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Abstract. We prove that the coefficients of a GL3 ×GL2 Rankin–Selberg L-function do not cor-
relate with a wide class of trace functions of small conductor modulo primes, generalizing the
corresponding result [FKM15a] for GL2 and [KLMS20] for GL3. This result is inspired by a recent
work of P. Sharma who discussed the case of a Dirichlet character of prime modulus.
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1. Introduction

We begin by describing the content of a recent preprint of P. Sharma [Sha19] which is the starting
point of the present work.

Let (λ(r, n))r,n be the Hecke eigenvalues of a GL3 cusp form ϕ and (λf (m))m be Hecke eigenvalues
of a GL2 cusp form f (holomorphic or Maass); for simplicity we assume that both have level 1 (i.e.,
are SL3(Z) and SL2(Z)-invariant respectively). Their Rankin–Selberg L-function is the Dirichlet
series

L(ϕ× f, s) =
!

n,r!1

λ(r, n)λf (n)

(nr2)s
, Re s > 1.

This has an Euler product of degree 6 admitting analytic continuation to C and a functional
equation relating L(ϕ× f, s) to L(ϕ× f, 1− s).

Given q a prime and χ : (Z/qZ)× → C× a non-trivial Dirichlet character, the twisted L-function
is

L(ϕ× f × χ, s) =
!

n,r!1

λ(r, n)λf (n)χ(nr
2)

(nr2)s
, Re s > 1.

This again has an Euler product of degree 6 admitting analytic continuation to C and a functional
equation relating L(ϕ× f × χ, s) to L(ϕ× f × χ, 1− s).

Y. L. and Ph. M. were partially supported by a DFG-SNF lead agency program grant (grant 200020L 175755)
and the SNF (grant 200021 197045). W. S. served as a Clay Research Fellow while working on this paper. To appear
in American Journal of Math. Mon 18th Apr, 2022.
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The following bound, known as the convexity bound (in the q-aspect) is not too hard to establish:
for Re s = 1/2, one has

L(ϕ× f × χ, s) ≪f,ϕ,s q
3/2+o(1).

The subconvexity problem aims at improving the exponent 3/2. In [Sha19], P. Sharma provided a
detailed description of a solution of this problem with the bound

L(ϕ× f × χ, s) ≪f,ϕ,s q
3/2−1/16+o(1).

Inspired by the previous works [FKM15a, KLMS20], we follow Sharma’s strategy and generalise
this bound by replacing χ by a generic trace function

K : (Z/qZ)× → C,

that is the (restriction to F×
q of the) Frobenius trace function associated to some geometrically

irreducible middle extension sheaf F on P1
Fq

pure of weight 0 satisfying additional generic condition

(we call such a sheaf “good”).
Indeed (see §9), it follows from the (Mellin) expansion of K|F×

q
into Dirichlet characters that the

series

L(ϕ× f ×K, s) =
!

n,r!1
(nr2,q)=1

λ(r, n)λf (n)K(nr2)

(nr2)s
, Re s > 1,

has analytic continuation to C and satisfies a functional equation relating L(ϕ × f × K, s) to

L(ϕ × f × K

"6
, s) where K

"6
: F×

q → C is a suitable “GL6” transform of K (see (9.2)). In most

cases, K

"6
is essentially (the restriction to F×

q of) a trace function. From this one can deduce a
“convexity” bound

(1.1) L(ϕ× f ×K, s) ≪f,ϕ,s q
3/2+o(1), Re s = 1/2.

Our goal is to improve the exponent 3/2.
Using approximate functional equation techniques, one sees that solving this “subconvexity prob-

lem” for L(ϕ× f ×K, s) is tantamount to bounding non-trivially sums of the shape

St
V (K,X) :=

!

r,n

λ(r, n)λf (n)K(nr2)V (
nr2

X
)

for V a (fixed) smooth function with compact support in [1, 2[ and X ! 1 a positive parameter of

size X ≈ q3 (the trivial bound being |St
V (K,X)| " X1+o(1)). Indeed when ϕ, f and s are fixed, q3

is approximately the square-root of the conductor of the degree 6 L-functions L(ϕ × f × χ, s) for
the primitive Dirichlet characters χ (mod q).

For this we introduce the following conditions on the sheaf F both of which are generic (i.e., hold
for a “typical” sheaf). Let [×λ] : A1 → A1 denote the map which multiplies the coordinate by λ.

– (MO) There is no any λ ∈ F×
q such that the geometric monodromy group of F has some

quotient which is equal, as a representation of the geometric fundamental group π1 into
an algebraic group, to the geometric monodromy group of the Kloosterman sheaf [×λ]∗Kℓ2
modulo ±1.

– (SL) The local monodromy representation of F at ∞ has no summand with slope 1/2.

We will also need to assume that the sheaf F is Fourier, i.e., that it is not geometrically isomor-
phic to either the constant sheaf or any Artin–Schreier sheaf (whose trace functions are additive
characters).

We will say that F is good if F is Fourier and satisfies both of (MO) and (SL) and say that F is
bad otherwise.
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Our main result provides bounds for the sums St
V (K,X) when K is the trace function of a good

sheaf, X is not too far from q3 and when the smooth function V is allowed to vary and oscillate
mildly as q varies.

Theorem 1.1. Let q be a prime and K be the trace function modulo q associated with a good sheaf
F. Let Z ! 1 be some parameter and V ∈ C∞

c (R) be a smooth function compactly supported in the
interval [1, 2[ and satisfying for all i ! 0

(1.2) V (i)(x) ≪i Z
i.

Let X ! 1 be such that Z4q11/4 < X < Z4q
7−θ3

2 . We have

(1.3) St
V (K,X) ≪ qo(1)

#
ZX3/4q11/16 + Z

4(1−θ3)
3−2θ3 X

2−θ3
3−2θ3 q

11(1−θ3)
4(3−2θ3) +Xq−1/8

$
;

here the implicit constant depends on ϕ, f , C(F) and the implicit constant in (1.2) and θ3 = 5/14
is the best known bound towards the Ramanujan–Petersson conjecture on GL3. In particular for
X = q3 (the convexity range) one obtains

St
V (K, q3) ≪ Zq3−1/16+o(1).

Remark 1.2. (1) This bound is non-trivial (i.e., is o(X)) as long as

X ≫ q3−1/4+η, for some η > 0.

The assumption X < Z4q(7−θ3)/2 in the statement is non-essential and possibly can be removed.
We make this assumption only to simplify our treatment at one certain point; see (3.3).

(2) For k ! 2 an integer, the hyper-Kloosterman sheaf Kℓk whose attached trace function is
given by the k − 1-dimensional hyper-Kloosterman sums

Klk(n; q) =
1

q
k−1
2

!!

x1,··· ,xk∈F×
q

x1.··· .xk=n

e
%x1 + · · ·+ xk

q

&

is good unless k = 2. In that case neither (SL) nor (MO) holds. We will explain in §9 how a duality
principle which gives the analytic continuation of L(ϕ× f ×K, s) allows for partial results for such
sums.

(3) As was pointed out to us by V. Blomer, when ϕ = Sym2(g) is the symmetric square lift
of a GL2-modular form g and taking f to be a suitable Eisenstein series, one can obtain –by a
variation on [Blo12], using the Petrow–Young variant of the Conrey–Iwaniec method [CI00,PY20]–
the stronger subconvex bound

|L(Sym2(g)× χ, s)|2 ≪ q3/2−1/4+o(1), Re s = 1/2

for any Dirichlet character χ (mod q). Since this approach uses positivity of central values, it is not
yet clear whether this could be extended to general trace functions.

1.1. Principle of the proof. To illustrate the main idea of our approach, we provide a quick
sketch of the proof, focusing on just the “generic” case in various transformations. Therefore we
will assume X ≍ q3 and r = 1, and we will suppress the smooth test functions from our notation.
We denote the GL3 Hecke eigenvalues by (λ(1, n))n and the GL2 Hecke eigenvalues by (λ(n))n.

Let L ! 1 be a parameter (a positive power of q) whose optimal size to be determined later,
and let ℓ ∈ [L, 2L[ be prime numbers. We use the Hecke relation to write λ(1, nℓ) ≈ λ(1, n)λ(1, ℓ)
and then use the Kronecker symbol to separate oscillations of λ(1, nℓ) and λ(n)K(n). Our starting
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point is to follow [Sha19] and write

S :=
!

n∼q3

λ(1, n)λ(n)K(n)

≈ 1

L

!

ℓ∼L

λ(1, ℓ)
!

n∼q3

λ(1, nℓ)λ(n)K(n)

=
1

L

!

ℓ∼L

λ(1, ℓ)
!

n∼q3ℓ

λ(1, n)
!

m∼q3

λ(m)K(m)δ(n,mℓ).

We first use a conductor-decreasing trick to write

δ(n,mℓ) = δq|n−mℓ · δ
#
n−mℓ

q
, 0

$
.

Expressing δq|n−mℓ =
1
q

'
u(q) e

(
(n−mℓ)u

q

)
and using the delta symbol by Duke–Friedlander–Iwaniec

[DFI93] to detect the second one:

δ

#
n−mℓ

q
, 0

$
≈ 1

C

!

c∼C

1

c

!%

u(c)

e

#
u(n−mℓ)

cq

$
,

we have the following approximation

δ(n,mℓ) ≈ 1

qC

!

c∼C

1

c

!%

u(cq)

e

#
u(n−mℓ)

cq

$
.

Here C is a large parameter which we will choose as

C =

#
q3L

q

$1/2

= qL1/2.

Now plugging this approximation for δ(n,mℓ) in, we can write our original sum as

S ≈
*

q3L
*

q3

LCq

!

c∼C

1

c

!

ℓ∼L

λ(1, ℓ)
!%

u(cq)

!

n∼q3L

λ(1, n)√
n

e

#
un

cq

$ !

m∼q3

λ(m)√
m

K(m)e

#
−umℓ

cq

$
.

We use Fourier inversion to separate the m-variable from K(m) and rewrite the m-sum above as

1

q1/2

!

b (mod q)

+K(b)
!

m∼q3

λ(m)√
m

e

#
−(bc+ uℓ)m

cq

$
.

We now use Voronoi summation to dualize the n- and m-variables respectively, getting

!

n∼q3L

λ(1, n)√
n

e

#
un

cq

$
≈

!

n∼ (cq)3

q3L
≈q3L1/2

λ(n, 1)√
n

Kl2(ūn; cq);

!

m∼q3

λ(m)√
m

e

#
−(bc+ uℓ)m

cq

$
≈

!

m∼ (cq)2

q3
≈qL

λ(m)√
m

e

#
bc+ uℓm

cq

$
.
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Therefore, after applying the two Voronoi summations, we arrive at the following dual sum

S ≈
*

q3L

LCq

q2

C

!

c∼C

1

c

!

ℓ∼L

λ(1, ℓ)
!

n∼q3L1/2

λ(n, 1)√
n

!

m∼qL

λ(m)

1

q1/2

!%

u(cq)

!

b (mod q)

+K(b)Kl2(ūn; cq)e

#
bc+ uℓm

cq

$
.

By splitting the sum modulo cq into a product of sums modulo c and q respectively, the second
line above can be written as

!%

u1(c)

Kl2(q̄
2u1n; c)e

#
u1ℓqm

c

$
· 1

q1/2

!

b (mod q)

+K(b)
!%

u(q)

Kl2(c̄
2ūn; q)e

#
bc+ uℓc̄m

q

$

≈
√
ce

#
nq̄ℓm

c

$ !%

u(q)

Kl2(c̄
3ūn; q)Lc̄2m,ℓ(u; q),

where

Lα,β(u; q) :=
1

q1/2

!

b (mod q)

+K(b)e

#
α b+ βu

q

$
.

Hence

S ≈ q5/2

L1/2C3/2

!

n∼q3L1/2

λ(n, 1)√
n

!

c∼C

1

c

!

ℓ∼L

λ(1, ℓ)
!

m∼qL

λ(m)e

#
nq̄ℓm

c

$ !%

u(q)

Kl2(c̄
3ūn; q)Lc̄2m,ℓ(u; q).

We next apply Cauchy–Schwarz inequality to remove the GL3 coefficients while keeping the c-sum
“inside”:

S ≪ q5/2

L1/2C3/2

,

-
!

n∼q3L1/2

|λ(n, 1)|2
n

.

/
1/2,

-
!

n∼q3L1/2

00
!

c∼C

!

ℓ∼L

!

m∼qL

!%

u(q)

(...)
002
.

/
1/2

:=
q5/2

L1/2C3/2
Ω1/2.

Remark 1.3. The n-variable has size q3L1/2 and was originally weighted by the GL3 coefficients
λ(n, 1) times a periodic arithmetic function of modulus qc. After applying Cauchy–Schwarz the
resulting periodic functions have moduli qcc′ ≈ q3L which is not much bigger than the size of n
which is now smooth and therefore one can expect to be able to analyse this sum further.

We continue to analyse the sum Ω. Opening the square and switching the order of summations,
we arrive at

Ω =
!

c∼C

1

c

!

c′∼C

1

c′

!

ℓ∼L

λ(1, ℓ)
!

ℓ′∼L

λ(1, ℓ′)
!

m∼qL

λ(m)
!

m′∼qL

λ(m′)

!%

u(q)

Lc̄2m,ℓ(u; q)
!%

u′(q)

L
c′

2
m′,ℓ′

(u′; q)
!

n∼q3L1/2

Kl2(c̄
3ūn; q)Kl2(c′

3
u′n; q)e

#
nq̄ℓm

c

$
e

#
−nq̄ℓ′m′

c′

$
.
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We apply Poisson summation to the n-sum; after computing the resulting Fourier transform and
several manipulations we obtain

Ω ≈
!

c∼C

1

c

!

c′∼C

1

c′

!

ℓ∼L

λ(1, ℓ)
!

ℓ′∼L

λ(1, ℓ′)
!

m∼qL

λ(m)
!

m′∼qL

λ(m′)

q3L1/2
!

|n|<L1/2

!

v(q)

Z(v)Z ′(v − ncc′) · δn+ℓmc′−ℓ′m′c≡0 (mod cc′),

where

Z(v) = Zα,β,γ(v) :=
1

q1/2

!

x∈F×
q

Kl2(βγx; q)K(xv)Kl2(αxv; q)

with (α,β, γ) = (c2m, ℓ, c3) and Z ′(v) is defined likewise with (α′,β′, γ′) = (c′
2
m′, ℓ′, c′

3
).

We consider the cases where n = 0 and n ∕= 0 separately and denote their contribution to Ω by
Ω0 and Ω ∕= respectively.

For n = 0, one has c = c′, and since the sheaf F is good, we have by Proposition 4.5,

!

v

Z(v)Z ′(v) ≪ q · δℓm′≡ℓ′m (mod q) + q1/2;

this gives

Ω0 =
!

c∼C

1

c2

!

ℓ∼L

λ(1, ℓ)
!

ℓ′∼L

λ(1, ℓ′)
!

m∼qL

λ(m)
!

m′∼qL

λ(m′)

× q3L1/2(q · δℓm′≡ℓ′m (mod q) + q1/2)δℓm′≡ℓ′m (mod c)

≪q5L5/2

C
+

q11/2L9/2

C2
,

whose corresponding contribution to S is

S0 ≪
q3

L1/4
+ q11/4L1/2.

Remark 1.4. This bound is admissible is long as L is a (not too big) positive power of q and
corresponds roughly to the contribution of the diagonal term (c, ℓ,m, u) = (c′, ℓ′,m′, u′) in Ω:

S00 ≪
q5/2

L1/2C3/2

#
q3L1/2 · 1

C
· L · qL · q

$1/2

≪ q3

L1/4
.

This saving was the whole point of keeping the c-sum inside in the application of Cauchy–Schwarz.
This also shows how the additional parameter ℓ plays a role in this argument: without introducing
the ℓ-sum at the very beginning we would have been failed to beat the convexity bound O(q3) for
the diagonal contribution. This trick is reminiscent of the amplification technique which seems to
be used first by Munshi in [Mun21] (see also [HN18,Lin21,KLMS20,Sha19]).

