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A MARSTRAND-TYPE RESTRICTED PROJECTION THEOREM IN R?
ANTTI KAENMAKI, TUOMAS ORPONEN, AND LAURA VENIERI

ABSTRACT. Marstrand’s projection theorem from 1954 states that if K C R? is an analytic
set, then, for H* almost every e € S?, the orthogonal projection 7. (K) of K to the line
spanned by e has Hausdorff dimension min{dimgy K, 1}. This paper contains the follow-
ing sharper version of Marstrand’s theorem. Let V' C R® be any 2-plane, which is not
a subspace. Then, for ' almost every e € S* NV, the projection . (K) has Hausdorff
dimension min{dimy K, 1}. For 0 < ¢ < dimpu K, we also prove an upper bound for the
Hausdorff dimension of those vectors e € S? NV with dimg pe (K) < t < dimy K.
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1. INTRODUCTION

The purpose of this paper is to investigate a connection between 1-rectifiable families
of projections onto lines in R3, and circular Kakeya problems in R%. The connection is
not too complicated, at least on a heuristic level, but seems have gone unnoticed so far.
Informally, we demonstrate that the two problems are of the same order of difficulty.
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The relevant circular Kakeya problem was solved by T. Wolff [14] in 1997. Building on
his methods, we manage to gain new insight about projections.

We start by introducing the projection problem, in somewhat more generality than we
will eventually need. Consider a C%-curve v: J — S2?, where J C R is a bounded open
interval, and S? is the unit sphere in R?. Following the framework introduced by K.
Fassler and the second author in [4], we assume that v satisfies the following curvature
condition:

span{7(6),7(6),5(0)} =R*>, € J. (1.1)
A simple consequence of (1.1) is that y(I) cannot be contained in a fixed 2-dimensional
subspace for any interval I C J. The curve v gives rise to a 1-rectifiable family of orthog-
onal projections pg: R? — R onto the 1-dimensional subspaces spanned by ~(6):

po(z) == (0) - 2.
It seems plausible to conjecture that a Marstrand-type projection theorem should hold

for the mappings pg. The following is the first part of [4, Conjecture 1.6], dimy denoting
the Hausdorff dimension:

Conjecture 1.1. Suppose that v is a C*-curve on S? satisfying (1.1) and pg: R® — R is the
family of orthogonal projections onto the 1-dimensional subspaces spanned by v(0). If K C R3 is
an analytic set, then dimy pg(K) = min{dimy K, 1} for almost every 6 € J.

The curvature condition (1.1) is necessary for any positive results. For instance, the
curve v(8) = (cosé,sinf,0) evidently fails (1.1), and every projection py maps the set
{(0,0,7) : r € R} onto the singleton {0}. On the other hand, the prototypical example of
a curve 1 satisfying (1.1) is given by

¥(0) = J5(cosf,sind,1),  6€[0,2m). (1.2)

Note that the trace of 7 lies completely on the plane {(x1,z2, %) : 1,72 € R}, but
intersects every 2-dimensional subspace at most twice. The existing results about, and

around, Conjecture 1.1 can be summarised as follows, K denoting an analytic set in R?:

(i) It is easy to prove that if dimy K < %, then dimy pg(K) = dimyg K for almost

every 0 € J; see [4, Proposition 1.5].

(i) If dimg K > 3, then the packing dimension of py(K) strictly exceeds 5 for almost
every parameter ¢ € J; see [4, Theorem 1.7].

(iif) The second author [11, Theorem 1.9] proved the Hausdorff dimension analogue
of the previous result, but only for the special curve (1.2).

(iv) Both papers [4] and [11], and also the paper [10] by D. Oberlin and R. Oberlin,
prove analogous results for projections onto the perpendicular planes span ().

(v) Very recently, C. Chen [1, Theorem 1.3] showed that there exist 1-dimensional
(but not 1-rectifiable) families of lines in R*, which satisfy Marstrand’s projection
theorem in the same sense as Conjecture 1.1. We will discuss C. Chen’s result a
bit further in Section 2 below.

The reader is also referred to [9, Section 5.4] for a related discussion. Our main result in
the present paper solves Conjecture 1.1 for the special curve (1.2) studied in [11].

Theorem 1.2. Suppose that ~: [0,2r) — S? is the curve satisfying (1.2). If K C R3 is an
analytic set, then dimy pp(K) = min{dimy K, 1} for almost every 6 € [0, 27).
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In fact, we derive Theorem 1.2 from the more precise result below:

Theorem 1.3. Suppose that ~v: [0,27) — S? is the curve satisfying (1.2). If K C R3 is an
analytic set with 0 < dimgp K < land 0 < ¢t < dimpy K, then dimy pg(K) > ¢ for all
0 € [0,2m) \ E, where
. dimpg K +t
dimpg F < 5 dimy K < 1.

Remark 1.4. We note that Theorems 1.2 and 1.3 remain true with the special curve v re-
placed by any non-degenerate circle of the form n = V N S?, where V. C R3 is a 2-
plane, which is not a subspace. This version of the results was mentioned in the abstract.
Clearly, one may assume that V' is a parallel to the zy-plane, at height h € (—1,1) \ {0},
and then 7 can be parametrised by 7(6) = (¢j, cos 6, ¢ sin 6, h), with ¢, = v/1 — h%. Con-
sequently,

n(0) - (21,22, 23) = (cpz1 €080 + cpzasinb + hzz) = 21/2 [v(0) - (chz1, chze, hzs)].

This shows the the projections of any set K C R? to the lines spanned by e € V N 2
are (up to scaling by 2'/2) the same as the projections of the K;, = {(cpz1,cnz2, hzs) -
(21, 22,23) € K} to the lines spanned by e € 7. Now, it remains to note that dimy K}, =
dimy K for any h € (—1,1) \ {0}, and apply Theorems 1.2 and 1.3.

Remark 1.5. Theorem 1.2 has been recently applied to solve a variant of the Kakeya prob-
lem in the first Heisenberg group H, see [7]. The author of [7] proves that if K C H is an
arbitrary set containing a horizontal line segment of every orientation, then the (Heisen-
berg) Hausdorff dimension of K is no smaller than 3.

Let us next examine how Conjecture 1.1 is connected to curvilinear Kakeya problems
in R%. The circular Kakeya problem asks how large is the Hausdorff dimension of a
planar set B which contains a circle of every radius. In 1994, L. Kolasa and T. Wolff [6]
first proved that dimpy B > 11/6, and in 1997, T. Wolff [14] obtained the optimal result
dimyg B = 2. The paper [6] also contains the 11/6-result for sets containing "generalised
circles of every radius" (we refer the reader to [6] for the precise definitions). The optimal
result dimy B = 2 in this setting was obtained by J. Zahl [17].

A natural generalisation of the problem above is the following. A circle S(x,r) C R?
determines uniquely its own radius and centre, so the points in R? x R, are in one-
to-one correspondence with planar circles. Thus, we can say that a family S of planar
circles is compact (or Borel, analytic, or s-dimensional), if the corresponding pairs (z,7) €
R? x Ry form a compact (or respectively Borel, analytic, or s-dimensional) subset of R3.
We denote the Hausdorff dimension of a circle family S by dimy S := dimp{(z,7) € R3:
S(z,r) € S}. Thus, by definition, each family S of circles containing a circle of every
radius evidently satisfies dimp S > 1.

Now, assume that S is an analytic family of circles. What can be said about the di-
mension of US := (JgcsS? The answer does not appear to be stated explicitly in the
literature, but the existing methods yield dimy US = min{dimyg S+ 1, 2} in this situation.
We were informed by A. Mathé that this follows from a slight generalisation of Theorem
2.9in T. Keleti’s survey [5], combined with Corollary 3 in T. Wolff’s deep paper [13]. Al-
ready in Wolff’s earlier paper [14, Appendix A], he proved a slightly weaker variant: if
the set of centres of the circles in S has dimension « € (0, 1], then dimy US > 1 + a.
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As a corollary of the techniques in the present paper, we are able to give an elementary
proof (avoiding the techniques of [13]) of the full result:

Theorem 1.6. If S is an analytic family of planar circles, then dimy US = min{dimyx S +1, 2}.

We should perhaps emphasise that even though Theorem 1.6 can be deduced from
[13] via [5, Theorem 2.9], the same is not true of Theorem 1.2, as far as we know.

Let us finally explain the connection to Conjecture 1.1. Let v: J — S? be a curve
satisfying the non-degeneracy hypothesis (1.1). For each z € R3, consider the planar
curve

[(z) :=={(0,p9(2)) : 0 € J}.
For the special curve v(0) = %(cos 0,sin0,1) and z = (z1, v9,7) € R3, the set I'(z) is the
graph of the function x; cos # + x2 sin 6 + r defined on [0, 27); we will often refer to these
curves as "sine waves". As one shifts z around in R3, the wave I'(z) changes. Note that
the same is not true for the degenerate curve v(¢) = (cos#,sin6,0), as I'(z1, 2, r) is then
independent of r.

The reader should now think that I'(z) is a "circle" parametrised by 2. If K C R? is
an analytic set, then one might expect, based on Theorem 1.6, that the union (., I'(2)
has Hausdorff dimension min{dimy K + 1,2}. The crucial observation here is that if
Ly = {6} x R C R? s the vertical line at ¢, then the vertical intersections

Lon |JT(2) ={(0,p0(2)): 2€ K},  0€J, (1.3)
z€K

are isometric to the projections pg(K'). Thus, if the union (J,. I'(2) is s-dimensional,
with s > 1, then, by a Fubini-type argument, many projections py(X) should have di-
mension s — 1. Strictly speaking this is not correct, since there is no such Fubini theorem
for the Hausdorff dimension. Regardless, this gives a reasonable heuristic why Conjec-

ture 1.1 should hold for the projections py.
Our main result, Theorem 1.2, makes the above heuristic rigorous for the curve v(0) =

%(cos 6,sin 6, 1). Observe also that, as an immediate corollary of Theorem 1.2 and (1.3),

the union | J, ., I'(2) has Hausdorff dimension min{dimyg K + 1,2}; this corresponds to
Theorem 1.6 for the waves I'(2).

1.1. Further directions. It seems plausible that the strategy in this paper, combined with
the "cinematic curvature" machinery developed by L. Kolasa and T. Wolff [6] and J. Zahl
[16, 17], could be stretched to prove Conjecture 1.1 for all curves satisfying (1.1). There
are several technical obstacles, however. One is quite simply verifying (rigorously) the
"cinematic curvature hypothesis", see [6, page 124], for the relevant curves, and making
sure that the tangency parameter "A" in [6] coincides with the one we introduce in this
paper. Another obstacle is verifying that [17, Lemma 11] works under the assumption
that the "generalised circles" in question are merely J-separated (and not necessarily -
separated in the radial variable); this would be needed for the generalised version of
Lemma 4.4 below. J. Zahl [personal communication] has informed us that the proof of
[17, Lemma 11] does not really rely on the radial separation, but verifying this carefully
would result in a fairly long paper.

Another natural question arising from Theorem 1.2 is the following: if dimp K > 1,
then is it true that #!(pg(K)) > 0 for almost every 6§ € [0, 27)? This seems plausible, but
does not follow from the method of this paper. Given the analogy with circle packing
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problems discussed above, this result would correspond to the fact that dimp S > 1 im-
plies £2(US) > 0. This result established by Wolff [13] in 2000. It requires a combination
of Fourier-analytic techniques with the incidence geometric ideas behind Theorem 1.6.

1.2. Notation. We generally denote points of R? by z, 2/, and points in R? by z,y. A
closed ball of radius r > 0 and centre z € R? is denoted by B(z,7). A planar circle of
radius 7 > 0 and centre z € R? is denoted by S(z, 7).

