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Abstract. We consider the self-dual Chern–Simons–Schrödinger equa-
tion (CSS) under equivariant symmetry, which is a L2-critical equation.
It is known that (CSS) admits solitons and finite-time blow-up solu-
tions. In this paper, we show soliton resolution for any solutions with
equivariant data in the weighted Sobolev space H1,1: every maximal so-
lution decomposes into at most one modulated soliton and a radiation.
A striking fact is that the nonscattering part must be a single modulated
soliton. To our knowledge, this is the first result on soliton resolution
in a class of nonlinear Schrödinger equations which are not known to be
completely integrable. The key ingredient is the defocusing nature of
the equation in the exterior of a soliton profile. This is a consequence of
two distinctive features of (CSS): self-duality and non-local nonlinearity.
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1. Introduction

We study the long time dynamics of the self-dual Chern–Simons–Schrödinger
equation (CSS) under equivariant symmetry. Our main result (Theorem 1.1)
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is soliton resolution of solutions in the weighted Sobolev space H1,1. More-
over, in the case of finite-time blow-up, our proof works for all finite energy
solutions.

The self-dual Chern–Simons–Schrödinger equation within m-equivariance
is

(CSS) i(∂t + iAt[u])u+ ∂2
ru+

1

r
∂ru−

(m+Aθ[u]

r

)2
u+ |u|2u = 0,

where m ∈ Z (called equivariance index ), and the connection components
At[u] and Aθ[u] are given by

(1.1) At[u] = −
ˆ ∞
r

(m+Aθ[u])|u|2dr
′

r′
, Aθ[u] = −1

2

ˆ r

0
|u|2r′dr′.

The Chern–Simons–Schrödinger equation was introduced by Jackiw–Pi [11]
as a nonrelativistic planar quantum electromagnetic model that exhibits self-
duality (to be discussed more below). It is a gauge-covariant cubic nonlin-
ear Schrödinger equation on R2. We refer to [5, 10–13] for more physical
backgrounds. The model (CSS) is derived after fixing the Coulomb gauge
condition and imposing the equivariant symmetry on the scalar field φ:

φ(t, x) = u(t, r)eimθ,

where (r, θ) are the polar coordinates on R2. For more details on this reduc-
tion, we refer to the introduction of [15–17].

(CSS) enjoys various symmetries and conservation laws. Among the most
basic symmetries are the time translation and the phase rotation symmetries.
Associated to these are the conservation laws for the energy and the mass
(the physical interpretation of the quantity M [u] is the total charge, but in
this paper we shall call it mass following the widespread convention for NLS):

E[u] :=

ˆ
1

2
|∂ru|2 +

1

2

(m+Aθ[u]

r

)2
|u|2 − 1

4
|u|2,(1.2)

M [u] :=

ˆ
|u|2,(1.3)

where we denoted
´
f(r) = 2π

´
f(r)rdr. With this energy functional, (CSS)

admits a Hamiltonian structure

∂tu = −i∇E[u],

where ∇ (acting on a functional) is the Fréchet derivative with respect to
the real inner product

´
Re(uv). Of particular importance in this work are

the L2-scaling symmetry and the pseudoconformal symmetry ; if u(t, r) is a
solution to (CSS), then the functions uλ and Cu also solve (CSS):

uλ(t, r) :=
1

λ
u
( t

λ2
,
r

λ

)
, ∀λ > 0,(1.4)

[Cu](t, r) :=
1

|t|
u(−1

t
,
r

|t|
)e

ir2

4t , ∀t 6= 0.(1.5)
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Associated to (1.4) and (1.5) are the virial identities:

∂t

ˆ
r2|u|2 = 4

ˆ
Im(u · r∂ru),(1.6)

∂t

ˆ
Im(u · r∂ru) = 4E[u].(1.7)

In this aspect, (CSS) shares many similarities with the cubic NLS

(NLS) i∂tψ + ∆ψ + |ψ|2ψ = 0 on R1+2.

A notable feature of (CSS) in comparison to NLS is the self-duality. In-
deed, the energy functional can be written in the self-dual form

(1.8) E[u] =

ˆ
1

2
|Duu|2,

where Du is the (covariant) Cauchy–Riemann operator defined by

(1.9) Duf := ∂rf −
m+Aθ[u]

r
f.

We call the operator u 7→ Duu the Bogomol’nyi operator. Due to (1.8)
and the Hamitonian structure, any static solutions to (CSS) are given by
solutions to the Bogomol’nyi equation:

(1.10) DQQ = 0.

For m ≥ 0, there is an explicit m-equivariant static solution (Jackiw–Pi
vortex) to the Bogomol’nyi equation which is unique up to the symmetries
of the equation [10]:

(1.11) Q(r) =
√

8(m+ 1)
rm

1 + r2m+2
, m ≥ 0.

Note that we suppressed the m-dependences in Du and Q for the simplicity
of notation. Moreover, applying the pseudoconformal transform (1.5) to Q,
we obtain an explicit finite-time blow-up solution:

S(t, r) :=
1

|t|
Q
( r
|t|

)
e
−i r

2

4|t| , t < 0.

We note that S(t) has finite energy if and only if m ≥ 1.
Let us briefly discuss some known results on the covariant Chern–Simons–

Schrödinger equation without symmetry. The local well-posedness has been
studied by many authors: [1, 9, 21, 23]. However, the best known result
by Liu–Smith–Tataru [23] still misses the critical L2-space. There are also
results on the long-term dynamics [1, 2, 25].

If one restricts to the equivariant self-dual Chern–Simons–Schrödinger
equation, i.e., (CSS), then much more is known. First of all, as there is
no derivative nonlinearity, (CSS) is well-posed in L2 [22, Section 2]. The
global-in-time large data dynamics are partially known. Here, the ground
state Q provides a natural threshold for the nonscattering dynamics. In-
deed, Liu–Smith [22] proved the following subthreshold theorem: for m ≥ 0,
any m-equivariant L2-solutions u with M [u] < M [Q] scatter both forwards
and backwards in time. At the threshold mass M [u] = M [Q] (necessarily
m ≥ 0), there are two typical examples of non-scattering solutions: Q and
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S(t). These are indeed the only examples in the energy space due to the
classification result of Li–Liu [20] (S(t) for the radial case m = 0 is an ex-
ception because it does not have finite energy due to the slow spatial decay
of Q). Above the threshold, [15–18] provide a variety of finite-time blow-
up solutions (and global-in-time nonscattering solutions) with quantitative
descriptions of the dynamics near the blow-up time.

It is widely believed that, for arbitrary large data, the maximal solutions
asymptotically decompose into the sum of decoupled solitons and a radia-
tion. This is referred to as the soliton resolution conjecture. This has been
known for a wide range of completely integrable equations, but the focus of
the present paper is on soliton resolution for (possibly) non-integrable models
without exploiting complete integrability techniques. Recently, the remark-
able works [4, 6–8, 14] established soliton resolution for the radial critical
nonlinear wave equation (in various dimensions) and energy-critical equi-
variant wave maps. However, to our knowledge, there is no earlier result for
non-integrable Schrödinger type equations.

The main result of this paper is the proof of soliton resolution for the equi-
variant self-dual Chern–Simons–Schrödinger equation in a suitable weighted
Sobolev class. Our proof is based on a remarkable consequence of the non-
local nonlinearity and the self-duality of (CSS), namely, the defocusing na-
ture of the equation in the exterior of a soliton profile. This property also
results in a strong rigidity of the dynamics of (CSS): the non-existence of
multi-soliton configurations separated by scales. See the remarks following
Theorem 1.1.

We are now ready to state the result. Let us denote the modulated soliton
by

Qλ,γ(r) :=
eiγ

λ
Q
( r
λ

)
, λ ∈ (0,∞), γ ∈ R/2πZ.

We also denote by H1,1
m and H1

m the (weighted) Sobolev spaces H1,1 and H1

restricted to m-equivariant functions, equipped with the inherited norms.
We denote by ∆(m) = ∂rr + 1

r∂r−
m2

r2
the Laplacian acting on m-equivariant

functions.

Theorem 1.1 (Soliton resolution for equivariant H1,1-data). Let m ∈ Z.
When m ≥ 0, we have soliton resolution for H1,1

m -solutions:
• (Finite-time blow-up solutions) If u is a H1

m-solution to (CSS) that
blows up forwards in time at T < +∞, then u(t) admits the decom-
position

(1.12) u(t, ·)−Qλ(t),γ(t) → z∗ in L2 as t→ T−,

for some continuous λ(t) ∈ (0,∞) and γ(t) ∈ R/2πZ, and z∗ ∈ L2

with the following properties:
– (Further regularity of z∗) We have ∂rz∗, 1

rz
∗ ∈ L2. Moreover,

if u is a H1,1
m finite-time blow-up solution, then we also have

rz∗ ∈ L2.
– (Bound on the blow-up speed) As t→ T , we have

(1.13) λ(t) .M [u]

√
E[u](T − t).
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When m = 0, we further have the improved bound as t→ T

(1.14) λ(t) .M [u]

√
E[u](T − t)
| log(T − t)|

1
2

.

• (Global solutions) If u is a H1,1
m -solution to (CSS) that exists globally

forwards in time, then either u(t) scatters forwards in time, or u(t)
admits the decomposition

(1.15) u(t, ·)−Qλ(t),γ(t) − eit∆
(−m−2)

u∗ → 0 in L2 as t→ +∞,

for some continuous λ(t) ∈ (0,∞) and γ(t) ∈ R/2πZ, and u∗ ∈ L2

with the following properties:
– (Further regularity of u∗) We have ∂ru∗, 1

ru
∗, ru∗ ∈ L2.

– (Bound on the scale) As t→ +∞, we have

(1.16) λ(t) .M [u]

√
E[Cu],

where Cu is the pseudoconformal transform (1.5) of u. When
m = 0, we further have as t→ +∞

(1.17) λ(t) .M [u]

√
E[Cu]

| log t|
1
2

.

On the other hand, when m < 0, any H1,1
m -solution to (CSS) scatters for-

wards in time. Due to the time-reversal symmetry, all the above statements
also hold for backward-in-time evolutions.

We note that one can further choose smooth modulation parameters in
Theorem 1.1 because the theorem is invariant under replacing λ(t) by any
function λ̃(t) with λ̃(t)/λ(t)→ 1 (and similarly for γ(t)).

Remark 1.2 (The dynamics for m ≥ 0 and m < 0). The dynamics of (CSS)
for m ≥ 0 and m < 0 are completely different. In fact, we will show that
(CSS) for m < 0 is defocusing in the sense that

(1.18) E[u] ∼M [u] ‖u(t)‖2
Ḣ1
m

and hence there are no nontrivial Jackiw–Pi vortices for m < 0. See Lemma
3.1 for the proof.

