SPECTRAL RECIPROCITY FOR GL(n) AND SIMULTANEOUS
NON-VANISHING OF CENTRAL L-VALUES

SUBHAJIT JANA AND RAMON NUNES

ABSTRACT. Let F be a totally real number field and n > 3. Let II and 7 be cuspidal
automorphic representations for PGL,;1(F) and PGL,_1(F), respectively, that are un-
ramified and tempered at all finite places. We prove simultaneous non-vanishing of the
Rankin—Selberg L-values L(1/2,TI® &) and L(1/2,0 ® ) for certain sequences of o vary-
ing over cuspidal automorphic representations for PGL,, (F) with conductor tending to in-
finity in the level aspect and bearing certain local conditions. Along the way, we also
prove a reciprocity formula for the average of the product of Rankin—Selberg L-functions
L(1/2,T®)L(1/2,0 ® T) over a conductor aspect family of o.
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1.1. Motivation: non-vanishing of the central L-values. Fix a set of complex numbers

s:={s1,..

., Sk} with R(s;) = 0 and a natural number n > 2. It is a folklore conjecture that

there are infinitely many cuspidal automorphic representations o for GL(n) over a number
field F' with a fixed central character such that the L-values L(1/2+ s;,0) do not vanish for
1<i<k.
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Naturally, for a given n there is an upper bound of k£ in terms of n for which the current
technology is potent enough to prove the above conjecture. This is because the product
L-function [ [, L(1/2 + s;,0), whose degree is kn, has growing complexity as k grows. Thus,
finding large k in terms of n for which we can verify this conjecture becomes a natural and
challenging problem.

In this paper one of the main theorems (Theorem 2, Corollary 3), informally, yields that
k can be taken as large as 2n for general n. More precisely: the product [ [, L(1/2 + s;,0)
can also be viewed as the GL(n) x GL(k) Rankin—Selberg L-function L(1/2,0 ® E) where
E, is the minimal parabolic Eisenstein series @Y ,|.|%. At this point it becomes natural to
ask about the non-vanishing of the Rankin-Selberg L-function L(1/2, ¥ ® o) where ¥ is any
automorphic representation for GL(k). This includes the case where 3 is an Eisenstein series
and the one where ¥ is a cuspidal representation. Presumably, the problem is, arithmetically,
the most difficult when ¥ is cuspidal (so that L(1/2,%¥ ® o) is not necessarily factorable)
and the least difficult when ¥ is a minimal Eisenstein series (so that L(1/2,X® o) is totally
factorable).

In this paper, we answer the question affirmatively when ¥ is the GL(2n) Eisenstein series
IT | 7 where II and 7 are certain cuspidal representations for GL(n + 1) and GL(n — 1),
respectively. In terms of factorization, this is the second most difficult case, right after the
cuspidal case. In particular, this answers the question affirmatively when ¥ is a cuspidal
representation of GL(n + 1) or GL(n — 1).

We stress that even the non-vanishing of L(1/2, ¥ ® o) when ¥ is a cuspidal automorphic
representation for GL(n + 1) is new for n > 2. For comparison, Tsuzuki [61] proves non-
vanishing for ¥ being a minimal Eisenstein series of GL(n—1). Finally, in low degree, slightly
better results are known. For n = 2, Blomer-Li-Miller [15] show non-vanishing for k = 4
but with ¥ cuspidal and for n = 1, Luo [43] shows that one may take k = 3 for characters
of suitably factorable moduli.

1.2. Reciprocity formulae. One of the main inputs going into the proof of simultaneous
non-vanishing is a reciprocity formula. A reciprocity formula, in our context, describes an
identity between moments of L-values attached to two apparently different families of auto-
morphic representations. The reciprocity formulee, apart from being aesthetically pleasing,
often allow one to understand averages of L-values without (or only mildly) dealing with the
geometric side of a trace formula. Instead, the formulae arrange it so that the complexity of
the families of L-functions drops from one side to the other, much akin to what happens in
the Poisson and Voronoi summation formulse.

To demonstrate the complications of studying the geometric side of a trace formula in
high-rank groups, it suffices to look at the Kuznetsov trace formula: while in GL(2), there is
a good amount of literature dedicated to sums of Kloosterman sums and many applications
thereof, for GL(3) the study of these objects is no easy matter, as can be perceived, for
example, from the works of Blomer and Buttcane, e.g. [9]. Some applications can be seen in
[7, 11, 10]. For larger n we refer to [8, 23| as examples of application of Kuznetsov formula
where the geometric side needed careful analysis.



RECIPROCITY AND NON-VANISHING 3

One of our main results, Theorem 1, describes a higher-rank reciprocity formula which
proves a relation between moments of Rankin-Selberg L-values for GL(2n) x GL(n) over
two different families of representations.

1.2.1. A recapitulation of previous formule.

Different groups: Motohashi and generalizations. Motohashi’s formula is the first kind of
spectral identity to appear in the literature. It is also the most studied one and has several
interesting applications. The story begins with the work of Motohashi [50], where he proved
a formula of the shape

f /2 + i)ty dt = S L2, £l + (),
R f

where the sum on the right-hand side runs over cusp forms of PGL(2). We have swept under
the rug via the symbol (...) the contribution of the Eisenstein series and some degenerate
terms. Moreover, the transformation h v~ h is explicitly given via a series of integral
transformation. This allowed Motohashi to give an asymptotic formula for the fourth-power
moment of the Riemann zeta function. Certain special cases of the reverse transform b b
are known. In particular, this was used by Ivi¢ [29] in order to obtain Weyl-type subconvex
bound for L(1/2, f) in the spectral aspect. Around the same time, Conrey and Iwaniec
[21] studied a similar problem in the level aspect, with forms twisted by quadratic Dirichlet
characters. Even though they did not phrase their results in such terms, a reciprocity
formula can be inferred from their proof. An almost exact formula (with an error term)
was later found by Petrow [54]. More recently, Petrow and Young (cf. [55] and [56]) have
vastly generalized Conrey and Iwaniec’s work to general Dirichlet characters. Here, again
there is no effort in producing exact formulae but one can notice that an underlying version of
Motohashi’s formula is used (in both directions!). A bit later, and with a different application
in mind, Blomer et al. [12] have yet another form of the identity. Finally, a period theoretic
interpretation was given by Reznikov [58]; see also [47]. Explicit versions were later obtained
by Nelson [52] and Wu [63]. There also are cuspidal versions of Motohashi’s formula where
the cube of L(1/2, f) gets replaced by a Rankin-Selberg L-function and the left-hand side gets
replaced by a mixed-moment of L-functions of degrees 3 and 1. In this setting, asymptotic
formulaefor the right-hand side were initially obtained by Li [42] in the t-aspect) and Blomer
[6] in the level aspect. Although the latter hinted on a spectral identity, the first explicit
formula in the context was given by Kwan [40], via a period-theoretic approach.

Same group: GL(4) x GL(2) v~ GL(4) x GL(2). In this case, we talk about a formula where
in both sides we average over (possibly different) families of automorphic representations of
the same group, namely GL(2). Moreover the degree of the L-functions is also the same,
namely 8. We divide them, however, in three different cases according to how the L-function
factorizes and this corresponds to the number of partitions of 4 as a sum of two non-negative
integers.
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4 = 2 + 2. This is probably the most natural situation. It amounts to studying the
fourth moment of L(1/2,0) or the second moment of L(1/2,0 ® 0¢) over a family of
o, where oy is a fixed automorphic form of GL(2). If one is to be rigorous, the latter
does not exactly fit the description above as we may have to deal with certain periods
which are only related to L-functions up to taking the square of its absolute value (cf.
[27]). In the fourth-moment case, this dates back to unpublished work of Kuznetsov
and Motohashi; see [51]. In the Rankin-Selberg case, a reciprocity formula is implicit
in [47], and an explicit version can be found in [1]. Later, a period approach to
the equality was developed by Zacharias in [65] and [66]. The latter also deals with
regularization and contains a Weyl-type subconvex bound for L(1/2,0), where o is
a PGL(2) cuspidal representation of prime level tending to infinity.

We may think the above example as the n = 2 case for a general reciprocity formula
GL(2n) x GL(n) v~ GL(2n) x GL(n). For n > 2, one can see a certain glimpse of a
reciprocity formula in the works of Blomer [5] and the first named author [37]. Here
one has to be even more flexible when employing the term “reciprocity” as on one
side of the formula the periods are neither known nor expected to be related to L-
functions. Nevertheless these results fit in the overall strategy where one can bypass
the need of a delicate study of geometric side (in the sense of the trace formula).

4 =3 + 1. Here we are concerned with averages of

L(1/2,TT®05)L(1/2,0),

where II is a fixed representation of GL(3). In the particular case where II is the
symmetric square of some representation of GL(2), these averages have been stud-
ied in connection to quantum unique ergodicity and the L*-norm problem; see for
instance [26] and the references therein. Here, the first instances of spectral fomrulee
appeared in the works of Blomer and Khan; see [13] and [14]. However, some of the
ideas involved in proving such formulaecan be traced back to works o Li [41] and Khan
[39]. In both [13] and [14], the main applications are when II is an Eisenstein series,
where one may obtain strong exponents in the subconvexity problem for GL(2). In
[53], the second named author proved a version of the main result in [13] valid for
number fields via a period theoretic approach. This is not a complete generalization
of [13] for two reasons: it does not allow for general weight functions and the fixed
GL(3) representation needs to be cuspidal.

4 = 4. Let II be a fixed automorphic representation of GL(4), then we are interested
in studying the first moment of L(1/2,II® o) as o varies. A reciprocity formula was
found by Blomer, Li and Miller [15]. This case is the hardest one as it involves the
least factorable L-function. In order to grasp the difficulty, it is worth mentioning that
the authors of [15] do not have applications to subconvexity. Their only application
is to non-vanishing and it is important to point out that their analysis is finer than
usual as they only win by a logarithmic power, instead of the more usual polynomial
saving.
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In this work, we give a generalization of the work in [53] (hence of [13, 14]) to a spectral
sum over GL(n) with L-functions of degree 2n?, such as in [37] but in a more unbalanced
situation.

1.3. Main results. Let F' be a number field and S be a finite set of places of F' containing all
the archimedean places. Let IT and 7 be cuspidal automorphic representations for GL(n + 1)
and GL(n — 1) over F, respectively, with trivial central characters and unramified outside
S. Let ® € IT and ¢ € 7 be cusp forms. Also, let s = (s1, ) be a pair of complex numbers
and A denote completed L-functions. Our main object of study is the following average of
L-functions.

(1) A«aq¢y:f A@bﬂ®zéfaa®ﬂ
gen
where the integral is taken with respect to an automorphic Plancherel measure over the
generic automorphic spectrum of GL(n) with trivial central character (cf. §4.2 for a discus-
sion on the measure do). The factor Hg(o) := Hg(o;®, ¢,s) is a certain weight function
depending on the S-adic components of ®, ¢, and 0. We refer to §6.1 for the definition. The
factor L£(o) is a certain harmonic weight which appears in e.g. the Kuznetsov formula; see
(24) for the definition. For example, if ¢ is cuspidal then £(o) is proportional to L(1, 0, Ad).
Finally, for any pair of complex numbers s = (s, $3), we shall write
1+ (n—1)s9— 5 (n+1)81+32—1)

) 5- ) ,

HS(U; q)v ¢7 S) dO',

n n

We also write II(w*)® as & where
(3) w* = 1

which is a Weyl element in GL(n). Our first main result is the following reciprocity formula.
Theorem 1. Let s € C? such that
% < R(s1), R(s2), N(51), R(s2) < 1.
Then, we have the equality
M(s,®,¢) = N(s,D,9) + M(5,,0)

where 5 5
N(s, ©,¢) = R(S,®,0) + D8, ©,0) — R(s, &, ¢) — D(s, 0, 9).
and R(s, @, ¢) and D(s, P, d) are given by (48) and (29), respectively.
As in [53], we choose the vectors ® and ¢ in a such a way that the left-hand side picks

up forms of conductors up to a certain height and the right-hand side can be asymptotically
computed.
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For an automorphic representation ¢ we define o¢ to be the finite part ®,.,0,. For a

(o)

prime ideal py in F', we also define o7’ = ®u;wav, the finite part of o outside py and
v#po

correspondingly, we write

o) = T »1 Clof™)= ] Clow):
PoF#p<c0 PoF#p<00

see §3.8 for the definitions. Note that these products converge absolutely as ¢(o,) = 0 and
C(oy) = 1 for almost all v.

Theorem 2. Let n > 3 and F' be a totally real number field. Let 11 and m be cuspidal
automorphic representations for GL,1(F) and GL,_1(F'), respectively, with trivial central
characters such that both 11 and m are unramified and tempered at every non-archimedean
place. Further assume that po is a prime not dividing the discriminant of F' and T is a
supercuspidal representation of GL,,(F,,) with trivial central character.

Then for every 6 > 0 there exists n > 0 so that for any integral ideal q of the finite adeles
such that q, po, and the discriminant of F' are pairwise coprime, we have

L(1/211®0)L(1/2,0 QT
Z 1/ L(l,?f, i({) ) q(‘j)hw(a)

o cuspidal; op=T;
(o), C(o{")=N(g) /20

_ Dy(F,n) LP(LI@7F)LP(n/2,10)

e (1, T®F) Lro(1 +n/2,7)
Here Hy(o) and hy(0) are certain test functions at the q-adic places and oo-adic places
defined in (39) and (38), respectively, e,, denotes the po-adic epsilon factor. On the other

hand, Do (F,n) is a constant which depends on the archimedean component of the test vectors,

i particular on hy, and n and the number field F'. Moreover, we construct hy in a way so
that Do (F,m) = 1.

The analogous theorem for n = 2 is done in [53]. Our proof also works for n = 2, but a
certain care is needed to compute the degenerate terms.

+ OH,W<N(q)_77)‘

In particular, we have the following corollary.

Corollary 3. Let F, q, po, 7, II, and w be as above. Assume N(q) is sufficiently large.
Then there exists at least one cuspidal representation o with trivial central character, such
that o,y = 7 and C(o™) | q with C(c™) = N(q)V*™ so that both L(1/2,1® &) and
L(1/2,0 ® ) do not vanish.

Remark 1.1. An important distinction between Corollary 3 and [53, Corollary 1.3] is the
need for an auxiliary prime at which the varying representations are supercuspidal. This
difference is necessary for n = 3 as we cannot easily bound the contribution of the contin-
uous spectrum, so we artificially introduce this local condition to annihilate the continuous
spectrum. The same kind of restriction also appears in [61].
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On the other hand, the temperedness assumption in Corollary 3 is rather of a technical
nature. From the proof one will see that one also may allow 11 and m to be O-tempered (see
§3 for definition) for some very small 6.

1.4. Sketch of the proof: strong Gelfand formations. Before we proceed to proving
our results, we would like to present another point of view on spectral reciprocity formulee,
which is due to Reznikov [58], which also serves as a high-level sketch of our proof. The key
concept here is that of a Strong Gelfand Formation. First, we say that a pair of reductive
groups (G, H) over a number field is a strong Gelfand pair if for every place v and every
pair of irreducible (admissible) representations Il and o of G(F,) and H(F,), respectively,
we have that the space of H(F),)-invariant maps from II to o is at most one-dimensional.
Now let G, Hy, Hy and J be reductive groups with natural embeddings as below.