For the case n ∕= 0, we use again Proposition 4.5,

!

v(q)

Z(v)Z ′(v − δ) ≪ q1/2, δ ∕= 0 (mod q),
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to obtain

Ω ∕= =
!

c∼C

1

c

!

c′∼C

1

c′

!

ℓ∼L

λ(1, ℓ)
!

ℓ′∼L

λ(1, ℓ′)
!

m∼qL

λ(m)
!

m′∼qL

λ(m′)

× q3L1/2
!

0 ∕=|n|<L1/2

q1/2 · δn+ℓmc′−ℓ′m′c≡0 (mod cc′)

≪q11/2L5

C2
+

q9/2L4

C
.

Correspondingly, such terms contribute to S

S ∕= ≪ q11/4L3/4.

Therefore we have the following estimate for the sum of interest

S ≪ q3

L1/4
+ q11/4L1/2 + q11/4L3/4.

By choosing L appropriately, say L = q1/4 we have

S ≪ q3−1/16,

beating the convexity bound S = O(q3+o(1)).
Key to this argument is the bound for the correlation sums

!

v

Z(v)Z ′(v − δ) ≪ δδ=0δα/α′≡βγ/(β′γ′) (mod q)q + q1/2

which follows from Proposition 4.5. This proposition is proven by interpreting the functions

v ,→ Z(v), Z ′(v)

as trace functions of ℓ-adic sheaves Z,Z′ on the affine line A1
Fq

and by using methods from ℓ-adic

cohomology. As the expression for Z suggests, the underlying sheaf Z is the geometric convolution
of the tensor product

K = (F ⊗ [×α]∗Kℓ2) with L = [y → βγ/y]∗Kℓ2

(and likewise for Z′). First we verify that if (MO) is satisfied, then K and hence Z are geometrically
irreducible. It remains to show that if (SL) is also satisfied, Z and [−δ]Z′ are not geometrically
isomorphic if either δ ∕= 0, or α/α′ ∕= βγ/(β′γ′) (mod q). To do this, we analyse carefully the
possible singularities of Z (at most at ∞, 0 and βγ/α) and determine their nature (unipotent or
not) at 0,βγ/α using Deligne’s semi-continuity theorem and the theory of local convolution due to
Rojas-León. This last point is the most delicate part of the geometric argument.

This general approach is entirely different from the path taken by Sharma in the special case
K = χ a multiplicative character [Sha19]: Sharma exploits the multiplicativity of χ and reduces the
problem to checking the non-degeneracy criterion of Adolphson–Sperber for an explicit exponential
sum in 9 variables. For this special case, a third route is possible: the sheaf Z is an hypergeometric
sheaf whose local and global properties were studied in depth by Katz in [Kat90]; the estimation
of the correlation sums above can then be deduced from these properties and the general bounds
for correlations sums of trace functions like [FKMS19].
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2. Background material regarding automorphic forms

In the sequel we will denote by V or W some smooth functions V,W ∈ C∞
c ([1, 2[) satisfying for

all i ! 0

(2.1) V (i)(x) ≪ Zi

for some parameter Z satisfying 1 " Z " q.

2.1. Bounds for Hecke eigenvalues. We recall the Hecke relation for GL3 Hecke eigenvalues
implies that

λ(r, n) =
!

d|(r,n)
µ(d)λ(r/d, 1)λ(1, n/d)

and

(2.2) λ(1,m)λ(r, n) =
!

d0d1d2=m

d1|r,d2|n

λ(rd2/d1, nd0/d2)

and we have the following individual bounds

(2.3) λ(r, n) ≪ (rn)θ3+o(1),

where θ3 = 5/14 according to Kim–Sarnak (see [KS03]).
We also have the following well-known Rankin–Selberg estimates for GL2 and GL3 Hecke eigen-

values (see [Gol06, Sec. 12.1])

(2.4)
!

1"n"X

|λf (n)|2 ≪f X,

and !

1"m2n"X

|λ(n,m)|2 ≪ϕ X,

from which and the Hecke relation, one can also derive the bound (see [Mun21, Lemma 2])

(2.5)
!

1"m2n"X

|λ(n,m)|2m ≪ϕ,ε X
1+ε,

for any ε > 0.

2.2. Summation formulas. Let f be a GL2 cuspform of level 1 and of weight k (if f is holomor-
phic) or of Laplace eigenvalue 1/4 + r2f (if f is Maass).

The GL2 Voronoi summation formula states:

Proposition 2.1. Let V be a test function as in (2.1). Let X > 0, c, u ! 1 be integers such that
(u, c) = 1. We have

∞!

m=1

λf (m)e
(um

c

)
V
(m
X

)
=

X

c

!

±

∞!

m=1

λf (m)e
(
∓ ūm

c

)
V±

#
mX

c2

$
,
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where

V±(y) =

1 ∞

0
V (x)J±f (4π

√
xy)dx

with

J+f (x) = 2πikJk−1(x), J−f (x) = 0 if f is holomorphic;

and

J+f (x) =
−π

sinπirf
(J2irf (x)− J−2irf (x)), J−f (x) = 4εf cosh(πrf )K2irf (x) if f is Maass.

We also recall the GL3 Voronoi summation formula first proven by Miller and Schmid ([MS06]):

Proposition 2.2. Let W be a test function as in (2.1). Let X > 0, c, u, r ! 1 be integers such
that (u, c) = 1. We have

∞!

n=1

λ(r, n)e
(un

c

)
W

( n

N

)
= c3/2

!

±

!

n1|rc

∞!

n=1

λ(n, n1)

n1n

S
(
rū,±n; rc

n1

)

c1/2
W±

#
nn2

1

c3r/N

$
,

where

S(m,n; c) =
!%

x(c)

e

#
mx+ nx̄

c

$

is the Kloosterman sum and where

(2.6) Wσ(x) =
1

2πi

1

(1)
x−sGσ(s+ 1)

(1 +∞

0
W (y)y−sdy

y

)
ds.

For the precise definition of the kernel function Gσ(s) we refer the reader to [BK19, (4.6)].
We recall the following lemma (see [KLMS20, Lemma 4.3])

Lemma 2.3. Let σ ∈ {−1, 1}. For any j ! 0, any A ! 1 and any ε > 0, we have

xjW(j)
σ (x) ≪ min

(
Zj+1x1−θ3−ε, Zj+5/2+ε

(Z3

x

)A)

for x > 0, where the implied constant depends on (j, A, ε). Moreover, for x ! 1, we have

xjW(j)
σ (x) ≪ x2/3min(Zj , xj/3)

where the implied constant depends on j.

The integral transform W± admits another representation as Hankel transform of some GL3-
Bessel functions as can be seen by switching the y and s integrals in (2.6) which we record here
(see [Lin21, Lemma 3.2])

(2.7) W±(x) = x

1 ∞

0
W (y)Jϕ,±(xy)dy.

Here Jϕ,±(x) is some GL3-Bessel function satisfying the following properties.

Lemma 2.4. (1). Let . > max{−Reµϕ,1,−Reµϕ,2,−Reµϕ,3}. For x ≪ 1, we have

(2.8) xjJ
(j)
ϕ,±(x) ≪µϕ,1,µϕ,2,µϕ,3,,,j x

−,.

(2). Let K ! 0 be a fixed nonnegative integer. For x > 0, we may write

(2.9) Jϕ,±(x
3) =

e(±3x)

x
W±

ϕ (x) + E±
ϕ (x),

9



where W±
ϕ (x) and E±

ϕ (x) are real-analytic functions on (0,∞) satisfying

W±
ϕ (x) =

K−1!

m=0

B±
m(ϕ)x−m +OK,µϕ,1,µϕ,2,µϕ,3

%
x−K

&
,

and

E±,(j)
ϕ (x) ≪µϕ,1,µϕ,2,µϕ,3,j

exp(−3
√
3πx)

x
,

for x ≫µϕ,1,µϕ,2,µϕ,3 1, where B±
m(ϕ) are constants depending on µϕ,1, µϕ,2 and µϕ,3.

Proof. See [Qi20, Theorem 14.1]. □
Next we recall the Duke–Friedlander–Iwaniec delta symbol method [DFI93] in a version given

by Heath-Brown [HB96].

Lemma 2.5. For any C > 1, there is a positive constant ηC and a smooth function h(x, y) defined
on (0,∞)× (−∞,∞) such that

δn=0 =
ηC
C

∞!

c=1

1

c

!%

a(c)

e
(an

c

)
h
( c

C
,
n

C2

)
.

Here the constant ηC satisfies
ηC = 1 +OA(C

−A)

for any A > 0, and h(x, y) is a smooth function vanishing unless x " max(1, 2|y|) and whose
derivatives satisfy

xi
∂i

∂ix
h(x, y) ≪i 1 and

∂

∂y
h(x, y) = 0,

for x " 1 and |y| " x/2, and

xiyj
∂i+j

∂ix∂jy
h(x, y) ≪i,j 1(2.10)

for |y| > x/2.

3. First transformations

From now on we will assume that Z satisfies

1 " Z " q

(otherwise the trivial bound is stronger that the bound claimed in Theorem 1.1). We have

St
V (K,X) :=

!

r,n

λ(r, n)λf (n)K(nr2)V (
nr2

X
) =

!

r!1

SV,r(K,X/r2).

where

(3.1) SV,r(K,X) :=

∞!

n=1

λ(r, n)λf (n)K(nr2)V (
n

X
).

By applying the Rankin–Selberg estimates (2.4), (2.5) and the bound (2.3), we have

(3.2)
!

r!R

SV,r(K,X/r2) ≪ qo(1)Rθ3X/R,

where θ3 = 5/14; see, say [LS21, (4.2)] for the details. It will suffice to bound SV,r(K,X) for
r " R = q, for some . > 0 to be chosen; see (7.7). In the sequel we assume that

r " R;
10



moreover, as we will see, R < q, so that (r, q) = 1.
Let L ! 1 be some parameter and let L be the set of primes in the interval [L, 2L[. We first

write

SV,r(K,X) =
1

L%

!

ℓ∈L
λ(1, ℓ)

!

n

λ(1, ℓ)λ(r, n)λf (n)K(nr2)V (
n

X
)

where

L% :=
!

ℓ∈L
|λ(1, ℓ)|2 ≃ϕ

L

logL

by the prime number theorem for automorphic forms ([LWY05, Lemma 5.1]).
In the sequel we will assume that L satisfies

(3.3) R < L

so that it is guaranteed that any ℓ ∈ [L, 2L[ is coprime with r.
By the Hecke relation (2.2) we have (since (ℓ, r) = 1 by the assumption L > R)

λ(1, ℓ)λ(r, n) = λ(r, ℓn) + δℓ|nλ(rℓ, n/ℓ).

The contribution to SV,r(K,X) of the second term is trivially bounded by

(3.4)
1

L%

!

ℓ∈L
|λ(1, ℓ)|2

!

n∼X/ℓ

|λ(r, n)|
%
|λf (n)λf (ℓ)|+ δℓ|n|λf (n/ℓ)|

&
‖K‖∞ " qo(1)

rθ3Lθ2X

L

where θ3 = 5/14 and θ2 = 7/64. Therefore we obtain

SV,r(K,X) =
1

L%

!

ℓ∈L
λ(1, ℓ)

∞!

m=1

λ(r,mℓ)λf (m)K(mr2)V
(m
X

)
+O

#
qo(1)

rθ3Lθ2X

L

$
.

Now we use the delta method to separate the coefficients λ(r,mℓ) and λf (m)K(mr2). To prepare
for later manipulations, we first introduce U , a smooth function supported in (1/100, 100) and

satisfying U (i)(x) ≪ 1 for i ! 0 and U(x) = 1 for x ∈ [1, 2].
Let v = qεZ where ε > 0 is fixed but to be chosen as small as we need. Then we can rewrite

SV,r(K,X) as

SV,r(K,X) =
1

L%

!

ℓ∈L
λ(1, ℓ)

∞!

n=1

λ(r, n)

∞!

m=1

λf (m)K(mr2)
( n

mℓ

)iv
δn=mℓU

( n

Xℓ

)
V
(m
X

)

+O

#
qo(1)

rθ3Lθ2X

L

$
.

Using a Mellin transform on U we can replace – up to a factor qo(1) and up to changing the
definition of U– the expression U

%
n
Xℓ

&
by U

%
n

XL

&
.

Therefore from now on we will consider the sum

(3.5) S′
V,r(K,X) =

1

L%

!

ℓ∈L
λ(1, ℓ)

∞!

n=1

λ(r, n)

∞!

m=1

λf (m)K(mr2)
( n

mℓ

)iv
δn=mℓU

( n

XL

)
V
(m
X

)
.

Remark 3.1. The introduction of the parameter v = qεZ will be useful later, when we try to
localize the range of some variables; see Lemma 3.3 and (4.5). See also [AHLS20] (and Remark 4.2
there) for a similar trick.
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We proceed as in [Sha19] and follow Holowinsky, Munshi and Qi [HMQ16] to rewrite the δn−ℓm

in a more analytic form using the delta symbol method in Lemma 2.5: for any n ∈ Z such that
|n| " 4XL we have

δn=0 = δq|nδn/q=0 =
1

q

!

u(q)

e(
un

q
)
1

C

!

c"2C

1

c

!%

a(c)

e

#
an/q

c

$
h

#
c

C
,

n

C2q

$
+OA(C

−A)

=
1

C

!

c"2C

1

cq

!!%

u(q),a(c)

e

#
n
a+ uc

cq

$
h

#
c

C
,

n

C2q

$
+OA(C

−A)

=
1

C

!

c"2C
(c,q)=1

1

cq

!!%

u(q),a(c)

e

#
n
aq + uc

cq

$
h

#
c

C
,

n

C2q

$

+
1

C

!

c"2C/q

1

cq2

!!%

u(q),a(cq)

e

#
n
a+ ucq

cq2

$
h

#
cq

C
,

n

C2q

$
+OA(C

−A).

Here we choose

(3.6) 2C =

#
XL

q

$ 1
2

.

Observe that in the first sum of the last expression, as a varies over a set of representatives of
the residue classes modulo c (prime to c) and u varies over a set of representatives of the residue
classes modulo q, aq+uc varies over a set of representatives of the residue classes modulo cq prime
to c.

Similarly in the second sum, the modulus c is " 2(XL/q3)1/2 < q and is therefore coprime with
q. It follows that as a varies over a set of representatives of the residue classes modulo cq (prime
to cq) and u varies over a set of representatives of the residue classes modulo q, a+ ucq varies over
a set of representatives of the residue classes modulo cq2 prime to cq2.

We can therefore rewrite

δn=0 =
1

C

!

c"2C
(c,q)=1

1

cq

!%

u(cq)

e

#
n
u

cq

$
h

#
c

C
,

n

C2q

$

+
1

C

!

c"2C
(c,q)=1

1

cq

!%

a(c)

e
(
n
a

c

)
h

#
c

C
,

n

C2q

$
(3.7)

+
1

C

!

c"2C/q

1

cq2

!%

u(cq2)

e

#
n

u

cq2

$
h

#
cq

C
,

n

C2q

$
+OA(C

−A).

Remark 3.2. One reason for detecting the condition n − mℓ in two such steps is that since we
already have a trace function of period q, introducing an additive character modulo q does not
significantly increase the complexity. Therefore, we can detect the condition n = mℓ (mod q) at a
reduced cost. After this, we can then detect (n − mℓ)/q = 0 using the delta symbol. So we are
choosing a delta symbol that is in harmony with the modulus of our trace function (we thank the
referee for pointing this out).

The outcome of such an operation is that the parameter C in (3.6) is reduced by a factor q1/2

from the most natural choice (XL)1/2. A similar reduction trick was used by Munshi in [Mun15],
and more recently in [Mun22].
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We apply (3.7) to the difference n−mℓ in (3.5) and obtain

(3.8) S′
V,r(K,X) = Main + Err1 + Err2 +OA(X

−A)

where

Main =
1

L%Cq

!

c"2C
(c,q)=1

1

c

!

ℓ∈L
λ(1, ℓ)ℓ−iv

!%

u(cq)

∞!

n=1

λ(r, n)e

#
n
u

cq

$
nivU

( n

XL

)

∞!

m=1

λf (m)K(mr2)e

#
−umℓ

cq

$
m−ivV

(m
X

)
h

#
c

C
,
n−mℓ

C2q

$
,

(3.9)

Err1 =
1

L%Cq

!

c"2C
(c,q)=1

1

c

!

