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ABSTRACT. Marstrand’s projection theorem from 1954 states that ifK ⊂ R3 is an analytic
set, then, for H2 almost every e ∈ S2, the orthogonal projection πe(K) of K to the line
spanned by e has Hausdorff dimension min{dimH K, 1}. This paper contains the follow-
ing sharper version of Marstrand’s theorem. Let V ⊂ R3 be any 2-plane, which is not
a subspace. Then, for H1 almost every e ∈ S2 ∩ V , the projection πe(K) has Hausdorff
dimension min{dimH K, 1}. For 0 ≤ t < dimH K, we also prove an upper bound for the
Hausdorff dimension of those vectors e ∈ S2 ∩ V with dimH ρe(K) ≤ t < dimH K.
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1. INTRODUCTION

The purpose of this paper is to investigate a connection between 1-rectifiable families
of projections onto lines in R3, and circular Kakeya problems in R2. The connection is
not too complicated, at least on a heuristic level, but seems have gone unnoticed so far.
Informally, we demonstrate that the two problems are of the same order of difficulty.
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The relevant circular Kakeya problem was solved by T. Wolff [14] in 1997. Building on
his methods, we manage to gain new insight about projections.

We start by introducing the projection problem, in somewhat more generality than we
will eventually need. Consider a C2-curve γ : J → S2, where J ⊂ R is a bounded open
interval, and S2 is the unit sphere in R3. Following the framework introduced by K.
Fässler and the second author in [4], we assume that γ satisfies the following curvature
condition:

span{γ(θ), γ̇(θ), γ̈(θ)} = R3, θ ∈ J. (1.1)
A simple consequence of (1.1) is that γ(I) cannot be contained in a fixed 2-dimensional
subspace for any interval I ⊂ J . The curve γ gives rise to a 1-rectifiable family of orthog-
onal projections ρθ : R3 → R onto the 1-dimensional subspaces spanned by γ(θ):

ρθ(z) := γ(θ) · z.
It seems plausible to conjecture that a Marstrand-type projection theorem should hold
for the mappings ρθ. The following is the first part of [4, Conjecture 1.6], dimH denoting
the Hausdorff dimension:

Conjecture 1.1. Suppose that γ is a C2-curve on S2 satisfying (1.1) and ρθ : R3 → R is the
family of orthogonal projections onto the 1-dimensional subspaces spanned by γ(θ). If K ⊂ R3 is
an analytic set, then dimH ρθ(K) = min{dimHK, 1} for almost every θ ∈ J .

The curvature condition (1.1) is necessary for any positive results. For instance, the
curve γ(θ) = (cos θ, sin θ, 0) evidently fails (1.1), and every projection ρθ maps the set
{(0, 0, r) : r ∈ R} onto the singleton {0}. On the other hand, the prototypical example of
a curve γ satisfying (1.1) is given by

γ(θ) = 1√
2
(cos θ, sin θ, 1), θ ∈ [0, 2π). (1.2)

Note that the trace of γ lies completely on the plane {(x1, x2,
1√
2
) : x1, x2 ∈ R}, but

intersects every 2-dimensional subspace at most twice. The existing results about, and
around, Conjecture 1.1 can be summarised as follows, K denoting an analytic set in R3:

(i) It is easy to prove that if dimHK ≤ 1
2 , then dimH ρθ(K) = dimHK for almost

every θ ∈ J ; see [4, Proposition 1.5].
(ii) If dimHK > 1

2 , then the packing dimension of ρθ(K) strictly exceeds 1
2 for almost

every parameter θ ∈ J ; see [4, Theorem 1.7].
(iii) The second author [11, Theorem 1.9] proved the Hausdorff dimension analogue

of the previous result, but only for the special curve (1.2).
(iv) Both papers [4] and [11], and also the paper [10] by D. Oberlin and R. Oberlin,

prove analogous results for projections onto the perpendicular planes span γ(θ)⊥.
(v) Very recently, C. Chen [1, Theorem 1.3] showed that there exist 1-dimensional

(but not 1-rectifiable) families of lines in R3, which satisfy Marstrand’s projection
theorem in the same sense as Conjecture 1.1. We will discuss C. Chen’s result a
bit further in Section 2 below.

The reader is also referred to [9, Section 5.4] for a related discussion. Our main result in
the present paper solves Conjecture 1.1 for the special curve (1.2) studied in [11].

Theorem 1.2. Suppose that γ : [0, 2π) → S2 is the curve satisfying (1.2). If K ⊂ R3 is an
analytic set, then dimH ρθ(K) = min{dimHK, 1} for almost every θ ∈ [0, 2π).
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In fact, we derive Theorem 1.2 from the more precise result below:

Theorem 1.3. Suppose that γ : [0, 2π) → S2 is the curve satisfying (1.2). If K ⊂ R3 is an
analytic set with 0 < dimHK ≤ 1 and 0 ≤ t < dimHK, then dimH ρθ(K) ≥ t for all
θ ∈ [0, 2π) \ E, where

dimHE ≤
dimHK + t

2 dimHK
< 1.

Remark 1.4. We note that Theorems 1.2 and 1.3 remain true with the special curve γ re-
placed by any non-degenerate circle of the form η = V ∩ S2, where V ⊂ R3 is a 2-
plane, which is not a subspace. This version of the results was mentioned in the abstract.
Clearly, one may assume that V is a parallel to the xy-plane, at height h ∈ (−1, 1) \ {0},
and then η can be parametrised by η(θ) = (ch cos θ, ch sin θ, h), with ch =

√
1− h2. Con-

sequently,

η(θ) · (z1, z2, z3) = (chz1 cos θ + chz2 sin θ + hz3) = 21/2[γ(θ) · (chz1, chz2, hz3)].

This shows the the projections of any set K ⊂ R3 to the lines spanned by e ∈ V ∩ S2

are (up to scaling by 21/2) the same as the projections of the Kh = {(chz1, chz2, hz3) :
(z1, z2, z3) ∈ K} to the lines spanned by e ∈ γ. Now, it remains to note that dimHKh =
dimHK for any h ∈ (−1, 1) \ {0}, and apply Theorems 1.2 and 1.3.

Remark 1.5. Theorem 1.2 has been recently applied to solve a variant of the Kakeya prob-
lem in the first Heisenberg group H, see [7]. The author of [7] proves that if K ⊂ H is an
arbitrary set containing a horizontal line segment of every orientation, then the (Heisen-
berg) Hausdorff dimension of K is no smaller than 3.

Let us next examine how Conjecture 1.1 is connected to curvilinear Kakeya problems
in R2. The circular Kakeya problem asks how large is the Hausdorff dimension of a
planar set B which contains a circle of every radius. In 1994, L. Kolasa and T. Wolff [6]
first proved that dimHB ≥ 11/6, and in 1997, T. Wolff [14] obtained the optimal result
dimHB = 2. The paper [6] also contains the 11/6-result for sets containing "generalised
circles of every radius" (we refer the reader to [6] for the precise definitions). The optimal
result dimHB = 2 in this setting was obtained by J. Zahl [17].

A natural generalisation of the problem above is the following. A circle S(x, r) ⊂ R2

determines uniquely its own radius and centre, so the points in R2 × R+ are in one-
to-one correspondence with planar circles. Thus, we can say that a family S of planar
circles is compact (or Borel, analytic, or s-dimensional), if the corresponding pairs (x, r) ∈
R2 × R+ form a compact (or respectively Borel, analytic, or s-dimensional) subset of R3.
We denote the Hausdorff dimension of a circle family S by dimH S := dimH{(x, r) ∈ R3 :
S(x, r) ∈ S}. Thus, by definition, each family S of circles containing a circle of every
radius evidently satisfies dimH S ≥ 1.

Now, assume that S is an analytic family of circles. What can be said about the di-
mension of ∪S :=

⋃
S∈S S? The answer does not appear to be stated explicitly in the

literature, but the existing methods yield dimH ∪S = min{dimH S+1, 2} in this situation.
We were informed by A. Máthé that this follows from a slight generalisation of Theorem
2.9 in T. Keleti’s survey [5], combined with Corollary 3 in T. Wolff’s deep paper [13]. Al-
ready in Wolff’s earlier paper [14, Appendix A], he proved a slightly weaker variant: if
the set of centres of the circles in S has dimension α ∈ (0, 1], then dimH ∪S ≥ 1 + α.



4 ANTTI KÄENMÄKI, TUOMAS ORPONEN, AND LAURA VENIERI

As a corollary of the techniques in the present paper, we are able to give an elementary
proof (avoiding the techniques of [13]) of the full result:

Theorem 1.6. If S is an analytic family of planar circles, then dimH ∪S = min{dimH S+1, 2}.

We should perhaps emphasise that even though Theorem 1.6 can be deduced from
[13] via [5, Theorem 2.9], the same is not true of Theorem 1.2, as far as we know.

Let us finally explain the connection to Conjecture 1.1. Let γ : J → S2 be a curve
satisfying the non-degeneracy hypothesis (1.1). For each z ∈ R3, consider the planar
curve

Γ(z) := {(θ, ρθ(z)) : θ ∈ J}.
For the special curve γ(θ) = 1√

2
(cos θ, sin θ, 1) and z = (x1, x2, r) ∈ R3, the set Γ(z) is the

graph of the function x1 cos θ+ x2 sin θ+ r defined on [0, 2π); we will often refer to these
curves as "sine waves". As one shifts z around in R3, the wave Γ(z) changes. Note that
the same is not true for the degenerate curve γ(θ) = (cos θ, sin θ, 0), as Γ(x1, x2, r) is then
independent of r.

The reader should now think that Γ(z) is a "circle" parametrised by z. If K ⊂ R3 is
an analytic set, then one might expect, based on Theorem 1.6, that the union

⋃
z∈K Γ(z)

has Hausdorff dimension min{dimHK + 1, 2}. The crucial observation here is that if
Lθ = {θ} × R ⊂ R2 is the vertical line at θ, then the vertical intersections

Lθ ∩
⋃
z∈K

Γ(z) = {(θ, ρθ(z)) : z ∈ K}, θ ∈ J, (1.3)

are isometric to the projections ρθ(K). Thus, if the union
⋃
z∈K Γ(z) is s-dimensional,

with s ≥ 1, then, by a Fubini-type argument, many projections ρθ(K) should have di-
mension s− 1. Strictly speaking this is not correct, since there is no such Fubini theorem
for the Hausdorff dimension. Regardless, this gives a reasonable heuristic why Conjec-
ture 1.1 should hold for the projections ρθ.

Our main result, Theorem 1.2, makes the above heuristic rigorous for the curve γ(θ) =
1√
2
(cos θ, sin θ, 1). Observe also that, as an immediate corollary of Theorem 1.2 and (1.3),

the union
⋃
z∈K Γ(z) has Hausdorff dimension min{dimHK + 1, 2}; this corresponds to

Theorem 1.6 for the waves Γ(z).

1.1. Further directions. It seems plausible that the strategy in this paper, combined with
the "cinematic curvature" machinery developed by L. Kolasa and T. Wolff [6] and J. Zahl
[16, 17], could be stretched to prove Conjecture 1.1 for all curves satisfying (1.1). There
are several technical obstacles, however. One is quite simply verifying (rigorously) the
"cinematic curvature hypothesis", see [6, page 124], for the relevant curves, and making
sure that the tangency parameter "∆" in [6] coincides with the one we introduce in this
paper. Another obstacle is verifying that [17, Lemma 11] works under the assumption
that the "generalised circles" in question are merely δ-separated (and not necessarily δ-
separated in the radial variable); this would be needed for the generalised version of
Lemma 4.4 below. J. Zahl [personal communication] has informed us that the proof of
[17, Lemma 11] does not really rely on the radial separation, but verifying this carefully
would result in a fairly long paper.

Another natural question arising from Theorem 1.2 is the following: if dimHK > 1,
then is it true that H1(ρθ(K)) > 0 for almost every θ ∈ [0, 2π)? This seems plausible, but
does not follow from the method of this paper. Given the analogy with circle packing
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problems discussed above, this result would correspond to the fact that dimH S > 1 im-
plies L2(∪S) > 0. This result established by Wolff [13] in 2000. It requires a combination
of Fourier-analytic techniques with the incidence geometric ideas behind Theorem 1.6.

1.2. Notation. We generally denote points of R3 by z, z′, and points in R2 by x, y. A
closed ball of radius r > 0 and centre z ∈ Rd is denoted by B(z, r). A planar circle of
radius r > 0 and centre x ∈ R2 is denoted by S(x, r).

For A,B > 0, we use the notation A .p B to signify that there exists a constant C ≥ 1,
depending only on the parameter p, such that A ≤ CB. If no "p" is specified, then the
constantC is absolute. We abbreviate the two-sided inequalityA .p B .q A byA ∼p,q B.
In general, the letter "C" stands for a large constant, whose value may change from line
to line inside the proofs. More essential constants will be indexed C1, C2, . . . In addition
to the "." notation, we will also need the "/" notation: this notation is always associated
with a "scale" parameter δ ∈ (0, 1], which will be clear from context. Given this parameter
δ, the notation A / B means that there exists an absolute constant C ≥ 1 such that
A ≤ C(log(1/δ))CB. In this paper, "log" refers to logarithm of base 2. The two-sided
inequality A / B / A is abbreviated to A ≈ B.

The notation Hs stands for the s-dimensional Hausdorff measure, and Hs∞ stands for
s-dimensional Hausdorff content. The notation | · | can refer to the norm of a vector, or
the Lebesgue measure, or the counting measure, depending on the context.

Acknowledgement. We are grateful to anonymous referees for reading the paper very
carefully, and for providing a large number of helpful comments and small corrections.

2. THE TANGENCY PARAMETER

A great deal of what follows has nothing to do with the curve γ(t) = 1√
2
(cos t, sin t, 1),

and would work equally well under the general curvature hypothesis (1.1). For the mo-
ment, we fix any C2-curve γ : J → S2 satisfying the curvature condition (1.1) on J . For
convenience, we also assume that γ, γ̇, and γ̈ extend continuously to the closure J , and
(1.1) holds on J .

To motivate the following definitions, we recall a part of Marstrand’s classical projec-
tion theorem in R3; see [8]. Let e ∈ S2, and let πe : R3 → R be the orthogonal projection
onto the line spanned by e, that is, πe(x) = x · e. If K ⊂ R3 is analytic, then Marstrand’s
classical projection theorem guarantees that H2|S2 almost every projection πe(K) satis-
fies dimH πe(K) = min{dimHK, 1}. A fundamental ingredient in the proof of this result
is the following estimate:

H2({e ∈ S2 : |πe(z)| ≤ δ}) . δ/|z|, z ∈ R3 \ {0}. (2.1)

In fact, whenever (2.1) holds for a (non-trivial) measure σ on S2, then the usual proof
of Marstrand’s theorem works for this measure σ. In [1], C. Chen found that there are
α-Ahlfors-David regular measures σ on S2 with α arbitrarily close to 1, which satisfy
(2.1).