/\
\/

Then we say that (G, Hy, H, J) is a strong Gelfand formation if the pairs (G, H;) and (H;, J)
are strong Gelfand pairs, for ¢ = 1, 2.

It is well-known that if (G, H) is a Gelfand pair, IT and ¢ are automorphic representations
of G and H, respectively, and ® € II and £ € o are automorphic forms, then the period

j[ , B an

where [H] := H(F)\H(A), can often be linked to an L-function, e.g. via Rankin—Selberg
method or the Ichino—Ikeda formula. For the purpose of the sketch we assume that such
quotients are compact. Therefore, in order to obtain a reciprocity formula one might consider
® e II and ¢ € 7 automorphic forms of G and J, respectively, and consider the period
S[ 7 ®(5)p(j)dj. Spectrally expanding the vector ® in the spaces of automorphic forms in
H, and Hs, one should get

(L, %) 0, -2 () ([,)

where & runs through an orthonormal basis of automorphic forms for H;.
The reciprocity formula which we prove here can be seen as a special case of the above

discussion where take G = GL(n+1), H; = GL(n), J = GL(n—1), and Hy = w*GL(n)w*~
with w* as in (3). For these groups, inclusion is given by h < which is an embedding

of GL(n) inside GL(n + 1).

1
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1.5. A closely related work. While this article was at the final stage of preparation, a
preprint by Miao [46] has been posted on arXiv, obtaining a similar reciprocity formula to our
Theorem 1. The author starts, as we do, from the identity in Proposition 5.1. The author also
predicts an application of the reciprocity formula to non-vanishing. We decided nevertheless
to keep our own proof of the reciprocity formula as we could not match our degenerate term
to any term in [46] and that term is the source of the main term in Theorem 2.

1.6. What’s next?

1.6.1. Global.

(1)

The question of generalizing the above results to IT and 7 that are general (not nec-
essarily cuspidal) automorphic representations is a quite natural one. The difficulty
comes from the fact that, in this case the period P(s, ®, ¢), defined in (27) and from
whose properties we deduce the reciprocity in Theorem 1, does not converge. A rem-
edy to this lack of convergence should follow from a suitable notion of regularization.
The works of Ichino—Yamana [28] and Zydor [67] could be of help in finding out this
suitable notion. It is important to remark that we do not require simply the conclu-
sions from these papers. Instead we need to understand how the various truncation
operators interact when averaged over the spectrum of GL(n).

Finally, after staring at the list of different reciprocity formule for GL(2) one might
wonder whether we could have a general reciprocity formulae for the average of

L(1/2,1®a)L(1/2,0 ®T),

where, for given n—1 > r > 2, Il and 7 are automorphic representations of GL(n+r)
and GL(n — r), respectively. Unfortunately, it is not clear to us how to generalize
our method in any straightforward way. The main reason is the more complicated
nature of Rankin-Selberg zeta integrals for GL(n) x GL(m) when n —m > 1, which
involves extra integration over unipotent groups. Similarly, one may wonder whether
one may replace I 7 by a GL(2n) cuspidal representation to obtain a reciprocity
formula for GL(2n) x GL(n), thus generalizing the n = 2 case from [15].

1.6.2. Local.

(1)

Recall the local weight factors Hg(o) and corresponding weight factor Hg(o) :=
Hs(o; P, ¢,8) in the dual side of the reciprocity formula in Theorem 1. There is an
implicit integral transform which relates Hg and H s governed by the Weyl element in
(3). For various analytic question in automorphic forms, one requires nice properties
of these test functions e.g. non-negativity and richness; see [50, 52].

For n = 2 Blomer—Khan [13] explicitly determined the integral transform relating the
local weight functions in both sides of the reciprocity formula via classical methods
e.g. Kuznetsov and Voronoi summation formulse. It is natural to wonder whether
one can deduce the same in our higher-rank case via the method of integral represen-
tations. The test functions are determined by the local Whittaker functions chosen as
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test vectors in §6.1. We think one can produce the transform via the analysis of a cer-
tain local Bessel distribution, invoking, in particular, the local GL(n+1) x GL(n—1)
functional equation which is governed by the Weyl element (3). However, we were un-
successful in this endeavor. The reason, partly, seems to be that we are dealing with
a period on GL(n+1) x GL(n—1) which does not resemble the GL(n+1) x GL(n—1)
zeta integral.

(3) On the other hand, via the theory of Kirillov models one will be able to show that
the family of local weights is quite abundant, in the sense of [52].

(4) More importantly, we would like to construct test vectors which produce a non-
negative local weight. This seems to be difficult due to the unbalanced (that is,
correlation of L-functions of degrees n(n + 1) and n(n — 1)) nature of the moment
considered in Theorem 1), unlike the balanced moment (that is, correlation of L-
functions of degree 2n) as considered in [37] where non-negativity of the local weight
functions was immediate.

(5) Finally, we may wonder if we can obtain a similar result as in Theorem 2 in the
archimedean aspect as well. One of the main ingredient to prove Theorem 2 is the
classical non-archimedean newvector theory of [35] which allows us to pick up the
family considered in Theorem 2. In principle we can, at least at the real places, via
the analogous archimedean newvector theory as in [38]. However, we do not pursue
that in this article.

1.7. Structure of the paper. We fix notations and conventions that are used throughout
the text in §2. Preliminaries on automorphic forms, Whittaker models and integral represen-
tations of L-functions in the local and global settings are recalled in §3 and §4, respectively.

In §5, we use spectral theory and the theory of integral representations of L-functions to
relate the average of L-functions M(s, @, ¢) to a period of ® and ¢ over GL(n — 1) up to a
degenerate term coming from regularizing the zeta integral on the smaller group. It becomes
clear that the reciprocity formula follows from a certain identity of periods, also deduced in
the same section.

Everything up until this point works for general vectors ® and ¢. In §6.2, we describe our
choices of local vectors used in the proof of Theorem 2. For these choices, we study in §7
and §8 the local factors appearing on the original and dual sides, respectively. We use these
vectors to pick up the family of representations considered in Theorem 2. This is one of the
most technical parts of the paper.

In §9, we show a meromorphic continuation of the term M(s, ®, ¢) to a neighborhood of
S = (%, %) This adds an extra term R (s, ®, ¢), called the residue term (since it appears after
an application of the residue theorem), and we estimate its contribution when the vectors
are as in §6.2.

In §10, we show that the degenerate term can be factored into a product of local integrals
and study these local factors, first the unramified computation and later with the choices
from §6.2. This is the source of the main term in Theorem 2. The estimates to the residue
and degenerate terms are only given for the term in the dual side since they vanish in the
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original side, which we show in §11. This is the point where we make use of the auxiliary
prime po. The proofs of the main results are also given in §11.
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2. GENERAL NOTATIONS

The letter F' denotes a local of global number field. In the beginning of each section we
define F' explicitly. For any place v of a global field F' we denote by F, the localization of F’
at v. Similarly, for any global object & (e.g. an L-function) we denote the v-adic component
(if defined) of & by &, (e.g. a v-adic L-factor). If clear from the context, we suppress the
subscript v from the notation &,. We denote the adele ring of F' by A.

For any n > 1 by G,, we denote the algebraic group GL(n). We embed G,, — G, in the
upper-left corner. We denote the subgroup of upper triangular unipotent matrices in G,, by
N,,. Also, by Z,, we denote the center of G,,. For any ring R, we have Z,(R) =~ R* = G;(R),
so often we identify Z,(R) with G1(R). We denote the long Weyl element of G,, by w,, which
is given by the matrix whose anti-diagonal elements are 1 and all other elements are 0.

We fix Haar measures on G,,(R), N,(R), and G1(R) which we denote by dg, dn, and
d*z, respectively. We also fix G, (R)-invariant quotient measures on Z,(R)\G,(R) and
N,(R)\G,(R) which, abusing notations, we denote by dg. Again, if clear from the context,
we suppress the index n from the notations.

Let A, be the group of diagonal matrices in G,, which is isomorphic to G1(R)". If F is
a local field then we denote the standard maximal compact subgroup of G, (F') by K,. We
have the Iwasawa decomposition G,,(F') = N, (F)A,(F)K,. Using Iwasawa parametrization
we write

dg = 6 *(a) dnd*adk,
where ¢ is the modular character of the group N,(R)A,(R) given by

a) = [ [/, a = diag(ar.....a,)
j=1
and d*a =[], d*a;. Also, here dk denotes the probability Haar measure on K.

We follow an e-convention, as usual in analytic number theory, which allows us to change
the values of € (which is typically very small) from line to line. We also adopt the usual
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Vinogradov notations « and ». Moreover, we write A = B to mean |B| « |A| « |B|. Our
convention is that the implied constants in the Vinogradov notations are allowed to depend
on the global field and the ambient group.

3. LocAL PRELIMINARIES

In this section we work over a general local field F' of characteristic zero, archimedean or
non-archimedean, without mentioning the field explicitly. If F' is non-archimedean we let v
be its valuation, o its ring of integers, p the maximal ideal in o, and N(p) the order of its
residue field.

For the group G,, we mostly write GG, unless there is a source of confusion. We adopt he
same convention for subgroups of G.

The letter m will denote an irreducible admissible representation of G.

3.1. Measure normalizations. Let | - | denote an absolute value on F. In particular,
| |c = |-]& When there is no confusion we will drop the subscript F. On F we fix a
translation invariant measure dz so that if F' is non-archimedean then vol(o, dz) = 1. We
fix d*z := Cp(l)‘d}c—“”| to be the Haar measure on F'* where (p is the zeta function attached to
F.

3.2. Additive character. We fix an additive character ¢y of F. If F' is non-archimedean
then we assume that vy is unramified, i.e. trivial on 0. We define an additive character of
N by

1/1(71(1‘)) = ¢0 <Z xi,z’+1> ; n(J/’) = (ZL’i,j)@j e N.

We denote restriction of 1 to smaller unipotent subgroups also by the same letter.

3.3. Gamma factors and analytic conductors. For every irreducible representation 7
we attach local v, L, ¢ factors which are related by

L(1—s,7)

L(s,m) ’
where T is the contragredient of w. We refer to [20, §3] for the description of the local factors.

We also attach a local analytic conductor C(m) to m. If F is archimedean one defines C()
via the Langlands parameters of m; see [30, eq. (31)]. If F' is non-archimedean then one
defines C'(7) via the invariance property under the Hecke congruence subgroups, as in [35];
see §3.8. We record that if F' is non-archimedean and 7 is unramified then C(7) = 1.

If 7r; are representations of Gy, for i = 1,2. We also attach an analytic conductor C'(m ®ms)
of the Rankin—Selberg product m; ® ms. Then one has

(4) C(’ﬂ'l ®7T2) < C(ﬂ'l)n?c(ﬂ'g)nl
where the implied constant is absolute; see [25, Appendix A].

(s, ) :=e(s,m)
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One can analytically relate the local v factor and the analytic conductor of a representation
(see [38] for some discussion on this). We have the asymptotic expansion

V(1/2 4 5,m) = 7(1/2,m)C(7) ™ + Ox(s),
as s — 0. More precisely,
(5) Y(1/2+ s,m) = C(r @ | det [3)) 77,

as long as s is away from the poles and zeros of the v factor.

3.4. Sobolev norms. We follow [47, §2.3.3] to define a Sobolev norm on unitary represen-
tations. First, we define a Laplacian © on C*(G).
If I is archimedean then we define

D= 1—2X2,
X

where {X} is an orthonormal basis of the Lie algebra of G with respect to the standard
Killing form.

Let F' be non-archimedean. Let K[m] denote the principal congruence subgroup of level
m and e[m] denote the orthogonal projector on the orthogonal complement of K[m — 1]-
invariant vectors inside the space of K[m] invariant vectors. We define the Laplacian on G
by

D= Z N(p)™e[m].

Note that Y,”_ e[m] is the identity operator. We also note that © is invertible and a large
enough power of D71 is of trace class.
Finally, we define the order d Sobolev norm of v € m by

Sa(v) := | D] .
We refer to [47, §2.4] for useful properties of the Sobolev norm.

3.5. Whittaker and Kirillov models. For the details of this subsection we refer to [3] for
non-archimedean case and [33, §3] for archimedean case.
We recall the notion of genericity for an irreducible representation 7 of G. We call 7 to
be generic if
Homg (7, Ind§+)) # {0},
where

Ind$v .= {W e C*(G) with moderate growth | W (ng) = ¥(n)W(g),n € N, g € G}.

We also know that if 7 is generic then the above Hom-space is one-dimensional. We always
identify 7 with its image under a non-zero element of the Hom-space, which we call the
Whittaker model of m under 1.
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The theory of Kirillov models asserts that the restriction

oo ()]

is injective. Furthermore, for any ¢ € C(N,,—1\G,—1, %) there is a unique Wy € 7 such that

W [(g 1) = ¢(9),

and the map ¢ — W, is continuous.
If 7 is generic and unitary then we put a unitary inner-product on 7 by setting

for any two Wy, W5 e 7.
We work with a specific normalization of the inner product in this paper. We fix

(6) Wy, Wa) = Lﬁ(&) (W1, Ws)o  if F is non-archimedean
b (Wi, Wa)o if F is archimedean

In the non-archimedean case, the inner-product is built so that if 7 is unramified and W e 7
is spherical, then |[W|* = |IWW(1)|>. Note that such normalization is purely for cosmetic pur-
poses so that the harmonic weights in (1) remain independent of the set of ramified places
S; see Lemma 4.1. On the other hand, in the archimedean case such normalization is not
necessary as we are concerned about the “finite part” of the L-functions, as in Theorem 2,
as opposed to completed L-functions.

We recall the Langlands classification of the unitary representations of G. Let P be
the standard parabolic subgroup of GG attached to the partition n = Zle n;. Let m; be
any essentially square-integrable representation of G,.. For any k-tuple (si,...,s;) € C*
we consider the unitarily normalized induction Indg @le m; ® |det [*. Then any unitary
representation 7 of GG is the unique irreducible constituent of such an induction and is denoted
by B, m ® | det [*. We define 7 to be f-tempered (resp. tempered) if max®_| |R(s;)| < 0
(resp. 0).

In this paper, we will always assume that # < 1/2 whenever it appears. Note that it
is known that the local components of a unitary automorphic representation are always -
tempered for some 6 < 1/2.

Si

We need the following bound for Whittaker functions. Although the bound may very well
be available in the literature (in a scattered way), we were unable to find a proper reference
to the result in the f-tempered case that works for general local fields. We state the result
now and prove it later after developing the necessary tools.
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Lemma 3.1. Let W € 7 be O-tempered. If g = ak with a = diag(ay,...,a,) then for any
large N > 0 and smalln > 0

W(g) <n. |det(a/a,)| 06" (a) 1:[ min(1, |a;/ai 1| ) Sqa(W),

for some d > 0 depending only on N and the group.

