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Abstract. Let Fg,n be the moduli space of n-pointed K3 surfaces of
genus g with at worst rational double points. We establish an isomor-
phism between the ring of pluricanonical forms on Fg,n and the ring of
certain orthogonal modular forms, and give applications to the birational
type of Fg,n. We prove that the Kodaira dimension of Fg,n stabilizes to
19 when n is sufficiently large. Then we use explicit Borcherds products
to find a lower bound of n where Fg,n has nonnegative Kodaira dimen-
sion, and compare this with an upper bound where Fg,n is unirational or
uniruled using Mukai models of K3 surfaces in g ≤ 20. This reveals the
exact transition point of Kodaira dimension in some g.

1. Introduction

The moduli space of primitively polarized K3 surfaces of genus g is
identified with a Zariski open set of a 19-dimensional modular variety
Fg = Γg\Dg of orthogonal type, thanks to the Torelli theorem [47], [11].
Its complement is the (−2)-Heegner divisor and parametrizes K3 surfaces
having rational double points. Over Fg we have the moduli space Fg,n of
n-pointed K3 surfaces of genus g with at worst rational double points (§2).
The purpose of this paper is to establish a correspondence between pluri-
canonical forms on Fg,n and modular forms on Fg, and give applications to
the birational type of Fg,n. Specifically, we prove that the Kodaira dimen-
sion κ(Fg,n) stabilizes to 19 when n is sufficiently large; and for g ≤ 20
we study the transition point of κ(Fg,n) from −∞ to ≥ 0 by combining the
modular form method using explicit Borcherds products and the geometric
method using Mukai models of polarized K3 surfaces. In the course we
will also observe a curious coincidence (1.3) between the Borcherds prod-
ucts and the Mukai models.

Let H0(F ◦g,n,K⊗m
F ◦g,n) be the space of m-canonical forms on the regular locus

F ◦g,n of Fg,n. Let Mk(Γg, χ) be the space of modular forms onDg of weight k
and character χ with respect to Γg, S k(Γg, χ) be the subspace of cusp forms,
and Mk(Γg, χ)(m) be the subspace of modular forms which vanish to or-
der ≥ m at the (−2)-Heegner divisor. We have Mk(Γg, det)(1)=Mk(Γg, det)
(Corollary 3.3). Our point of departure is the following correspondence.
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Theorem 1.1 (§4). Let (g, n) , (2, 1). We have an isomorphism of graded
rings

(1.1)
⊕

m

H0(F ◦g,n,K⊗m
F ◦g,n) '

⊕
m

M(19+n)m(Γg, detm)(m).

If X is a smooth projective model of Fg,n, this gives an isomorphism

(1.2) H0(X,KX) ' S 19+n(Γg, det).

If we consider only pluricanonical forms on the moduli space of smooth
n-pointed K3 surfaces, the modular forms can be meromorphic at the (−2)-
Heegner divisor. Therefore, in order to fully understand the connection with
modular forms, it is necessary to extend the universal family over the whole
modular variety by allowing rational double points. (See also Remark 4.10.)

As an application of (1.2), we study the birational type of Fg,n. By the
Kodaira dimension κ(Fg,n) of Fg,n, we mean the Kodaira dimension of its
smooth projective model X. Then κ(Fg,n) is nondecreasing with respect to
n ([34]), and is bounded by 19 ([32]). The question whether κ(Fg,n) indeed
arrives at 19 in large n has remained (cf. [5]). The interest is in the range
g ≤ 62, since κ(Fg) = 19 for g ≥ 63 and some other g by Gritsenko-Hulek-
Sankaran [23]. The correspondence (1.2) implies the following.

Corollary 1.2. Let k0 be a weight such that S k0(Γg, det) , {0}, k1 be a weight
such that dim S k1(Γg, det) > 1, and k2 be a weight such that S k2(Γg, det)
gives a generically finite map Fg d PN . Then

(1) κ(Fg,n) ≥ 0 for all n ≥ k0 − 19,
(2) κ(Fg,n) > 0 for all n ≥ k1 − 19, and
(3) κ(Fg,n) = 19 for all n ≥ k2 − 19.

In particular, κ(Fg,n) stabilizes to 19 for sufficiently large n.

Here (3) holds because the canonical map of a smooth projective model
X factors through Fg,n ↠ Fg d PN where Fg d PN is the rational map de-
fined by S 19+n(Γg, det) (Corollary 4.7), and hence its image has dimension
19 when n = k2−19. The existence of such a weight k2 is guaranteed by the
general theory of Baily-Borel ([3]) and Hirzebruch-Mumford proportional-
ity ([24]).

We can always find, for every g, an explicit cusp form F(g) of character
det by quasi-pullback of the BorcherdsΦ12 form ([8], [9], [35], [23]). If k(g)
is the weight of F(g) and n(g) = k(g)−19, then Fg,n(g) has positive geometric
genus, and κ(Fg,n) ≥ 0 for n ≥ n(g). Usually the Borcherds product F(g)
has been used only when k(g) ≤ 19 to study the birational type of Fg ([35],
[23]). But even when k(g) > 19, it can be thus used to study the universal
families over Fg.

On the other hand, for most g ≤ 22, general K3 surfaces of genus g have
been explicitly studied by Mukai [39] – [44], Farkas-Verra [18], [19] and
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Barros [4]. This tells us a bound n′(g) where Fg,n is unirational or uniruled.
We compare the arithmetic bound n(g) for κ(Fg,n) ≥ 0 with the geometric
bound n′(g) for κ(Fg,n) = −∞.

Theorem 1.3 (§5). For g ≤ 22, n(g) and n′(g) are as in the following table.
In particular, n(g) = n′(g) + 1 for g = 3, 4, 6, 12, 20.

g 2 3 4 5 6 7 8 9 10 11 12

n(g) 56 35 30 21 23 16 15 14 14 9 14

n′(g) 38 34 29 18 22 14 9 10 11 7 13

g 13 14 15 16 17 18 19 20 21 22

n(g) 9 9 8 7 6 8 5 6 5 6

n′(g) 7 1 4 5 5 1

Here Fg,n′(g) is uniruled for g = 7, 11, 13, 16, 18, 20, rationally connected
for g = 12, and (uni)rational for other g. The bound n′(g) in 8 ≤ g ≤ 10
is due to Farkas-Verra [18] using the Mukai models in [39], and in g =
11, 14, 22 due to Barros [4] and Farkas-Verra [18], [19] respectively. For
other g we compute n′(g) by a geometric argument using classical models
(g ≤ 5) and Mukai models [39] – [44] (g ≥ 6). When g = 7, we improve the
bound of [18]. The existence of a canonical form on F11,9 matches nicely
with the result κ(F11,9) = 0 of Barros-Mullane [5]. In g = 7, 13, 16, we also
find that a space akin to Fg,n′(g)+1 is uniruled (dual K3 fibration).

One observes that n(g) is close to n′(g) in relatively many cases. Thus
sandwich by Mukai models and Borcherds products, two techniques of dif-
ferent nature, tells us a rather precise information on the transition of the
birational type of Fg,n. This is what the title means. Moreover, in every
3 ≤ g ≤ 10, we find (§5.2.8) that the coincidence

(1.3) n(g) = dim Vg

holds, where Vg is a representation of an algebraic group appearing in the
classical/Mukai models. This might suggest a further link between the
Borcherds product F(g) and the Mukai model.

A related subject is the Kodaira dimension of the moduli spaceMg,n of
n-pointed curves of genus g, which has been studied by Logan [36], Farkas
[16] and Agostini-Barros [1] (and for n = 0, Harris-Mumford-Eisenbud
[29], [14] and Farkas-Jensen-Payne [17]). Incidentally, in many cases in
7 ≤ g ≤ 22, n(g) is near to the Logan-Farkas bound for κ(Mg,n) ≥ 0.

As for the criterion (2) in Corollary 1.2, we can find a weight k1 such that
dim S k1(Γg, det) > 1 by multiplying F(g) and a space Mk(Γg) = Mk(Γg, 1)
with dim Mk(Γg) > 1. Such a space Mk(Γg) can be explicitly found, e.g., by
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the Jacobi lifting [22]. Similarly, for the criterion (3), we can find a weight
k2 there by multiplying F(g) and a space Mk(Γg) that gives a generically
finite map Fg d PN . Although we know that such a weight k exists by
the Baily-Borel theory, it is in general not easy to explicitly calculate it.
Moreover, the resulting bound n(g) + k for κ(Fg,n) = 19 would be far from
the actual bound, which is expected to be near to n(g).

These points could be improved ifFg,n admits a compactification X which
is an equidimensional family over some toroidal compactification of Fg in
codimension 1 (§4.3). For such a compactification, the boundary obstruc-
tion for pluricanonical forms can be estimated in terms of modular forms.
Consequently, (1.1) extends to an isomorphism with the log canonical ring
of Fg,n ↪→ X, and moreover, assuming X has canonical singularities, we
have κ(Fg,n) = 19 whenever n > n(g). However, unlike the case of abelian
varieties, no example of such a compactification has been known, which
makes this part conditional. The singularities of Fg,n can be studied through
the theory of semi-universal deformation of rational double points and the
theory of automorphisms of K3 surfaces. Anyway, Corollary 1.2 enables to
study κ(Fg,n) without knowing explicit compactification.

The origin of this paper goes back to the work of Shioda [51] on the cor-
respondence between elliptic cusp forms of weight 3 and canonical forms
on the elliptic modular surfaces. This was generalized by Shokurov [52] to
n-pointed elliptic curves, and by Hatada [30] to n-pointed abelian varieties
and Siegel modular forms. Another generalization of elliptic curves are
K3 surfaces. The new feature here is the degenerate family over the (−2)-
Heegner divisor, which is responsible for the vanishing condition there.

This paper is organized as follows. In §2 we give an analytic construction
of Fg,n. In §3 we recall the basic theory of orthogonal modular forms. In §4
we prove Theorem 1.1. In §5 we prove Theorem 1.3.

I would like to thank Igor Dolgachev for his help in genus 3, and Gavril
Farkas, Shigeru Mukai and Alessandro Verra for their valuable comments.
I would also like to thank the referee for many helpful comments.

2. Universal K3 surface over the period domain

In this section we give an analytic construction of Fg,n. This is necessary
for the connection with modular forms. The effort is paid for equivariant
extension over the (−2)-Heegner divisor. The main results are Propositions
2.1 and 2.13.

Let g ≥ 2. Let ΛK3 = 3U ⊕ 2E8 be the K3 lattice. We fix a primitive
vector l ∈ ΛK3 of norm 2g − 2, which is unique up to the O(ΛK3)-action
([45]). The polarized K3 lattice of degree 2g−2 is defined as its orthogonal
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complement
Λg = l⊥ ∩ ΛK3 ' 2U ⊕ 2E8 ⊕ 〈2 − 2g〉.

The polarized period domain is defined by

Ωg = { [ω] ∈ P(Λg)C | (ω,ω) = 0, (ω, ω̄) > 0 }.
This consists of two connected components, each of which is a Hermitian
symmetric domain of type IV.

Let Õ(Λg) be the kernel of the reduction map O(Λg) → O(Λ∨g /Λg). By
Nikulin [45], Õ(Λg) is identified with the stabilizer of l in O(ΛK3). We set

Fg = Õ(Λg)\Ωg.

Since Õ(Λg) has an element exchanging the two components of Ωg, Fg is
irreducible. By Baily-Borel [3], Fg is a normal quasi-projective variety.

The (−2)-Heegner divisor of Ωg is defined as

(2.1) H =
⋃
δ∈Λg

(δ,δ)=−2

δ⊥ ∩Ωg.

This is locally finite and descends to an algebraic divisor of Fg. We write
Ω◦g = Ωg −H .

A marked polarized K3 surface of genus g is a triplet (S , L, ϕ) where S
is a smooth K3 surface, L is an ample line bundle on S of degree 2g − 2,
and ϕ is an isometry H2(S ,Z) → ΛK3 such that ϕ([L]) = l. (In particular, L
is assumed to be primitive.) When L is nef and big, we say instead quasi-
polarized. By the period mapping, Ω◦g is identified with the fine moduli
space of marked polarized K3 surfaces of genus g. Gluing the polarized
Kuranishi families, we have a universal family (X◦g → Ω◦g, ϕ) over Ω◦g (see
[6], [31]). We have the equivariant action of Õ(Λg) on X◦g → Ω◦g induced by
changing the marking (cf. [31] p.120).