For A, B > 0, we use the notation A <, B to signify that there exists a constant C' > 1,
depending only on the parameter p, such that A < C'B. If no "p" is specified, then the
constant C'is absolute. We abbreviate the two-sided inequality A <, B S, Aby A ~, , B.
In general, the letter "C" stands for a large constant, whose value may change from line
to line inside the proofs. More essential constants will be indexed C, Cs, ... In addition
to the "<" notation, we will also need the "<'" notation: this notation is always associated
with a "scale" parameter ¢ € (0, 1], which will be clear from context. Given this parameter
J, the notation A < B means that there exists an absolute constant C' > 1 such that
A < C(log(1/6))°B. In this paper, "log" refers to logarithm of base 2. The two-sided
inequality A < B 5 A is abbreviated to A ~ B.

The notation H* stands for the s-dimensional Hausdorff measure, and #3_ stands for
s-dimensional Hausdorff content. The notation | - | can refer to the norm of a vector, or
the Lebesgue measure, or the counting measure, depending on the context.

Acknowledgement. We are grateful to anonymous referees for reading the paper very
carefully, and for providing a large number of helpful comments and small corrections.

2. THE TANGENCY PARAMETER

A great deal of what follows has nothing to do with the curve (t) = % (cost,sint, 1),

and would work equally well under the general curvature hypothesis (1.1). For the mo-
ment, we fix any C2-curve v: J — S? satisfying the curvature condition (1.1) on J. For
convenience, we also assume that v, ¥, and ¥ extend continuously to the closure .J, and
(1.1) holds on J.

To motivate the following definitions, we recall a part of Marstrand’s classical projec-
tion theorem in R3; see [8]. Let e € S?, and let 7.: R? — R be the orthogonal projection
onto the line spanned by e, thatis, m.(z) =z -e. If K C R3 is analytic, then Marstrand’s
classical projection theorem guarantees that H?|g> almost every projection 7.(K) satis-
fies dimpy 7 (K) = min{dimy K, 1}. A fundamental ingredient in the proof of this result
is the following estimate:

H2({e e S? i |mo(2)] < 6}) < 0/)2),  zeR3\ {0} (2.1)

In fact, whenever (2.1) holds for a (non-trivial) measure o on S?, then the usual proof
of Marstrand’s theorem works for this measure o. In [1], C. Chen found that there are
a-Ahlfors-David regular measures o on 52 with « arbitrarily close to 1, which satisfy
(2.1).

The main difficulty in dealing with the projections py(z) = (@) - 2z, § € J, is that
non-trivial measures on the curve v C S? fail to satisfy (2.1) (here we also use "y" to
denote the trace of 7). In fact, the length measure o = #!|, only satisfies the uniform

bound (2.1) with the right hand side replaced by (6/|2|)'/?; see [4, proof of Lemma 3.1].
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As a corollary, the projections pg conserve almost surely the dimension of at most 3-
dimensional analytic sets; see [4, Proposition 1.5].

The above explanation implies that, if one wants to consider sets of dimension higher
than 3, more careful analysis is required. Heuristically, the main observation here is that
even though the best possible uniform estimate in (2.1) is too weak for our purposes, a
much stronger bound holds for "most" points z € R3. For example, consider the projec-

tions py associated with the special curve v(0) = %(cos 0,sin6,1). If z = (0,0, r) with

|r| ~ 1, then |pg(2)| = % 2 1forall 6 € [0,27). In particular, the dangerous set on the
left hand side of (2.1) is empty altogether for § > 0 sufficiently small.
For each z € R3\ {0}, the decay of H!({6 € J : |ps(2)| < 6}) depends on the maximum

order of zeros of the real function

0 — po(z).
As we just saw, the function need not have any zeros, but it can easily have zeros of either
tirst or second order. Third order zeros are ruled out by the curvature condition (1.1). If
the zeros had order at most one, then (2.1) would hold, and hence the second order zeros
are revealed as the main adversary. So, when do second order zeros occur? Recall that
po(z) = v(0) - z. Hence, py(z) = 0 = Oppy(z), if and only if z L v(#) and z L 4(#). This is
further equivalent to

TVy (2) =0,
where Vj = span{~(6),7(0)} and 7y, is the orthogonal projection onto the plane Vj. So,
the function 6 — py(z) has a second order zero at some 6 € J, if and only if

A(2) = min my (2)| = 0. 22)

The quantity A(z) is the tangency parameter of v at z. In practice, "almost" second order
zeros are also a challenge in the proofs below. It turns out that the size of A(z) is a good
tool for quantifying the word "almost".

2.1. Geometric interpretation of the tangency parameter. Condition (2.2) tells us when
second order zeros occur, but we will now give a more geometric characterisation. We

only consider the special curve v(6) = %(cos 6,sin6,1). By a straightforward calcula-

tion, we see that ¥(0) = %(— sin#, cos §,0) and

n(0) := () x ¥(0) = —3(cosb,sinf, —1), 0 € [0,2m).
Thus, 7y, () = 0, if and only if z is parallel to ¢y := span{n()} = V', and hence A(z) =
0, if and only if

zeCi= |J to={(x,r) eR: 2| =|r[}. (2.3)
0e[0,27)

Here A(z) is defined as in (2.2), with J = [0, 27). There is another interesting (and useful)
interpretation for A(z). Pick 6 € [0, 27) such that

dist(z, £5) = |y, ()] = A(2).

Then, pick 2’ = (y,s) € g with |z — 2’| = A(z), and note that |y| = |s| by (2.3). Write
z = (z,r). Since |z — y| < A(z) and |r — s| < A(z), we infer that

Al(z) = |z = Ir|| < o =yl +|r — s| < 24(2). (2.4)
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We also note that a converse to (2.4) holds. Fix z = (x,7) € R3,and let x = (1’ cos §, v’ sin 6)
in polar coordinates with 6 € [0,27) and ' = |z| > 0. We note that (|r|cos 8, |r|sinf,r) €
C,and

|2 = (Irfcos b, [r[sin6,r)| = | — [r]| = [lx] — |r[| = A(2).
This means that z is at distance A’(z) from one of the lines ¢y = V- on C, and hence
A(z) < Al(z2). (2.5)

Consequently, by (2.4) and (2.5), the numbers A(z) and A’(z) are comparable, and A(z) =
0, if and only if A’(z) = 0. This is useful, because the number A’(z) plays a major role
in Wolff’s investigation of circular Kakeya problems; see for instance [15, Lemma 3.1]. If
21 = (21,71), 22 = (w2,72) € R3 are distinct points with 71,75 > 0, then

0=A(z1 — 20) = ||lz1 — 22| — |r1 — 2],

if and only if the planar circles S(x1,71) and S(z2,72) are internally tangent.

3. GEOMETRIC LEMMAS

For technical reasons to be clarified in this section, it is easier (and sufficient) to prove
Theorem 1.2 for every sufficiently short compact subinterval J C [0, 27) separately. We
will adopt the notation

A (z) = min |y, (2)], G)

where, as before, Vy = span{v(0),%(6)}. Since {v(#),¥(#)} is an orthonormal basis of Vj
(we can achieve this by re-parametrising - by arc-length), we have the estimate

A(z) < mvy(2)] < [9(0) - 2| +[7(0) - 2| < 2l (2)] (32)
for all § € J. We also trivially have

The definition (3.1) makes sense for the general v satisfying the curvature condition (1.1),
as long as J is contained in the domain of definition. In fact, until further notice, we work
in that generality: the only standing assumptions are that v, ¥, and # are continuous and
well-defined on a compact interval .J, and the curvature condition (1.1) is satisfied on J.

The compactness of J and the curvature condition (1.1) together imply that there exists
a constant k = (v, J) > 0 such that

max{|y(0) - wl, [7(0) - wl, |5(0) -wl} > K, (w,0) € §* x J. (33)
The following lemma is a simple consequence of uniform continuity:

Lemma 3.1. There exists a constant X\ = \(k,~) > 0 with the following property: If I C J is
an interval of length |I| < )\, z € R3, and 0 v ¢,(0) is one of the functions ¢.(0) = v(0) - z or
¢2(0) = (0) - zor p,(0) = 5(0) - z, then one of the following alternatives holds (depending on
the choice of I and ¢):

(S) |92(0)| < k|z| forall 6 € 1.
(L) |¢-(8)] > k|z|/2 forall 0 € 1.
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Proof. The maps (w,0) — v(0) - w, (w,8) — F(8) - w and (w, #) — (0) - w are uniformly
continuous on S? x J. So, there is a constant A such that if |(w,6) — (w',6')] < A, then
[7(0) -w —~(0") - w'| < k/2, and the same holds with v replaced by either 4 or 4. Now, fix
I C Jwith |[I] < ), z € R3, and ¢,. Assume, for instance, that ¢,(0) = v(0) - z. If z = 0,
then evidently the alternative (L) holds. Otherwise, assume that |z| > 0, and alternative
(L) fails. So, there exists 6y € I such that |¢.(0y)| < x|z|/2. Then, if 6 € I is arbitrary, we
have [((z/12]),0) — ((2/|2]),60)| < A, and so

|¢z(9)’ z ‘ 4 z z K K
=|v(0)  —| < |v()  —|+|vO) — =) - —| < 5+ 5 =k
A O S PO PO g g <2t
This means that alternative (S) holds for I and ¢,. (]

Combined with (3.3), the previous lemma has the following useful consequence:

Lemma 3.2. Let A\ > 0 be as in Lemma 3.1. If I C J is an interval of length |I| < X and
z € R3\ {0}, then the map 6 — ~(0) - z has at most two zeros on I. Moreover, if 0 — §(0) - z
has two zeros on I, then the alternative (L) holds for I and 6 — ~(0) - 2.

Proof. We start with the second claim. Assume that [I| < X and § — () - z has two
zeros on I, for some z € R?\ {0}. This implies, by Rolle’s theorem, that § — 5(0) - z
has a zero on I. Now Lemma 3.1 implies that the alternative (S) holds for I and both
0 — 4(0)-zand § — () - z. Consequently, by (3.3), we have |y(0) - z| > k|z| forall§ € I,
so alternative (L) holds for 6 — ~(0) - z.

The first claim follows from the second one: If § — ~(#) - z had three zeros on I, then
8 — ~(8) - z would have two zeros on I again by Rolle’s theorem. But then, by the second
claim, 6 — ~(0) - z satisfies the alternative (L) on I, and hence cannot have zeroson I. [

Since the short subintervals I C J have such pleasant properties, we restrict our atten-
tion to one of them. For notational convenience, we redefine .J to be any subinterval of
the initial interval of length |.J| < \/2, and such that 2.J is still contained inside the initial
interval. This change in notation also affects the definition of A ; in (3.1).

Assumption 3.3. We assume that the interval 2.J satisfies the conclusion of Lemma 3.1:
for every z € R3, and each of the three possible choices of ¢., either alternative (L) or (S)
is satisfied on the interval 2.J.

The next lemma is a close relative of Lemma 3.1 in [6], and proof is virtually the same.

Lemma 3.4. Fix § > 0and z € R3 with |z| > C§, where C = C(v,J) > 1is a sufficiently
large constant. Define E5(z) := {6 € J/2 : |y(0) - z| < d}.
(1) The set E5(z) is contained in a single interval of length at most a constant times

VI(As(2) +36)/|z].
Moreover, if Aj(z) < |z|/C, and C = C(v,J) is sufficiently large, then this interval
can be centred at a point 0y € 2J with y(0o) - z = 0 and |my, (2)] < Ay(2).
(2) The set E5(z) consists of at most two intervals Iy, I, whose lengths are bounded by
J
FARS :
VI(A(z) +0)lz]

The implicit constants in the estimates above depend only on ~ and J.
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FIGURE 1. The picture depicts the map 6 — ~v(6) - z and the set E5(z) in
Lemma 3.4.