This result is proved for a real place in [38, Lemma 5.2] in the tempered case and in [37,
Lemma 7.2] in the #-tempered case.

3.6. Whittaker—Plancherel formula. We record the relevant formulation of the Whittaker—
Plancherel formula. We refer to [62, Chapter 5] for the archimedean case and [4, Theorem
2.3.2] for the non-archimedean case.

Let G be the unitary dual of G i.e. G s the set of all isomorphism classes of unitary
irreducible representations of G. we equip G with a local Plancherel measure dyu'° which is
compatible with the Haar measure dg on G in the sense of Harish-Chandra:

) F1) = | Trace(a(h) du (). f < C(G),

It is known that dy!°¢ is supported only on the irreducible generic tempered representations
of G. Let £ e C*(N\G, ) be an element in the Harish-Chandra Schwartz space (adapted to
Whittaker models), in the sense of [62, §4]. Then we have the following absolutely convergent
spectral decomposition:

(8) E(h)W (h) dh du'*(m),

D= % W
G WeB(r) NG

where B(m) is an orthonormal basis of 7. The above sum does not depend on the choice of
the orthonormal basis.
We record a useful lemma.

Lemma 3.2. For each di,dy > 0 there is an L > 0 such that
| em® % su@S-s)dnm) < =
veB(m)
Here B(m) is an orthonormal basis of ™ consisting of eigenvectors of ©.

Proof. If F is archimedean the proof can be done as in [38, Lemma 3.3], verbatim.

Let F' be non-archimedean. We denote by ¢(m) the conductor exponent of 7 (see §3.8 for
the definition). Using [47, 2.6.3 Lemma] we see that the integral in the lemma is bounded
by

ee}
J N dlc () Z N m(da— L)N(p)md3 dluloc(,]r)’

m=c(m)
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for some d3 > 0. For any L' > 0 there is a large L > 0 such that the inner sum is
O(N(p)~¥<™). Thus it is enough to prove that

0
| ) () = 3N () A (e G el = 1)) <
G =0
for large enough A > 0. Thus it suffices to show that there is a fixed B > 0 so that
ke ({7r eGe(n) < z}) « N(p)&.

Let f := (vol(Ko(p“))) 1oy = f * f where = denotes convolution. Note that for ¢(m) < ¢,
from newvector theory (see §3.8), we obtain that

trace(n(f)) = Y [7(f)ol = [x(f)vo[* = [wol* = 1
veB(r)
where vy € 7 is a unit newvector. Now applying Harish-Chandra Plancherel formula, as in
(7), we obtain
N(p)"@) > (vol(Ko(p))) ™ = p*{m e G | e(m) < ¢},

as required. O

3.7. Local zeta integral and functional equation. For this subsection we refer to [20,
§3] for a detailed discussion.

Let IT and 7 be irreducible generic representations of G, .1 and G, respectively, realized
in the Whittaker models with respect to the same additive character. For R(s) sufficiently
large, we define the local zeta integral of V' € I and W e 7 by

) eV [ v |(0)]| Tl

If TT and 7 are unitary then the above integral converges for R(s) > 1. One can then
meromorphically continue ¥ to the whole complex plane.
Let w, be the central character of 7. We have the local functional equation

(10) (1= 5, V, W) = wr(—1)"y(s, L@ 7)W(s, V, W),

where W € # denotes the contragredient of W defined by W(g) = W(w,g ") and similarly
for V; see [20, Theorem 3.2].

Lemma 3.3. Let V € Il and W € 7 such that both II and 7 are varying over some families
of representations. Also let s € C be a regular point of the zeta integral V(.,V,W). Then for
each d > 0 there is a d > 0 such that

U(1/2+ 8, V,W) < Sa(V)S_a(W),

where the dependency of the implicit constant on s is at most polynomial.
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Proof. We first show the standard fact that any Whittaker function decays rapidly along any
positive root: for any N := (Ny,...,N,_1) and a = diag(ay, . ..,a,) then

n—1
(11) W(a) <y [ [min(1, a;/ai| =) Sa(W),
i=1
for some d > 0 depending only on N. The proof uses unipotent equivariance and smoothness
of the Whittaker function.
If F is archimedean we may choose an element Y (depending on Ny,..., N,_1) in the Lie
algebra of GG, such that

dr(Y)W(a) = [ (ai/ais) W (a).

i=1

The claim follows from the Sobolev inequality dn (Y)W (a) « Sz(W), for some d > 0.
If F' is non-archimedean then the invariance of W under some open-compact subgroup of
G, implies that

(12) Wi(a) =0, if |a;| > c|a;1| for some 1,

where ¢ depends only on the level of the open-compact subgroup under which W is invariant,
i.e. a certain Sobolev norm of W. Then the claim follows again from the Sobolev inequality.
Now let R(s) be large enough so that we can write W(1/2 + s,V, W) as the absolutely

convergent integral
[ vl )| v@naewras
No\Gn

Let F' be archimedean. We integrate by parts with respect to ® sufficiently many, say d,
times to obtain that the above equals

a2 (ALt o iaian

It is straightforward to check that ®|det(g)|® = p(s)|det(g)|® for a certain polynomial p(s).
Let w, be the central character of 7. We use Iwasawa coordinates in N,\G,, to write the
above integral as

Soits) |

j<d A

; 2 (¢ k
f DV 1 | det(a)|’|z|"wx(2)
n—1XKpn JFX ]_

DI [(“ 1) k} dxzm dk,

for some polynomials p;(s), j > 1.



RECIPROCITY AND NON-VANISHING 17

/

We make the change of variables k& — k and integrate over k' € K, 1 to obtain

1
that the above is, up to an absolute constant, equal to a finite sum of terms of the form

St | anM\GM | o (h 1>k et

j<d
_ h X
DA [( 1) k;]d zdhdk.

We apply the Cauchy—Schwarz inequality on the h-integral and use the unitarity of 7 to
obtain that the absolute value of the above expression is bounded by

h
S—d<W>f JN . J DV Z( 1>k | det(h)|®)—1
n n—1 n—1 x ]_

1/2
2", (2) A2 dh) dk.

Using rapid decay estimate of V' from (11) we see that the above integral is absolutely
convergent for f(s) large enough, and it is bounded by Sy (V') for a certain d'.

Now let F' be non-archimedean and R(s) be sufficiently large. First, we assume that V'
and W are K-type vectors, i.e., ®-eigenvectors. Then if the level of V' is smaller than that
of W, the zeta integral vanishes and the assertion follows.

Now let the level of V' be larger than that of W. We write the zeta integral in the [wasawa

coordinates as
LLnH (k 1) v l(a 1>]7T(k:)W(a)|det(a)|5§(;C)L dk.

Using rapid decay of V' as in (12) we may restrict the inner integral to a; « - -+ « a,, where
the the implied constants depend only on the level of V' and polynomially so. We use the
Sobolev inequality to bound 7(k)W(a) <k, Sz(W) for some d > 0. So the zeta integral
becomes absolutely convergent for some large $(s) and bounded by

Sd/ (V)Sd(W) ¢ Sd// (V)S_d(W),

for some d’ and d” depending on d. Thus the claim follows for V, W being ®-eigenvectors.
The general claim now follows from [47, §2.4.4, S4d].

So far we have proved that for a general local field F' and R(s) sufficiently positive the
assertion in the lemma follows. Now if R(s) is sufficiently negative then we use the local func-
tional equation (10), and the bounds in (5) and (4) to conclude that W(1/2+s, V, W) satisfies
the claim in the lemma (by absorbing the powers of the conductor into the Sobolev norms).
We conclude our proof by an application of the Phragmén—Lindelof convexity principle. [
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Proof of Lemma 3.1. We follow the proofs in [37, Lemma 7.2] and [38, Lemma 5.2]. Using
[47, §2.4.1, S1b] we reduce to the case of k = 1.

We argue by induction on n. The n = 2 case is in [47, Proposition 3.2.3]. We now prove
the inductive step.

Note that in the archimedean case there exists a differential operator Y such that

dr (Y)W (a) = (an—1/an)W (a).

We define W, := dr(YN)W. Thus it is enough to show that
n—2
Wi(a) <y, | det(a)| 7627 (a) | [min(1, |ai/aiq ™) Sa(W),

as Sq(W1) « Sg(W) for some d' > d.

In the non-archimedean case, we reduce to showing the above by appealing to the invari-
ance of W under sum open-compact subgroup and unipotent equivariance.

Let w, be the central character of 7 and @ := diag(as,...,a,_1). Using the Whittaker—
Plancherel formula (8) we write

| det(a/an)[*Wi(a) = wr(an)Wi(a/an)| det(a/an)]” =

wr(ay) J{;’\ Z W (A/an)¥(1/2 4+ s, Wy, W) dp'(n'),

n=1 WeB(x’)

which is valid for sufficiently large R(s).

The right-hand side is absolutely convergent, which can be seen by applying Lemma 3.3
and Lemma 3.2. Thus it is analytic in s in some right half-plane. Note that the poles of the
integrand in the right-hand side as a function of s may at most come from the poles of the
zeta integral as the Whittaker functions are analytic [32]. It is known that W(1/2+s, Wy, W)
is a holomorphic multiple of the local L-factor L(1/2 + s, 7 ®7'); see e.g. [20, Theorem 3.5].
As 7 is O-tempered and 7’ is tempered, the L-factor is holomorphic for R(s) > —1/2 + 6. So
we may analytically continue the integrand of the right-hand side until R(s) = —1/2+6+1n
for any n > 0.

We apply the inductive hypothesis on W’ (note that 7’ is tempered), thus deducing that

W' (@/an) <nn 67277 Hmln 1, |a;/aisr | ™) Sa (W),

for some d’ > 0. We use

d(a) = | det(a/an)|o(a/an)
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and Lemma 3.3 to obtain that

n—2
Wi(a) <y | det(a/a)| ™62 (a) | [min(1, |a;/aiq )
=1

fG/_\ Z Sd/_L(W/)Sd(Wl) d,uloc(ﬂ'/),

n—1 W/EB(TFI)

where d depends on L, N. Taking L large enough and applying Lemma 3.2 we see the that
last integral is convergent and we conclude. 0

Remark 3.1. From the proof of Lemma 3.1 it can be noted that the exponent 6 of |det |

in the bound of W, as in the statement of the lemma, can be modified to —6 where 6 is the
minimum of the magnitudes of the real parts of the Langlands parameters of .

3.8. Newvectors. Let F' be non-archimedean and 7 be generic with trivial central character.
Let Ko(p’) be the Hecke-congruence subgroup of G,,, i.e. consist of matrices in G, (0) whose
last rows modulo p’ are congruent to (0,...,0, *).

Let ¢(m) be the minimal non-negative integer j such that the Ky(p’)-fixed subspace w%o(’)
is non-zero. It is a theorem by Casselman [18] (for n = 2) and Jacquet—Piatetski-Shapiro—
Shalika [35] (for general n) that 750¢*™) is one dimensional (also, see [45, 34] where an error
in [35] has been corrected). Any non-zero vector in this fixed space is called a newvector.
Also, ¢() and C(7) := N(p)°™ are called the conductor exponent and (analytic) conductor
of 7, respectively.

In this paper we denote the newvector W € 7 such that W (1) = 1 by W,. Newvectors
often serve the purpose of test vectors for the Rankin—Selberg periods. In this paper we use
two such instances, hence record them here.

Let o0 and II be any irreducible generic representations of G, and G, 1, respectively.
Further assume that at least one of II and ¢ is unramified. We consider the vector Wr(f(a)),
given by (32). From [16, Theorem 1.1], we have

L(s,1T®a)
[Gn(0) : Ko(p)]'
Note that, this generalizes classical test vector result in [35] which considers the case of

unramified o.
The L-functions attached to 7 can be given by

(13) W(s, W W) =

L(Svﬂ) = H(l - N<p)7sai)7l7
i=1
for a certain o := {a;} € C". If 7 is also unramified then «; # 0 and are called the Satake
parameters attached to 7.
The description of W, restricted to A, (F"), which is due to Shintani [60] for unramified =
and Miyauchi [48] for general 7, is as follows:
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Let m := (my,...,m,) € Z" and
a = diag<y1a Y2, - - ayn)?
with v(y;) = m;. Then

(14) W(a) = {61/2(G)Aw<m>, if my > =my,

0, otherwise,

where A (m) is the Schur polynomial with index m and evaluated at «, i.e.

An(m) = det([a?m_i]lsmsn)
" . det([a?_i]lsmsn)

If 7 is f-tempered then max;{|a;|} < N(p)?. Consequently, it follows from the highest weight
theory for U(n) that

(15) Ar(m) < N(p)?=im,

where the implied constant is at most a polynomial in m.
We also record that if 7 is unitary and unramified then

(16) ||W71'H2 =1,

which follows by directly calculating the L?-norm using the description in (14). On the other
hand, if 7 is ramified, then from the description of W, as in [48, Theorem 4.1] one computes

n

<W7r: WW>0 = H (1 - Biﬁ_jN(p)_l)_l

4,j=1

for some §; € C. If 7 is f-tempered for some 0 < 6 < 1/2 (e.g., appears as a local component
of a generic standard automorphic representation) then there exists an absolute § > 0 such
that |8;| < N(p)?7°; see, e.g., [17, eq.(2)]. Moreover, f-temperedness of 7 ensures the
existence of an absolute ¢’ > 0 so that

n2

L, r@7) =] [1-BNp ™)™

i=1
for some f] satisfying |3/ < N(p)'~?; see e.g., [17, eq.(4)]. Thus we obtain

Cr(n)

2 _

<W7T7 W7r>0 =1

where the implied constants only depend on n,d,d" and in particular, not on p, 7.
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4. GLOBAL PRELIMINARIES

In this section, we let F' be a number field and A its ring of adeles. By G,, we denote
the algebraic group GL(n) over F. For any subgroup H < G, defined over F', we denote
by [H] the quotient H(F)\H(A). We also define [H] to be the quotient Zy (A)H(F)\H(A)
where Zp is the center of H. We may give a G,,(A)-invariant finite measure on [évn] which
is compatible with the product measure on G, (A) and we denote it by dg. When there is
no confusion we might suppress the index n from the notation.

4.1. Classification of automorphic spectrum. We give a quick description of the stan-
dard automorphic representations i.e. those which appear in the spectral decomposition of
L2([G]). We refer to [47, §2.2.1] and [49] for details.

Let Y(G) be the set of pairs (M, o) where M is the Levi part of a standard parabolic
subgroup G and o is an isomorphism class of discrete series of M(A). Here by discrete series
we mean the automorphic forms on [M] such that for all ¢ € o the integral

ol = [l ds
(M]

is finite.

We let X(G) be the quotient of Y(G) by the equivalence relation defined as follows:
(M,0) ~ (M',0") if there exists a Weyl element w such that wMw™" = M’ and wo = o'
For every x € X(G) we define Z(x) to be the unitarily normalized induction Ind%j() A)M(A)O
where N, is the unipotent radical attached to M. Langlands’ classification asserts that any
standard automorphic representation is isomorphic to the unique irreducible constituent y
of the induction Z(x).