Our purpose in this section is to extend X◦g → Ω◦g to a family over Ωg

together with the action of Õ(Λg), and determine its fixed divisor. The re-
sults proved in §2.2 and §2.3, after preliminaries in §2.1, are summarized
as follows.

Proposition 2.1. Let g ≥ 2.
(1) The family X◦g → Ω◦g extends to a projective flat family π : Xg → Ωg

over Ωg of polarized K3 surfaces with at worst rational double points, and
the Õ(Λg)-action on X◦g extends to a Õ(Λg)-action on Xg.

(2) The reflection with respect to a (−2)-vector δ ∈ Λg acts trivially on
the total space π−1(δ⊥∩Ωg) over δ⊥∩Ωg. When g ≥ 3, every fixed divisor of
the Õ(Λg)-action on Xg is of this form. When g = 2, we have an additional
fixed divisor formed by the ramification curves of the double planes.
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In §2.4 we take the n-fold fiber product Xg,n of Xg → Ωg and the quotient
Fg,n = Õ(Λg)\Xg,n. This is an analytic construction of the moduli space of
n-pointed K3 surfaces of genus g with at worst rational double points, and
will be a basis of the connection with modular forms.

2.1. Polarized Burns-Rapoport period domain. We recall the Burns-
Rapoport period domain ([11], [6]) and consider its polarized version.

2.1.1. Burns-Rapoport period domain. Let

ΩK3 = { [ω] ∈ P(ΛK3)C | (ω,ω) = 0, (ω, ω̄) > 0 }

be the period domain of K3 surfaces. The period of a marked K3 sur-
face (S , ϕ) is defined by P(S , ϕ) = ϕ(H2,0(S )) ∈ ΩK3. For [ω] ∈ ΩK3

we write NS (ω) = ω⊥ ∩ ΛK3, H1,1
R (ω) = ω⊥ ∩ (ΛK3)R and V(ω) = {x ∈

H1,1
R (ω)|(x, x) > 0}. Let ∆(ω) be the set of (−2)-vectors in NS (ω) and W(ω)

be its Weyl group. Connected components of V(ω) − ∪δ∈∆(ω)δ
⊥ are called

Weyl chambers of V(ω). The group W(ω) × {±id} acts freely and transi-
tively on the set of Weyl chambers of V(ω). The Burns-Rapoport period
domain ([11]) is set-theoretically defined as

Ω̃K3 = { ([ω],C) | [ω] ∈ ΩK3, C a Weyl chamber ofV(ω) }.

If (S , ϕ) is a marked K3 surface, its Burns-Rapoport period is defined by

PBR(S , ϕ) = (ϕ(H2,0(S )), ϕ(KS )) ∈ Ω̃K3,

where KS is the Kähler chamber of S . By the strong Torelli theorem, this
identifies Ω̃K3 with the fine moduli space of marked K3 surfaces ([11],
[6]). The marked Kuranishi families equip Ω̃K3 with the structure of a
non-Haussdorff complex manifold and a universal family (X̃K3

π→ Ω̃K3, ϕ),
where ϕ is an isomorphism R2π∗Z → ΛK3 of local systems. The projection
Ω̃K3 → ΩK3 is locally isomorphic by the local Torelli theorem.

The group O(ΛK3) acts on X̃K3 → Ω̃K3 equivariantly as follows. Let
γ ∈ O(ΛK3). If (S , ϕ) is a marked K3 surface, γ sends [(S , ϕ)] ∈ Ω̃K3 to
[(S , γ ◦ ϕ)] ∈ Ω̃K3. The isomorphism between the fibers over them is “the
identity map” S → S of S . To be more intrinsic, if (S ′, ϕ′) is a marked K3
surface isomorphic to (S , γ ◦ ϕ), the fiber map is the isomorphism f : S →
S ′ with ϕ′◦ f∗ = γ◦ϕ (which uniquely exists by the strong Torelli theorem).
This defines the action of O(ΛK3) on X̃K3.

2.1.2. Polarized Burns-Rapoport period domain. Next we consider the po-
larized version. Let Ω̃g ⊂ Ω̃K3 be the subset consisting of those ([ω],C)
such that [ω] ∈ Ωg and that the Weyl chamber C contains l in its closure.
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By the Burns-Rapoport period mapping, Ω̃g is identified with the set of iso-
morphism classes of marked quasi-polarized K3 surfaces of genus g. The
basic observation is

Proposition 2.2. Ω̃g is a complex submanifold of Ω̃K3.

This is a consequence of the following general property.

Lemma 2.3. Let X → U be a family of K3 surfaces with a line bundle L
on X. Let Lu = L|Xu for u ∈ U. Assume that Lu0 is nef and big for a point
u0 ∈ U. Then Lu is nef and big for all u ∈ U in an open neighborhood of u0.

Indeed, for a marked Kuranishi family (X → U, ϕ) such that
PBR(Xu0 , ϕu0) ∈ Ω̃g, Lemma 2.3 implies that ϕ−1

u (l) ∈ NS (Xu) is nef and
big for all u ∈ P−1(Ωg) in a neighborhood of u0. Hence, shrinking U if
necessary, we have P−1

BR(Ω̃g) = P−1(Ωg) in U. Since P : U → ΩK3 is an
open immersion and Ωg is a complex submanifold of ΩK3, this shows that
P−1

BR(Ω̃g) is a complex submanifold ofU. Recalling that the complex struc-
ture of Ω̃K3 is induced from the Kuranishi families, this proves Proposition
2.2.

Lemma 2.3 follows from the following cohomological characterization
of nef and big line bundle and the upper semicontinuity of hi(mLu).

Proposition 2.4. Let S be a K3 surface and L be a line bundle with (L, L) >
0. Then L is nef and big if and only if h1(mL) = h2(mL) = 0 for some m ≥ 2.

Proof. The “only if” part is the Kodaira-Ramanujam vanishing theorem for
mL. We prove the “if” part. Suppose h1(mL) = h2(mL) = 0. Since h0(mL) >
0 by Riemann-Roch, L is in the positive cone of NS (S )R. Assume to the
contrary that L is not nef and big. Then L is not nef, i.e., not in the closure
of the ample cone, because a nef bundle L with (L, L) > 0 is also big. Take a
Weyl chamber C of NS (S )R with L ∈ C. There exists a sequence of effective
(−2)-vectors δ1, · · · , δN ∈ NS (S ) such that, if si is the reflection by δi and
Ci = si(Ci−1) with C0 = C, then CN is the ample cone and (Ci−1, δi) < 0 for
all i. (Connect C and the ample cone by a general segment.) We set L0 = L
and Li = si(Li−1). Then Li ∈ Ci.

We claim that h0(mLN) < h0(mL). Indeed, since Li = Li−1 + (δi, Li−1)δi

and (δi, Li−1) ≤ 0, we have h0(mLi) ≤ h0(mLi−1) for every i. We look at
i = N. Note that (LN , δk) ≥ 0 for every k because LN is nef. Let j be the
largest index such that (LN , δ j) > 0, which exists because L , LN . There
exists an irreducible curve C ≤ δ j with (LN ,C) > 0. By Saint-Donat’s result
([49] §2 – §3, see also [31] Chapter 2.3), we may assume that C is smooth.
Consider the exact sequence

0→ H0(mLN)→ H0(mLN +C)→ H0((mLN +C)|C)→ H1(mLN).
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We have h1(mLN) = 0 because LN is nef and big, and h0((mLN + C)|C) > 0
because deg((mLN +C)|C) ≥ 2gC by m ≥ 2. It follows that

h0(mLN) < h0(mLN +C) ≤ h0(mLN + δ j) = h0(mL j + δ j) ≤ h0(mL j−1).

This proves h0(mLN) < h0(mL).
On the other hand, since (LN , LN) = (L, L), this contradicts the conse-

quence of the Riemann-Roch formula

h0(mLN) = m2(LN , LN)/2 + 2 = m2(L, L)/2 + 2 = h0(mL).

This proves Proposition 2.4 and so finishes the proof of Lemma 2.3 and
Proposition 2.2. □

The fibers of the projection p : Ω̃g → Ωg are described as follows. For
[ω] ∈ Ωg we let NS (ω, l) = l⊥ ∩ NS (ω) and ∆(ω, l) be the set of (−2)-
vectors in NS (ω, l). Since NS (ω, l) is negative-definite, the root lattice
R(ω, l) ⊂ NS (ω, l) generated by ∆(ω, l) is an orthogonal sum of some ADE
root lattices. Let W(ω, l) be its Weyl group.

Lemma 2.5. The fiber p−1([ω]) is identified with the set of Weyl chambers
of R(ω, l)R. In particular, W(ω, l) acts on p−1([ω]) freely and transitively.

Proof. The fiber p−1([ω]) is the set of Weyl chambers of V(ω) which con-
tains l in its closure. IfV+(ω) is the component ofV(ω) containing l, every
connected component of V+(ω) − ∪δ∈∆(ω,l)δ

⊥ contains a unique such Weyl
chamber. Those components in turn correspond bijectively with the Weyl
chambers of R(ω, l)R. □

This shows that Fg ' Õ(Λg)\Ω̃g, so Fg is the moduli space of quasi-
polarized K3 surfaces of genus g. Equivalently, contracting the (−2)-curves
orthogonal to the quasi-polarization, Fg is also the moduli space of polar-
ized K3 surfaces of genus g with at worst rational double points.

2.1.3. Universal family over Ω̃g. Let (X̃K3 → Ω̃K3, ϕ) be the universal
marked family over Ω̃K3 as in §2.1.1. By restriction to the submanifold Ω̃g,
we obtain a marked family (X̃g

π→ Ω̃g, ϕ) over Ω̃g. If we take a sufficiently
fine open covering (Uα)α of Ω̃g and putXα = π−1(Uα), there exists a collec-
tion L = (Lα)α of line bundles, each Lα on Xα, such that [(Lα)u] = ϕ−1

u (l)
for all u ∈ Uα (see, e.g., [31] p.110). We will call (Xα → Uα,Lα, ϕ) a
(marked quasi-polarized) Kuranishi family. Over Xα ∩ Xβ there exists an
isomorphism Lα|Xα∩Xβ → Lβ|Xα∩Xβ unique up to O∗(Uα ∩ Uβ). In partic-
ular, for every k, the local PN-bundles P(π∗L⊗k

α )∨ are canonically glued to
a PN-bundle over Ω̃g. By abuse of notation, we denote this by P(π∗L⊗k)∨.
(As we will use only the projective morphisms Xα → P(π∗L⊗3

α )∨, the local
collection (Lα) is sufficient for our purpose.)
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Since the Õ(Λg)-action on Ω̃K3 preserves Ω̃g, the equivariant action on
X̃K3 preserves X̃g. Thus Õ(Λg) acts on X̃g → Ω̃g equivariantly. If γ ∈ Õ(Λg)
and [(S , ϕ)] ∈ Ω̃g, then γ sends [(S , ϕ)] to [(S , γ ◦ ϕ)], and the isomorphism
between the fibers over them is given by “the identity” S → S of S .

2.2. Extension of the universal family. We now construct a family Xg →
Ωg as in Proposition 2.1 (1). We do this in two steps: first contract X̃g over
Ω̃g, and then show that this descends to a family over Ωg.

Let (X̃g
π→ Ω̃g,L, ϕ) be the universal family as in §2.1.3. Since L⊗3

u is
base point free for every u ∈ Ω̃g ([49] Theorem 8.3, see also [31] Chapter 2
Remark 3.4), we can take the relative projective morphism X̃g → P(π∗L⊗3)∨

over Ω̃g. Let X̄g be the image of this morphism. This is a flat projective fam-
ily of K3 surfaces with at worst rational double points. By [28] Corollaire
6.5.4, X̄g is normal. At each fiber, (X̃g)u → (X̄g)u contracts all (−2)-curves
orthogonal to Lu.

Proposition 2.6. There exists a family Xg → Ωg of K3 surfaces with at
worst rational double points such that X̄g is isomorphic to the pullback of
Xg to Ω̃g.