The main difficulty in dealing with the projections ρθ(z) = γ(θ) · z, θ ∈ J , is that
non-trivial measures on the curve γ ⊂ S2 fail to satisfy (2.1) (here we also use "γ" to
denote the trace of γ). In fact, the length measure σ = H1|γ only satisfies the uniform
bound (2.1) with the right hand side replaced by (δ/|z|)1/2; see [4, proof of Lemma 3.1].
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As a corollary, the projections ρθ conserve almost surely the dimension of at most 1
2 -

dimensional analytic sets; see [4, Proposition 1.5].
The above explanation implies that, if one wants to consider sets of dimension higher

than 1
2 , more careful analysis is required. Heuristically, the main observation here is that

even though the best possible uniform estimate in (2.1) is too weak for our purposes, a
much stronger bound holds for "most" points z ∈ R3. For example, consider the projec-
tions ρθ associated with the special curve γ(θ) = 1√

2
(cos θ, sin θ, 1). If z = (0, 0, r) with

|r| ∼ 1, then |ρθ(z)| = |r|√
2
& 1 for all θ ∈ [0, 2π). In particular, the dangerous set on the

left hand side of (2.1) is empty altogether for δ > 0 sufficiently small.
For each z ∈ R3 \{0}, the decay ofH1({θ ∈ J : |ρθ(z)| ≤ δ}) depends on the maximum

order of zeros of the real function
θ 7→ ρθ(z).

As we just saw, the function need not have any zeros, but it can easily have zeros of either
first or second order. Third order zeros are ruled out by the curvature condition (1.1). If
the zeros had order at most one, then (2.1) would hold, and hence the second order zeros
are revealed as the main adversary. So, when do second order zeros occur? Recall that
ρθ(z) = γ(θ) · z. Hence, ρθ(z) = 0 = ∂θρθ(z), if and only if z ⊥ γ(θ) and z ⊥ γ̇(θ). This is
further equivalent to

πVθ(z) = 0,

where Vθ = span{γ(θ), γ̇(θ)} and πVθ is the orthogonal projection onto the plane Vθ. So,
the function θ 7→ ρθ(z) has a second order zero at some θ ∈ J , if and only if

∆(z) := min
θ∈J
|πVθ(z)| = 0. (2.2)

The quantity ∆(z) is the tangency parameter of γ at z. In practice, "almost" second order
zeros are also a challenge in the proofs below. It turns out that the size of ∆(z) is a good
tool for quantifying the word "almost".

2.1. Geometric interpretation of the tangency parameter. Condition (2.2) tells us when
second order zeros occur, but we will now give a more geometric characterisation. We
only consider the special curve γ(θ) = 1√

2
(cos θ, sin θ, 1). By a straightforward calcula-

tion, we see that γ̇(θ) = 1√
2
(− sin θ, cos θ, 0) and

η(θ) := γ(θ)× γ̇(θ) = −1
2(cos θ, sin θ,−1), θ ∈ [0, 2π).

Thus, πVθ(z) = 0, if and only if z is parallel to `θ := span{η(θ)} = V ⊥θ , and hence ∆(z) =
0, if and only if

z ∈ C :=
⋃

θ∈[0,2π)

`θ = {(x, r) ∈ R3 : |x| = |r|}. (2.3)

Here ∆(z) is defined as in (2.2), with J = [0, 2π). There is another interesting (and useful)
interpretation for ∆(z). Pick θ ∈ [0, 2π) such that

dist(z, `θ) = |πVθ(z)| = ∆(z).

Then, pick z′ = (y, s) ∈ `θ with |z − z′| = ∆(z), and note that |y| = |s| by (2.3). Write
z = (x, r). Since |x− y| ≤ ∆(z) and |r − s| ≤ ∆(z), we infer that

∆′(z) := ||x| − |r|| ≤ |x− y|+ |r − s| ≤ 2∆(z). (2.4)
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We also note that a converse to (2.4) holds. Fix z = (x, r) ∈ R3, and let x = (r′ cos θ, r′ sin θ)
in polar coordinates with θ ∈ [0, 2π) and r′ = |x| ≥ 0. We note that (|r| cos θ, |r| sin θ, r) ∈
C, and

|z − (|r| cos θ, |r| sin θ, r)| = |r′ − |r|| = ||x| − |r|| = ∆′(z).

This means that z is at distance ∆′(z) from one of the lines `θ = V ⊥θ on C, and hence

∆(z) ≤ ∆′(z). (2.5)

Consequently, by (2.4) and (2.5), the numbers ∆(z) and ∆′(z) are comparable, and ∆(z) =
0, if and only if ∆′(z) = 0. This is useful, because the number ∆′(z) plays a major role
in Wolff’s investigation of circular Kakeya problems; see for instance [15, Lemma 3.1]. If
z1 = (x1, r1), z2 = (x2, r2) ∈ R3 are distinct points with r1, r2 ≥ 0, then

0 = ∆′(z1 − z2) = ||x1 − x2| − |r1 − r2||,

if and only if the planar circles S(x1, r1) and S(x2, r2) are internally tangent.

3. GEOMETRIC LEMMAS

For technical reasons to be clarified in this section, it is easier (and sufficient) to prove
Theorem 1.2 for every sufficiently short compact subinterval J ⊂ [0, 2π) separately. We
will adopt the notation

∆J(z) = min
θ∈J
|πVθ(z)|, (3.1)

where, as before, Vθ = span{γ(θ), γ̇(θ)}. Since {γ(θ), γ̇(θ)} is an orthonormal basis of Vθ
(we can achieve this by re-parametrising γ by arc-length), we have the estimate

∆J(z) ≤ |πVθ(z)| ≤ |γ(θ) · z|+ |γ̇(θ) · z| ≤ 2|πVθ(z)| (3.2)

for all θ ∈ J . We also trivially have

∆J(z) ≤ |z|.

The definition (3.1) makes sense for the general γ satisfying the curvature condition (1.1),
as long as J is contained in the domain of definition. In fact, until further notice, we work
in that generality: the only standing assumptions are that γ, γ̇, and γ̈ are continuous and
well-defined on a compact interval J , and the curvature condition (1.1) is satisfied on J .

The compactness of J and the curvature condition (1.1) together imply that there exists
a constant κ = κ(γ, J) > 0 such that

max{|γ(θ) · w|, |γ̇(θ) · w|, |γ̈(θ) · w|} ≥ κ, (w, θ) ∈ S2 × J. (3.3)

The following lemma is a simple consequence of uniform continuity:

Lemma 3.1. There exists a constant λ = λ(κ, γ) > 0 with the following property: If I ⊂ J is
an interval of length |I| ≤ λ, z ∈ R3, and θ 7→ φz(θ) is one of the functions φz(θ) = γ(θ) · z or
φz(θ) = γ̇(θ) · z or φz(θ) = γ̈(θ) · z, then one of the following alternatives holds (depending on
the choice of I and φz):

(S) |φz(θ)| < κ|z| for all θ ∈ I .
(L) |φz(θ)| ≥ κ|z|/2 for all θ ∈ I .
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Proof. The maps (w, θ) 7→ γ(θ) · w, (w, θ) 7→ γ̇(θ) · w and (w, θ) 7→ γ̈(θ) · w are uniformly
continuous on S2 × J . So, there is a constant λ such that if |(w, θ) − (w′, θ′)| ≤ λ, then
|γ(θ) ·w− γ(θ′) ·w′| ≤ κ/2, and the same holds with γ replaced by either γ̇ or γ̈. Now, fix
I ⊂ J with |I| ≤ λ, z ∈ R3, and φz . Assume, for instance, that φz(θ) = γ(θ) · z. If z = 0,
then evidently the alternative (L) holds. Otherwise, assume that |z| > 0, and alternative
(L) fails. So, there exists θ0 ∈ I such that |φz(θ0)| < κ|z|/2. Then, if θ ∈ I is arbitrary, we
have |((z/|z|), θ)− ((z/|z|), θ0)| ≤ λ, and so

|φz(θ)|
|z|

=

∣∣∣∣γ(θ) · z
|z|

∣∣∣∣ ≤ ∣∣∣∣γ(θ0) · z
|z|

∣∣∣∣+

∣∣∣∣γ(θ) · z
|z|
− γ(θ0) · z

|z|

∣∣∣∣ < κ

2
+
κ

2
= κ.

This means that alternative (S) holds for I and φz . �

Combined with (3.3), the previous lemma has the following useful consequence:

Lemma 3.2. Let λ > 0 be as in Lemma 3.1. If I ⊂ J is an interval of length |I| ≤ λ and
z ∈ R3 \ {0}, then the map θ 7→ γ(θ) · z has at most two zeros on I . Moreover, if θ 7→ γ̇(θ) · z
has two zeros on I , then the alternative (L) holds for I and θ 7→ γ(θ) · z.

Proof. We start with the second claim. Assume that |I| ≤ λ and θ 7→ γ̇(θ) · z has two
zeros on I , for some z ∈ R3 \ {0}. This implies, by Rolle’s theorem, that θ 7→ γ̈(θ) · z
has a zero on I . Now Lemma 3.1 implies that the alternative (S) holds for I and both
θ 7→ γ̇(θ) · z and θ 7→ γ̈(θ) · z. Consequently, by (3.3), we have |γ(θ) · z| ≥ κ|z| for all θ ∈ I ,
so alternative (L) holds for θ 7→ γ(θ) · z.

The first claim follows from the second one: If θ 7→ γ(θ) · z had three zeros on I , then
θ 7→ γ̇(θ) ·z would have two zeros on I again by Rolle’s theorem. But then, by the second
claim, θ 7→ γ(θ) ·z satisfies the alternative (L) on I , and hence cannot have zeros on I . �

Since the short subintervals I ⊂ J have such pleasant properties, we restrict our atten-
tion to one of them. For notational convenience, we redefine J to be any subinterval of
the initial interval of length |J | ≤ λ/2, and such that 2J is still contained inside the initial
interval. This change in notation also affects the definition of ∆J in (3.1).

Assumption 3.3. We assume that the interval 2J satisfies the conclusion of Lemma 3.1:
for every z ∈ R3, and each of the three possible choices of φz , either alternative (L) or (S)
is satisfied on the interval 2J .

The next lemma is a close relative of Lemma 3.1 in [6], and proof is virtually the same.

Lemma 3.4. Fix δ > 0 and z ∈ R3 with |z| ≥ Cδ, where C = C(γ, J) ≥ 1 is a sufficiently
large constant. Define Eδ(z) := {θ ∈ J/2 : |γ(θ) · z| ≤ δ}.

(1) The set Eδ(z) is contained in a single interval of length at most a constant times√
(∆J(z) + δ)/|z|.

Moreover, if ∆J(z) ≤ |z|/C, and C = C(γ, J) is sufficiently large, then this interval
can be centred at a point θ0 ∈ 2J with γ̇(θ0) · z = 0 and |πVθ0 (z)| . ∆J(z).

(2) The set Eδ(z) consists of at most two intervals I1, I2, whose lengths are bounded by

|Ij | .
δ√

(∆J(z) + δ)|z|
.

The implicit constants in the estimates above depend only on γ and J .
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θ−δ

δ

FIGURE 1. The picture depicts the map θ 7→ γ(θ) · z and the set Eδ(z) in
Lemma 3.4.

Proof. Write ∆ := ∆J(z). First of all, we may assume that

∆ ≤ c|z| (3.4)

for a suitable small constant c = 1/C(γ, J) ∈ (0, κ/4), to be determined a bit later. Indeed,
otherwise |γ(θ) · z| + |γ̇(θ) · z| ≥ ∆ > c|z| ≥ 2δ for all θ ∈ J by (3.2) and the assumption
|z| ≥ Cδ, and in particular |γ̇(θ) · z| &γ,J |z| for θ ∈ Eδ(z). If this is the case, both claims
of the lemma are easy to verify.

Since c < κ/4, the estimates (3.2) and (3.4) imply that |γ(θ) ·z|+ |γ̇(θ) ·z| ≤ 2∆ < κ|z|/2
for some θ. Therefore, both θ 7→ γ(θ) · z and θ 7→ γ̇(θ) · z satisfy the alternative (S) on 2J .
Hence, by the quantitative curvature condition (3.3), we have

|γ̈(θ) · z| ≥ κ|z|, θ ∈ 2J. (3.5)

Thus, θ 7→ γ(θ) · z is either strictly convex or strictly concave on 2J , and Eδ(z) consists
of at most two intervals I1 and I2. Thus, the situation is reduced to the fairly simple case
depicted in Figure 1.

Let θ∆ ∈ J be such that
|πVθ∆ (z)| = ∆.

Then (3.2) implies that |γ̇(θ∆) · z| ≤ 2∆. By (3.5), and assuming that c in (3.4) satisfies
c < κ|J |/10, the mapping θ 7→ γ̇(θ) · z has a unique zero at some point θ0 ∈ 2J with
|θ0 − θ∆| ≤ 2∆/(κ|z|) < |J |/5. Observe that

|γ(θ0) · z| ≤ |γ(θ∆) · z|+
∫ θ0

θ∆

|γ̇(s) · z| ds ≤ ∆ + |z||θ0 − θ∆| ≤ C∆, (3.6)

where C = Cγ,J ≥ 1, so in particular |πVθ0 (z)| . ∆.
Write [a, b] := 2J . Note that neither θ 7→ γ̇(θ) · z nor θ 7→ γ̈(θ) · z changes sign on [a, θ0]

or [θ0, b]. Thus, if θ1 ∈ [θ0, b], then we can use (3.6) and (3.5) to estimate

|γ(θ1) · z| ≥
∣∣∣∣∫ θ1

θ0

γ̇(s) · z ds

∣∣∣∣− C∆ =

∫ θ1

θ0

|γ̇(s) · z| ds− C∆

=

∫ θ1

θ0

∫ s

θ0

|γ̈(r) · z|dr ds− C∆ ≥ κ|z|
2

(θ1 − θ0)2 − C∆.
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Thus, θ1 ∈ Eδ(z) can only occur, if κ|z|(θ1 − θ0)2/2− C∆ ≤ δ ≤ Cδ, which gives

θ1 − θ0 ≤
(

2C

κ

)1/2√
(∆ + δ)/|z|.

