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Abstract. In this note, we study the Gehring link problem in the
round sphere, which motivates our study of the width of a band in pos-
itively curved manifolds. Using the same idea, we are able to prove
a sphere theorem for hypersurface in the round Sn provided that its
normal injectivity radius is large. A rigidity theorem for Clifford hyper-
surfaces in Sn is also proved. The 3-dimensional case of our theorems
confirm two conjectures raised by Gromov in [Gro18].

0. Introduction

Let (Y = T2 × [0, 1], g) be a Riemannian torical band, where T2 is the 2-
dimensional torus. In [Gro18], Gromov studied the width of Y assuming the
scalar curvature of Y is bounded from below. Here the width is defined to be
the distance between two boundary components of Y . He also conjectured
that the upper bound of the width of those bands which can be isometrically
embedded in the round 3-sphere, is π/2. A related conjecture posed in
[Gro18] is the normal injectivity radius of an embedded torus in the round
n-sphere.

Our starting point is to find a geometric intuition behind the conjectural
upper bound π/2 of the width. Basically all the proofs in this paper can be
summarized as:

“If two sets are linked in the sphere, they cannot be more than π/2-apart.”

The following example serves as our motivation. We take T2
Cl ⊂ S3,

where S3 := {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1} is the unit 3-sphere and the
2-dimensional Clifford Torus is defined by

T2
Cl := {(z1, z2) ∈ C2 | |z1| = |z2| = 1/

√
2}.

Let B(T2
Cl, r) be the r-tubular neighborhood of T2

Cl inside S3. It is clear
that S3 \B(T2

Cl, r) has two connected component if r < π/4, each of which
is a solid torus. The central circles of these solid tori form a Hopf link in S3.
The distance between this two circles is π/2. This reminds us the classical
Gehring linking problem in R3.
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Theorem 0.1 ([Ort75], [BS83]). Let A and B be two closed curves smoothly
embedded in R3. Suppose they are linked and d(A,B) ≥ 1, then the lengths
of A and B must greater or equal to 2π.

We now state our first result.

Theorem 0.2 (Gehring Link Problem in 3-sphere). Let A,B be two disjoint
linked Jordan curves in the unit 3-sphere S3. Then

d(A,B) ≤ π/2,

with equality holds if and only if A and B are the dual great circles in a Hopf
fibration.

Our method of the proof can be easily generalized to higher dimension.
The classical Gehring Link problem in Rn is proved in [Gag80].

Theorem 0.3 (Spherical Gehring Link Problem). Let Ak and Bl be two
embedded spheres of dimension k and l in Sn. Suppose that A and B are
linked, then we have

d(A,B) ≤ π/2,

with the equality holds if and only if A and B are the dual great sub-spheres
in Sn, i.e. Sn = A ∗B, where ∗ denotes the spherical join.

Theorem 0.2 explains heuristically why the width of a torical band cannot
be too large: the complement of the band in S3 are ‘linked’. However, this is
only partially correct. In general the complement of a torical band might not
retract to a link, therefore ‘linking’ is not well defined. For example, let K
be the figure-eight knot embedded in S3. Let R > 0 such that the R-tubular
neighborhood B(K,R) is an embedded solid torus. Consider the embedded
torical band TB := B(K,R) \B(K,R/2), its complement in S3 clearly has
two components. One of the components is a solid torus, therefore it can be
retracted to the knot K. The other component is a once-punctured tours
bundle over a circle, which cannot be retracted to a circle. Nevertheless, we
can still make use the idea of ‘being linked’ as an obstruction to have large
width. We call this obstruction ‘boundary irreducible’ see Definition 2.1.
In fact, using this idea we are able to prove the following theorem, which
confirms a conjecture of Gromov in [Gro18].

Theorem 0.4. The over-torical width of S3 denoted by widthT̂ (S
3), is π/2.

Another estimate can be drawn from the proof of Theorem 0.3 is the
estimate of normal injectivity radius of torus in S3.

Definition 0.5. Let Σ2 ⊂ S3 be a smoothly embedded closed surface. The
normal injectivity radius of Σ ⊂ S3 is the largest number r > 0 such that

exp : {(p, v) ∈ νΣ | p ∈ Σ, |v| < r} → S3

is a diffeomorphism onto its image, where νΣ is the normal bundle of Σ.

