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Abstract. We show that any Riemannian metric conformal to the round
metric on Sn, for n ≥ 4, arises as a limit of a sequence of Riemannian metrics
of positive scalar curvature on Sn in the sense of uniform convergence of
Riemannian distance. In particular, non-negativity of scalar curvature is
not preserved under such limits.

1. Introduction

Given a sequence of Riemannian manifolds satisfying some notion of pos-
itive curvature, that Gromov-Hausdorff converge to some other Riemannian
manifold, one can ask whether the limit manifold inherits the nonnegativity
of curvature. When one is considering positive sectional curvature then the
theory of Alexandrov spaces can be invoked to give positive results of this
form [5]. In the case of positive Ricci curvature then optimal transportation
techniques can be applied, see e.g. [15]. For manifolds satisfying the PIC1
condition, the Ricci flow will give a positive answer to this question [13].

Positive scalar curvature is too weak a condition to give such results. An
arbitrary n-dimensional Riemannian manifold can be approximated by a graph
in the Gromov-Hausdorff sense, and the graph can be ‘fattened’ to a nearby
n-dimensional Riemannian manifold of positive scalar curvature by replacing
the vertices by small spheres and replacing the edges by even smaller tubes (see
e.g. [9]). In such an example, the topology of the approximating manifolds is
becoming infinitely complex in the limit.

In this note we consider what happens when we strengthen the notion of
convergence so that the topology of the underlying manifolds is fixed. We
then ask that the Riemannian distances converge uniformly. This type of
convergence arises naturally in Ricci flow theory. We prove that metrics of
positive scalar curvature on a sphere of dimension at least four can be made
to converge in this sense to a completely arbitrary metric on the same sphere
that is conformal to the round metric.

In the following we write g0 for the standard round metric on Sn. We write
R(g) for the scalar curvature of a metric g.

Theorem 1.1. Suppose n ≥ 4, and f ∈ C0(Sn). Then there exists a se-
quence of Riemannian metrics gi on Sn such that R(gi) > 0 and such that dgi
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converges uniformly on Sn × Sn to the Riemannian distance df of the metric
e2fg0. In particular, (Sn, dgi) converges to (Sn, df ) in the Gromov-Hausdorff
sense as i → ∞ with the same underlying manifold Sn for each i. Moreover,
there exists C <∞ such that

g0

C
≤ gi ≤ Cg0

on Sn for all i.

Clearly, for some choices of conformal factor f the scalar curvature of e2fg0

will fail to be everywhere nonnegative.
It may be worth stressing that in the theorem we are considering C0 con-

vergence of the Riemannian distance and not the stronger notion of C0 con-
vergence of the Riemannian metric. In the latter case Gromov and Bamler
[8, 1] showed that nonnegativity of scalar curvature would be inherited by the
limit; see also [7].

In order to construct the approximating metrics gi, we will take a tightly
packed collection of great circles in the sphere and carefully shrink the metrics
along the great circles to be more like they would be on the desired limit metric
e2fg0, without breaking the positive scalar curvature. Given two points in an
approximating (Sn, gi), an almost-minimising path can then be constructed
that makes many short trips along different great circles, broadly following
the path of a minimising geodesic within (Sn, e2fg0). The shrinking process
along great circles will be described in Section 2.

The same techniques will yield the following analogue on the torus. This
time g0 is any flat metric on T n.

Theorem 1.2. Suppose n ≥ 4, and f ∈ C0(T n). Then there exists a sequence
of Riemannian metrics gi on T n such that R(gi) > −1

i
and such that dgi

converges uniformly on T n × T n to the Riemannian distance df of the metric
e2fg0. The metrics gi are uniformly equivalent to g0 in the sense that for some
C <∞ we have g0

C
≤ gi ≤ Cg0 for all i.