If θ1 ∈ [a, θ0], then a similar estimate holds for θ0 − θ1. Hence

Eδ(z) ⊂ B(θ0, C
√

(∆ + δ)/|z|) (3.7)

for C = Cγ,J ≥ 1, as claimed (here, and in the remainder of the proof, the numerical
value of "C" is allowed to change from line to line, but it will only depend on γ, J).

To prove the second claim, recall that Eδ(z) consists of at most two intervals I1 and
I2, which, by (3.7), are both located inside B(θ0, C

√
(∆ + δ)/|z|). If ∆ ≤ 2δ, then the

estimate |Ij | ≤ |B(θ0, C
√

(∆ + δ)/|z|)| .
√
δ/
√
|z| gives the desired bound. So, we may

assume that
2δ ≤ ∆ ≤ c|z|. (3.8)

Then, if c > 0 was taken small enough, depending on J , the diameter of the single
interval in (3.7) containing both θ0 and Eδ(z) is smaller than |J |/10. In particular, if
θ0 ∈ 2J \ J , then Eδ(z) ⊂ J/2 is empty. So, we may assume that θ0 ∈ J , which gives
|γ(θ0) · z| ≥ ∆ by (3.2) and recalling that γ̇(θ0) · z = 0. Observe that if θ1 ∈ Eδ(z), then,
by (3.5),

δ ≥ |γ(θ1) · z| ≥ ∆−
∫ θ1

θ0

|γ̇(s) · z|ds

≥ ∆−
∫ θ1

θ0

∫ s

θ0

|γ̈(r) · z| dr ds ≥ ∆− C|z|(θ1 − θ0)2

with C = ‖γ̈‖L∞(J). By (3.8), this implies

|θ1 − θ0| &

√
∆− δ
|z|

&

√
∆

|z|
, θ1 ∈ Eδ(z).

Using (3.5), we finally infer that

|γ̇(θ1) · z| =
∫ θ1

θ0

|γ̈(s) · z| ds ≥ κ|z||θ1 − θ0| &
√

∆|z|

for θ1 ∈ Eδ(z), which shows that |Ij | . δ/
√

∆|z|. The proof is complete. �

3.1. Tangency of circles. In this section, we gather some estimates on the size and shape
of intersections of (circular) annuli. These are harvested verbatim from T. Wolff’s paper
[13] and survey [15].

Definition 3.5 (The region B0). We write B0 ⊂ R3 for the set

B0 = {(x, r) ∈ R3 : x ∈ B(0, 1
4) and 1

2 ≤ r ≤ 2}.

The set plays the role of "the unit ball" or "the unit cube" in the arguments below:
geometric constants stay under control, as long as points are chosen from B0. The next
result is from [15], and it is an analogue of Lemma 3.4 for circles (also the proof is fairly
similar). To be precise, the statement of Lemma 3.6 contains some details which are not
explicit in the statement of [15, Lemma 3.1], but are apparent from the proof.
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Lemma 3.6 ([15, Lemma 3.1]). Assume that S(x1, r1) and S(x2, r2) are planar circles with
(x1, r1), (x2, r2) ∈ B0. Let δ > 0 and denote by Sδ(x, r) the δ-annulus around the circle
S(x, r). Define (as in (2.4)) ∆′ := ∆′((x1, r1) − (x2, r2)) = ||x1 − x2| − |r1 − r2|| and write
t := |(x1, r1)− (x2, r2)|. Then

(1) Sδ(x1, r1) ∩ Sδ(x2, r2) is contained in a ball centred at

ζ(x1, x2) := x1 + sgn(r1 − r2)r1
x2 − x1

|x2 − x1|
,

with radius at most a constant times
√

(∆′ + δ)/(t+ δ).
(2) Sδ(x1, r1) ∩ Sδ(x2, r2) is contained in the union of the δ-neighbourhoods of at most

two arcs on S(x2, r2), both of length at most a constant times δ/
√

(∆′ + δ)(t+ δ). In
particular,

|Sδ(x1, r1) ∩ Sδ(x2, r2)| . δ2√
(∆′ + δ)(t+ δ)

.

An important special case of the lemma is when ∆′ ≤ δ: following T. Wolff [13], we
say that the two circles S(x1, r1) and S(x2, r2) are then δ-incident, and it follows from
Lemma 3.6(1) that SCδ(x1, r1) ∩ SCδ(x2, r2) can be covered by a single δ-neighbourhood
of a circular arc of length .C

√
δ/(t+ δ). This numerology motivates the following

definition (which is from [13, Section 1]):

Definition 3.7 ((δ, t)-rectangles). Let 0 < δ ≤ t ≤ 1. A (δ, t)-rectangle R ⊂ R2 is a δ-
neighbourhood of a circular arc of length

√
δ/t. Two (δ, t)-rectangles are C-comparable,

if there is a single (Cδ, t)-rectangle containing both of them. Otherwise R1 and R2 are
C-incomparable. A circle S(x, r) is C-tangent to a (δ, t)-rectangle, if SCδ(x, r) contains R.
Finally, fixing some large absolute constant C0 ≥ 1, we say that two rectangles R1, R2

are simply comparable, if they are C0-comparable. Similarly, a circle being tangent to a
rectangle refers to C0-tangency.

We record a part of [13, Lemma 1.5]:

Lemma 3.8 (Incidence vs. tangency). Assume that S1 = S(x1, r2) and S2 = S(x2, r2) satisfy
the hypotheses of Lemma 3.6, with constants t and ∆′ ≤ δ, so that the two circles are δ-incident.
Then, there exists a (δ, t)-rectangle R such that both S1 and S2 are tangent to R (assuming that
the constant C0 ≥ 1 in the definition above was chosen large enough).

3.2. Tangency of sine waves. In this section, we apply the discussion above to the spe-
cial curve we are considering in the present paper, namely

γ(θ) = 1√
2
(cos θ, sin θ, 1).

We keep assuming that J ⊂ 2J ⊂ [0, 2π) is a compact subinterval such that Assumption
3.3 holds for 2J . Note that

∆′(z) ≤ 2∆(z) ≤ 2∆J(z) (3.9)
by (2.4). The converse inequality ∆J(z) ≤ ∆′(z) is no longer true. Heuristically, ∆J(z1 −
z2) only measures the tangency between certain arcs of S(x1, r1), S(x2, r2), determined
by J ; even if the circles S(x1, r1), S(x2, r2) happened to be tangent, that is ∆′(z1−z2) = 0,
the point of tangency need not occur on this arc. We define

Γ(z) := ΓJ(z) := {(θ, ρθ(z)) : θ ∈ J
2 } and Γδ(z) := {(θ, θ′) ∈ J

2 × R : |ρθ(z)− θ′| ≤ δ}.
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So, formally, Γ(z) = Γ0(z).
For later application, we are interested in the following problem. Fix ε, t ∈ (0, 1] with

2Cε ≤ t, where C = C(γ, J) ≥ 1 is the constant from Lemma 3.4. Assume that z1 =
(x1, r1) ∈ B0, z2 = (x2, r2) ∈ B0, and w ∈ R2 are points satisfying

w = (w1, w2) ∈ Γε(z1) ∩ Γε(z2), t ≤ |z1 − z2| ≤ 2t, and ∆J(z1 − z2) ≤ ε. (3.10)

Note that ∆′(z1−z2) ≤ 2∆J(z1−z2) ≤ 2ε ≤ |z1−z2|/C implies |x1−x2| ∼ t. The heuristic
meaning of (3.10) is that the curves Γ(z1) and Γ(z2) intersect fairly tangentially at w ∈ R2,
and by (3.9) and the discussion at the end of Section 2.1, the same is true for the circles
S(x1, r2) and S(x2, r2). How is the spatial location of the tangency between S(x1, r1)
and S(x2, r2) related to w? The following lemma answers this question: there are at most
constant many rectangles satisfying (3.11), so the location of tangency, at scale ε, between
S(x1, r1) and S(x2, r2) is roughly determined by the first coordinate of any point in the
intersection Γε(z1) ∩ Γε(z2).

Lemma 3.9. Suppose that z1 = (x1, r1) ∈ B0, z2 = (x2, r2) ∈ B0, and w ∈ R2 satisfy (3.10),
with t ≥ 2Cε. Then both circles S(x1, r1) and S(x2, r2) are tangent to an (ε, t)-rectangle R with

R ⊂ SC0ε(x1, r1) ∩B(x1 + r1(cosw1, sinw1), C
√
ε/t). (3.11)

Proof. Since w = (w1, w2) ∈ Γε(z1) ∩ Γε(z2), we trivially have w1 ∈ J/2 and

|γ(w1) · (z1 − z2)| = |ρw1(z1)− ρw1(z2)| ≤ |ρw1(z1)− w2|+ |w2 − ρw1(z2)| ≤ 2ε,

and, therefore,

w1 ∈ E2ε(z1 − z2) = {θ ∈ J/2 : |γ(θ) · (z1 − z2)| ≤ 2ε}.

By Lemma 3.4, the set E2ε(z1 − z2) is contained in a single interval of length at most a
constant times

√
ε/t around a certain point θ0 ∈ 2J with |πVθ0 (z1− z2)| . ∆J(z1− z2). In

particular,
|w1 − θ0| .

√
ε/t. (3.12)

By Lemma 3.6(1), the intersection

SC0ε(x1, r1) ∩ SC0ε(x2, r2) (3.13)

is contained in a disc centred at

ζ(x1, x2) = x1 + r1 sgn(r1 − r2)
x2 − x1

|x2 − x1|
=: x1 + r1e(z1, z2).

and radius at most a constant times
√
ε/t.

Now, we claim that
|(cos θ0, sin θ0)− e(z1, z2)| . ε

t
, (3.14)

so that, by (3.12),

|(cosw1, sinw1)− e(z1, z2)| .
√
ε

t
. (3.15)

Start by recalling from Section 2.1 that |πVθ0 (z1− z2)| . ∆J(z1− z2) ≤ ε implies dist(z1−
z2, `θ0) . ε, so we may find s ∈ R such that

|(z1 − z2)− s(cos θ0, sin θ0,−1)| . ε.
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It follows that

|(x1 − x2)− s(cos θ0, sin θ0)| . ε and |(r1 − r2)− s| . ε. (3.16)

Abbreviate σ := sgn(r1 − r2) and e := e(z1, z2). Then,

|e− (cos θ0, sin θ0)| ≤
∣∣∣∣ x2 − x1

|x2 − x1|
− s(cos θ0, sin θ0)

|x2 − x1|

∣∣∣∣+

∣∣∣∣σs(cos θ0, sin θ0)

|x2 − x1|
− (cos θ0, sin θ0)

∣∣∣∣
Using (3.16) and the fact that |x1 − x2| ∼ t (see the discussion after (3.10)), the first term
in the right-hand side of the above inequality is bounded by a constant times ε/t. The
second term admits the same estimate, using (3.16):∣∣∣∣ σs

|x2 − x1|
− 1

∣∣∣∣ . |σs− |x2 − x1||
t

≤ |s− (r1 − r2)|
t

+
∆′(z2 − z1)

t
.
ε

t
.

This proves (3.14) and hence (3.15).
Finally, by Lemma 3.8, both circles S(x1, r1) and S(x2, r2) are tangent to a certain (ε, t)-

rectangleR, which, by the definition of tangency, the inclusion of (3.13), and (3.15), means
that

R ⊂ SC0ε(x1, r1) ∩ SC0ε(x2, r2)

⊂ B(x1 + r1e(x1, x2), C
√
ε/t)

⊂ B(x1 + r1(cos(w1), sin(w1)), C
√
ε/t).

This completes the proof of the lemma. �

4. A MEASURE-THEORETIC VARIANT OF WOLFF’S INCIDENCE BOUND FOR TANGENCIES

One of the main technical innovations in T. Wolff’s paper [13] is Lemma 1.4. It bounds
the number of incomparable (δ, t)-rectangles, which are tangent to a family of circles. To
make the statement precise, we recall some definitions from [13]:

Definition 4.1 (Bipartite sets). Let t > 0. A subset of B0 (recall Definition 3.5) is called
t-bipartite, if it can be written as a disjoint unionW ∪ B ("white" and "black" points) with

max{diam(B), diam(W)} ≤ t ≤ dist(W,B) and diam(W ∪ B) ≤ 100t.

We will make an attempt to denote finite t-bipartite sets byW∪B, and infinite ones by
W ∪ B. It should not cause confusion that B is also a common letter for a ball (the only
concrete black set is defined below (5.22), and it is in fact an annulus).

Definition 4.2 (Type). Assume that W ∪ B ⊂ B0 is a t-bipartite set, let µ be a finite
measure on R3, and let m, n > 0 be positive real numbers. A (δ, t)-rectangle R ⊂ R2 is of
type ≥ m with respect to µ,W if

µ({(x, r) ∈W : S(x, r) is tangent to R}) ≥ m.

Similarly, R is of type ≥ n with respect to µ,B if

µ({(x, r) ∈ B : S(x, r) is tangent to R}) ≥ n.

We also define that R is of type (≥ m,≥ n) with respect to µ,W,B if R satisfies both of
the requirements above simultaneously. We often omit writing "with respect to µ,W,B",
if these parameters are clear from the context.



14 ANTTI KÄENMÄKI, TUOMAS ORPONEN, AND LAURA VENIERI

Lemma 4.3 ([13, Lemma 1.4]). Let 0 < t < 1, 0 < δ ≤ ct, where c > 0 is a small absolute
constant, let m, n ∈ N, letW ∪ B be a finite t-bipartite set, and let µ := H0|W∪B. If ε > 0, then
there is a constant Cε ≥ 1 such that the cardinality of any collection of pairwise incomparable
(δ, t)-rectangles of type (≥ m,≥ n) with respect to µ,W,B is bounded by

Cε(|W||B|)ε
((
|W||B|
mn

)3/4

+
|W|
m

+
|B|
n

)
.

The purpose of this section is to deduce a variant of Wolff’s lemma for arbitrary finite
measures; the proof is a straightforward reduction to Lemma 4.3.