Remark 1.3 (Nonexistence of multi-solitons). It is remarkable that at most
one soliton can appear in the resolution. This is a distinctive feature of
(CSS). Indeed, as a consequence of the self-duality and non-locality, we ob-
serve a defocusing nature, i.e., the strict positivity of the energy, of (CSS) at
the exterior of a soliton profile. Hence two solitons at different scales cannot
exist simultaneously. We will obtain this defocusing nature by combining
our two observations: (i) (CSS) at the exterior of soliton resembles (CSS)
for m < 0 (observed in [15]) and (ii) the defocusing nature (1.18) when
m < 0. See Lemma 3.1 for the proof.

Even without equivariant symmetry, by essentially the same mechanism,
we expect that there is no bubble tree (i.e., a multi-soliton separated only
by scales) for the self-dual Chern–Simons–Schrödinger equation. However,
multi-solitons separated by spatial distances may exist.
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Remark 1.4 (Regularity assumptions on data). As seen in the above, we cover
all H1

m finite-time blow-up solutions. For global solutions, we will reduce the
situation to theH1

m finite-time blow-up case in the spirit of the pseudoconfor-
mal transform, which requires the H1,1

m -assumption. Note that E[Cu] is well-
defined for H1,1

m -solutions u. Soliton resolution for any global H1
m-solutions

(or, more ambitiously L2
m-solutions) is an interesting open problem.

Remark 1.5 (Equivariance index on the scattering part). We choose to state
the scattering for the radiative part of (1.15) under the (−m−2)-equivariant
free Schrödinger flow, because the scattering part u(t) − Qλ(t),γ(t) approxi-
mately solves (−m− 2)-equivariant (CSS). This fact is already observed in
[15].

However, the equivariance index for the scattering part of (1.15) is irrele-
vant if one only considers the scattering in L2-norm. Indeed, for anym, k ∈ Z
and radial functions u∗, v∗ ∈ L2 (we equip L2 with the rdr-measure), we have

‖eit∆(m)
u∗ − eit∆(k)

v∗‖L2 → 0 as t→ +∞

if u∗ and v∗ satisfy the relation

u∗ = F−1
m Fkv∗,

where Fm is the rescaled version of the Hankel transform of order m:

[Fmf ](ρ) =
im−1

2

ˆ ∞
0

f(r)Jm(
rρ

2
)rdr

with Jm Bessel function of the first kind of order m. Note that the above can
be verified using the pseudoconformal transform and the identity eit∆(m)

u∗ =

[Cei(·)∆(m)Fmu∗](t) for t > 0, for any m ∈ Z. Since F−1
m Fk is unitary in

L2, the L2-scattering is independent of equivariance indices. However, the
scattering with different equivariance indices might not be equivalent under
topologies other than L2. For example, the properties ∂ru∗, 1

ru
∗, ru∗ ∈ L2 (as

stated in Theorem 1.1) may not be preserved under changes of equivariance
indices, i.e., under F−1

m Fk.

Remark 1.6 (Bounds for scaling parameter). When m ≥ 1, the explicit blow-
up solution S(t) and the pseudoconformal blow-up solutions constructed in
[15,16] are finite-energy finite-time blow-up solutions that saturate the bound
(1.13). Similarly, the soliton Q itself saturates (1.16).

When m = 0, the blow-up solution S(t) and the soliton Q do not satisfy
the bounds (1.14) and (1.17), respectively. This is consistent with Theorem
1.1 because Q does not belong to H1,1

0 and the explicit blow-up solution
S(t) does not have finite energy, and hence Q and S(t) are not covered by
our theorem. Note that (1.17) says that any global-in-time nonscattering
H1,1

0 -solution must blow up in infinite time. On the other hand, the authors
[17, 18] construct finite energy finite-time blow-up solutions with the speed
λ(t) ∼ (T − t)| log(T − t)|−2 and λ(t) ∼ (T − t)p| log(T − t)|−1 for all p > 1,
respectively. However, we do not know whether the upper bound (1.14) is
sharp or not.
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The bounds (1.13)-(1.14) and (1.16)-(1.17) may have to be relaxed for
more general class of solutions. Note that such a relaxation is necessary for
m = 0 by the concrete examples S(t) and Q.

Remark 1.7 (On the phase rotation parameter). The phase rotation param-
eter does not necessarily stabilize as t → T (or t → +∞). Indeed, the
finite-time blow-up solutions constructed in [18] for the m = 0 case exhibit
infinite amount of phase rotations. The m ≥ 1 case is open.

Remark 1.8 (Comparison with (NLS)). For the finite-time blow-up case,
there are similar results [24,26] in (NLS) for solutions having slightly super-
critical mass (i.e., M [u] −M [Q] � 1). Under this assumption, a standard
variational argument in the blow-up scenario ensures that solutions even-
tually undergo the near-soliton dynamics in the L2-topology. Note that in
Theorem 1.1 we do not have L2-proximity to solitons.

For the near-soliton dynamics of (NLS), it is known from [26] that any fi-
nite energy finite-time blow-up solutions satisfy either λ(t) ∼ ((T−t)/ log | log(T−
t)|)

1
2 or λ(t) . (T−t). The former log-log rate essentially arises from negative

energy solutions, which is impossible for the self-dual (CSS). It is expected
that such log-log rates are possible for the focusing non-self-dual (CSS) [2].

Strategy of the proof. We use the notation in Section 2.1.
For m < 0, we will prove the global coercivity of energy (1.18), which

renders (CSS) essentially defocusing form < 0. Thus the scattering for H1,1
m -

data follows from a classical argument using the pseudoconformal transform,
see e.g., [3].

The interesting case is when m ≥ 0, where solitons do exist. By the
pseudoconformal transform, it suffices to prove the finite-time blow-up case of
Theorem 1.1. Our key input is the nonlinear coercivity of energy (1.20) after
extracting out the soliton profile, which holds for solutions with possibly large
mass. As explained in Remark 1.3, this nonlinear coercivity is a consequence
of the self-duality and non-locality, which are distinctive features of (CSS).

1. Variational argument. For a finite energy finite-time blow-up solution
u(t), not necessarily close to the modulated soliton Qλ,γ in L2, we work with
the renormalized solution v(t) (using the L2-scaling) near the blow-up time
(say T ) of u to have ‖v(t)‖Ḣ1

m
= ‖Q‖Ḣ1

m
and E[v(t)]→ 0.

In view of the uniqueness of the zero energy solution (i.e., E[w] = 0 if
and only if w = Qλ,γ or w = 0) and renormalization, we expect that each
v(t) is close to eiγ(t)Q. We remark that the closeness of v to eiγQ cannot be
measured in L2, because we do not assume that the mass of v is close to that
of Q. In fact, we are able to show that v is close to eiγQ in the Ḣ1-topology
(Lemma 4.2). Therefore, we roughly have

(1.19) u(t) = [Q+ ε(t, ·)]λ(t),γ(t) with ‖ε(t)‖Ḣ1 → 0

for some λ(t) and γ(t). We may fix the decomposition by imposing suitable
orthogonality conditions on ε. We note that ‖ε(t)‖L2 might be large. We also
note that (1.19) is a consequence of the uniqueness of zero-energy solutions
to (CSS); one cannot expect (1.19) for (NLS) for arbitrary solutions with
large mass.
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2. Nonlinear coercivity of energy. For the proof of Theorem 1.1, the
qualitative information ‖ε(t)‖Ḣ1 → 0 is not sufficient. Our next crucial
input is the following nonlinear coercivity of the energy (Lemma 4.4):

(1.20) E[Q+ ε] &‖ε‖L2
‖ε‖2

Ḣ1

for ε satisfying the orthogonality conditions and ‖ε‖Ḣ1 � 1. Here, the
point is that the coercivity holds even for ‖ε(t)‖L2 & 1. If we were to have
L2-smallness ‖ε(t)‖L2 � 1, then all the higher order terms of E[Q + ε]
are perturbative and (1.20) is merely a consequence of the linear coercivity
(around Q). When ε(t) has large L2-norm, the higher order terms of E[Q+ε]
are no longer perturbative. Instead, we have (using the self-duality (1.8))

E[Q+ ε] =
1

2

ˆ
|DQ+ε(Q+ ε)|2

≈ 1

2

ˆ
|LQ(χRε)|2 +

∣∣∣(∂r − m+Aθ[Q] +Aθ[ε]

r

)(
(1− χR)ε

)∣∣∣2,
where LQ is the linearized Bogomol’nyi operator around Q (see (2.2)). The
interior term is simply handled by a localized version of the linear coercivity
for LQ. However, the exterior term contains non-perturbative higher order
terms like |Aθ[ε]

r ε|2. At this point, we use the non-locality of the problem,
particularly the fact thatm+Aθ[Q] ≈ −(m+2) is negative. Thus the exterior
term can be viewed as the energy of ε for the −(m + 2)-equivariant (CSS).
Using the boundary condition [(1−χR)ε](R) = 0 and the fact that both m+
Aθ[Q] and Aθ[ε] are negative, we can prove unconditional coercivity (4.12) for
the exterior term (which we call nonlinear Hardy’s inequality). Note that this
argument also shows the nonexistence of nontrivial zero energy solutions to
(CSS) for negative equivariance indices. As a result, the nonlinear coercivity
of energy (1.20) follows.

3. Bound on the blow-up rate. The proof of (1.13) is standard and very
similar to the pseudoconformal regime in Raphaël [26]. Indeed, by a standard
modulation analysis, we obtain a modulation estimate in the renormalized
spacetime variables (2.1): ∣∣∣λs

λ

∣∣∣ . ‖ε‖Ḣ1
m
.

Then, thanks to the nonlinear coercivity (1.20) of energy, we get

|λt| =
1

λ

∣∣∣λs
λ

∣∣∣ . 1

λ

√
E[Q+ ε] =

√
E[u],

whose integration yields the bound (1.13).
However, the proof of (1.14) for m = 0 is trickier. We will use the fact

that yQ /∈ L2 (logarithmic divergence). Indeed, motivated by the generalized
nullspace relations (2.7) of the linearized operator iLQ (see (2.4)), the time
variation of λ can be tracked by looking at the time evolution of the inner
product (ε, y2Q)r; we roughly have an estimate of the form

λs
λ

(ΛQ, y2QχR)r − ∂s(ε, y2QχR)r ≈ −(iLQε, y2QχR)r . ‖ε‖Ḣ1
m
‖yQχR‖L2 .
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The point here is that we have different logarithmic divergences of the quan-
tities:

(ΛQ, y2QχR)r ∼ logR,

‖yQχR‖L2 ∼
√

logR.