In particular, the limit need not be the flat metric as it would have to be
for even stronger notions of convergence of gi; see [7, 1, 8]. We will summarise
the changes required to prove Theorem 1.2 in Section 4. Given the form of the
desired metric e2fg0, it is natural to ask whether the approximating metrics gi
can also be taken to be conformal to g0. It follows from work of Chu and the
first named author [6] that if a sequence of metrics gi on T n satisfyR(gi) > −1

i
and are all uniformly equivalent to g0, as in Theorem 1.2, but are additionally
all conformally equivalent, then gi will sub-converge to a flat torus in the
measured Gromov-Hausdorff sense, in stark contrast to Theorem 1.2.

Remark 1.1. Because the metrics gi in Theorems 1.1 and 1.2 are uniformly
bi-Lipschitz, it follows from [10, Theorem A.1] that gi also converges to e2fg0

in the intrinsic flat sense.
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Theorems 1.1 and 1.2 require the dimension of the manifold to be at least
four in order to shrink the metric in a given direction while preserving the scalar
curvature lower bound based on a construction of the first author, Naber and
Neumayer [12]. This begs the question of what happens in three dimensions.
In contrast to Theorem 1.1 we have:

Question 1.1. Suppose gi is a sequence of smooth metrics with R(gi) ≥ 0 on a
three-dimensional manifold M3, such that dgi converges uniformly on M ×M
to dg0 , where g0 is another smooth metric on M . Is it true that R(g0) ≥ 0?

As mentioned above, if the notion of metric convergence is weakened to allow
the topology to change then non-negative scalar curvature is not preserved even
in three dimensions. Further results in the case that the topology is allowed to
vary can be found in the work of Basilio-Sormani [4], Basilio-Dodziuk-Sormani
[2] and Basilio-Kazaras-Sormani [3]. Very recently, the collapsing example in
[12] was generalized by Kazaras-Xu [11] to three dimensions. Based on this,
we expect Question 1.1 to be false in general. For a large number of other
questions and problems concerning the issues addressed by Question 1.1, see
[9] and [14].

Acknowledgements: The authors would like to thank Brian Allen, Christina
Sormani and Misha Gromov for useful comments. PT was supported by EP-
SRC grant EP/T019824/1.

2. The building block

The essential building block used in the proof of Theorem 1.1 is the following:

Lemma 2.1. Suppose n ≥ 4, C is a great circle in (Sn, g0), R ∈ (0, 1
100

), and
write CR for the R-tubular neighbourhood of C. Suppose f ∈ C∞(Sn) with
f ≤ −1, and define f̄ = max(−f), so that f ∈ [−f̄ ,−1]. Then for each
ε ∈ (0, 1) we can find a new smooth Riemannian metric g on Sn with the
properties that

(1) R(g) > 0
(2) g = g0 outside CR
(3) g ≤ (1 + ε)g0 throughout Sn
(4) e2fg0 ≤ (1 + ε)g, and in particular e−2f̄g0 ≤ (1 + ε)g
(5) The metrics on C induced by restricting e2fg0 and g are equal. That is,

both e2fg0 and g agree on the length of vectors tangent to C.

The lemma tells us that we can pull the great circle C tight so that distances
along it are reduced to what they would be with respect to the shrunk metric
e2fg0, without breaking the positive scalar curvature, and without changing
the metric far from C. This builds on a construction of the first author, Naber
and Neumayer in [12].
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Proof of Lemma 2.1. We begin by showing how the standard round metric on
Sn can be scarred along the great circle C by pulling out a mountain ridge along
C that is not very high or steep, but has very positive curvature along the top
of the ridge. Thus locally to C the metric will look like the product of an
interval with a cone over an (n−2)-dimensional sphere of radius a little below
1, slightly smoothed. The high curvature near the cone point, i.e., along the
ridge, gives us some leeway to modify the metric. In particular, it will allow
us to substantially shrink the metric along the ridge without destroying the
positive scalar curvature.