Lemma 4.4. Let 0 < t < 1, 0 < δ ≤ ct, where c > 0 is a small absolute constant, let W ∪ B ⊂
B0 be a t-bipartite set, and let µ be a probability measure on R3, and let m, n ∈ (0, 1]. For
ε > 0, there exists a constant Cε ≥ 1 such that the cardinality of any set of pairwise incomparable
(δ, t)-rectangles of type (≥ m,≥ n) is bounded by

Cε(mnδ)−ε

((
µ(W )µ(B)

mn

)3/4

+
µ(W )

m
+
µ(B)

n

)
. (4.1)

Proof. Assume without loss of generality that δ > 0 is a small dyadic number, and denote
by Dδ the dyadic cubes in R3 of side-length δ. For i, j ≥ 0, let DWi := {Q ∈ Dδ : 2−i−1 ≤
µ(Q ∩W ) ≤ 2−i} and DBj := {Q ∈ Dδ : 2−j−1 ≤ µ(Q ∩ B) ≤ 2−j}. Note that if R is a
(δ, t)-rectangle C0-tangent to any circle S(x, r) with (x, r) ∈ Q, with Q ∩B0 6= ∅, then R
is 2C0-tangent to the circle S(xQ, rQ), where (xQ, rQ) is the midpoint of Q.

Let R be a maximal collection of incomparable (δ, t)-rectangles of type (≥ m,≥ n).
Then, for R ∈ R, there is a set

WR := {(x, r) ∈W : S(x, r) is tangent to R} ⊂W

with µ(WR) ≥ m such that R is tangent to every circle from WR. Let W i
R be the set WR

intersected with the union of the cubes in DWi . Define BR and Bj
R similarly, using DBj .

Then, there exist iR, jR ≥ 1 such that

µ(W iR
R ) &

m

i2R
and µ(BjR

R ) &
n

j2
R

.

Since W ⊂ B0, the total µ-measure of cubes in DWi is at most a constant times δ−32−i.
Therefore,

m

i2R
. µ(W iR

R ) . δ−32−iR .

Given ε > 0, the inequality above implies iR ≤ Cεδ
−3εm−ε for a constant Cε ≥ 1 depend-

ing only on ε. The same reasoning applies to jR, with m replaced by n. Now, for each
i ∈ {1, . . . , Cεδ−3εm−ε} and j ∈ {1, . . . , Cεδ−3εn−ε}, we define

R(i,j) := {R ∈ R : iR = i and jR = j}.

Then we pick (i, j) such thatR(i,j) =: R′ is the largest to obtain

|R′| &ε |R| · δ6εmεnε (4.2)

With these values of i, j, denote byW i and Bj the midpoints of the cubes in DWi and DBj ,
respectively.
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Fix a rectangle R ∈ R′. By the definition, and recalling that i ∈ {1, . . . , Cεδ−3εm−ε},

µ(W i
R) &

m

i2
&ε m

1+2εδ6ε.

Since µ(Q ∩ W i
R) ≤ µ(Q ∩ W ) ∼ 2−i for all Q ∈ DWi , we infer that at least m &ε

max{1, 2im1+2εδ6ε} cubes Q ∈ DWi intersect W i
R, where m ∈ N. As discussed above, this

means that R is 2C0-tangent to S(xQ, rQ) for each of these cubes Q; note that (xQ, rQ) ∈
W i for these Q, by the definition of W i. The same reasoning applies to Bj

R, and the
conclusion is that R is of type

(≥ m,≥ n) for m &ε max{1, 2im1+2εδ6ε} and n &ε max{1, 2jn1+2εδ6ε},

with respect to the t-bipartite familyW i ∪Bj and the counting measure. We first assume
that 2im1+2εδ6ε ≥ 1 and 2jn1+2εδ6ε ≥ 1. Then, using Lemma 4.3, we infer that

|R′| .ε (|W i||Bj |)ε
((

|W i||Bj |
2i+j(mn)1+2εδ12ε

)3/4

+
|W i|

2im1+2εδ6ε
+

|Bj |
2jn1+2εδ6ε

)
. (4.3)

To make the right hand side of (4.3) look more like the right hand side of (4.1), note that

|W i| =
∑

(xQ,rQ)∈Wi

2−i

2−i
. 2i

∑
(xQ,rQ)∈Wi

µ(Q ∩W ) . 2iµ(W ) and |Bj | . 2jµ(B).

Combined with (4.2) and (4.3), this completes the proof of (4.1) in the case 2im1+2εδ6ε ≥ 1
and 2jn1+2εδ6ε ≥ 1. Let us consider the case 2im1+2εδ6ε < 1 and 2jn1+2εδ6ε < 1, leaving
the intermediate cases to the reader. Then m = 1 = n, and instead of (4.3), we may infer
from Lemma 4.3 that

|R′| .ε (|W i||Bj |)ε
((
|W i||Bj |

)3/4
+ |W i|+ |Bj |

)
.

To conclude the proof of (4.1) from here, one then uses the inequalities |W i| . 2iµ(W ) ≤
µ(W )m−1−2εδ−6ε and |Bj | . 2jµ(B) ≤ µ(B)n−1−2εδ−6ε, and also µ(W ), µ(B) ≤ 1. �

5. A MEASURE-THEORETIC VARIANT OF SCHLAG’S LEMMA FOR CIRCLES

Lemma 5.1 below is the main tool in the proof of Theorem 1.6 about unions of circles.
It is a continuous version of W. Schlag’s weak type inequality in [12, Lemma 8]. The
proof follows the same pattern, but the statement is a bit stronger (involving measures,
not finite sets), and the argument is a bit simpler; for example, we can omit the case
distinction between "δ ∼ ε" and "δ � ε" altogether, and also the selection of a random
ε-separated subset; see the proof in [12].

Aside from being crucial in the proof Theorem 1.6, Lemma 5.1 is also used within the
proof of Lemma 6.1, which is finally the key ingredient in the proof of the main result,
Theorem 1.2.

Recall that Sδ(x, r) stands for the δ-neighbourhood of the planar circle S(x, r) and

∆′(z) = ||x| − |r||, z = (x, r).

Given a finite measure µ on R3 and δ > 0, define the following multiplicity function
mµ
δ : R2 → [0, µ(R3)]:

mµ
δ (w) = µ({z′ ∈ R3 : w ∈ Sδ(z′)}). (5.1)
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Lemma 5.1. Fix s ∈ (0, 1], δ > 0, η > 0, C ≥ 1, and A ≥ Cη,C,s · δ−η, where Cη,C,s ≥ 1 is a
large constant depending only on η,C, and s. Let µ be a probability measure on R3 satisfying the
Frostman condition µ(B(z, r)) ≤ Crs for all z ∈ R3 and r > 0, and with K := spt µ ⊂ B0.
Then, for λ ∈ (0, 1], there is a set G(A, δ, λ) ⊂ K with

µ(K \G(A, δ, λ)) ≤ A−s/3

such that the following holds for all z ∈ G(A, δ, λ):

|Sδ(z) ∩ {w : mµ
δ (w) ≥ Asλ−2sδs}| ≤ λ|Sδ(z)|.

Proof. We start by remarking that the lemma is trivial for all δ &η,C,s 1 and for all λ ∈
(0, 1]. Indeed, in this case we may choose the lower bound Cη,C,s for A so large that
Asλ−2sδs > 1. This has the effect that mµ

δ (w) ≥ Asλ−2sδs can never hold, since mµ
δ (w) ≤

µ(R3) = 1. So, in the sequel, we may assume that δ is small, in a manner depending on
η,C, s. For similar reasons, we may assume thatA ≤ δ−1: otherwisemµ

δ ≤ 1 < Asλ−2sδs.
Assume then to the contrary there exists a dyadic number δ ∈ 2−N, and a number

m ≥ Asλ−2sδs (5.2)

such that
|Sδ(z) ∩ {w : mµ

δ (w) ≥ m}| ≥ λ|Sδ(z)| (5.3)
for every z ∈ D ⊂ K, where

µ(D) > A−s/3.

This will result in a contradiction, if Cη,C,s in the assumption A ≥ Cη,C,s · δ−η is suffi-
ciently large. For the purposes of induction, we assume that δ ∈ 2−N is the largest dyadic
number failing the statement of the lemma for some λ ∈ (0, 1] and A ≥ Cη,C,s ·δ−η (as we
already observed in the first paragraph of the proof, the statement is trivial for δ &C,η,s 1,
for all λ ∈ (0, 1], and all A ≥ Cη,C,s, so the "base case" of the induction is valid.)

For z ∈ R3 and dyadic numbers ε, t ∈ [δ, 1], define

Kε,t(z) := {z′ ∈ K : Sδ(z) ∩ Sδ(z′) 6= ∅, t ≤ |z − z′| < 2t, and ε ≤ ∆′(z − z′) < 2ε}.

The case ε = δ is a little special: there we modify the definition so that the two-sided
inequality ε ≤ ∆′(z − z′) < 2ε is replaced by simply ∆′(z − z′) < 2ε = 2δ. Now, define
the restricted multiplicity function

mµ
δ (w|U) := µ({z′ ∈ U : w ∈ Sδ(z′)}), U ⊂ R3.

Applied with U := Kε,t(z), as we will do in a moment, this multiplicity function only
takes into accounts those z′, which are at distance t from, and ε-tangent to, z. If z ∈ D is
fixed, w ∈ R2 is such that mµ

δ (w) ≥ m (as in (5.3)), and C ≥ 1 is a large enough absolute
constant (to be determined later), then we consider the inequality

Csη,C,sδ
s

(5.2)
≤ m ≤ mµ

δ (w) ≤ µ(B(z, Cδ)) +
∑

t∈[Cδ,1]

ε∈[δ,1]

mµ
δ (w|Kε,t(z))

≤ C(Cδ)s +
∑

t∈[Cδ,1]

ε∈[δ,1]

mµ
δ (w|Kε,t(z)),
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where ε and t only run over dyadic values. We take Cη,C,s ≥ 1 (at least) so large that
CCs ≤ 1

2C
s
η,C,s. Then the second term in the display above must dominate the left hand

side. This implies (after a few rounds of pigeonholing) that there exist dyadic numbers
ε ∈ [δ, 1] and t ∈ [Cδ, 1], m / m̄ ≤ m and λ / λ̄ ≤ λ, and a subset D̄ ⊂ D with
µ(D̄) ' µ(D), such that the following holds for all z ∈ D̄:

|Hδ(z)| := |Sδ(z) ∩ {w : mµ
δ (w|Kε,t(z)) ≥ m̄}| ≥ λ̄|Sδ(z)|. (5.4)

We recall from Section 1.2 that the notation C1 / C2 signifies an inequality of the form

C1 ≤ C(log(1/δ))CC2

for some absolute constant C ≥ 1. Furthermore, by C1 ≈ C2 was the same as C1 / C2 /
C1. For the rest of the proof, the numbers t and ε will be the ones we found above, and
we abbreviate

Kε,t(z) =: K(z). (5.5)

We now make a brief heuristic digression. By the preceding discussion, we have found
that a large fraction of the "high density" part of Sδ(z), for z ∈ D̄, is caused by points z′,
which are at roughly distance t � δ from z, and moreover the tangency between S(z)
and S(z′) is roughly constant, namely ε. This means that the circles S(z) and S(z′) are ε-
incident, and hence they are tangent to an (ε, t)-rectangle by Lemma 3.8. To complete the
proof, it suffices to count, just how many incomparable (ε, t)-rectangles we can find this
way (by varying z ∈ D̄ and z′ ∈ Kε,t(z)), and then compare the figure with the upper
bound given by Lemma 4.4 to reach a contradiction. If ε = δ, this is straightforward,
but if ε � δ, an additional geometric argument is needed: in brief, we will show that
a perfect analogue of (5.4) also holds at scale ε, for every z ∈ D̄: see (5.15) below, and
note in particular that (5.15) and (5.4) are essentially the same, if ε = δ. In a sense, the
argument leading to (5.15) is just a complicated way of saying that "ε = δ without loss of
generality".

We continue with the proof. Fix z ∈ D̄, and recall that (5.4) holds. We claim that there
exists a dyadic number ν = ν(z) ∈ {1, . . . , ε/δ}, and an absolute constant C1 ≥ 2, such
that

|Sε(z) ∩ {w : mµ
C1ε

(w|K(z)) & νm̄}| ' λ̄ε

νδ
· |Sε(z)|. (5.6)

To see this, we need to recall the geometric fact from Lemma 3.6 that if z, z′ ∈ R3 and with
|z−z′| ∼ t and ∆′(z−z′) ∼ ε, then Sδ(z)∩Sδ(z′) can be covered by two δ-neighbourhoods
of arcs on S(z), each of diameter at most a constant times Cδ/

√
εt. (If ε = δ, then we

only have the one-sided information ∆′(z − z′) < 2ε = 2δ, but the geometric statement
above remains valid, even with "two arcs" replaced by "one arc".) Motivated by this,
we first divide S(z) into short arcs Jj(z) of length Cδ/

√
εt. We write Jδj (z) for the δ-

neighbourhood of Jj(z). Since |Jδj (z)| . δ2/
√
εt, we may, by (5.4), find at least a constant

times
λ̄|Sδ(z)|
δ2/
√
εt
∼ λ̄
√
εt

δ

indices j such thatHδ(z)∩Jδj (z) 6= ∅. Denote these indices byJ (z), and for each j ∈ J (z),
pick a point wj ∈ Hδ(z) ∩ Jδj (z). Thus mµ

δ (wj |K(z)) ≥ m̄ for j ∈ J (z). Throw away at
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Sδ(z′)

Sδ(z)

wj

Iεi (z)

FIGURE 2. An illustration for the proof of Lemma 5.1.

most half of the points wj to ensure that |wi − wj | ≥ Cδ/
√
εt for all i 6= j. Then, the sets

Kj(z) := {z′ ∈ K(z) : wj ∈ Sδ(z) ∩ Sδ(z′)}
with

µ(Kj(z)) = mµ
δ (wj |K(z)) ≥ m̄ (5.7)

have bounded overlap: ∑
j∈J (z)

χKj(z)(z
′) ≤ 2, z′ ∈ K(z). (5.8)

Indeed, if z′ ∈ Kj(z), then wj ∈ Sδ(z) ∩ Sδ(z′), which implies wj has to lie in one of the
at most two sets of diameter at most Cδ/

√
εt covering the intersection Sδ(z) ∩ Sδ(z′). By

the separation of the points wj , this can happen for at most two values of j.
Next, we group the points wj inside sets of somewhat larger diameter (than Jj(z)). To

this end, divide S(z) into long arcs Ii(z) of length C
√
ε/t. By adjusting the lengths of

both long and short arcs slightly, we may assume that the long arcs Ii(z) are sub-divided
further into

H1(Ii(z))

H1(Jj(z))
≤
√
ε/t

δ/
√
εt

=
ε

δ

short arcs Jj(z). For each long arc Ii(z), write

k(i) := card{j ∈ J (z) : wj ∈ Iδi (z)},

where Iδi (z) is the δ-neighbourhood of Ii(z). Since 0 ≤ k(i) ≤ ε/δ, there is a dyadic
number ν = ν(z) ∈ {1, . . . , ε/δ} such that ' |J (z)| & λ̄

√
εt/δ points wj are contained in

the union of the sets Iδi (z) with ν ≤ k(i) ≤ 2ν. Denote the indices of these sets Iδi (z) by
I(z). Thus, if i ∈ I(z), then

card{j ∈ J (z) : wj ∈ Iδi (z)} ∼ ν. (5.9)

Since there are ' |J (z)| points in total, we conclude that

|I(z)| ' |J (z)|
ν

&
λ̄
√
εt

νδ
. (5.10)

Fix i ∈ I(z) and wj ∈ Iδi (z). We claim that if z′ ∈ Kj(z), then

Iεi (z) ⊂ SC1ε(z′), (5.11)

for some C1 ≥ 1 large enough; see Figure 2. The reason is that wj ∈ Sδ(z) ∩ Sδ(z′) and
S(z), S(z′) are ε-incident, so for large enough C1 ≥ 1, they are both C1-tangent to the
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(ε, t)-rectangle Iεi (z) 3 wj , see Lemma 3.8 for a similar statement (and its proof in Wolff’s
paper for more details). Now, for a fixed index i ∈ I, and for any w ∈ Iεi (z), the bounded
overlap of the sets Kj(z) yields

mµ
C1ε

(w|K(z)) = µ({z′ ∈ K(z) : w ∈ SC1ε(z′)})
(5.8)
≥ 1

2

∑
j∈J (z)

wj∈Iδi (z)

∫
Kj(z)

χSC1ε(z′)(w) dµz′

(5.11)
=

∑
j∈J (z)

wj∈Iδi (z)

µ(Kj(z))
(5.7)&(5.9)
& νm̄.