Proof. Let (X → U,L, ϕ) be a marked quasi-polarized Kuranishi family
of (S , L, ϕ) = (Xu0 ,Lu0 , ϕu0). We set [ω] = P(u0) and U◦ = U − P−1(H).
We may assume that [ω] ∈ H . By Lemma 2.5, a point in the same fiber of
Ω̃g → Ωg as (S , L, ϕ) can be written as (S ′, L′, ϕ′) = (S , L,w ◦ ϕ) for some
w ∈ W(ω, l). The Kuranishi family of (S ′, L′, ϕ′) is (X′ → U′,L′, ϕ′) =
(X → U,L,w◦ϕ). OutsideH the two marked families are isomorphic: the
gluing is given by the equivariant action of w−1 on X|U◦ , which we denote
by

f : X|U◦ → X|U◦ = X′|(U′)◦ .
It suffices to show that the closure of the graph of f inX×UX′ is an analytic
set, and that its fiber over u0, as a correspondence between S and S ′, gives
an isomorphism between the complements of the exceptional divisors of
S → S̄ and S ′ → S̄ ′. This would imply that f extends to an isomorphism
X̄\Sing(X̄) → X̄′\Sing(X̄′) where X̄, X̄′ are the relative contractions of
X, X′ respectively, which then extends to an isomorphism X̄ → X̄′ by
normality.

In order to prove our claim, we use a variant of the argument of Burns-
Rapoport [11]. For each u ∈ U◦, fu : Xu → Xw−1u satisfies

( fu)∗ = ϕ−1
w−1u ◦ w−1 ◦ ϕu : H2(Xu,Z)→ H2(Xw−1u,Z).

By the same argument as [11] p.248, the volume of the graph of fu is
bounded. This shows that the graph of f has finite volume, hence its closure
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is an analytic subset of X ×U X′ by [7] Theorem 3. The limit cycle

Γ = lim
u→u0

graph( fu) ⊂ S × S ′

is of pure dimension 2 and satisfies

(2.2) Γ∗ = ϕ
−1
u0
◦ w−1 ◦ ϕu0 : H2(S ,Z)→ H2(S ′,Z).

By the same argument as [11] p.248 – p.250, Γ can be written as

(2.3) Γ = graph(g) +
∑

i, j

ai, jCi ×C′j,

where g is an isomorphism S → S ′, ai, j ≥ 0, and Ci,C′j are irreducible
curves on S , S ′ respectively. What has to be shown is that (Ci, L) = 0
and (C′j, L

′) = 0 whenever ai, j > 0. We use a variant of the argument of
Matsusaka-Mumford in the proof of Theorem 2 of [38].

Let U be the open set of |3L| consisting of members D ∈ |3L| such that
D 2 Ck for every k. Since Γ∗([L]) = [L′], the correspondence by Γ gives
a birational map Γ∗ : |3L| d |3L′|, whose domain of definition contains U
and is injective over U ([38] p.671). For D ∈ U we have

Γ∗(D) = g(D) +
∑

i, j

ai, j(Ci, 3L)C′j.

We suppose, to the contrary, that (Ci, L) > 0 for some i. For a general point
p of Ci we set Up = U∩|3L− p|. Then Up is non-empty and of codimension
1, so Γ∗(Up) is of codimension 1 in |3L′|. If ai, j > 0, Γ∗(Up) is contained
in |3L′ − C′j| + C′j. Since 3L′ is base point free, we have dim |3L′ − C′j| <
dim |3L′|, so Γ∗(Up) is an open subset of |3L′−C′j|+C′j. Noticing that p is any
general point of Ci, we see that Up∩Uq is open dense in both Up and Uq for
two general points p, q of Ci. This contradicts that 3L separates two general
points of Ci. Hence (Ci, L) = 0 for every i. The assertion (C′j, L

′) = 0 can
be proved similarly. □

By construction, the isomorphism g : S → S ′ in (2.3) is the minimal
resolution of the gluing isomorphism S̄ → S̄ ′. As will be shown later
(Corollary 2.9), this coincides with the equivariant action by w.

2.3. The Õ(Λg)-action. Next we prove that Õ(Λg) acts on Xg and deter-
mine its fixed divisor. Since the relative morphism X̃g → P(π∗L⊗3)∨ is
Õ(Λg)-equivariant, Õ(Λg) acts on X̄g → Ω̃g equivariantly.

Lemma 2.7. The action of Õ(Λg) on X̄g → Ω̃g descends to an equivariant
action on Xg → Ωg.
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Proof. Let γ ∈ Õ(Λg) and [ω] ∈ H . Let [(S 1, ϕ1)], [(S 2, ϕ2)] = [(S 1,w◦ϕ1)]
be two points in the fiber of Ω̃g → Ωg over [ω] where w ∈ W(ω, l), and
g : S 1 → S 2 be the resolution of the gluing isomorphism between S̄ 1 and S̄ 2.
Let [(S ′1, ϕ

′
1)] = γ[(S 1, ϕ1)], w′ = γwγ−1, and [(S ′2, ϕ

′
2)] = [(S ′1,w

′ ◦ ϕ′1)] =
γ[(S 2, ϕ2)]. What has to be checked is that

γ ◦ g ◦ γ−1 : S ′1 → S 1 → S 2 → S ′2
coincides with the resolution g′ of the gluing isomorphism between S̄ ′1 and
S̄ ′2.

Let (X → U,L, ϕi) and (X′ → U′,L′, ϕ′i) be Kuranishi families of
(S i, Li, ϕi) and (S ′i , L

′
i , ϕ
′
i) respectively. Then γ : S i → S ′i extends to

γ : X → X′. Recall that graph(g) and graph(g′) are the main components
of the limit cycles limu graph( fu) and limu′ graph( f ′u′) respectively, where f ,
f ′ are the equivariant actions by w−1, (w′)−1 on X,X′ respectively. Since
γ(graph( fu)) = graph( f ′γu), we have

lim
u′

graph( f ′u′) = lim
u

graph( f ′γu) = lim
u
γ(graph( fu)) = γ(lim

u
graph( fu)).

The main component of γ(limu graph( fu)) is γ(graph(g)), which is the graph
of γ ◦ g ◦ γ−1. □

We study the action of the (−2)-reflections.

Proposition 2.8. Let δ be a (−2)-vector of Λg, sδ ∈ Õ(Λg) be the reflection
with respect to δ, andHδ = δ⊥ ∩Ωg. Then sδ acts on Xg|Hδ trivially.

Proof. It suffices to show that sδ acts trivially on the fiber over a general
point [ω] of Hδ; then sδ does so for all [ω] ∈ Hδ by continuity. When
[ω] is general, we have ∆(ω, l) = {±δ} and W(ω, l) = {id, sδ}, so the fiber of
Ω̃g → Ωg over [ω] consists of two points. Let (S , ϕ) and (S ′, ϕ′) = (S , sδ◦ϕ)
be the corresponding marked K3 surfaces. What has to be shown is that the
resolution g : S → S ′ of the gluing isomorphism S̄ → S̄ ′ coincides with the
equivariant action by sδ. After the original identification S ′ = S , the action
of sδ is the identity of S . So it suffices to show that g : S → S ′ = S is also
the identity of S .

We may assume that ϕ−1(δ) is effective, so ϕ−1(δ) = [E] for a (−2)-curve
E on S . By the argument after (2.3), the limit cycle Γ in S × S ′ = S × S can
be written as

(2.4) Γ = graph(g) + aE × E ⊂ S × S

for some a ≥ 0. On the other hand, by (2.2), the action of Γ on H2(S ,Z) is
the reflection ϕ−1 ◦ sδ ◦ ϕ with respect to E. Comparing this with (2.4), we
see that

g∗ = id + (1 − a)(·, E)E
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on H2(S ,Z). If we send [E] by this action, we obtain g(E) ∼ (2a − 1)E, so
a = 1. Hence g∗ = id. By the strong Torelli theorem, g = id. □

Corollary 2.9. Let [ω] ∈ Ωg. The Weyl group W(ω, l) acts trivially on the
fiber of Xg → Ωg over [ω].

Proof. If δ ∈ ∆(ω, l), then sδ acts trivially on Xg|Hδ by Proposition 2.8,
which contains the fiber over [ω]. Therefore every element of W(ω, l) acts
trivially on the fiber over [ω]. □

Remark 2.10. When g > 2, the divisorHδ parametrizes a family of lattice-
polarized K3 surfaces whose very general Picard lattice is ZL⊕ZE ' 〈2g−
2〉⊕ 〈−2〉 or its overlattice of index 2. Proposition 2.8 for g > 2 also follows
from the fact that no K3 surface with such a Picard lattice has an involution
which acts trivially on the Picard lattice ([46]).

We can now determine the fixed divisor of the Õ(Λg)-action on Xg. We
need to separate the case g = 2, where general members are double planes
branched along sextics.

Proposition 2.11. Suppose that γ , id ∈ Õ(Λg) fixes a divisor of Xg. Then,
(1) If g > 2, we have γ = sδ for a (−2)-vector δ ∈ Λg.
(2) If g = 2, we have that, either γ = sδ for a (−2)-vector δ ∈ Λ2, or
γ = −id which acts as the covering transformation of the double planes.

Proof. (1) Let g > 2 and γ , id, sδ for any (−2)-vector δ. We assume to
the contrary that γ fixes an irreducible divisor D of Xg. Since g > 2, Õ(Λg)
does not contain −id, so γ acts nontrivially on Ωg. Then D = Xg|B for an
irreducible divisor B of Ωg fixed by γ. Since B is not contained in Hδ for
any (−2)-vector δ, a general fiber S of D→ B is nonsingular, equipped with
a marking ϕ. Then the equivariant action of γ on S is the identity of S and
satisfies ϕ ◦ id = γ ◦ ϕ. This is absurd.

(2) Let g = 2. In this case Õ(Λ2) contains −id. When γ , ±id,±sδ for any
(−2)-vector δ, γ fixes no divisor by the same argument as (1). The covering
transformation of the double planes acts by −id on Λ2 (cf. [46]), so γ = −id
acts on X◦2 by this involution. It remains to check that γ = −sδ acts on X2|Hδ
nontrivially. As in the proof of Proposition 2.8, let [(S , ϕ)], [(S ′, ϕ′)] be the
two points of Ω̃2 lying over a general point of Hδ. Both sδ and −id send
[(S , ϕ)] to [(S ′, ϕ′)] in its action on Ω̃2, so −sδ preserves (S , ϕ) in its action
on X̃2. Since −sδ , id, this is a nontrivial involution of S . □

When g > 2, Õ(Λg) also contains −reflections by splitting (2−2g)-vectors
which fixes a divisor ofΩg (cf. [23]). But they act nontrivially on the smooth
fibers over the fixed divisor, so does not fix a divisor of Xg.

Before moving on, we also study the relation with the automorphism
group. For [ω] ∈ Ωg let G(ω, l) be the stabilizer of [ω] in Õ(Λg).
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Proposition 2.12. Let (S , L) be the polarized fiber of Xg → Ωg over [ω].
We have a split exact sequence

(2.5) 0→ W(ω, l)→ G(ω, l)
π→ Aut(S , L)→ 0

where π is induced from the equivariant action of G(ω, l) on Xg. A splitting
of (2.5) is obtained for each choice of a point of Ω̃g over [ω].

Proof. By Corollary 2.9, W(ω, l) acts trivially on S . We take a point ([ω],C)
of Ω̃g lying over [ω], and let (S̃ , L̃, ϕ) be the corresponding marked quasi-
polarized K3 surface. Then S̃ is the minimal resolution of S and L̃ is the
pullback of L. Then Aut(S , L) is isomorphic to Aut(S̃ , L̃), which in turn
is isomorphic to the stabilizer of ([ω],C) in Õ(Λg) by the strong Torelli
theorem. The last group is the stabilizer of the chamber C in G(ω, l). This
defines a section Aut(S , L) ↪→ G(ω, l) of π. In view of Lemma 2.5, this also
shows that (2.5) is exact at the middle. □

2.4. Fg,n. Let n ≥ 1. We take the n-fold fiber product

Xg,n = Xg ×Ωg · · · ×Ωg Xg

and its quotient
Fg,n = Õ(Λg)\Xg,n.