Proof. Write A := A (). First of all, we may assume that
A < c|z] (3.4)

for a suitable small constant ¢ = 1/C(, J) € (0, x/4), to be determined a bit later. Indeed,
otherwise |y(0) - z| + |¥(0) - z| > A > ¢|z] > 20 for all § € J by (3.2) and the assumption
|z| > €4, and in particular |¥(0) - z| 2,7 |2| for 6 € Es(z). If this is the case, both claims
of the lemma are easy to verify.

Since ¢ < k/4, the estimates (3.2) and (3.4) imply that |y(0) - z|+|¥(0) - 2| < 2A < k|z|/2
for some 6. Therefore, both 6 — ~(0) - z and 6 — () - z satisfy the alternative (S) on 2.J.
Hence, by the quantitative curvature condition (3.3), we have

15(0) - 2| > K|z|, 0e€2J. (3.5)

Thus, 6 — ~(0) - z is either strictly convex or strictly concave on 2.J, and Es(z) consists
of at most two intervals I; and I». Thus, the situation is reduced to the fairly simple case
depicted in Figure 1.

Let A € J be such that

vy, ()] = A

Then (3.2) implies that [¥(6a) - z| < 2A. By (3.5), and assuming that ¢ in (3.4) satisfies
¢ < k|J]/10, the mapping 6 — 4(f) - z has a unique zero at some point 6y € 2J with
|00 — Oa] < 2A/(k|z|) < |J|/5. Observe that
0o
600) -2 < 10a) 2|+ [ 1) 2] ds < A+ [allfo— 02l < OB, (36)
A
where C = C, ; > 1, so in particular |y, (2)] < A.
Write [a, b] := 2.J. Note that neither 6 — +(6) - z nor 6 — 4(6) - z changes sign on [a, ]
or [Ay, b]. Thus, if 0; € [0y, b], then we can use (3.6) and (3.5) to estimate

01
/ A(s) - zds
0o

B Kz
:/6 ) 5(r) - z|drds — CA > 7(¢91—00)2—0A.
0 0

01
—CA = |9(s) - z|ds — CA
o

[v(61) - 2| =
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Thus, 6, € Es(z) can only occur, if x|2|(6; — 00)?/2 — CA < § < C6, which gives

20 1/2
o-to< (20) " VEFOE
If 6, € [a, 0], then a similar estimate holds for 6y — 6,. Hence

z) C B(6y,Cv/(A+0)/|2]) (3.7)

for C = C,,; > 1, as claimed (here, and in the remainder of the proof, the numerical
value of "C" is allowed to change from line to line, but it will only depend on v, J).

To prove the second claim, recall that E5(z) consists of at most two intervals /; and
I, which, by (3.7), are both located inside B(6y, C/(A+6)/|z|). If A < 26, then the
estimate |I;| < |B(6, C\/(A +6)/|2])| < Vé/1/]#] gives the desired bound. So, we may
assume that

20 < A <clz]. (3.8)
Then, if ¢ > 0 was taken small enough, depending on J, the diameter of the single
interval in (3.7) containing both ¢y and Ej(z) is smaller than |J|/10. In particular, if
0o € 2J \ J, then Es(z) C J/2 is empty. So, we may assume that §y € J, which gives
|7(6o) - z| > A by (3.2) and recalling that 4(6p) - z = 0. Observe that if 6; € Es(z), then,
by (3.5),

01
6> y(01)-2[=2A— [ |(s)-z[ds
)
01 s
>A— 5(r) - z|drds > A — C|z[(; — 6p)*
0o 0o

with C' = [|¥][ (1. By (3.8), this implies

/A 5 /
‘91—90|N 01 EE(; )

Using (3.5), we finally infer that
01
360) 2 = [ Fi(s) -2l ds = wlzll62 — 60l 2 VAT

o
for 6, € E;(z), which shows that |I;| < 0/4/A|z|. The proof is complete. O

3.1. Tangency of circles. In this section, we gather some estimates on the size and shape
of intersections of (circular) annuli. These are harvested verbatim from T. Wolff’s paper
[13] and survey [15].

Definition 3.5 (The region B). We write By C R? for the set
By = {(z,7) € R* :2 € B(0,1)and & <r <2}

The set plays the role of "the unit ball" or "the unit cube" in the arguments below:
geometric constants stay under control, as long as points are chosen from By. The next
result is from [15], and it is an analogue of Lemma 3.4 for circles (also the proof is fairly
similar). To be precise, the statement of Lemma 3.6 contains some details which are not
explicit in the statement of [15, Lemma 3.1], but are apparent from the proof.
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Lemma 3.6 ([15, Lemma 3.1]). Assume that S(x1,7r1) and S(x2,72) are planar circles with
(z1,71), (v2,72) € Bo. Let 6 > 0 and denote by S°(z,r) the d-annulus around the circle
S(x,r). Define (as in (2.4)) A" := A ((x1,71) — (22,72)) = ||£1 — 22| — |r1 — 72|| and write
t:=|(x1,71) — (x2,72)|. Then
(1) Sé(ml, r1) N 55(332, r9) is contained in a ball centred at
C(x1,22) == x1 +sgn(ry — rg)rlu,
w2 — 21
with radius at most a constant times \/(A' +6)/(t + 6).
(2) Sé(xl, r1) N 55($2,7’2) is contained in the union of the §-neighbourhoods of at most
two arcs on S(x2,12), both of length at most a constant times §/+/ (A" +0)(t +9). In
particular,

o § < 52
’S (561,7‘1)05 ($2,T2)‘N (A’+5)<t+5)

An important special case of the lemma is when A’ < §: following T. Wolff [13], we
say that the two circles S(x1,71) and S(z2,r2) are then §-incident, and it follows from
Lemma 3.6(1) that S0 (x1,7r,) N SC(x2,79) can be covered by a single ¢-neighbourhood
of a circular arc of length S /d/(t + 0). This numerology motivates the following
definition (which is from [13, Section 1]):

Definition 3.7 ((J,t)-rectangles). Let 0 < § < t < 1. A (4,t)-rectangle R C R? is a 6~
neighbourhood of a circular arc of length /5/t. Two (6, t)-rectangles are C-comparable,
if there is a single (C4, t)-rectangle containing both of them. Otherwise R; and R, are
C-incomparable. A circle S(z,r) is C-tangent to a (J,t)-rectangle, if S“°(z,7) contains R.
Finally, fixing some large absolute constant Cy > 1, we say that two rectangles Ri, Ry
are simply comparable, if they are Cp-comparable. Similarly, a circle being tangent to a
rectangle refers to Cyp-tangency.

We record a part of [13, Lemma 1.5]:

Lemma 3.8 (Incidence vs. tangency). Assume that Sy = S(x1,72) and Sy = S(x2, r2) satisfy
the hypotheses of Lemma 3.6, with constants t and A" < ¢, so that the two circles are d-incident.
Then, there exists a (9, t)-rectangle R such that both Sy and Sy are tangent to R (assuming that
the constant Cy > 1 in the definition above was chosen large enough).

3.2. Tangency of sine waves. In this section, we apply the discussion above to the spe-
cial curve we are considering in the present paper, namely

~v(0) = %(cos 0,sinf, 1).
We keep assuming that J C 2J C [0, 27) is a compact subinterval such that Assumption
3.3 holds for 2J. Note that

A'(2) < 2A(2) < 244(2) (3.9)
by (2.4). The converse inequality A ;(z) < A’(z) is no longer true. Heuristically, A j(z; —
z2) only measures the tangency between certain arcs of S(z1,71), S(x2,72), determined
by J; even if the circles S(z1,71), S(x2, r2) happened to be tangent, thatis A’(z; —22) = 0,
the point of tangency need not occur on this arc. We define

[(z) :=T(z) :=={(0,p0(2)) : 0 € %} and T°(z):={(6,0) % xR :|pg(z) — 0| <6}
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So, formally, I'(z) = I'Y(z2).

For later application, we are interested in the following problem. Fix €,t € (0, 1] with
2Ce < t, where C = C(v,J) > 1 is the constant from Lemma 3.4. Assume that z; =
(z1,7m1) € By, 22 = (z2,72) € By, and w € R? are points satisfying

w = (U]l,’lUQ) € FE(Zl) N PE(ZQ), t < ’21 — 2’2‘ <2t, and AJ(Zl — 22) <ee. (3.10)

Note that A'(z1 —22) < 2A 7(z1 —22) < 2€ < |21 —22|/C implies |1 —z2| ~ t. The heuristic
meaning of (3.10) is that the curves I'(z1) and T'(22) intersect fairly tangentially at w € R?,
and by (3.9) and the discussion at the end of Section 2.1, the same is true for the circles
S(x1,72) and S(z2,72). How is the spatial location of the tangency between S(x1, 1)
and S(z2,72) related to w? The following lemma answers this question: there are at most
constant many rectangles satisfying (3.11), so the location of tangency, at scale €, between
S(x1,71) and S(z2,72) is roughly determined by the first coordinate of any point in the
intersection I'“(z1) N T"(22).

Lemma 3.9. Suppose that z; = (x1,71) € Bo, 22 = (v2,72) € By, and w € R? satisfy (3.10),
with t > 2Ce. Then both circles S(x1,71) and S(x2,2) are tangent to an (e, t)-rectangle R with

R C 5’006(&31,7“1) N B(z1 + ri(cos wy, sinwy), C\/%) (3.11)
Proof. Since w = (wq,ws) € I'“(21) NI'*(22), we trivially have w; € J/2 and
[y(w1) - (21 = 22)| = [pwi (21) = puwr (22)] < [pw (21) — w2l + w2 — puw, (22)] < 26,
and, therefore,
w1 € Fac(z1 —20) ={0 € J/2: |y(0) - (21 — 22)| < 2¢}.

By Lemma 3.4, the set Ey (21 — 22) is contained in a single interval of length at most a
constant times /¢/t around a certain point 6y € 2J with |my, (21 — 22)[ S Aj(21 — 22). In
particular,

wy — o] S V/e/t. (3.12)
By Lemma 3.6(1), the intersection
Sy, 71) N SO (2o, 19) (3.13)
is contained in a disc centred at
xT9 — X1

C(x1,22) = x1 + r1sgn(ry — ra) =:x1 + rie(z1, 22).

|z — 21

and radius at most a constant times /€/t.
Now, we claim that

|(cos B, sinby) — e(z1, 22)| < %, (3.14)
so that, by (3.12),
(3.15)

|(coswy, sinwy) — e(z1, 22)| <

Py

Start by recalling from Section 2.1 that [y, (21 — 22)| S Aj(21 — 22) < e implies dist (21 —
22,0p,) S €, 50 we may find s € R such that

|(z1 — 2z2) — s(cos bp,sin By, —1)| < e.
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It follows that
|(x1 — x2) — s(cos by, sinby)| S e and  |(r;1 —re) —s| Se. (3.16)
Abbreviate o := sgn(r; — r2) and e := e(z1, z2). Then,

x9—x1  8(cosbp,sinby) os(cos b, sin by)

le — (cos B, sinby)| <

— (cos B, sin bp)

jzo —x1| |72 — 1] |z2 — 21

Using (3.16) and the fact that |21 — x2| ~ ¢ (see the discussion after (3.10)), the first term
in the right-hand side of the above inequality is bounded by a constant times ¢/t. The
second term admits the same estimate, using (3.16):

os | o los— |z —a| < |5—(r1—r2)|+A’(22—21) <
‘1’2 — .751| ~ t - t t ~
This proves (3.14) and hence (3.15).