ℓ∈L
λ(1, ℓ)ℓ−iv

!%

a(c)

∞!

n=1

λ(r, n)e
(an

c

)
nivU

( n

XL

)

∞!

m=1

λf (m)K(mr2)e

#
−amℓ

c

$
m−ivV

(m
X

)
h

#
c

C
,
n−mℓ

C2q

$
,

(3.10)

and

Err2 =
1

L%Cq2

!

c"2C/q
(c,q)=1

1

c

!

ℓ∈L
λ(1, ℓ)ℓ−iv

!%

a(cq2)

∞!

n=1

λ(r, n)e

#
an

cq2

$
nivU

( n

XL

)

∞!

m=1

λf (m)K(mr2)e

#
−amℓ

cq2

$
m−ivV

(m
X

)
h

#
cq

C
,
n−mℓ

C2q

$
.

(3.11)

As for the first term Main, we may further restrict to the subsum satisfying (c, ℓ) = 1 and will
bound the complementary subsum (corresponding to ℓ|c) as an error term. That is, we further
write

Main = Main0 + Err3,

where

Main0 =
1

L%Cq

!

c"2C
(c,q)=1

1

c

!

ℓ∈L
(ℓ,c)=1

λ(1, ℓ)ℓ−iv
!%

u(cq)

∞!

n=1

λ(r, n)e

#
n
u

cq

$
nivU

( n

XL

)

∞!

m=1

λf (m)K(mr2)e

#
−umℓ

cq

$
m−ivV

(m
X

)
h

#
c

C
,
n−mℓ

C2q

$
,

(3.12)

and

Err3 =
1

L%Cq

!

ℓ∈L
λ(1, ℓ)ℓ−iv

!

c"2C
ℓ|c,(c,q)=1

1

c

!%

u(cq)

∞!

n=1

λ(r, n)e

#
n
u

cq

$
nivU

( n

XL

)

∞!

m=1

λf (m)K(mr2)e

#
−umℓ

cq

$
m−ivV

(m
X

)
h

#
c

C
,
n−mℓ

C2q

$
.

(3.13)

In the sequel, we focus our analysis on the term Main0 which is the hardest and is responsible for
the final bound. The other three terms Err1, Err2 and Err3 are discussed briefly in §7.1.
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3.1. Bounding Main0. To prepare for the application of Voronoi summation formula to them-sum
we write

K(mr2) =
1

q1/2

!

b (mod q)

+K(b)e(
−bmr2

q
) =

1

q1/2

!

b (mod q)

+K(b)e(
−bcr2m

cq
),

where

(3.14) +K(b) =
1

q1/2

!

a∈Fq

K(a)e(
ab

q
)

denote the normalized Fourier transform of K.
We find that the term in (3.12) can be rewritten as

Main0 =
1

L%Cq

!

c"2C
(c,q)=1

1

c

!

ℓ∈L
(ℓ,c)=1

λ(1, ℓ)ℓ−iv
!%

u(cq)

∞!

n=1

λ(r, n)e

#
n
u

cq

$
nivU

( n

XL

)

1

q1/2

!

b (mod q)

+K(b)

∞!

m=1

λf (m)e

#
−(bcr2 + uℓ)m

cq

$
m−ivV

(m
X

)
h

#
c

C
,
n−mℓ

C2q

$
.

(3.15)

We can further assume that (bcr2+uℓ, cq) = 1, as otherwise we would have (bcr2+uℓ, q) = q (since
we have already assumed (c, ℓ) = 1) and then by applying Proposition 2.1 to such terms above, we
have

∞!

m=1

λf (m)e

2
− bcr2+uℓ

q m

c

3
m−ivV

(m
X

)
h

#
c

C
,
n−mℓ

C2q

$

=
X

c

∞!

m=1

λf (m)e(
± bcr2+uℓ

q m

c
)+V±

#
n,

mX

c2

$
,

where

+V± (n, y) =

1

R
V (x)(Xx)−ivh

#
c

C
,
n−Xxℓ

C2q

$
J±f (4π

√
xy)dx.(3.16)

By integration by parts, one easily sees that +V± (n, y) ≪A

(
Z+v√

y

)A
, for any A ! 0. On the other

hand with our choice of the C in (3.6), we have

mX

c2
>

mX

C2
=

mq

L
≫ q2ηZ2

for some η > 0. Therefore +V± %
n, mX

c2

&
≪ (q−η)A, of arbitrarily small size. That is, the contribution

from the terms with (bcr2 + uℓ, cq) > 1 in (3.15) is bounded above by OA(q
−A).

Now assuming (bcr2 + uℓ, cq) = 1 and applying Proposition 2.1 to the m-sum in (3.15), we have

Main0 =
X

L%Cq2

!

±

!

c"2C
(c,q)=1

1

c2

!

ℓ∈L
(ℓ,c)=1

λ(1, ℓ)ℓ−iv 1

q1/2

!!%

b(q),u(cq)
(bcr2+uℓ,cq)=1

+K(b)

×
∞!

m=1

λf (m)e(
±bcr2 + uℓm

cq
)

∞!

n=1

λ(r, n)e

#
n
u

cq

$
nivU

( n

XL

)
+V±

#
n,

mX

c2q2

$
+O(q−A).

(3.17)
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We further apply Proposition 2.2 to the n-sum above to obtain a sum of the form

(3.18)
X

L%Cq

!

±±

!

c"2C
(c,q)=1

1

c

!

ℓ∈L
(ℓ,c)=1

λ(1, ℓ)ℓ−iv

×
!

n1|rcq

!

m,n

λf (m)
λ(n, n1)

nn1
C(m,n;

rcq

n1
)W±±

#
m

c2q2/X
,

n2
1n

c3q3r/XL

$

where

C(m,n;
rcq

n1
) =

1

q1/2

!!%

b(q),u(cq)
(bcr2+uℓ,cq)=1

+K(b)e

2
±bcr2 + uℓm

cq

3
S

#
ru,±n;

rcq

n1

$

and

W±±(y, z) =

1

R
V (x)(Xx)−ivWx,±(z)J

±
f (4π

√
xy)dx

=z

1

R
V (x)(Xx)−iv

%1 ∞

0
Wx(ξ)Jϕ,±(zξ)dξ

&
J±f (4π

√
xy)dx

(3.19)

by (2.7). Here

Wx(ξ) := (XLξ)ivU(ξ)h

#
c

C
,
XLξ −Xxℓ

C2q

$
.

Lemma 3.3. Let v = qεZ, ε > 0 be the parameter introduced above Remark 3.1. For any B ! 1
the function

(y, z) ,→ W±±(y, z)

is negligible for y, z ! q−B unless

(3.20) y ≍ v2, z ≍ v3.

Here negligible means that for any A ! 1, and for y, z ! q−B not satisfying (3.20), one has

W±±(y, z) ≪A,B,ε q
−A.

Proof. We recall from (3.16) that

+V± (n, y) =

1

R
V (x)(Xx)−ivh

#
c

C
,
n−Xxℓ

C2q

$
J±f (4π

√
xy)dx

for n a real variable satisfying n ≍ XL and that

W±±(y, z) = z

1 ∞

0
(XLξ)ivU(ξ)+V± (XLξ, y) Jϕ,±(zξ)dξ

We consider the cases where f is holomorphic (the case f is a Maass cusp form would be similar).
Then J−f (x) = 0, and J+f (x) = Jk−1(x) satisfies

(3.21) xiJ
(i)
k−1(x) ≪ xk−1,

for x ≪ 1, and while for x ≫ 1 we can write

(3.22) Jk−1(x) =
!

±

e±ix

√
x
Wk−1,±(x),

for some Wk−1,±(x) satisfying xiW
(i)
k−1,±(x) ≪ 1. We also have

xi
∂i

∂xi
h

#
c

C
,
n−Xxℓ

C2q

$
≪ 1,
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which follows from (2.10). This together with (3.21) implies that if y ≪ 1 then xiV
(i)
1,y (x) ≪ Zi,

where

V1,y(x) := V (x)X−ivh

#
c

C
,
n−Xxℓ

C2q

$
Jk−1(4π

√
xy).

Therefore integration by parts implies that: if y ≪ 1 we have

+V+ (n, y) =

1

R
V1,y(x)x

−ivdx ≪
#
Z

v

$A

≪
#

1

qε

$A

,

for any A ! 0. That is, for y ≪ 1, +V+ (n, y) is always negligibly small.
We now assume that y ≫ 1. We use (3.22) to write

+V+ (n, y) =
!

±

1

R
X−ivV (x)h

#
c

C
,
n−Xxℓ

C2q

$
1

(4π
√
xy)1/2

Wk−1,±(4π
√
xy)e

#
−v log x

2π
± 2

√
xy

$
dx

:=
!

±

1

y1/4

1

R
V2,y(x)e

#
−v log x

2π
± 2

√
xy

$
dx,

where V2,y(x) satisfies x
iV

(i)
2,y (x) ≪ Zi. Again, integration by parts implies that

+V+ (n, y) ≪ 1

y1/4

#
Z

|− v/2π ±√
y|

$A

,

for any A ! 0, which shows that +V+ (n, y) is negligibly small unless |− v/2π ±√
y| " v. Therefore

we may assume that the y-variable satisfies

y ≍ v2

(otherwise +V+ (n, y) and W±±(y, z) have negligible size for n ≍ XL and y, z ! q−B.)
In this remaining range we evaluate W±±(y, z). Recall from (3.19), we have

W±±(y, z) =

1

R
V (x)(Xx)−ivJ±f (4π

√
xy)

× z

1 ∞

0
(XLξ)ivU(ξ)h

#
c

C
,
XLξ −Xxℓ

C2q

$
Jϕ,±(zξ)dξ dx.

(3.23)

We consider the inner integral above. Recall here U(ξ) is a test function satisfying (2.1) with

ZU = 1. If z ≪ 1, then by using (2.8) and (2.10) we have ξiW
(i)
1,z(ξ) ≪ z−,, where

W1,z(ξ) := (XL)ivU(ξ)h

#
c

C
,
XLξ −Xxℓ

C2q

$
Jϕ,±(zξ).

Hence using integration by parts, the inner integral satisfies
1

R
W1,z(ξ)ξ

ivdξ ≪ z−,v−A ≪ q−Aε/2

by taking A sufficiently large. This implies that W±±(y, z) is negligibly small when q−B " z ≪ 1.
Now we assume that z ≫ 1 and use (2.9) to rewrite the inner integral over ξ in (3.23) as

!

±

1 ∞

0
(XL)ivU(ξ)h

#
c

C
,
XLξ −Xxℓ

C2q

$
W±

ϕ ((zξ)1/3)

(zξ)1/3
e

#
v log ξ

2π
± 3(zξ)1/3

$
dξ

:=
!

±

1

z1/3

1 ∞

0
W2,z(ξ)e

#
v log ξ

2π
± 3(zξ)1/3

$
dξ
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up to a negligible error term. Here

W2,z(ξ) = (XL)ivξ−1/3U(ξ)h

#
c

C
,
XLξ −Xxℓ

C2q

$
W±

ϕ ((zξ)1/3)

satisfies ξiW
(i)
2,z(ξ) ≪ 1. Applying integration by parts, the integral above is negligibly small unless

z ≍ v3.

□

Remark 3.4. The above argument shows in fact that for z ! q−B and y > 0 one has

W±±(y, z) = z2/3
1

R
V (x)(Xx)−ivJ±f (4π

√
xy)

×
1 ∞

0
W2,z(ξ)e

#
v log ξ

2π
− 3(zξ)1/3

$
dξ dx+ “negligible error term”.

(3.24)

where the main term is also negligible unless possibly, when (3.20) is satisfied.

4. The case q ∕ |n1

For the sum in (3.18), we further split it into two subsums according to (n1, q) = 1 or not, and
write

Main0 = Main00 + Err4 +O(q−A),

where

(4.1) Main00 =
X

L%Cq

!

±±

!

c"2C
(c,q)=1

1

c

!

ℓ∈L
(ℓ,c)=1

λ(1, ℓ)ℓ−iv
!

n1|rc
(n1,q)=1

!

m,n

λf (m)

× λ(n, n1)

nn1
C(m,n;

rcq

n1
)W±±

#
m

c2q2/X
,

n2
1n

c3q3r/XL

$

and Err4 corresponds to the complementary sum where q|n1. In §6.3 we briefly analyse the contri-
bution from Err4 (see (6.4) and (6.5)).

We have

e(
±bcr2 + uℓm

cq
) = e(

±bcr2 + uℓcm

q
)e(

±uℓqm

c
)

S(ru,±n;
rcq

n1
) = S(cn1u,±rcn1n; q)S(qru,±qn; rc/n1).

Therefore, the (b, u) sum in q−1/2C(m,n; rcqn1
) splits into a product of two sums of respective moduli

rc/n1 and q.
The modulus rc sum is denoted by

(4.2) Mn1,r(m,n, ℓ; rc) :=
!%

u(c)

e(
±uℓqm

c
)S(qru,±qn; rc/n1).

17



The modulus q sum is given by

Ncr(m,n, ℓ; q) :=
1

q

!!%

b(q),u(q)
(bcr2+uℓ,q)=1

+K(b)e(
±bcr2 + uℓcm

q
)S(cn1u,±rcn1n; q)

=
1

q1/2

!!%

b(q),u(q)
(b+uℓ,q)=1

+K(b)e(
±c2r2b+ uℓm

q
)Kl2(±c3r3n2

1nu; q) =
!%

u(q)

L±c2r2m,ℓ(u; q)Kl2(±c3r3n2
1nu; q)

where

(4.3) Lα,β(u; q) :=
1

q1/2

!

b(q)
(b+βu,q)=1

+K(b)e

#
α b+ βu

q

$
.

We will sometime suppress the parameters α and β, and abbreviate Lα,β(u; q) as L(u; q).
From these notations we find that the sum Main00 in (4.1) becomes

(4.4) Main00 =
X

L%Cq1/2

!

±±

!

c"2C
(c,q)=1

1

c

!

ℓ∈L
(ℓ,c)=1

λ(1, ℓ)ℓ−iv
!

n1|rc
(n1,q)=1

!

m,n

λf (m)
λ(n, n1)

nn1
×

Mn1,r(m,n, ℓ; rc)Ncr(m,n, ℓ; q)W±±(
m

c2q2/X
,

n2
1n

c3q3r/XL
).

We break the c-sum into O(log q) dyadic intervals and for C ′ " 2C we evaluate the truncated
version of SV (K) where c ∼ C ′. Here C ′ satisfies

X1/2−η/q " C ′ " 2C = (XL/q)1/2.

We set

(4.5) M = Z2C
′2q2+2ε

X
, N = Z3C

′3q3+3εr

XL
.

By Lemma 3.3 we have

m ≍ M,nn2
1 ≍ N

which we abbreviate by

m ≈ M, nn2
1 ≈ N.

Remark 4.1. From this discussion we see that C ′ cannot be too small: we have m/M " 1 and
since m ! 1, then

C ′ ! X1/2/Zq1+ε,

and this also implies that N is not too small

N ! X1/2r

L
.

4.1. Cauchy–Schwarz. We will now apply Cauchy–Schwarz inequality with the n, n1 variables
outside (to get rid of the factor λ(n, n1)) but we need some preparation.

We factor c = c1c2 with

c1 " C ′, n1|rc1, c1|(n1r)
∞ and (c2, n1r) = 1.

Then we apply Cauchy–Schwarz and (2.5) to remove the GL3 coefficients in (4.4). Using Lemma
3.3 the sum Main00 is bounded by four terms (for the various choices of ±,±) of the shape

18



qo(1)X

LCq1/2
1

C ′N
A1/2B1/2

with

A =
!!

nn2
1≈N

|λ(n, n1)|2n1 ≪ qo(1)N = qo(1)Z3C ′3q3r/XL

B =
!!

c1,nn2
1≈N

(n1,q)=1

n1

0000
!

ℓ∈L
(ℓ,c1)=1

λ(1, ℓ)ℓ−iv
!

m"M

λf (m)

×
!

c2∼C′/c1
(c2,qℓ)=1

Mn1,r(m,n, ℓ; rc1c2)Nc1c2r(m,n, ℓ; q)W±±(
m

c21c
2
2q

2/X
,

n2
1n

c31c
3
2q

3r/XL
)

0000
2

U

#
n

N/n2
1

$
.