Let us now start with a cuspidal data x = (M,0), i.e. o being a cuspidal automorphic
representation of M(A), and proceed with the same construction as above to obtain Y. An-
other theorem of Langlands asserts that any generic (see below) automorphic representation
is isomorphic to such a Y.

Finally, we denote by X (G) the subset of isomorphism classes of y in X (G) so that Z(x)
is Zg-invariant.

4.2. Spectral decomposition. We define a norm on Z(y) by

1120 = fK ()2 k.,

where K := [ [, K, where K, is the standard maximal compact of G,,(F,). Finally, we define
an intertwiner (by averaging over P(F)\G(F') and analytic continuation)

Eis: Z(x) — C([G]).
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Then for any element ¢ € C*([G]) with sufficient decay at the cusp (e.g. a cusp form) we
have the pointwise Plancherel decomposition

(&, Eis(f >L2 . aut
(19 Jm D S o D@0,

Here B(Z(x)) denotes an orthogonal basis of Z(x) and du®*(x) denotes the automorphic
Plancherel measure on X (G) compatible with dg. The right-hand side above does not

depend on the choice of orthogonal basis B. Also, the right-hand side converges absolutely
and uniformly on compacta. For more details we refer to [47, §2.2.1].
Often, we use the shorthand for (18), writing

£() :L Z & 90>

HsOH2

In practice, we mostly vary m over the generic spectrum only, in which case we replace Saut
above by {

gen’

4.3. Fourier expansion of automorphic forms. Let vy : F\A — C* be an additive
character. For concreteness, we chose 1)y, as in [47], to be the additive character eg o tr,
where eg is the only additive character of Q\Ag whose restriction to R is z — exp(2mix)
and tr : A — Ag is the adelic extension of tr : F' — Q. We extend ¢y to a character ¢ of
N(A) as in §3.2. We define the 1)-Whittaker space by

W) = {W e C*(G(A)) with moderate growth | W(ng) = ¥(n)W(g),n € N(A),g € G(A)}

on which G(A) acts by right translation.
For any automorphic representation m we define an intertwiner 1 — W(4) by

T30 W,: J n.)(n) dn.

We call m to be generic if the above intertwiner does not vanish identically. The theory
of Whittaker model asserts that if 7 is irreducible and generic then the above intertwiner
is unique up to scalars and, in fact, defines a G(A)-equivariant embedding. We call the
image W(m, ) of m under the above intertwiner the Whittaker model of 7. For generic 7
we identify m with its Whittaker model.

Given an automorphic form ¢ in a generic representation 7 of G, (A) we can write its
Fourier expansion using W,,. For example, if ¢ is cuspidal then we write (see [20, Theorem
1.1))

/
(19) plg)= D, Wely) = > W, [(7 1) g] .
YENR (F)\Pn(F) Y'ENpn—1(F)\Gn-1(F)

The above Fourier expansions converge absolutely and uniformly on compacta. Here P, is
the standard Mirabolic subgroup of GL(n) defined by GL(n — 1) xU,, and U, is the unipotent
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radical of the parabolic in GL(n) attached to the partition n = (n — 1) + 1. In other words,
P, is the stabilizer of (0,...,0,1) of the right action of G,, on the row vectors; thus consists
of matrices in GL(n) with last row being (0,...,0,1).

If ¢ is non-cuspidal then the Fourier expansion of ¢ is more complicated. We do not need
full Fourier expansion for non-cuspidal automorphic form; interested readers may look at
[28, Proposition 4.2]. However, we do need a partial Fourier expansion with respect to the
unipotent subgroup U,. From abelian Fourier theory we have

(20) -pu)o = Y I(F)Wgn[(V )l

’yEPn,1 (F)\Gn,

Here ¢y, is the the constant term of ¢ along U,, defined by

vu,(9) = J[U | ©(ug) du,

and Wg” is a partial Whittaker function defined by

(21) W (g) = f[ v = f[ | (609) = g0, (09 o

which follows as ¢y, is left U,-invariant.

4.4. Global Zeta Integral and L-functions. We give a quick description of the global
theory of GL(n + 1) x GL(n) zeta integrals; for details see [20, §2]. Let IT and m be generic
representations of G,41(A) and G, (A), respectively. Let ® € IT and ¢ € m be two automor-
phic forms with Whittaker functions We and W, respectively. We define the global Hecke
zeta integral of & and ¢ by

U(s, We, W,) 5=J

Nn

wo (4 ) | W@l aetto) 2 ag
(A\Gn(A)

The above converges absolutely for sufficiently large ®(s). If II is cuspidal then the above
integral is also equal to the absolutely convergent integral

J[Gn] v [(g 1)] o(g)| det(g)[*~* dg,

which can be seen after inserting the Fourier expansion of ® and ¢, and unfolding.
If & and ¢ are factorable vectors then the global zeta integral factors into local zeta
integrals as

\IJ(S, W<I>>Wgo) = 1_[ \Ijv($7 W@,va ch,v)a

where the local zeta integral W, is defined as in (9), and We = [ [, Wo,,, similarly for W,,.
Once again the product converges absolutely for sufficiently large $(s).
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If &, ¢ and v are unramified at the places outside of a finite set S, and further, if
We. = Wn, and W, = Wy, for v ¢ S then (see [20, Theorem 3.3])

Ty — \va(s, WCI) vy W, v)
(22) U(s, We,W,) = A(s,I®T) 2 __Av
Q L,(s, 11, ® )

where L, denotes the v-adic local L-factor and A denotes the global completed Rankin—
Selberg L-function of II ® 7. We refer to [20, Theorem 4.2 for meromorphic properties of
the Rankin—Selberg L-functions.

We write A° for the partial L-function removing all v-adic Euler factors for v € S. If
S = {v | o0} then we write, as usual in analytic number theory, L for AS.

We attach a global analytic conductor C(m) to an automorphic representation m, analo-
gously to its L-function A(s,7) := A(s,7 ® 1). If 7 is unramified at the places outside of a
finite set S, then C(n) = [[,.q C(m,) where C(7,) is the local conductor as defined in §3.3.

We also have the convezity bound

(23) L(1/2,7) «. C(m)Y/4+e,

which follows from the functional equation of A(s,7) and the Phragmén—Lindel6f convexity
principle.
If ® is cuspidal then the integral

J[Gn]q) [(g 1>]W det(g)|*~2 dg

converges absolutely for any ¢ and any s € C. Moreover, if ¢ is generic then the above
equals U (s, Wg, W,,). This way we may analytically continue (s, Wy, W,,) for any cuspidal
o.

However, if ® is not cuspidal then the above integral is not convergent. One needs to
regularize the integral, as in [28], to give it a meaning and then the regularized integral will
again be equal to the global zeta integral.

In this paper we do not need the general regularization scheme but only need to regularize
the above integral when ¢ is cuspidal. This “naive” regularization is comparatively easier

and we describe it in §4.6 below.

4.5. Harmonic weights. We describe the harmonic weights that appear in the Kuznetsov
trace formula. The harmonic weights relate the unitary inner products on a generic unitary
automorphic representation and that of its Whittaker model.

Let 7 be a generic irreducible unitary automorphic representation such that 7 is unramified
outside a finite set of places S which also contains the archimedean places. Let ¢, ¢, € 7 so
that W, , = W, , = Wy, for all v ¢ S. By Schur’s lemma there exists a positive constant
L5 () such that for any two 1, @, € T,

(24) {p1,p2)x = L5 (7) H<th1,va W0 )m,

vES
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where (, ), is as in (6). If 7 is cuspidal then a standard Rankin-Selberg argument shows
that £°(r) is independent of S and

(25) L3(7) = L(7) = cpaL(1, T, Ad),

where cp is a positive constant depending on the number field /' and the group G. If 7
is non-cuspidal then we have that £%(r) is again independent of S and proportional to the
first non-zero Laurent coefficient of L(s, 7 ® 7) around s = 1.

Lemma 4.1. Let M be a Levi of G attached to the partition n = ni+---+ng and 7 := ®f=17rz~
be a cusp form on M such that w;’s are pairwise non-isomorphic. Let 11 := ¥ m; be the
Fisenstein representation attached to the cuspidal data (M, ). Then

Q1)

£5(I0) = £(11) = dp s lim 2O

() = £(01) = i i 5 5

where (p(s) is the Dedekind zeta function attached to F and dpp is a positive constant
depending only on F' and M.

If 7; are not pairwise non-isomorphic then L(II) will be proportional to limg (s —
1) L(s, I @ II) where k' is the order of the pole of L(s,IIQII) at s = 1. However, we
do not need that result here, so we do not prove it.

For 7 as in Lemma 4.1 we define the global Casselman—Shalika factor

cs(m H L(1,m ®7;).

1<i<j<k

Note that as 7; are pairwise non-isomorphic the above quantity is well-defined. Similarly,
we define the partial factor ¢s°(7) and the local factor cs(m,). Note that, we can also write
assertion of Lemma 4.1 as
k
£(11) = diyyles(m) P[] L(1, 7, Ad),
i=1
for some positive constant df, .
This result is probably known to the experts. However, we were unable to find a reference
which points us to the constant with the precision we need (e.g. to define (48)).

Proof. Without loss of generality we let S contain the ramified places of F' including the
archimedean places as well.

Let f € Z(M, ) be any nonzero element and Eis(f) be the corresponding Eisenstein series.
Then from [59, Proposition 7.3.1] we have

Jac
WEis(f) = H WEis(f),va WEls(f) v W

where f, € Tnd% M( ) (m) and 7, is realized in its Whittaker model. Here, W}]vac is Jacquet’s
functional as deﬁned in [22, §1.4].
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If ¢ € m we assume that Wy, = W, when v is an unramified place. Then it follows from
[59, Proposition 7.1.4] that
wi(1) = es(m,) ",

for v ¢ S. Hence, using (16) we have

1
26 WG, = ——3-
( ) ” v Iy |C5(7TU)|2
forall v ¢ S.
Moreover, we have a factorization [22 §11]
Whis(esS (m) 1) = 5~ (7) Weis(s) H cs(m, )W H Wiae,
vgS vES

We choose 1 = @y = Eis(cs”(7) f) in (24).
Using the definition of harmonic weights in (24) we have

1£(9)]2 = Hﬁmfﬂﬁ%ﬂ

veS
From [22, Proposition A.2] and (6) we have for non-archimedean v
Lv<17 Hv ® Hv)”W}]vaCH%TU = H Lv(17 7Tz',v ® 7Nfz‘,v) f va(gv)ngv dgv‘
i P(Fu)\G(Fy)

In other words, for non-archimedean v

f 1£o(g) 2
P(Fy)\G(Fy)

Thus using (26) we obtain that the right-hand side is 1 for all v ¢ S.
On the other hand, for archimedean v similarly using [22, Proposition A.2] and (6) we get

C”(n) Jac
v v 3r d v
oon g Ul 0 = 0

dgo = les(m,)[*| W7y

Ty I, -

Ifr, -

Thus we have
Iﬂ%m=f 1£(g V@—Hﬁm [T ez Jesr)® [T W5,
P(A\G(A) vES veS
v non-archimedean v archimedean

Replacing f by ¢s°(7) f we obtain

k
les® () I rm = | | £m)les(m” | TIWFE<IR,
i=1

veS

Finally, using description of £(m;) for cuspidal 7; as in (25) we conclude. O
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4.6. Regularization. To prove the reciprocity formula in Theorem 1 we need to express
the global L-function of o ® 7 as a period integral on GL(n) x GL(n — 1) while o is not
necessarily cuspidal. In this case, the usual GL(n) x GL(n — 1) zeta integral may not be
absolutely convergent. This is why we need to regularize the global zeta integral to relate it
with the Rankin—Selberg L-functions.

Proposition 4.1. Let ¢ be an generic automorphic form on G,(A) and ¢ be a cusp form
on Gp_1(A). Then for s € C with R(s) sufficiently large

(e[ ][ 1)]5@) iorza

is absolutely convergent and equals W(s, W, Wy).

To prove this proposition we need some preparatory results on the decay properties of
Wg” which will be used to deal with several convergence issues.

Lemma 4.2. Let ¢ be any vector in a generic automorphic representation o of G,,(A) and
wu, be its constant term along U,,. Let X be any element in the universal enveloping algebra
of [ 1oy Gn(£y). Then for all large N, and for z € [Z,1] and g € G, (A) we have

o)~ o) | (7)) o] oy 147,

where the dependency on g is at most polynomial in the coordinates of the toric part of g
according to an lwasawa decomposition.

Proof. This is a special case/reformulation of [49, Lemma 1.2.10]. O
Lemma 4.3. Let z € [Z, 1], g € G_1(A) and v € P, 1(F)\Gn_1(F). Then for all large
M, N

(29 N
W [ (19 ))] o 4 12D i

where | - | denotes any fized norm of F"~' and the dependency on g is at most polynomial
as in the previous lemma.

Proof. We use the formulation in (21) to write

(2 )] e[ (7 ]

where e,_; is the vector (0,...,0,1) € A""!. Conjugating, using automorphicity of ¢, and
changing variables we write the above as

o], -l ) (¢ D]
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From abelian Fourier theory and Lemma 4.2 we deduce that the above integral is bounded
by

(L + 1)V len-1vI7"
for all large M, N. We conclude the proof by noting that e, 17y uniquely determines v €
P (F)\Gra(F). 0

Proof of Proposition 4.1. Rapid decay of the cusp form ¢ on [én_l] and Lemma 4.2 yield
the absolute convergence in the Lemma for sufficiently large $(s).

To prove the equality between the integral in the proposition and W(s, W,,, Wy) we first,
using (20), write the integral as

f 2 we Kvg 1)] 6(g)| det(g)|"~ dg.
[Grn-1] seP, 1 (F)\Gp1(F)

Again rapid decay of ¢ on [én_l] and Lemma 4.3 yield absolute convergence of the above
joint integral and sum for large R(s). This allows us to unfold and write the above as

| we [ (7)) @ aeor o
Pn—l(F)\Gn—l(A)

Now we insert the Fourier expansion of ¢ as in (19) into the above equation to write the
same as

f Wy Kg 1)] > Wo(79)| det(g)|** dg.
Prn1(F)\Grn-1(4)

YENp—1(F)\Pp—1(F)

Once again, applying Lemma 4.3 for Wg » along with Lemma 3.1 for W, we deduce that the
above joint sum and integral converge absolutely. This allows us to unfold once again to
write the above as

| we [ (7)) Wl et a0
Np—1(F)\Gn-1(4) .

Finally, using N,,_1(A)-equivariance of W, we fold the above integral as

Jo s Uy [ (77 1) [ 7000 W@t

We conclude by noting that the inner integral evaluates to W, [(g 1) ] 0

5. GLOBAL SET-UP

In this section we work globally and adopt the notations as described in the beginning of §4.
Let IT and 7 be cuspidal automorphic representations of G,,11(A) and G,,_1(A), respectively,
with trivial central characters. Let ® € II and ¢ € m be two cusp forms.
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5.1. Reciprocity as a period identity. We first show an identity between two periods of
the automorphic forms ® and ¢. This identity is the point of departure for the reciprocity
formula.