We will treat the sphere Sn as a doubly warped product manifold: Consider

(r, x, y) 7→ (x · sin r, y · cos r) ∈ Sn ⊂ Rn+1,

where r ∈ (0, π
2
), x ∈ Sn−2 ⊂ Rn−1 and y ∈ S1 ⊂ R2. In these coordinates, the

spherical metric g0 can be represented by

(2.1) g0 = dr2 + sin2 r · hSn−2 + cos2 r · ds2

where we write hSn−2 to denote the spherical metric on Sn−2.
We would like now to modify the round metric in a tubular neighbourhood

of the great circle {r = 0}, which we may assume to be C. . We will adjust
it within the region where r ≤ R. It suffices to prove the lemma for any
smaller R > 0 than given, so we take the opportunity to appeal to the uniform
continuity of f and reduce R so that

(2.2) dg0(x, y) ≤ R implies |f(x)− f(y)| ≤ 1
2

log(1 + ε).

The modified metric will take the form

(2.3) g =
dr2

α(r)
+ sin2 r · hSn−2 + e2β(s,r) · ds2.

The (smooth) function α(r) is illustrated in Figure 1. The functions α and β
are specified and constrained as follows. Define

(2.4) α̂ = max{3
4
, 1− ε

2
, 1− R2

5
} < 1.

For ε0 ∈ (0, R/2) to be chosen later, we divide the interval [0, R] into three
zones and insist on the following properties:

(1) Zone 1: For r ∈ [0, ε0] we ask that α(r) ≡ 1 for r ∈ [0, ε0/2], and
αr ≤ 0. We ask that βr ≡ 0 throughout zone 1.

(2) Zone 2: For r ∈ [ε0, R/2] we ask that α ≡ α̂.
(3) Zone 3: For r ∈ [R/2, R], we ask that 0 ≤ αr ≤ r and β(s, r) = log cos r

as β would be on the standard round spherical metric (2.1).
(4) For r ∈ [R, π

2
] we simply ask that α ≡ 1 and β(s, r) = log cos r to

recover the round metric.

This is all we ask for α(r), but we can only choose α in zone 3 at this stage
because we have not yet specified ε0. Note that the zone 3 constraint that
αr ≤ r is easy to achieve by virtue of our insistence that α̂ ≥ 1− R2

5
in (2.4).

Additional constraints will be imposed on β in due course.
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Figure 1. Graph of the warping function α(r)

A short computation reveals that the sectional curvatures of g are given by

Kri = α− 1
2
αr cot r

Krs = −1
2
αrβr − αβrr − α(βr)

2

Kis = −αβr cot r

Kij = csc2 r − α cot2 r,

and these can be combined to give the scalar curvature

(2.5) R = 2Krs + 2(n− 2)Kri + 2(n− 2)Kis + (n− 2)(n− 3)Kij.

This formula can be computed directly using standard formulae for warped
products, or weighted scalar curvature, but we find it illuminating to work
directly with the sectional curvatures.

We will establish the bounds in Table 1 in the three zones.

Table 1. Sectional curvature lower bounds

Section Zone 1 Zone 2 Zone 3
Kri

1
4

1
4

1
4

Krs 0 −α(βrr + (βr)
2) 0

Kis 0 −αβr cot r 0

Kij 0 1−α̂
r2

0

By our assumptions, it is easy to verify that Kri ≥ 1
4

everywhere. Indeed,

outside zone 3 we have −1
2
αr cot r ≥ 0 so Kri ≥ α ≥ 3

4
, whereas in zone 3,

because αr cot r ≤ αr
r
≤ 1 we have Kri ≥ α − 1

2
≥ 1

4
. Therefore Kri always

serves to make the scalar curvature more positive.
Second, our assumptions imply that Krs ≥ 0 outside zone 2. Indeed, in

zone 1 we have βr ≡ 0, so Krs ≡ 0 there. In zone 3, because β = log cos r, the
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Figure 2. Graph of the smooth cut-off function η

expression for the sectional curvature simplifies to Krs = α + 1
2
αr tan r, and

both terms are nonnegative. In zone 2, because αr ≡ 0, the expression for the
sectional curvature simplifies to

(2.6) Krs = −α(βrr + (βr)
2)

but we will need to carefully absorb this (possibly large and negative) term
elsewhere.