The normal injectivity radius of Σ ⊂ S3 will be denoted by rad
⊙
(Σ) =

rad
⊙
(M ⊂ S3). The normal injectivity radius of a smooth submanifold
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Nk in Mn can be defined similarly. We remark that in [Gro18] rad
⊙
(Σ) is

called the normal focal radius.
By the standard comparison argument, it is well known that any hyper-

surface Σ in S3 has normal injectivity radius ≤ π/2. In fact if the normal
injectivity radius of a closed surface Σ2 in S3 is equal to π/2, Σ2 has to be the
equatorial 2-sphere, cf. [GW18]. The following question is asked in [Gro18]:
Let Σn be a smoothly embedded n-torus in S2n−1, what is the largest possi-
ble normal injectivity radius? Gromov conjectured that the Clifford Torus
Tn

Cl is the only torus realizing the conjectured upper bound arcsin(1/
√
n).

The upper bound for n = 2 actually follows from Corollary C in [GW20].
We give a different proof of this result and study the rigidity case.

Theorem 0.6. Let Σ be a smoothly embedded 2-torus in S3. Then

rad
⊙
(Σ) ≤ π

4
,

with equality holds if and only if Σ is a Clifford Torus T2
Cl.

In fact, we prove the following stronger result

Theorem 0.7. Let Σn−1 be an orientable hypersurface embedded in Sn.
Suppose Σ is not homeomorphic to Sn−1, then rad

⊙
(Σ) ≤ π/4, with equality

holds if and only if Σ is isometric to the Clifford hypersurface Sk(1/
√
2) ×

Sl(1/
√
2) for some k, l ∈ N such that n = k + l + 1.

Next theorem shows that spheres are the only hypersurfaces with large
normal injectivity radius in a positively curved manifold.

Theorem 0.8 (A Topological Sphere Theorem). Let (Mn, g) be a simply
connected closed Riemannian manifold with sec ≥ 1 and Σn−1 be a smoothly
embedded orientable hypersurface in M . Suppose rad

⊙
(Σ) > π

4 . Then M is
homeomorphic to Sn and Σ is homeomorphic to Sn−1.

Remark 0.9. By h-cobordism theorem, (n − 1)-dimensional exotic sphere
cannot be embedded in Rn for n ̸= 5. Therefore Σ is diffeomorphic to Sn−1

for n ̸= 5 in Theorem 0.8.

In Section 1 we prove the Gehring Link problem in sphere. The ideas of
the proof are developed further in Section 2, where we provide the proofs
of Theorem 0.8 and Theorem 0.4. Another short geometric proof of Theo-
rem 0.6 is provided in Section 3.
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bringing J. Zhu’s paper [Zhu21] to my attention where the author estimated
the 3-dimension width using a completely different method.
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1. Proof of the Spherical Gehring Link Problem

Let Ak, Bl be two submanifolds of Sn, we call A and B are unlinked if
there exists an embedded topological (n − 1)-sphere Sn−1 in Sn such that
A and B lie in complementary hemispheres; otherwise A and B are called
linked. Note that we do not require k+ l+1 = n in the definition of ‘linked’,
it is only required if we want to define the ‘linking number’.

The key idea of the proof goes back to Grove-Shiohama’s proof of the
Diameter Sphere Theorem, cf [GS77]. Namely we have the following

Proposition 1.1. Let (M, g) be a closed Riemannian manifold with sectional
curvature sec(g) ≥ 1. Suppose diam(M, g) ≥ π/2. Then for any point
x ∈ M and r ≥ π/2, the set M \B(x, r) is either empty or a k-dimensional
topological manifold with strictly convex (possible empty) boundary whose
interior is smooth and totally geodesic, where k ≤ n.

For any closed set A ⊂ M , it is clear that for r ≥ π/2

N := M \B(A, r) = ∩x∈A{M \B(x, r)}.

It follows that N is either empty or a k-dimensional topological manifold
with strictly convex (possibly empty) boundary whose interior is smooth
and totally geodesic. Moreover if ∂N is nonempty, N is homeomorphic to
the standard k-disk.

Proof of Theorem 0.3 . Suppose d(A,B) > π/2, then B ⊂ Sn \ B(A, π/2).
If A is not a great sub-sphere Sk ⊂ Sn, then the set N := Sn \B(A, π/2) is
a connected n-dimensional convex set with nonempty boundary. It follows
that N is homeomorphic to an n-disk, therefore ∂N is homeomorphic to
the sphere Sn−1. But B ⊂ Sn \ B(A, π/2). Therefore it contradicts to the
assumption that A and B are linked in S3. It follows that d(A,B) ≤ π/2.