Thus, we have proven that whenever i ∈ I(z), the set Iεi (z) ⊂ Sε(z) is contained in the
region where mµ

C1ε
(w|K(z)) & νm̄. Recalling (5.10), this proves that

|Sε(z)∩{w : mµ
C1ε

(w|K(z)) & νm̄}| ≥ |I(z)||Iεi (z)|
(5.10)
'

λ̄
√
εt

νδ
·
√
ε/t·ε ∼ λ̄ε

νδ
|Sε(z)|, (5.12)

which is precisely (5.6).
Recall that the dyadic number ν = ν(z) ≤ ε/δ still depends on the point z ∈ D̄,

but there are only / 1 possible choices for ν(z). We replace D̄ by a subset of measure
' µ(D̄) ' A−s/3 to make the choice uniform. Hence, we may assume that (5.6) holds
for all z ∈ D̄, for some fixed dyadic number ν ∈ {1, . . . , ε/δ}. We now will re-write (5.6)
slightly, in such a way that the inequality looks more like (5.3), only at scale (roughly) ε
instead of δ. For this purpose, we denote

λε := log−C(1/δ)
λ̄ε

νδ
and Aε := logC(1/δ)

(
Aε

νδ

)
≥ logC(1/δ)A, (5.13)

where C ≥ 1 is a suitable constant. We may deduce from (5.12) that (λ̄ε)/(νδ) / 1, so
λε ∈ (0, 1] if the constant C ≥ 1 in the definition above is chosen sufficiently large.

Recall from (5.2), and the choices m̄ ≈ m and λ̄ ≈ λ just above (5.4), that m̄ ' Asλ̄−2sδs.
We define mε := νm̄/C. Then, using the lower bound for m̄, and also that s ∈ (0, 1], we
record that

mε =
νm̄

C
' νAsλ̄−2sδs '

(
Aε

νδ

)s
λ−2s
ε εs ≈ Asελ−2s

ε εs. (5.14)

Now, if C (in both mε = νm̄/C and the definition of λε) is large enough, (5.6) implies

|Sε(z) ∩ {w : mµ
C1ε

(w|K(z)) ≥ mε}| ≥ 2λε|Sε(z)|, z ∈ D̄. (5.15)

Now (5.14)-(5.15) look like analogues of (5.2)-(5.3), only at the (possibly) larger scale ε.
Fix a large absolute constant N ∈ 2N, whose precise value will be determined later,

and will only depend on the size of the absolute constant C1 ≥ 1 chosen at (5.11). Note
(using ν ≤ ε/δ and ε ≥ δ) that

Aε ≥ A ≥ Cη,C,s · δ−η ≥ Cη,C,s(Nε)−η,

and we already observed below (5.13) that λε ∈ (0, 1], so in particular λε/(CN) ∈ (0, 1].
These facts place the induction hypothesis at our disposal, at scale Nε ≥ 2δ. Namely,
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we know that for all points z ∈ G := G(Aε, Nε, λε/CN), with µ(K \ G) ≤ A
−s/3
ε , the

following holds:

|SNε(z) ∩ {w : mµ
Nε(w) ≥ Asε(λε/CN)−2sεs}| ≤ λε

CN
|SNε(z)| ≤ λε|Sε(z)|. (5.16)

In particular, since Aε ≥ logC(1/δ)A, and µ(D̄) ' A−s/3, the estimate (5.16) holds for at
least half of the points z ∈ D̄ (if C is large enough). We restrict attention to this half, so
that (5.15)–(5.16) hold simultaneously for all z ∈ D̄. Writing Mε := Asε(λε/CN)−2sεs, it
follows that

|Sε(z) ∩ {w : mε ≤ mµ
C1ε

(w|K(z)) ≤ mµ
Nε(w) ≤Mε}| ≥ λε|SCε(z)|, z ∈ D̄. (5.17)

It should be noted that
mε 'Mε (5.18)

by (5.14).
Now, (5.17) will will give a lower bound for how many circles S(z) are tangent to each

other at resolution ε. The proof will be completed by comparing this lower bound against
the upper bound given by Lemma 4.4. For this purpose, we need to extract two sets

W ⊂ D̄ and B ⊂ R3

satisfying the two t-bipartite conditions max{diam(W ),diam(B)} ≤ t ≤ dist(W,B) and
diam(W ∪B) ≤ 100t. We will moreover do this so that

µ(W ) ' A−s/3µ(B), (5.19)

and
mµ
C1ε

(w|B ∩K(z)) = mµ
C1ε

(w|K(z)), z ∈W, w ∈ R2. (5.20)

Finding W and B is straightforward. We first cover D̄ by ≤ Ct−3 balls B(zi, t/10), such
that the ballsB(zi, (2+ 1

10)t) have bounded overlap. Next, we discard all those balls with
µ(D̄ ∩B(zi, t/10)) ≤ t3µ(D̄)/(2C), and observe that the union of the remaining balls still
contains at least half the µ measure of D̄. Next, among the remaining balls, which now
all satisfy

µ(D̄ ∩B(zi, t/10)) ≥ t3µ(D̄)

2C
' A−s/3t3, (5.21)

we set
W := D̄ ∩B(zi, t/10)

for the ball B(zi, t/10), which maximises the ratio µ(D̄ ∩B(zi, t/10))/µ(B(zi, (2 + 1
10)t)).

Since the balls B(zi, (2 + 1
10)t) have bounded overlap, it follows that

µ(W )

µ(B(zi, (2 + 1
10)t))

& µ(D̄) ' A−s/3. (5.22)

Then, we define
B := B(zi, (2 + 1

10)t) \B(zi, (1− 1
10)t),

and note that K(z) = B ∩K(z) for all z ∈ W , because z′ ∈ K(z) = Kε,t(z) (recall (5.5))
already forces the restriction t ≤ |z − z′| ≤ 2t. Hence, for w ∈ R2,

mµ
C1ε

(w|B ∩K(z)) = µ({z′ ∈ B ∩K(z) : w ∈ SC1ε(z)})

= µ({z′ ∈ K(z) : w ∈ SC1ε(z)}) = mµ
C1ε

(w|K(z)), z ∈W,
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as claimed by (5.20). The inequality µ(W ) ' A−s/3µ(B) follows from (5.22) and the
definition of B. The bipartite condition holds with constants slightly worse than t.

Before continuing, we make a small further refinement of W . Cover W by ≤ C(t/ε)3

disjoint (dyadic) cubes Qi of side-length ε. At most half of µ(W ) can be contained in the
union of those cubes Qi with µ(W ∩Qi) ≤ (ε/t)3µ(W )/(2C). We refine W by discarding
the part of W covered by these low-density cubes. At least half of the µ measure of W
remains, and now all the points z ∈ W have the following property: they are contained
in a cube Qi = Qi(z) of side-length ε such that

µ(W ∩Qi) &
(ε
t

)3
µ(W ) ' A−s/3ε3, (5.23)

using (5.21).
At this point we observe that λε, as defined in (5.13), is fairly large. Namely, if w lies

in the high-density set defined in (5.17), for some z ∈W , then by (5.14) and (5.20),

Asελ
−2s
ε εs / mε ≤ mµ

C1ε
(w|B) ≤ µ(B) . Cts, (5.24)

where Aε is the parameter defined in (5.13). Rearranging this inequality gives

λε 'C,s A
1/2
ε

√
ε

t
.

Recalling that Aε ≥ (Aε)/(νδ), then ν ≤ ε/δ, and finally A ≥ Cη,C,s · δ−η, we infer that

ρ := bc · λε√
ε/t
c 'C,s A

1/2
ε ≥

(
C

1/2
η,C,s

)
δ−η/2, (5.25)

where c > 0 is a small absolute constant to be specified momentarily. This shows in
particular that ρ ≥ 1, if Cη,C,s ≥ 1 is large enough, depending here on c,C and s. Thus,
for a fixed point z ∈ W , (5.17) and (5.20) imply that it takes & ρ/c (in particular at least
ρ) sets Iεi (z) to cover the high density set

Hε
b(z) := Sε(z) ∩ {w : mµ

C1ε
(w|B ∩K(z)) ≥ mε and mµ

Nε(w) ≤Mε}.
For a fixed point z ∈ W , we may hence choose ρ points v1, . . . , vρ ∈ Sε(z), which are
separated by a distance at least C

√
ε/t (here C is another absolute constant, which may

be chosen larger by making "c" smaller), and which satisfy

mµ
C1ε

(vj |K(z) ∩B) ≥ mε and mµ
Nε(vj |W ) ≤Mε, 1 ≤ j ≤ ρ. (5.26)

Fix 1 ≤ j ≤ ρ, and consider the first condition in (5.26), which is shorthand for

µ(Bj(z)) := µ({z′ ∈ B ∩K(z) : vj ∈ Sε(z) ∩ SC1ε(z′)}) ≥ mε. (5.27)

Whenever z′ ∈ Bj(z), then the circles S(z) and S(z′) are 2ε-incident (since z′ ∈ K(z) =
Kε,t(z) implies ∆′(z − z′) ≤ 2ε), and they are both (N/2)-tangent to a certain (ε, t)-
rectangle Rj(z) containing vj , for N ≥ 1 large enough (depending on C1, an absolute
constant chosen at (5.11)). Moreover, when j ∈ {1, . . . , ρ} varies, the corresponding
(ε, t)-rectangles are incomparable by the separation of the points vj . We summarise the
findings above: every z ∈W gives rise to ρ incomparable (ε, t)-rectangles Rj(z), each be-
ing (N/2)-tangent to S(z), having type ≥ mε with respect to the set B according to (5.27)
(the notion of type was introduced in Definition 4.2), and containing a point vj = vj(z).

To make the following discussion more rigorous, choose a maximal (finite) collection
R of incomparable (ε, t)-rectangles in B(0, 100). Then, by adjusting the constants appro-
priately, we may assume that each rectangle Rj(z), as above, lies inR.
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At this point, we also run one final pigeonholing argument. For z ∈W and vj = vj(z)
as above, we have the upper bound mµ

Nε(vj(z)|W ) ≤Mε by (5.26). This implies that

µ({z′ ∈W : S(z′) is N -tangent to Rj(z)}) ≤Mε, (5.28)

because any circle S(z′) being N -tangent to Rj(z) satisfies vj(z) ∈ Rj(z) ⊂ SNε(z′) by
definition of N -tangency. On the other hand, S(z) is (N/2)-tangent to Rj(z) by the dis-
cussion above, and every circle S(z′) with z′ ∈ Qi(z) (see above (5.23)) is N -tangent to
Rj(z), hence

µ({z′ ∈W : S(z′) is N -tangent to Rj(z)}) ≥ µ(W ∩Qi)
(5.23)
' A−s/3ε3 ≥ δ4,

as we assumed at the start of the proof that A ≤ δ−1. Now, for z ∈W fixed, we may pick
a dyadic number δ4 / nε(z) ≤Mε such that ' ρ rectangles Rj(z) satisfy

nε(z) ≤ µ({z′ ∈W : S(z′) is N -tangent to Rj(z)}) ≤ 2nε(z).

Then, we may finally fix δ4 / nε ≤ Mε, and a subset W ′ ⊂ W with µ(W ′) ' µ(W ), such
that

nε ≤ µ({z′ ∈W : S(z′) is N -tangent to Rj(z)}) ≤ 2nε (5.29)

for z ∈ W ′, and for ' ρ rectangles Rj(z). From now on, the rectangles Rj(z), 1 ≤ j ≤ ρ,
satisfying (5.29) will be called the children of z ∈ W ′. According to (5.29), every child
Rj(z) of z ∈W ′ has type ≥ nε with respect to W , assuming that the notion of "tangency"
has been defined as N -tangency; this is legitimate, since N is an absolute constant.

Every point z ∈ W ′ ⊂ W gives rise to ' ρ children Rj(z), as we just argued. Now,
as z ∈ W ′ varies, how many children in R do we find in total, at least? If ten parents
have three children each, and each child has at most two parents, then there are at least
3 · 10/2 = 15 children in total. For a more general statement, see Lemma 5.2 below. Now,
we do the same computation with "parents" replaced by points z ∈ W ′ (children are, of
course, the rectangles as before). We already know that every parent z ∈ W ′ has ' ρ
children inR, so we only need to find an upper bound for the number of parents.

Fix a child R = Rj(z), for some z ∈ W ′, satisfying (5.29). If z′ ∈ W ′ is another parent
with the same child R, then S(z′) is (N/2)-tangent to R by definition, and in particular
N -tangent to R. Thus, by (5.29),

µ({z′ ∈W ′ : Rj(z) is a child of z′}) ≤ 2nε.