Since Õ(Λg) acts properly discontinuously on Ωg, it does so on Xg,n. Thus
Fg,n is an irreducible complex analytic space fibered over Fg. Since Xg,n is
a flat family of normal varieties over the smooth base Ωg, Xg,n is normal by
[28] Corollaire 6.5.4. Therefore Fg,n is also normal.

If (S , L) is the (possibly singular) polarized K3 surface over [ω] ∈ Ωg,
the fiber of Fg,n → Fg over [ω] ∈ Fg is S n/Aut(S , L) by Proposition 2.12.
Thus Fg,n is the moduli space of n-pointed polarized K3 surfaces of genus
g with at worst rational double points.

Proposition 2.13. Let π : Xg,n → Ωg be the projection.
(1) Let (g, n) , (2, 1). Then Xg,n → Fg,n is doubly ramified at π−1(Hδ)

for (−2)-vectors δ ∈ Λg and has no other ramification divisor. The branch
divisor of Xg,n → Fg,n is irreducible when g . 2 mod 4, and consists of two
irreducible components when g ≡ 2 mod 4.

(2) Let (g, n) = (2, 1). The ramification divisor of X2,1 → F2,1 consists of
π−1(Hδ) for (−2)-vectors δ ∈ Λg and the closure of the locus of ramification
curves of the double planes. The branch divisor consists of three irreducible
components.

Proof. The ramification divisors are determined by Proposition 2.11. Clas-
sification of the irreducible components of the branch divisor reduces to that
of Õ(Λg)-equivalence classes of (−2)-vectors in Λg, which is given in [25]
Proposition 2.4 (ii). □
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As our construction is done over the period domain (which is necessary
for the connection with modular forms), Fg,n is a priori just complex ana-
lytic. But actually

Proposition 2.14. Fg,n is quasi-projective.

Proof. We use the Hilbert scheme construction. Since the basic line of ar-
gument is similar to [53] Chapter 7 and [31] Chapter 5 (where Õ(Λg)\Ω◦g is
considered), we will be brief.

Let H be the Hilbert scheme of polarized K3 surfaces (S , L) of degree
2g − 2 with at worst rational double points, projectively embedded by L⊗3

into PN where N = 18g − 17. The first step is to show that H is nonsin-
gular. In the locus of smooth K3 surfaces, this is proved in [31] Chapter
5.3.1. In the ADE locus, what has to be shown is that the obstruction space
Ext1(IS /I2

S ,OS ) is trivial, where IS is the ideal sheaf of S ⊂ PN . Although
S is singular, its singularities are complete intersections, so IS /I2

S is locally
free and sits in the short exact sequence

0→ IS /I2
S → Ω1

PN |S → Ω1
S → 0

by [13] Exercise 16.17. Taking the Ext(·,OS ) long exact sequence, we ob-
tain the exact sequence

Ext1(Ω1
S ,OS )

φ→ Ext1(Ω1
PN |S ,OS )→ Ext1(IS /I2

S ,OS )→ Ext2(Ω1
S ,OS ).

By the same calculation as in [31] p.92, we see that

Ext2(Ω1
S ,OS ) ' H0(S ,Ω1

S )∨ = 0

and that the Serre dual of φ,

H1(S ,Ω1
PN |S ) ' C→ H1(S ,Ω1

S )

is injective. Therefore Ext1(IS /I2
S ,OS ) = 0.

The next step is to apply the argument of [53] §7.3 II. By construction we
have a flat projective family X → H of K3 surfaces with at worst rational
double points, acted on by G = PGLN+1. According to loc. cit., with the
smoothness of H, there exists a finite group Γ, quasi-projective varieties V,Z
with Γ ×G acting on V , and morphisms V → H, V → Z, such that V → H
is the quotient by Γ and V → Z is a principal G-bundle. Furthermore, there
exists a geometric quotient X′ = (X ×H V)/G with a projective morphism
X′ → Z. In particular, the n-fold fiber product X′n = X′ ×Z · · · ×Z X′ is quasi-
projective. By [53] Corollary 3.46.2, a geometric quotient X′n/Γ exists as
a quasi-projective variety. The variety X′n/Γ is also a geometric quotient
of X ×H · · · ×H X by G, which in turn is naturally biholomorphic to Fg,n.
Therefore Fg,n is quasi-projective. □
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3. Modular forms

In this section, we let Λ be a general integral lattice of signature (2, b)
with b ≥ 3. (We will specialize to Λ = Λg in the next section.) We recall the
basic theory of modular forms for the orthogonal group of Λ. The material
should be well-known, but since we could not find a suitable reference at
some points, we tried to be rather self-contained. The results needed in §4
are Corollary 3.3 and Proposition 3.5.

3.1. Modular forms. We choose one of the two connected components of

{ [ω] ∈ PΛC | (ω,ω) = 0, (ω, ω̄) > 0 }
and denote it byD. Let O+(Λ) be the index ≤ 2 subgroup of O(Λ) preserv-
ing D. We write λ for the restriction of OPΛC(−1) to D. Then O+(Λ) acts
on λ equivariantly. Let Γ be a finite-index subgroup of O+(Λ) and χ be a
unitary character of Γ. The character χ corresponds to a Γ-linearized line
bundle onD which we again denote by χ. In later sections, χ will be either
trivial or the determinant character det : Γ→ {±1}.

Example 3.1. We have the canonical isomorphism of line bundles

(3.1) KD ' λ⊗b ⊗ det

(cf. [23]). This is a consequence of the Euler sequence for PΛC and the
adjunction formula for the isotropic quadric.

A Γ-invariant holomorphic section of the line bundle λ⊗k ⊗ χ on D is
called a modular form of weight k and character χ with respect to Γ. We
denote by Mk(Γ, χ) the space of such modular forms. As in (2.1), the (−2)-
Heegner divisor, now restricted to the componentD, is defined by

H =
⋃
δ∈Λ

(δ,δ)=−2

δ⊥ ∩D.

For a natural number m we denote by Mk(Γ, χ)(m) ⊂ Mk(Γ, χ) the subspace
of modular forms which vanish to order ≥ m along every irreducible com-
ponent ofH . When Γ is torsion-free, this is identified with

Mk(Γ, χ)(m) = H0(Γ\D, λ⊗k ⊗ χ(−mH)),

where λ, χ in the right hand side stand for the descends of the linearized line
bundles λ, χ to Γ\D, and H is the image ofH in Γ\D.

Lemma 3.2. Let F ∈ Mk(Γ, det). Let δ ∈ Λ be a vector of negative norm
and sδ ∈ O+(ΛQ) be the reflection by δ. Suppose that either (i) sδ ∈ Γ or (ii)
−sδ ∈ Γ and k ≡ b mod 2. Then F vanishes at δ⊥ ∩ D with odd vanishing
order.
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Proof. If [ω] ∈ δ⊥ ∩ D, then sδ acts trivially on λ[ω] = Cω by definition.
Since sδ has determinant −1, it acts on (λ⊗k ⊗ det)[ω] by −1. Thus, if F is
sδ-invariant, F([ω]) must be zero. When k ≡ b mod 2, −id acts on λ⊗k ⊗ det
by (−1)k+b = 1, so −sδ acts on (λ⊗k ⊗ det)[ω] by −1. □

This is a straightforward generalization of the calculation in [23] Lemma
5.2 and [27] p.420. (It seems that in [27] p.420 one has to assume a ∈ 2Z
when −σ is a reflection.)

Let Õ+(Λ) be the kernel of O+(Λ)→ O(Λ∨/Λ). Since Õ+(Λ) contains sδ
for all (−2)-vectors δ ∈ Λ, we have

Corollary 3.3. Mk(Õ+(Λ), det)(1) = Mk(Õ+(Λ), det).

Thus, for Γ = Õ+(Λ) and χ = det, vanishing at H is automatic. For
general Γ and χ = det, vanishing at the ramification divisor ofD → Γ\D is
automatic when k ≡ b mod 2.

Next we explain the Petersson metric and the invariant volume form. The
Hermitian form (·, ·̄) on ΛC defines a Hermitian metric on the line bundle
λ, whose positivity follows from the definition of D. By construction this
is O+(ΛR)-invariant. On the other hand, since the character χ is unitary, we
also have a Γ-invariant Hermitian metric on the corresponding line bundle.
These define a Γ-invariant Hermitian metric on the line bundle λ⊗k⊗χwhich
we call the (pointwise) Petersson metric on λ⊗k ⊗ χ.

By the isomorphism (3.1), the Petersson metric on λ⊗b ⊗ det defines an
O+(ΛR)-invariant Hermitian metric on KD which we denote by ( , )K . We
define a volume form volD onD by

(3.2) (volD)[ω] = ib2 Ω ∧ Ω̄
(Ω,Ω)K

, [ω] ∈ D,

where Ω is an arbitrary nonzero vector of (KD)[ω]. This does not depend on
the choice of Ω. Since ( , )K is O+(ΛR)-invariant, so is volD.

3.2. Tube domain realization. We recall, in some detail, tube domain re-
alization of D and Fourier expansion of modular forms. This is necessary
for the proof of Propositions 3.5 and 4.11.

Let I be a rank 1 primitive isotropic sublattice of Λ. This corresponds
to a 0-dimensional rational boundary component of D (cf. [3], [50]). We
put Λ(I) = I ⊗ (I⊥/I). The quadratic form on I⊥/I and an isomorphism
I ' Z (unique up to ±1) define a canonical quadratic form on Λ(I). We
write Γ(I)Q for the stabilizer of IQ in O+(ΛQ). The unipotent radical U(I)Q
of Γ(I)Q consists of the Eichler transvections (see [50], [26])

El,m : v 7→ v − (m, v)l + (l, v)m − 1
2

(m,m)(l, v)l, v ∈ ΛQ,
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where l ∈ IQ and m ∈ I⊥Q . This induces a canonical isomorphism

Λ(I)Q → U(I)Q, l ⊗ m̄ 7→ El,m,

where m ∈ I⊥Q is a lift of m̄ ∈ (I⊥/I)Q.
The projection PΛC d P(Λ/I)C from PIC ∈ PΛC defines an embedding

(3.3) D ↪→ P(Λ/I)C − P(I⊥/I)C.

If we choose a line I′Q ⊂ ΛQ with (IQ, I′Q) , 0, this defines an isomorphism

P(Λ/I)C − P(I⊥/I)C ' Hom(I′C, (I
⊥/I)C) ' Λ(I)C.

Thus (3.3) induces an embedding

ιI′ : D ↪→ Λ(I)C.

The choice of the componentD determines a connected component of {v ∈
Λ(I)R|(v, v) > 0} which we denote by CI . If we put

DI = { Z ∈ Λ(I)C | Im(Z) ∈ CI },
then ιI′(D) = DI . This is a tube domain realization of D. Via ιI′ , U(I)Q '
Λ(I)Q acts onDI ⊂ Λ(I)C by translation.

Let Γ be a finite-index subgroup of O+(Λ). We set Γ(I)Z = Γ(I)Q ∩ Γ and
U(I)Z = U(I)Q ∩ Γ. Then U(I)Z is a lattice on U(I)Q. For example, when Λ
is even and Γ = Õ+(Λ), we have U(I)Z = Λ(I). Let χ be a unitary character
of Γ. We assume that χ|U(I)Z = 1. (This is always satisfied for χ = det.)
We choose a generator l of I. The homogeneous function (·, l)−1 on ΛC of
degree −1 defines a frame sl of λ. Its factor of automorphy is

j(γ, [ω]) =
(γω, l)
(ω, l)

=
(ω, γ−1l)

(ω, l)
, γ ∈ Γ, [ω] ∈ D.

We also choose a nonzero vector w0 in the representation line of χ. Then
modular forms F = f (s⊗k

l ⊗ w0) of weight k and character χ for Γ are iden-
tified with holomorphic functions f onD satisfying

f (γ[ω]) = χ(γ) j(γ, [ω])k f ([ω]), [ω] ∈ D, γ ∈ Γ.
By our assumption s⊗k

l ⊗ w0 is invariant under U(I)Z, so the function f is
U(I)Z-invariant. If we regard f as a function on DI via ιI′ , it is invariant
under translation by the lattice U(I)Z. Hence it admits a Fourier expansion

(3.4) f (Z) =
∑

m∈U(I)∨Z

amexp(2πi(m,Z)), Z ∈ DI ,

where U(I)∨Z ⊂ U(I)Q is the dual lattice of U(I)Z. Let C+I be the union of
CI and the rays R≥0v for rational isotropic vectors v ∈ U(I)Q in the closure
of CI . The Koecher principle says that am , 0 only when m ∈ C+I . The
modular form F is called a cusp form if am = 0 for all m with (m,m) = 0 at
all primitive rank 1 isotropic sublattices I.
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Over DI the Petersson metric and the invariant volume form are ex-
pressed as follows (compare with [10] p.96 for (2)).