Here U is a smooth function with compact support contained in (0,∞) satisfying (2.1) with ZU = 1.
Hence we obtain that

(4.6) Main00 ≪
qo(1)X3/2

r1/2Z3/2L1/2CC ′5/2q2
B1/2.

After opening the square, the second factor B equals

B =
!!

c1,n1

n1

!!

ℓ,ℓ′

m,m′

!!

c2,c′2

×(4.7)

!

n!1

Mn1,r(m,n, ℓ; rc1c2)Mn1,r(m
′, n, ℓ′; rc1c′2)Nc1c2r(m,n, ℓ; q)N

c1c′2r
(m′, n, ℓ′; q)W

#
n

N/n2
1

$
,

where

(4.8) W

#
n

N/n2
1

$
= U

#
n

N/n2
1

$
W±±(

m

c21c
2
2q

2/X
,

n2
1n

c31c
3
2q

3r/XL
)W±±(

m′

c21c
′
2
2q2/X

,
n2
1n

c31c
′
2
3q3r/XL

).

Remark 4.2. At this point it may be useful to recall the typical size of the various quantities
involved: we should imagine that c1 = n1 = r = 1 and

X = q3, L = qη with η > 0 as small as need be, C = qL1/2

q1/2 " C ′ " qL1/2.

M = C ′2q−1 ∈ [1, qL], N = C ′3q3/q3L = C ′3/L ∈ [q3/2/L, q3L1/2]

and

c2c
′
2q = C ′2q ∈ [q2, q3L1/2], c2c

′
2 ≈ Q/q ∈ [q, q2L1/2].

In particular

N = C ′3/L ! (c2c
′
2q)

1/2 = C ′q1/2;

therefore we are in the Polya–Vinogradov range where applying the Poisson summation formula to
(4.7) is beneficial.

We apply Poisson formula to the n-variable keeping in mind that

(4.9) n ,→ Mn1,r(m,n, ℓ; rc1c2)Mn1,r(m
′, n, ℓ′; rc1c′2)Nc1c2r(m,n, ℓ; q)N

c1c′2r
(m′, n, ℓ′; q)
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is periodic of period qk := qrc1c2c
′
2/n1, and see that (4.7) equals

(4.10)
!!

c1,n1

n1

!!

ℓ,ℓ′

m,m′

!!

c2,c′2

N

n2
1(qk)

1/2

!

n∈Z
FT(n,m,m′, ℓ, ℓ′; qk) +W(n/N∗),

where

FT(n,m,m′, ℓ, ℓ′; qk) =
!!

u,u′ (mod q)

L±c2r2m,ℓ(u; q)L±c′
2
r2m′,ℓ′

(u′; q)×

1√
qk

!

v (mod qk)

Kl2(±c3r3n2
1vu; q)Kl2(±c′

3
r3n2

1vu
′; q)Mn1,r(m, v, ℓ; rc1c2)Mn1,r(m

′, v, ℓ′; rc1c′2) e

#
nv

qk

$

and

(4.11) N∗ := qkn2
1/N ≍ n1

c1

qrC ′2

N
(≍ n1XL

Z3c1C ′q2+3ε
).

Here we can truncate the dual n-sum in (4.10) at |n| ≪ q2εZN∗.

Remark 4.3. The truncation of the dual n-sum follows from the fact that W(n/N∗) is negligibly
small when |n| ≫ q2εZN∗, as can be seen from the expression in (3.24). Indeed, from (4.8) the

Fourier transform +W(w) after Poisson summation equals

(4.12) +W(w) =

1

R
U (y)W±±(−,

yN

c31c
3
2q

3r/XL
)W±±(−,

yN

c31c
′
2
3q3r/XL

)e(−wy)dy.

From (3.24), we see that the factor in the integral that depends on y is of the form
1

R
U (y) e

%
− 3(

yNXL

c31c
3
2q

3r
ξ1)

1/3 + 3(
yNXL

c31c
′
2
3q3r

ξ2)
1/3 − wy

&
dy

where ξ1, ξ2 ≍ 1, and for w ∕= 0 by applying integration by parts, this is

≪
#
qεZ

|w|

$A

upon noting that NXL
C′3q3r

≍ q3εZ3 by (4.5). Hence +W(w) is negligibly small when |w| ≫ q2εZ.

4.2. Computation of FT. Recall k = rc1c2c
′
2/n1. We have (q, k) = 1 and we split the above sum

FT(n,m,m′, ℓ, ℓ′; qk) as a product of sums FT(n; q) and FT(n; k) of respective moduli q and k (to
simplify notations we do not display the dependency in m,m′, ℓ, ℓ′ in these expressions).

4.2.1. The k-sum. The k-sum equals

FT(n; k) :=
1√
k

!

v(k)

Mn1,r(m, v, ℓ; rc1c2)Mn1,r(m
′, v, ℓ′; rc1c′2) e

(nvq̄
k

)
.

Lemma 4.4. We have the following bounds

FT(0; k) ≪
√
krc1c2

!

d|c1c2

!

d′|c1c2
(ℓ′d,ℓd′)|(mℓ′−m′ℓ)

(d, d′),

and

FT(n; k) ≪
√
k
!

d1|c1

d1
!

d′1|c1

d′1
!%

x1(rc1/n1)
ℓn1x1≡∓m (mod d1)

!!

d2|(c2,ℓn1c′2+nm)
d′2|(c′2,ℓ′n1c2+nm′)

d2d
′
2.
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Proof. To see this, we recall

(4.13) Mn1,r(m,n, ℓ; rc) =
!

d|c
dµ

( c

d

) !%

x(rc/n1)
ℓn1x≡∓m (mod d)

e

#
±q̄nx̄

rc/n1

$
.

Then

FT(n; k) =
1√
k

!

d|c1c2

dµ
(c1c2

d

) !

d′|c1c′2

d′µ

#
c1c

′
2

d′

$
×

!%

x(rc1c2/n1)
ℓn1x≡∓m (mod d)

!%

x′(rc1c′2/n1)
ℓ′n1x′≡∓m′ (mod d′)

!

v(k)

e

#
(±q̄x̄c′2 ∓ q̄x′c2 + nq̄)v

k

$

=
√
k

!

d|c1c2

dµ
(c1c2

d

) !

d′|c1c′2

d′µ

#
c1c

′
2

d′

$ !%

x(rc1c2/n1)
ℓn1x≡∓m (mod d)

!%

x′(rc1c′2/n1)
ℓ′n1x′≡∓m′ (mod d′)

x̄c′2−x′c2≡∓n (mod k)

1.

(4.14)

We calculate the case where n ≡ 0 (mod k) first.
For n ≡ 0 (mod k), the congruence x̄c′2 − x′c2 ≡ ∓n (mod k) forces

(4.15) c2 = c′2

and x ≡ x′ (mod rc1c2/n1). Therefore

FT(0; k) =
√
k

!

d|c1c2

dµ
(c1c2

d

) !

d′|c1c2

d′µ
(c1c2

d′

) !%

x(rc1c2/n1)
ℓn1x≡∓m (mod d)

ℓ′n1x≡∓m′ (mod d′)

1.

Notice that since we have (ℓ, c) = 1 (see (3.12)), for d|c we have (d, ℓ) = 1. The system of equations

ℓn1x ≡ ∓m (mod d) and ℓ′n1x ≡ ∓m′ (mod d′) has a unique solution modulo [ d
(n1,d)

, d′

(n1,d′)
]; more-

over it implies that (ℓ′d, ℓd′)|(mℓ′ − m′ℓ). The number of solutions for x (mod rc1c2
n1

) is therefore
given by

rc1c2/n1

[ d
(n1,d)

, d′

(n1,d′)
]
=

rc1c2
[n1, d, d′]

.

Hence

FT(0; k) =
√
k

!

d|c1c2

!

d′|c1c2
(ℓ′d,ℓd′)|(mℓ′−m′ℓ)

dµ
(c1c2

d

)
d′µ

(c1c2
d′

) rc1c2
[n1, d, d′]

.

In particular,

FT(0; k) ≪
√
krc1c2

!

d|c1c2

!

d′|c1c2
(ℓ′d,ℓd′)|(mℓ′−m′ℓ)

(d, d′).
(4.16)
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Next we consider the case where n ∕= 0 in FT(n; k). In (4.14) we write d = d1d2 where d1|c1,
d2|c2 and d′ = d′1d

′
2 where d′1|c1, d′2|c′2. Then the sum splits as

FT(n; k) =
√
k
!

d1|c1

d1µ

#
c1
d1

$ !

d′1|c1

d′1µ

#
c1
d′1

$ !

d2|c2

d2µ

#
c2
d2

$ !

d′2|c′2

d′2µ

#
c′2
d′2

$

!%

x1(rc1/n1)
ℓn1x1≡∓m (mod d1)

!%

x′
1(rc1/n1)

ℓ′n1x′
1≡∓m′ (mod d′1)

x1c′2−x′
1c2≡∓n (mod rc1/n1)

!%

x2(c2)
ℓn1x2≡∓m (mod d2)

!%

x′
2(c

′
2)

ℓ′n1x′
2≡∓m′ (mod d′2)

x2c′2−x′
2c2≡∓n (mod c2c′2)

1

:=
√
kFT1(n; k)FT2(n; k),

(4.17)

where

FT1(n; k) =
!

d1|c1

d1µ

#
c1
d1

$ !

d′1|c1

d′1µ

#
c1
d′1

$ !%

x1(rc1/n1)
ℓn1x1≡∓m (mod d1)

!%

x′
1(rc1/n1)

ℓ′n1x′
1≡∓m′ (mod d′1)

x1c′2−x′
1c2≡∓n (mod rc1/n1)

1,

and

FT2(n; k) =
!

d2|c2

d1µ

#
c2
d2

$ !

d′2|c′2

d′2µ

#
c′2
d′2

$ !%

x2(c2)
ℓn1x2≡∓m (mod d2)

!%

x′
2(c

′
2)

ℓ′n1x′
2≡∓m′ (mod d′2)

x2c′2−x′
2c2≡∓n (mod c2c′2)

1.

In FT1(n; k), the term x′1 (mod rc1/n1) is completely determined by x1 (mod rc1/n1). Therefore
estimating trivially, one sees that

FT1(n; k) ≪
!

d1|c1

d1
!

d′1|c1

d′1
!%

x1(rc1/n1)
ℓn1x≡∓m (mod d1)

1 .

For FT2(n; k), the congruence conditions there imply that d2|ℓn1c
′
2 + nm and d′2|ℓ′n1c2 + nm′.

Therefore
FT2(n; k) ≪

!!

d2|(c2,ℓn1c′2+nm)
d′2|(c′2,ℓ′n1c2+nm′)

d2d
′
2.

□
4.2.2. The q-sum. The q-sum equals

(4.18) FT(n; q) =
1
√
q

!!

u,u′ (mod q)

L±c2r2m,ℓ(u; q)L±c′
2
r2m′,ℓ′

(u′; q)×

!

v (mod q)

Kl2(±c3r3n2
1vu; q)Kl2(±c′

3
r3n2

1vu
′; q) e

#
kvn

q

$
.

It will be useful to transform it to make it amenable to a sheaf-theoretic treatment.
For α,β, γ,α′,β′, γ′ ∈ F×

q we recall (see (4.3))

(4.19) L(u; q) = Lα,β(u; q) :=
1
√
q

!

b(q)

+K(b)e

2
α(b+ βu)

q

3
=

1
√
q

!

a∈Fq

K(a)Kl2(αa; q)e(−
βau

q
),

the latter identity following from the expression of the Fourier transform (3.14). We also define

M(u) := Kl2(γu; q)
22



and define likewise L′(u; q), M ′(u′) with α′,β′, γ′. The following choices of values of the parameters
correspond to our initial problem:

α = ±c2r2m, β = ℓ, α′ = ±c′
2
r2m′, β′ = ℓ′

γ = ±c3r3n2
1, γ′ = ±c′

3
r3n2

1, δ = kn,(4.20)

we see (by switching the u, u′ sums and the v sum) that (4.18) equals

√
q

!

v (mod q)

M 1 L(v)M ′ 1 L′(v)e(
δv

q
)

where M 1 L denotes the normalized multiplicative convolution

M 1 L(v) =
1

q1/2

!

u∈F×
q

M(u)L(v/u) =
1

q1/2

!

u∈F×
q

M(vu)L(1/u).

To evaluate such sums further we will need to make a few elementary transformations.
By Plancherel formula we have

(4.21)
!

v

M 1 L(v)M ′ 1 L′(v)e(
δv

q
) =

!

v

!M 1 L(v) !M ′ 1 L′(v − δ) =
!

v

Z(v)Z ′(v − δ)

say. Let us now compute Z(v):

Z(v) =
1

q1/2
1

q1/2

!

x∈F×
q

!

u

M(x)L(u/x)e(
vu

q
) =

1

q1/2

!

x∈F×
q

M(x)+L(xv).

By (8.1) we have
+L(x) = K(x/β)Kl2(α/βx; q)

and

(4.22) Z(v) =
1

q1/2

!

x∈F×
q

Kl2(βγx; q)K(xv)Kl2(αxv; q).

In §8 we will prove the following

Proposition 4.5. Let TF(Fq) be the subgroup of F×
q defined by

TF(Fq) = {λ ∈ F×
q , [×λ]∗F is geometrically isomorphic to F}.

Assuming that the sheaf F is good, then for any α,β,α′,β′, γ, γ′, δ ∈ F×
q , we have

!

v

Z(v)Z ′(v − δ) = O(q1/2).

If δ = 0 the above bound holds unless

α/α′ = βγ/β′γ′ ∈ TF(Fq)

in which case !

v

Z(v)Z ′(v) = cF(α/α
′)q +O(q1/2)

for cF(α/α
′) some complex number of modulus 1. Here the implicit constants depend only on C(F).

Returning to our original sum, we see that (4.18) is O(q) unless (observe that the r variable is
gone)

c′
2
m/c2m′ = c′

3
ℓ/c3ℓ′ ∈ TF(Fq)

in which case (4.18) equals C(c′2m/c2m′)q3/2 +O(q) with |C(c′2m/c2m′)| = 1.
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5. Contribution of the n = 0 frequency

In this section we bound the contribution to (4.10) of the frequency n = 0. By (4.15), we then
have

(5.1) c2 = c′2, c = c′, k = rc1c
2
2/n1.

We use the case δ = 0 of Proposition 4.5: by (5.1) and (4.20) we have that (4.18) is O(q) unless
we have the congruence modulo q

m/m′ = ℓ/ℓ′ ∈ TF(Fq)

in which case (4.18) equals C(m/m′)q3/2 +O(q) with |C(m/m′)| = 1.
The contribution of the n = 0 frequency to (4.10) is bounded by

≪ N

q1/2

!!

n1,c=c1c2

1

n1k1/2

!!

ℓ,ℓ′

|λ(1, ℓ)||λ(1, ℓ′)|

×
!!

m,m′"M

|λf (m)||λf (m
′)|(q3/2δm/m′=ℓ/ℓ′∈TF(Fq) + q)|FT(0; k)|

≪ N

q1/2

!!

n1,c=c1c2

1

n1k1/2

!!

ℓ,ℓ′

|λ(1, ℓ′)|2

×
!!

m,m′"M

|λf (m)|2(q3/2δm/m′=ℓ/ℓ′∈TF(Fq) + q)|FT(0; k)|

≪ qo(1)
rNC ′

q1/2

!!

n1,c

1

n1

!!

ℓ,ℓ′

|λ(1, ℓ′)|2

×
!!

m,m′"M

|λf (m)|2(q3/2δmℓ′=ℓm′ (mod q) + q)
!!

d,d′|c
(ℓ′d,ℓd′)|(mℓ′−m′ℓ)

(d, d′).

Writing b = (d, d′) the sum is bounded by

≪ qo(1)
rNC ′

q1/2

!!

n1,b|c∼C′

b

n1

!!