Third, our assumptions imply that Kis ≥ 0 outside zone 2. Indeed, in zone
1 we have βr ≡ 0, so Kis ≡ 0 there. In zone 3, because β = log cos r, the
expression for the sectional curvature simplifies to Kis ≡ α ≥ 0.

Finally, we observe that

(2.7) Kij =
1

sin2 r

(
1− α cos2 r

)
≥ 0.

At this point we have shown that outside zone 2, each of the sectional
curvatures considered is nonnegative and Kri ≥ 1

4
, and so the scalar curvature

(2.5) of g is positive outside zone 2.
Within zone 2 we must be a little more careful. First we observe that within

zone 2 we can develop estimate (2.7) to

Kij ≥
1− α̂
r2

,

which is very large for small r, and we will arrange that it dominates the
curvatures Krs and Kis.

To this end, it will be useful to construct a cut-off function adapted to this
situation. We start by picking a non-decreasing function η ∈ C∞(R, [0, 1])
with η(x) = 0 for x ≤ 1

2
and η(x) = 1 for x ≥ 1, as in Figure 2. We may as

well assume that η′ ≤ C and |η′′| ≤ C, for some universal constant C, so that
our estimates do not depend on the choice of η we make.

For a tiny δ ∈ (0, 1) to be chosen in a moment, define the scaled cut-off
ϕ ∈ C∞(R, [0, 1]) by

ϕ(r) := η

(
1 + δ log

2r

R

)
,

as illustrated in Figure 3.
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Figure 3. Graph of the smooth cut-off function ϕ

Then ϕ is also non-decreasing, with ϕ(r) = 0 for

(2.8) r ≤ ε0 := e−
1
2δ
R
2
,

i.e. in zone 1, but now with ϕ(r) = 1 for r ≥ R
2

, i.e. in zone 3. We observe
that

0 ≤ ϕ′(r) ≤ Cδ

r
and |ϕ′′(r)| ≤ Cδ

r2

for some universal C. Define

(2.9) β(s, r) = ϕ(r) log cos r + (1− ϕ(r))f(s, 0),

where f(s, 0) refers to the conformal scaling factor from the theorem, restricted
to the great circle {r = 0}. That is, we interpolate between f(s, 0) near r = 0
and log cos r for r ≥ R

2
, and note that for 0 < r ≤ R < 1

100
, we have

log cos r ≥ log cos
1

100
> −1 ≥ f(s, 0)

and so

(2.10) f(s, 0) ≤ β(s, r) ≤ log cos r.

Then in zone 1 we have β(s, r) = f(s, 0) (so βr = 0 as specified) and in zone
3 we have β(s, r) = log cos r, also as specified. We compute

(2.11) βr = ϕ′(r)
[

log cos r − f(s, 0)
]
− ϕ(r) tan r

and so in zone 2 we have

βr ≤ −ϕ′(r)f(s, 0) ≤ Cδf̄

r

for universal C (recall −f ≤ f̄). This gives us a lower bound in zone 2 of

Kis ≥ −Cδf̄
r2

. In the other direction, we have

βr ≥ ϕ′(r)
[

log cosR + 1
]
− tanR ≥ − tanR ≥ − 1

10
,

say, because f ≤ −1 and R < 1
100

. Meanwhile

(2.12)
βrr = ϕ′′(r)

[
log cos r − f(s, 0)

]
− 2ϕ′(r) tan r − ϕ(r) sec2 r

≤ |ϕ′′(r)|
[
− log cosR + f̄

]
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and so in zone 2 we have

βrr ≤
Cδf̄

r2
,

because − log cosR ≤ − log cos 1
100

< 1 ≤ f̄ . Combining, we find from (2.6)
that

Krs = −α(βrr + (βr)
2) ≥ −Cδf̄

2

r2
− 1

100

in zone 2, where we are using that δ < 1 and f̄ ≥ 1, and C is a different
universal constant each time. This new information allows us to revise our
sectional curvature lower bounds as in Table 2. Keeping in mind that the scalar

Table 2. Sectional curvature lower bounds - revised

Section Zone 1 Zone 2 Zone 3
Kri

1
4

1
4

1
4

Krs 0 −Cδf̄2

r2
− 1

100
0

Kis 0 −Cδf̄
r2

0

Kij 0 1−α̂
r2

0

curvature is given by (2.5), we find that for sufficiently small δ, depending only
on f̄ and α̂, we have R > 0. Fixing such a δ > 0, we obtain Part (1) of the
lemma.