Suppose d(A,B) = π/2, then we set

Aanti := Sn \B(A, π/2).

Clearly Aanti is nonempty and of dimension < n. If Aanti has nonempty
boundary, Aanti is homeomorphic to a k-disk. Therefore we can choose
ε > 0 small enough such that Σ := ∂B(Aanti, ε) is homeomorphic to an
(n− 1)-sphere. Since

B ⊂ Aanti ⊂ B(Aanti, ε),

it follows that Σ separates B from A, a contradiction. Therefore Aanti must
have empty boundary. Since Aanti is totally geodesic, B is isometric to Sl

for some l ∈ {1, · · · , (n− 1)}. Apply the same discussion to B, we know A
is isometric to Sk for some k ∈ {1, · · · , (n− 1)}. Since A and B are linked,
n = k + l + 1. □

The proof given above also works for the case when the sphere Sn is
replaced by a closed Riemannian manifold (M, g) with sec ≥ 1.
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2. The complement of a non-spherical band are linked

One crucial step in the proof of Theorem 0.3 in the previous section is to
produce an embedded sphere Sn−1 in Sn which separates A and B, provided
that they are more than π/2 apart. In this case, the (n−1)-sphere separates
Sn into two disks that contain A and B respectively. It follows that this
sphere does not bound any disk in Sn \ {A,B}, therefore it represents a
nontrivial element in πn−1(S

n \ {A,B}). This puts a strong restriction on
the topology of the complement of A and B. In this section, we focus on
the complement instead of the sets A and B.

Let’s recall several definitions in [Gro18]. A band is a manifold Y with
two distinguished disjoint non-empty subsets ∂Y− and ∂Y+ in the boundary
∂Y :

∂Y = ∂Y− ∪ ∂Y+.

A band Y is called proper if ∂Y± are unions of connected components of
∂Y . A proper band Y is called over-torical if there exists a map

f : Y → Y := Tn−1 × [0, 1],

with nonzero degree respecting the boundaries: ∂Y± → ∂Y ±. We introduce
the following definition:

Definition 2.1. Let Y be an n-dimensional proper band. We call Y bound-
ary reducible if there exists an embedded (n−1)-sphere Sn−1 ⊂ Y , such that
S separates ∂Y− from ∂Y+. Otherwise Y is called boundary irreducible.

For a proper over-torical band, since π2(Y ) = 0, we have the following
observation:

Lemma 2.2. Let Y be a 3-dimensional proper over-torical band, then Y is
boundary irreducible.

Remark 2.3. Note that if Y is boundary irreducible, it is still possible to
find an embedded (n − 1)-sphere in Y that does not bound an n-ball. For
example in 3-dimension, let Y be the connected sum of T2 × [0, 1] with a
lens space. Then Y is boundary irreducible but reducible in the classical
sense.

Proposition 2.4. Let (Mn, g) be a closed orientable n-dimensional manifold
with sec ≥ 1. Let Y = Σn−1 × [0, 1] be a band isometrically embedded in
M , where Σ is a closed orientable (n − 1)-dimensional manifold. We will
identify Y with its image in M . Let Y− and Y+ be the boundaries Σ × {0}
and Σ×{1} of Y . Suppose R := d(Y−, Y+) > π/2, then Σ is homeomorphic
to Sn−1.

Proof. By the Diameter Sphere Theorem (cf. [GS77]), we know M is home-
omorphic to the n-sphere. For ε small enough such that R − ε > π/2, we
set

N := M \B(Y−, R− ε).

Clearly N is homeomorphic to the standard n-disk and ∂N is homeomorphic
to the (n − 1)-dimensional sphere. Let B0 and B1 be the two connected
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components of the closure of the set M \ Y , where we assume ∂B0 = Y−
and ∂B1 = Y+. The manifold M can be decomposed as follows

M = B0 ∪ Σ× [0, 1] ∪B1. (2.1)
Set

Xt = Σ× [t, 1] ∪B1.