Finally, by Lemma 3.8, both circles S(x1,r1) and S(z2,r2) are tangent to a certain (e, t)-
rectangle R, which, by the definition of tangency, the inclusion of (3.13), and (3.15), means
that

1

€
t.

R C 89 (w1,11) N S (a2, 72)
C B(xy + rie(z1, 22), C\/€/t)
C B(z1 + r1(cos(wy), sin(wy)), C+/€/t).
This completes the proof of the lemma. O

4. A MEASURE-THEORETIC VARIANT OF WOLFF’S INCIDENCE BOUND FOR TANGENCIES

One of the main technical innovations in T. Wolff’s paper [13] is Lemma 1.4. It bounds
the number of incomparable (4, t)-rectangles, which are tangent to a family of circles. To
make the statement precise, we recall some definitions from [13]:

Definition 4.1 (Bipartite sets). Let ¢t > 0. A subset of B (recall Definition 3.5) is called
t-bipartite, if it can be written as a disjoint union ¥V U B ("white" and "black" points) with

max{diam(B), diam(W)} <t < distOV,B) and diam(W U B) < 100t.
We will make an attempt to denote finite ¢-bipartite sets by YW U B, and infinite ones by

W U B. It should not cause confusion that B is also a common letter for a ball (the only
concrete black set is defined below (5.22), and it is in fact an annulus).

Definition 4.2 (Type). Assume that W U B C By is a t-bipartite set, let 1 be a finite
measure on R?, and let m,n > 0 be positive real numbers. A (§,t)-rectangle R C R? is of
type > m with respect to p, W if

p({(z,r) € W : S(x,r)is tangent to R}) > m.
Similarly, R is of type > n with respect to p, B if
p({(z,r) € B:S(x,r)is tangent to R}) > n.

We also define that R is of type (> m, > n) with respect to u, W, B if R satisfies both of
the requirements above simultaneously. We often omit writing "with respect to u, W, B",
if these parameters are clear from the context.
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Lemma 4.3 ([13, Lemma 1.4]). Let 0 < t < 1,0 < § < ct, where ¢ > 0 is a small absolute
constant, let m,n € N, let W U B be a finite t-bipartite set, and let i := HOwus. If e > 0, then
there is a constant Cc > 1 such that the cardinality of any collection of pairwise incomparable
(0, t)-rectangles of type (> m, > n) with respect to ., W, B is bounded by

3/4
C.(W1B))* (('W'B') L4 "5"> |

mn m n

The purpose of this section is to deduce a variant of Wolff’s lemma for arbitrary finite
measures; the proof is a straightforward reduction to Lemma 4.3.

Lemmad4.4. Let 0 <t < 1,0 < 6§ < ct, where ¢ > 0 is a small absolute constant, let W U B C
By be a t-bipartite set, and let u be a probability measure on R3, and let m,n € (0,1]. For
€ > 0, there exists a constant Cc > 1 such that the cardinality of any set of pairwise incomparable
(0, t)-rectangles of type (> m, > n) is bounded by

Ce(mnd) ™€ (('M(VV)'M(B)>3/4 + U + 'M(B)> . 4.1)

mn m n

Proof. Assume without loss of generality that § > 0 is a small dyadic number, and denote
by Ds the dyadic cubes in R? of side-length 6. For 4,5 > 0,let D}V := {Q € D; : 2771 <
w(@QNW) <27} and DP := {Q € D5 : 27971 < pu(Q N B) < 277}. Note thatif Ris a
(9, t)-rectangle Cp-tangent to any circle S(x,r) with (z,r) € Q, with Q N Bg # 0, then R
is 2Cy-tangent to the circle S(zg, rg), where (zq,rg) is the midpoint of Q.

Let R be a maximal collection of incomparable (d,¢)-rectangles of type (> m,> n).
Then, for R € R, there is a set

Wpr = {(x,r) € W: S(z,r)is tangent to R} C W

with u(Wg) > m such that R is tangent to every circle from Wg. Let W}, be the set Wg
intersected with the union of the cubes in D;". Define By and By, similarly, using D}
Then, there exist ir, jg > 1 such that

4 m , n
WWiE) 2 5 and  u(BY) 2 .
'R IR

Since W C By, the total u-measure of cubes in D}" is at most a constant times § 327,

Therefore,
m

2

7
R

Given € > 0, the inequality above implies ir < Cc6 —3¢m~¢ for a constant C, > 1 depend-

ing only on e. The same reasoning applies to jr, with m replaced by n. Now, for each

i€{l,...,C.03m<}and j € {1,...,C.63n"}, we define
RO .= {ReR:ip=iand jp = j}.
Then we pick (i, j) such that R(*/) =: R’ is the largest to obtain
IR'| Z¢ |R| - 6% mn® (4.2)

With these values of 4, j, denote by W* and B’ the midpoints of the cubes in D}V and Df ,
respectively.

< p(Wik) S 5732,
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Fix a rectangle R € R'. By the definition, and recalling that i € {1,...,C.d3m~¢},

,U(le{) > T > m1+26566_

NZ2 ~E€

Since (@ NWE) < w(@NW) ~ 27 for all @ € D}V, we infer that at least m >,
max{1, 2'm!t2¢§5¢} cubes Q € D}V intersect W},, where m € N. As discussed above, this
means that R is 2Cp-tangent to S(xg, rq) for each of these cubes Q; note that (zg,rg) €

Wi for these Q, by the definition of W’. The same reasoning applies to B%, and the
conclusion is that R is of type

(>m,>n) for m > max{l,2'm! ™%} and &t >, max{1,2/n! 2%},

with respect to the t-bipartite family W* U B? and the counting measure. We first assume
that 2im!+2¢5% > 1 and 2/n!*+2¢§5¢ > 1. Then, using Lemma 4.3, we infer that

e wiBi N Wil 1B7]
‘R/‘ SE (‘W HB]D <<2i+j(mn)1+26512e + i 1+2e §6¢ + 2inlt2ef6e | - (43)

To make the right hand side of (4.3) look more like the right hand side of (4.1), note that

—1
(zQ.rQ)eEW! (zq@.r@)eW?
Combined with (4.2) and (4.3), this completes the proof of (4.1) in the case 2im!t2¢g6¢ > 1
and 2/n1%2¢5% > 1. Let us consider the case 2'm!t2¢6% < 1 and 2/n!*2¢5% < 1, leaving
the intermediate cases to the reader. Then m = 1 = 1, and instead of (4.3), we may infer
from Lemma 4.3 that

R S (WHIB ) (W18

Wi= Y o520 Y w@aW)S2u(W) and |85 Y u(B).

Y 4187
To conclude the proof of (4.1) from here, one then uses the inequalities [W?| < 2!u(W) <
p(W)m=1=2¢5=6¢ and |B7| < 2/u(B) < p(B)n=172¢675¢, and also u(W), u(B) < 1. O

5. A MEASURE-THEORETIC VARIANT OF SCHLAG’S LEMMA FOR CIRCLES

Lemma 5.1 below is the main tool in the proof of Theorem 1.6 about unions of circles.
It is a continuous version of W. Schlag’s weak type inequality in [12, Lemma 8]. The
proof follows the same pattern, but the statement is a bit stronger (involving measures,
not finite sets), and the argument is a bit simpler; for example, we can omit the case
distinction between "6 ~ €" and "6 > €" altogether, and also the selection of a random
e-separated subset; see the proof in [12].

Aside from being crucial in the proof Theorem 1.6, Lemma 5.1 is also used within the
proof of Lemma 6.1, which is finally the key ingredient in the proof of the main result,
Theorem 1.2.

Recall that S?(z, ) stands for the §-neighbourhood of the planar circle S(x, ) and

Az) =zl = Irll, 2= (z,7).

Given a finite measure ;1 on R3 and § > 0, define the following multiplicity function
mf: R? — [0, u(R3)]:
mi(w) = p({z' eR® 1w € SO(2)). (5.1)
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Lemma 5.1. Fixs € (0,1],0 >0,7>0,C>1,and A> Cyc,s- 6", where Cpcs > lisa
large constant depending only on 1, C, and s. Let pu be a probability measure on R satisfying the
Frostman condition j(B(z,r)) < Cr® forall z € R3 and r > 0, and with K := spt u C By.
Then, for X € (0, 1], there is a set G(A, 6, \) C K with

(K \ G(A,8,))) < A=/3
such that the following holds for all z € G(A, 6§, \):
1S%(2) N {w : mh (w) > ASNT256%}] < \|S°(2)].

Proof. We start by remarking that the lemma is trivial for all § 2, ¢ 1 and for all A €
(0,1]. Indeed, in this case we may choose the lower bound C;, ¢ s for A so large that
A*X725§° > 1. This has the effect that m§ (w) > A*A\~2%§° can never hold, since mf (w) <
w(R3) = 1. So, in the sequel, we may assume that ¢ is small, in a manner depending on
7, C, 5. For similar reasons, we may assume that A < ¢ —1. otherwise mg” <1< ASNT2565,
Assume then to the contrary there exists a dyadic number § € 2N and a number

m > ASAT268 (5.2)
such that
1S%(2) N {w = mf (w) > m}| > AS(2)] (5.3)
for every z € D C K, where
w(D) > A=%/3,

This will result in a contradiction, if C) ¢ s in the assumption A > (), c s - 07" is suffi-
ciently large. For the purposes of induction, we assume that § € 27 is the largest dyadic
number failing the statement of the lemma for some A € (0,1]and A > C;, c,s- 67" (as we
already observed in the first paragraph of the proof, the statement is trivial for 6 2c ;s 1,
forall A € (0,1],and all A > C;, ¢ s, so the "base case" of the induction is valid.)

For z € R3 and dyadic numbers ¢, t € [§, 1], define

Koi(z) ={2 € K:S°(2)NS°(2) #0, t < |z— 2| < 2t, and e < A'(z — 2') < 2¢}.
The case ¢ = ¢ is a little special: there we modify the definition so that the two-sided

inequality e < A’(z — 2’) < 2e is replaced by simply A’(z — 2’) < 2e = 2. Now, define
the restricted multiplicity function

m§(w|U) :=p({z' eU:we SOV, U CR3.

Applied with U := K, (z), as we will do in a moment, this multiplicity function only
takes into accounts those 2/, which are at distance ¢ from, and e-tangent to, z. If z € D is
fixed, w € R? is such that mg (w) > m (asin (5.3)), and C > 1 is a large enough absolute
constant (to be determined later), then we consider the inequality

. , 62 i i
Cs 00 < m<mh(w) < p(B(z,C8) + > mh(w/Kc(z))
te[C,1]
e€[d,1]
<CCO + > mhi(wlKei(2)),
te[C6,1]
e€[d,1]
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where € and ¢ only run over dyadic values. We take C, c s > 1 (at least) so large that
CCs < %C;’C’s. Then the second term in the display above must dominate the left hand
side. This implies (after a few rounds of pigeonholing) that there exist dyadic numbers
ee€lslland t € [C5,1], m S m < mand A T XA < A and a subset D C D with
w(D) Z, (D), such that the following holds for all z € D:

[H (2)] = |5°(2) N {w = mf (w] Kee(2)) 2 m}| > NS°(2)- (54)
We recall from Section 1.2 that the notation C; g C signifies an inequality of the form
C1 < C(log(1/6))“Cy

for some absolute constant C' > 1. Furthermore, by C1 ~ C3 was the same as C; S Cay §
(. For the rest of the proof, the numbers ¢ and e will be the ones we found above, and
we abbreviate

K i(z) =: K(z). (5.5)

We now make a brief heuristic digression. By the preceding discussion, we have found
that a large fraction of the "high density" part of S°(2), for z € D, is caused by points 2/,
which are at roughly distance ¢t > § from z, and moreover the tangency between S(z)
and S(z’) is roughly constant, namely e. This means that the circles S(z) and S(2’) are e-
incident, and hence they are tangent to an (¢, ¢)-rectangle by Lemma 3.8. To complete the
proof, it suffices to count, just how many incomparable (¢, t)-rectangles we can find this
way (by varying z € Dand 2 € K. (%)), and then compare the figure with the upper
bound given by Lemma 4.4 to reach a contradiction. If e = J, this is straightforward,
but if ¢ > ¢, an additional geometric argument is needed: in brief, we will show that
a perfect analogue of (5.4) also holds at scale ¢, for every z € D: see (5.15) below, and
note in particular that (5.15) and (5.4) are essentially the same, if ¢ = §. In a sense, the
argument leading to (5.15) is just a complicated way of saying that "e = § without loss of
generality".