Note that only now that we have picked δ is ε0 determined by (2.8) and
β is fixed. That allows us to fix a specific function α in zone 1, i.e. any
non-increasing function that is identically 1 on [0, ε0/2] and ends up at α̂ by
r = ε0.

Part (2) of the lemma is immediate by construction. To see part (3) of the
lemma, note that the ansatz (2.3) and (2.10) means that the only part of the
metric that can expand compared with the standard metric g0 is the dr2 part.
Indeed, because α(r) ≥ α̂, we have g ≤ 1

α̂
g0, and because α̂ ≥ 1 − ε

2
by (2.4)

we deduce that g ≤ (1 + ε)g0 throughout Sn, as claimed in Part (3). (Note
that 1

1− ε
2
≤ 1 + ε when ε ∈ (0, 1).)

To see Part (4), first note that by Part (2) we need only consider the in-
equality within CR. Within CR, the metric g is larger even than the round
metric g0, let alone e2fg0, except possibly in the s direction. Indeed, by the
ansatz (2.3), the second inequality (2.10) for β, and the fact that α ≤ 1, we
see that

g ≥ e2(β(s,r)−log cos r)g0,

and so because − log cos r ≥ 0, and by the first inequality (2.10) for β, we
obtain

g ≥ e2f(s,0)g0
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within CR. The uniform continuity of (2.2) tells us that

|f(s, 0)− f(s, r)| < 1
2

log(1 + ε),

and in particular that
e2f(s,0) ≥ e2f(s,r)−log(1+ε)

and hence
(1 + ε)g ≥ e2fg0

as claimed in Part (4).
Part (5) is immediate from the ansatz (2.3) and the definition (2.9) of β. �

3. Construction of the approximating metrics

Given a metric h = e2fg0 and two nearby points x, y ∈ Sn, the (shorter) arc
of the great circle connecting x and y has h-length roughly equal to dh(x, y)
as articulated in the following lemma.

Lemma 3.1. Suppose h = e2fg0, where f ∈ C0(Sn), and suppose ε > 0. Then
there exists δ ∈ (0, 1) such that if x, y ∈ Sn with dh(x, y) ≤ 2δ, then

Lh(Cx,y) ≤ (1 + ε)dh(x, y).

where Cx,y is a minimising geodesic, with respect to the round metric, connect-
ing x and y.

Proof. Let f̄ := max(−f). Because f is continuous on a compact space, it is
uniformly continuous, and so there exists δ > 0 so that

(3.1) dg0(x̃, ỹ) ≤ 2δef̄ implies |f(x̃)− f(ỹ)| < 1
2

log(1 + ε).

Notice that dg0(x, y) ≤ ef̄dh(x, y) ≤ 2δef̄ , and so we can apply (3.1) with
x̃ = x and ỹ an arbitrary point on Cx,y to obtain

(3.2)

Lh(Cx,y) = Le2fg0(Cx,y)

≤ (1 + ε)
1
2Le2f(x)g0(Cx,y)

= (1 + ε)
1
2de2f(x)g0(x, y).

Similarly, we can apply (3.1) with x̃ = x and ỹ an arbitrary point on a min-
imising h-geodesic γx,y from x to y to continue

(3.3)

Lh(Cx,y) ≤ (1 + ε)
1
2Le2f(x)g0(γx,y)

≤ (1 + ε)Lh(γx,y)

= (1 + ε)dh(x, y)

�

Proof of Theorem 1.1. By mollification, it suffices to prove the theorem for
smooth f . By scaling, it suffices to consider the case f ≤ −1. To see this,
suppose f ≤ L for some L ∈ R. We may apply the assertion to h̃ := e2(f−L−1)g0

to obtain a sequence g̃i approaching h̃ with R(g̃i) > 0. The rescaled sequence
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gi = e2(L+1)g̃i retains the positive scalar curvature and approaches the original
desired destination metric e2fg0. As earlier, we adopt the shorthand

h := e2fg0.