ℓ,ℓ′∼L,m,m′"M
b|ℓ′m−ℓm′

|λ(1, ℓ′)|2|λf (m)|2(q3/2δmℓ′=ℓm′ (mod q) + q)

≪ qo(1)
rNC ′

q1/2
LM

!

b|c∼C′

b

#
q3/2(

LM

qb
+ 1) + q(

LM

b
+ 1)

$

≪ qo(1)
rNC ′

q1/2
LMC ′(q1/2LM + C ′q3/2 + qLM + C ′q) ≪ qo(1)

rNC ′2LM

q1/2
(C ′q3/2 + qLM).

Taking the squareroot of this term and multiplying by X3/2

r1/2Z3/2L1/2CC′5/2q2
, we see that the con-

tribution of these terms to (4.6) and then to (4.1) is bounded by

qo(1)
r1/2XM1/2

CL1/2q3/4

(
C ′1/2q3/4 + q1/2L1/2M1/2

)

≪qo(1)r1/2

2
Z
X3/4q3/4

L1/4
+ Z2L1/2X1/2q5/4

3
.

(5.2)
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In particular for X = q3 we obtain

qo(1)r1/2(Z
q3

L1/4
+ Z2L1/2q3−1/4)

which when r = 1 is non-trivial for 1 < L < q1/2.

6. Contribution from the n ∕= 0 frequencies

Recall from (4.10) that

Bn ∕=0 =
N

q1/2

!!

c1,n1

1

n1

!

ℓ∈L
λ(1, ℓ)ℓ−iv

!

ℓ′∈L
λ(1, ℓ′)ℓ′

iv
!

m"M

λf (m)
!

m′"M

λf (m
′)

!

c2∼C′/c1

!

c′2∼C′/c1

1

k1/2

!

n ∕=0

FT(n; q)FT(n; k) +W(n/N∗).

(6.1)

We consider two cases: n ∕= 0 (mod q) and n ≡ 0 (mod q).

6.1. n ∕= 0 (mod q). By Proposition 4.5, we have

FT(n; q) ≪ q.

Combining this with Lemma 4.4, gives

Bn ∕=0 (mod q) ≪qo(1)Nq1/2
!!

c1,n1

1

n1

!

ℓ∈L
|λ(1, ℓ)|

!

ℓ′∈L
|λ(1, ℓ′)|

!

m

|λf (m)|
!

m′

|λf (m
′)|

!

c2

!

c′2!

n≪ZN∗

n ∕=0 (mod q)

!

d1,d′1|c1

d1d
′
1

!%

x1(rc1/n1)
ℓn1x1≡∓m (mod d1)

!!

d2|(c2,ℓn1c′2+nm)
d′2|(c′2,ℓ′n1c2+nm′)

d2d
′
2| +W(n/N∗)|.

By using |λ(1, ℓ)||λ(1, ℓ′)||λf (m)||λf (m
′)| ≪ |λ(1, ℓ′)λf (m)|2 + |λ(1, ℓ)λf (m

′)|2, we have

Bn ∕=0 (mod q) ≪qo(1)Nq1/2
!!

c1,n1

c1
n1

!

ℓ∈L

!

ℓ′∈L
|λ(1, ℓ)|2

!

n≪ZN∗

n ∕=0 (mod q)

!

d1|c1

d1

!

m"M

!

m′"M

|λf (m
′)|2

!

c2∼C′/c1

!

c′2∼C′/c1

!%

x1(rc1/n1)
ℓn1x1≡∓m (mod d1)

!!

d2|(c2,ℓn1c′2+nm)
d′2|(c′2,ℓ′n1c2+nm′)

d2d
′
2.

The right hand side, when replacing c2 by c2d2 and c′2 by c′2d
′
2, is

qo(1)Nq1/2
!!

c1,n1

c1
n1

!

n≪ZN∗

n ∕=0 (mod q)

!

d1|c1

d1
!

d2≪C′/c1

d2
!

d′2≪C′/c1

d′2
!

c2∼C′/c1d2

!

ℓ′∈L

!

m′"M
ℓ′n1c2d2+nm′≡0 (mod d′2)

|λf (m
′)|2 ×

!

c′2∼C′/c1d′2

!

ℓ∈L
|λ(1, ℓ)|2

!%

x1(rc1/n1)

!

m"M
ℓn1c′2d

′
2+nm≡0 (mod d2)

ℓn1x1≡∓m (mod d1)

1.
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Bounding the number of solutions in m of the congruence equations ℓn1c
′
2d

′
2 + nm ≡ 0 (mod d2)

and ℓn1x1 ≡ ∓m (mod d1) we see that

!

c′2∼C′/c1d′2

!

ℓ∈L
|λ(1, ℓ)|2

!%

x1(rc1/n1)

!

m"M
ℓn1c′2d

′
2+nm≡0 (mod d2)

ℓn1x1≡∓m (mod d1)

1 ≪ qo(1)(d2, n)
rc1
n1

C ′L

c1d′2

#
1 +

M

d1d2

$

≪ qo(1)(d2, n)
r

n1

C ′L

d′2

#
1 +

M

d1d2

$
.

Averaging this bound over the remaining variables we obtain

Bn ∕=0 (mod q) ≪ qo(1)rNq1/2C ′L
!!

c1,n1

c1
n2
1

!

n≪ZN∗

n ∕=0 (mod q)
!

d2≪C′/c1

(d2, n) (c1d2 +M)
!

d′2≪C′/c1

!

c2∼C′/c1d2

!

ℓ′∈L

!

m′"M
ℓ′n1c2d2+nm′≡0 (mod d′2)

|λf (m
′)|2.

– If ℓ′n1c2d2 + nm′ ∕= 0 we interpret the congruence ℓ′n1c2d2 + nm′ (mod d′2) as d
′
2 being a divisor

of that integer so that the contribution of such terms is bounded by

≪ qo(1)rNq1/2C ′L
!!

c1,n1

c1
n2
1

ZN∗
!

d2"C′/c1

(c1d2 +M)
C ′

c1d2
LM

= qo(1)rZNq1/2C ′2L2M
!!

c1,n1

c1
n2
1

n1

c1

qrC ′2

N

!

d2"C′/c1

#
1 +

M

c1d2

$

= qo(1)r2ZC ′4q3/2L2M
!!

c1,n1

1

n1

!

d2"C′/c1

#
1 +

M

c1d2

$

= qo(1)r2ZC ′5q3/2L2M

#
1 +

M

C ′

$
.

– On the other hand, the contribution of the terms satisfying ℓ′n1c2d2 + nm′ = 0 is bounded
by (this follows from bounding the number of representations of m′n′ as a product of four factors,
where n′ = n/(d2, n) and using the Rankin–Selberg bound (2.4))

qo(1)rNq1/2C ′3L
!!

c1,n1

1

n2
1

!

n≪ZN∗

n ∕=0 (mod q)

!

d2≪C′/c1

(d2, n)

#
1 +

M

C ′

$ !

c2∼C′/c1d2

!

ℓ′∈L

!

m′"M
ℓ′n1c2d2=−nm′

|λf (m
′)|2

≪ qo(1)rNq1/2C ′3L

#
1 +

M

C ′

$!!

c1,n1

1

n2
1

ZN∗M = qo(1)r2ZC ′5q3/2LM

#
1 +

M

C ′

$
,

which is smaller than the previous term.
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6.2. q|n, n ∕= 0. In that case we write n = qn′ with n′ " qo(1)N∗/q and have

FT(n′q; q) ≪ q3/2.

We have there lost a factor q1/2 by comparison with the previous section. On the other hand we
can run exactly the same argument as above with N∗ replaced by N∗/q and all in all we find that

Bq|n,n ∕=0 ≪ qo(1)r2ZC ′5q3/2L2M

#
1 +

M

C ′

$
1

q1/2
.

The non-zero frequencies contribution to (4.6) and hence to (4.1) is bounded by

qo(1)
X3/2

r1/2Z3/2L1/2CC ′5/2q2

%
Bn ∕=0 (mod q) +Bq|n,n ∕=0

&1/2

" qo(1)
X3/2

r1/2Z3/2L1/2CC ′5/2q2

#
r2ZC ′5q3/2L2M

#
1 +

M

C ′

$$1/2

" qo(1)r1/2

2
L1/2X

q1/4
+ ZL3/4X3/4q1/2

3
.(6.2)

6.3. Bounding Main0: Conclusion. Let us recall that the sum Main0 in (3.18) was split into
two subsums depending on whether (n1, q) = 1 or not.

By (5.2) and (6.2) the first subsum (4.1) is bounded by

(6.3) ≪ qo(1)r1/2
(
Z
X3/4q3/4

L1/4
+ Z2L1/2X1/2q5/4 +

L1/2X

q1/4
+ ZL3/4X3/4q1/2

)
.

The complement sum (when q|n1) is given (rewriting n1 into qn1) by

(6.4) Err4 =
X

L%Cq2

!

±±

!

c"2C
(c,q)=1

1

c

!

ℓ∈L
λ(1, ℓ)ℓ−iv

!

n1|rc

!

m,n

λf (m)

× λ(n, n1q)

nn1
C(m,n;

rc

n1
)W±±

#
m

c2q2/X
,

n2
1n

c3qr/XL

$

where

C(m,n;
rc

n1
) =

1

q1/2

!!%

b(q),u(cq)

+K(b)e

2
±bcr2 + uℓm

cq

3
S

#
ru,±n;

rc

n1

$

=
1

q1/2

!!%

b(q),u(q)

+K(b)e

2
±bcr2 + uℓmc

q

3
×

!%

u (mod c)

e

#
±uℓmq

c

$
S

#
ru,±n;

rc

n1

$

= −K(0)
!%

u (mod c)

e

#
±uℓmq

c

$
S

#
ru,±n;

rc

n1

$
.

This last u-sum is very similar to the sum (4.2) discussed previously (the Kloosterman sum

S (qru,±qn; rc/n1) has just been replaced by S (ru,±n; rc/n1)) and is bounded by (rc)1+o(1) (cf.
(4.13)). Using this bound we obtain that (6.4) is bounded by

(6.5) ≪ qo(1)+θ3 X

LCq2
L
Z2C2q2

X
rC = qo(1)+θ3rZ2XL

q
.

Combining this bound with (6.3) we obtain that
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(6.6) Main0 ≪ qo(1)+θ3rZ2XL

q
+ qo(1)r1/2

(
Z
X3/4q3/4

L1/4

+ Z2L1/2X1/2q5/4 +
L1/2X

q1/4
+ ZL3/4X3/4q1/2

)
.

7. Bounding SV (K,X): the final steps

7.1. Bounding Err1, Err2 and Err3. Our treatment of the error terms Err1, Err2 and Err2 is
similar to that of Main0 and in the end these terms yield smaller contributions. We will again start
by using Voronoi summation on the m and the n variables but, from this point on, the argument
becomes much simpler than that of §4.1. For instance for Err1 it is sufficient to bound the resulting
sums trivially (no need to apply Cauchy–Schwarz to smooth the n variable). Since these arguments
have already been presented in full details and in a more complex form in §4.1, we will be brief and
pass over various technical points (for instance we will often assume the coprimality of different
variables).

7.1.1. Err1. We refer to (3.10) for the shape of this term. As before we apply Voronoi summation
formulas to the m and n sums. The chief difference is that the exponential

n ,→ e(
an

c
)

has modulus c " C instead of cq. The dual sum has length

(cZ)3/XL " Z3X3/2L3/2/(Xq3/2L) = Z3(XL)1/2/q3/2

which is rather small (" L1/2 for X = q3) and the exponential is (essentially) transformed into
Kloosterman sums typically of the shape

(7.1) n ,→ Kl2(ran; rc).

For the m-sum, the function

m ,→ K(mr2)e(
−amℓ

c
)

has period cq, therefore the dual m-sum (after Voronoi) has length

(cqZ)2/X " Z2qL

and is weighted (essentially) by the function

(7.2) m ,→ K

"

(±c2r2m)e(±aℓq2m

c
)

where

K

"

(m) =
1
√
q

!

b∈F×
q

+K(b)e(
bm

q
) =

% +K 1 e(
·
q
)
&
(m).

The convolutionK

"

is a trace function unless F is geometrically isomorphic to [x ,→ αx]∗Kℓ2, α ∈ F×
q

(whose Fourier transform is [x ,→ x−1]∗Lψ for Lψ the Artin-Schreier sheaf attached to an additive
character depending on α), but such situation is excluded by both the MO and the SL assumptions.
Summing the product of (7.1) and (7.2) over a (mod c) the resulting sum is bounded by

≪ ‖K

"

‖c1/2+o(1)
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and therefore we obtain

Err1 ≪
qo(1)

LCq
L
!

c"C

1

c

XL

(cZ)3/2
(cZ)3

XL

X

cqZ

(cqZ)2

X
c1/2

=
qo(1)Z5/2

Cq

!

c"C

c2q = qo(1)Z5/2C2 = qo(1)Z5/2XL

q
.

(7.3)

7.1.2. Err2. We refer to (3.11) for notations and the shape of this term; in particular c " C/q.
This time the two functions

n ,→ e(
an

cq2
), m ,→ K(mr2)e(

−aℓm

cq2
)

have modulus cq2 " Cq. Under Voronoi, for (a, cq) = 1 the first function transforms (essentially)
into a Kloosterman sum of the shape

(7.4) Kl2(±an; cq2)

while the second sum transforms into

(7.5)
1

q1/2

!

b (mod q)

+K(b)e(±m
aℓ(1− aℓbr2cq)

cq2
) = K(±(aℓ)2r2m)e(±aℓm

cq2
).

The sum over a (mod cq2), (a, cq) = 1 of the product of (7.4) and (7.5) equals

!%

a (mod cq2)

K(±(aℓ)2r2m)e(±aℓm

cq2
)Kl2(±an; cq2)

=
% !%

a (mod c)

e(±aℓq2m

c
)Kl2(±aq4n; c)

&% !%

a (mod q2)

K(±aℓ
2
r2m)e(±aℓcm

q2
)Kl2(±ac2n; q2)

&
.

The first factor is (essentially)

c1/2e(−q2nℓm

c
)

while the second factor equals
!%

a (mod q2)

K(±a2r2m)e(±acm

q2
)Kl2(±ac2ℓn; q2) =

!%

a"q

K(±a2r2m)e(±acm

q2
)

!

b (mod q)

e(±bcm

q
)
1

q

!%

x (mod q2)

e(
±(a+ bq)c2ℓnx+ x

q2
)

=
!%

a"q

K(±a2r2m)e(±acm

q2
)

!

x (mod q2)

x≡−cmℓn (mod q)

e(
±ac2ℓnx+ x

q2
)

=
!%

a"q

K(±a2r2m)e(±acm

q2
)e(∓acm

q2
)e(−cmℓn

q2
)

!

y (mod q)

e(
±ac2ℓny − cm2(ℓn)2y

q
)

= qK(m3ℓ2r2n2)e(
−cnℓm

q2
).

Hence the sum over a (mod cq2), (a, cq) = 1 of the product of (7.4) and (7.5) equals (essentially)
to

c1/2q ·K(m3ℓ2r2n2)e(
−nℓm

cq2
),
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and Err2 is (essentially) transformed into

qo(1)

LCq

!

c"C/q

1

c1/2

!

ℓ∈L
λ(ℓ, 1)

XL

(cq2Z)3/2

!

n∼ (cq2Z)3

XL

λ(n, 1)
X

cq2Z

!

m≪ (cq2Z)2

X

λf (m)K(m3ℓ2r2n2)e(
−nℓm

cq2
)

≪ qo(1)X2

Z5/2Cq6

0000
!

c"C/q

1

c3

!

n∼Z3(XLq3)1/2

λ(n, 1)
!

ℓ∈L
λ(ℓ, 1)

!

m≪Z2qL

λf (m)K(m3ℓ2r2n2)e(
−nℓm

cq2
)

0000.

We just need to save a bit more than O(qδL) from the trivial estimate Err2 ≪ qo(1)XL.
As in the treatment of the generic term Main0, we can then apply the Cauchy–Schwarz inequality

to smooth the n-sum, but now we can put the c-sum outside the square and the (m, ℓ)-sums inside
the square. After this, applying Poisson summation to the n-variable leads to the following

!

n∼Z3(XLq3)1/2

K(m3ℓ2r2n2)K(m′3ℓ′2r2n2)e(
−nℓm

cq2
)e(

nℓ′m′

cq2
) = OA(q

−A)+

Z3(XLq3)1/2

cq2

!