Now, Lemma 5.2 implies (take (Ω1, µ1) = (W ′, µ), Ω2 the set of all possible rectangles
Rj(z) ∈ Rwith z ∈W and 1 ≤ j ≤ ρ, µ2 the counting measure on Ω2, and E = {(z′, R) ∈
Ω1 × Ω2 : R is the child of z′}) that the total number of rectangles R ∈ R, which are the
child of some point z ∈W ′, is at least

'
µ(W ′)ρ

nε
'
µ(W )ρ

nε
. (5.30)

Moreover, every such child R has type (≥ nε,≥ mε) with respect to the t-bipartite set
W ∪ B by (5.27) and (5.29) (as we already mentioned above, we define the concept of
type, recall Definition 4.2, using N -tangency). On the other hand, by Lemma 4.4, given
τ > 0, the maximal cardinality of incomparable (ε, t)-rectangles of type (≥ nε,≥ mε) is
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bounded from above by

.τ (mεnεε)
−τ

((
µ(W )µ(B)

mεnε

)3/4

+
µ(W )

nε
+
µ(B)

mε

)
(5.19)
/ (mεnεε)

−τ

(As/3µ(W )2

mεnε

)3/4

+
µ(W )

nε
+
As/3µ(W )

mε

 ,

recalling from (5.19) that µ(B) / As/3µ(W ). One can verify from (5.24) that the hypoth-
esis ε ≤ ct in Lemma 4.4 is satisfied if the lower bound Cη,C,s for the constant A, and the
constant "C" in the inequality Aε ≥ logC(1/δ)A (see (5.13)), are chosen large enough.

Now fix 0 < τ < ηs/50. Since s ∈ (0, 1], δ4 . nε ≤ Mε / mε by (5.18) and ρ ' A1/2 ≥
δ−η/2 by (5.25), neither of the two latter terms can dominate (5.30). But the the first term
cannot dominate either, since otherwise (importing the lower estimate for mε from (5.14),
recalling that Aε ≥ A, and recalling the definition of ρ from (5.25)),

ρ / δ−10τAs/4µ(W )1/2 n
1/4
ε

m
3/4
ε

/ δ−10τAs/4ts/2m−1/2
ε

/ δ−10τAs/4A−s/2ε

(
t

ε

)s/2
λsε = δ−10τA−s/4ρs.

This gives a contradiction, since s ∈ (0, 1], ρ ≥ 1, and A−s/4 ≤ δηs/4. The proof of Lemma
5.1 is complete. �

To finish this section, we verify the lemma used in the previous proof.

Lemma 5.2. Let (Ω1, µ1), (Ω2, µ2) be finite measure spaces, let E ⊂ Ω1 × Ω2 be a subset, and
let π1 : Ω1 × Ω2 → Ω1 and π2 : Ω1 × Ω2 → Ω2 be the coordinate projections. If E ⊂ Ω1 × Ω2 is
µ1 × µ2 measurable,

µ2({ω2 ∈ Ω2 : (ω1, ω2) ∈ E}) ≥ C2

for all ω1 ∈ π1(E), and
µ1({ω1 ∈ Ω1 : (ω1, ω2) ∈ E} ≤ C1

for all ω2 ∈ π2(E), then

µ2(π2(E)) ≥ C2

C1
µ1(π1(E)).

Proof. This is an easy application of Fubini’s theorem:

C2µ1(π1(E)) ≤
∫
π1(E)

µ2({ω2 ∈ Ω2 : (ω1, ω2) ∈ E}) dµ1ω1

= (µ1 × µ2)(E) =

∫
π2(E)

µ1({ω1 ∈ Ω1 : (ω1, ω2) ∈ E}) dµ2ω2

≤ C1µ2(π2(E)),

which gives the claim by rearranging. �
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6. A MEASURE-THEORETIC VARIANT OF SCHLAG’S LEMMA FOR SINE WAVES

In this section, we prove a variant of Lemma 5.1 for the sine waves

Γ(z) = {(θ, γ(θ) · z) : θ ∈ J/2},

where
γ(θ) = 1√

2
(cos θ, sin θ, 1),

and J ⊂ [0, 2π) is a short compact interval with 2J ⊂ [0, 2π). We assume that J is so
short that Lemma 3.4 applies, and so does the discussion in Section 3.2. In accordance
with earlier notation, we write

∆(z) := ∆J(z) = min
θ∈J
|πVθ(z)|.

Recall that

Eδ(z) = {θ ∈ J/2 : |ρθ(z)| ≤ δ} and Γδ(z) = {(θ, θ′) ∈ J
2 × R : |θ′ − ρθ(z)| ≤ δ},

where ρθ(z) = γ(θ) · z. Given a finite measure µ on R3 and δ > 0, we re-define the
multiplicity function mµ

δ : R2 → [0, µ(R3)] in the obvious way:

mµ
δ (w) = µ({z′ ∈ R3 : w ∈ Γδ(z′)}).

With this notation, we have the following perfect analogue of Lemma 5.1 (the only
change is literally that S is replaced by Γ):

Lemma 6.1. Fix s ∈ (0, 1], δ > 0, η > 0, C ≥ 1, and A ≥ Cη,C,s · δ−η, where Cη,C,s ≥ 1 is a
large constant depending only on η,C, and s. Let µ be a probability measure on R3 satisfying the
Frostman condition µ(B(z, r)) ≤ Crs for all z ∈ R3 and r > 0, and with K := spt µ ⊂ B0.
Then, for λ ∈ (0, 1], there is a set G(A, δ, λ) ⊂ K with

µ(K \G(A, δ, λ)) ≤ A−s/3

such that the following holds for all z ∈ G(A, δ, λ):

|Γδ(z) ∩ {w : mµ
δ (w) ≥ Asλ−2sδs}| ≤ λ|Γδ(z)|.

Remark 6.2. We will assume that the reader is already familiar with the proof of Lemma
5.1 above; if so, we can promise that 6.1 is easy reading, as the structure of the argument
is exactly the same. Even at the risk of repetition, we will still include most details. Apart
from a few notational changes, the main difference occurs at the end of the proof. In the
previous argument, we were counting tangent circles in two different ways. Below, the
natural analogue would be to count tangent sine waves, but we do not have a "sine wave
variant" of Wolff’s incidence bound, Lemma 4.4, at our disposal. So, instead, we use
the discussion in Section 3.2 to infer that "many tangent sine waves imply many tangent
circles", and then we can literally apply Lemma 4.4 again. Finally, we also need to apply
Lemma 5.1 on the last few meters of the proof: information from the lemma will replace
the appeal to the "induction hypothesis" within Lemma 5.1 (for somewhat complicated
technical reasons, the corresponding induction hypothesis appears to be too weak to
settle the proof in the setting below).

Proof of Lemma 6.1. Just like in the proof of Lemma 5.1, we may assume that δ > 0 is small
in a manner depending on η,C, s, in particular δ ∈ (0, 1

2 ], and A ≤ δ−1.
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Assume to the contrary that there exists a dyadic number δ ∈ 2−N, and a number

m ≥ Asλ−2sδs (6.1)

such that
|Γδ(z) ∩ {w : mµ

δ (w) ≥ m}| ≥ λ|Γδ(z)|
for every z ∈ D ⊂ K, where

µ(D) > A−s/3.

This will result in a contradiction provided that the constant Cη,C,s in the assumption
A ≥ Cη,C,s · δ−η is sufficiently large. For z ∈ R3 and dyadic numbers ε, t ∈ (0, 1], define

Kε,t(z) := {z′ ∈ K : Γδ(z) ∩ Γδ(z′) 6= ∅, t ≤ |z − z′| < 2t and ε ≤ ∆(z − z′) ≤ 2ε}.

In the case ε = δ, we again drop the lower constraint from ∆(z − z′) (as in the proof of
Lemma 5.1). Define also the restricted multiplicity function

mµ
δ (w|Kε,t(z)) := µ({z′ ∈ Kε,t(z) : w ∈ Γδ(z′)}).

Proceeding as in the proof of Lemma 5.1, if the constant Cη,C,s ≥ 1 is taken large enough,
we may pigeonhole fixed dyadic numbers ε ∈ [δ, 1] and t ∈ [2Cδ, 1] (withC = C(γ, J) ≥ 1
now explicitly being the constant from Lemma 3.4), m / m̄ ≤ m and λ / λ̄ ≤ λ, and a
subset D̄ ⊂ D with µ(D̄) ' µ(D), such that the following holds for all z ∈ D̄:

|Hδ(z)| := |Γδ(z) ∩ {w : mµ
δ (w|Kε,t(z)) ≥ m̄}| ≥ λ̄|Γδ(z)|. (6.2)

For the rest of the proof, the numbers t and ε will be fixed, and we write Kε,t(z) =: K(z).
For a heuristic explanation of what happens next, see the corresponding spot in the

proof of Lemma 5.1. Fix z ∈ D̄, so that (6.2) holds. We claim that there exists a dyadic
number ν = ν(z) ∈ {1, . . . , ε/δ}, and an absolute constant C1 ≥ 1, such that

|Γε(z) ∩ {w : mµ
C1ε

(w|K(z)) & νm̄}| ' λ̄ε

νδ
|Γε(z)|. (6.3)

To see this, we recall from Lemma 3.4 that if z, z′ ∈ R3 and with |z − z′| ≥ t ≥ Cδ and
∆(z−z′) ∼ ε, then Γδ(z)∩Γδ(z′) can be covered by two vertical tubes of width≤ Cδ/

√
εt

(this remains true if ε = δ, and merely ∆(z − z′) ≤ 2ε). Motivated by this, we first divide
J/2 into short intervals J1, . . . , JN of length Cδ/

√
εt. Consider the corresponding thin

tubes Tj = Jj × R. Since |Tj ∩ Γδ(z)| ≤ δ2/
√
εt, we may, by (6.2), find at least a constant

times
λ̄|Γδ(z)|
δ2/
√
εt
∼ λ̄
√
εt

δ

indices j such that Hδ(z) ∩ Tj 6= ∅. Denote these indices by J (z), and for each j ∈ J (z),
pick a point wj ∈ Hδ(z) ∩ Tj . Thus mµ

δ (wj |K(z)) ≥ m̄ for j ∈ J . Throw away at most
half of the indices to ensure that |wi − wj | ≥ Cδ/

√
εt for i, j ∈ J (z) with i 6= j. Then, the

sets
Kj(z) := {z′ ∈ K(z) : wj ∈ Γδ(z) ∩ Γδ(z′)}

with mµ
δ (wj |K(z)) = µ(Kj(z)) have bounded overlap:∑

j∈J (z)

χKj(z)(z
′) ≤ 2, z′ ∈ K(z). (6.4)
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Indeed, if z′ ∈ Kj(z), thenwj ∈ Γδ(z)∩Γδ(z′), which implies thatwj has to lie in one of the
at most two vertical tubes of width at most δ/

√
εt covering the intersection Γδ(z)∩Γδ(z′).

By the separation of the points wj , this can happen for at most two values of j.
Next, we group the points wj inside somewhat thicker vertical tubes. To this end,

divide J/2 into long intervals I1, . . . , IM of length C
√
ε/t. By adjusting the lengths appro-

priately, we may assume that the long intervals Ii are sub-divided further into

|Ii|
|Jj |
≤
√
ε/t

δ/
√
εt

=
ε

δ

short intervals Jj . For each interval Ii, write

k(i) := card{j ∈ J : wj ∈ Ti ∩ Γδ(z)},

where Ti is the thick tube Ti := Ii × R. Since 0 ≤ k(i) ≤ ε/δ, there is a dyadic number
ν = ν(z) ∈ {1, . . . , ε/δ} such that ' |J | & λ̄

√
εt/δ points wj are contained in the union

of the thick tubes Ti with ν ≤ k(i) ≤ 2ν. Denote the indices of these thick tubes by I(z).
Thus, if i ∈ I(z), then Ti ∩ Γδ(z) contains at least ν points wj , and

|I(z)| ' |J |
ν
&
λ̄
√
εt

νδ
. (6.5)

Fix i ∈ I(z) and wj ∈ Ti ∩ Γδ(z). We claim that whenever z′ ∈ Kj(z), then

Ti ∩ Γε(z) ⊂ ΓC1ε(z′), (6.6)

for some C1 ≥ 1 large enough. To see this, note that by definition of z′ ∈ Kj(z), we have

(w1
j , w

2
j ) := wj ∈ Ti ∩ Γδ(z) ∩ Γδ(z′).

Thus
|ρw1

j
(z)− ρw1

j
(z′)| ≤ 2δ,

or, in other words, w1
j ∈ E2δ(z − z′). Since ∆(z − z′) = ∆J(z − z′) ≤ ε and |z − z′| ≥ t ≥

C(2δ), Lemma 3.4 says that w1
j is at distance at most a constant times

√
ε/t from a certain

point θ0 ∈ 2J with the properties that

γ̇(θ0) · (z − z′) = 0 and |γ(θ0) · (z − z′)| . ε. (6.7)

Now, we can prove (6.6): fix a point w = (w1, w2) ∈ Ti ∩ Γε(z), and note that |w1 − θ0| ≤
|w1 − w1

j | + |w1
j − θ0| .

√
ε/t, and |ρw1(z) − w2| ≤ ε by definition of w ∈ Ti ∩ Γε(z). It

follows, using (6.7), that

|ρw1(z′)− w2| ≤ |γ(w1) · (z′ − z)|+ |ρw1(z)− w2|

≤
∫ w1

θ0

|γ̇(s) · (z′ − z)| ds+ |γ(θ0) · (z′ − z)|+ ε

.
∫ w1

θ0

∫ s

θ0

|γ̈(r) · (z′ − z)|dr ds+ ε

. |z′ − z||w1 − θ0|2 + ε . ε.

This is another way of writing w ∈ ΓC1ε(z′), so the proof of (6.6) is complete.



A MARSTRAND-TYPE RESTRICTED PROJECTION THEOREM IN R3 27

Now, for i ∈ I(z) and w ∈ Ti∩Γε(z) fixed, we can use the bounded overlap of the sets
Kj(z) (recall (6.4)) and (6.6) to obtain

mµ
C1ε

(w|K(z)) =

∫
K(z)

χΓC1ε(z′)(w) dµz′ &
∑

wj∈Ti∩Γδ(z)

µ(Kj(z)) ≥ νm̄.