Next, we choose R = R(t) which diverges polynomially so that logR ∼
| log(T − t)| and absorb ∂s(ε, y2QχR)r into a total derivative to roughly have∣∣∣λs

λ

∣∣∣ . 1

| log(T − t)|
1
2

‖ε‖Ḣ1 .

Using (1.20) again, this implies (1.14).
4. Existence of the asymptotic profile. The existence of the asymptotic

profile z∗ as in (1.12) as well as its regularity can be proved in a very similar
manner to Merle–Raphaël [24]. To obtain z∗ as the strong L2-limit of ε](t)
as t→ T−, we again take advantage of the nonlinear coercivity of energy in
the form ‖ε](t)‖H1

m
. 1. This means that ε](t) (and hence z∗) is not only

controlled on the obvious soliton scale r . λ, but also up to scale r . 1.

Organization of the paper. In Section 2, we collect notation and prelim-
inaries for our analysis. In Section 3, we prove Theorem 1.1 for m < 0. The
heart of this paper is contained in Section 4, where we prove Theorem 1.1
for m ≥ 0.

Acknowledgements. K. Kim is supported by Huawei Young Talents Pro-
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nology Foundation under Project Number BA1701-01, NRF-2019R1A5A1028324,
and NRF-2018R1D1A1A0908335. S.-J. Oh is supported by the Samsung Sci-
ence & Technology Foundation under Project Number BA1702-02, a Sloan
Research Fellowship and a NSF CAREER Grant DMS-1945615.

2. Preliminaries

In this section, we collect notation and preliminary facts on linearization,
adapted function spaces, and duality estimates for (CSS).

2.1. Notation. For A ∈ C and B ≥ 0, we use the standard asymptotic
notation A . B or A = O(B) if there is a constant C > 0 such that
|A| ≤ CB. A ∼ B means that A . B and B . A. The dependencies of C
are specified by subscripts, e.g., A .E B ⇔ A = OE(B) ⇔ |A| ≤ C(E)B.
In this paper, any dependencies on the equivariance index m will be omitted.

We also use the notation 〈x〉, log+ x, log− x defined by

〈x〉 := (|x|2 + 1)
1
2 , log+ x := max{log x, 0}, log− x := max{− log x, 0}.

We let χ = χ(x) be a smooth spherically symmetric cutoff function such
that χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. For A > 0, we define its
rescaled version by χA(x) := χ(x/A).

We mainly work with equivariant functions on R2, say φ : R2 → C, or
equivalently their radial part u : R+ → C with φ(x) = u(r)eimθ, where
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R+ := (0,∞) and x1 + ix2 = reiθ. We denote by ∆(m) = ∂rr + 1
r∂r −

m2

r2
the

Laplacian acting on m-equivariant functions.
The integral symbol

´
means
ˆ

=

ˆ
R2

dx = 2π

ˆ
rdr.

For complex-valued functions f and g, we define their real inner product by

(f, g)r :=

ˆ
Re(fg).

For a real-valued functional F and a function u, we denote by ∇F [u] the
functional derivative of F at u under this real inner product.

We denote by Λ the L2-scaling generator:

Λ := r∂r + 1.

Given a scaling parameter λ ∈ R+, phase rotation parameter γ ∈ R/2πZ,
and a function f , we write

fλ,γ(r) :=
eiγ

λ
f
( r
λ

)
.

When λ and γ are clear from the context, we will also denote the above by
f ] as in [15], i.e.,

f ] := fλ,γ .

Similarly, we define its inverse by [:

g[(y) := λe−iγg(λy).

When a time-dependent scaling parameter λ(t) is given, we define rescaled
spacetime variables s, y by the relations

(2.1)
ds

dt
=

1

λ2(t)
and y =

r

λ(t)
.

The raising operation ] converts a function f = f(y) to a function of r:
f ] = f ](r). Similarly, the lowering operation [ converts a function g = g(r)

to a function of y: g[ = g[(y). In the modulation analysis in this paper, the
dynamical parameters such as λ, γ, b, η are functions of either the variable t
or s under ds

dt = 1
λ2
.

For k ∈ N, we define

|f |k := max{|f |, |r∂rf |, . . . , |(r∂r)kf |},

|f |−k := max{|∂kr f |, |1r∂
k−1
r f |, . . . , | 1

rk
f |}.

We note that |f |k ∼ rk|f |−k. The following Leibniz rules hold:

|fg|k . |f |k|g|k, |fg|−k . |f |k|g|−k.

The relevant function spaces will be discussed in Section 2.3.
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2.2. Linearization of (CSS). We quickly record the linearization of (CSS)
around Q. For more detailed exposition, see the corresponding sections of
[15–17].

We first linearize the Bogomol’nyi operator w 7→ Dww. We can write

(2.2) Dw+ε(w + ε) = Dww + Lwε+ (h.o.t),

where

Lwε := Dwε− 2
yAθ[w, ε]w,

and Aθ[ψ1, ψ2] is defined through the polarization

Aθ[ψ1, ψ2] := −1
2

´ r
0 Re(ψ1ψ2)r′dr′.

The L2-adjoint L∗w of Lw takes the form

L∗wv = D∗wv + w
´∞
y Re(wv) dy′.

We remark that the operator Lw and its adjoint L∗w are only R-linear. From
DQQ = 0 and (1.8), we have the following expansion for the energy:

(2.3) E[Q+ ε] = 1
2‖LQε‖

2
L2 + (h.o.t.).

Next, we linearize (CSS), which we write in the Hamiltonian form ∂tu +
i∇E[u] = 0. We decompose

(2.4) ∇E[w + ε] = ∇E[w] + Lwε+Rw(ε),

where Lwε collects the linear terms in ε and Rw(ε) collects the remainders.
Note that Lw is the Hessian of E, i.e.,

∇2E[w] = Lw.

Being the Hessian of the energy, Lw is formally symmetric with respect to
the real inner product:

(Lwf, g)r = (f,Lwg)r.

If one recalls (1.8), we have ∇E[u] = L∗uDuu. Thus (2.4) and (2.2) yield

Lwε = L∗wLwε+ ( 1
y

´ y
0 Re(wε)y′dy′)Dww

+ w
´∞
y Re(εDww)dy′ + ε

´∞
y Re(wDww)dy′.

Again, we remark that the operator Lw is only R-linear. In particular, from
DQQ = 0, we observe the self-dual factorization of iLQ:

(2.5) iLQ = iL∗QLQ.

This identity was first observed in [19]. Thus, the linearization of (CSS) at
Q is

(2.6) ∂tε+ iLQε = 0, or ∂tε+ iL∗QLQε = 0.

Finally, we briefly recall the formal generalized kernel relations of the
linearized operator iLQ. We have

Ng(iLQ) = spanR{ΛQ, iQ, i4r
2Q, ρ}
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with the relations (see [15, Proposition 3.4])

(2.7)

{
iLQ(i r

2

4 Q) = ΛQ, iLQρ = iQ,

iLQ(ΛQ) = 0, iLQ(iQ) = 0,

where the existence of ρ is given in [15, Lemma 3.6]. In fact, we have:

(2.8)


LQ(i r

2

4 Q) = i r2Q, LQρ = 1
2(m+1)rQ,

L∗Q(i r2Q) = −iΛQ, L∗Q( 1
2(m+1)rQ) = Q,

LQ(ΛQ) = 0, LQ(iQ) = 0.

2.3. Adapted function spaces. In this subsection, we quickly recall the
equivariant Sobolev spaces and the adapted function space Ḣ1

m. For more
details, see [15,17].

For s ≥ 0, we denote by Hs
m and Ḣs

m the restriction of the usual Sobolev
spaces Hs(R2) and Ḣs(R2) on m-equivariant functions. For high equivari-
ance indices, we have the generalized Hardy’s inequality [15, Lemma A.7]:
whenever 0 ≤ k ≤ |m|, we have

(2.9) ‖|f |−k‖L2 ∼ ‖f‖Ḣk
m
.

Specializing this to k = 1, we have the Hardy-Sobolev inequality [15, Lemma
A.6]: whenever |m| ≥ 1, we have

(2.10) ‖r−1f‖L2 + ‖f‖L∞ . ‖f‖Ḣ1
m
.

Note in general that H1
0 ↪→ L∞ is false. Finally, we define the weighted

Sobolev space H1,1
m equipped with the norm

‖f‖2
H1,1
m

:= ‖f‖2H1
m

+ ‖rf‖2L2 .

Next, we define the adapted function space Ḣ1
m. This space is motivated

by the linear coercivity of energy, namely the coercivity estimates for the
linearized Bogomol’nyi operator LQ at the Ḣ1-level. The available Hardy-
type controls on f from ‖LQf‖L2 are different for the cases m = 0 and
m ≥ 1. When m ≥ 1, we have a coercivity of LQ in terms of the usual
Ḣ1
m-norm. Thus we let

Ḣ1
m := Ḣ1

m when m ≥ 1.

When m = 0, the adapted function space Ḣ1
0 is defined by the norm

‖f‖Ḣ1
0

:= ‖∂rf‖L2 + ‖〈log− r〉−1r−1f‖L2 .

We remark that the logarithmic loss near the origin r = 0 is introduced due
to the failure of Hardy’s inequality when m = 0. Let us note Ḣ1

0 ↪→ Ḣ1
0 and

Ḣ1
0 ∩ L2 = H1

0 . One also has the following weighted L∞-estimate

(2.11) ‖〈log− r〉−
1
2 f‖L∞ . ‖f‖Ḣ1

0
,

which follows from integrating the inequality∣∣∣∂r( |f |2

〈log− r〉

)∣∣∣ ≤ (|∂rf |+ |f |
r〈log− r〉

)
· |f |
〈log− r〉
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and applying the fundamental theorem of calculus.
We now state the coercivity estimates of LQ at the Ḣ1-level. To obtain

the coercivity of LQ, it is necessary to preclude the kernel elements ΛQ and
iQ of LQ. We do this by imposing suitable otrhogonality conditions. We fix
profiles Z1,Z2 ∈ C∞c,m satisfying the transversality condition

(2.12) det

(
(ΛQ,Z1)r (iQ,Z1)r
(ΛQ,Z2)r (iQ,Z2)r

)
6= 0.