β (mod q2)

K(m3ℓ2r2β2)K(m′3ℓ′2r2β2)e(
−(ℓm− ℓ′m′)βc

q2
)

!

γ (mod c)

e(
−(ℓm− ℓ′m′)q2γ

c
).

Here we have noticed that in the dual sum only the n = 0 zero-frequency contributes, since

cq2 " q−η(XLq3)1/2

for some η > 0. Writing β = β′ + qy, β′ " q, y (mod q) we see that this is further equal to

Z3(XLq3)1/2

q2

!

β"q

K(m3ℓ2r2β2)K(m′3ℓ′2r2β2)e(
−(ℓm− ℓ′m′)βc

q2
)

×
!

y (mod q)

e(
−(ℓm− ℓ′m′)yc

q
) · δmℓ′≡m′ℓ (mod c)

=
Z3(XLq3)1/2

q

!

β"q

K(m3ℓ2r2β2)K(m′3ℓ′2r2β2)e(
−(ℓm− ℓ′m′)βc

q2
) · δmℓ′≡m′ℓ (mod cq).

Given (m,m′, ℓ, ℓ′), we consider two cases.
– If mℓ′ = m′ℓ , the β-sum above is ≪ q. Such terms contribute to Err2

qo(1)X2

Z5/2Cq6

!

c"C/q

1

c3
(XLq3)1/4

,

-
!

ℓ∈L
|λ(ℓ, 1)|2

!

m≪Z2qL

|λf (m)|2Z
3(XLq3)1/2

q
· q

.

/
1/2

≪ qo(1)X/q1/2.

– If mℓ′ ∕= m′ℓ, we can write mℓ′ = m′ℓ+cqδ with δ ∕= 0, then the β-sum after Poisson summation
is

!

β (mod q)

K(m′ℓℓ′r2β2)K(m′ℓ2r2β2)e(
βδ

q
).

We distinguish two further cases.
– If F is “non-exceptional” in the sense of [FKM14, p. 1686] (i.e., F is not geometrically iso-

morphic to the product of a Kummer and an Artin–Schreier sheaf or in other terms K is not
proportional to the product of an additive and a multiplicative character (mod q)) then for any
α ∈ F×

q the pull-back sheaf [x ,→ αx2]∗F whose trace function is x ,→ K(αx2) is non-exceptional
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and by [FKM14, Theorem 6.3] the above sum is ≪ q1/2 for every δ (mod q) unless ℓ/ℓ′ (mod q)
belongs to a subset B ⊂ F×

q satisfying |B| = O(1). Then such terms contribute to Err2

qo(1)
X2

Z5/2Cq6

!

c"C/q

1

c3
(XLq3)1/4

,

444-
!!

ℓ,ℓ′,m,m′

mℓ′≡m′ℓ (mod cq)

Z3(XLq3)1/2

q
· (q1/2 + qδℓ/ℓ′∈B)

.

555/

1/2

≪ qo(1)Z(XL)3/4 + qo(1)ZX3/4L1/4q1/4.

– If F is exceptional then we may assume that K(x) = χ(x)e(kxq ) for k ∈ Fq and χ a (non-trivial)

Dirichlet character and the β-sum equals

χ(m′ℓℓ′)χ(m′ℓ2)
!%

β (mod q)

e(
km′ℓ(ℓ′ − ℓ)r2β2 + βδ

q
) ≪ q1/2 + qδℓ≡ℓ′ (mod q)

δ≡0 (mod q)

.

In either cases we obtain

(7.6) Err2 ≪ qo(1)X/q1/2 + qo(1)Z(XL)3/4 + qo(1)ZX3/4L1/4q1/4.

7.1.3. Err3. Recall from (3.13) Err3 takes the following shape

Err3 =
1

L%Cq

!

ℓ∈L
λ(1, ℓ)ℓ−iv

!

c"2C
ℓ|c,(c,q)=1

1

c

!%

u(cq)

∞!

n=1

λ(r, n)e

#
n
u

cq

$
nivU

( n

XL

)

1

q1/2

!

b (mod q)

+K(b)

∞!

m=1

λf (m)e

#
−(bcr2/ℓ+ u)m

cq/ℓ

$
m−ivV

(m
X

)
h

#
c

C
,
n−mℓ

C2q

$
.

We treat exactly the same manner as what we did for the main term Main0 in (3.15). The chief
difference occurs when we apply Proposition 2.1 to the m-sum, as now the modulus of the additive
character is cq/ℓ rather than cq. Instead of getting (3.17), we obtain

Err3 =
X

L%Cq2

!

±

!

ℓ∈L
λ(1, ℓ)ℓ−iv

!

c"2C
ℓ|c,(c,q)=1

ℓ

c2
1

q1/2

!!%

b(q),u(cq)

+K(b)

×
∞!

m=1

λf (m)e(
±bcr2/ℓ+ um

cq/ℓ
)

∞!

n=1

λ(r, n)e

#
n
u

cq

$
nivU

( n

XL

)
+V±
n

#
mX

(c/ℓ)2q2

$
.

The extra factor ℓ in the summand of the c-sum will compensate with the congruence condition
ℓ|c, as compared to Main0, but now the effective length of the dual m-sum is m ≍ M/L2, reduced
by a factor L2 as compared to m ≍ M for the case of Main0; cf. (4.5).

Then we proceed as what we did for Main0, and the sum C(m,n; rcqn1
) in (3.18) will be changed

into C(mℓ2, n; rcqn1
). Correspondingly, the parameter m in §4.2 will have to be changed into mℓ2

(and m′ → m′ℓ′2). The change of the parameter m → mℓ2 in the character sum has the effect of
swapping the parameters ℓ and ℓ′ in the congruence conditions in §5, and everything else essentially
remains the same. Since the length of the m-sum is reduced from M to M/L2, by book-keeping
eventually we will save some factor O(Lη), η > 0 for Err3, compared to the bound that we obtained
for Main0.
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7.2. Conclusion. Collecting the bounds (6.6), (7.3) and (7.6) and (3.4) into (3.8) we obtain that

SV,r(K,X) ≪ qo(1)
X

L
rθ3Lθ2 + qo(1)+θ3rZ2XL

q

+ qo(1)r1/2

2
Z
X3/4q3/4

L1/4
+ Z2L1/2X1/2q5/4 + L1/2Xq−1/4 + ZL3/4X3/4q1/2

3

and on taking

L = q1/4

to equate the first and fourth terms inside the parentheses we get

SV,r(K,X) ≪ qo(1)r1/2
(
ZX3/4q11/16 + Z2X1/2q11/8 +Xq−1/8 + qθ3r1/2Z2Xq−3/4

)
.

Replacing X by X/r2 and averaging this bound over r " R we obtain
!

r"R

SV,r(K,X/r2) ≪ qo(1)
(
ZX3/4q11/16 + Z2R1/2X1/2q11/8 +Xq−1/8 + Z2Xqθ3−3/4

)
.

Combining this with (3.2), we have
!

r"R

SV,r(K,X/r2) +
!

r!R

SV,r(K,X/r2)

≪ qo(1)
(
ZX3/4q11/16 + Z2R1/2X1/2q11/8 +Xq−1/8 + Z2Xqθ3−3/4 +XRθ3−1

)
,

which upon choosing

(7.7) R =

#
X

Z4q11/4

$ 1
3−2θ3

to equate the second and the fifth terms gives

St
V (K,X) ≪ qo(1)

#
ZX3/4q11/16 + Z

4(1−θ3)
3−2θ3 X

2−θ3
3−2θ3 q

11(1−θ3)
4(3−2θ3) +Xq−1/8

$
.

This completes the proof of Theorem 1.1.
Plugging (7.7) into our previous assumption R < L = q1/4 in (3.3) we see the restriction

Z4q11/4 < X < Z4q
7−θ3

2 .

8. Square-root cancellation for certain exponential sums

In this section we establish Proposition 4.5. Let K be the trace function of an irreducible middle
extension sheaf F on P1

Fq
of conductor C(F). For α,β,α′,β′ ∈ F×

q we define

(8.1) L(u; q) :=
1
√
q

!

b(q)

+K(b)e

2
α(b+ βu)

q

3
=

1
√
q

!

a

K(a)Kl2(αa; q)e(−
βau

q
),

and define L′(u; q) in the same way with α′,β′ instead. We also set

(8.2) Z(v) =
1

q1/2

!

x∈F×
q

K(xv)Kl2(αxv; q)Kl2(βx; q).

and define Z ′(v) likewise using α′,β′. In this section we provide bounds for the sums

(8.3)
!

v

Z(v)Z ′(v − δ)
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for δ ∈ Fq with different methods depending on whether δ = 0 or not.
We recall the key assumptions:

– (MO) There is no λ ∈ F×
q such that the geometric monodromy group of F has some

quotient which is equal, as a representation of π1 into an algebraic group, to the geometric
monodromy representation of [×λ]∗Kℓ2 modulo ±1.

– (SL) The local monodromy representation of F at ∞ has no summand with slope 1/2.

8.1. The case δ = 0.

Lemma 8.1. Assume F satisfies (MO). Then

L(u; q) = O(c(F)O(1)).

Proof. By Deligne’s theorem, because F and Kℓ2(αa) ⊗ Lψ(βa) are irreducible, this cancellation
holds unless F is geometrically isomorphic to Kℓ2(αa)⊗Lψ(βa), which clearly violates assumption
(MO). □
Lemma 8.2. We have 00000

!

u

L(u; q)

00000 " c(F)q1/2.

Proof.
!

u

L(u; q) = q−1/2
!

u

!

a

K(a)Kl2(αa; q)e(−
βau

q
) = q1/2K(0)Kl2(0) = K(0)q1/2

and
|K(0)| " c(F).

□
For the third Lemma we need to define the following group

(8.4) TF(Fq) = {λ ∈ F×
q , [×λ]∗F is geometrically isomorphic to F}.

Lemma 8.3. Suppose F satisfies (MO). Then
!

u(q)

L(u; q)L′(u; q) = O(c(F)O(1)q1/2)

unless
α/α′ = β/β′ ∈ TF(Fq).

In that later case we have!

u(q)

L(u; q)L′(u; q) = cF(α/α
′)q +O(c(F)O(1)q1/2)

for cF(α/α
′) a complex number of modulus 1. In particular if TF(Fq) = {1} we have

!

u(q)

L(u; q)L′(u; q) = δα=α′

β=β′
q +O(c(F)O(1)q1/2).

Proof. By Plancherel formula the sum equals

(8.5)
!

a (mod q)

K(β−1a)Kl2((α/β)a; q)K(β′−1a)Kl2((α′/β′)a; q)

Square-root cancellation now follows unless there is a nontrival map from [×β−1]∗F⊗ [×β′−1]∗F∨

to [×α/β]∗Kℓ2⊗ [×α′/β′]Kℓ2. If a nontrivial map exists, then an irreducible component on the left
side must be isomorphic to an irreducible component on the right.
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If the irreducible component on the right is trivial, then there is a nontrivial map from [×β−1]∗F⊗
[× β′−1]∗F∨ to the constant sheaf Qℓ, hence a nontrivial map from [×β−1]∗F to [×β′−1]∗F, which
must be an isomorphism because both sides are irreducible, giving β/β′ = λ. Furthermore, be-
cause Qℓ appears on the other side and Kℓ2 is not geometrically isomorphic to any non-trivial
multiplicative twist of itself [Kat88], we must have α/β = α′/β′ so α/α′ = β/β′ = λ.

If the irreducible component on the right is nontrivial, then its monodromy must be a nontrivial
quotient of the monodromy of the product of two Kℓ2, which is either SL2 or SL2×SL2 depending
on whether the two copies are isomorphic or not (by the Goursat-Kolchin-Ribet criterion in the
later case). In either case, it has a further quotient equal to PGL2, with π1 acting by its geometric
monodromy action on one of the Kloosterman sheaves, modulo ±1. This quotient must also appear,
as a π1-representation, as a quotient of the monodromy on the left side. Because it is a simple
group, it must appears as a quotient of the monodromy of either [×β−1]∗F or [×β′−1]∗F. This
implies that assumption (MO) is violated. □

8.2. The case δ ∕= 0.

Proposition 8.4. Assume that F satisfies both (MO) and (SL). Then for any α,β,α′,β′, δ ∈ F×
q

we have

(8.6)
!

v

Z(v)Z ′(v − δ) = O(q1/2)

Here the implicit constants depend only on C(K).

We will prove this in several steps, using a series of lemmas. Let us first observe that by (8.2),
Z(v) is the trace function of the sheaf

(8.7) Z := (F ⊗ [×α]∗Kℓ2) 1 [y → β/y]∗Kℓ2

where 1 is multiplicative convolution. Our lemmas will focus mostly on understanding the geometry
of this sheaf convolution and to compare with the sheaf Z′ defined using the parameters α′,β′. We
denote

K = F ⊗ [×α]∗Kℓ2, L = [y → β/y]∗Kℓ2

and
K′ = F ⊗ [×α′]∗Kℓ2, L′ = [y → β′/y]∗Kℓ2.

Lemma 8.5. If F satisfies (MO), then Z is geometrically irreducible

Proof. It follows from Goursat’s lemma that, if F satisfies (MO), the monodromy of F⊗ [×α]∗Kℓ2
is the product of the monodromy group of F and the monodromy group of [×α]∗Kℓ2. Because it
is a tensor product of irreducible representations, it is an irreducible representation of the product
group. Then because [y → β/y]∗Kℓ2 is an object of dimension 1 in the sheaf convolution Tannakian
category, convolving with it preserves irreducibility. (Alternately, we can view the convolution as a
Fourier transform, change of variables y → y−1, then another Fourier transform, and each of these
steps preserve irreducibility.) □

It follows immediately from Lemma 8.5 that, if F satisfies (MO), then the bound of (8.6) holds
unless Z′ is geometrically isomorphic to [+δ]∗Z. So this case is what we will focus on eliminating.

Lemma 8.6. If F satisfies (SL), then Z is lisse away from {0,β/α,∞}

Proof. The middle convolution K 1L is equal to the compactly supported convolution K 1!L up to
a lisse sheaf, so it suffices to prove this for the compactly supported convolution. The compactly
supported convolution is

Rπ!((F ⊗ [×α]∗Kℓ2)⊗ [(x, v) → βx/v]∗Kℓ2)
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where π : Gm × Gm → Gm is the projection from the torus with coordinates (x, v) to the torus
with coordinate v. To prove lisseness, we apply Deligne’s semicontinuity theorem and examine the
variation with v of the Euler characteristic of the sheaf (in the x-variable) (F ⊗ [×α]∗Kℓ2)⊗ [x →
βx/v]∗Kℓ2

Let V be an indecomposable summand of the local monodromy representation of F at ∞. By
assumption (SL), the slope of V is not 1/2.

If the slope of V is > 1/2, then V ⊗ [×α]∗Kℓ2 has the same slope, and thus for any given v, the
sheaf in the x-variable, (V ⊗ [×α]∗Kℓ2)⊗ [x → βx/v]∗Kℓ2 has the same slope, which in particular
is independent of v, so the contribution of this representation to the Swan conductor is constant.

If the slope of V is < 1/2, then the slope of V [×α]∗Kℓ2 is exactly 1/2, and the slope of (V ⊗
[×α]∗Kℓ2) ⊗ [x → βx/v]∗Kℓ2 is at most 1/2. The slope of (V ⊗ [×α]∗Kℓ2) ⊗ [x → βx/v]∗Kℓ2 is
less than 1/2 if and only if [×α]∗Kℓ2 ⊗ [x → βx/v]∗Kℓ2 has a summand of slope < 1/2. By known
properties of the Kloosterman sheaf [Kat88, 10.4.5], this happens if and only if α = βv−1.

Because the Swan conductor at ∞ of (F ⊗ [×α]∗Kℓ2) ⊗ [x → βx/v]∗Kℓ2 is constant away from
v = β/α, and its Swan conductor elsewhere is constant, by Deligne’s semicontinuity theorem its
cohomology is lisse (in the v variable) away from v = β/α. □

Lemma 8.7. If F satisfies (SL), then K 1 L has a nontrivial singularity at zero.