Lemma 3.4. We choose a generator l of I and a line I′Q ⊂ ΛQ with (IQ, I′Q) ,
0. We identifyD ' DI by the tube domain realization ιI′ .

(1) Let ( , )1 be the Petersson metric on λ. Then we have up to a constant

(sl(Z), sl(Z))1 = (Im(Z), Im(Z)), Z ∈ DI .

(2) Let volI be a flat volume form onΛ(I)C. Then we have up to a constant

volD =
1

(Im(Z), Im(Z))b volI .

(3) Let F1 = f1(s⊗k
l ⊗ w0) and F2 = f2(s⊗k

l ⊗ w0) be local sections of
λ⊗k ⊗ χ where f1, f2 are local functions on D ' DI . Let ( , )k,χ be the
Petersson metric on λ⊗k ⊗ χ. Then we have up to a constant

(F1(Z), F2(Z))k,χvolD = f1(Z) f2(Z)(Im(Z), Im(Z))k−bvolI , Z ∈ DI .

Proof. (1) The choice of l defines an isomorphism Λ(I)Q ' (I⊥/I)Q, and
then that of I′Q defines a lift (I⊥/I)Q ' (IQ ⊕ I′Q)⊥ ⊂ ΛQ of Λ(I)Q in ΛQ. If
we take the isotropic vector l′ in IQ ⊕ I′Q with (l, l′) = 1, we have

sl(Z) = l′ + Z − (Z,Z)
2

l ∈ ΛC
for Z ∈ DI ⊂ Λ(I)C. Hence

(sl(Z), sl(Z))1 = (sl(Z), sl(Z)) = −Re(Z,Z) + (Z,Z) = 2(Im(Z), Im(Z)).

(2) We take coordinates z1, · · · , zb on Λ(I)C. By the isomorphism (3.1),
the flat canonical form Ω = dz1 ∧ · · · ∧ dzb corresponds to s⊗b

l ⊗ w0 up to a
constant because both are U(I)C-invariant. Then we have

volD = ib2 Ω ∧ Ω̄
(Ω,Ω)K

=
volI

(sl(Z), sl(Z))b
1

=
1

(Im(Z), Im(Z))b volI

by (1). Assertion (3) follows from (1) and (2). □

3.3. Cusp forms and Petersson norm. Cusp forms of weight ≥ b can be
characterized among modular forms by convergence of the global Petersson
norm. This is used in the proof of the isomorphism (1.2).

Proposition 3.5. Let F be a modular form of weight k ≥ b and character χ
for Γ. Then F is a cusp form if and only if

∫
Γ\D(F, F)k,χvolD < ∞.

Proof. This should be a standard fact: see, e.g., [20] Chapter III, §2 for a
similar result in the case of Sp(2g,Z) and weight g + 1. But since we could
not find a suitable reference for the present case, we give an outline of the
proof for the sake of completeness.
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It is convenient to work with a toroidal compactification ([2]). The
input for constructing a toroidal compactification of Γ\D is a collection
Σ = (ΣI)I of Γ(I)Z-admissible cone decomposition ΣI of C+I , one for each Γ-
equivalence class of rank 1 primitive isotropic sublattices I (independently).
We can take ΣI to be regular with respect to U(I)Z. Let TI = U(I)Z\D. Via
ιI′ , TI is realized as an open set of the torus U(I)Z\U(I)C, and the fan ΣI

defines a toroidal embedding TI ↪→ T ΣI . This is the partial compactifica-
tion in the direction of the 0-dimensional cusp I. The domain D has also
1-dimensional cusps, but the partial compactification there is canonical and
has etale glueing maps to the partial compactifications at the adjacent 0-
dimensional cusps I. (This corresponds to a boundary ray in C+I .) The
toroidal compactification (Γ\D)Σ of Γ\D is obtained by glueing Γ\D and
quotients of the partial compactifications, essentially along small neighbor-
hoods of the boundary. For a cone σ ∈ ΣI , we write T σI ⊂ T ΣI for the
toroidal embedding by σ, and let U = Ux ⊂ T σI be a small neighborhood
of an arbitrary point x of the (snc) boundary divisor of T σI . Since (Γ\D)Σ is
compact, we have

∫
Γ\D(F, F)k,χvolD < ∞ if and only if

∫
U

(F, F)k,χvolD < ∞
for all I, σ, x.

We show that F is a cusp form if and only if
∫

U
(F, F)k,χvolD < ∞ for

all U with dimσ = 1. Let σ = R≥0v0 with v0 ∈ U(I)Z primitive. We take
a vector m0 ∈ U(I)∨Z with (v0,m0) = 1 and put q = exp(2πi(Z,m0)). Then
q gives a normal parameter around the boundary divisor of T σI . We write
F(Z) = f (Z)(s⊗k

l ⊗w0). We set a = 2 if (v0, v0) > 0 and a = 1 if (v0, v0) = 0.
By Lemma 3.4 (3) we have up to a constant

(F(Z), F(Z))k,χvolD = | f (Z)|2(Im(Z), Im(Z))k−bvolI

∼ | f (Z)|2(log |q|)a(k−b)|q|−2dq ∧ dq̄ ∧ vol′I
= | f (Z)|2(log r)a(k−b)r−1dr ∧ dθ ∧ vol′I

as |q| → 0, where q = reiθ and vol′I is a flat volume form on the boundary
divisor. Since k ≥ b, this shows that

∫
U

(F, F)k,χvolD < ∞ if and only if
f (Z) → 0 as |q| → 0. In the Fourier expansion (3.4), this is equivalent to
am = 0 for all m with (m, v0) = 0. When (v0, v0) > 0, this is equivalent to
a0 = 0 because v⊥0 ∩ C+I = {0}. When (v0, v0) = 0, we have v⊥0 ∩ C+I = σ, so
this is equivalent to am = 0 for all m ∈ σ∩U(I)∨Z. Since every boundary ray
of C+I is also a ray in ΣI , this implies the above equivalence and so the “if ”
part of the proposition.

Conversely, if F is a cusp form, we can check
∫

U
(F, F)k,χvolD < ∞ for U

with dimσ general by a similar asymptotic estimate. □
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4. Pluricanonical forms and modular forms

In this section we prove Theorem 1.1 based on the results of §2 and §3.
The proof will be completed at §4.2. In §4.3 we discuss extension over a
certain compactification of Fg,n, assuming some properties.

For the consistency with §3, we need to restrict attention to a con-
nected component. We choose a component Dg of Ωg and put Γg =

Õ(Λg) ∩ O+(Λg). Let X+g,n be the connected component of Xg,n over Dg

and π : X+g,n → Dg be the projection. Since Õ(Λg) contains an element ex-
changing the two components of Ωg, we have Fg,n = Γg\X+g,n. We write λ
for the restriction of the tautological bundle O(−1) toDg (or to Ωg).

4.1. Relative canonical forms and modular forms. First we clarify the
relation between relative canonical forms on X+g,n and modular forms. The
main attention will be on the degenerate family overH . We begin with the
following remark.

Lemma 4.1. The canonical divisor KXg,n of Xg,n is Cartier.

Proof. Let (X → U,L) be a quasi-polarized Kuranishi family, π̃ : Xn →U
be its n-fold fiber product, and X̄n →U be its relative contraction as before.
It suffices to show that KX̄n

is Cartier. Since Kπ̃|F ' OF for each fiber F of
π̃, we have Kπ̃ ' OXn after shrinking U, so KXn ' OXn . This shows that
K(X̄n)reg

' O(X̄n)reg
. Since X̄n is normal and its singular locus has codimension

≥ 3, K(X̄n)reg
extends to an invertible sheaf isomorphic to OX̄n

. □

Let Kπ = KX+g,n ⊗ π∗K−1
Dg

be the relative canonical bundle of π. Since KX+g,n
and KDg are Γg-linearized, Kπ is also Γg-linearized.

Proposition 4.2. We have Γg-equivariant isomorphisms

(4.1) π∗Kπ ' λ⊗n, Kπ ' π∗λ⊗n

of line bundles onDg and on X+g,n.

Proof. We argue for π : Xg,n → Ωg. Since Kπ|F̄ ' KF̄ ' OF̄ for each fiber F̄
of Xg,n → Ωg, π∗Kπ is invertible and the natural homomorphism π∗π∗Kπ →
Kπ is an isomorphism. Hence the two isomorphisms in (4.1) are equivalent
to each other. Furthermore, we can use induction on n to reduce the problem
to the case n = 1. Indeed, in the cartesian diagram

Xg,n
π2 //

π4

��

Xg

π1

��
Xg,n−1 π3

// Ωg
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we have

Kπ ' Kπ4 ⊗ π∗4Kπ3 ' π∗2Kπ1 ⊗ π∗4Kπ3 .

So we let n = 1 and prove π∗Kπ ' λ. Let (X̃g
π̃→ Ω̃g, ϕ) be the smooth

universal family over Ω̃g as in §2.1.3 and π̄ : X̄g → Ω̃g be its contraction.
The projection p : Ω̃g → Ωg is the period map for the family (X̃g → Ω̃g, ϕ).
For each u ∈ Ω̃g, writing S = (X̃g)u, the marking ϕu sends H2,0(S ) ⊂
H2(S ,C) to the line in (ΛK3)C corresponding to p(u) ∈ Ωg. This means
that π̃∗Kπ̃ ' p∗λ. Since π̄∗Kπ̄ ' π̃∗Kπ̃, we obtain π̄∗Kπ̄ ' p∗λ over Ω̃g. We
want to show that this descends to π∗Kπ ' λ over Ωg. At each u ∈ Ω̃g,
writing S̄ = (X̄g)u, the isomorphism π̄∗Kπ̄ → p∗λ is given by

(4.2) H0(KS̄ ) ' H0(KS )
ϕu→ ϕu(H2,0(S )) ⊂ (ΛK3)C.

Even if we use another marking w ◦ ϕu where w ∈ W(p(u), l), this compo-
sition map does not change because w acts trivially on the line ϕu(H2,0(S )).
Hence π̄∗Kπ̄ ' p∗λ descends to π∗Kπ ' λ. By construction, this is Õ(Λg)-
equivariant. □

The Petersson metric on λ⊗n is the L2 metric on π∗Kπ.

Proposition 4.3. Let F be a section of λ⊗n over a subset U ofDg. Let Ω be
the relative canonical form on π−1(U) ⊂ X+g,n corresponding to F. Then

(F, F)n =

∫
π−1(U)/U

Ω ∧ Ω̄,

where
∫
π−1(U)/U

means the fiber integral.

Proof. This is a pointwise assertion. Let [ω] ∈ Dg and (S , L, ϕ) be a corre-
sponding marked quasi-polarized K3 surface with the contraction µ : S →
S̄ . We first consider the case n = 1. By (4.2), F([ω]) ∈ Cω = ϕ(H2,0(S ))
is the image of µ∗Ω[ω] ∈ H0(KS ) by ϕ, where Ω[ω] is considered as a 2-form
on S̄ . Since ϕ is an isometry between H2(S ,C) and (ΛK3)C, we have∫

S̄
Ω[ω] ∧Ω[ω] =

∫
S
µ∗Ω[ω] ∧ µ∗Ω[ω] = (ϕ(µ∗Ω[ω]), ϕ(µ∗Ω[ω]))

= (F([ω]), F([ω])) = (F([ω]), F([ω]))1.

For general n, the isomorphism π∗λ⊗n ' Kπ sends π∗(F1 ⊗ · · · ⊗ Fn)([ω]) to
p∗1Ω1∧ · · · ∧ p∗nΩn where pi : S̄ n → S̄ is the i-th projection and Ωi ∈ H0(KS̄ )
corresponds to Fi([ω]) ∈ λ[ω]. Then our assertion follows by iterated inte-
gral. □
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4.2. Proof of Theorem 1.1. Now we prove Theorem 1.1. Let (g, n) ,
(2, 1). First we derive the isomorphism (1.1). As an intermediate step,
we choose a torsion-free normal subgroup Γ ◁ Γg of finite index and put
F ′g,n = Γ\X+g,n and F ′g = Γ\Dg. Let π : F ′g,n → F ′g be the projection, H′ ⊂ F ′g
be the image ofH , and B′ = π∗H′ ⊂ F ′g,n be the total space over H′.