Since N is compact, there exists 0 < t0 < s0 < 1 such that
Xt0 ⊃ N ⊃ Xs0 . (2.2)

To calculate the homotopy groups of Xt0 , we notice that any map ϕ : Sk →
Xt0 can be homotopic to a map ϕ′ : Sk → Xs0 ⊂ N . Since N is contractible,
it follows that Xt0 and B1 are contractible. Similarly we can prove B0 is
contractible. Therefore Σn−1 is an embedded homology sphere.

To show Σ is homeomorphic to the (n − 1)-sphere, the argument can be
taken with minor changes from Mazur’s proof of Corollary 4 in [Maz61].
We include it only for completeness. Reparametrizing the interval [0, 1] in
the decomposition (2.1) if necessary, we can assume t0 > 1/2 in (2.2). Let
ξ : [0, 1] → [0, 1] be the piecewise linear function that maps [0, 1/2] to [0, 3/4]
and maps [1/2, 1] to [3/4, 1]. Abusing the notation, let ξ : M → M be the
homeomorphism defined by

ξBi = idBi is the identity map for i = 0, 1.

ξ(x, t) = (x, ξ(t)), for (x, t) ∈ Σ× [0, 1].

Clearly ξk(∂N) pushes ∂N towards B1 for k > 1, and therefore

B1 = ∩k∈Nξ
k(N).

Since ξk(∂N) is homeomorphic to Sn−1 and bound a closed n-disk, it follows
that B1 is cellular cf. [Bro60]. Same arguments can be applied to B0.
Therefore M is homeomorphic to the suspension S0 ∗Σn−1, by pinching B0

and B1 to points. This is only possible when Σn−1 is homeomorphic to the
sphere.

□

Clearly Proposition 2.4 and the Diameter Sphere Theorem (cf. [GS77])
imply Theorem 0.8 immediately. Now we move to the study of the non-
spherical band.

Proof of Theorem 0.7. We only have to consider the case when rad
⊙
(Σ) =

π/4. Let’s consider the set
N := Sn \B(Σ, π/4).

Since Σ is orientable, the set N has two connected components, denote them
by {A,B}. Since any geodesic connecting A and B must intersect with Σ,
it follows that

d(A,B) ≥ d(A,Σ) + d(B,Σ) = π/2.

By the assumption Σ is not homeomorphic to Sn−1, it follows from Propo-
sition 2.4 that d(A,B) = π/2. Therefore A and B are both totally geodesic
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submanifolds in Sn with empty boundary. Namely A and B are great sub-
spheres in Sn:

A = Sk and B = Sl

for some k, l ∈ {1, · · · , n− 1} and k + l + 1 ≤ n. On the other hand
A = Sn \ (B(B, π/2)),

and vice versa, then k + l + 1 = n. i.e. A and B are the dual great sub-
spheres in Sn. It follows that Σ is the Clifford hypersurface Sk(1/

√
2) ×

Sl(1/
√
2). □

Recall that the over-torical width of S3, denoted by widthT̂ (S
3) is defined

as the supremum of numbers d such that there exists a proper over-torical
band Y of width d and an isometric immersion

ϕ : Y → S3.

Since the r-neighborhood of Clifford Torus in S3 provides a torus band of
width arbitrarily close to π/2, widthT̂ (S

3) ≥ π/2. To prove Theorem 0.4, it
suffices to show widthT̂ (S

3) ≤ π/2. Let Y be as above, we have

Proposition 2.5. The width of Y is less than or equal to π/2.

Proof. Suppose the width d := d(Y−, Y+) > π/2, where we equipped Y with
the pull back of the round metric on the sphere. Consider the distance
function ρ : Y → R, defined by

ρ(x) = d(x, Y−),

where the distance d is defined by the shortest curve connecting x to Y−.
Since we make no assumption on the convexity of Y±, such a curve might
intersect the boundary Y+. However, if the width d = d(Y−, Y+) > π/2, we
know for any point

x ∈ Σ := ρ−1

(
π/2 + d

2

)
,

any geodesic connecting x to Y− that realizes ρ(x) does not intersect Y+.
Since Y has constant curvature 1, the standard comparison argument shows
that Σ is locally strictly convex in Y . Therefore under the isometric immer-
sion ϕ : Y → S3, its image Σ := ϕ(Σ) ⊂ S3 is also locally strictly convex
in S3. By the classical theorem of Hadamard (cf. [Had97, Hop89]), all such
surfaces must be embedded, hence Σ is an embedded S2. Since ϕ is an im-
mersion, it follows that ϕ is a covering map. Therefore Σ is a disjoint union
of embedded separating 2-spheres in Y (It might be disjoint only if Y− or
Y+ has more than one connected components). By connecting these spheres
via cylinders we get an embedded separating 2-sphere in Y . This contradict
to Lemma 2.2. Therefore d ≤ π/2. □