For s € C? we define

zh
(27)  P(s, 9, 9) :=f f i) 2 o(R)| det(h)[r o271 |2[M =12 2 4
[Gn-1] J[G1] 1

As @ is cuspidal, rapid decay of ® ensures that the above integral converges absolutely for
any s € C2.

Proposition 5.1. For any s € C?> we have
P(s,®,0) = P &, 0),
for & := II(w*)® where w* and § are given by (3) and (2), respectively.

Proof. This is a straightforward generalization of [53, Proposition 5.1] and the proof follows
the same lines. Indeed, by making use of the automorphicity of ® we have

hz - hz 1
® 2 A 1 (Z n 1)
1 1

We insert the above in the integral in (27). Then using the central invariance of ® and
¢, along with the change of variables h ~— hz~! followed by z + 27!, we arrive at the
conclusion. [l

5.2. Spectral decomposition of the period. Recall that ® is a cusp form on G,1(A).
We start by projecting ® to the space of center invariant automorphic forms on G,,(A). For
s € C, we define

Asalg) = de) 2 [ @] ()| aru ge o),
[G1]

Once again the above converges absolutely due to the rapid decay of ®.

Note that A;P(g) is Z,(A)G,(F)-left invariant. We also notice that since ® is smooth
and of rapid decay, then so is A;® on Z,(A)\G,(A). We spectrally decompose AP over the
standard automorphic representations of Z,\G,, as in (18), to obtain

Ascb(g):fa Z AL o(g) do.

2
A

It follows directly from the definition of AS that we have

A= | o)l



30 SUBHAJIT JANA AND RAMON NUNES

which, due to rapid decay of ®, converges absolutely for all s € C. Using Fourier expansion
of ® as in (19) we see that the above expression vanishes unless o is generic. This can be
seen similarly as in [37, Lemma 4.1]. In this case it is equal to W(s, Wg, W,,); see §4.4. As a
consequence, we may rewrite the spectral decomposition of A,P as

f Z Lis, Wa, W, )sf)(g)da-

]2
The above is entire as a function of s € C.

Let (7n be the image of U, under the embedding G, — G, and let q)ﬁn denote the

constant term along [an, that is,

®y (9) = J[UH]CP[(U 1)9], g€ Gna(A).

Note that ﬁn is not a unipotent radical of any parabolic of GG,,;1, so the above integral need
not vanish identically. Since [U,] is compact, working as above, we spectrally decompose
A;®p  to obtain

A(g) — J Z S‘Vf; )(w(g)—wvn(m)da-

Once again the above converges absolutely and hence is entire as a function of s € C.
Recall that ¢ € 7 is a cusp form. Let s := (s1, s9) € C? with R(s2) being sufficiently large.

We take g = <h ) for h € G,_1(A) in the above equation and integrate the both sides

1
against ¢|det |*27Y/2 over h € [G,,_;]. Using Proposition 4.1 we write that

oo [ (ol )] e[

:J Z ‘II(Sl,Wq>,W4p)‘II(82,W@,W¢) da’

2
= el

Both sides are absolutely convergent for any s € C? with sufficiently large R(sy). Thus the
expressions are entire in s; and holomorphic in sy in a right half plane.
We define the degenerate term by

zh

(29) D, ®,6) - J f By = || G| det ()11 qp s
G1 n—1 1

Once again, rapid decay of ® ensures that the integral in (29) converges absolutely for any
se C2
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For any s € C? we also define
(30) M(S7q)7¢) = J A(SI’]:[@ZEA)(S%O—@W)HS(U; W<I>7W¢7S) dUa
gen o

where Hg(o; We, Wy, s) is as defined in §6.1. Note that the above expression is well-defined
whenever s, is not a pole of A(sy,0 ® 7). Precisely, it is defined for s; € C and R(sy) # 1;
see §9 for more details.

Proposition 5.2. Let ® € II, ¢ € 7, and s € C2. Recall P, D, and L from (27), (29), and
(24), respectively. Let S be a finite set of places such that both ®, ¢, F' are unramified at all
v ¢ S. Moreover, let We , = Wn, and Wy, = Wy, forvé¢ S. Then

P(Sa q)a ¢) - D(S> <D7 ¢> = M(57 q)v ¢)7
for sy € C and sufficiently large R(s3).

Proof. Note that P as in (27) can be written as

Ay [(h 1)] B0R)| det(h)[**~V/2 dh.

Similarly, we write (29) as
Do) = [ Aoy (") an

We also choose B(o) in (28) so that the only vectors for which ¥ (s;, We, W, W,,) is non-vanishing
satisfy W, = W,, for all v ¢ S. Finally, using (24) and (22) we conclude the proof. O

6. CHOICE OF THE VECTORS IN THE LOCAL FACTORS

6.1. The local factor. Let II and 7 be cuspidal automorphic representations of G,,.1(A)
and G,_1(A), respectively. Let o be a generic unitary automorphic representation of G,,(A).

Let S be a finite set of places of F. Let v e S. For W, € II, and W, € m,, and s € C? we
define

Z 517W17W>\I/”U(82)VV7W2>
L (s

31 Hv v :H ’U7W7W7 o)
(31) (o) (00; Wi, W LI, ®5,) Ly (2,00 ® 7o)

WeB(o
where W, is the v-adic zeta integral defined in (9) Here B(o,) is an orthonormal basis of o,
under the unitary inner product defined in §3.5. The right-hand side does not depend on a
choice of B(o,). We also define
hv(av) = L’U(817 HU & &U)LU(S27 Oy ® 7~Tv)]{v(o-v)'

and

Hg(o) = Hg(0:®,¢,8) = | | Ho(0w; Waw, Wi, 8),
veES
which are the local factor used in Theorem 1.



32 SUBHAJIT JANA AND RAMON NUNES

Lemma 3.3 and Lemma 3.2 imply that the right-hand side of (31) is absolutely convergent
for sufficiently large R(s). As a function of s the function H(o; Wy, Wa,'s) can be analytically
continued to all of C? which follows from the fact that

qjv(87W17W) \II’U(87W7W2)
Lv(sa Hv ® 31})7 LU(S7 Oy ® %U)

are entire functions of s.

6.2. Choices of vectors. Let q be an ideal of [ [,__ 0, and po be a fixed prime such that
q, Po, and the discriminant Ap of F' are pairwise coprime. We let

Si={po}v{vlafu{v[Ar}u o]}

We assume that II and 7 are unramified at all v < co.

We choose factorable cusp forms ® € II and ¢ € 7 by specifying their local Whittaker
components Wg ,, € II, and W, € m,. For all v ¢ S we choose Wg,, = Wy, and Wy, = W, .
The choices at v € S are described below.

6.2.1. At the places v | q. For any f € Z>( and any prime p we define

L. B
(32) Wi (g) = N(p)~ 0| W, | g o 11 (Bp7) dB,

-1
By 1

for g € Gp11(F}).
Let p, be the maximal ideal of 0,. Let q =], ple. For all v | q we choose W, = WI(IJ:“).
On the other hand, for all v | ¢ we choose Wy, = W,.

6.2.2. At the places v | Ap. At these places we need care due to the fact that the underlying
additive character for the Whittaker model is not unramified. That is, ¥,(z) = ¥g, (A7)
for some A, € F, such that |[\,|7™! = A, is the v-part of the discriminant Ay and ¥, is the
standard unramified additive character of F,,, i.e. trivial on o,. Let

ar(\,) = diag( A7t oA, 1), > 1
Then, we take
(33) Wa.(9) = Wi, (ans1(N)g),  Wio(9) := Wi, (@n-1(N\)g)-

To avoid confusion, Wiy, and W, are the usual newvectors, i.e. they are realized in the
Whittaker model with respect to ¢p,.
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6.2.3. At the place v = pg. Let 7 be a fixed supercuspidal representation of G, (F,) with
trivial central character. For normalization purposes we choose 7 so that

L,(s,7®T) = (,(ns).

Such a 7 exists; see [64, §2.1].

It is known that the normalized newvector W, € CX(Z,,(F,)Np(EFy)\Gn(Fy), ), t.e. Wy
is compactly supported on Z,(F,)N,(F,)\Gn(F,); see [19, Corollary 6.5]. We choose Ws ,
so that

(34) W l(Zh 1)] =1 Wo(h), zeGi(E),he Z(F)\GulF,).

Note that the (34) uniquely determines Ws, due to the theory of Kirillov models; see §3.5.
Once again, we choose Wy, = W .

6.2.4. At the archimedean places v | ®. For each v | 0, we choose W, ,, € m, as a smooth
vector such that W, ,(1) = 1. We also fix a sufficiently small ¢ > 0 and a ball B <
Ny-1(Fy)\Gy-1(F,) around the identity with sufficiently small radius, so that

(35) (Wyo(h)—1] <e, VheB.

Using the theory of Kirillov models, we choose W, € 11, so that Ws, |Gn( F,) 1s given by a
fixed non-negative element in C*(N,,(F,)\G,(F,),1,) such that

zh
(36) G1(Fy) X Np_1(Fo)\Gno1(Fy) 2 (2,h) — Wy, z is supported on Byx B,
1

where By < G1(F}) is a ball around 1 with sufficiently small radius. Moreover, we normalize
Wg ., by imposing that

zh
37) J f W, 2 d*zdh = 1.
Np—1 (Fo)\Gn-1(Fy) JG1(Fy) 1

We use the shorthand

39 hoto)i= [T (W Wour (5:3) )

v|oo

where h, is defined in §6.1, and
11
. 7o
(39) Hy(o) =] [ A, (av,Wr&J,Wm, (5,5»,

vlq
if q= Hv|q gv‘
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7. LocAL WEIGHT FUNCTION: ORIGINAL MOMENT

In this section, let v be a non-archimedean place and F' be the corresponding local field
whose ring of integer is 0 with maximal ideal p. The letters II, o, and 7 denote irreducible
generic unitary representations of G,,1(F), G,(F), and G,,_1(F), respectively. Similarly, L,
v,... etc. denote local L-factors, local y-factors... etc. We drop F' from the notations if there
is no confusion.

We fix a 0 < ¢ < 1/2. Further assume that IT and 7 are tempered and unramified. Also,
let o be a ¥-tempered representation of G,, with conductor exponent c(o).

The goal of this section is to analyse H (o) for the choices of the local vectors as in §6.2
at the non-archimedean places v | q, v | Ap, and py.

7.1. At the places v | q. We devote this subsection to prove the following proposition.
Recall the definition of the local factor H, from (31).

Proposition 7.1. Recall the choices of test vectors from §6.2 for v | q. We have

< N(po) "IN (p,) 5 ife(oy) < fo
1
Hv v;W vvay = 7 .. ) v) = Jov
(00; Won, We i, 8) T if c(oy) = f,
=0 if c(ow) > fo
for R(s) = (3.3). Here n(p’) := [Gn(0) : Ko(p/)] = N(p)/ 7.

From §6.2 we have
Hy(00; Wa, Wy, 8) = H(o, W, Wy s).

For the rest of this subsection we suppress the notation for the place v.
First we explicitly write Wr([f ) defined in (32) as follows. Note that the Fourier transform
of 1, is itself. Thus,

(40) Wﬁ”l(g 1)]=Wnl<g 1)]10n—1(€<g)pf),

where ¢(g) denotes the row vector constructed from the left-most n — 1 elements of the last
row of g.

Lemma 7.1. Let W e 0. Then
\D(Sbwlglf)?W) = le(SlaWI(If)vpf(W))a

where Py 1s the orthogonal projection onto ocFoe) I particular, \Il(sl,Wl(Tf),W) vanishes
unless c(o) < f
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Proof. Let R(s1) be sufficiently large. Using (40) and sphericality of Wy we write the zeta
integral in Iwasawa coordinates as
dX
J Wi | (¢ ]det(a)]slmj 1ot (U(K)anp "YW (ak) Ak~
n 1 Ky, d(a)

Recall from the description of the spherical Whittaker function in (14) that the above
vanishes unless a, € 0. Hence the inner K,-integral is just a multiple of P., where e =
max(0, f — v(a,)). The main formula now follows since P, Py = P, for e < f and via mero-

morphic continuation. Finally, we conclude by recalling that o%0®”") is zero if clo)y> f. O

Lemma 7.2. Recall that o is a ¥-tempered representation with conductor exponent (o). We
have
2(1/2 + 5,0) = N(p) %),
for s e C with 0 < R(s) < 1/2 -9
Proof. Recall that W )
L(1/2—s,0
v(1/2 + s,0) = e(1/2 + s, a)m,
with
£(1/2 + s,0) = £(1/2,0)N(p) )",

and |e(1/2,0)| = 1 as o is unitary.

Also, there exist {a;}™,, {8}, € C™ with m < n such that max;{|ay|, ]3|} < N(p)? and

m m

L(s,0) = [ [(1 = N(p)*ai)™", L(5,8) = [ [(1 = N(p)~*p:) "

i=1 i=1
Thus for s as in the lemma we have
L(1/2 —s,5), L(1/2 + s,0) = 1.
Combining all the bounds we conclude. U

Note that if 7’ is an unramified representation of PGL(r) with Langlands parameters
{v;}_, then

s7r®0 1_[’78+VZ,

Moreover, if 7" is tempered, i.e. R(v;) = 0, then Lemma 7.2 implies that

(41) Y(1/2 + 5,7 ®0) = N(p) "R,

whenever 0 < R(s) < 1/2 — 9.

Lemma 7.3. Fize > c(o) and let W € o be any Ko(p®)-invariant unit vector. Then
W(1/2 + 89, W, W) < N(p)leme@)e,

for R(sy) = 0.
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Proof. Let 0 < R(sq2) < 1/2 — 0.

Note that Ko(p®)-invariance of W implies that if W { h ] is nonzero then e,_1h €

1
0"~ Thus the integral of W(1/2 + sy, W, W5) can be written as the absolutely convergent
integral

an_l\Gn_l W [(h 1)] Lyt (€n—1h)Wr(h)| det(h)[** dh.

The absolute convergence follows from Lemma 3.1. By the Cauchy—Schwarz inequality and
the unitarity of W, we conclude that the above expression has its absolute value bounded
by the square root of

J Lgn 1 (en_1h)|[Wx(h)|?| det(h)|%2) dh.
anl\anl

Lemma 3.1 confirms that the above integral converges absolutely as $(s2) > 0 and equals
L(2R(s3), 7 ® %) [20, Theorem 3.3]. Thus we have U(sy, W, W,) « 1.

Now we focus on W(1/2—s,, W, W,). We apply GL(n) x GL(n—1) local functional equation
to obtain that W(1/2 — so, W, W) equals

v(1/2 + 82,5®7T)J
Nn,

() e an

The above integral is absolutely convergent which follows from Lemma 3.1. Also from (41)

we obtain that the above gamma factor is bounded by N (p)~%R(s2)(n=1)e(o),

We note that Ky(p®)-invariance of W implies that W l(h )] is nonzero then e, _1h €

1
p~°. So the above integral can be written as

an\Gn W l(h 1)] Lyt (en—1hp) Wa(h)| det(h)| dh.