Lemma 4.4. For each m, l ≥ 0 we have

(4.3) H0(F ′g,n,K⊗m
F ′g,n(−lB′)) ' M(19+n)m(Γ, detm)(l).

Proof. By (3.1) and Proposition 4.2, we have Γg-equivariant isomorphisms

K⊗m
X+g,n(−lπ∗H) ' π∗K⊗m

Dg
(−lH) ⊗ K⊗m

π ' π∗(λ⊗(19+n)m ⊗ detm(−lH))

of line bundles on X+g,n. This descends to an isomorphism

K⊗m
F ′g,n(−lB′) ' π∗(λ⊗(19+n)m ⊗ detm(−lH′))

of line bundles on F ′g,n. Taking the global sections over F ′g,n, we obtain
(4.3). □

Let G = Γg/Γ. We take the G-invariant part of the isomorphism (4.3)
with l = m. For the right hand side, we have

(M(19+n)m(Γ, detm)(m))G = M(19+n)m(Γg, detm)(m)

by definition. For the left hand side, let p : F ′g,n → Fg,n be the quotient map
by G and F ◦g,n be the regular locus of Fg,n. Note that the singular locus of
Fg,n is of codimension ≥ 2 by the normality of Fg,n. By the first statement
of Proposition 2.13 (1), the composition

X+g,n → F ′g,n
p→ Fg,n

is doubly ramified at π−1(H) and has no other ramification divisor. Since
X+g,n → F ′g,n is unramified, we find that the ramification divisor of p is
B′ with ramification index 2. This shows that p∗KF ◦g,n ' KF ′g,n(−B′) over
p−1(F ◦g,n) ⊂ F ′g,n by the Hurwitz formula. Therefore we obtain

H0(F ′g,n,K⊗m
F ′g,n(−mB′))G = H0(F ◦g,n,K⊗m

F ◦g,n).

This proves the isomorphism (1.1). Compatibility of multiplication is evi-
dent.

Next we derive the isomorphism (1.2). We use the following equality.

Lemma 4.5. Let F be a modular form in M19+n(Γg, det)(1) = M19+n(Γg, det)
and Ω be the corresponding canonical form on Fg,n. For any open set U of
Fg we have ∫

U
(F, F)19+n,detvolD =

∫
π−1(U)

Ω ∧ Ω̄.
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Proof. Since the problem is local, we may assume that U is a small open
subset of Dg, F is a section of λ⊗19+n ⊗ det over U, and Ω is the canonical
form on π−1(U) ⊂ X+g,n corresponding to π∗F by the isomorphism KX+g,n '
π∗(λ⊗19+n⊗det). Since U is small, we can decompose F as F = F1⊗F2 with
F1 a section of λ⊗19 ⊗ det and F2 a section of λ⊗n. Let Ω1 be the canonical
form on U corresponding to F1, and Ω2 be the relative canonical form on
π−1(U) corresponding to F2. ThenΩ = π∗Ω1∧Ω2. By (3.2) and Proposition
4.3, we see that∫

π−1(U)
Ω ∧ Ω̄ =

∫
U
Ω1 ∧ Ω̄1

∫
π−1(U)/U

Ω2 ∧ Ω̄2

=

∫
U

(F1, F1)19,det(F2, F2)nvolD

=

∫
U

(F, F)19+n,detvolD.

This proves Lemma 4.5. □

The isomorphism (1.2) now follows by comparing, via Lemma 4.5,
Proposition 3.5 with the well-known fact that a canonical form Ω on a
Zariski open set X◦ of a smooth proper variety X extends holomorphically
over X if and only if

∫
X◦
Ω ∧ Ω̄ < ∞. The proof of Theorem 1.1 is com-

pleted. □

Example 4.6. Let g = 2. When k is even, we have Mk(Γ2, det) = {0}
because −id ∈ Γ2 acts by −1 on λ⊗k⊗det. Therefore, when both n and m are
odd, there is no nonzero m-canonical form on F2,n nor its smooth projective
model.

Explicitly, the correspondence (1.2) is given as follows. We take sl,w0 as
in §3.2. Let Ω1 be the canonical form on Dg corresponding to s⊗19

l ⊗ w0.
(This is the flat canonical form dz1∧· · ·∧dz19 in the tube domain realization
at Zl.) Let Ω2 be the relative canonical form on X+g,1 corresponding to sl. If
F = f (s⊗19+n

l ⊗ w0) is a cusp form and ΩF is the corresponding canonical
form on X, the pullback of ΩF by the projection p : X+g,n → Fg,n is

(4.4) p∗ΩF = (π∗ f ) π∗Ω1 ∧ π∗1Ω2 ∧ · · · ∧ π∗nΩ2,

where πi : X+g,n → X+g,1 is the i-th projection. This description implies the
following.

Corollary 4.7. The canonical map of X factors through Fg,n ↠ Fg d PN

where Fg d PN is the rational map associated to S 19+n(Γg, det).

Proof. If fi(s⊗19+n
l ⊗w0), 0 ≤ i ≤ N, are basis of S 19+n(Γg, det), the canonical

map of X is given by [π∗ f0 : · · · : π∗ fN]. □
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Corollary 4.8. Let Y be a smooth projective model of Fg,n/Sn. Then (1.2)
also induces an isomorphism S 19+n(Γg, det) ' H0(KY).

Proof. By (4.4), ΩF is Sn-invariant and hence descends to a canonical form
on an open set of Y . Since it has finite L2 norm, it extends over Y . □

When g > 2, Y can be thought of as a smooth projective model of the
universal family of the Hilbert schemes Hilbn(S ).

The divisor of ΩF on Fg,n is described as follows. Let div(F)′ be the
divisor of F over Fg, where the vanishing order at a branch divisor ofDg →
Fg is counted as 1/2 of the vanishing order at the ramification divisor over
it. Let H be the image ofH in Fg and π : Fg,n → Fg be the projection.

Corollary 4.9. div(ΩF)|Fg,n = π
∗(div(F)′ − H/2).

Proof. This follows from (4.4) and the Hurwitz formula, noticing that π∗H
is reduced and π∗H′ has multiplicity 2 for other branch divisors H′. □

Remark 4.10. If one is interested only in (1.2), one can in fact dispense with
the partial compactification Fg,n, because

∫
Γ\D(F, F)k,χvolD must diverge if a

(meromorphic) modular form F has pole atH . However, in order to under-
stand a full picture of the connection of modular forms and the geometry of
universal family, such as pluricanonical forms and Eichler-Shimura theory,
it is necessary to fill the (−2)-Heegner divisor.

4.3. Extension over compactification. In this subsection we assume that
X is a complex analytic variety containing Fg,n as a Zariski open set and
regular in codimension 1, such that Fg,n → Fg extends to a morphism
π : X → F Σg to some toroidal compactification F Σg of Fg with the property
that every irreducible component of the boundary divisor ∆X of X dominates
some irreducible component of the boundary divisor ∆F of F Σg . We explain
how the results of Theorem 1.1 could be extended for such X, clarifying
the contribution from the boundary ∆X. This assumption means that except
some codimension ≥ 2 locus X is an equidimensional family over F Σg , but
at present no example of such a compactification has been known, which
makes the next assertion conditional.

Proposition 4.11. Let X be a complex analytic variety as above.
(1) The isomorphism (1.1) extends to⊕

m

M(19+n)m(Γg, detm)(m) '
⊕

m

H0(X,K⊗m
X (m∆X)).

This maps S (19+n)m(Γg, detm)(m) into H0(X,K⊗m
X ((m − 1)∆X)).

(2) Assume moreover that X is compact and has canonical singularities.
Then

κ(Fg,n) ≥ κ(F Σg , (19 + n)λ − ∆F − H/2),
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where the right hand side is the Iitaka dimension of theQ-divisor (19+n)λ−
∆F − H/2 of F Σg .

Proof. Since this is similar to the case of Siegel modular forms [37], we will
just indicate the outline. Let ∆ be a component of ∆X, and ∆′ be a boundary
divisor of a torus embedding which gives the component π(∆) of ∆F . We
take a small neighborhood ∆x ⊂ ∆ of a general point x of ∆ and let ∆′y ⊂ ∆′
be a small open set whose image is π(∆x). Let Uε,U′ε be annulus bundles
around ∆x,∆

′
y respectively, say of radius [ε, 1]. Let F be a local modular

form of weight k = (19 + n)m and character χ = detm on a neighborhood of
π(∆x), and Ω be the m-canonical form corresponding to F. Both (1) and (2)
boil down to the assertion that Ω has at most pole of order m along ∆x.

By the L2/m-criterion in [37] §6, it is sufficient to show that
∫

Uε
||Ω||2/m =

o(ε−α) for every α > 0. As before, we can relate the L2/m norm of Ω to the
Petersson norm of F. Pulling back to the torus embedding, the problem is
reduced to showing that ∫

U′ε

(F, F)1/m
k,χ volD = o(ε−α)

for every α > 0. This can be proved as in the proof of Proposition 3.5:∫
U′ε

(F, F)1/m
k,χ volD =

∫
U′ε

| f (Z)|2/m(Im(Z), Im(Z))nvolI

∼
∫

U′ε

| f (Z)|2/m(log |q|)an|q|−2dq ∧ dq̄ ∧ vol′I

≤
∫ 1

ε

(log r)anr−1dr

= o(ε−α).

When F is a cusp form, the integral
∫

U′ε
(F, F)1/m

k,χ volD converges and hence∫
Uε
||Ω||2/m converges. This proves the second assertion in (1). □

5. Mukai models and quasi-pullback of Φ12

In this section we prove Theorem 1.3. In §5.1 we compute the weight k(g)
of the quasi-pullback F(g) of the Borcherds Φ12 form for each g ≤ 22. By
Corollary 1.2, we have κ(Fg,n) ≥ 0 for all n ≥ n(g) where n(g) = k(g) − 19.
In §5.2 we proceed from the opposite direction: for many g ≤ 20, we study
an upper bound n′(g) where Fg,n is unirational or uniruled by using classical
and Mukai models of polarized K3 surfaces.

With the geometric bound n′(g), the isomorphism (1.2) can also be used
in the opposite direction: we find that S k(Γg, det) = {0} when k ≤ n′(g)+19.
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The closeness of n(g) and n′(g) suggests that F(g) would be the cusp form
of minimal weight, at least for the character det.

5.1. Quasi-pullback of Φ12. Let II2,26 = 2U ⊕3E8 be the even unimodular
lattice of signature (2, 26) and D2,26 be the associated Hermitian symmet-
ric domain. In [8], Borcherds discovered a modular form Φ12 on D2,26 of
weight 12 and character det for O+(II2,26), whose zero divisor is exactly the
(−2)-Heegner divisor of D2,26. The quasi-pullback of Φ12 to Dg is defined
as follows ([8], [9]). We choose a primitive vector vg of norm 2 − 2g from
E8 and put Kg = v⊥g ∩ E8. (This is in general not unique even up to O(E8).)
This defines a primitive embedding Λg ↪→ II2,26 with Λ⊥g = Kg, and thus an
embedding Dg ↪→ D2,26 of domain. We divide Φ12 by all zeros containing
Dg and restrict it toDg. More precisely, we put

F(g) =
Φ12∏
δ(δ, ·)

∣∣∣∣∣∣Dg

where δ ranges over all (−2)-vectors in Kg up to ±1, and (δ, ·) is the section
of O(1) defined by paring with δ. The basic properties of F(g) are summa-
rized as follows.

Proposition 5.1 ([9], [35], [23]). Let r(g) be the number of (−2)-vectors in
Kg. Then F(g) is a modular form on Dg of weight k(g) = 12 + r(g)/2 and
character det with respect to Γg, and vanishes at the (−2)-Heegner divisor
ofDg. When r(g) > 0, F(g) is a cusp form.

As noticed in Corollary 3.3, vanishing at the (−2)-Heegner divisor is in
fact automatic. Combining the results so far, we see the following.