We continue with the proof. Fix z € D, and recall that (5.4) holds. We claim that there

exists a dyadic number v = v(z) € {1,...,¢/d}, and an absolute constant C; > 2, such
that B
_ AE e
[5°(z) N {w s me, (WK (2)) Z v} £ 5 - 1S°(2)]. (5.6)

To see this, we need to recall the geometric fact from Lemma 3.6 that if z, 2’ € R3 and with
|z—2'| ~ tand A’(z—2') ~ ¢, then S°(2)NS%(2’) can be covered by two J-neighbourhoods
of arcs on S(z), each of diameter at most a constant times C'§/v/et. (If € = §, then we
only have the one-sided information A'(z — 2’) < 2e = 2§, but the geometric statement
above remains valid, even with "two arcs" replaced by "one arc".) Motivated by this,
we first divide S(2) into short arcs J;(z) of length C§/v/et. We write ij? (z) for the -
neighbourhood of J;(z). Since |JJ<S ()| < 6%/\/et, we may, by (5.4), find at least a constant
times

NS ()| et

62/ et o
(z) # 0. Denote these indices by [7(z), and foreach j € J(z),
%(z). Thus m} (w;j|K(z)) > m for j € J(z). Throw away at

indices j such that H%(z)N.J?

J
pick a point w; € H%(z) N J;
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FIGURE 2. An illustration for the proof of Lemma 5.1.

most half of the points w; to ensure that |w; — w;| > C§/ Vet for all i # j. Then, the sets
Ki(z):={ € K(2) : w; € §°(2) N §°(2")}

with
K (2)) = mi (w;| K (2)) = m (5.7)
have bounded overlap:
Y oxk(@) <2, FeK(a). (5.8)
JeJ(2)

Indeed, if 2’ € Kj(z), then w; € S°(z) N S°(z'), which implies w; has to lie in one of the
at most two sets of diameter at most C'd/+/et covering the intersection S%(z) N S°(2'). By
the separation of the points w;, this can happen for at most two values of j.

Next, we group the points w; inside sets of somewhat larger diameter (than J;(z)). To
this end, divide S(z) into long arcs I;(z) of length C\/¢/t. By adjusting the lengths of
both long and short arcs slightly, we may assume that the long arcs I;(z) are sub-divided

further into
H(I;(2)) < e/t €

HI(JT;(2) = o/v/et 6
short arcs J;(z). For each long arc I;(z), write
k(i) == card{j € J(2) : w; € I?(2)},
where I?(z) is the d-neighbourhood of I;(z). Since 0 < k(i) < €/J, there is a dyadic
number v = v(2) € {1,...,¢/6} such that Z |7 ()| 2 A€t/ points w; are contained in

the union of the sets I?(2) with v < k(i) < 2v. Denote the indices of these sets I?(z) by
Z(z). Thus, if i € Z(z), then

card{j € J(2) : w; € I?(2)} ~ v. (5.9)
Since there are £ |7 (z)| points in total, we conclude that
1Z(2)| & @I AVel (5.10)

v ™~ o
Fix i € Z(z) and w; € I?(z). We claim that if 2’ € K;(z), then
If(z) € S9(2)), (5.11)

for some C; > 1 large enough; see Figure 2. The reason is that w; € S°(z) N S°(2') and
S(z),S(z") are e-incident, so for large enough C; > 1, they are both C)-tangent to the
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(€,t)-rectangle If(z) > w;, see Lemma 3.8 for a similar statement (and its proof in Wolff’s
paper for more details). Now, for a fixed index ¢ € Z, and for any w € I;(z), the bounded
overlap of the sets K (z) yields

mey (WK (2)) = p({z' € K(2) 1w € S(2)})

68 1 /
> = XgCie(xn\W d[,LZ/

jET (2
w;€I9(2)
(5.7)&(5.9)
(5.11) _
= Z w(Kji(z) 2 vm.
JET(2)
w; €I%(z)

Thus, we have proven that whenever i € Z(z), the set If(z) C S(z) is contained in the
region where m{. (w|K(z)) 2 vm. Recalling (5.10), this proves that

(5.10)5\ € 5\6
SN <t (] (2) 2 vm)| > L] 2 L efie~ 25155(2), (.12

~

which is precisely (5.6).

Recall that the dyadic number v = v(z) < ¢/§ still depends on the point z € D,
but there are only < 1 possible choices for v(z). We replace D by a subset of measure
Z (D) Z A~*/3 to make the choice uniform. Hence, we may assume that (5.6) holds
for all z € D, for some fixed dyadic number v € {1,...,¢/5}. We now will re-write (5.6)
slightly, in such a way that the inequality looks more like (5.3), only at scale (roughly) e
instead of §. For this purpose, we denote

Ae i= log_c(l/d)j—; and A, :=1log®(1/6) (‘j§>>1og0(1/5)14, (5.13)

where C' > 1 is a suitable constant. We may deduce from (5.12) that (Xe)/(vd) < 1, so
Ae € (0, 1] if the constant C' > 1 in the definition above is chosen sufficiently large.

Recall from (5.2), and the choices m ~ m and A & Ajust above (5.4), that m 2 ASA72%5%.
We define m, := vm/C. Then, using the lower bound for m, and also that s € (0, 1], we
record that

me = 20 > pATRT260 2 (AE> AT ar ASAT20¢0, (5.14)
c ~ ~A\vd
Now, if C (in both m. = vm/C and the definition of \.) is large enough, (5.6) implies
15¢(2) N {w = mg, (w]K(2)) > me}| > 2X[S(2)], z€D. (5.15)

Now (5.14)-(5.15) look like analogues of (5.2)-(5.3), only at the (possibly) larger scale e.

Fix a large absolute constant NV € 2N whose precise value will be determined later,
and will only depend on the size of the absolute constant C'; > 1 chosen at (5.11). Note
(using v < €/6 and € > 0) that

Ae > A > Cn,C,s -9 > Cn,C,s(N€>_na

and we already observed below (5.13) that A\c € (0, 1], so in particular \./(CN) € (0,1].
These facts place the induction hypothesis at our disposal, at scale Ne > 26. Namely,
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we know that for all points z € G := G(A., Ne, \c/CN), with (K \ G) < AT the
following holds:

Ae
CN
In particular, since A, > log_c(l /8)A, and u(D) Z, A~%/3, the estimate (5.16) holds for at
least half of the points z € D (if C is large enough). We restrict attention to this half, so
that (5.15)—(5.16) hold simultaneously for all z € D. Writing M, := A$(\./CN)™2%¢, it
follows that

1SN (2) N {w e mf (w) > AS(AJON) 26} < 2 [SV(2)| < AJS(2)].  (5.16)

15¢(2) N {w : me <mp, (w]K(2)) < miy (w) < Mc}| > A SYE(2)), zeD. (517)
It should be noted that
me 2 M, (5.18)
by (5.14).

Now, (5.17) will will give a lower bound for how many circles S(z) are tangent to each
other at resolution e. The proof will be completed by comparing this lower bound against
the upper bound given by Lemma 4.4. For this purpose, we need to extract two sets

WcD and BCR3

satisfying the two t-bipartite conditions max{diam(W),diam(B)} < ¢t < dist(W, B) and
diam(W U B) < 100t. We will moreover do this so that
p(W) 2 A= u(B), (5.19)
and
mg (w|B N K(2)) = mg, (w|K(2)), zeW, weR2 (5.20)
Finding W and B is straightforward. We first cover D by < Ct~3 balls B(z;,t/10), such
that the balls B(z;, (2+ 15)t) have bounded overlap. Next, we discard all those balls with
(DN B(z,t/10)) < (D) /(2C), and observe that the union of the remaining balls still

contains at least half the  measure of D. Next, among the remaining balls, which now
all satisfy

w(D N B(z,t/10)) > (5.21)

we set

W := DN B(z;,t/10)
for the ball B(z;,t/10), which maximises the ratio u(D N B(z;,t/10))/u(B(z, (2 + 15)t)).
Since the balls B(z;, (2 + &)t) have bounded overlap, it follows that

:U’(W) > D >A—s/3 5.22
(Bl 2+ Dy ~ PV =4 (522

Then, we define
and note that K(z) = BN K(z) for all z € W, because 2z’ € K(z) = K¢(z) (recall (5.5))
already forces the restriction t < |z — 2’| < 2t. Hence, for w € R?,
mg (W BN K(2)) = p({z' € BNK(2) :w € SCE(2)1)
=pu({z € K(z) 1w € S9(2)}) = ml, (w|K(2)), z€W,
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as claimed by (5.20). The inequality u(W) Z A~*/3u(B) follows from (5.22) and the
definition of B. The bipartite condition holds with constants slightly worse than ¢.

Before continuing, we make a small further refinement of W. Cover W by < C(t/¢)?
disjoint (dyadic) cubes Q; of side-length e. At most half of ;(7/) can be contained in the
union of those cubes Q; with (W N Q;) < (¢/t)2u(W)/(2C). We refine W by discarding
the part of W covered by these low-density cubes. At least half of the © measure of W
remains, and now all the points z € W have the following property: they are contained
in a cube Q; = Q;i(2) of side-length € such that

pW0Q) 2 (£) w) g A, (5.23)

using (5.21).
At this point we observe that )., as defined in (5.13), is fairly large. Namely, if w lies
in the high-density set defined in (5.17), for some z € W, then by (5.14) and (5.20),

AN e gme <mi, (w]|B) < u(B) S Ct?, (5.24)

where A, is the parameter defined in (5.13). Rearranging this inequality gives

€
Ae 2.0 Ag/z\/;.