Lemma 2.1 (Coercivity of LQ; [15, 17]). Let m ≥ 0. Let Z1,Z2 ∈ C∞c,m
satisfy (2.12). Then,

(2.13) ‖LQf‖L2 ∼ ‖f‖Ḣ1
m
, ∀f ∈ Ḣ1

m with (f,Z1)r = (f,Z2)r = 0.

2.4. Duality estimates. In this subsection, we collect estimates for the
nonlinearity of (CSS). Some of the following multilinear estimates already
appeared in [15]. Here we slightly generalize them for our needs.

We first introduce several more pieces of notation, in order to estimate
systematically the errors from the nonlinearity of (CSS). Denote by N (u)
the nonlinearity of (CSS):

N (u) := (−|u|2 + 2m
r2
Aθ[u] + 1

r2
A2
θ[u] +At[u])u.

The nonlinearity N (u) decomposes into the sum of the cubic and quintic
nonlinearities:

N = N3,0 +m(N3,1 +N3,2) +N5,1 +N5,2,

where we abbreviate N∗(u) := N∗(u, . . . , u) (where ∗ is a place-holder) and
denote the cubic nonlinearities by

N3,0(ψ1, ψ2, ψ3) := −Re(ψ1ψ2)ψ3,

N3,1(ψ1, ψ2, ψ3) := 2
r2
Aθ[ψ1, ψ2]ψ3,

N3,2(ψ1, ψ2, ψ3) := −(
´∞
r Re(ψ1ψ2)dr

′

r′ )ψ3,

and the quintic nonlinearities by

N5,1(ψ1, . . . , ψ5) := 1
r2
Aθ[ψ1, ψ2]Aθ[ψ3, ψ4]ψ5,

N5,2(ψ1, . . . , ψ5) := −(
´∞
r Aθ[ψ1, ψ2]Re(ψ3ψ4)dr

′

r′ )ψ5.

We remark that N3,1 and N3,2 do not appear in the case m = 0.
In view of the Hamiltonian structure of (CSS), the nonlinearity of (CSS)

arises as a part of the functional derivative of the energy, i.e.,

∇E[u] = −∆(m)u+N (u).

In order to relate N∗ with each component of the energy, we decompose

E[u] = 1
2

´
(|∂ru|2 + |m|2

r2
|u|2) +M4,0[u] +mM4,1[u] +M6[u],
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where we abbreviate M∗(u) := M∗(u, . . . , u) and denote the multilinear
forms by

M4,0(ψ1, . . . , ψ4) := −1
4Re(ψ1ψ2)Re(ψ3ψ4),

M4,1(ψ1, . . . , ψ4) :=
´

1
r2
Aθ[ψ1, ψ2]Re(ψ3ψ4),

M6(ψ1, . . . , ψ6) := 1
2

´
1
r2
Aθ[ψ1, ψ2]Aθ[ψ3, ψ4]Re(ψ5ψ6).

It is then easy to verify that

(2.14)



(N3,0(ψ1, ψ2, ψ3), ψ4)r = 4M4,0(ψ1, ψ2, ψ3, ψ4),

(mN3,1(ψ1, ψ2, ψ3), ψ4)r = 2mM4,1(ψ1, ψ2, ψ3, ψ4),

(mN3,2(ψ1, ψ2, ψ3), ψ4)r = 2mM4,1(ψ3, ψ4, ψ1, ψ2),

(N5,1(ψ1, ψ2, ψ3, ψ4, ψ5), ψ6)r = 2M6(ψ1, ψ2, ψ3, ψ4, ψ5, ψ6),

(N5,2(ψ1, ψ2, ψ3, ψ4, ψ5), ψ6)r = 4M6(ψ1, ψ2, ψ5, ψ6, ψ3, ψ4).

We remark thatM4,1 does not appear in the case m = 0.
We turn to study the boundedness properties of M∗ and N∗. Note that

the above relations, in view of duality, tell us that estimates for the multi-
linear formsM∗ might transfer to those of N∗. We start with the mapping
properties of the integral operators:

Lemma 2.2 (Mapping properties for integral operators). Let 1 ≤ p, q ≤ ∞
and s ∈ [0, 2] be such that (p, q, s) = (1,∞, 0) or 1

q + 1 = 1
p + s

2 with p > 1.
Then, we have

(2.15)
∥∥∥ 1

rs

ˆ r

0
f(r′)r′dr′

∥∥∥
Lq
.p ‖f‖Lp .

Proof. Note by the definition of ‖f‖L1 that the estimate is immediate when
(p, q, s) = (1,∞, 0). Henceforth, we assume p > 1. When q = p and s = 2,
then the proof follows from a change of variables and Minkowski’s inequality:

‖ 1
r2

´ r
0 f(r′)r′dr′‖Lp = ‖

´ 1
0 f(ru)udu‖Lp(rdr)

≤
´ 1

0 ‖f(ru)‖Lp(rdr)udu =
´ 1

0 u
1− 2

p ‖f‖Lpdu = p
2(p−1)‖f‖Lp .

When q =∞ and s = 2− 2
p , then by Hölder we have

‖ 1
rs

´ r
0 f(r′)r′dr′‖L∞ ≤ ‖f‖Lp · sup

r∈(0,∞)

1
rs ‖1r′≤r‖Lp′ (r′dr′) .p ‖f‖Lp ,

where 1
p′ = 1− 1

p . For q ∈ (p,∞), the estimate follows from the interpolation:

‖ 1
rs

´ r
0 f(r′)r′dr′‖Lq ≤ ‖ 1

r2

´ r
0 f(r′)r′dr′‖θLp‖ 1

r2−(2/p)

´ r
0 f(r′)r′dr′‖1−θL∞ .p ‖f‖Lp ,

where θ = p
q ∈ (0, 1). This completes the proof of (2.15). �

We then record the Hölder- and weighted L1-type estimates for the mul-
tilinear formsM∗.

Lemma 2.3 (Duality estimates (Hölder-type)). The following estimates
hold.



SOLITON RESOLUTION FOR CSS 15

• (ForM4,∗) Let 1 ≤ p, q ≤ ∞ be such that 1
p + 1

q = 1. Then, we have

|M4,0(ψ1, ψ2, ψ3, ψ4)| . ‖ψ1ψ2‖Lp‖ψ3ψ4‖Lq ,
|M4,1(ψ1, ψ2, ψ3, ψ4)| .p ‖ψ1ψ2‖Lp‖ψ3ψ4‖Lq , if (p, q) 6= (1,∞).

• (For M6) Let 1 ≤ p, q, r ≤ ∞ be such that 1
p + 1

q + 1
r = 2 and

(p, q, r) 6= (1, 1,∞). Then, we have

|M6(ψ1, . . . , ψ6)| .p,q ‖ψ1ψ2‖Lp‖ψ3ψ4‖Lq‖ψ5ψ6‖Lr .
Proof. ForM4,0, this is just Hölder’s inequality. ForM4,1, we assume p > 1
and apply (2.15) with s = 2 to have

|M4,1(ψ1, ψ2, ψ3, ψ4)| .p ‖ 1
r2
Aθ[ψ1, ψ2]‖Lp‖ψ3ψ4‖Lq . ‖ψ1ψ2‖Lp‖ψ3ψ4‖Lq .

For M6, assume (p, q, r) 6= (1, 1,∞). By symmetry, we may assume q > 1.
We then use (2.15) to have

|M6(ψ1, . . . , ψ6)| . ‖ 1
r2−(2/p)Aθ[ψ1, ψ2]‖L∞‖ 1

r2/p
Aθ[ψ3, ψ4]‖Lr′‖ψ5ψ6‖Lr

.p,q ‖ψ1ψ2‖Lp‖ψ3ψ4‖Lq‖ψ5ψ6‖Lr ,

where we denoted 1
r′

:= 1− 1
r . This completes the proof. �

Lemma 2.4 (Duality estimates (weighted L1-type)). The following esti-
mates hold.

• (ForM4,1) Let w12, w34 : (0,∞)→ R+ be decreasing functions such
that w12(r)w34(r) = 1

r2
. Then, we have

|M4,1(ψ1, ψ2, ψ3, ψ4)| . ‖w12ψ1ψ2‖L1‖w34ψ3ψ4‖L1 .

• (For M6) Let w12, w34, w56 : (0,∞) → R+ be decreasing functions
such that w12(r)w34(r)w56(r) = 1

r2
. Then, we have

|M6(ψ1, . . . , ψ6)| . ‖w12ψ1ψ2‖L1‖w34ψ3ψ4‖L1‖w56ψ5ψ6‖L1 .

Proof. Let us only prove the lemma forM6. We start from writing

M6 = 1
2

´
w12w34w56Aθ[ψ1, ψ2]Aθ[ψ3, ψ4]Re(ψ5ψ6).

Since w12 and w34 are decreasing, we have

|w12(r)
´ r

0 Re(ψ1ψ2)r′dr′| ≤
´ r

0 |w12ψ1ψ2|r′dr′ ≤ ‖w12ψ1ψ2‖L1

and a similar estimate for ψ3ψ4. Thus

|M6(ψ1, . . . , ψ6)| ≤
´∞

0 ‖w12ψ1ψ2‖L1‖w34ψ3ψ4‖L1 |w56ψ5ψ6|rdr
≤ ‖w12ψ1ψ2‖L1‖w34ψ3ψ4‖L1‖w56ψ5ψ6‖L1 .

This completes the proof. �

The following two corollaries follow from the duality relations (2.14) and
the above two lemmas.

Corollary 2.5 (Nonlinear estimates (Hölder-type)). For p ∈ [1,∞], denote
by p′ the Hölder conjugate exponent. The following estimates hold.

• (For N3,k) For any 1 ≤ p1, . . . , p4 ≤ ∞ with
∑4

j=1
1
pj

= 1 and #{j :

pj =∞} ≤ 1, we have

‖N3,k(ψ1, ψ2, ψ3)‖
Lp
′
4
.p1,p2,p3 ‖ψ1‖Lp1‖ψ2‖Lp2‖ψ3‖Lp3 .
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• (For N5,k) For any 1 ≤ p1, . . . , p6 ≤ ∞ with
∑6

j=1
1
pj

= 2 and #{j :

pj =∞} ≤ 1, we have

‖N5,k(ψ1, . . . , ψ5)‖
Lp
′
6
.p1,...,p5

5∏
j=1

‖ψj‖Lpj .

Corollary 2.6 (Nonlinear estimates (weighted L2-type)). The following es-
timates hold.

• (For N3,1 and N3,2) Let w1, . . . , w3 : (0,∞) → R+ be decreasing
functions such that

∏3
j=1w3(r) = 1

r2
. Then, for any k ∈ {1, 2}, we

have

‖N3,k(ψ1, ψ2, ψ3)‖L2 .
3∏
j=1

‖wjψj‖L2 .