Proposition 5.2. Assume that r(g) > 0 for our choice of vg ∈ E8. Then
a smooth projective model of Fg,n(g) has positive geometric genus where
n(g) = r(g)/2 − 7. In particular, κ(Fg,n) ≥ 0 for all n ≥ n(g). Furthermore,
if we have a compactification of Fg,n for some n > n(g) as in Proposition
4.11 (2), then κ(Fg,n′) = 19 for all n′ ≥ n.

Proof. By Proposition 5.1, F(g) is a nonzero element of S k(g)(Γg, det). By
Theorem 1.1, this corresponds to a nonzero canonical form on a smooth
projective model of Fg,n(g) where n(g) = k(g) − 19 = r(g)/2 − 7. As for the
last assertion, when n > n(g), the Q-divisor

(19 + n)λ − H/2 − ∆F + det = (n − n(g))λ + (k(g)λ − H/2 − ∆F + det)

of F Σg is big + effective = big. Then κ(Fg,n) = 19 by Proposition 4.11
(2). □

Let ΩF(g) be the canonical form corresponding to F(g). Its divisor on
Fg,n(g) can be explicitly calculated as follows. For simplicity we assume
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g . 2 mod 4. Let A = Λ∨g /Λg be the discriminant group of Λg. For λ ∈ A
and x ∈ Q<0, let H(λ, x) =

⋃
l(l⊥ ∩ Dg) be the reduced Heegner divisor of

discriminant (λ, x) onDg, where l run over all vectors in Λg + λ ⊂ Λ∨g with
(l, l) = 2x. In particular,H = H(0,−1). Let H(λ, x) be the (reduced) image
ofH(λ, x) in Fg. On the other hand, for y ∈ Q<0, let cλ(y) be the number of
vectors v in Kg + λ ⊂ K∨g with (v, v) = 2y, where we identify A ' K∨g /Kg as
abelian groups naturally ([45]).

Corollary 5.3. Let g . 2 mod 4. We have

div(ΩF(g))|Fg,n(g) =
∑
λ∈A/±1
(λ,λ)<2Z

cλ(−1 − x(λ))π−1(H(λ, x(λ))),

where x(λ) is the rational number with −1 < x(λ) < 0 and x(λ) ≡ (λ, λ)/2
mod Z. In particular, ΩF(g) does not vanish at a general point of π−1(H).

Proof. The divisor of F(g) onDg is

H +
∑
λ∈A/±1
λ,0

∑
x≡(λ,λ)/2

0<x<1

cλ(−x)H(λ, x − 1).

This can be seen directly as in [9] or using the fact that F(g) is the Borcherds
lift of ΘKg(−1)/∆ (see [23] Remark 1). SinceH has no common component
with H(λ, x − 1) when g . 2 mod 4, our assertion follows from Corollary
4.9. □

In what follows, we explicitly take a vector vg ∈ E8 for each g ≤ 22 and
calculate n(g) = r(g)/2 − 7. The result is summarized in Theorem 1.3.

Recall ([12]) that the E8-lattice is defined as

(5.1) E8 = { (xi) ∈ Q8 | ∀xi ∈ Z or ∀xi ∈ Z + 1/2, x1 + · · · + x8 ∈ 2Z },
where we take the (−1)-scaling of the standard quadratic form on Q8. The
roots of E8 are as follows. For j , k we define δ± j,±k = (xi) ∈ E8 by
x j = ±1, xk = ±1 and xi = 0 for i , j, k. For a subset S ⊂ {1, · · · , 8} of even
cardinality we define δ′S = (xi) ∈ E8 by xi = 1/2 if i ∈ S and xi = −1/2 if
i < S . These are the 112 + 128 = 240 roots of E8. When g ≤ 8, g , 6 and
when g = 11, 16, the lattice Kg will be obtained by deleting one vertex from
the Dynkin diagram of E8. We number the vertices of E8 as follows.

•
δ1

•
δ2

•
δ3

•
δ4

•
δ5

• δ8

•
δ6

•
δ7

The number r(Λ) of roots in other ADE root lattice Λ is given by ([12])

r(AN) = N(N + 1), r(DN) = 2N(N − 1), r(E7) = 126, r(E6) = 72.
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g = 2
The roots δ2, · · · , δ8 generate E7 ⊂ E8 with E⊥7 = 〈−2〉. Thus K2 = E7 and
r(2) = r(E7) = 126. Hence n(2) = 56.

g = 3
The roots δ1, · · · , δ6, δ8 generate D7 ⊂ E8 with D⊥7 = 〈−4〉. Thus K3 = D7

and r(3) = r(D7) = 84. Hence n(3) = 35.
g = 4

The roots δ1, δ3, · · · , δ8 generate A1⊕E6 ⊂ E8 with (A1⊕E6)⊥ = 〈−6〉. Thus
K4 = A1 ⊕ E6 and r(4) = r(A1) + r(E6) = 74. Hence n(4) = 30.

g = 5
The roots δ1, · · · , δ7 generate A7 ⊂ E8 with A⊥7 = 〈−8〉. Thus K5 = A7 and
r(5) = r(A7) = 56. Hence n(5) = 21.

g = 6
We take a norm −10 vector v6 ∈ E8 by (3, 1, 0, · · · , 0) in the presentation
(5.1). The roots of E8 orthogonal to v6 are δ±i,± j with i, j ≥ 3. Then r(6) =

22 ·
(
6
2

)
= 60 and n(6) = 23. These roots form a root system of type D6.

g = 7
The roots δ1, δ2, δ4, · · · , δ8 generate A2 ⊕D5 ⊂ E8 with (A2 ⊕D5)⊥ = 〈−12〉.
Thus K7 = A2 ⊕ D5 and r(7) = r(A2) + r(D5) = 46. Hence n(7) = 16.

g = 8
The roots δ1, · · · , δ5, δ7, δ8 generate A6 ⊕ A1 ⊂ E8 with (A6 ⊕ A1)⊥ = 〈−14〉.
Thus K8 = A6 ⊕ A1 and r(8) = r(A6) + r(A1) = 44. Hence n(8) = 15.

g = 9
We take v9 = (3, 1, · · · , 1). The roots orthogonal to v9 are δi,− j with i, j ≥ 2.
Hence r(9) = 7 · 6 = 42 and n(9) = 14. These roots form a root system of
type A6.

g = 10
We take v10 = (4, 1, 1, 0, · · · , 0). The roots orthogonal to v10 are δ±i,± j with

i, j ≥ 4 and ±δ2,−3. Hence r(10) = 22 ·
(
5
2

)
+ 2 = 42 and n(10) = 14. These

roots form a root system of type D5 + A1.
g = 11

The roots δ1, δ2, δ3, δ5, · · · , δ8 generate A3 ⊕ A4 ⊂ E8 with (A3 ⊕ A4)⊥ =
〈−20〉. Thus K11 = A3 ⊕ A4 and r(11) = r(A3) + r(A4) = 32. Hence
n(11) = 9.

g = 12
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We take v12 = (4, 1, · · · , 1, 0). The roots orthogonal to v12 are δi,− j with
2 ≤ i, j ≤ 7 and ±δ′1,i with 2 ≤ i ≤ 7. Hence r(12) = 6 · 5 + 2 · 6 = 42 and
n(12) = 14.

g = 13
We take v13 = (4, 2, 1, 1, 1, 1, 0, 0). The roots orthogonal to v13 are δ±7,±8,
δi,− j with 3 ≤ i, j ≤ 6, ±δ′1,i with 3 ≤ i ≤ 6, and ±δ′1,i,7,8 with 3 ≤ i ≤ 6.
Hence r(13) = 4 + 12 + 8 + 8 = 32 and n(13) = 9.

g = 14
We take v14 = (3, 3, 2, 1, 1, 1, 1, 0). As before we can calculate r(14) = 32
and n(14) = 9.

g = 15
We take v15 = (5, 1, 1, 1, 0, 0, 0, 0). Then r(15) = 30 and n(15) = 8.

g = 16
The roots δ1, · · · , δ4, δ6, δ7, δ8 generate A4 ⊕ A2 ⊕ A1 ⊂ E8 with (A4 ⊕ A2 ⊕
A1)⊥ = 〈−30〉. Thus K16 = A4 ⊕ A2 ⊕ A1 and r(16) = r(A4)+ r(A2)+ r(A1) =
28. Hence n(16) = 7.

g = 17
We take v17 = (5, 2, 1, 1, 1, 0, 0, 0). Then r(17) = 26 and n(17) = 6.

g = 18
We take v18 = (5, 2, 1, · · · , 1, 0). Then r(18) = 30 and n(18) = 8.

g = 19
We take v19 = (5, 2, 2, 1, 1, 1, 0, 0). Then r(19) = 24 and n(19) = 5.

g = 20
We take v20 = (5, 2, 2, 2, 1, 0, 0, 0). The roots orthogonal to v20 are δi,− j with
2 ≤ i, j ≤ 4, δ±i,± j with i, j ≥ 6, ±δ′1,5, and ±δ′1,5,i, j with i, j ≥ 6. Hence
r(20) = 6 + 12 + 2 + 6 = 26 and n(20) = 6.

g = 21
We take v21 = (6, 1, 1, 1, 1, 0, 0, 0). Then r(21) = 24 and n(21) = 5.

g = 22
We take v22 = (6, 2, 1, 1, 0, 0, 0, 0). Then r(22) = 26 and n(22) = 6.

5.2. Unirationality/Uniruledness. Next we study a bound n′(g) where
Fg,n is unirational or uniruled. We recall known results in 8 ≤ g ≤ 11,
g = 14, 22, and compute this bound for other g ≤ 20 using classical and
Mukai models of polarized K3 surfaces of genus g. The result is summa-
rized in Theorem 1.3. In a few cases, even rationality holds.

5.2.1. The case g = 2. General K3 surfaces of degree 2 are surfaces of
weighted degree 6 in Y = P(1, 1, 1, 3), parametrized by an open set of
|OY(6)|.
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Proposition 5.4. F2,38 is unirational.

Proof. Consider the (complete) incidence correspondence

Xn = { (S , p1, · · · , pn) ∈ |OY(6)| × Yn | pi ∈ S } ⊂ |OY(6)| × Yn

and let π : Xn → Yn be the projection. Then Xn is irreducible and the π-fiber
over (p1, · · · , pn) ∈ Yn is the linear system of surfaces in |OY(6)| passing
through p1, · · · , pn. This has dimension ≥ dim |OY(6)| − n = 38 − n, hence
is non-empty for general (p1, · · · , pn) when n ≤ 38. Thus, if n ≤ 38, Xn is
birationally a projective space bundle over Yn and so rational. Since F2,n is
dominated by Xn, it is unirational for n ≤ 38. □

5.2.2. The case g = 3. K3 surfaces of degree 4 are quartics in P3.

Proposition 5.5. F3,34 is rational.

Proof. Consider the (complete) incidence correspondence

Xn = { (S , p1, · · · , pn) ∈ |OP3(4)| × (P3)n | pi ∈ S } ⊂ |OP3(4)| × (P3)n,

which is irreducible. The fiber of the projection Xn → (P3)n over
(p1, · · · , pn) ∈ (P3)n is the linear system of quartics through p1, · · · , pn.
Thus, when n ≤ dim |OP3(4)| = 34, Xn is birationally a P34−n-bundle over
(P3)n. In particular, X34 ∼ (P3)34. Therefore F3,34 ∼ X34/PGL4 ' (P3)29. □

More generally, when 3 ≤ n ≤ 33, F3,n is rational too.

5.2.3. The case g = 4. General K3 surfaces of degree 6 are (2, 3) complete
intersections in P4. It is convenient to fix a smooth quadric Q ⊂ P4 and
consider surfaces in |OQ(3)| = |−KQ|.

Proposition 5.6. F4,29 is unirational.

Proof. Consider the (complete) incidence correspondence

Xn = { (S , p1, · · · , pn) ∈ |OQ(3)| × Qn | pi ∈ S } ⊂ |OQ(3)| × Qn.