Recalling that A. > (Ae)/(v6), then v < ¢/§, and finally A > C) ¢ s - 67", we infer that

pimles Jem) Row AV 2 (G4,) 67 (525)

where ¢ > 0 is a small absolute constant to be specified momentarily. This shows in
particular that p > 1, if C), ¢ s > 1 is large enough, depending here on ¢, C and s. Thus,
for a fixed point z € W, (5.17) and (5.20) imply that it takes > p/c (in particular at least
p) sets If(z) to cover the high density set

Hj(2) == S°(2) N {w : mg, (w|BNK(2)) > me and mhy (w) < M}

For a fixed point z € W, we may hence choose p points vy,...,v, € S°(z), which are
separated by a distance at least C'\/€/t (here C is another absolute constant, which may

"non

be chosen larger by making "c¢" smaller), and which satisfy

méle(vj]K(z) NB) >m, and mh (vj|W) < M, 1< <p. (5.26)
Fix 1 < j < p, and consider the first condition in (5.26), which is shorthand for
w(Bj(2)) == p({z' € BN K(z):v; € S(2) N S*(2)}) > m,. (5.27)

Whenever 2’ € Bj(z), then the circles S(z) and S(z’) are 2e-incident (since 2z’ € K(z) =
K. i(z) implies A’'(z — 2') < 2¢), and they are both (IN/2)-tangent to a certain (e, t)-
rectangle R;(z) containing v, for N > 1 large enough (depending on (', an absolute
constant chosen at (5.11)). Moreover, when j € {1,...,p} varies, the corresponding
(€, t)-rectangles are incomparable by the separation of the points v;. We summarise the
findings above: every z € W gives rise to p incomparable (e, t)-rectangles R;(z), each be-
ing (IN/2)-tangent to S(z), having type > m. with respect to the set B according to (5.27)
(the notion of type was introduced in Definition 4.2), and containing a point v; = v;(2).

To make the following discussion more rigorous, choose a maximal (finite) collection
R of incomparable (¢, t)-rectangles in B(0, 100). Then, by adjusting the constants appro-
priately, we may assume that each rectangle R;(z), as above, lies in R.
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At this point, we also run one final pigeonholing argument. For = € W and v; = v;(%2)
as above, we have the upper bound m/,_(v;(2)|W) < M, by (5.26). This implies that

p({z' € W: S(2') is N-tangent to R;(z)}) < M, (5.28)

because any circle S(2’) being N-tangent to R;(z) satisfies v;(z) € R;(z) C SV¢(2) by
definition of N-tangency. On the other hand, S(z) is (IN/2)-tangent to R;(z) by the dis-
cussion above, and every circle S(z') with 2z’ € Q;(z) (see above (5.23)) is N-tangent to
Rj(z), hence

(5.23)
u({z' € W: S(2') is N-tangent to R;(2)}) > u(WNQ;) 2 A3 > 54

as we assumed at the start of the proof that A < 5~ L. Now, for z € W fixed, we may pick
a dyadic number 6* < n.(2) < M, such that 2 p rectangles R;(z) satisfy

ne(z) < p({z' € W: S(2') is N-tangent to R;(2)}) < 2n.(z).

Then, we may finally fix 6* < ne < M,, and a subset W/ C W with u(W’) Z u(W), such
that

ne < pu({z' € W:5(2') is N-tangent to R;(2)}) < 2n, (5.29)

for z € W/, and for 2 p rectangles R;(z). From now on, the rectangles R;(z),1 < j < p,
satisfying (5.29) will be called the children of z € W’. According to (5.29), every child
R;(z) of z € W' has type > n, with respect to I, assuming that the notion of "tangency"
has been defined as N-tangency; this is legitimate, since IV is an absolute constant.

Every point z € W/ C W gives rise to £ p children R;(z), as we just argued. Now,
as z € W' varies, how many children in R do we find in total, at least? If ten parents
have three children each, and each child has at most two parents, then there are at least
3-10/2 = 15 children in total. For a more general statement, see Lemma 5.2 below. Now,
we do the same computation with "parents" replaced by points z € W’ (children are, of
course, the rectangles as before). We already know that every parent = € W' has g p
children in R, so we only need to find an upper bound for the number of parents.

Fix a child R = Rj(z), for some z € W', satisfying (5.29). If 2/ € W' is another parent
with the same child R, then S(z’) is (IN/2)-tangent to R by definition, and in particular
N-tangent to R. Thus, by (5.29),

p({z" € W' : R;(z) is a child of 2'}) < 2n..

Now, Lemma 5.2 implies (take (21, 1) = (W', ), Q2 the set of all possible rectangles
R;(z) € Rwithz € Wand 1 < j < p, uo the counting measure on 2y, and E = {(z/, R) €
Q1 x Qg : Ris the child of 2'}) that the total number of rectangles R € R, which are the
child of some point z € W/, is at least

> pW)p - u(W)p

> . (5.30)
Ne Ne

Moreover, every such child R has type (> n,> m.) with respect to the ¢-bipartite set
W U B by (5.27) and (5.29) (as we already mentioned above, we define the concept of
type, recall Definition 4.2, using N-tangency). On the other hand, by Lemma 4.4, given
7 > 0, the maximal cardinality of incomparable (e, t)-rectangles of type (> n., > m,) is
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bounded from above by

< (mme" ((M(W)M(B)>3/4 L) M(B)>

MmN, ne me
619 AW\ uw) | aBuw)
S (menee) 7 | | ——— + + ,

mene Ne me

recalling from (5.19) that u(B) 5 A%/3u(W). One can verify from (5.24) that the hypoth-
esis € < ct in Lemma 4.4 is satisfied if the lower bound C;, ¢ s for the constant A, and the
constant "C" in the inequality A. > log”(1/8)A (see (5.13)), are chosen large enough.
Now fix 0 < 7 < 7s/50. Since s € (0,1], 6* <n. < M, Sm by (5.18) and p 3 AV/? >
62 by (5.25), neither of the two latter terms can dominate (5.30). But the the first term
cannot dominate either, since otherwise (importing the lower estimate for m, from (5.14),
recalling that A. > A, and recalling the definition of p from (5.25)),
1/4
p é 5—1OTA5/4M(W)1/211€T/4
me

é 5_1OTA8/4t5/2m€_1/2

¢ s/2
é 5—107—As/4AE—s/2 <> )\i — 5—10TA—S/4pS'
€

This gives a contradiction, since s € (0, 1], p > 1, and A—s/% < §15/4 The proof of Lemma
5.1 is complete. O

To finish this section, we verify the lemma used in the previous proof.

Lemma 5.2. Let (21, p1), (22, p2) be finite measure spaces, let E C Qy x o be a subset, and
let w12 Q1 x Qa — Qq and ma: Q1 X Qo — Qg be the coordinate projections. If E C Q1 x Qg is
U1 X o measurable,

MQ({WQ S QQ : (W1,WQ) c E}) > CQ
forall wy € m(E), and

i ({wr € Q1 (w1, we) € E} < Cy

forall wy € mo(E), then
io(m(E)) > gjmm(E)).

Proof. This is an easy application of Fubini’s theorem:

Cor (m(E)) < / Pl €0 (1,0 € ) den

= (11 x p2)(E) = / p1({wr € Q1 ¢ (w1, we) € E}) dusws
w2 (E)
< Crpa(me(E)),

which gives the claim by rearranging. O
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6. A MEASURE-THEORETIC VARIANT OF SCHLAG’S LEMMA FOR SINE WAVES

In this section, we prove a variant of Lemma 5.1 for the sine waves

D(z) = {(6,1(6)-2) : 6 € J/2},
where

~v(0) = %(COS 0,sinf, 1),

and J C [0,27) is a short compact interval with 2J C [0,27). We assume that J is so
short that Lemma 3.4 applies, and so does the discussion in Section 3.2. In accordance
with earlier notation, we write

A(2) = Ag(z) = min [y, (2)]

Recall that
Es(z) = {0 € J/2: |po(=)] <6} and T°(z) = {(6,0) € § x R: |6/ — py(2)| < 5},

where pg(2) = () - 2. Given a finite measure . on R and § > 0, we re-define the
multiplicity function mf : R? — [0, u(R?)] in the obvious way:

mhi(w) = p({z €R?:w € T°(2)}).

With this notation, we have the following perfect analogue of Lemma 5.1 (the only
change is literally that S is replaced by I'):

Lemma 6.1. Fixs € (0,1],0 >0,7>0,C>1,and A> Cyc,s -6 ", where Cycs > lisa
large constant depending only on n, C, and s. Let j1 be a probability measure on R satisfying the
Frostman condition j(B(z,r)) < Cr® forall z € R3 and r > 0, and with K := spt u C By.
Then, for X € (0, 1], there is a set G(A,d,\) C K with

(K \ G(A,5,\) < A=%/3
such that the following holds for all z € G(A, 6, \):
IT9(2) N {w - mb(w) > ASAT256%}| < AT(2).

Remark 6.2. We will assume that the reader is already familiar with the proof of Lemma
5.1 above; if so, we can promise that 6.1 is easy reading, as the structure of the argument
is exactly the same. Even at the risk of repetition, we will still include most details. Apart
from a few notational changes, the main difference occurs at the end of the proof. In the
previous argument, we were counting tangent circles in two different ways. Below, the
natural analogue would be to count tangent sine waves, but we do not have a "sine wave
variant" of Wolff’s incidence bound, Lemma 4.4, at our disposal. So, instead, we use
the discussion in Section 3.2 to infer that "many tangent sine waves imply many tangent
circles", and then we can literally apply Lemma 4.4 again. Finally, we also need to apply
Lemma 5.1 on the last few meters of the proof: information from the lemma will replace
the appeal to the "induction hypothesis" within Lemma 5.1 (for somewhat complicated
technical reasons, the corresponding induction hypothesis appears to be too weak to
settle the proof in the setting below).

Proof of Lemma 6.1. Just like in the proof of Lemma 5.1, we may assume that § > 0 is small
in a manner depending on 7, C, s, in particular § € (0, 3],and 4 < §~1.
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Assume to the contrary that there exists a dyadic number § € 27, and a number
m > ASAT256° (6.1)
such that
[0°(2) N {w = mf (w) = m}| > AT (2)]
for every z € D C K, where
w(D) > A=%/3,

This will result in a contradiction provided that the constant C;, ¢ s in the assumption
A > Oy c,s - 07" is sufficiently large. For z € R? and dyadic numbers ¢, ¢ € (0, 1], define

Koi(z) ={2 e K:T%(2)NT%(2") #0, t < |z — 2| < 2tand e < A(z — 2) < 2¢}.

In the case € = §, we again drop the lower constraint from A(z — 2’) (as in the proof of
Lemma 5.1). Define also the restricted multiplicity function

mb (W] Kei(2)) = p({7 € Key(2) 1w € T2(2)}).
Proceeding as in the proof of Lemma 5.1, if the constant C,, ¢ s > 1 is taken large enough,
we may pigeonhole fixed dyadic numbers e € [§, 1] and ¢ € [2C0, 1] (withC = C(~,J) > 1

now exI_)licitly being t}le constant from Lemma 3.4), m $ m < m and A é_)\ < )\, and a
subset D C D with p(D) £ p(D), such that the following holds for all z € D:

|H(2)] := [T%(2) N {w : mb (w|Ket(2)) > m}] > AT(2)]. (6.2)

For the rest of the proof, the numbers ¢ and e will be fixed, and we write K ;(z) =: K(z).

For a heuristic explanation of what happens next, see the corresponding spot in the
proof of Lemma 5.1. Fix z € D, so that (6.2) holds. We claim that there exists a dyadic
number v = v(z) € {1,...,¢/0}, and an absolute constant C; > 1, such that

T(2) 1 {2 il (0l K (2)) 2 v} 2 2 I0(2)] 63)

To see this, we recall from Lemma 3.4 that if z, 2/ € R? and with |z — 2/| > ¢t > C§ and
A(z—2") ~ ¢, then Y (2)NT(2) can be covered by two vertical tubes of width < C§/v/et
(this remains true if ¢ = ¢, and merely A(z — 2’) < 2¢). Motivated by this, we first divide
J/2 into short intervals Jy, ..., Jy of length C§//et. Consider the corresponding thin
tubes Tj = J; x R. Since |T; NT%(z)| < 62/v/et, we may, by (6.2), find at least a constant
times

A AV

62/ et 5
indices j such that H°(2) N T; # . Denote these indices by J(z), and for each j € J(z),
pick a point w; € H%(z) N T;. Thus m} (w;|K(z)) > m for j € J. Throw away at most
half of the indices to ensure that |w; — w;| > C§/V/et for i, j € J(z) with i # j. Then, the
sets

Kj(2) = {2 € K(2) :w; € T°(2) NT%(¢)}
with mf (w;|K(z)) = u(K;(z)) have bounded overlap:

Y xk,(@) <2, e K(2). (6.4)
JET(2)
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Indeed, if 2’ € K;(z), thenw; € T°(2)NI'"*(2"), which implies that w; has to lie in one of the
at most two vertical tubes of width at most §/v/et covering the intersection I'?(2) NT9(z’).
By the separation of the points w;, this can happen for at most two values of ;.