• (For N5,1 and N5,2) Let w1, . . . , w5 : (0,∞) → R+ be decreasing
functions such that

∏5
j=1wj(r) = 1

r2
. Then, for any k ∈ {1, 2}, we

have

‖N5,k(ψ1, ψ2, ψ3)‖L2 .
5∏
j=1

‖wjψj‖L2 .

3. Proof of Theorem 1.1 when m < 0

In this short section, we prove Theorem 1.1 when m < 0. In this case,
the only scenario for the long-term dynamics is the scattering. We first show
that (CSS) is defocusing in the sense that the energy is globally coercive:

Lemma 3.1 (Nonlinear coercivity for m < 0). Let m < 0. For any u ∈ Ḣ1
m,

we have
E[u] ∼M [u] ‖u‖2Ḣ1

m
.

In particular, there is no nontrivial finite energy solution to the Bogomol’nyi
equation (1.10) for m < 0.

Proof. As the inequality E[u] .M [u] ‖u‖2Ḣ1
m
is obvious, we focus on the proof

of the reverse inequality E[u] &M [u] ‖u‖2Ḣ1
m
. By density, we may assume that

u is an m-equivariant Schwartz function. In particular, u(0) = 0. We note
that´∞

0 |Duu|2rdr =
´∞

0 |∂ru−
m+Aθ[u]

r u|2rdr

=
´∞

0 {|∂ru|
2 + (m+Aθ[u])2

r2
|u|2 − 2Re(∂ru · Aθ[u]

r u)}rdr
−
´∞

0 2Re(∂ru ·mu)dr.

The last term vanishes, thanks to integration by parts. Thus, we have proved

(3.1)
´∞

0 |Duu|2rdr =
´∞

0 {|∂ru|
2 + (m+Aθ[u])2

r2
|u|2 − 2Re(∂ru · Aθ[u]

r u)}rdr.
The last term of RHS(3.1) will be absorbed into the sum of the first and

second terms. Indeed, since m < 0 and 0 ≤ −Aθ[u](r) ≤ 1
4πM [u], there

exists c = c(M [u]) > 0 such that

|Aθ[u]| ≤ (1− c)|m+Aθ[u]|.
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Thus the last term of RHS(3.1) can be estimated by

|
´
− 2Re(∂ru · Aθ[u]

r u)| ≤ (1− c)
´
|2∂ru · |m+Aθ[u]|

r u|

≤ (1− c)
´
{|∂ru|2 + (m+Aθ[u])2

r2
|u|2}rdr.

Substituting this into (3.1), we have

E[u] = 1
2

´
|Duu|2 ≥ c

´
{|∂ru|2 + (m+Aθ[u])2

r2
|u|2} ≥ c‖u‖2

Ḣ1
m
,

completing the proof. �

As is standard, the coercivity of energy directly implies the scattering for
all H1,1

m -solutions via the pseudoconformal transform.

Proof of Theorem 1.1 when m < 0. Let m < 0. Suppose that there is a non-
scattering maximal H1,1

m -solution u to (CSS). By the time-reversal and time-
translational symmetry, we may assume that u is defined on [1, T+) and is
non-scattering forwards in time, where T+ ∈ (1,+∞] is the forward maximal
time of existence.

If T+ < +∞, then u is a finite-time blow-up solution with finite energy.
The standard blow-up criterion (as a consequence of the H1

m-subcritical local
well-posedness) says that ‖u(t)‖Ḣ1

m
→ ∞ as t → T+. This is inconsistent

with the nonlinear coercivity (Lemma 3.1) and the conservation of energy.
If T+ = +∞ but u does not scatter, then the standard equivariant L2-

Cauchy theory [22] says that u has infinite L4
t,x-norm

‖u‖L4
t,x([1,+∞)×R2) = +∞.

Let v := Cu be the pseudoconformal transform of u (see (1.5)). Note that
v is defined on the time interval [−1, 0) (having well-defined extension past
the time t = −1). Moreover, since the pseudoconformal transform preserves
the space H1,1

m as well as the L4
t,x-norm of the solution, we see that v is a

H1,1
m -solution with

‖v‖L4
t,x([−1,0)×R2) = +∞,

meaning that t = 0 is the forward maximal time of existence. In particular,
v blows up at t = 0. This is impossible due to the previous paragraph. This
completes the proof. �

4. Proof of Theorem 1.1 when m ≥ 0

In this section, we prove Theorem 1.1 when m ≥ 0. As before, we first
reduce the proof of Theorem 1.1 to the case of finite-time blow-up solutions.

Proof of Theorem 1.1 for global solutions assuming the finite-time blow-up case.

Assume that u is aH1,1
m -solution on the time interval [1,+∞). If u scatters

forwards in time, then there is nothing to prove. Suppose that u does not
scatter forwards in time. Similarly as in the proof for the m < 0 case
(see the previous section), the pseudoconformal transformed solution v :=

Cu becomes a H1,1
m finite-time blow-up solution that blows up at t = 0.
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According to Theorem 1.1 for the finite-time blow-up case, v admits the
decomposition

v(t)−Qλ(t),γ(t) → z∗ in L2 as t→ 0−,

with λ(t), γ(t), z∗ satisfying the properties stated in Theorem 1.1. Since
∂rz
∗, 1
rz
∗, rz∗ ∈ L2, we can view z∗ as a radial part of a H1,1

−m−2 function.
We rewrite the above decomposition as

v(t)−Qλ(t),γ(t) − zlin(t)→ 0 in L2 as t→ 0−,

where zlin(t) := eit∆
(−m−2)

z∗.
Inverting the pseudoconformal transform, we have

(4.1) u(t)− ei
r2

4tQ
λ̂(t),γ̂(t)

− [Czlin](t)→ 0 in L2 as t→ +∞,

where λ̂(t) := tλ(−1/t) and γ̂(t) := γ(−1/t). In particular, (1.13)-(1.14) for
λ implies (1.16)-(1.17) for λ̂. Combining the facts Q ∈ L2 and λ̂(t) . 1 with

the DCT, we can replace the pseudoconformal factor ei
r2

4t in the display (4.1)
by 1. Finally, since zlin is a H1,1

−m−2-solution to the (−m−2)-equivariant free
Schrödinger equation, so is Czlin. In other words, Czlin = eit∆

(−m−2)
u∗ for

some u∗ ∈ H1,1
−m−2 and further regularities ∂ru∗, 1

ru
∗, ru∗ ∈ L2 follow. �

The rest of this section is devoted to the proof of Theorem 1.1 for the
finite-time blow-up case.

4.1. Decomposition of small energy solutions. Let u be a finite-time
blow-up solution with finite energy E. By the standard Cauchy theory of
(CSS), we have ‖u(t)‖Ḣ1

m
→ ∞ as t → T with T the blow-up time of u,

whereas E[u(t)] = E by conservation of energy. Renormalizing u(t), i.e.,
introducing v(t, r) := λ̂(t)u(t, λ̂(t)r) with λ̂(t) = ‖Q‖Ḣ1

m
/‖u(t)‖Ḣ1

m
, we have

‖v(t)‖Ḣ1
m

= ‖Q‖Ḣ1
m

and E[v(t)]→ 0.
Since we know that E[w] = 0 if and only if w = 0 or w is a modulated

soliton, it is natural to expect that v(t) is in some sense near Q (modulo
phase rotation). This is done in Lemma 4.2 below in a qualitative way. In
practice, we further need to quantify this proximity to Q. So we will fix the
decomposition of u into

u = [Q+ ε]λ,γ

by imposing suitable orthogonality conditions on ε (Lemma 4.3), and then
quantify the smallness of ε in terms of the energy E (Lemma 4.4). This
motivates the following proposition.

Proposition 4.1 (Decomposition). Let m ≥ 0; let Z1,Z2 ∈ C∞c,m be the
profiles as in (2.12). For any M > 1, there exist 0 < α∗ � η � 1 such that
the following properties hold for all u ∈ H1

m with ‖u‖L2 ≤ M satisfying the
small energy condition

√
E[u] ≤ α∗‖u‖Ḣ1

m
:

(1) (Decomposition) there exists unique (λ, γ) ∈ R+ × R/2πZ such that
ε ∈ H1

m defined by the relation

u = [Q+ ε]λ,γ
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satisfies the orthogonality conditions

(4.2) (ε,Z1)r = (ε,Z2)r = 0

and smallness

(4.3) ‖ε‖Ḣ1
m
< η.

(2) (Estimate for λ) We have

(4.4)
∣∣∣ ‖u‖Ḣ1

m

‖Q‖Ḣ1
m

λ− 1
∣∣∣ . ‖ε‖Ḣ1

m
.

(3) (Improved smallness of ε) We have

(4.5) ‖ε‖Ḣ1
m
∼M λ

√
E[u].

The rest of this subsection is devoted to the proof of Proposition 4.1. The
proof is separated into three lemmas.

Firstly, we show that the smallness of the ratio
√
E[u]/‖u‖Ḣ1

m
implies that

u is close to a modulated soliton in the Ḣ1
m-topology:

Lemma 4.2 (Orbital stability for small energy solutions). For any M > 1
and δ > 0, there exists α∗ > 0 such that the following holds. Let u ∈ H1

m

be a nonzero profile satisfying ‖u‖L2 ≤ M and the small energy condition√
E[u] ≤ α∗‖u‖Ḣ1

m
. Then, there exists γ̂ ∈ R/2πZ such that

‖e−iγ̂ λ̂u(λ̂·)−Q‖Ḣ1
m
< δ,

where λ̂ := ‖Q‖Ḣ1
m
/‖u‖Ḣ1

m
.

Proof. In view of scaling symmetry, we may assume λ̂ = 1.
Suppose not. Then, there exist η > 0 and a sequence {wn}n∈N in H1

m

such that

E[wn]→ 0, ‖wn‖L2 ≤M, ‖wn‖Ḣ1
m

= ‖Q‖Ḣ1
m
,

and

(4.6) ‖wn − eiγQ‖Ḣ1
m
≥ η for any n ∈ N and γ ∈ R/2πZ.

Passing to a subsequence, and using compact embeddings, we may assume
that

wn ⇀ w∞ in H1
m,

wn → w∞ in Lp for any p ∈ (2,∞),

for some w∞ ∈ H1
m.