(See the corresponding spot in the proof of Lemma 5.1, namely the calculations above
(5.12), for more details.) Thus, we have proven that whenever i ∈ I(z), then Ti∩Γε(z) ⊂
Γε(z) ∩ {w : mµ

C1ε
(w|K(z)) & νm̄}. Recalling (6.5), this proves that

|Γε(z) ∩ {w : mµ
C1ε

(w|K(z)) & νm̄}| ≥ |I(z)||Ti ∩ Γε(z)| ' λ̄
√
εt

νδ

√
ε/tε ∼ λ̄ε

νδ
|Γε(z)|,

which is precisely (6.3).
Recall that the dyadic number ν = ν(z) still depends on the point z ∈ D̄. We pass to a

subset of measure ' µ(D̄) ' A−s/3 to make the choice uniform. With this reduction, we
may assume that (6.3) holds for all z ∈ D̄, for some fixed dyadic number ν ∈ {1, . . . , ε/δ}.

We now re-write (6.3) slightly, by denoting

λε := log−C(1/δ)
λ̄ε

νδ
and Aε := logC(1/δ)

(
Aε

νδ

)
, (6.8)

where C ≥ 1 is a suitable constant. Recall from (6.1) that m̄ ≈ m ≥ Asλ−2sδs ≈ Asλ̄−2sδs.
Since also s ∈ (0, 1], and ν ≥ 1, we have

mε :=
νm̄

C
' νAsλ̄−2sδs '

(
Aε

νδ

)s
λ−2s
ε εs ≈ Asελ−2s

ε εs.

Thus, if C ≥ 1 is large enough, (6.3) implies that

|Hε(z)| := |Γε(z) ∩ {w : mµ
C1ε

(w|K(z)) ≥ mε}| ≥
10λε
|J |
|Γε(z)|, z ∈ D̄. (6.9)

We will denote the first coordinates of Hε(z) by Hε
1(z) := {w1 ∈ J

2 : (w1, w2) ∈ Hε(z)}.
We record that (6.9) implies

|Hε
1(z)| ≥ 2λε. (6.10)

Otherwise, by Fubini, |Hε(z)| ≤ 2λε · 2ε < (10λε/|J |)|Γε(z)|.
Next, we extract two sets

W ⊂ D̄ and B ⊂ R3

satisfying the two t-bipartite conditions max{diam(W ),diam(B)} ≤ t ≤ dist(W,B) and
diam(W ∪B) ≤ 100t. We will moreover find W and B so that

µ(W ) ' A−s/3 · µ(B),

and
mµ
C1ε

(w|K(z)) = mµ
C1ε

(w|K(z) ∩B), z ∈W, w ∈ R2,

and every z ∈W is contained in a dyadic cube Q(z) of side-length ε and mass

µ(W ∩Q(z)) ' A−s/3ε3.

The sets W,B are found by verbatim the same argument as in the proof of Lemma 5.1, so
we omit the details.

At this point, the proof deviates from its analogue for circles. We apply the vari-
ant of the current lemma for circles – namely Lemma 5.1 – to the collection of circles
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S(z) = S(x, r) with z ∈ K. This is difficult to explain heuristically at the moment, but
we make the following attempt. The plan is eventually pass from "sine waves with high
multiplicity" to "circles with plenty of tangencies", using Lemma 3.9. But we will also
need to know that there are not too many tangencies between the circles. It seems that
having (upper) multiplicity control for the sine waves is a bit too weak to get that, and so
we, instead, secure multiplicity control for the circles directly. Such control is provided
by Lemma 5.1.

To make this precise, we define the circular multiplicity function

mµ,S
ε (w) := µ({z′ : w ∈ Sε(z′)}).

(Recall that K ⊂ B0 lies in the upper half-space, so every point z = (x, r) with z ∈ sptµ
corresponds to an honest circle S(x, r).) Then we apply Lemma 5.1 at scale C2ε for a
suitable C2 ≥ C1 ≥ 1 (to be determined later), and with the constants

Aε ≥ A ≥ Cη,C,sε−η ≥ Cη,C,s(C2ε)
−η

and λε/(CC2) > 0 (here C ≥ 1 is a less relevant constant, just large enough so that (6.11)
below holds). The conclusion is that there exists a set G = G(C2ε, λε/(CC2)) ⊂ K with
µ(K \G) ≤ A−s/3ε such that

|SC2ε(z) ∩ {w : mµ,S
C2ε

(w) ≥ Asε [λε/(CC2)]−2s(C2ε)
s}| ≤ λε

CC2
|SC2ε(z)| ≤ λε

10
|Sε(z)| (6.11)

for z ∈ G. In particular, since Aε ≥ logC(1/δ)A, and µ(D̄) ' A−s/3, the estimate (6.11)
holds for at least half of the points z ∈ D̄ (assuming thatC was chosen large enough). We
restrict attention to this half, so that (6.10) and (6.11) hold simultaneously for all z ∈ D̄.

What we want to infer from (6.11) is the following: Fix z = (x, r) ∈ D̄ and a point
w = (w1, w2) ∈ Hε(z), so that w1 ∈ Hε

1(z). Then, consider the ray `x,w1 emanating from
x and passing through x + r(cosw1, sinw1). Assume that the intersection Sε(z) ∩ `x,w1

is contained in the set on the left hand side of (6.11). Now, if this happened for all w1 ∈
Hε

1(z), then the set on the left hand side of (6.11) would evidently have measure at least
|Hε

1(z)|ε > (λε/10)|Sε(z)|, which is ruled out by (6.11). In fact, by the same argument,
there exists a subset H̃ε

1(z) ⊂ Hε
1(z) of length

|H̃ε
1(z)| ≥ λε (6.12)

such that the following two things hold:

(a) For every w1 ∈ H̃ε
1(z), there exists w2 ∈ R such that w = (w1, w2) ∈ Hε(z).

(b) For every w1 ∈ H̃ε
1(z), the intersection Sε(z) ∩ `x,w1 contains a point v = v(w1, z)

with mµ,S
C2ε

(v) ≤ Asε [λε/(CC2)]−2s(C2ε)
s =: Mε.

Since the definitions of λε and Aε (as in (6.8)) are the same as in the proof of Lemma
5.1, we may repeat the computations from around (5.25) to conclude that ε is significantly
smaller than t, and

ρ := bc · λε√
ε/t
c 'C,s (C

1/2
η,C,s) · δ

−η/2.

In particular, ρ ≥ 1. Thus, for z ∈ W fixed, it takes, by (6.12), at least ρ long intervals
I1, . . . , Iρ (of length C

√
ε/t as before) to cover the set H̃ε

1(z). We may in particular choose
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ρ points w1
1, . . . , w

1
ρ ∈ H̃1

ε (z), which are separated by at least C
√
ε/t, and which by (a)

from the definition of H̃1
ε (z) satisfy

mµ
C1ε

((w1
j , w

2
j )|K(z) ∩B) ≥ mε, 1 ≤ j ≤ ρ, (6.13)

for certain choices of w2
j ∈ R such that wj := (w1

j , w
2
j ) ∈ Γε(z). Unwrapping the defini-

tion, we re-write (6.13) as

µ({z′ ∈ B ∩K(z) : wj ∈ ΓC1ε(z) ∩ ΓC1ε(z′)}) ≥ mε.

Now, fix z ∈ W and z′ ∈ B ∩ K(z) with wj ∈ ΓC1ε(z) ∩ ΓC1ε(z′). If we write z = (x, r)
and z′ = (x′, r′), then by Lemma 3.9, the circles S(x, r) and S(x′, r′) are both C-tangent
to an (ε, t)-rectangle Rj(z) with

Rj(z) ⊂ SCε(x, r) ∩B(x+ r(cosw1
j , sinw

1
j ), C2

√
ε/t), (6.14)

where C ≥ 1 is a constant depending only on C1 (which was an absolute constant). As
z ∈ W is fixed when j ∈ {1, . . . , ρ} varies, the rectangles Rj(z) are incomparable by
(6.14), and the separation of the points w1

j . So, every z ∈ W gives rise to ρ incomparable
(ε, t)-rectangles, all of which are C-tangent to S(z), and have type ≥ mε with respect to
the set B. This is nearly a perfect analogue of the conclusion we drew after (5.27) in the
proof of Lemma 5.1, but one crucial feature is missing: the rectangles Rj(z) do not (yet)
contain suitable analogues of the points vj(z), for which there is also an upper bound
for multiplicity, compare with (5.26). To remedy this, we need (b) from the definition of
H̃ε

1: namely, for z = (x, r) ∈ W fixed and 1 ≤ j ≤ ρ, we may pick vj(z) ∈ Sε(z) ∩ `x,w1
j

satisfying

mµ,S
C2ε

(vj(z)) ≤Mε. (6.15)

Note that vj(z) lies close to Rj(z) by (6.14), and the definition of `x,w1
j
. In fact, if S(x′, r′)

is any circle tangent to the (ε, t)-rectangle Rj(z), then S(x′, r′) is tangent (with slightly
different constants) to any rectangle comparable to Rj(z), and in particular to an (ε, t)-
rectangleR′ with vj(z) ∈ R ⊂ Sε(z). IfC2 ≥ 1 was chosen large enough, then this implies
that vj(z) ∈ SC2ε(x′, r′). Combined with (6.15), this shows that

µ({z′ : S(z′) is tangent to Rj(z)}) ≤ µ({z′ : vj(z) ∈ SC2ε(z′)}) = mµ,S
C2ε

(vj(z)) ≤Mε, z ∈W.

This is an exact analogue of (5.28).
After this, the proof runs exactly in the same manner as that of Lemma 5.1. First, one

finds by pigeonholing a number nε with δ4 / nε ≤Mε such that

nε ≤ µ({z′ ∈W : S(z′) is tangent to Rj(z)}) ≤ 2nε

for all z ∈W ′ with µ(W ′) ' µ(W ), and for ' ρ values of j. This is the analogue of (5.29),
and the proof is the same. These rectangles Rj(z) are then again called the children of
z ∈ W ′, and one observes that they have type (≥ nε,≥ mε) with respect to the t-bipartite
set W ∪ B. The same arguments as in the proof of Lemma 5.1 now give upper and
lower bounds for the family of all rectangles Rj(z), arising from z ∈ W ′ and 1 ≤ j ≤
ρ; comparing these bounds against each other produces a contradiction as before, and
completes the proof of Lemma 6.1. �
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7. PROOF OF THE MAIN RESULT

We are now ready to prove the main result, Theorem 1.3, which we recall here.

Theorem 7.1. Let K ⊂ R3 be an analytic set with 0 < dimHK ≤ 1, and let 0 ≤ t < dimHK.
Then dimH ρθ(K) ≥ t for all θ ∈ [0, 2π) \ E, where

dimHE ≤
dimHK + t

2 dimHK
< 1.

Note that in Theorem 7.1, we can assume without loss of generality that K ⊂ B0,
where B0 is defined in Definition 3.5. Indeed, for any ε > 0, we may find zε ∈ R3

such that dimH[(K + zε) ∩ B0] ≥ dimHK − ε. Then we just observe that dimH ρθ(K) =
dimH ρθ(K+zε) for all θ ∈ [0, 2π), by the linearity of ρθ. With this reduction in mind (and
recalling (1.3)), Theorem 7.1 follows immediately from the next result:

Theorem 7.2. Let K ⊂ B0 be an analytic set with dimHK ≤ 1 and let 0 ≤ t < dimHK. Let
Lt be the set of all vertical lines Lθ := {(θ, y) : y ∈ R} ⊂ R2, θ ∈ [0, 2π), such that

Ht
(
Lθ ∩

⋃
z∈K

Γ(z)

)
= 0.

Then

dimH Lt ≤
dimHK + t

2 dimHK
, (7.1)

where dimH Lt is the Hausdorff dimension of {θ ∈ [0, 2π) : Lθ ∈ Lt}.

Proof. It is sufficient to show that dimH{θ ∈ I : Lθ ∈ Lt} ≤ 1
2(dimHK + t)/dimHK

for every "short enough" sub-interval I ⊂ [0, 2π) separately. This observation will be
used when we apply Lemma 6.1 below: in the statement of the lemma, the set "Γδ(z)"
is defined relative to any compact interval J

2 ⊂ [0, 2π), which is sufficiently short that
Lemma 3.4 can be applied. So, we let J ⊂ [0, 2π) be any compact interval such that
Lemma 6.1 applies with the definition Γδ(z) = {(θ, θ′) ∈ J

2 ×R : |θ′− ρθ(z)| ≤ δ}, z ∈ R3.
As a second reduction, we may assume that K is compact: by a result of Davies [2,

Corollary 2], the analytic set K ⊂ R3 contains a compact subset of every dimension
strictly smaller than dimHK, and the bound (7.1) is a continuous function of dimHK.

Fix t < s < dimHK and use Frostman’s lemma to choose a probability measure µ with
sptµ ⊂ K, such that µ(B(z, r)) ≤ Crs for all balls B(z, r) ⊂ R3, and for some constant
C ≥ 1. We make the counter assumption that

dimH{θ ∈ J
2 : Lθ ∈ Lt} > α >

s+ t

2s
,

and we choose a Radon probability measure σ, supported on Θt := {θ ∈ J
2 : Lθ ∈ Lt},

with σ(B(θ, r)) . rα. The use of Frostman’s lemma is legitimate here, since

Θt =
{
θ ∈ J

2 : Ht(Lθ ∩
⋃
z∈K

Γ(z)) = 0
}

=
⋂
ε>0

{
θ ∈ J

2 : Ht∞(Lθ ∩
⋃
z∈K

Γ(z)) < ε
}

is a Gδ-set, using the assumption that K is compact (this implies that Lθ ∩
⋃
z∈K Γ(z) is

also compact for every θ ∈ J
2 ).
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By definition of Lt, for every θ ∈ Θt, hence Lθ ∈ Lt, we may find a collection of
arbitrarily short dyadic intervals Iθ on Lθ, say shorter than 2−k0 , with the following
properties:

(i) Lθ ∩
⋃
z∈K Γ(z) ⊂

⋃
I∈Iθ I ,

(ii)
∑

I∈Iθ |I|
t ≤ 1.

The constant k0 ∈ N will eventually be chosen large in a manner depending only on
α, s, t,C. If I ′θ ⊂ Iθ is any sub-family, write Γ−1(I ′θ) ⊂ R3 for all the points z ∈ R3 such
that the point Γ(z) ∩ Lθ is covered by the intervals in I ′θ:

Γ−1(I ′θ) :=
{
z ∈ R3 : {Γ(z) ∩ Lθ} ⊂

⋃
I∈I′θ

I
}
. (7.2)

This is a convenient abuse of notation: for instance, now (i) simply states that Γ−1(Iθ) ⊃
K, and so µ(Γ−1(Iθ)) = 1. For k ≥ 0, let Ikθ be the sub-family of dyadic intervals in Iθ
with side-length 2−k, so that Iθ =

⋃
k≥k0

Ikθ . Consequently,

1 = σ(Θt) =

∫
Θt

µ(Γ−1(Iθ)) dσ(θ) ≤
∑
k≥k0

∫
Θt

µ(Γ−1(Ikθ )) dσ(θ).