Proof. Let us first check that, if F satisfies (SL), at least one of the following four conditions must
be satisfied:

(1) F is singular at some point on Gm.
(2) The local monodromy representation of F at zero is not unipotent.
(3) The local monodromy representation of F at zero has a Jordan block of size ! 3.
(4) The local monodromy representation of F at ∞ has a summand with slopes > 1/2.

This follows from an Euler characteristic calculation. Assume none of these happen. Because
F is a nontrivial irreducible middle extension sheaf on A1, its Euler characteristic is nonpositive.
Because F is unipotent at 0, it is tamely ramified at 0. Because F is lisse on Gm and tamely
ramified at 0, its Euler characteristic is its rank, minus its drop at 0, minus its Swan conductor at
∞. Because all the local monodromy at 0 is unipotent, with unipotent blocks of size at most 2, its
drop at 0 is at most half the rank. Because its slopes at ∞ are < 1/2, its Swan conductor at ∞ is
less than half the rank. So the Euler characteristic is positive, giving a contradiction.

So at least one of (1) to (4) must happen. This imply corresponding conditions for K = F ⊗
[×α]∗Kℓ2. We must have either

(1) K is singular at some point on Gm.
(2) The local monodromy representation of K at zero is not unipotent.
(3) The local monodromy representation of K at zero has a Jordan block of size ! 4.
(4) The local monodromy representation of K at ∞ has a summand with slopes > 1/2.

These follow by straightforward arguments. The most subtle are that, in case (2), we must check
that the tensor product of a non-unipotent representation with a nonzero unipotent representation
is non-unipotent, and in case (3), we must check that a Jordan block of size ! 3 tensored with
a Jordan block of size ! 2 produces a Jordan block of size ! 4. Both follow from standard
representation theory.

We will now show, in each of these cases, that K 1L has nontrivial local monodromy at zero. In
fact, we will break case (2) into the cases (2w) where the local monodromy at 0 is wild and (2t)
where the local monodromy at 0 is tame but not unipotent. Rojas-León has shown [RL13, Theorem
16] that the wild part of the local monodromy at 0 of a sheaf convolution K 1 L is given by a sum
of the values of certain functors applied to the local monodromy representations of K and L at
different points. We will show, in cases (1), (2w), and (4), that one of those functors produces a

35



nontrivial value on K and L and thus the local monodromy representation of K 1L at 0 is wild. In
cases (2t) and (3) we will show, using a different result of Rojas-León (encapsulating earlier work
of Katz), that the local monodromy at 0 of K 1 L contains a nontrivial tame component. In every
case we will deduce it is nontrivial.

The functors appearing in [RL13, Theorem 16] are defined by swapping 0 and ∞ in the functors
defined in [RL13, Theorem 9], which is harmless as Gm has a symmetry switching 0 and ∞. Thus
we will need to swap 0 and ∞ when citing results from [RL13].

(1) Fix s a singularity of K in Gm. We must show that the function .(s,0) applied to (Kw
(s),L

w
(0))

is non-trivial. This follows from [RL13, Proposition 12], using the assumption that K has
a singularity at s, and the fact that L has non-trivial wild local monodromy at 0.

(2w) In this case we must show that the functor .(0,0) applied to (Kw
(0),L

w
(0)) (the wild parts of

the local monodromy representations of these two sheaves at 0) is non-trivial. This follows
from [RL13, Proposition 11] which shows that this functor applied to any two nontrivial wild
representations is nontrivial, our assumption that K has nontrivial wild local monodromy
at 0, and the fact that L has nontrivial wild local monodromy at 0.

(2t) For each character χ of the tame fundamental group of Gm, and for Uk a unipotent Jordan
block of size k, Rojas-León defines [RL13, §6] a polynomial PK,χ(T ) associated to a middle

extension sheaf K, whose coefficient of T k is the multiplicity of Lχ⊗Uk as a direct summand
of the local monodromy of K at ∞ if k > 0 and the multiplicity of Lχ ⊗ U−k as a direct
summand of the local monodromy of K at 0 if k < 0, and such that PK,χ(1) is minus the
Euler characteristic of K. He proves that PK%L,χ(T ) = PK,χ(T )PL,χ(T ) [RL13, Proposition
28].

If the local monodromy representation of K at 0 is tame but not unipotent, then it
contains some Lχ ⊗ Uk for some k > 0 and nontrivial character χ. Thus PK,χ(T ) contains

some term T−k. Because χ is nontrivial, Lχ does not appear in the local monodromy of L
at 0 or ∞, and so PL,χ(T ) = −χ(Gm,L) = 1. Thus PK,χ(T )PL,χ(T ) contains some term

T−k, so the local monodromy representation of K 1 L contains Lχ ⊗ Uk and is nontrivial .

(3) Now taking χ to be trivial, we see that PK,1(T ) contains some term of the form T−k for
k ! 4. On the other hand, because the local monodromy of L at ∞ is a unipotent block of
size 2, PL,1(T ) = T 2. Thus PK,χ(T )PL,χ(T ) contains some term of the form T 2−k for k ! 4,
and thus the local monodromy representation of K 1 L contains Uk−2 and is nontrivial.

(4) In this case we must show that the functor .(∞,0) applied to (Kw
(∞),L

w
(0)), the wild parts

of the local monodromy representations of these two sheaves at ∞ and 0 respectively, is
nontrivial. This follow from [RL13, Proposition 13] which implies (swapping 0 and ∞) that
.(∞,0) is nontrivial as soon as some slope a of the first input is greater than some slope b

of the first input, our assumption that K has some slope > 1/2 at ∞, and the fact that L
has slope 1/2 at 0.

□

Let us adopt some notation. Let Uk(F) be the number of unipotent blocks of size k in the local
monodromy representations of F at 0, let χx(F) be the drop plus the Swan conductor at the point
x, and let Ns(F) be the rank of the local monodromy representation of F at ∞ with slope s.

Lemma 8.8. The dimension of the monodromy invariant subspace of K 1 L at 0 is
!

k!2

Uk(F) +
!

k!4

Uk(F)

Proof. The dimension of the monodromy invariants at 0 is the number of unipotent blocks in the
local monodromy representation at 0, which is the sum of all the coefficients of negative powers of
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T in PK%L,1(T ), which is the sum of all coefficients of powers < −2 of T in PK,1(T ), which is the
number of unipotent blocks of size at least 3 of K. A unipotent block of F of size k produces a
unipotent block of F ⊗ [×α]∗Kℓ2 of size k + 1 and one of size k − 1, so it produces one unipotent
block of size 3 if k ! 2 and another if k ! 4. □
Lemma 8.9. Assume F satisfies (SL). The dimension of the monodromy invariant subspace of
K 1 L at β/α is

4 Swan0(F)+4
!

x∈Gm

χx(F)+
!

s

Ns(F)(2s+2max(s, 1/2))−

,

-2
!

k!1

Uk(F) +
!

k!2

Uk(F) +
!

k!4

Uk(F)

.

/

Proof. The dimension of the monodromy invariants at β/α is minus the Euler characteristic of

K⊗ [y → β/(αy)]∗L = K⊗ [×α]∗Kℓ2 = F ⊗ [×α]∗Kℓ2 ⊗ [×α]∗Kℓ2.

on Gm, minus the dimensions of the spaces of local monodromy invariants at 0 and ∞ of

K⊗ [y → v/y]∗L = F ⊗ [×α]∗Kℓ2 ⊗ [×β/v]∗Kℓ2

for generic v. These extra terms come from taking the middle convolution and not the compactly-
supported convolution.

By combining the formula for the Euler characteristic of a middle extension sheaf with a cal-
culation of the invariants and Swan conductor of a tensor product monodromy representation at
each point, the Euler characteristic term is 4 times the sum of the drop plus Swan at all the finite
singularities of F, plus the sum over all local monodromy representations at ∞ of rank r and slope
s of r(2s+ 2max(s, 1/2)), plus 4 times the Swan conductor of F at 0.

Because [×α]∗Kℓ2 and [×β/v]∗Kℓ2 both have local monodromy representations at 0 unipotent
of rank 2, the dimension of the local monodromy invariants of F ⊗ [×α]∗Kℓ2 ⊗ [×α]∗Kℓ2 at 0 is 2
for each unipotent block of size 1 in the local monodromy of F at 0, 3 for each unipotent block of
size 2, and 4 for each unipotent block of greater size.

Because the local monodromy of [×β/v]∗Kℓ2 at ∞ is irreducible and distinct for distinct v, for
only finitely many v can F ⊗ [×α]∗Kℓ2 ⊗ [×β/v]∗Kℓ2 have nonzero local monodromy invariants at
∞, meaning that for generic v there are no local monodromy invariants. □
Lemma 8.10. Assume F satisfies (SL). Suppose that the dimension of the monodromy invariants
subspace of K 1L at 0 is equal to the dimension of the monodromy invariant subspace of K′ 1L′ at
β′/α′. Then F is lisse on Gm, with the local monodromy at 0 unipotent with all blocks of size 2, 3,
and 4, all slopes of the local monodromy representation at ∞ at most 1/2, and χ(A1,F) = 0.

Proof. By Lemmas 8.8 and 8.9 our assumption implies that
!

k!2

Uk(F) +
!

k!4

Uk(F)

= 4 Swan0(F)+4
!

x∈Gm

χx(F)+
!

s

Ns(F)(2s+2max(s, 1/2))−

,

-2
!

k!1

Uk(F) +
!

k!2

Uk(F) +
!

k!4

Uk(F)

.

/

This gives

2
!

k!1

Uk(F) + 2
!

k!2

Uk(F) +
!

k!3

Uk(F) +
!

k!4

Uk(F)

= 4 Swan0(F) + 4
!

x∈Gm

χx(F) +
!

s

Ns(F)(2s+ 2max(s, 1/2))
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On the other hand, we have

0 " −χ(F) = Swan0(F) +
!

x∈Gm

χx(F) +
!

s

Ns(F)s−
!

k!1

Uk(F)

and !

k!1

kUk(F) " rank(F) =
!

s

Ns(F) "
!

s

Ns2max(s, 1/2)

Subtracting twice the first inequality plus the second inequality from our identity, we must have

−U1(F)−
!

k!5

(k − 4)Uk(F) ! 2 Swan0(F) + 2
!

x∈Gm

χx(F) ! 0.

Thus, for the identity to hold, every inequality must be sharp. It follows that we must have
χ(F) = 0,

'
k!1 kUk(F) = rank(F) (meaning the local monodromy at 0 is unipotent), Uk(F) = 0

for k ∕= 2, 3, 4, χx(F) = 0 for x ∈ Gm (meaning F is lisse on Gm, and 2max(s, 1/2) = 0 for all s
with s " 0 (meaning all slopes at ∞ " 1/2). □
Lemma 8.11. Under the assumptions of Lemma 8.10, the local monodromy of K 1 L at 0 is
unipotent.

Proof. We will calculate the wild part and the χ-tensor unipotent part of the local monodromy at
0 for each nontrivial character χ using [RL13]’s local convolution theory, and show that they are
trivial, deducing that the local monodromy is unipotent.

By Lemma 8.10, F is lisse on Gm and tame at 0, so F(s) vanishes for all s ∈ Gm and Fw
(0) = 0.

Similarly, L is lisse on Gm and tame at ∞, so L(s) vanishes for all s ∈ Gm and Lw
(∞) = 0. So the

only term in [RL13, Theorem 16] that could be nonvanishing is

.∞,0(F
w
(∞),L

w
(0)).

But by Lemma 8.10, Fw
(∞) has all slopes < 1/2, and Lw

(0) has slope 1/2, so by [RL13, Proposition

13] we have
.∞,0(F

w
(∞),L

w
(0)) = 0

as well.
For χ, because F is unipotent at 0, F ⊗ [×α]∗Kℓ2 is unipotent at 0, and because F has no slope

exactly equal to 1/2 at ∞, F ⊗ [×α]∗Kℓ2 is totally wild at infinity, so Lχ ⊗ Uk does not appear
in the local monodromy of F ⊗ [×α]∗Kℓ2 at 0 or ∞ for χ nontrivial. Thus PK,χ(T ) is a constant,
and by the same reasoning PL,χ(T ) is a constant, so their product is a constant, and thus by
[RL13, Proposition 28] Lχ⊗Uk does not appear in the local monodromy of K1L at zero or infinity.

□
Lemma 8.12. Under the assumptions of Lemma 8.10, the local monodromy of K′ 1 L′ at β′/α′ is
not unipotent.

Proof. Assume for contradiction that this representation is unipotent. We have

K′ = K′ 1 ([y → β′/y]∗Kℓ2 1 [y → β′y]∗Kℓ2) = K′ 1 L′ 1 [×β′]∗Kℓ2

Using this identity, we apply [RL13]’s local convolution theory to calculate the slope 1/2 part
of the local monodromy of K′ at ∞. Because [×β′]∗Kℓ2 is lisse away from 0 and ∞ and tame at
0, the only functors that contribute to the wild part of K′ at ∞ are .(0,∞), .(β′/α′,∞), and .(∞,∞).
Because the unique slope at ∞ of [×β′]∗Kℓ2 is 1/2, by [RL13] the image of .(0,∞) has slopes < 1/2
and by [RL13, Proposition 11], the image of .(∞,∞) has slopes < 1/2. So the slope 1/2 part only
arises from

.(β′/α′,∞)

(
(K′ 1 L′)(β′/α′), [×β′]∗Kℓ2

w
(∞)

)
.
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Because .(β′/α′,∞) is exact and (K′ 1 L′)(β′/α′) is unipotent, this is an iterated extension of

.(β′/α′,∞)

(
1, [×β′]∗Kℓ2

w
(∞)

)
= [×α′]∗Kℓ2(∞).

(This identity can be checked by applying local convolution functors to calculate the local mon-
odromy at ∞ of δβ′/α′ 1 [×β′]∗Kℓ2, say. )

Then the slope 1/2 part of the local monodromy of (F⊗ [×α′]∗Kℓ2) at ∞ is an iterated extension
of [×α′]∗Kℓ2, hence [×α′]∗Kℓ2 tensor a unipotent representation.

Let V be the local monodromy representation of F at ∞. By Lemma 8.10 and assumption (SL),
V has all slopes < 1/2, so V ⊗[×α′]∗Kℓ2 has all slopes exactly 1/2. Thus V ⊗[×α′]∗Kℓ2 is [×α′]∗Kℓ2
tensored with a unipotent representation. Because V is a summand of

V ⊗ ([×α′]∗Kℓ2 ⊗ [×α′]∗Kℓ2) = (V ⊗ [×α′]∗Kℓ2)⊗ [×α′]∗Kℓ2,

it is a summand of

[×α′]∗Kℓ2 ⊗ [×α′]∗Kℓ2

tensored with a unipotent representation, and because it has slope < 1/2, it is a summand of the
slope < 1/2 part of [×α′]∗Kℓ2 ⊗ [×α′]∗Kℓ2 tensored with a unipotent representation. The slope
< 1/2 part of [×α′]∗Kℓ2⊗ [×α′]∗Kℓ2 is the sum of a trivial representation and quadratic character,
so V is a summand of the sum of a unipotent representation and another unipotent representation
tensored with a quadratic character.

Hence V is a sum of unipotent representations and unipotent representations tensored with the
quadratic character. In particular, F is tamely ramified at ∞. So because it is irreducible and lisse
on Gm, tamely ramified at ∞, and unipotent at 0, it must be the trivial sheaf, which contradicts
our assumption that F is nontrivial. □

Proof of Proposition 8.4. It is clear from their constructions that the conductors of Z and Z′ are
O(c(F)O(1)). By Lemma 8.5, Z′ is irreducible. So we get the bound of Proposition 8.4 unless Z′ is
geometrically isomorphic to [+δ]∗Z. Suppose this is the case.

By Lemma 8.7, [+δ]∗Z has a singularity at −δ which should be a singularity of Z′. Since δ ∕= 0,∞,
Lemma 8.6 (applied to Z′) imply that −δ = β′/α′ and the dimension of the monodromy invariant
of Z and Z′ respectively at 0 and β′/α′ are equal. By Lemma 8.11, the local monodromy of [+δ]∗Z
at −δ is unipotent while by Lemma 8.12, the local monodromy of Z′ at β′/α′ is not unipotent, a
contradiction. □

9. Some special cases

In this section we discuss three cases of functions K for which Theorem 1.1 does not apply
directly either because K is not a trace function or is a trace function associated to a “bad” sheaf
F.

