and (43) to the definition of M in (30) we obtain

M “
ÿ

σ cuspidal: σp0“τ

Lp1{2,Πb rσqLp1{2, σ b rπq

Lpσq
Hqpσqεp0p1, τ b rτq∆´µH

F h8pσq.

Using Proposition 7.1, convexity bound (23), and Lemma 11.1 we truncate the above sum
at cpσvq ď fv for all v | q, Cpσvq “ 0 for all v R S or v | ∆F , and Cpσvq ! Npqqε for all v | 8
with an error of OpNpqq´Aq for any large A.

Let us denote by Cpq, τq the set of cuspidal representations satisfying the conditions above.
Applying (23) and Proposition 7.1 along with the fact that K#tv|qu ! Npqqε for any fixed
constant K, we deduce the bound

ÿ

σPCpq,τq

Cpσ
pp0q
f qďNpqq1{2´δ

Lp1{2,Πb rσqLp1{2, σ b rπq

Lpσq
Hqpσqh8pσq !ε,τ,Π,π Npqq

´n{2`ε
ÿ

σPCpq,τq

Cpσ
pp0q
f qďNpqq1{2´δ

Cpσfq

Lpσq
.

We rewrite the above quantity as

Npqq´n{2`ε
ÿ

b|q

|b|ďNpqq1{2´δ

ÿ

σ cuspidal
Cpσfq“|b|Cpτq

Cpσvq!Npqqε, v|8

Cpσfq

Lpσq
.

We apply Lemma 11.2 to bound the inner sum above by OpNpqqε|b|nq. Using that the
number of divisors of q is bounded by Npqqε we see that the above display is bounded by
Npqq´nδ`ε which is OpNpqq´δ

1

q after taking ε sufficiently small.
Finally, we conclude the proof using (25). �
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Lemma 11.4. There exists some δ2 ą 0 such that

|M !Π,π Npqq
´δ2 ,

where the implied constant in the error term depends on Π and π.

Proof. Applying Proposition 8.1 to the definition of |M as in (30) we obtain

|M “ κ1F,n

ż

gen
cpσvq“0,p0‰vă8

Lp1{2,Πb rσqLp1{2, σ b rπq

Lpσq
qHqpσq qHp0pσp0q

qh8pσq dσ

for some constant κ1F,n depending on F and n. Once again, we use Lemma 11.1 to truncate
the integral, and apply Proposition 8.1 and (23) to deduce the bound

|M ! Npqqε´pn´1qη

ż

gen;Cpσvq!Npqqε,v|8
cpσvq“0,p0‰vă8

Cpσp0 q!1

1

Lpσq
dσ,

where η is a uniform bound towards the generalized Ramanujan conjecture for Gn. For
instance, we can take η “ pn2 ` 1q´1; see [44]. Finally, we conclude by Lemma 11.2 and
taking ε small enough. �

Lemma 11.5. We have R “ 0 “ D. Consequently, P “M.

Proof. Repeating the argument in §5.2 and of the proof of Proposition 7.2 we write

As1Φpgq “
ÿ

σ cuspidal
σp0“τ

ÿ

ϕP rBpσq

Ψps1,WΦ,Wϕq

}ϕ}2
ϕpgq.

As before, the right-hand side is entire in s1 and absolutely convergent. Moreover, as ϕ are
cusp forms we now integrate the right-hand side term by term against φ| det |s2´1{2. Thus
we obtain

Pps,Φ, φq “
ÿ

σ cuspidal: σp0“τ

Λps1,Πb rσqΛps2, σ b rπq

Lpσq
HSpσq.

The right-hand side is again entire in s which follows from the analytic properties of Rankin–
Selberg zeta integrals. Plugging-in s “

`

1
2
, 1

2

˘

above and looking at the expression of M in
the proof of Lemma 11.3 we obtain P “M.

On the other hand, from (48) we see that R “ 0 as Hp0pσpπp0 , zqq “ 0 for any z P C
which follows from Lemma 9.1 and Proposition 7.2 for z P iR. Consequently, Proposition
9.1 implies that D “ 0. �

Proof of Theorem 2. Theorem 1 and Lemma 11.5 imply that M “ |M ` qD ` qR. We apply

Lemma 11.3, Lemma 11.4, bound of qR from Proposition 9.1, expression of L from (25), and

expression of qD from Proposition 10.1. �

Proof of Corollary 3. The main term in Theorem 2 is non-zero. This follows from Shahidi’s
result [59, Proposition 7.2.4] that the Rankin–Selberg L-values at 1 are non-zero, and Propo-
sition 10.1. Hence we conclude by taking Npqq sufficiently large. �
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