We show that w∞ cannot be zero. Indeed, using [20, Lemma 3.1]

‖Dxwn‖2L2 := ‖∂rwn‖2L2 + ‖m+Aθ[wn]
r wn‖2L2 ∼M ‖wn‖2Ḣ1

m
,

the definition (1.2) of energy, and E[wn]→ 0, we have

‖w∞‖4L4 = lim
n→∞

‖wn‖4L4 = lim
n→∞

(−4E[wn] + 2‖Dxwn‖2L2)

= lim
n→∞

2‖Dxwn‖2L2 &M lim inf
n→∞

‖wn‖2Ḣ1
m

= ‖Q‖2
Ḣ1
m
.
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Thus w∞ 6= 0.
We now show that w∞ = Qλ,γ for some λ ∈ (0,∞) and γ ∈ R/2πZ.

Indeed, on one hand, E[wn] → 0 implies that Dwnwn → 0 in L2. On the
other hand, [20, Lemma 3.2] says that Dwnwn ⇀ Dw∞w∞. Therefore, we
have Dw∞w∞ = 0, which combined with w∞ 6= 0 and the uniqueness of
zero energy solutions implies that w∞ = Qλ,γ for some λ ∈ (0,∞) and
γ ∈ R/2πZ.

Next, we show that wn → Qλ,γ in Ḣ1
m. Let us write wn = [Q + w̃n]λ,γ .

Note that w̃n ⇀ 0 in H1
m and w̃n → 0 in Lp for any p ∈ (2,∞). Expanding

the expression E[Q + w̃n] = λ−2E[wn] → 0 using (2.3) and applying the
duality estimate (Lemma 2.3), we see that

1
2‖LQw̃n‖

2
L2 = E[Q+ w̃n] +OM (‖w̃n‖3L4)→ 0.

Combining this with the subcoercivity estimate (see [16, Lemma A.5] for
m ≥ 1 and [17, Lemma A.3] for m = 0) and w̃n → 0 in Lp for some
p ∈ (2,∞), we conclude that w̃n → 0 in Ḣ1

m. This shows wn → Qλ,γ in Ḣ1
m.

We are now ready to derive a contradiction. Note that λ = 1 because

‖Q‖Ḣ1
m

= lim
n→∞

‖wn‖Ḣ1
m

= ‖Qλ,γ‖Ḣ1
m

= λ−1‖Q‖Ḣ1
m
.

Thus wn → eiγQ in Ḣ1
m, contradicting (4.6). This completes the proof. �

Having established that u is close to a modulated soliton, we fix the de-
composition u = [Q + ε]λ,γ by imposing the orthogonality conditions (4.2).
In fact, we prove the following:

Lemma 4.3 (Decomposition near Q). For δ > 0, let us denote by Tδ the set
of u ∈ Ḣ1

m satisfying

(4.7) inf
λ′∈R+, γ′∈R/2πZ

‖u(λ′)−1,−γ′ −Q‖Ḣ1
m
< δ.

For any sufficiently small η > 0, there exists δ > 0 such that the following
hold for all u ∈ Tδ:

(1) There exists unique (λ, γ) ∈ R+ × R/2πZ such that u admits the
decomposition

u = [Q+ ε]λ,γ
satisfying the orthogonality conditions (4.2) and smallness ‖ε‖Ḣ1

m
<

η (which is (4.3)).
(2) Moreover, the estimate (4.4) for λ holds.

Proof. The proof will follow from a standard application of the implicit func-
tion theorem and L2-scaling/phase rotation symmetries.

Equip R+ with the metric dR+(λ1, λ2) := | log(λ1λ2 )|; equip R/2πZ with the
metric inherited by the standard metric on R. We then equip the parameter
space R+×R/2πZ with the product metric, which we denote by dist. Next,
for u ∈ Ḣ1

m, λ ∈ R+, and γ ∈ R/2πZ, we define ε = ε(λ, γ, u) via the relation
u = [Q+ ε]λ,γ .
Step 1. Application of the implicit function theorem.
A standard application of the implicit function theorem yields the follow-

ing: there exist 0 < δ1, δ2 � 1 such that, if ‖u − Q‖Ḣ1
m
< δ2, then there
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exists unique (λ, γ) in the class dist((λ, γ), (1, 0)) < δ1 such that (ε,Z1)r =
(ε,Z2)r = 0. Moreover, the Lipschitz bound dist((λ, γ), (1, 0)) . ‖u−Q‖Ḣ1

m

holds. Note that ‖ε‖Ḣ1
m
. ‖u−Q‖Ḣ1

m
also holds in view of the formula of ε.

On the other hand, towards the proof of the global uniqueness of (λ, γ) in
R+×R/2πZ, let us prove the following: if η � δ1 and [Q+ε]λ,γ = [Q+ε′]λ′,γ′
for some ‖ε‖Ḣ1

m
, ‖ε′‖Ḣ1

m
< η, then dist((λ, γ), (λ′, γ′)) < δ1. Indeed, by the

scaling/rotation symmetries and changing the roles of λ, γ, ε and λ′, γ′, ε′ if
necessary, we may assume λ ≥ 1, λ′ = 1, and γ′ = 0. Then, the identity
Q − Qλ,γ = ελ,γ − ε′ gives ‖Q − Qλ,γ‖Ḣ1

m
≤ ‖ε‖Ḣ1

m
+ ‖ελ,γ‖Ḣ1

m
. η � δ1,

which implies dist((λ, γ), (1, 0)) < δ1 as desired.
Step 2. Completion of the proof.
Let η � δ1 and δ � min{η, δ2}. By the L2-scaling and phase rotation

invariances, we may assume

‖u−Q‖Ḣ1
m
< δ.

(1) By the first result of Step 1, there exists (λ, γ) satisfying the orthogo-
nality conditions (4.2) and the Lipschitz bound dist((λ, γ), (1, 0))+‖ε‖Ḣ1

m
.

δ � η. For the proof of uniqueness, if there exists (λ′, γ′, ε′) satisfying
(ε′,Z1)r = (ε′,Z2)r = 0 and ‖ε′‖Ḣ1

m
< η, then the second result of Step 1

says that dist((λ, γ), (λ′, γ′)) < δ1. By the local uniqueness result of Step 1,
one must have λ = λ′ and γ = γ′.

(2) It now remains to show the estimate (4.4) for λ. Let λ̂ := ‖Q‖Ḣ1
m
/‖u‖Ḣ1

m
.

From the identity

‖Q‖Ḣ1
m

= λ̂‖w‖Ḣ1
m

=
λ̂

λ
‖Q+ ε‖Ḣ1

m

and smallness (4.3), we first have λ̂
λ ∼ 1. Together with this, the previous

display yields the control (4.4). This completes the proof. �

By Lemmas 4.2 and 4.3, we have proved all the statements of Proposition
4.1 except the improved smallness (4.5) of ε. We only know that ‖ε‖Ḣ1

m
=

oα∗→0(1) so far. In our next lemma, we show that this qualitative smallness
can be improved to the following quantitative smallness:

Lemma 4.4 (Nonlinear coercivity of energy). For any M > 0, there exists
η > 0 such that the nonlinear coercivity

(4.8) E[Q+ ε] ∼M ‖ε‖2Ḣ1
m

holds for any ε ∈ H1
m with ‖ε‖L2 ≤M satisfying the orthogonality conditions

(4.2) and smallness ‖ε‖Ḣ1
m
≤ η.

Remark 4.5. The proof of Lemma 4.4 not only relies on the linear coercivity
of LQ (Lemma 2.1), but also on a Hardy inequality (4.12) for the operator
DQ − Aθ[ε]

r . We will call (4.12) the nonlinear Hardy inequality, because
the multiplication by Aθ[ε]

r cannot be treated perturbatively when ‖ε‖L2 is
allowed to be large. In fact, the proof of (4.12) is reminiscent of the proof of
the global coercivity of energy in the negative equivariance case.
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Proof. In the proof, we will need an additional parameter R satisfying the
parameter dependence 0 < η � R−1 � M−1. Thus we may freely replace
the error terms such as OM (1) ·oR→∞(1) and OM,R(1) ·oη→0(1) by oR→∞(1)
and oη→0(1), respectively. Moreover, we may bound oη→0(1) by oR→∞(1).

We start from writing the energy functional using the self-dual form (1.8):

2E[Q+ ε] = ‖DQ+ε(Q+ ε)‖2L2 = ‖LQε− 2Aθ[Q,ε]
r ε− Aθ[ε]

r ε‖2L2 .

Note that the middle term is a perturbative error

‖2
rAθ[Q, ε]ε‖L2 . (

´∞
0 Q〈r〉|ε|dr) · ‖ 1

〈r〉ε‖L2

. ‖ε‖
3
2

Ḣ1
m
‖ε‖

1
2

L2 . OM (1) · oη→0(1) · ‖ε‖2Ḣ1
m
. oη→0(‖ε‖2Ḣ1

m
),

whereas the remaining terms are not perturbative: ‖LQε‖ ∼ ‖ε‖Ḣ1
m

due to
(2.13) and (using (2.15))

‖Aθ[ε]
r ε‖L2 . ‖1

r

´ r
0 |ε|

2r′dr′‖L∞‖ε‖L2

. ‖|ε|2‖L2‖ε‖L2 . ‖ε‖2L2‖ε‖Ḣ1
m
.M ‖ε‖Ḣ1

m
.

The above estimates in particular yield the boundedness E[Q+ε] .M ‖ε‖2Ḣ1
m
.

For the proof of the reverse inequality, we note

(4.9) 2E[Q+ ε] = ‖LQε− Aθ[ε]
r ε‖2L2 + oη→0(‖ε‖2Ḣ1

m
).

as a consequence of the above estimates.
We then separately consider the coercivity of ‖LQε − Aθ[ε]

r ε‖L2 in the
regions r . R and r & R, for R > 1 sufficiently large. In the region r . R,
we notice that the nonlinear contribution is small:

‖Aθ[ε]
r χRε‖L2 . ‖|ε|2‖L2‖χRε‖L2

. ‖ε‖L2‖ε‖Ḣ1
m
·R‖ε‖Ḣ1

m
.MR‖ε‖2Ḣ1

m
. oη→0(‖ε‖Ḣ1

m
).

On the other hand, the nonlocal term of LQ is small in the region r & R,
thanks to the spatial decay of Q:

‖Qr
´ r

0 Re[Q(1− χR)ε]r′dr′‖L2 = oR→∞(‖ε‖Ḣ1
m

).

Thus we have shown that

‖LQε− Aθ[ε]
r ε‖L2 = ‖LQ(χRε) + (DQ − Aθ[ε]

r )(1− χR)ε‖L2 + oR→∞(‖ε‖Ḣ1
m

).