Next, we group the points w; inside somewhat thicker vertical tubes. To this end,
divide J/2 into long intervals Iy, . . ., Iy of length C'\/e/t. By adjusting the lengths appro-
priately, we may assume that the long intervals I; are sub-divided further into

L] _ e/t e

S — —
[Jil ~o/Vet 0
short intervals J;. For each interval I;, write

k(i) := card{j € J : w; € T; NT°(2)},

where T; is the thick tube T; := I; x R. Since 0 < k(i) < €/6, there is a dyadic number
v =wv(z) € {1,...,¢/0} such that 2 |J| = A\et/d points w; are contained in the union
of the thick tubes T; with v < k(i) < 2v. Denote the indices of these thick tubes by Z(z).
Thus, if i € Z(z), then T; N T(z) contains at least v points w;, and

AVet
7() g W1 5 AVl 65
~ v vo
Fix i € Z(z) and w; € T; NT%(z). We claim that whenever 2’ € K/(z), then
T; NT¢(z) € T9e(2), (6.6)

for some C > 1 large enough. To see this, note that by definition of 2’ € K;(z), we have

(wjl-,w]z) =w; € T;N °(2) NT(2).
Thus

|01 (2) = 1 (2)] < 26,
or, in other words, wjl- € Fys(z—72').Since A(z —2') = Ay(z—2) <eand |z — 2| >t >
C(26), Lemma 3.4 says that wjl. is at distance at most a constant times m from a certain
point 6y € 2J with the properties that

4(00)- (2 —2)=0 and |y(6)- (2 — )| < e 6.7)

Now, we can prove (6.6): fix a point w = (w!, w?) € T; NT¢(z), and note that |w! — | <
jw' — wi| + [wj — o] S \/e/t, and [p,1(2) — w?| < € by definition of w € T; NT(2). It
follows, using (6.7), that

0w (') = w?| < [y(w!) - (2 = 2)] + [pur (2) — w?|

,wl

= / 19(s) - (2" = 2)[ds + [7(6o) - (2" — 2)| + ¢
e

5/ |9(r) - (' — 2)|drds + ¢
o o

<2 = zl|w! — 0> + e < e

This is another way of writing w € T¢1¢(2’), so the proof of (6.6) is complete.
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Now, fori € Z(z) and w € T; NI'“(2) fixed, we can use the bounded overlap of the sets
K(z) (recall (6.4)) and (6.6) to obtain

e WKE) = [ pewp@dns Y al() 2 vm.
K(z) w; €T;NI(2)
(See the corresponding spot in the proof of Lemma 5.1, namely the calculations above
(5.12), for more details.) Thus, we have proven that whenever i € Z(z), then T; NI'*(2) C
I“(2) N {w : mg, (w|K(2)) Z vin}. Recalling (6.5), this proves that

T°(2) N {w : meg, (w|K(2)) 2 vm}| > |Z(2)]|T: NT(2)] £ )‘\F\ﬁe ~ *IFe 2)l,

which is precisely (6.3).

Recall that the dyadic number v = v/(z) still depends on the point z € D. We pass to a
subset of measure 2, (D) % A~*/? to make the choice uniform. With this reduction, we
may assume that (6.3) holds for all z € D, for some fixed dyadic number v € {1,...,¢/5}.

We now re-write (6.3) slightly, by denoting

i log 0 and A= log”(1/6) (). ©8)

where C' > 1is a suitable constant. Recall from (6.1) that m ~ m > ASX\725§% ~ AS\~256°.
Since also s € (0, 1], and v > 1, we have

. vm S 2s s> ﬁ ° —2s 5 oy AS —2s5 s
Me ==~ Z VASATS <1/5> A Pet = AT TER.
Thus, if C' > 1 is large enough, (6.3) implies that
. . 10Ae e _
|H(2)] := [T°(2) N {w : mg, (w|K(2)) > Z 77 “|re(2)], zeD. (6.9)

We will denote the first coordinates of H¢(z) by Hf(z) := {w' € £ : (w',w?) € H(2)}.
We record that (6.9) implies
|Hi(2)] > 2. (6.10)
Otherwise, by Fubini, |H(2)| < 2X¢ - 2e < (10A:/[J])|T¢(2)].
Next, we extract two sets ~

WcD and BCR?
satisfying the two t-bipartite conditions max{diam(W),diam(B)} < ¢t < dist(W, B) and
diam(W U B) < 100t. We will moreover find W and B so that

pW) 2 A= u(B),
and
m’éle(w|K(z)) = m‘élﬁ(w|K(z) N B), zeW, we R?,

and every z € W is contained in a dyadic cube Q(z) of side-length € and mass

w(WNQ(z) g A=/3.

The sets W, B are found by verbatim the same argument as in the proof of Lemma 5.1, so
we omit the details.

At this point, the proof deviates from its analogue for circles. We apply the vari-
ant of the current lemma for circles — namely Lemma 5.1 — to the collection of circles
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S(z) = S(z,r) with z € K. This is difficult to explain heuristically at the moment, but
we make the following attempt. The plan is eventually pass from "sine waves with high
multiplicity” to "circles with plenty of tangencies", using Lemma 3.9. But we will also
need to know that there are not too many tangencies between the circles. It seems that
having (upper) multiplicity control for the sine waves is a bit too weak to get that, and so
we, instead, secure multiplicity control for the circles directly. Such control is provided
by Lemma 5.1.
To make this precise, we define the circular multiplicity function

mtS(w) = p({  w € S()Y).

(Recall that K C By lies in the upper half-space, so every point z = (x,r) with z € spt u
corresponds to an honest circle S(z,7).) Then we apply Lemma 5.1 at scale Cy¢ for a
suitable Cy > C7 > 1 (to be determined later), and with the constants

Ae > A > Cf’r],c,se_q7 > C?],C,S(CQ€)_n

and \./(CC3) > 0 (here C' > 1is a less relevant constant, just large enough so that (6.11)
below holds). The conclusion is that there exists a set G = G(Ca¢, A /(CC2)) C K with
WK\ G) < A7*3 such that

SCE4(2) 1 s i) = ALA/(CC)] > (Coe)*H < G5 < 15151 (61)
for z € G. In particular, since A, > log®(1/6)A, and u(D) Z A=*/3, the estimate (6.11)
holds for at least half of the points z € D (assuming that C was chosen large enough). We
restrict attention to this half, so that (6.10) and (6.11) hold simultaneously for all z € D.

What we want to infer from (6.11) is the following: Fix z = (x,r) € D and a point

w = (w',w?) € H%(z), so that w' € H{(z). Then, consider the ray ¢, ,,. emanating from
r and passing through = + r(coswi,sinw;). Assume that the intersection S°(2) N £, ;1
is contained in the set on the left hand side of (6.11). Now, if this happened for all w! €
H{(z), then the set on the left hand side of (6.11) would evidently have measure at least
|H{(z)|e > (A/10)|S(2)|, which is ruled out by (6.11). In fact, by the same argument,
there exists a subset H{(z) C H{(z) of length

|HS(2)] > Ae (6.12)
such that the following two things hold:
(a) For every w' € H{(z), there exists w? € R such that w = (w', w?) € H(z).
(b) For every w' € H{(z), the intersection 5¢(z) N ¢, ,1 contains a point v = v(w?, 2)
with mls? (v) < A2\ /(CCa)] 2% (Cae)® =: M.
o€

Since the definitions of A\ and A, (as in (6.8)) are the same as in the proof of Lemma
5.1, we may repeat the computations from around (5.25) to conclude that e is significantly
smaller than ¢, and

Ae 1/2 _
—l Res (C)o,) a7

In particular, p > 1. Thus, for z € W fixed, it takes, by (6.12), at least p long intervals
I, ..., 1, (of length C'\/e/t as before) to cover the set F{(z). We may in particular choose

pi=le
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p points wi,...,wh € H}(z), which are separated by at least C'\/¢/t, and which by (a)
from the definition of H!(z) satisfy

mf, ((wj,w)|K(z)NB)>m., 1<j<p, (6.13)

for certain choices of wJQ- € R such that w; := (wjl, w]2) € I'"“(z). Unwrapping the defini-
tion, we re-write (6.13) as

p({z' € BN K(2): w; € T9(2) NT9¢(2)}) > m,.

Now, fix z € W and 2’ € BN K(z) with w; € T'C1¢(2) NTC1€(). If we write z = (z,7)
and 2’ = (2/,r'), then by Lemma 3.9, the circles S(z,r) and S(z’,r’) are both C-tangent
to an (e, t)-rectangle R;(z) with

R;(2) € S9(x,7) N B(z 4 r(coswl,sinw}), Car/e/t), (6.14)

7’ J

where C' > 1 is a constant depending only on € (which was an absolute constant). As
z € W is fixed when j € {1,...,p} varies, the rectangles R;(z) are incomparable by
(6.14), and the separation of the points wjl». So, every z € W gives rise to p incomparable
(€, t)-rectangles, all of which are C-tangent to S(z), and have type > m, with respect to
the set B. This is nearly a perfect analogue of the conclusion we drew after (5.27) in the
proof of Lemma 5.1, but one crucial feature is missing: the rectangles R;(z) do not (yet)
contain suitable analogues of the points v;(z), for which there is also an upper bound
for multiplicity, compare with (5.26). To remedy this, we need (b) from the definition of
Hf: namely, for z = (z,r) € W fixedand 1 < j < p, we may pick vj(z) € S(z) N, 1
]
satisfying
mi (v(2)) < M. (6.15)
Note that v;(z) lies close to R;(z) by (6.14), and the definition of ¢, 1. In fact, if S(z/,7")
K]
is any circle tangent to the (e, t)-rectangle R;(z), then S(z’,r’) is tangent (with slightly
different constants) to any rectangle comparable to R;(z), and in particular to an (e, t)-
rectangle R’ with vj(z) € R C S¢(z). If Cy > 1 was chosen large enough, then this implies
that v;(z) € S©2¢(2/,r’). Combined with (6.15), this shows that

u({7 : S(#) is tangent to R;(2)}) < u({2 : vj(z) € S°2¢(2")}) = mgi(vj(z)) <M., zeW.

This is an exact analogue of (5.28).
After this, the proof runs exactly in the same manner as that of Lemma 5.1. First, one
finds by pigeonholing a number n. with 6 g n. < M, such that

ne < p({z' € W: S(2) is tangent to R;j(z2)}) < 2n,

for all z € W’ with u(W’) Z u(W), and for 2 p values of j. This is the analogue of (5.29),
and the proof is the same. These rectangles R;(z) are then again called the children of
z € W', and one observes that they have type (> n¢, > m.) with respect to the ¢-bipartite
set W U B. The same arguments as in the proof of Lemma 5.1 now give upper and
lower bounds for the family of all rectangles R;(z), arising from z € W' and 1 < j <
p; comparing these bounds against each other produces a contradiction as before, and
completes the proof of Lemma 6.1. O
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7. PROOF OF THE MAIN RESULT

We are now ready to prove the main result, Theorem 1.3, which we recall here.