We again apply the Cauchy—Schwarz inequality on the h-integral. Using that |[W|| = HVIN/H =
1l and L(1,0 ® ) = 1 we obtain that the above is bounded in absolute values by the square
root of

f Lonor (en 1 hp) [TV (B) 2] det (1) 2262 .
anl\anl

Changing variable h — hp~¢ we see that the above is N (p)2"~DR(2)e [ (2R (s,), 7@ 7). Thus
for R(sz) > 0 we have

(42) U(1/2 — 59, W, W,) « N(p)n-DRE2)(ee(@)

Using the Phragmén—Lindel6f convexity principle with R(se) = € we may conclude. O
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Lemma 7.4. Let € be any irreducible generic tempered unramified representation of G,_1.
Let x be any unitary character of F* and |l € Z=y. Then the integral

X

az — d a
J () J Wi | | e@l detfa) 0 ave
(2)=1 Ani 1 (a)

is absolutely convergent for R(s) > 0 and is O(N (p)~1"/279).

Proof. Note that as £ is tempered and R(s) > 0 Lemma 3.1 implies absolute convergence of
the integral in the lemma.
Using Shintani’s formula (14) we bound the above integral in absolute value by

NE)™2 X alm, L0)Ae(m)| N (p) RO 2,

mi=..=2my_1=1

Temperedness of IT and (15) implies that Ar(m,[,0) « N(p)<&i™i+) and similarly, \¢(m) «
N(p)“xi™). Thus we obtain that the above infinite sum is convergent if R(s) > 0 and is
bounded. O

Lemma 7.5. Let W € o%0®) be any unit vector for some e = c(c). Also let £ be as in
Lemma 7.4. Then the integral

Jo () e

is absolutely convergent for 0 < R(s) < 1/2 — 1 and is O(N (p)F)=Nle=clo)),

Proof. This follows from the proof of Lemma 7.3, in particular, from (42). O

Lemma 7.6. Let W e o500 be any unit vector for some e = c(c). Let | € Zso and w, be
the central character of o. Then for R(s) = 0 the integral

L(z)zllz”smfAn_lwn . 1 Wma(a)ﬁmdxz

is absolutely convergent and is O(N (p)~"/?+ele=elo)+D),

Proof. Absolute convergence follows from Lemma 3.1.
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We choose some 0 < 1 < 1/2 — 4. We use non-archimedean Kontorovich-Lebedev—
Whittaker transform [24] to write the integral as

: f J
2" we (2)
(n =1 Jreqsyn—1 Jogz)=

!
a'z A%
4% 2 Wy (a')| det(a’)]"™* ™ —— d*2
Lnl ! 1 ™) d(a’)
a”’ _d*a” dm d7,_1
W Wy (a")| det(a”)| ™" =T ) — ... .
Jo [0 ) ot e =2

Here by dr; we denote the 2mi-normalized Lebesgue measure on S* and W, ;) is the nor-
malized spherical vector of the representation whose Langlands parameters are given by
T.

Note that the choice of 1 ensures absolute convergence of all the integrals. We use Lemma
7.4 to bound the outer A,_; x F'*-integral by N (p)~“"2~9 and Lemma 7.5 to bound the inner
A, _i-integral by N(p)"m=D(e=<@) Bounding the (S')"~!-integral trivially we conclude. [

Lemma 7.7. Let W € o be a unit vector. Then
c(a)+f

U(1/2 + 51, W, W) « N(p)“ @+ N(p)y™"2,
for R(s1) = 0.

Proof. Using (40) and Iwasawa coordinates we write

az

) wy(2) L Wh z l|z|™ det(a)|*

U(1/2 + s, W W) = J
1

F

an[(“ 1) k]10n1(€(k)zp_f)dkm d*z.

In the inner K,,-integral support condition of 1,:-1 forces (k) € (p¢)"~! where e := max(0, f—
v(z)). Hence that integral can be written as

Lo(p&) v Ka 1> k] dk = vol(Ko(p)) P(W),

where P, is as in Lemma 7.1. Since P, is an orthogonal projection, we can write

Ja L0 4= | ()]

for some unit vector W e g%o®°) and
co(W) « vol(Ky(p®)) = N(p) 1.
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Moreover, if v(z) > f + 1 then the above K, integral vanishes unless ¢(o) = 0. Thus we
write U(1/2 + s, Wéf), W) as

f
Z Ce(W)J z
e=c(o) v(z)=f—e Ap—1 1
d*a
@] "det(a)[*! — o d*
v l( 1>]”Z' et(a)l ) :
+ 50(0):000(W J WH z
zepf+1 An_1 1

W) K“ 1)] |z|”det(a)|slm d*z.

We let R(s1) = 0. Using Lemma 7.6, we bound the first summand by

f
Z N —(n— leN(p> n(f e)/2N(p)e(f—c(a)) « N(p)—nf/2—(n/2—l)c(o‘)+ef’

e=c(o)

and the second summand by

0
de(o)=0 Z N(p)fl(n/zfe) « 50(0):0N(p)7(f+1)(n/276).
I=f+1
Combining the above, we conclude the proof. .

Proof of Proposition 7.1. Case ¢(0) < f: By Lemma 7.1 we can instead sum over B(c%o®")
in the definition of H(o). We now apply Lemma 7.7, Lemma 7.3, and the fact that for
R(s1) = R(sg) =1/2

L(s1,11®7),L(s2,0@7T) = 1.

We conclude by noting that the dimension of ¢%0®’) is a polynomial in c( ) and f; see [57].

Case ¢(0) = f: We take B(c50®")) consisting of the single vector Thus we obtain

HW I

\I/(Sl, nglf),Wg) ‘:‘[}(527 W07Wﬂ'>
L(s1,1®0) L(sy,0Q@7)

H(o; W Wy,s) = [W, |72

Applying (13) we conclude the proof for this case.
Case ¢(0) > f: Lemma 7.1 implies the case ¢(c) > f immediately. O
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7.2. At the places v | Ap. Recall the choices of the test vectors in (33). Since the test
vectors differ from the spherical ones only by a multiplication on the left, it follows that

Ws,, is right invariant by <k , k € K,. Therefore, for a K-isotypic vector W € o,

1

the zeta integral W(sy, Wg ,, W) vanishes unless W is spherical. Hence, H,(0y; Wo », W0, S)
vanishes unless o, is unramified in which case H,(o,) has only one summand. The vector
corresponding to this summand has to be given, up to normalization, by a left translate of
W,,, the newvector for the unramified character.

In fact, we have

(81, WCD,U; W) \IJ’U<827 VVa Wd),v)
(517 H'u ® 31}) Lv(327 Oy ® 7~T'U) 7

LY,
H(O', WCD,Q);WQ‘J,UJS) = HWH 2 L

where (see §6.2.2)

It follows by changing variables that
ql’l}(sla Wq),va W) = |)\U|u1(81)\11v(317 WHU; WO'U) = A;MI(SI)LU(SL Hv ® 8:11)’

\IJ’U<S27 VV7 Wqﬁ,’v) = ’)\v‘uz(”)wv(S?a Wo‘m Wﬂ'v) = A;u2(82)Lv<S2a Oy ® 7~Tv)7
WP = [ IW5, [I2 = AT,

where p1 and po are affine functions whose complex coefficients only depend on n; and p is
a constant only depending on n. Altogether, we get that

(43> H’U (UU; W‘P,va W¢,U7 S) = A;#H(S)a

where pp is an affine functions whose complex coefficients depend only on n. We use the

shorthand yuy for pup (3,3).

7.3. At the place v = py. Recall the choices of the local test vectors at v = py from §6.2.
Proposition 7.2. We have

v 17 T f o, = )
HU(UU;W¢U7W¢U7S) = © ( T®T) Zfa .T
’ ’ 0 otherwise;
fors = (3.3).
The proof of this lemma is essentially contained in [36, §6.2]. We give a sketch of the proof
for the sake of completeness.

Proof. For W € B(o,) using (34) we write

U(1/2, Wi, TT) f W, (9)W(g) dg.
ZnNn\Gn
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The above integral is absolutely convergent as W, is compactly supported in Z,, N,\G,,. Thus
it defines a G,-invariant sesquilinear pairing between 7 and o,. By Schur’s lemma, this
pairing must vanish identically unless o, = 7. In the latter case the pairing is proportional
to the unitary inner product in 7 as defined in §3.5.

If 0, = 7 we choose an orthonormal basis B(o,) containing HVVI[;_:H As U(1/2, Wy, W)
vanishes for W orthogonal to W, we obtain

Hv(av;W{>,v>W¢,v>S) = |WT|_2J |W7—(g)|2dg
ZnNn\Ghn

The above follows from (13) and the fact that L,(s,II® 7) = 1. We evaluate the above
integral appealing to [36, Lemma 6.2] and conclude. O

8. LocAL WEIGHT FunNcTION: DUAL MOMENT

In this section we adopt the same notations as in §7. In particular, o is an irreducible
generic unitary ¥-tempered representation of G, (F') for some 0 < 9 < 1/2.

Recall w* from the statement of Proposition 5.1. Let W, € Il and W, € 7, and s € C2.
We define the dual local factor by

H(o) = H(o; Wi, Wa,s) := H(o3 TH(w*) Wy, W, s)

where H (o) is as in (31).

The goal of this section is to analyse H (0), as in Proposition 8.1, for the choices of the
local vectors as in §6.2 at the places v | g.

We suppress the subscript v as usual.

For W € o we define

(44 T = NG [ wla (M ) e as

Clearly, for g € G,,_1,
(45) Tl )] =w (0 ) [ e,

Lemma 8.1. Recall the vector ngf) from (32). Then H(o: Wl(Tf),Wms) vanishes unless o
s unramified in which case
\P(827 chf)awﬂ’)

L(s2,0®T)

PVI(U; Wr([f),Wms) =

where WM is defined as in (44).
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Proof. As Wry is spherical on G,,,1 we write

Infl B
Wil (gu®) = Np) = | Wi | gu? 1 101 (Bp7) 4B
n—1 1
i Infl ﬁ
= N@p) " W g 1 1o (Bpf) dB.
Frn—l 1

Let R(s1) and R(sq) be sufficiently large. Changing variables we write W (s, H(w*)Wr([f), W)
as

n—1

N(p)("l)ff U (s1, Wi, o)) Ly (Bp7) B,
F

where ug = <In_1 f) Let B(o) be an orthonormal K-isotypic basis. We multiply the

above integrand by W (s, W, W) and sum over the basis {0‘ ((Inl f)) W} .
WeB(o)

By linearity of the zeta integral, this yields

o)=Y U(sy, Wi, W) U(sy, WD, W)
7= L5, 1105 L(s2,0®7)

WeB(o)

By Lemma 7.1, W(s;, Wy, W) vanishes unless ¢ is unramified in which case we may replace
the above sum by a sum over W € B(c%"), which we may take to consist only of the vector
W, (recall (16)). Applying (13) and meromorphic continuation we conclude the proof. [

Lemma 8.2. Let 0 be unramified. We have
W(1/2 + 50, WD, W) « N(p)~Fr-D01/2=0),
for R(sz) = 0.

Proof. Using Lemma 3.1 we write the zeta integral as the absolutely convergent integral

fn NG 1W”(f) l(g 1)]W\ det(g)[* dg.

Using (45) and sphericality of the vectors W, and W, we write the above as

J L [( 1)]m| det (a)] L Low s (en_1han 1p~') S(;)L'

The inner K,,_;-integral vanishes unless v(a,—1) = f in which case the integral evaluates to
1. Using Shintani’s formula (14) for the spherical vectors we may write the above as

D Aa(m, 0) A (m) N (p)~(/2Fe2) L,

mi=-2mp_12f
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Using (15) we obtain
Ao(m,0) « N(p)¥rd 2,
and temperedness of 7 implies that A;(m) « N(p)2:™ . Thus we get the absolute value of
U(1/2 + so, W(;f),WW) is bounded by
S N(p)UEIITim ¢ N ()20
mi=--2mp_1=f

which follows as ¥ < 1/2. O

Proposition 8.1. Fiz 0 < ¢ < 1/2 and let o be a I-tempered representation. Then
H(o; Wl(Tf), Wy, s) vanishes unless o is unramified in which case

H(o; W W, s) « N(p)~f(n=001/2=0-9),
for R(s) = (%, %)

Proof. As 7 is tempered and o is ¥-tempered with 9 < 1/2 we have L(se,0 ® 7) = 1 for
R(s2) = 1/2. We conclude using Lemma 8.1 and Lemma 8.2. O

9. THE RESIDUE TERM: DUAL SIDE

Recall M(s, ®, ¢) from (30) which is originally defined for sufficiently large R(s). The goal

of this section is to meromorphically continue M(s, ®, ¢) on the right of R(s) = (%, %)

We use the shorthand “R(s;) > ¢ for i = 1,2” as “R(s) > ¢” and similarly for the symbols
> <, < and =. Our aim is to prove the following proposition.

Proposition 9.1. Recall P, D, and M from (27), (29), and (30), respectively. Then we
have

P-D=M+R,

where R is defined in (48). All of the above are evaluated at (s, ®, @) with 1/2—e < R(s) < 1
and are holomorphic in this region. Moreover, if the local components of ® and ¢ are chosen

as in §6.2 then
11

where ® is as in Proposition 5.1.

9.1. Analytic continuation. We recall the definition of M below:

B A(s1, T® )A(s2,0 ®T)
M(S,(I),¢) - Len £(U)

Hg(o; We, Wy, s) do.

Using the parametrization of the generic spectrum via cuspidal data (cf. §4.1) we decompose
M = My + My, where M; corresponds to the contribution coming from the parabolic
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@ attached the partition n = (n — 1) + 1 and My := M — M;. we further decompose
M1 = My + M, where M, corresponds to the the Eisenstein spectrum attached to

(46) o(mz) =T (M7 |detF@|-|""D%), zeiR,
where M =~ G,,_; x Gy is the Levi of Q and My := M; — M. In other words,

(47) M (s, P, 0) :=cg J;R( » A(s1,1I® 0(72(2)()7:(’:)2; o(m,2) ®T)

where ¢q is a positive constant depending only on @) (see [2, Main Theorem]|) and dz is the
2mi-normalized Lebesgue measure on ¢R.

Note that A(s,II® ) is an entire function of s and A(s,c ®7) is an entire function of s if
o is not of the form (46), which follows from [20, Theorem 4.2]. Applying positivity of L(o)
for unitary o (see §4.5) and entireness of Hg(o) as a function of s (see §6.1) we obtain that
M and My are entire functions of s.

The above argument also implies that M, as defined in (30), is also holomorphic for s; € C
and 1/2 < R(sy) < 1.

We now perform the meromorphic continuation of M. (s, ®, ¢) which is originally defined
for large R(s) to RN(s) = 1/2 (actually, for all s; € C). The argument is a generalization of
[53, Proposition 9.1].