We further observe the following almost orthogonality:∣∣∣(LQ(χRε), (DQ − Aθ[ε]
r )(1− χR)ε

)
r

∣∣∣
.M ‖(1(0,2R]|ε|−1 + Q

r

´ r
0 |Qε|r

′dr′) · 1[R,∞)|ε|−1‖L1

.M ‖1[R,2R]|ε|−1‖2L2 + oR→∞(‖ε‖2Ḣ1
m

).

As a result, we have arrived at

‖LQε− Aθ[ε]
r ε‖2L2 = ‖LQ(χRε)‖2L2 + ‖(DQ − Aθ[ε]

r )(1− χR)ε‖2L2(4.10)

+ oR→∞(‖ε‖2Ḣ1
m

) +OM (‖1[R,2R]|ε|−1‖2L2).
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Since R is sufficiently large, we may assume that Z1 and Z2 are supported
in the region r ≤ R. Thus χRε satisfies the same orthogonality conditions
as ε and hence the first term of RHS(4.10) is coercive by Lemma 2.1:

(4.11) ‖LQ(χRε)‖2L2 ∼ ‖χRε‖2Ḣ1
m
.

To deal with the second term of RHS(4.10), we claim the following nonlinear
Hardy inequality : under the parameter dependenceR−1 �M−1 and ‖ε‖L2 ≤
M , we have, for f ∈ Ḣ1

m with f(R) = 0,

(4.12) ‖1[R,∞)(DQ − Aθ[ε]
r )f‖2L2 ∼M ‖1[R,∞)|f |−1‖2L2 .

Let us assume (4.12) and finish the proof. Substituting (4.11) and (4.12)
into (4.10), we have

‖LQε− Aθ[ε]
r ε‖2L2 ≥ c(M)‖ε‖2Ḣ1

m
− oR→∞(‖ε‖2Ḣ1

m
)−OM (‖1[R,2R]|ε|−1‖2L2)

for some constant c(M) > 0 depending on M . Performing an averaging
argument in R for the last term (that is, one replaces R by R′, takes the
integral 1

logR

´ R2

R ·
dR′

R′ , uses Fubini, and then exploits the smallness 1
logR =

oR→∞(1)) and applying the parameter dependence R−1 �M−1 yield

‖LQε− Aθ[ε]
r ε‖2L2 &M ‖ε‖2Ḣ1

m
.

Substituting this into (4.9) gives the nonlinear coercivity

E[Q+ ε] &M ‖ε‖2Ḣ1
m
.

This completes the proof of (4.8), assuming the nonlinear Hardy inequality
(4.12).

Proof of the nonlinear Hardy inequality (4.12).
As the .M -inequality is obvious, we only show the &M -inequality. Let

f ∈ Ḣ1
m be such that f(R) = 0. We write´∞

R |(DQ − Aθ[ε]
r )f |2rdr

=
´∞
R {|∂rf |

2 + (m+Aθ[Q]+Aθ[ε])2

r2
|f |2 − 2Re(∂rf · Aθ[ε]

r f)}rdr
−
´∞
R 2Re(∂rf · (m+Aθ[Q])f)dr

and integrate by parts the last term:

−
´∞
R 2Re(∂rf · (m+Aθ[Q])f)dr = −1

2

´∞
R Q2|f |2rdr,

where we used f(R) = 0. Thus we have arrived at the main identity

(4.13)

´∞
R |(DQ − Aθ[ε]

r )ε|2rdr

=
´∞
R {|∂rf |

2 + (m+Aθ[Q]+Aθ[ε])2

r2
|f |2 − 2Re(∂rf · Aθ[ε]

r f)}rdr
− 1

2

´∞
R Q2|f |2rdr.

Next, we claim that the first term of RHS(4.13) enjoys a good lower bound:

(4.14)
´∞
R {|∂rf |

2 + (m+Aθ[Q]+Aθ[ε])2

r2
|f |2 − 2Re(∂rf · Aθ[ε]

r f)}rdr
&M ‖1[R,∞)|f |−1‖2L2 .
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Indeed, sincem+Aθ[Q] and Aθ[ε] are both negative (on [R,∞)) and |Aθ[ε]| ≤
1

4πM
2, we notice that there exists c = c(M) > 0 satisfying

1[R,∞)|Aθ[ε]| ≤ (1− c)1[R,∞)|m+Aθ[Q] +Aθ[ε]|.

Combining this with

|2Re(∂rf · Aθ[ε]
r f)| ≤ (1− c)|∂rf |2 + 1

1−c |
Aθ[ε]
r f |2,

we obtain the desired lower bound of the integrand

|∂rf |2 + (m+Aθ[Q]+Aθ[ε])2

r2
|f |2 − 2Re(∂rf · Aθ[ε]

r f)

≥ c(|∂rf |2 + (m+Aθ[Q]+Aθ[ε])2

r2
|f |2) &M |f |2−1.

Integrating this on the region r ≥ R yields (4.14).
Now the proof of (4.12) is immediate from the identity (4.13), the lower

bound (4.14), the estimate
1
2

´∞
R Q2|f |2rdr . 1

R2 ‖1[R,∞)|f |−1‖2L2 ,

and the parameter dependence R−1 �M−1. �

To finish the proof of Proposition 4.1, we recall that it only suffices to
show (4.5). This follows from Lemma 4.4:

‖ε‖Ḣ1
m
∼M

√
E[Q+ ε] = λ

√
E[u].

This completes the proof of Proposition 4.1.

4.2. Upper bounds for λ(t). Here and in the next subsection, we let u
be a H1

m-solution to (CSS) which blows up forwards in time at T ∈ (0,∞).
Let M and E be the mass and energy of u, respectively. We recall that,
by the standard Cauchy theory of (CSS), ‖u(t)‖Ḣ1

m
→ ∞ as t → T and

thus
√
E/‖u(t)‖Ḣ1

m
→ 0. Therefore, for all t sufficiently close to T , we can

decompose u(t) according to Proposition 4.1:

u(t, r) =
eiγ(t)

λ(t)
[Q+ ε(t, ·)]

( r

λ(t)

)
with the parameters λ(t), γ(t), and the remainder ε(t) satisfying the prop-
erties as in Proposition 4.1. This subsection is devoted to the proofs of the
upper bounds (1.13) and (1.14).

Proof of (1.13). Recall the rescaled spacetime variables (s, y) (see (2.1)). We
claim that, as a standard application of the modulation estimate, for all t
sufficiently close to T we have

(4.15)
∣∣∣λs
λ

∣∣∣+ |γs| . ‖ε‖Ḣ1
m
.M λ

√
E.

Assuming this claim, we have

|λt| = λ−2|λs| .M
√
E,

from which the bound λ(t) .M
√
E(T − t) (which is (1.13)) follows.
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Henceforth, we prove the claim (4.15). As the argument is standard, we
will be brief. For a (possibly time-dependent) profile ψ, we note the identity

(4.16)
∂s(ε, ψ)r = λs

λ (Λ(Q+ ε), ψ)r − γs(i(Q+ ε), ψ)r

+ (iLQε+ iRQ(ε), ψ)r + (ε, ∂sψ)r.

If ψ ∈ {Z1,Z2}, then we use the orthogonality conditions (4.2), anti-symmetricity
of Λ and i, the self-dual factorization LQ = L∗QLQ, and ∂sψ = 0 to obtain

λs
λ {(ΛQ,Zk)r − (ε,ΛZk)r}+ γs{(iQ,Zk)r − (ε, iZk)r}

= (LQε, LQiZk)r + (RQ(ε), iZk)r.

By the transversality assumption (2.12), Zk ∈ C∞c,m, and ‖ε(t)‖Ḣ1
m
→ 0 as

t→ T , we get

(4.17) |λsλ |+ |γs| . ‖LQε‖L2 + ‖RQ(ε)‖L2 .

Note that ‖LQε‖L2 . ‖ε‖Ḣ1
m

due to (2.13). In the next paragraph, we show
that

(4.18) ‖RQ(ε)‖L2 .M ‖ε‖2Ḣ1
m
.

Substituting this into (4.17) completes the proof of the claim (4.15).
Proof of (4.18). The nonlinear term RQ(ε) is a linear combination of

N∗(ψ1, . . . , ψ∗) where #{j : ψj = ε} ≥ 2. If #{j : ψj = ε} ≥ 3, then by
Corollary 2.5 we have

‖N∗(ψ1, . . . , ψ∗)‖L2 . (1 + ‖Q‖2L2 + ‖ε‖2L2)‖ε‖3L6 .M ‖ε‖3L6 .M ‖ε‖L2‖ε‖2Ḣ1
m
.

If #{j : ψj = ε} = 2, we separately consider the local and nonlocal nonlin-
earities; for N3,0 we use (2.11) to have

‖N3,0(ψ1, ψ2, ψ3)‖L2 . ‖Qε2‖L2 . ‖〈log− y〉Q‖L2‖〈log− y〉−
1
2 ε‖2L∞ . ‖ε‖2Ḣ1

m

and for the nonlocal nonlinearities we use Corollary 2.6 to have

‖N∗(ψ1, . . . , ψ∗)‖L2 .M ‖〈log− y〉2Q‖L2‖y−1〈log− y〉−1ε‖2L2 .M ‖ε‖2Ḣ1
m
.

This completes the proof of (4.18). �

Whenm = 0, we can further improve the bound (1.13) to (1.14). The idea
is to project the ε-equation onto the direction of y2Q, which is a generalized
kernel element that effectively detects the evolution of λ. The logarithmic
improvement for the upper bound of λ will follow from the fact that yQ
logarithmically fails to lie in L2, which holds only in the m = 0 case.

Proof of (1.14) for m = 0. Let ψ = y2QχR(t) with R(t) := (T − t)−δ with
small δ > 0. We note that it suffices to choose any δ ∈ (0, 1

2) in the following
analysis. We note the bounds

(4.19)
|RsR | = λ2|RtR | .

λ2

T−t .M λ
√
E,

|∂sψ| . |RsR |1y∼R .M λ
√
E1y∼R.
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We start by rewriting (4.16) as follows:
λs
λ (ΛQ,ψ)r − ∂s(ε, ψ)r = λs

λ (ε,Λψ)r − γs(ε, iψ)r − (ε, ∂sψ)r

− (iLQε, ψ)r − (iRQ(ε), ψ)r.

We further rearrange the LHS of the above display as
λs
λ (ΛQ,ψ)r−∂s(ε, ψ)r = 1

λ∂s{λ(ΛQ,ψ)r−λ(ε, ψ)r}−(ΛQ, ∂sψ)r+ λs
λ (ε, ψ)r.