Theorem 7.1. Let K C R3 be an analytic set with 0 < dimpg K < 1, and let 0 < t < dimy K.
Then dimpy pg(K) >t forall 0 € [0,27) \ E, where
dimpg K +t
i FE< ————— < 1.
dmp B < = g K~

Note that in Theorem 7.1, we can assume without loss of generality that X' C By,
where By is defined in Definition 3.5. Indeed, for any ¢ > 0, we may find z. € R3
such that dimy[(K + z¢) N Bg] > dimy K — e. Then we just observe that dimg pg(K) =
dimy pg(K + z¢) forall 6 € [0, 27), by the linearity of py. With this reduction in mind (and
recalling (1.3)), Theorem 7.1 follows immediately from the next result:

Theorem 7.2. Let K C By be an analytic set with dimpy K < 1and let 0 < ¢t < dimy K. Let
L be the set of all vertical lines Lo := {(0,y) : y € R} C R?, 8 € [0, 27), such that

H! (Lg n U F(;;)) =0.

zeK

Then

dimH K+t
i < — 7.1
dlmH ﬁt ~ 2dimH K 5 ( )

where dimy L, is the Hausdorff dimension of {6 € [0,2m) : Ly € L4}

Proof. 1t is sufficient to show that dimp{f € I : Ly € £;} < 3(dimy K + ¢)/dimpg K
for every "short enough" sub-interval I C [0,27) separately. This observation will be
used when we apply Lemma 6.1 below: in the statement of the lemma, the set "T'%(z)"
is defined relative to any compact interval 3 C [0, 2), which is sufficiently short that
Lemma 3.4 can be applied. So, we let J C [0,27) be any compact interval such that
Lemma 6.1 applies with the definition T(z) = {(0,60') € £ x R : |¢/ — py(2)| < 6}, z € R,

As a second reduction, we may assume that K is compact: by a result of Davies [2,
Corollary 2], the analytic set K C R? contains a compact subset of every dimension
strictly smaller than dimy K, and the bound (7.1) is a continuous function of dimpy K.

Fixt < s < dimp K and use Frostman’s lemma to choose a probability measure p with
spt u C K, such that u(B(z,r)) < Cr® for all balls B(z,r) C R?, and for some constant
C > 1. We make the counter assumption that

s+t
2s '

and we choose a Radon probability measure o, supported on ©; := {0 € % : Ly € Ly},
with o(B(0,7)) < r®. The use of Frostman’s lemma is legitimate here, since

@t:{eeg:%t@m Ur(z)):o}:ﬂ{aeg:fﬂ;@mUr(z))<e}

zeK e>0 zeK

dimp{0 € 4 : Ly € L1} > a >

is a Gs-set, using the assumption that K is compact (this implies that Ly N {J, . I'(2) is
also compact for every 6 € ).
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By definition of L, for every 6 € O, hence Ly € L;, we may find a collection of
arbitrarily short dyadic intervals Zy on Ly, say shorter than 2=k with the following
properties:

(i) Lgn UzEK ['(z) C UIEI@ I,
(i) 3 e, I < 1.

The constant kg € N will eventually be chosen large in a manner depending only on
a, s,t,C. If T C Iy is any sub-family, write I ~1(Z}) C R3 for all the points z € R? such
that the point I'(z) N Ly is covered by the intervals in Zj:

“N(T}) = {z€R3 {D(2) N Ly} © UI}. (7.2)
Iez)

This is a convenient abuse of notation: for instance, now (i) simply states that I=(Zy) D
K, and so u(I'"*(Zy)) = 1. For k > 0, let Z} be the sub-family of dyadic intervals in Z,
with side-length 2%, so that Zy = J k>ko ZF. Consequently,

~a@)= | L <y /@ ) do(9).

k>ko
It follows that there exists & > kg such that
1
| onr i@ aos) 2 4. 73)
o, k

Write § := 27%, so that k = log(1/6). We infer from (7.3) that there exists a subset © C ©;
with 0(0) > log™?(1/6) such that (T ~Y(Z})) > log=2(1/6) forall § € ©.
Fix 6 € ©. For j > 0, let Ig 7 consist of those intervals I € I(S“ such that 27771 <
[~1{I}) <279. Then
log™2(1/8) S w(P™H(Z)) < D> u@H(TZ57)),
3>0

so there exists j = jg > 0 such that

k,j 1
pTHZ) 2 W (7.4)

Using (ii), we can estimate

1 , , ,
e SuTHIY)) < Y1) < |Zh|277 < 6t2
Iezy”’
which gives
32277 > 5 /1og?(1/9). (7.5)

In particular, this implies that 2/ < 671, so j < log(1/§), and we can replace (7.4) and
(7.5) by the slightly tidier estimates
1 5t
I’w d 279> ——— 7.6
w37 2 log*(1/6) an ~ log*(1/8) 7.6)
Now, fix n > 0 so small that
2sac —s—t

0<n< s

(7.7)
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(note that the right hand side is positive by the relation between «;, s, t, and the choice of
n only depends on these parameters), and apply Lemma 6.1 at scale 55 with this n > 0,
A=0""" and A=C,cs 07",

where C), ¢ s = Cqos1,c > 1is the large constant specified in Lemma 6.1. The output is a
subset G = G(A,5,\) C K with (K \ G) < (Cyc,s)~*? - 6"%/3, and such that

IT%9(2) N {w : mbs(w) > (Cpos)® 05713y < N (2)|,  2€G. (7.8)
Using the first estimate in (7.6), we obtain

1

log*(1/4)

which combined with (K \ G) < (G, c.5) "%/ - §7/3 gives

1k 1
(Il I(Ia )NG) 2 W;

SuC NI < p NI NG) + WK\ G),  0e®,

0 € 0o,

for small enough § > 0. Writing
L7 = |J IcLy
1€y

and recalling that 0(0) > log2(1/4), it follows that

1 : ;
— < Y78 naG)d 0</ 0cO:{T(z)N Ly} C IPN)du(z),
o & @) 0@ do) < [ o9 0 T Lo} € 7)) dute
which implies the existence of zy € G with
: 1
0cO:{I(2)NLe}CI}}) > ———. 7.9
o({ {T'(z0) N Lo} C Iy })Nlog@-(l/é) (7.9)

For § € ©, let I) C Ly be the unique dyadic d-interval containing the intersection point
I'(z0) N Lg; in other words, the estimate (7.9) then says that Ij) € Ig 7 for many parameters
6 € ©. Let us make this more precise. Since o(B(z,r)) < r®, the lower bound in (7.9)
implies that it takes £ ~* balls of radius 0 to cover the set on the left hand side of (7.9).
In other words, there exist at least M g 0~ disjoint intervals I3, ..., Iy C R of length §
such that, for each 1 < i < M, the é-tube T; := I; x R contains a segment IgL_ € Iﬁ’j ; see
Figure 3 for illustration.
Finally, recall that
mbs(w) = p({z € R? 1w € T%()}).

A basic observation is the following: if § € © C 4 and I C Ly is a vertical segment of
length ¢ (in particular 7, gi for some i), and

w e I1(8) == {w € R?: dist(w', I) < 6},

then w € T%(2) for all z € T-YI}. Indeed, if = € T~'{I}, then {T'(z) N Ly} C I.
Moreover, {I'(z) N Ly} = (0, pp(2)) for some 6 € . Thus, writing w = (w1, ws) € 1(J),
we have |w; — 6| < 0 and |wa — pg(z)| < 2§, and hence

w2 = pun (2)] < wa = po(2)] + [po(2) = puy (2)] < 56.
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FIGURE 3. An illustration for the proof of Theorem 7.2.

Asa consequence,

mts(w) > u(07HIY), e 1(6),
and in particular

— TN (20) A fw s mlis(w) > p(TIZ Y > 11N (20) N 19 (6)] ~ 6% (7.10)

Next, recall that
) 5t
rYoy~2d>_— 1<i<M
PO ~ 2 2 s, 1SS

by the second estimate in (7.6), since Ij € Ig 7. 1f § > 0 is sufficiently small, depending
on «a, s, t, C (this can be arranged by choosing ky € N large enough to begin with, and
recalling that § = 2% < 2#0) the right hand side exceeds C: ¢ ,6°?*~173), by the choice
of n, recall (7.7). By (7.10) and the disjointness of the Vertlcal tubes T;, this means that

0% (20) N {w : mfis(w) > C ¢ (65130} > Zmi 2 627 ~ 5T (20).
i=1
Since 7 > 0 and zy € G, this contradicts (7.8) for sufficiently small § > 0. The proof is
complete. O

With the same argument we can also prove the following lemma about circles, which
will then imply Theorem 1.6.

Lemma 7.3. Let K C By be an analytic set and let L be a set of vertical lines Ly = {6} x R
with —i <0< i such that

dimp (Lg N U S(z)) < min{dimg K, 1}.

zeK
Then {0 € [-%,%]: Ly € L} = 0.
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Proof. We may assume that 0 < dimg K < 1. Fix 0 < t < s < dimpg K, and pick a
probability measure p with spt ¢ € K and p(B(z,r)) S r°. The previous proof can be
used to show that dimy £; < (dimyg K +t¢)/(2dimyg K) < 1, where £; C L is the collection

of those lines Ly with
H! (Lg nJ S+(z)> =0,

zeK
and S, (z) is the upper half of the circle S(z). Lemma 7.3 is evidently a corollary of this
statement, so we only need to indicate the proof of that statement. First note that since
we consider only those vertical lines Ly with —1/4 < 6 < 1/4, they intersect every half-
circle S (z) with z € K exactly once. This is due to the fact that K C By, thus the centre
of any circle S(z) lies in B(0, 1), and the radius is at least 1/2.

In analogy with the proof of Theorem 7.2, we can define S;*(Z}) for any family of
intervals 7} as was done in (7.2) for I"}(Z}). Instead of Lemma 6.1, we now use its
corresponding version for circles, Lemma 5.1. As we are using half circles, we need to
modify the multiplicity function as well, so instead of mf, which was defined for circles
in (5.1), we define it for half circles as

mh_(w) ={z' e R*:w e §5()},

where 59 (2) is the § neighbourhood of S (z). Since mf  (w) < mf(w) for every w € R?,
it follows that the conclusion of Lemma 5.1 holds still true when mj is replaced by mj . .
In particular, with the same parameters A, «,n,C, A, s, t as in (7.8), we can find a subset
G C K with u(K'\ G) < 0;30/25’78/3 such that for every z € G,

1S9 (2) N {w = ml | (w) > Ca° o180 < NS (2)].

From this point on, the proof is exactly the same as that of Theorem 7.2. Note that the
"basic observation" between (7.9) and (7.10) is still valid: if . € £ and I C L is a vertical
segment of length § and w € I(J), then w € SY(z) for every z € S;'{I}. Indeed, for
every z € S7'{I} wehave {S(z)NL} C I, thatis |w — {S(z) N L}| < 56, which implies
w € S3(z). O

Lemma 7.3 implies Theorem 1.6, which we restate here. Recall that dimyg S := dimg{z €
Theorem 7.4. If S is an analytic family of circles, then dimy US = min{dimy S + 1, 2}.
Proof. Fix 0 < t < min{dimg S,1}. By Lemma 7.3, for almost every § € [—1,1], the
vertical line Ly = {6} x R satisfies
dimH[US N Lg] > t.

Hence, by [3, Theorem 5.8], we have dimy US > t+1, and the lower bound of the theorem
now follows by letting ¢ 1+ min{dimy S,1}. The upper bound follows by a standard
covering argument, and we omit the details. O
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