9.1. A general duality principle. We start with the general duality principle hinted in the
introduction. Let K : F×

q → C be some function; we define the Dirichlet series

L(ϕ× f ×K, s) :=
!

n,r!1
(nr2,q)=1

λ(r, n)λf (n)K(nr2)

(nr2)s
, Re s > 1.

We will show that L(ϕ × f × K, s) admits analytic continuation to C and satisfies a functional
equation. We then use this functional equation to obtain non-trivial bounds for St

V (Kl2, X) when
the sheaf F is Kℓ2.
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9.1.1. The functional equation for standard L-functions. Let ϕ and f be GL3 and GL2 cusp forms
of level one; to simplify the exposition and the shape of the functional equation we assume that
f is holomorphic of some weight k ! 2. The Rankin–Selberg L-function L(ϕ × f, s) has analytic
continuation to C and satisfies the functional equation

Λ(ϕ× f, s) = ε(ϕ× f)Λ(ϕ× f, 1− s)

where
ε(ϕ× f) = i3k = ik = ±1

is the root number;
Λ(ϕ× f, s) = L∞(ϕ× f, s)L(ϕ× f, s)

is the L-function completed by the Archimedean local factor

L∞(ϕ× f, s) =
6

i=1,2
j=1,2,3

ΓR(s− µf,i − µϕ,j), ΓR(s) = π−s/2Γ(s/2)

with

µf,1 = −k − 1

2
, µf,2 = −k

2
and (µϕ,j)j=1,2,3 being the Langlands parameters (of the principal series representation attached to
ϕ) which satisfy

µϕ,1 + µϕ,2 + µϕ,3 = 0

(and belong to (iR)3 under the Ramanujan–Petersson conjecture); ϕ denotes the automorphic
form dual to ϕ (attached to the contragredient automorphic representation of ϕ) with parameters

(µϕ,j)j=1,2,3 and Hecke eigenvalues (λ(r, n))(r,n). Under our assumption, L∞(ϕ× f, s) and L∞(ϕ×
f, s) have no poles for Re s > −1/2 + θ3 = −1

7 .
For χ (mod q) a non-trivial Dirichlet character, the twisted L-function L(ϕ×f×χ, s) has analytic

continuation to C and satisfies the functional equation

(9.1) Λ(ϕ× f × χ, s) = ε(ϕ× f × χ)Λ(ϕ× f × χ, 1− s)

where
Λ(ϕ× f × χ, s) = q3sL∞(ϕ× f, s)L(ϕ× f × χ, s),

and
ε(ϕ× f × χ) = ε6χε(ϕ× f)

with
εχ = q−1/2

!

x∈F×
q

χ(x)e(
x

q
)

being the normalized Gauss sum (notice that the Archimedean local factor does not depend on (the
parity of) χ because f is holomorphic; this is the main reason why we have made the simplifying
assumption).

9.2. Functional equation for algebraically twisted L-functions. Let K : F×
q → C be a

function on F×
q (extended by 0 to Fq); we define the Mellin transform for χ (mod q)

7K(χ) =
1

(q − 1)1/2

!

x∈F×
q

K(x)χ(x)

and we define for (n, q) = 1 the “GL6-transform” of K as

(9.2) K

"6
(n) =

1

q1/2

!

x∈F×
q

Kl6(nx; q)K(x)
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where Kl6 is the hyper-Kloosterman sum in six variables

Kl6(x; q) =
1

q5/2

!!

x1,··· ,x6∈F×
q

x1.··· .x6=x

e(
x1 + · · ·+ x6

q
).

Proposition 9.1. The completed series

Λ(ϕ× f ×K, s) = q3sL∞(ϕ× f, s)L(ϕ× f ×K, s)

has analytic continuation to C and satisfies the functional equation

Λ(ϕ× f ×K, s) = ε(ϕ× f)Λ(ϕ× f ×K

"6
, 1− s) +

+
q3s

(q − 1)1/2
7K(χ0)Λ

(q)(ϕ× f, s)

− ε(ϕ× f)q−3s

(q − 1)1/2
7K(χ0)Λ

(q)(ϕ× f, 1− s)

where χ0 = 1|F×
q

denotes the trivial character modulo q and Λ(q)(· · · ) denotes the complete L-

function with the local factor at q being removed.

Proof. By the Mellin inversion formula

K(nr2) =
1

(q − 1)1/2

!

χ (mod q)

7K(χ)χ(nr2),

we have

Λ(ϕ× f ×K, s) =
q3s

(q − 1)1/2
7K(χ0)Λ

(q)(ϕ× f, s) +
1

(q − 1)1/2

!

χ (mod q)
χ ∕=χ0

7K(χ)Λ(ϕ× f × χ, s)

and the result follows by applying the functional equations (9.1), the identity

K

"6
(nr2) =

1

(q − 1)1/2

!

χ (mod q)

ε6χ 7K(χ)χ(nr2),

and the value of the Ramanujan sum εχ0 = −q−1/2. □
By standard contour shifts we deduce the following.

Corollary 9.2. Let V be a smooth compactly supported function satisfying (1.2); we have for any
X ! 1

!

(nr,q)=1

λ(r, n)λf (n)K(nr2)V (
nr2

X
) = ε(ϕ× f)

X

q3

!

(nr,q)=1

λ(r, n)λf (n)K

"6
(nr2)V

"6
(
nr2

q6/X
)

+ O(ZB | 7K(χ0)|
q1/2−θ3

)

where

V

"6
(x) =

1

2iπ

1

(3/2)

7V (1− s)
L∞(ϕ× f, s)

L∞(ϕ× f, 1− s)
x−sds

and 7V (s) =
8∞
0 V (y)ys dyy is the Mellin transform of V . Here θ3 = 5/14 is the best known bound

towards the Ramanujan–Petersson conjecture on GL3, B ! 0 is an absolute constant (any B > 5/2
will do) and the implicit constant in the O(· · · ) term depends on ϕ, f and the implicit constants in
(1.2).
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Proof. We have

V (x) =
1

2iπ

1
7V (s)x−sds

(the integration is along the vertical line Re s = 1 + 1/14) so that

!

(nr,q)=1

λ(r, n)λf (n)K(nr2)V (
nr2

X
) =

1

2iπ

1
Λ(ϕ× f ×K, s)

L∞(ϕ× f, s)
7V (s)(

X

q3
)sds

= q3ε(ϕ× f)
1

2iπ

1
L(ϕ× f ×K

"6
, 1− s)

L∞(ϕ× f, 1− s)

L∞(ϕ× f, s)
7V (s)(

X

q6
)sds

+
7K(χ0)

(q − 1)1/2
1

2iπ

1
L(q)(ϕ× f, s)7V (s)Xsds

−ε(ϕ× f) 7K(χ0)

(q − 1)1/2
1

2iπ

1
L(q)(ϕ× f, 1− s)

L∞(ϕ× f, 1− s)

L∞(ϕ× f, s)
7V (s)(

X

q6
)sds

upon applying Proposition 9.1. In the first integral we make the change of variable s ↔ 1 − s
getting

ε(ϕ× f)
X

q3
1

2iπ

1

(−1/14)

L(ϕ× f ×K

"6
, s)

L∞(ϕ× f, s)

L∞(ϕ× f, 1− s)
7V (1− s)(

X

q6
)−sds

and shifting the contour back to Re s = 3/2 without hitting any poles we obtain the first sum. For
the second and third integrals we shift the contour to Re s = 0 and apply trivial bounds; the term
qθ3 arise from the following bound for the inverse of the local factor

Lq(ϕ× f, s)−1 ≪ qθ3 , Re s = 0.

□
In particular we deduce that

(9.3)
!

n,r

λ(r, n)λf (n)K(nr2)V (
nr2

X
) ≪ϕ,f ZBq3+o(1)

%
‖K

"6
‖∞ + ‖K‖∞qθ3−3

&
.

for some absolute constant B ! 0 and the implicit constant depends on ϕ, f and the implicit
constants in (1.2). This bound is stronger than the trivial bound O(X1+o(1)) as long as

X ! q3+δ, δ > 0

and one can use it to prove the “convexity bound” (1.1) mentioned in the introduction.
Applying Theorem 1.1 to the sum

!

n,r

λ(r, n)λf (n)K

"6
(nr2)V

"6
(
nr2

q6/X
)

(after a dyadic partition of unity), one deduces that

Corollary 9.3. Notations being as in the above corollary; suppose that the transform K

"6
defined

in (9.2) is L1-close to the trace function K ′ of a good sheaf F′, then we have

St
V (X) ≪ ZB′

qo(1)
X

q3

#
(q6/X)3/4q11/16 + (q6/X)

2−θ3
3−2θ3 q

11(1−θ3)
4(3−2θ3) + (q6/X)q−1/8)

+ ‖K

"6
−K ′‖1(

q5

X
+ 1)(

q6

X
)θ3

$
.
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Here θ3 = 5/14 is the best known bound towards the Ramanujan–Petersson conjecture on GL3;
B′ ! 0 is an absolute constant,

‖K

"6
−K ′‖1 :=

!

x∈F×
q

|K

"6
(x)−K ′(x)|,

and the implicit constant depends on ϕ, f, | 7K(χ0)|, C(F′) and the implicit constants in (1.2).

Remark 9.4. Ignoring the Z parameter, the above bound is non-trivial as long as

X ≫ q3−1/12+η, η > 0

and for X = q3 we obtain

St
V (q

3) ≪ q3−1/16+o(1).

The typical situation to apply Corollary 9.3 is when K is the trace function attached to a
geometrically non-trivial and irreducible sheaf F of weight 0. Unless F is geometrically isomorphic

to a sheaf of the shape [x ,→ αx−1]∗Kℓ6 for some α ∕= 0, the function K

"6
is close to the trace

function, K ′ say, of a geometrically irreducible sheaf of weight 0, namely the convolution sheaf

F

"6
:= Kℓ6 1 [x ,→ x−1]∗F

(alternatively F

"6
is the sheaf obtained from F by applying 6 times the composition of [x ,→ x−1]∗

and the geometric Fourier transform). In such a case one has

| 7K(χ0)|, ‖K

"6
−K ′‖1 = OC(F)(1).

We discuss three explicit examples below.

9.3. Arithmetic progressions. One of the motivations for investigating algebraic twists of L-
functions is the level of distribution of their coefficients in arithmetic progressions of large modulus;
specifically let

λF (m) =
!

nr2=m

λ(r, n)λf (n);

one would like to prove that for (a, q) = 1 and V satisfying (1.2), one has

(9.4)
!

m≡a (mod q)

λF (m)V (
m

X
) = oϕ,f,V (

X

q
)

for q = Xϑ and some ϑ > 0 (a level of distribution) as large as possible (since ϕ and f are cuspidal
there should be no main term).

Taking

K(n) = q1/2δn≡a (mod q)

we have for (m, q) = 1

K

"6
(m) = Kl6(am; q);

therefore applying Corollary 9.2 and bounding the resulting sums trivially (using Deligne’s bound
|Kl6(am; q)| " 6) we obtain

!

nr2≡a (mod q)

λ(r, n)λf (n)V (
nr2

X
) ≪V,ϕ,f q5/2+o(1)

which gives (9.4) as long as

ϑ < ϑ6 = 2/7.
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To go beyond ϑ6 = 2/7 we would need, at least, to be able to improve the trivial bound for the
sum

!

n,r

λ(r, n)λf (n)Kl6(anr
2; q)V

"6
(
nr2

X ′ )

for X ′ = q6/X a bit less than q5/2. While Kl6(an; q) is definitely “good” (its geometric monodromy
group is SL6 and its slopes at ∞ are equal to 1/6), Theorem 1.1 is non-trivial only for

X ′ ≫ q5/2+1/4+δ, δ > 0.

This demonstrates the importance and difficulty of detecting cancellation for algebraically twisted
sums of shorter length.

Remark 9.5. This level of distribution ϑ6 = 2/7 corresponds to Selberg’s level of distribution
ϑ2 = 2/3 for the divisor function (or the Fourier coefficients of modular forms) or ϑ3 = 1/2 for the
ternary divisor function (see [FI85,HB86,FKM15b] for improvements in this last case).

Remark 9.6. An Archimedean analog of this question is to improve the Landau’s type bound for
the sharp-cut sum !

m"X

λF (m) ≪ X5/7+o(1)

(cf. [FI05, Prop. 1.1] for the degree m = 6 in the notations of that paper); under the Ramanujan–
Petersson conjecture, this amounts to non-trivial estimates for

!

m"X′

λF (m) e(t(m/X ′)1/6)

when X ′ is a bit less than t5/2. This has recently been worked out by the first named author and Q.
Sun in [LS21] and this might suggest that if the modulus q is a suitably factorable integer (either
a smooth number or a large power of a fixed prime number) other exponential sum methods might
allow to pass the 2/7 barrier for such a composite modulus.

9.4. Additive characters. We now discuss Theorem 1.1 when K is a trace function of a sheaf F
which is not Fourier: this implies that for q large enough (depending on C(F)) K is proportional
to an additive character ψ(•) = e(a•q ).

In this case, a much more general bound is expected (cf. [Mil06]): for any α ∈ R, one should
have

(9.5)
!

n,r

λ(r, n)λf (n)e(αnr
2)V (

nr2

X
) ≪ϕ,f,V X1−η+o(1)

for some η > 0 (possibly η = 1/2) and this should hold uniformly for α ∈ R. Such a bound would
be analogous to Wilton’s bound for Fourier coefficients of GL2 automorphic forms or Miller’s bound
for GL3 automorphic forms; however for ranks greater than 3 such bounds are still unknown.

As was pointed out in [Mil06] if α is a rational number the analytic properties of L(ϕ× f ×χ, s)
for χ a Dirichlet character of modulus dividing the denominator of α yield (9.5) at least if X is
large compared to q. For instance, for q a prime number, (an, q) = 1 we have

e(a•q )

"6
(n) = Kl5(−an; q)− (−1)5q−3

and Corollary 9.2 together with Deligne’s bound |Kl5(an; q)| " 5 yield (9.5) as long as

X ! q3+δ, δ > 0.
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Now since the sheaf [x ,→ −ax]∗Kℓ5 is good (it is Fourier, its geometric monodromy group is SL5

and all its ∞-slopes equal 1/5) we have

!

r,n

λ(r, n)λf (n)e(
anr2

q
)V (

nr2

q3
) ≪ q2+θ3+o(1) + q3−1/16+o(1)

(the first term on the right is the contribution of the n’s divisible by q) so that (9.5) holds in the
slightly wider range

X ! q3−1/16+δ, δ > 0.

9.5. Kloosterman sums. Finally we observe that the Kloosterman sheaf Kℓ2 while being Fourier
is definitely not good: neither (SL) nor (MO) is satisfied. On the other hand,

Kl2

"6
(n) = Kl4(n; q)− q−5/2 − q−7/2

and the Kloosterman sheaf Kℓ4 is good: its geometric monodromy group is SL4 and all its ∞-slopes
are 1/4. By Corollary 9.2 we have

!

r,n

λ(r, n)λf (n)Kl2(nr
2; q)V (

nr2

q3
) ≪ϕ,f,V q3−1/16+o(1)

which again is non-trivial as long as

X ! q3−1/16+δ, δ > 0.

Remark 9.7. Further examples of geometrically irreducible sheaves satisfying neither (MO) nor
(SL) are the sheaves of the shape

r9

i=1

Symki ◦ [×λi]
∗Kℓ2

where Symk denotes the k-th symmetric power representation of SL2 and λi, i = 1, · · · , r are
distinct elements of F×

q . The underlying trace function is

K : x ∈ F×
q ,→

r6

i=1

symki(θλix)

where 2 cos(θλix) = Kl2(λix) and sym(kθ) = sin((k + 1)θ)/ sin(θ). In that case all the non-trivial
slopes of the monodromy at ∞ are 1/2 and the set of λ’s for which the condition in (MO) fails are

precisely the λi. It should be possible to check for most or all of these sheaves F that F

"6
is good.
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