Lemma 9.1. Let anyv € S and Wy € 11, and Wy € m,. Then the local factor H,(o(m,, 2); W1, W, s),
originally defined for z € iR and large R(s), can be meromorphically continued as a function
of 2,81, 89 to all of C* such that it is holomorphic for s € C* and sufficiently small |R(z)|.

Hg(o(m, 2))dz,

The proof can be extracted from [22]. We prove it here for completeness and readers’
convenience.

Proof. From the definition of the local weight in (31) we know that H,(o,) does not depend
on the choice of basis B(o,). We construct a basis B(o(m,, z)) for z € iR via flat sections, as

follows.

Let 740" be the restriction of 7, . := 7, ® |det |* @ |- |~""V% to K n M. Thus .o

(KnM)

is independent of z and so we call it 7 . We construct ﬂg() = Ind% . MTgmM) which

v

is, consequently, independent of z. We choose an orthonormal basis B(ﬂ(TUK)) of Tg(). For all
ne B(TT(rvK)) we choose a function &, ., on G(F),) which satisfies

Ery om(nmk) = 552+Z(m)7}rmz(m)n(k3), ne Ng,me M, ke K,

where Ng is the unipotent radical attached to ) and d¢ is the modular character attached
to Q.

Let W72 be Jacquet’s functional from the induced model to the Whittaker model; see [22,
§1.4] and [32]. Then it is known from [22, Proposition A.2] that

C<WJaC Wlae >0 = <§7rv,z,771 ) §Wv737772> = <7]1’ 772>’

571'1172,7]1 ’ EWU,Z,TD
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where ¢ is an absolute constant. In particular, from (6) we conclude that [W{*  |* does

not vanish when z varies in a small enough neighbourhood of the imaginary axis.
We rewrite the definition (31) of H,(o(m,, z); Wi, Wa, s) as

W, (51, W0, W2 )W, (s, W)

éﬂ'v —z,n

Z Jac ~\
B, ez, [PLo(s1, 1, @ 0(Fy, —2)) Lo (52, 0(m0, 2) @ T)

Ty

From [31, Corollaire 3.5] (also see [32, Theorem 4]) it is known that W ,, is entire in z. We
work as in §6.1 to conclude the proof noting the meromorphic properties of L,(1,0(m,, 2) ®

o (7w, —2)). O
We define the residue term R(s, P, ¢) to be
(48)

A(sy + 82— LII®T)A(s1 + s2 — 1 +n(l — s9), 1)
A1+ n(1 —sy),m)

TEQ Hg(o(my, 1 — 82))Lop(o(m, 1 — 83)),

where
Ly(o(m,2)) == [ [ Lo(1, 7, Ad)Ly(1 + nz,m) Ly (1 — nz, 7,)
v]oo
and g is a certain positive constant depending only on F' and () that can be explicitly com-
puted in terms of the residues of the Dedekind zeta function and the automorphic Plancherel
density (only depends on Q,n).

Lemma 9.2. The function M (s, ®, ¢), initially defined for large R(s), admits a meromor-
phic continuation to R(s) > %—e and is given by the sum of R(s, ®, ¢) and the right-hand side

of (47), where R(s, @, ¢) is given by (48). In particular, both the summands are holomorphic
on R(s) = 1/2.

Proof. Using (46) we rewrite (47) as

M (s, @,0) = co L{( - A(s; — 2, IQ®T)A(se + 2, TR T)
y A(s1 + (n—1)z,ID)A(sy — (n — 1)z, 7) ol N ds
L(o(r. ) Halotm2))d=

Let 6 > 0 be sufficiently small in terms of all parameters. We use the positivity of L(o(, z))
on z € iR to define a continuous even function k : R +— (0,4) so that L(o(r, 2)) does not
vanish for —2x(3(2)) < R(2) <0

We notice that we can analytically continue My (s, ®, ¢) to R(s) > 1, since in that region,
the integrand is holomorphic in s. Now, suppose that

1 <R(s) <1+ k(S(s)).

We shift the contour of the integral defining M, (s, ®, ¢) to R(z) = —x(3(2)). We pick up
a simple pole in this process at z = 1 — so which is from A(sy + 2,7 ® 7). This is due to
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the fact that A(s; — 2, II®7), A(s1 + (n — 1)z, 1), and A(se — (n — 1)z, 7) are entire in s
and z. Moreover, Lemma 9.1 and our choice of § ensures that Hg(o(r, 2))/L5 (o (T, 2)) is
holomorphic as a function of z in the é-neighbourhood of 0.

We call the residue at z = 1 — 35 to be R(s, P, ¢) as in (48). The expression in (48) follows
from

L(o(m,2)) =dppuL(1, 7, Ad)L(1 + nz,m)L(1 — nz,7),

which follows Lemma 4.1.

Moreover, we observe that in view of our choice of x, the shifted integral defines a holo-
morphic function in the region

1 —r(S(s)) < R(s) <1+ k(S(s)).

We now take s satisfying 1 — x(3(s)) < R(s) < 1. We may shift the contour back to the line
R(z) = 0, crossing no poles in the process. This proves the desired formula for

1 - k(S(s)) < R(s) < L.

We note from (47) that M is holomorphic in 1/2 — e < R(s) < 1. This follows from
the holomorphicity of the Rankin—Selberg L-functions and the same in z of the factor
Hg(o(m, 2))/L(o(m, 2)) on R(z) = 0.

Similarly, meromorphicity (and holomorphicity on R(s) = 1/2) of R, as in (48), in the
same region follows from that of the local L-factors and the proof of Lemma 9.1. 0J

9.2. Local computations for the residue term at v | gq. Recall the choice of the test

vectors at v | q from §6.2. In this subsection, we analyse the v-adic local components in the
residue term in (48) for s = (3, 1) and ® replaced by ® which is defined in Proposition 5.1.

In the rest of this subsection we will only work v-adically and suppress the subscript v.
Once again, we meromorphically continue H(o(w,z)) for these choices from z € iR to
z € C. However, the method is different than that in the proof of Lemma 9.1.

Lemma 9.3. We have

~

(s, W) W)

> o(m,1/2) T T

H(o(m,1/2); W) W,,s) = L(s,o(m,1/2) ® %)’

where W is given by (44).

Proof. Let z € iR so that o(m, z) is unitary. We apply Lemma 8.1 to obtain
) T

(s, Wiy W)

H(U(W, Z);nglf)7W7r7s) = L(S 0_(7_‘_ Z)®%) .

Using holomorphicity of Wi{i . and L(s,0(m, 2z) ® ®)~! in 2, and holomorphicity of the
above ratio in s we analytically continue the above ratio. Hence we conclude upon taking
z=1/2. O

We need the following strengthened version of Lemma 8.2.
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Lemma 9.4. Let o be any unramified representation (not necessarily unitary) of Gy, (F') with
trivial central character and W) be given as in (44). Then we have
min(f,n—1)

U(s, WD W) AT (~DFe(A:)As (f — K,0,...,0)
L(s,c®7%) Z N (p)(f(n=D)+k)s ’

k=0
for any s € C. Here e(A,) denotes the k-th elementary symmetric polynomial evaluated on
the Satake parameters A, of 7.

Proof. By entireness of the ratio in the left-hand side above in s € C it is enough to prove
the formula for large R(s).
Using (45) we have

(s, WO, o) — f " WJ[(“ 1>]Ww(a)|det(a)|5_l/g%.

v(an—1)=f
We now apply Shintani’s formula (14), leading to

— i — Ao (m, 0)Az(m)

(49) W(s, W, T,) = As(m)
m1>“.>2mn1>f N(p) 25 My

Let A, be the Satake parameters of o and fix an ordered n-tuple @ = (v, ..., a,) € C" such

that A, = {a;}}_, as a multiset. We assume that « is regular, that is, a; # «a; for i # j and
prove the lemma. The general result will follow by continuity.
Expanding the determinant in the numerator of A\, along the bottom row and using the
well-known formula for the Vandermonde determinant
Va() = ] (ei—ay),
1<i<j<n

we deduce that v (m) ()
< n ]a /\ ) Vi1 (aV

O ==

" ; Val) |

where by o) we denote the (n — 1)-tuple obtained from « by removing «; and by o) the
local representation whose Satake parameters is the multiset corresponding to a¥). Moreover,
notice that

Ay (m) = Oé;f)\aw (my—f,....,mp_1— f).
Applying this and the equality

Y ey g

o0 (49) gives
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Since ¢ is unramified, we have the factorization
L(s,0 ®%) = L(s,0Y @F)L(5,7 ® x;),
where y; is the unramified character for which x;(p) = «;. Therefore,
)" a; "V, (a9 L(s, 7 @ ;) !
N(p)/ =DV, (a) '

(s, ch W) = so@wZ

Expanding L(s, 7 ® x;) " and changing the order of summation, we deduce that

n nﬂak =y (a)
(f n—1
U(s, W Wy) = L(s,0 ®F) Z e 1+k: Z Vn(a) .
Let a~! denote the n-tuple {a . Notice that the inner-most summand can be written

)i+ (afl)fimnfl Va1 ((@™h) @)
-y Vafa )

Thus, for f > k, we write the inner-most sum as

As(f — k,0,...,0)

by expanding the numerator of the Schur polynomial along the top row.

Otherwise, we have 0 < f —k+n—1 < n—1 and using the very same idea we may relate
this sum to a quotient of two determinants and where the numerator has two equal rows and
thus it vanishes.

Altogether this leads to

min(f,n—1) k
- - 1)%e f—k0,...,0
U(s, W Wr) = L(s,0 @) ) = kgv )(f((n D+h)s =0,
P, (p)

which concludes the proof. 0
Lemma 9.5. We have
H(o(m,1/2); W), W, s) < N(p)~/((=2/2-9
fors=(1,1).
Proof. Using Lemma 9.3 and Lemma 9.4 for 0 = o(m,1/2) and the given s we obtain

)
. min(f,n—1) ( ) ( )AU = (f ]C 0 0)
H(o(m,1/2); W, Wes) = ] O e ~

k=0

Now it follows from the equality of L-functions

L(s,o(m, 1/2)) = L(s — 1/2,%)C(s + (n — 1)/2)
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that

U(7r1/2)(f k,0,. Z/\ 7,0,.. |pJ| 1/2|pf k— ]|(n /2.

The right-hand side above is « N(p)/=*(1/249) a5 1 is tempered. Hence, we conclude. [

9.3. Proof of Proposition 9.1. The first assertion follows from Proposition 5.2 and Lemma
9.2 along with the discussion preceding it.

From the definitions (27) and (29), respectively, it is clear that P and D are entire in s
as ® and ¢ are cuspidal. The argument preceding Lemma 9.2 implies that M is entire in s;
and is holomorphic on the region 1/2 < R(s2) < 1. This implies that R is holomorphic on
the same region.

The final assertion on R follows from the definition of R in (48) upon applying Lemma 9.5
and that L, (o(m,1/2)) « 1 along with holomorphicity of the local weights on R(s) = 1/2,
as in Lemma 9.1, and of the Rankin—Selberg L-functions.

10. THE DEGENERATE TERM: DUAL SIDE

In this section we use the same notations as in the beginning of §5. The goal of this section
is to study the degenerate term defined in (29), as follows. The following proposition can be
thought as a generalization of [53, Proposition 9.1].

Proposition 10.1. Let ® and ¢ be given as in §6.2. Recall d from Proposition 5.1. We

have N
11 o DP(1LTI@F)LP (n/2, T0)
D<<2 2> ? ¢) ST )

where pg is a constant depending only on n and Dy, is as defined in (51).

Moreover, we choose the local test vectors at the archimedean places in such a way so that
Dy, =1.

First, we define a local factor which will be served as the local component of the degenerate
term. For W € I1, and W5 € 7, we define Q,(s, Wy, W3) by

zh

(50) J J Wi ¢ Wa(h)| det(h)[*+2 7 |z["(: 72 4% 2 d .
Nn I(F'u)\Gn I(F’U) Gl(F'u) 1

It follows from Lemma 3.1 that the integral in (50) converges absolutely for R(s) > 1/2.
We also define

(51) DOO<S) = DOO (Sa ®v‘OOW‘I’,’U7 ®U|OOW¢,1)) = H QU(\S/v W@,v; Wd),l))'

v]oo

We abbreviate D, (%, %) as Dq.
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Lemma 10.1. Recall § from (2). Then for any ® € Il and ¢ € 7 we have

D(s, ®, ¢) = HQ W0 W)

for sufficiently large R(S).

Proof. Working as in the proof of Proposition 5.1 we may deduce that
(52)  D(s,®,¢) = J f o* P o(h)| det(h)|Fr+5271 z|nG1=12) @ 5 d .
n—1] J[G1

where § is as in (2) and
B(g)i= | aug)du
[Un]
such that U,, := w*'U,w* which consists of matrices of the form
In—l X

;€ Mup_1yx1
1

We first compute the Fourier-Whittaker expansion of . Using (19) we write

5#(9) . \G . J W l( )ug] du.

We notice that for v € G,,(F),

Ws (7 1) " 1 j 9 =wo(€('y)w)W5>[<7 1) g],

where £(7y) denote the row matrix formed by the left most n — 1 entries of the last row of ~.
Integrating both sides above over z in (F\A)"~! we conclude in the above Fourier-Whittaker
expansion of ®* we must have £(7) = 0; equivalently, v € N,(F)\G1(F)P,(F). Using the
isomorphism N,\G1P, = N,,_1\G,_1 x G; we write

ay

O*(g) = > > Wy a |9

YENn 1 (F)\Gn1(F) geG1(F) 1

Inserting the above expansion in (52) and executing an unfolding-folding we obtain that
D(s, P, ) can be written as

zh
J wel (5 )| Wi e anan
Np—1(A\Gn-1(A) JG1(A) 1
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The above expression converges absolutely for sufficiently large R(S). Also the above is
Eulerian and can be factored as [ [, Q2,(8, W , Wy, ). O

In the next subsections we will analyse the local integrals €2, at various v and for the test
vectors chosen in §6.2.

10.1. At the places v | q. In this subsection, we work at the place v and unless otherwise
stated the objects below are v-adic.

Lemma 10.2. Let f € Z=o. Recall Q2 from (50) and Wﬁf) from (32). We have

L(s1 + 52, I® %) L(nsy, 1)
L((n+1)s; + s9,7)

Q@s, Wi W) =

for s € C? with large R(s).
Proof. First, it follows from (40) that for h € G,,—1 and z € Gy, one has

zh zh
Wr(lf) ¥4 = WH v

Therefore, it suffices to take f = 0.
We use (14) and see that

Z An(my + 1. mpq +1,1,0)A%(m)

(53) Q(S,WH7W7T) = N(p)(51+52)2imi+”l51

mi=...2Mp—1=0
=0

We now proceed as in the proof of Lemma 9.4 and follow the notations there.

Let o = (@, ..., 1) be an ordered (n + 1)-tuple of complex numbers such that {o;}72
is the multiset of Satake parameters of II. Here, as in Lemma 9.4, we first suppose that a 1s
regular and deduce the general result by continuity.