It follows that there exists k ≥ k0 such that∫
Θt

µ(Γ−1(Ikθ )) dσ(θ) &
1

k2
. (7.3)

Write δ := 2−k, so that k = log(1/δ). We infer from (7.3) that there exists a subset Θ ⊂ Θt

with σ(Θ) & log−2(1/δ) such that µ(Γ−1(Ikθ )) & log−2(1/δ) for all θ ∈ Θ.
Fix θ ∈ Θ. For j ≥ 0, let Ik,jθ consist of those intervals I ∈ Ikθ such that 2−j−1 <

µ(Γ−1{I}) ≤ 2−j . Then

log−2(1/δ) . µ(Γ−1(Ikθ )) ≤
∑
j≥0

µ(Γ−1(Ik,jθ )),

so there exists j = jθ ≥ 0 such that

µ(Γ−1(Ik,jθ )) &
1

j2 log2(1/δ)
. (7.4)

Using (ii), we can estimate
1

j2 log2(1/δ)
. µ(Γ−1(Ik,jθ )) ≤

∑
I∈Ik,jθ

µ(Γ−1{I}) ≤ |Ikθ |2−j ≤ δ−t2−j ,

which gives
j22−j & δt/ log2(1/δ). (7.5)

In particular, this implies that 2j . δ−1, so j . log(1/δ), and we can replace (7.4) and
(7.5) by the slightly tidier estimates

µ(Γ−1(Ik,jθ )) &
1

log4(1/δ)
and 2−j &

δt

log4(1/δ)
. (7.6)

Now, fix η > 0 so small that

0 < η <
2sα− s− t

3s
(7.7)
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(note that the right hand side is positive by the relation between α, s, t, and the choice of
η only depends on these parameters), and apply Lemma 6.1 at scale 5δ with this η > 0,

λ = δ1−α+η, and A = Cη,C,s · δ−η,
where Cη,C,s = Cα,s,t,C ≥ 1 is the large constant specified in Lemma 6.1. The output is a
subset G = G(A, δ, λ) ⊂ K with µ(K \G) ≤ (Cη,C,s)

−s/3 · δηs/3, and such that

|Γ5δ(z) ∩ {w : mµ
5δ(w) ≥ (Cη,C,s)

sδs(2α−1−3η)}| ≤ λ|Γ5δ(z)|, z ∈ G. (7.8)

Using the first estimate in (7.6), we obtain
1

log4(1/δ)
. µ(Γ−1(Ik,jθ )) ≤ µ(Γ−1(Ik,jθ ) ∩G) + µ(K \G), θ ∈ Θ,

which combined with µ(K \G) ≤ (Cη,C,s)
−s/3 · δηs/3 gives

µ(Γ−1(Ik,jθ ) ∩G) &
1

log4(1/δ)
, θ ∈ Θ,

for small enough δ > 0. Writing

Ik,jθ :=
⋃

I∈Ik,jθ

I ⊂ Lθ

and recalling that σ(Θ) & log−2(1/δ), it follows that

1

log6(1/δ)
.
∫

Θ
µ(Γ−1(Ik,jθ ) ∩G) dσ(θ) ≤

∫
G
σ({θ ∈ Θ : {Γ(z) ∩ Lθ} ⊂ Ik,jθ }) dµ(z),

which implies the existence of z0 ∈ G with

σ({θ ∈ Θ : {Γ(z0) ∩ Lθ} ⊂ Ik,jθ }) &
1

log6(1/δ)
. (7.9)

For θ ∈ Θ, let I0
θ ⊂ Lθ be the unique dyadic δ-interval containing the intersection point

Γ(z0)∩Lθ; in other words, the estimate (7.9) then says that I0
θ ∈ I

k,j
θ for many parameters

θ ∈ Θ. Let us make this more precise. Since σ(B(x, r)) . rα, the lower bound in (7.9)
implies that it takes ' δ−α balls of radius δ to cover the set on the left hand side of (7.9).
In other words, there exist at least M ' δ−α disjoint intervals I1, . . . , IM ⊂ R of length δ
such that, for each 1 ≤ i ≤ M , the δ-tube Ti := Ii × R contains a segment I0

θi
∈ Ik,jL ; see

Figure 3 for illustration.
Finally, recall that

mµ
5δ(w) := µ({z′ ∈ R3 : w ∈ Γ5δ(z′)}).

A basic observation is the following: if θ ∈ Θ ⊂ J
2 and I ⊂ Lθ is a vertical segment of

length δ (in particular I0
θi

for some i), and

w ∈ I(δ) := {w′ ∈ R2 : dist(w′, I) ≤ δ},

then w ∈ Γ5δ(z) for all z ∈ Γ−1{I}. Indeed, if z ∈ Γ−1{I}, then {Γ(z) ∩ Lθ} ⊂ I .
Moreover, {Γ(z) ∩ Lθ} = (θ, ρθ(z)) for some θ ∈ J

2 . Thus, writing w = (w1, w2) ∈ I(δ),
we have |w1 − θ| ≤ δ and |w2 − ρθ(z)| ≤ 2δ, and hence

|w2 − ρw1(z)| ≤ |w2 − ρθ(z)|+ |ρθ(z)− ρw1(z)| ≤ 5δ.
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I1

T1

I0
θ1

I2

T2

I0
θ2

I3

T3

I0
θ3

I4

T4

I0
θ4

· · ·

IM

TM

I0
θM

FIGURE 3. An illustration for the proof of Theorem 7.2.

As a consequence,
mµ

5δ(w) ≥ µ(Γ−1{I}), w ∈ I(δ),

and in particular

mi := |Ti ∩ Γδ(z0) ∩ {w : mµ
5δ(w) ≥ µ(Γ−1{I0

θi
})}| ≥ |Ti ∩ Γδ(z0) ∩ I0

θi
(δ)| ∼ δ2. (7.10)

Next, recall that

µ(Γ−1{I0
θi
}) ∼ 2−j &

δt

log4(1/δ)
, 1 ≤ i ≤M

by the second estimate in (7.6), since I0
θi
∈ Ik,jθ . If δ > 0 is sufficiently small, depending

on α, s, t,C (this can be arranged by choosing k0 ∈ N large enough to begin with, and
recalling that δ = 2−k ≤ 2k0) the right hand side exceeds Csη,C,sδ

s(2α−1−3η), by the choice
of η, recall (7.7). By (7.10) and the disjointness of the vertical tubes Ti, this means that

|Γδ(z0) ∩ {w : mµ
5δ(w) ≥ Csη,C,sδs(2α−1−3η)}| ≥

M∑
i=1

mi ' δ
2−α ∼ δ−ηλ|Γ5δ(z0)|.

Since η > 0 and z0 ∈ G, this contradicts (7.8) for sufficiently small δ > 0. The proof is
complete. �

With the same argument we can also prove the following lemma about circles, which
will then imply Theorem 1.6.

Lemma 7.3. Let K ⊂ B0 be an analytic set and let L be a set of vertical lines Lθ = {θ} × R
with −1

4 ≤ θ ≤
1
4 such that

dimH

(
Lθ ∩

⋃
z∈K

S(z)

)
< min{dimHK, 1}.

Then {θ ∈ [−1
4 ,

1
4 ] : Lθ ∈ L} = 0.
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Proof. We may assume that 0 < dimHK ≤ 1. Fix 0 < t < s < dimHK, and pick a
probability measure µ with sptµ ⊂ K and µ(B(z, r)) . rs. The previous proof can be
used to show that dimH Lt ≤ (dimHK+t)/(2 dimHK) < 1, where Lt ⊂ L is the collection
of those lines Lθ with

Ht
(
Lθ ∩

⋃
z∈K

S+(z)

)
= 0,

and S+(z) is the upper half of the circle S(z). Lemma 7.3 is evidently a corollary of this
statement, so we only need to indicate the proof of that statement. First note that since
we consider only those vertical lines Lθ with −1/4 ≤ θ ≤ 1/4, they intersect every half-
circle S+(z) with z ∈ K exactly once. This is due to the fact that K ⊂ B0, thus the centre
of any circle S(z) lies in B(0, 1

2), and the radius is at least 1/2.
In analogy with the proof of Theorem 7.2, we can define S−1

+ (I ′L) for any family of
intervals I ′L as was done in (7.2) for Γ−1(I ′L). Instead of Lemma 6.1, we now use its
corresponding version for circles, Lemma 5.1. As we are using half circles, we need to
modify the multiplicity function as well, so instead of mµ

δ , which was defined for circles
in (5.1), we define it for half circles as

mµ
δ,+(w) = {z′ ∈ R3 : w ∈ Sδ+(z′)},

where Sδ+(z) is the δ neighbourhood of S+(z). Since mµ
δ,+(w) ≤ mµ

δ (w) for every w ∈ R2,
it follows that the conclusion of Lemma 5.1 holds still true when mµ

δ is replaced by mµ
δ,+.

In particular, with the same parameters A,α, η,C, λ, s, t as in (7.8), we can find a subset
G ⊂ K with µ(K \G) ≤ C−s/3η,C,sδ

ηs/3 such that for every z ∈ G,

|S5δ
+ (z) ∩ {w : mµ

5δ,+(w) ≥ Csηδs(2α−1−3η)}| ≤ λ|S5δ
+ (z)|.

From this point on, the proof is exactly the same as that of Theorem 7.2. Note that the
"basic observation" between (7.9) and (7.10) is still valid: if L ∈ L and I ⊂ L is a vertical
segment of length δ and w ∈ I(δ), then w ∈ S5δ

+ (z) for every z ∈ S−1
+ {I}. Indeed, for

every z ∈ S−1
+ {I}we have {S+(z)∩L} ⊂ I , that is |w−{S+(z)∩L}| ≤ 5δ, which implies

w ∈ S5δ
+ (z). �

Lemma 7.3 implies Theorem 1.6, which we restate here. Recall that dimH S := dimH{z ∈
R3 : S(z) ∈ S} and ∪S =

⋃
S∈S S.

Theorem 7.4. If S is an analytic family of circles, then dimH ∪S = min{dimH S + 1, 2}.

Proof. Fix 0 ≤ t < min{dimH S, 1}. By Lemma 7.3, for almost every θ ∈ [−1
4 ,

1
4 ], the

vertical line Lθ = {θ} × R satisfies

dimH[∪S ∩ Lθ] ≥ t.

Hence, by [3, Theorem 5.8], we have dimH ∪S ≥ t+1, and the lower bound of the theorem
now follows by letting t ↑ min{dimH S, 1}. The upper bound follows by a standard
covering argument, and we omit the details. �

REFERENCES

[1] Changhao Chen. Restricted families of projections and random subspaces. Real Anal. Exchange,
43(2):347–358, 2018.



A MARSTRAND-TYPE RESTRICTED PROJECTION THEOREM IN R3 35

[2] R. O. Davies. Subsets of finite measure in analytic sets. Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indaga-
tiones Math., 14:488–489, 1952.

[3] K. J. Falconer. The geometry of fractal sets, volume 85 of Cambridge Tracts in Mathematics. Cambridge
University Press, Cambridge, 1986.

[4] Katrin Fässler and Tuomas Orponen. On restricted families of projections in R3. Proc. Lond. Math. Soc.
(3), 109(2):353–381, 2014.

[5] Tamás Keleti. Small union with large set of centers. In Recent developments in fractals and related fields,
Trends Math., pages 189–206. Birkhäuser/Springer, Cham, 2017.

[6] Lawrence Kolasa and Thomas Wolff. On some variants of the Kakeya problem. Pacific J. Math.,
190(1):111–154, 1999.

[7] Jiayin Liu. On the dimension of Kakeya sets in the first Heisenberg group. Proc. Amer. Math. Soc.,
150(8):3445–3455, 2022.

[8] J. M. Marstrand. Some fundamental geometrical properties of plane sets of fractional dimensions. Proc.
London Math. Soc. (3), 4:257–302, 1954.

[9] Pertti Mattila. Fourier analysis and Hausdorff dimension, volume 150 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 2015.

[10] Daniel Oberlin and Richard Oberlin. Application of a Fourier restriction theorem to certain families of
projections in R3. J. Geom. Anal., 25(3):1476–1491, 2015.

[11] Tuomas Orponen. Hausdorff dimension estimates for restricted families of projections in R3. Adv.
Math., 275:147–183, 2015.

[12] W. Schlag. On continuum incidence problems related to harmonic analysis. J. Funct. Anal., 201(2):480–
521, 2003.

[13] T. Wolff. Local smoothing type estimates on Lp for large p. Geom. Funct. Anal., 10(5):1237–1288, 2000.
[14] Thomas Wolff. A Kakeya-type problem for circles. Amer. J. Math., 119(5):985–1026, 1997.
[15] Thomas Wolff. Recent work connected with the Kakeya problem. In Prospects in mathematics (Princeton,

NJ, 1996), pages 129–162. Amer. Math. Soc., Providence, RI, 1999.
[16] Joshua Zahl. L3 estimates for an algebraic variable coefficient Wolff circular maximal function. Rev.

Mat. Iberoam., 28(4):1061–1090, 2012.
[17] Joshua Zahl. On the Wolff circular maximal function. Illinois J. Math., 56(4):1281–1295, 2012.

RESEARCH UNIT OF MATHEMATICAL SCIENCES, UNIVERSITY OF OULU, P.O. BOX 8000, FI-90014, UNI-
VERSITY OF OULU, FINLAND

Email address: antti.kaenmaki@oulu.fi

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF JYVÄSKYLÄ, P.O. BOX 35 (MAD),
FI-40014 UNIVERSITY OF JYVÄSKYLÄ, FINLAND

Email address: tuomas.t.orponen@jyu.fi

Email address: laura.venieri.lv@gmail.com


	1. Introduction
	1.1. Further directions
	1.2. Notation
	Acknowledgement

	2. The tangency parameter
	2.1. Geometric interpretation of the tangency parameter

	3. Geometric lemmas
	3.1. Tangency of circles
	3.2. Tangency of sine waves

	4. A measure-theoretic variant of Wolff's incidence bound for tangencies
	5. A measure-theoretic variant of Schlag's lemma for circles
	6. A measure-theoretic variant of Schlag's lemma for sine waves
	7. Proof of the main result
	References