Suppose ε ∈ (0, 1) is arbitrary. The theorem will be proved if we can
construct a metric gε on Sn with the properties that

(1) R(gε) > 0
(2) h ≤ (1 + ε)gε
(3) dgε(x, y) ≤ dh(x, y) + Cε for some universal C <∞ and all x, y ∈ Sn.

For the given ε, let δ > 0 be as in Lemma 3.1. We abbreviate η = εδ/6.
Our first task is to find a large number of disjoint great circles so that every

pair of points in the sphere is close to one of them. To do this, let P ∈ N be
the largest number of pairwise disjoint g0-geodesic balls of radius η that can
be squeezed into the sphere Sn, and make a choice {Bη(wi)}i=Pi=1 of such balls.
Thus every point in the sphere lies within a distance 2η of one such point wi.
Taking each unordered pair {wi, wj} of distinct points in turn, we choose a
great circle that passes within a distance η of both wi and wj, but does not
intersect any of the previously picked great circles. We end up with a finite
set {Cγ}Nγ=1 of great circles so that given any pair of distinct points x and y in
the sphere, both x and y lie within a g0-distance 3η of a common great circle
Cγ.

Pick R ∈ (0, 1
100

) sufficiently small so that the R-tubular neighbourhoods of
the great circles Cγ are pairwise disjoint. Each of the tubular neighbourhoods
can now be excised and replaced with the corresponding metric constructed
in Lemma 2.1. We call the resulting metric gε and claim that it enjoys the
properties (1)-(3) listed above.

The positive scalar curvature follows immediately from Lemma 2.1, as does
the inequality h ≤ (1 + ε)gε. It remains to prove that for arbitrary x, y ∈ Sn
we have dgε(x, y) ≤ dh(x, y) + Cε.

We first claim that if dh(x̃, ỹ) ≤ δ then

(3.4) dgε(x̃, ỹ) ≤ dh(x̃, ỹ) + Cδε

for universal C. To prove the claim, we can adjust x̃ and ỹ to nearby points
a and b (respectively) on one of the great circles C, with dg0(x̃, a) ≤ 3η and
dg0(ỹ, b) ≤ 3η, so

(3.5)

dh(a, b) ≤ dh(a, x̃) + dh(x̃, ỹ) + dh(ỹ, b)

≤ 3η + δ + 3η

≤ 2δ
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where we recall that dh < dg0 and η = εδ/6 ≤ δ/6. By the fact that gε ≤
(1 + ε)g0 (which also follows from Lemma 2.1) and so dgε ≤ 2dg0 , we compute

(3.6)

dgε(x̃, ỹ) ≤ dgε(x̃, a) + dgε(a, b) + dgε(b, ỹ)

≤ 2dg0(x̃, a) + Lgε(Ca,b) + 2dg0(b, ỹ)

≤ 6η + Lh(Ca,b) + 6η (because Lh(Ca,b) = Lgε(Ca,b))
≤ 12η + (1 + ε)dh(a, b) (by Lemma 3.1)

≤ 12η + (1 + ε)[dh(a, x̃) + dh(x̃, ỹ) + dh(ỹ, b)]

≤ Cη + (1 + ε)dh(x̃, ỹ)

≤ dh(x̃, ỹ) + Cεδ

where C is universal and we have used that η = εδ/6 and dh(x̃, ỹ) ≤ δ. This
is precisely the claim (3.4).