Using the representation of Ay in terms of Schur polynomials we obtain that the summand
above is

n+1

Ao (m, 0) Vi ()
Vn+1(a) '

Using this in (53), changing the order of summation and performing the sum over m, we
obtain

n+1
Aa(my+ 1. omy +1,1,0) = Z(_ n+j+1 J

n+1 i —l 1
L5y + 59,110 @ XV, (W)
Q(S7 " g " 7T) = z (_1)n+]+1 : : : ns
j=1 VTL+1 l>0 N l 1

Let x; be the unramified character of F'* such that x; (p) = «;. Since II is unramified, we
have the factorization

L(s,TTIQ7) = L(s,TY @ 7) L(s, ¥ ® x;)-
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Hence, we have

n+j+1L(31 + 52, T @ X;) Va(a?) Z - 1

Vn-i—l(a) =0 N(p)ln81 '

n+1
s, Wi, Wy) = L(s1 + 52, TT@7) Y (1)
j=1

-1

Expanding the term L(s; 4+ s2, 7T ® x;)~ " and changing the order of summation the above

can be written as

( )”21< )k (A%)N(p) k(s1+ )Z 1 rf( ) +'+1O‘§C_l_lvn(a(j))
L(sy + 52, 1I®@7 —1)%er(Ax)N(p) "i5rrs2 ST —1)tJ
k=0 =0 N(p)l ! j=1 Vn+1(a)

where ey (A,) denotes the k-th elementary symmetric polynomial on the Satake parameters
A of w.
Working as in Lemma 9.4 we deduce that the inner-most sum vanishes unless [ > k in
which case the sum evaluates to
Ai(l—k,0,...,0).

Thus we obtain that

n—1
N it e A (10,0
Qs, Wi, Wr) = L(s1 + 52, T®F) Y (=1)"ex(Az) N (p) K Hsrte) S W
k=0 =0

Noting that

n—1
L((n+1)s1 + 5, 7) " = > (—1)Feg(Az) N (p) FmtDee)

k=0
and
~ Ay(1,0...,0)
L(nsl,ﬂ) = A ns’ y
; N (p)inst
we conclude the proof. O

10.2. At the places v | Ap. Recall from §6.2 that in this case our choice of test vectors is
given by (33), so that in this case Q,(s, We., W) is given by

za X
f WHU an+1()‘v) z Wﬂ'v (an—l(/\v>a’)| det(a)|51+82_1|z|n(81_1/2) d*z d a'
Apn_1 JGq 1 5(0’)

Now it follows from the change of variables A\,a,_1(\,)a — a and A,z — z that the above
equals

|/\U|“Q(S)Qv(sa WHva Wm,)7

where pg(s) is an affine function whose coefficients are complex numbers depending only on
n. Recall that [\,|™! = A, is the v part of the discriminant. Also notice that Lemma 10.2



RECIPROCITY AND NON-VANISHING 53

also includes the unramified computation as a special case by simply taking f = 0. This
implies that

Lv(sl + S92, HU ® 7N":U)Lv(nsla ﬁv)

54 Qv 7W vaW v) = Ai#Q(S) T
(54) (s, Wan, Woo) = A, Ly ((n+1)s1 + s9,7,)

10.3. A combined result. By putting together Lemma 10.2 and (54), and taking into
consideration that both formulae apply for the unramified places v ¢ S, we have the following
lemma.

Lemma 10.3. For large R(s) we have

LU(Sl + S2, H’U ® %U)Lv(n517 ﬁv)
L, ((n+41)s; + s2,7,)

Qv<sa W@,U? qu,v) = A;MQ(S)

for v < o and v # po where the local vectors are as in §6.2.
10.4. At the place py. Recall the choices of the test vectors at v in §6.2.

Lemma 10.4. We have
Qv(S, W@,vy W¢,v) =1

for any s € C2.
Proof. From (34) we have

Oy (s, Wa, W) = f

Nn

W, [(h 1)] Wo (h)| det(h)[*+2~ dh.
71(Fv)\Gn71(Fv)

The above is absolutely convergent for all s which follows from compact support of W, in
the domain of integration. From (13) we conclude that the above integral is L,(s; + so —
1/2, 7 ®7,). As 7 is supercuspidal and 7, is unramified this local L-factor is equal to 1,
which follows from [48]. O

10.5. At the archimedean places. Let v | o0. Recall the choices of the test vectors at v
in §6.2.

Lemma 10.5. Let s = (%, %) Then for Wg,, and Wy, as in §6.2.4 we have

Qy(s, Wop, Wy) =1,
where the implied constants depend at most on the archimedean components of 11 and .
Proof. Note that

zh
Qv(s, Wq;ﬂ,, W¢7v = f J qu) z W¢7v(h) d*zdh.
anl(F'u)\anl(Fu) GI(FU)
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Using the normalizations and supports of Wg, and Wy, specified in §6.2.4 we write the

above as
zh

14—f W P <M@m(h)—]> d*z dh,

B JBg ]_

and the second summand in the last expression can be bounded by e. Making e sufficiently
small we conclude. U

10.6. Proof of Proposition 10.1. Let R(s) be large enough. Using Lemma 10.1, Lemma
10.2, and Lemma 10.4 we obtain

~

LPo(sy + 59, ITQ@T)LP (nsy, 1)
Lro ((n+1)s; + s2,7)

where Dy (s) is defined in (51). Both sides above are holomorphic in R(s) > (3, 3) which
follows from holomorphicity and non-vanishing of L-functions in the region of absolute con-
vergence and Lemma 9.1. We conclude by inserting s = (1 1), defining pq 1= po (1 1), and

. 23 23
appealing to Lemma 10.5.

D, P, ¢) = AFD(s)

Y

11. PROOFS OF THE MAIN RESULTS

In this section we put together all of our previous results and finally prove the main

theorems. We use the shorthand M for M(s, ®, ¢) and M for /\/l(cf), ¢,8), where d and §

are given in Proposition 5.1. Similar notations are used for the functions P, D and R.

11.1. Proof of Theorem 1. From Proposition 9.1 we have

P=M+R+D
in the region 1/2 < R(s) < 1. Now, Proposition 5.1 tells us that
P="P.

We apply Proposition 9.1 to P with 1/2 < R(s) < 1. Thus we obtain
M=M+R+D-R-D,

which proves Theorem 1.

11.2. A few lemmas.

Lemma 11.1. Let v be any place. Then for any Wi € 11, and W5 € 7, we have
H,(0y; W1, Wa,'s) <wy win C(o,)™N
for any s € C2.

This lemma allows us to truncate the Plancherel integral so the archimedean parameters
have essentially bounded size.
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Proof. We use Lemma 3.3 in the definition (31). We see that it suffices to show that for any
N and d there exists an M such that
D S_u(W)Su(W) « Cloy) ™.

WeB(ov)

If v is non-archimedean the proof of the above is contained in the proof of Lemma 3.2. If v
archimedean then we argue as in the proof of [38, Lemma 3.3] and conclude via [47, Lemma
2.6.6]. O

C(ay).

Lemma 11.2. Let q be an integral ideal of the finite adeles of F' with norm N(q) and let
X = (Xy)vjw where X, > 1 forv | . We define

From now on let F' be totally real. Recall that o; := ®y<x0y, C(or) :=]]

V<0

o unitary generic automorphic representation
Fox = , . C(or) | N(q); C(oy,) < Xy,v | 0},
of Gn(A) with trivial central character

Then

1 n—1+e
L £y < (N(@x) 1,

where X =T, Xo-

The proof is essentially the same as that of [38, Theorem 9]; see also [36, Theorem 7]. We
give a sketch of the proof for the sake of completeness.

Proof. Let q := [],.,, pl* with f, > 0. For each v < c we construct a test function «, on
G, (F,) which is an L'-normalized characteristic function of Ky(p/v).

For each v | co we fix sufficiently small 7, > 0 and construct an approximate archimedean
congruence subset Ko(X,,7,) < G,(F,) as in [38, (1.4)]. We also construct a test function
o, on G,(F,) which is an L'-normalized smoothened characteristic function of Ky(X,,7,).

Let o be the self-convolution of «,, that is,

arx(g) == JG - ay(h)ay,(gh™h) dh.

We define

To(@f) = >, o)W ()W(1)
WeB(ov)

where B(o,) is an orthonormal basis of o,. Applying the definition of o and changing the
basis to {o,(h)W }wes(s,) We also see that

Jo(@) = Y lou(a)W (1)) = 0.
WeB(oy)
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Now for each v < 0 we fix B(o,) 3 . Classical non-archimedean newvector theory [35]

\|W||
and the normalization of the newvector, W, (1) = 1, imply that

av<av>wgu<1>:vol<Ko<p;>>-1f W, () dh = by,
Ko(va)

Thus, applying (17) we have

|0 () Wo (1)|2
= > 1,
Wo, |2

Iy, (a) = if ¢(o,) < f, for v < oo,

where the implied constant is uniform of v. A similar statement holds when v | o0, as can
be observed in [38, Proof of Theorem 9]. That is, we have
Jo, () >» 1 if Co,) < X, for v | 0.

Thus, combining the estimates at each place and applying the well-known bound K#{vla} » K.e
N(q)~ ¢ for a fixed positive constant K, we obtain

(55) HJUU ) »e N(a)™

Now we work as in the [38, Proof of Theorem 9]. Consider the function

Gn(A) 3 29 — Z (Hoz) ry tymy).
F)

YEGnR(

If z; € [N,,] then the support condition of «* implies that the v sum above can be restricted
to N, (F). Now spectrally decomposing the above and integrating against 1, (z] 2s) over
x; € [N,] we obtain

2 J (1:[ 0‘:) (27 yaz) doy day = L W do.

YENR(F)

By (55), we obtain

1 e [ 11, Jo.(a) o — c o ¥ dn
L’dea <. N(q) L—E(a) do = N(q) Hf * (110)Pu(12) A1t

Ny (Fy)

The last product of integrals can be bounded by
« | [vol(Ko(pf) ™ [ [vol(Ko(Xo, 7)™ « [ [ N(po) D [ X0

vlq v]oo vlq v]oo

The right-hand side above equals (N (q)X)" 1. O
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11.3. Proof of Theorem 2. As before, q = [ |
fix a set of places S, as in §6.2,

S=A{po}u{vlatu{v]Ar}uiv]ow}
Our point of departure is Theorem 1 with S as above, s = (%, %), and cusp forms & and ¢

with local components as in §6.2. Once again, we suppress @, ¢ and s from the notations.
Recall that

o™= ® o (0f)= [ # C)= [] Clow).

po#v<<0c0 PoFV<0 PoFV<0

ol ple is an ideal of o of norm N(q). We

Finally, recall the notations Hy(o) and hy (o) from (39) and (38), respectively.

Lemma 11.3. Recall M from (30) and 7 from §6.2. For all 0 < § < 1/2 there ezists §' > 0
such that

M = /'ipyn

L(12,N®5)L(1/2,0 @
3 (1/ )L(1/ )

L(1,0,Ad) po (1, 7®F) Hy(0)her (0)+ Omx (N (a) ™),

o cuspidal; opy=T;
(010 ]q, C(a ") =N (q) /20

for some positive constant kg, depending on the number field F' and n.
Proof. Applying Proposition 7.2 and (43) to the definition of M in (30) we obtain
Z L(1/2,I®c)L(1/2,0 ®T)

M= (o)

Hq(0)en, (1,7 @ )AL heo(0).

o cuspidal: op,=7

Using Proposition 7.1, convexity bound (23), and Lemma 11.1 we truncate the above sum
at c(o,) < f, forallv | q, C(o,) =0 forallv ¢ Sorv|Ap, and C(o,) « N(q)¢ for all v | oo
with an error of O(N(q)~4) for any large A.

Let us denote by C(q, 7) the set of cuspidal representations satisfying the conditions above.
Applying (23) and Proposition 7.1 along with the fact that K#{"l1} « N(q)¢ for any fixed
constant K, we deduce the bound

L(1/2,TT®F)L(1/2,0 ®F) Cn/ote C(or)
Z L Hq (U)h00<0) <<6,T,H77r N(q) /2 Z L :
oeC(q,7) (0) oeC(q,7) (U)
C(U;pO))ﬁN(q)l/2_6 C(O'f(-pO))SN(q)l/Q_(S

We rewrite the above quantity as

N ey 5 (Z(éff-
blq o cuspidal

Ib|<N(q)/2=0 C(or)=[b|C(T)
C(ov)<N(g)¢, v|oo

We apply Lemma 11.2 to bound the inner sum above by O(N(q)¢|b|"). Using that the
number of divisors of ¢ is bounded by N(q)¢ we see that the above display is bounded by
N(q)~"*¢ which is O(N(q)~?) after taking e sufficiently small.

Finally, we conclude the proof using (25). O
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Lemma 11.4. There exists some " > 0 such that

M < N(q)™,
where the implied constant in the error term depends on Il and .

Proof. Applying Proposition 8.1 to the definition of M as in (30) we obtain

L2, T@F)L(1/2,0@F) » ,

M :l‘ilpm ﬁ(O') HQ(U) Po(apo)h ( )d

gen
c(0v)=0,poF#v<00

for some constant k., depending on F' and n. Once again, we use Lemma 11.1 to truncate
the integral, and apply Proposition 8.1 and (23) to deduce the bound

- o 1
M « N(q) =1 Jgen; Clow)«N@) o 7 40,

¢(ov)=0,po#v<00 L:( )
C(opy)«1
where 7 is a uniform bound towards the generalized Ramanujan conjecture for G,. For
instance, we can take n = (n? + 1)7!; see [44]. Finally, we conclude by Lemma 11.2 and

taking € small enough. 0
Lemma 11.5. We have R = 0 = D. Consequently, P = M.
Proof. Repeating the argument in §5.2 and of the proof of Proposition 7.2 we write

A, @(g) = ) Z Vo W W) )

2
o cuspidal ,e(o H ¥ ||

Opg=T

As before, the right-hand side is entire in s; and absolutely convergent. Moreover, as ¢ are
cusp forms we now integrate the right-hand side term by term against ¢|det [*27/2. Thus
we obtain

Pls.@0)= A<31,n®2£)<52,a®%> Hs(o).

The right-hand side is again entire in s which follows from the analytic properties of Rankin—
Selberg zeta integrals. Plugging-in s = (%, %) above and looking at the expression of M in
the proof of Lemma 11.3 we obtain P = M.

On the other hand, from (48) we see that R = 0 as Hp,(0(mp,,2)) = 0 for any z € C
which follows from Lemma 9.1 and Proposition 7.2 for z € i{R. Consequently, Proposition

9.1 implies that D = 0. 0

Proof of Theorem 2. Theorem 1 and Lemma 11.5 imply that M = M+D+R. We apply
Lemma 11.3, Lemma 11.4, bound of R from Proposition 9.1, expression of £ from (25), and

o cuspidal: opg=7

expression of D from Proposition 10.1. 0

Proof of Corollary 3. The main term in Theorem 2 is non-zero. This follows from Shahidi’s
result [59, Proposition 7.2.4] that the Rankin—Selberg L-values at 1 are non-zero, and Propo-
sition 10.1. Hence we conclude by taking N(q) sufficiently large. O
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