3. Yet another proof of the Theorem 0.6

In this section, we give another proof of Theorem 0.6 based on Weyl’s
Tube formula and the solution of Willmore Conjecture [MN14]. Let Σ2 ⊂ S3

be an embedded 2-torus with normal injectivity radius r ∈ [π/4, π/2]. Let
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κ1, κ2 be the principal curvatures of Σ in S3, then the Gauss-Bonnet formula
gives: ∫

Σ
(1 + κ1κ2)dµ = 0, (3.1)

since the Euler number of Σ vanishes. It follows from the definition of normal
injectivity radius that

vol(B(Σ, r)) ≤ vol(S3) = 2π2. (3.2)

By the Weyl’s Tube formula Lemma 4.1, which will be proved in next section,
and the fact that sin(2r) ≥ cot(r) if r ∈ [π/4, π/2], we have

vol(B(Σ, r)) = sin(2r) area(Σ) ≥ cot(r) area(Σ). (3.3)

Combining (3.2) and (3.3), we have

cot(r) · area(Σ) ≤ 2π2. (3.4)

On the other hand by the solution of Willmore Conjecture we have

2π2 ≤
∫
Σ
1 +

(
κ1 + κ2

2

)2

dµ, (3.5)

By the Gauss-Bonnet formula (3.1), we have the following

2π2 ≤
∫
Σ
1 +

(
κ1 + κ2

2

)2

dµ

=

∫
Σ
−κ1κ2 +

κ21 + 2κ1κ2 + κ22
4

dµ

=

∫
Σ

κ21 − 2κ1κ2 + κ22
4

dµ

≤
∫
Σ

κ21 + κ22
2

dµ

(3.6)

Since the normal injectivity radius of M equals to r, it follows that

|κi| ≤ cot(r)

for i = 1, 2. In fact this can be seen by touching each point p ∈ Σ by a
geodesic sphere with radius r in S3 from both sides of Σ, or we can use the
theorem 3.1 of [GW20]. Plugging them back to (3.6) yields

2π2 ≤ cot2 r · area(Σ). (3.7)

Using (3.4), we have

2π2 ≤ cot2 r · area(Σ) ≤ cot r · 2π2,

i.e. cot(r) ≥ 1, which implies r = π/4 since we assume r ≥ π/4. The
rigidity part of the theorem follows from the rigidity part of the Willmore
Conjecture.
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4. Volume of the tube

In this section, we calculate the volume of the r-neighborhood of Σ2 ⊂ S3.
It is a special case of Weyl’s Tube Formula. In fact it implies the normal
injectivity radius ≤ π/4 by monotonicity of sin(2r).

Lemma 4.1 (Tube Formula). Let Σ be an embedded 2-torus in S3. Then
for any r ≤ rad

⊙
(Σ), we have

vol(B(Σ, r)) = sin(2r) area(Σ).

Proof. Let
Σ(t) := {x ∈ S3|x = expp(tv), p ∈ M, v ∈ νpM}

be the parallel hypersurface with signed distance t ∈ [−r, r] to M . For any
p ∈ Σ2 let κ1(p), κ2(p) be the two principal curvature of Σ at p. Using Fermi
coordinate and co-area formula we have

vol(B(Σ, r)) =

∫ r

−r
area(Σ(t))dt

=

∫ r

−r
cos2 t

∫
Σ
(1− κ1 tan t)(1− κ2 tan t)dµdt

=

∫
Σ

∫ r

−r
(cos2 t− (κ1 + κ2) cos

2 t · tan t+ κ1κ2 sin
2 t)dtdµ

=

∫
Σ

∫ r

−r
(cos2 t+ κ1κ2 sin

2 t)dtdµ

=

∫
Σ

(∫ r

−r
(cos2 t− sin2 t)dt+

∫ r

−r
((1 + κ1κ2) sin

2 t)dt

)
dµ

=

∫
Σ

∫ r

−r
(cos2 t− sin2 t)dtdµ

= sin(2r) area(Σ).
(4.1)

□
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