Now let γ : [0, dh(x, y)] → Sn be a unit-speed minimising geodesic, with
respect to h, connecting x and y. We divide γ up into δ-chunks by defining
xk = γ(kδ) for k = 0, ..., `, where ` = [dh(x, y)/δ] ≤ C/δ, and add a final point
x`+1 := y. Then

(3.7)

dgε(x, y) ≤
∑̀
k=0

dgε(xk, xk+1)

≤ C`δε+
∑̀
k=0

dh(xk, xk+1) (by the claim)

≤ Cε+ dh(x, y)

where C is always universal. Thus all properties (1)-(3) claimed above have
been established. �

4. The torus case

In this section we outline the changes to the argument required in order to
adapt the proof of Theorem 1.1 to prove Theorem 1.2.

In this case, instead of criss-crossing the sphere with great circles, we con-
sider closed geodesics in the torus that are so numerous that any two points
in the torus can be perturbed to lie on a common such geodesic. We can then
excise disjoint tubular neighbourhoods of these geodesics and replace them by
shrunk metrics somewhat as in the spherical case of Theorem 1.1. One differ-
ence is that unlike in the case of the sphere, the torus has no positive scalar
curvature with which errors can be absorbed. Therefore we must allow a small
drop in the scalar curvature. The analogue of Lemma 2.1 is then:

Lemma 4.1. Suppose n ≥ 4, C is a simple closed geodesic in a flat n-
dimensional manifold M , and R > 0 is sufficiently small so that C admits
a R-tubular neighbourhood CR. Suppose f ∈ C∞(M) with f ≤ −1, and define
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f̄ = max(−f), so that f ∈ [−f̄ ,−1]. Then for each ε ∈ (0, 1) we can find a
new smooth Riemannian metric g on M with the properties that

(1) R(g) ≥ −ε
(2) g = g0 outside CR
(3) g ≤ (1 + ε)g0 throughout M

(4) e2fg0 ≤ (1 + ε)g, and in particular e−2f̄g0 ≤ (1 + ε)g
(5) The metrics on C induced by restricting e2fg0 and g are equal. That is,

they agree on the length of the vector ∂s.

In order to adapt the proof of Lemma 2.1, we replace the ansatz (2.3) by

(4.1) g =
dr2

α(r)
+ r2 · hSn−2 + e2β(s,r) · ds2.

The flat torus case would be α ≡ 1 and β ≡ 0. We can now compute the
sectional curvatures to be

Kri = −αr
2r

Krs = −1
2
αrβr − αβrr − α(βr)

2

Kis = −αβr
r

Kij =
1− α
r2

.

We can choose α essentially as before, although we drop the condition that
α̂ ≥ 3/4 and ask that it is much closer to 1 by insisting that R ≤ 1 and
defining

(4.2) α̂ = 1− εR2

5n
< 1,

which ensures, in particular, that α̂ ≥ 1− ε
2
, but also allows us to insist that

αr ≤
εr

n
in zone 3, which forces a lower bound Kri ≥ − ε

2n
there.

We retain the condition βr ≡ 0 in zone 1, and in zone 3 and beyond we now
simply require β ≡ 0. Thus Krs ≡ 0 in zones 1 and 3 as before. The general
formula (2.9) for β simplifies to

(4.3) β(s, r) = (1− ϕ(r))f(s, 0),

so the formula (2.11) for βr simplifies to

βr = −ϕ′(r))f(s, 0).

The resulting upper bound for βr remains identical but the lower bound im-
proves to βr ≥ 0. The bound for βrr remains the same, but with a simpler
derivation.

The resulting sectional curvature lower bounds are summarised in Table 3.
Given these bounds and the formula for the scalar curvature (2.5), for the given
α̂ < 1, we can then pick δ > 0 sufficiently small so that the scalar curvature
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Table 3. Torus sectional curvature lower bounds

Section Zone 1 Zone 2 Zone 3
Kri 0 0 − ε

2n

Krs 0 −Cδf̄2

r2
0

Kis 0 −Cδf̄
r2

0

Kij 0 1−α̂
r2

0

is positive in zone 2. Then (2.5) implies that R ≥ 0 outside zone 3, while in
zone 3 we have

R ≥ 2(n− 2)Kri ≥ 2(n− 2)(− ε

2n
) ≥ −ε.
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