As a result, we have obtained
(4.20)

1
λ∂s{λ(ΛQ,ψ)r − λ(ε, ψ)r} = λs

λ (ε, y∂yψ)r − γs(ε, iψ)r − (ε, ∂sψ)r

+ (ΛQ, ∂sψ)r − (iLQε, ψ)r − (iRQ(ε), ψ)r.

In view of

(ΛQ,ψ)r = 16π logR+O(1),

|(ε, ψ)r| . ‖ε‖Ḣ1
0
R2 .M λ

√
E(T − t)−2δ .M,E (T − t)1−2δ,

we have

(4.21) LHS(4.20) =
1

λ
∂s

{
λ
(
16π logR+O(1)

)}
We turn to estimate each term of RHS(4.20). By (4.15) and (4.19), we

have

|λsλ (ε, y∂yψ)r|+ |γs(ε, iψ)r|+ |(ε, ∂sψ)r| .M,E λ ·‖ε‖Ḣ1
0
R2 .M,E λ(T − t)1−2δ.

Next, by (4.19), we have

|(ΛQ, ∂sψ)r| .M λ
√
E.

Next, the linear term can be bounded as

|(iLQε, ψ)r| = |(LQε, LQiψ)r| . ‖LQε‖L2‖LQiψ‖L2

.M λ
√
E · (logR)

1
2 .M λ

√
E| log(T − t)|

1
2 ,

Finally, the nonlinear term can be bounded using (4.18):

|(iRQ(ε), ψ)r| . R‖RQ(ε)‖L2 .M R‖ε‖2Ḣ1
m
.M,E λ(T − t)1−δ.

Therefore, we have obtained the following bound as t→ T :

(4.22) |RHS(4.20)| .M λ
√
E| log(T − t)|

1
2 .

Combining (4.21) and (4.22), we have as t→ T :∣∣∣ 1
λ
∂s

{
λ
(
16π logR+O(1)

)}∣∣∣ .M λ
√
E| log(T − t)|

1
2 .

In terms of the t-variable, this reads∣∣∣∂t{λ(16π logR+O(1)
)}∣∣∣ .M √E| log(T − t)|

1
2 .

Integrating the above backwards from the blow-up time with logR ∼ | log(T−
t)| and λ .M,E T − t yields

λ · | log(T − t)| .M
√
E(T − t)| log(T − t)|

1
2 ,

which completes the proof of (1.14). �
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4.3. Existence and regularity of asymptotic profile. In this subsection,
we finish the proof of Theorem 1.1 by showing that (i) u(t) decomposes as
(1.12) for some z∗ ∈ L2, (ii) z∗ enjoys further regularity |z∗|−1 ∈ L2, and
(iii) also rz∗ ∈ L2 if u is a H1,1

m -solution. We closely follow the argument of
Merle–Raphaël [24].

We first claim the outer L2-convergence:

Lemma 4.6 (Outer L2-convergence). There exists z∗ ∈ L2 such that for any
R > 0, we have 1r≥Rε

](t)→ 1r≥Rz
∗ in L2 as t→ T .

Proof. In the proof, let ϕR be a smooth radial cutoff function satisfying
ϕR(r) = 1 for r ≥ R, ϕR(r) = 0 for r ≤ R

2 , and |ϕR|2 . 1.
We claim that:

(4.23) For any R > 0, {ϕRε](t)} is Cauchy in L2 as t→ T .

Let us finish the proof assuming this claim. For each R > 0, the above
claim says that {1r≥Rε](t)} is Cauchy in L2 as t → T . Thus there exists
z∗R ∈ L2(r ≥ R) such that 1r≥Rε

](t) → z∗R. In view of the uniqueness of
the limit, we have z∗R1

= 1r≥R1z
∗
R2

whenever R1 ≥ R2 > 0. Therefore,
there exists unique profile z∗(r) such that, for any R > 0, 1r≥Rz∗ ∈ L2 and
1r≥Rε

](t)→ 1r≥Rz
∗ in L2 as t→ T . The fact that z∗ ∈ L2 follows from the

uniform boundedness of ‖ε](t)‖L2 with Fatou’s lemma.
We turn to show the claim (4.23). In this paragraph, we will reduce the

proof of (4.23) to the proof of (4.24). Fix any δ1 > 0 and R > 0. It suffices
to show that: there exists δ2 > 0 such that ‖ϕR{ε](t)− ε](s)}‖L2 < δ1 for all
t, s ∈ (T − δ2, T ). This will follow from showing that: there exist t0 < T and
δ2 ∈ (0, T − t0) such that ‖ϕR{ε](t + τ) − ε](t)}‖L2 < δ1 for all τ ∈ (0, δ2)
and t ∈ [t0, T − τ). Now, thanks to ϕRQλ(t),γ(t) → 0 in L2 as t→ T (due to
λ(t)→ 0), it suffices to show that:

(4.24)
There exist t0 < T and δ2 ∈ (0, T − t0) such that

sup
τ∈(0,δ2)

sup
t∈[t0,T−τ)

‖ϕR{u(t+ τ)− u(t)}‖L2 < δ1.

Henceforth, we show (4.24). Denote ũτ (t) := ϕR{u(t+ τ)− u(t)}. Then,

(i∂t + ∆m)ũτ (t) = [∆m, ϕR]u(t+ τ) + ϕRN (u(t+ τ))

− [∆m, ϕR]u(t)− ϕRN (u(t)),

so a standard L2-energy estimate yields

‖ũτ (t)‖L2 ≤ ‖ũτ (t0)‖L2 + 2(T − t0) · sup
s∈[t0,T )

‖[∆m, ϕR]u(s) + ϕRN (u(s))‖L2 .

In the next paragraph, we will show that for any t0 sufficiently close to T

(4.25) sup
s∈[t0,T )

‖[∆m, ϕR]u(s) + ϕRN (u(s))‖L2 .R,M,E 1,

where M = M [u] and E = E[u]. Assuming this, we are led to

sup
τ∈(0,δ2)

sup
t∈[t0,T−τ)

‖ũτ (t)‖L2 ≤ sup
τ∈(0,δ2)

‖ũτ (t0)‖L2 + C(R,M,E) · (T − t0).
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Choosing t0 sufficiently close to T and then choosing δ2 > 0 small (using
continuity of the flow t 7→ u(t) ∈ L2 at time t = t0), the claim (4.24) follows.

It remains to show (4.25). We fix a time s ∈ [t0, T ) and will obtain
estimates uniformly in s. For t0 sufficiently close to T , we have λ−1(s)R > 1
and the following estimate:

‖1r&R∂ru‖L2 + ‖1r&Ru‖L∞

= 1
λ(‖1y&λ−1R∂y(Q+ ε)‖L2 + ‖1y&λ−1R(Q+ ε)‖L∞)

. 1
λ((λR−1)m+2 + ‖ε‖Ḣ1

m
) . R−1 + λ−1‖ε‖Ḣ1

m
.R,M,E 1.

Using this, the commutator term in (4.25) can be easily treated as

‖[∆m, ϕR]u‖L2 . R−1‖1r∼R∂ru‖L2 +R−2‖1r∼Ru‖L2 .R,M,E 1.

To estimate the nonlinearity N (u), we note that

N (u) = −|u|2u+N∗(u),

where N∗(u) consists of the nonlocal nonlinearities N3,1,N3,2,N5,1,N5,2. For
the local nonlinearity, we have

‖|u|2ϕRu‖L2 . ‖1y&Ru‖2L∞‖u‖L2 .R 1.

For the nonlocal nonlinearity, by the nonlinear estimate (Corollary 2.6), we
have

‖ϕRN∗(u)‖L2 . (1 + ‖u‖2L2)‖u‖2L2‖ 1
r2
ϕRu‖L2 .R,M 1.

This ends the proof of (4.25). �

Next, we claim the weak H1
m-convergence:

Lemma 4.7 (Weak H1
m-convergence). We have |z∗|−1 ∈ L2 and ε](t) ⇀ z∗

in H1
m. In particular, ε](t)→ z∗ in L2

loc.

Proof. First, we show that 1
rz
∗ ∈ L2. For any R > 0, we see from λ(t) → 0

that

‖1r≥R 1
rz
∗‖L2 = lim

t→T
‖1r≥R 1

r ε
](t)‖L2

= lim
t→T

1
λ‖1y≥λ−1R

1
y ε(t, y)‖L2 ≤ lim sup

t→T

1
λ‖ε(t)‖Ḣ1

m
. 1,

where the implicit constant is uniform in R. Letting R→ 0, we have 1
rz
∗ ∈

L2.
Next, we show that z∗ ∈ H1

m and ε](t) ⇀ z∗ in H1
m. By a further sub-

sequence argument, it suffices to show that (i) z∗ ∈ H1
m and (ii) for any

sequence tn → T there exists a further subsequence tn′ → T such that
ε](tn′) ⇀ z∗ in H1

m. Let tn → T be arbitrary. Since {ε](tn)} is H1
m-

bounded, it has a further subsequence {ε](tn′)} such that ε](tn′) ⇀ z∗w for
some z∗w ∈ H1

m. It now suffices to show that z∗w = z∗. For this, it suffices
show that 1[R−1,R]z

∗
w = 1[R−1,R]z

∗ for any R > 1. Fix R > 1. On one hand,
by the Rellich–Kondrachov theorem, we have 1[R−1,R]ε

](tn′) → 1[R−1,R]z
∗
w

in L2. On the other hand, by the outer L2-convergence (Lemma 4.6), we
have 1[R−1,R]ε

](tn′)→ 1[R−1,R]z
∗ in L2. Thus 1[R−1,R]z

∗
w = 1[R−1,R]z

∗. This
completes the proof of the weak H1

m-convergence. �
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Lemmas 4.6 and 4.7 show that z∗ ∈ L2, |z∗|−1 ∈ L2, and ε](t)→ z∗ in L2

as t → T . This proves the decomposition (1.12) and the regularity of z∗ in
Theorem 1.1 for H1

m-solutions. If in addition u is a H1,1
m -solution, then we

can appeal to the virial identities (1.6)-(1.7) and observe that ‖ru(t)‖L2 is
bounded as t→ T . Thus by the outer convergence (Lemma 4.6) and Fatou
property we have

‖rz∗‖L2 = lim
R→0
‖1r≥Rrz∗‖L2 ≤ lim

R→0
lim inf
t→T

‖1r≥Rru(t)‖L2

≤ lim sup
t→T

‖ru(t)‖L2 < +∞.

Hence rz∗ ∈ L2. This ends the proof of Theorem 1.1.
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