The fiber of the projection Xn → Qn over (p1, · · · , pn) ∈ Qn is the linear
system of surfaces in |OQ(3)| passing through p1, · · · , pn. Thus, when n ≤
dim |OQ(3)| = 29, Xn → Qn is birationally a P29−n-bundle and hence Xn is
rational. Therefore F4,n is unirational. □

5.2.4. The case g = 5. General K3 surfaces of degree 8 are (2, 2, 2) com-
plete intersections in P5. They are parametrized by an open subset G(3,V)◦

of the Grassmannian G(3,V) where V = H0(OP5(2)). For W ∈ G(3,V)◦ we
denote by S W ⊂ P5 the K3 surface defined by W.

Proposition 5.7. F5,18 is rational.
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Proof. Consider the incidence correspondence

Xn = { (W, p1, · · · , pn) ∈ G(3,V)◦ × (P5)n | pi ∈ S W } ⊂ G(3,V)◦ × (P5)n.

The fiber of the projection Xn → (P5)n over general (p1, · · · , pn) ∈ (P5)n

is an open dense subset of the sub Grassmannian G(3,Vp1,··· ,pn), where
Vp1,··· ,pn ⊂ V is the space of quadratic forms vanishing at p1, · · · , pn. When
n ≤ h0(OP5(2)) − 3 = 18, we have dim Vp1,··· ,pn ≥ 3, so Xn is birationally a
G(3, 21 − n)-bundle over (P5)n. Therefore

F5,18 ∼ X18/PGL6 ∼ (P5)18/PGL6 ∼ (P5)11

is rational. □

More generally, when 7 ≤ n ≤ 17, F5,n is rational too.

5.2.5. The case g = 6. In [39] §4, Mukai proved that general K3 sur-
faces of genus 6 are anti-canonical sections of the Fano 3-fold Y of index
2 and degree 5. The variety Y is unique up to isomorphism and is quasi-
homogeneous for PGL(2). Since h0(−KY) = 23 and Y is rational, the same
argument as before implies

Proposition 5.8. F6,22 is unirational.

5.2.6. The case g = 7. Mukai [39], [43] found two methods of construct-
ing general K3 surfaces of genus 7. Farkas-Verra [18] proved that F7,n is
unirational in n ≤ 8 using the first model ([39]). Here we use the second
model ([43] §3). Let G(2, 5) ⊂ P9 be the Plücker embedding of the Grass-
mannian G(2, 5), and Y = G(2, 5) ∩ P be the intersection with a general
codimension 2 linear subspace P ⊂ P9. The variety Y is a quintic del Pezzo
4-fold (unique up to isomorphism), and the stabilizer G ⊂ PGL5 of Y has
dimension 8. Let E be the dual of the universal sub bundle over G(2, 5), and
put EY = E ⊗ O(1)|Y . By [43], we have h0(EY) = 30, and the zero locus of
a general section of EY is a K3 surface of genus 7. This gives a dominant
map PH0(EY)/G d F7 whose general fibers are birationally K3 surfaces
(Fourier-Mukai partner of the original K3 surface). This construction tells
us

Proposition 5.9. F7,14 is uniruled.

Proof. Let U ⊂ PH0(EY) be the open locus of sections τ whose zero locus
S τ is a K3 surface. Consider the incidence correspondence

X14 = { ([τ], p1, · · · , p14) ∈ U × Y14 | pi ∈ S τ } ⊂ U × Y14,

which is irreducible. Let π : X14 → Y14 be the projection. If p =
(p1, · · · , p14) ∈ π(X14), the fiber π−1(p) is a non-empty open set of the lin-
ear subspace PVp ⊂ PH0(EY) of sections vanishing at p1, · · · , p14. Since
dim Vp ≥ h0(EY)−2·14 = 2, then X14 is birationally a Pm-bundle over π(X14)
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with m ≥ 1. Since a general p ∈ π(X14) has trivial stabilizer in G (cf. [48]),
X14/G is uniruled. We have a dominant map X14/G d F7,14 whose general
fibers are birationally K3 surfaces. Thus F7,14 is also uniruled. □

The proof shows that the fibration of Fourier-Mukai partners over F7,14

(dual K3 fibration) is uniruled. This space is akin to F7,15, which is the only
missing case.

Remark 5.10. The D5 root system appears in two contexts for g = 7: as a
sub root system of K7 = D5 ⊕ A2, and as the Dynkin diagram of SO(10)
whose spinor variety is used in the first Mukai model (cf. [41] (1.11)).

5.2.7. The case 8 ≤ g ≤ 10. Mukai [39] proved that general K3 surfaces of
genus 7 ≤ g ≤ 10 are linear sections of a homogeneous space Σg embedded
in PVg for a representation space Vg. Using this fact, Farkas-Verra [18]
proved that Fg,n is unirational in n ≤ g + 1.

5.2.8. Interlude: a coincidence. As we have seen from the classical and
Mukai models [39], general K3 surfaces of genus 3 ≤ g ≤ 10 are linear sec-
tions of a (quasi-)homogeneous space embedded in PVg for a representation
Vg of an algebraic group Gg. Then we find that the following coincidence
always holds:

n(g) = dim Vg,

namely, the weight k(g) of F(g) minus 19 (the moduli number) coincides
with dim Vg. Is this accidental? Is there some deeper link between K3
surfaces and the Borcherds product F(g) behind this coincidence?

We summarize (G,V) = (Gg,Vg) in the following table.

g 3 4 5 6 7 8 9 10

G SL(4) SO(5) SL(6) SL(2) SO(10) SL(6) Sp(6) G2

V S 4C4 S 3C5/C5 S 2C6 V6 S +
∧2 C6 ∧3 C6/C6 g2

Here V6 = S 0C2 ⊕ S 8C2 ⊕ S 12C2 and S + is the half spin representation.
In g = 3, 4, 6, 12, n(g) also coincides with h0(−KY) for Fano 3-folds Y

containing the K3 surfaces. This would be a uniform reason why n(g) =
n′(g) + 1 is attained at these g.

5.2.9. The case g = 11. Barros [4] proved that F11,n is unirational in n ≤ 6
and uniruled in n = 7. Barros-Mullane [5] proved that κ(F11,9) = 0. Thus
the cusp form F(11) gives the unique nonzero canonical form on a smooth
projective model of F11,9. Farkas-Verra [18] proved that κ(F11,11) = 19.
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5.2.10. The case g = 12. Mukai ([41], [43]) proved that general K3 sur-
faces of genus 12 are anti-canonical sections of Fano 3-folds of genus 12
and Picard number 1. We first recall the construction of such Fano 3-folds
following [41] §5. Let Y = G(3, 7) and E be the dual of the universal sub
bundle over Y . We set V = H0(

∧2 E) ' ∧2(C7)∨. For a 3-dimensional
subspace N of V , we let YN ⊂ Y be the common zero locus of sections in
N. If N is general, then YN is a Fano 3-fold of genus 12 and Picard num-
ber 1. Such Fano 3-folds are rational ([33] Theorem 4.6.7). Restriction of
the Plücker embedding Y ↪→ P(∧3 C7) gives the anti-canonical embedding
YN ↪→ PN⊥ ' P13 where N⊥ ⊂ ∧3 C7 is the annihilator of N ⊂ ∧2(C7)∨. If
H is a general hyperplane of PN⊥, then S N,H = YN ∩ H is a K3 surface of
genus 12. By Mukai [43], YN can be uniquely recovered from S N,H inside Y ,
so that F12 is birationally a P13-bundle over the moduli space G(3,V)/PGL7

of these Fano 3-folds with fibers the anti-canonical systems.

Proposition 5.11. F12,13 is birational to the moduli space of 13-pointed
Fano 3-folds of genus 12 and Picard number 1. In particular, F12,13 is
rationally connected.

Proof. Let F ′12,13 be the moduli space of 13-pointed Fano 3-folds of genus
12 and Picard number 1. We have the rational map F ′12,13 d F12,13 which
sends (YN , p1, · · · , p13) to (S N,H, p1, · · · , p13) where H = 〈p1, · · · , p13〉 is
the hyperplane of PN⊥ spanned by p1, · · · , p13. Since YN can be recov-
ered from S N,H, we also have the inverse map F12,13 d F ′12,13 sending
(S N,H, p1, · · · , p13) to (YN , p1, · · · , p13). Therefore F12,13 is birational to
F ′12,13.

Since F ′12,13 is fibered over the unirational base G(3,V)/PGL7 with gen-
eral fibers rational (self products of the Fano 3-folds), it is rationally con-
nected by [21]. □

5.2.11. The case g = 13. By Mukai [43], general K3 surfaces of genus 13
can be constructed as follows. Consider the Grassmannian G(3, 7) and let
E be the dual of the universal sub bundle. We take a general 2-dimensional
subspace of H0(

∧2 E) ' ∧2(C7)∨, which is unique up to the action of SL7,
and let Y ⊂ G(3, 7) be its common zero locus. Then Y is a Fano 6-fold of
index 3, and its stabilizer GY in SL7 has dimension 10. Let F be the third
exterior power of the universal quotient bundle over G(3, 7), and FY = F |Y
be its restriction to Y . Then FY has rank 4, h0(FY) = 32, and the zero locus
of a general section of FY is a K3 surface of genus 13. The resulting moduli
map PH0(FY)/GY d F13 is dominant and its general fibers are birationally
K3 surfaces (Fourier-Mukai partner of the original K3 surface).

Proposition 5.12. F13,7 is uniruled.
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Proof. Let U ⊂ PH0(FY) be the open set of sections τ whose zero locus S τ
is a K3 surface. Consider the incidence correspondence

Xn = { ([τ], p1, · · · , pn) ∈ U × Yn | pi ∈ S τ },
which is irreducible, and let π : Xn → Yn be the projection. The π-fiber over
p = (p1, · · · , pn) ∈ π(Xn) is an open dense subset of the linear subspace
PVp ⊂ PH0(FY) of sections vanishing at p1, · · · , pn. When n = 7, Vp has
dimension ≥ h0(FY) − 4 · 7 = 4, so X7 → π(X7) is birationally a Pm-bundle
with m ≥ 3. Since the stabilizer in GY of general p ∈ π(X7) is finite, X7/GY

is uniruled. Since the fibers of the moduli map X7/GY d F13,7 are K3
surfaces, F13,7 is also uniruled. □

The proof shows that the fibration of Fourier-Mukai partners over F13,7

(dual K3 fibration) is also uniruled. Note that F13,8 is the only missing case.

5.2.12. The case g = 14. Farkas-Verra [18] proved that F14,1 is rational
using special cubic 4-folds.

5.2.13. The case g = 16. By Mukai [44], general K3 surfaces of genus 16
can be constructed as follows. Let T be the GL4-equivariant compactifica-
tion of the space of twisted cubics in P3 constructed by Ellingsrud-Piene-
Stromme [15]. The variety T is smooth of dimension 12 and acted on
by GL4. There exist vector bundles E, F on T of rank 3, 2 respectively
and equivariant linear maps (S 2C4)∨ → H0(E) and (S 2,1C4)∨ → H0(F ).
Here S 2C4 is the symmetric square of C4 and S 2,1C4 is the kernel of
C4 ⊗ S 2C4 → S 3C4. We write V = (S 2C4)∨. If M ⊂ V is a general 2-
dimensional subspace, its common zero locus YM has dimension 6. Let
SyzM ⊂ S 2,1C4 be the kernel of C4 ⊗ M⊥ → S 3C4, which has dimension
12. Then a general 2-dimensional subspace N of Syz∨M cuts out a K3 surface
S M,N ⊂ YM of genus 16.

The subspaces M are parametrized by an open set G(2,V)◦ of G(2,V),
and the pairs (M,N) are parametrized by an open set P◦ of the G(2, 12)-
bundleP over G(2,V)◦ formed by G(2, Syz∨M). By Theorem 1.2 and Remark
7.3 of [44], the moduli map P/PGL4 d F16 is dominant and its general
fibers are birationally K3 surfaces (Fourier-Mukai partner of the original
K3 surface).

Proposition 5.13. F16,4 is uniruled.

Proof. As in the case g = 12, we consider the incidence correspondence in
two steps:

Zn = { (M, p1, · · · , pn) ∈ G(2,V)◦ × T n | pi ∈ YM },

Xn = { (M,N, p1, · · · , pn) ∈ P◦ × T n | pi ∈ S M,N }.
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Let π : Xn → Zn be the projection. If (M,p) = (M, p1, · · · , pn) ∈ π(Xn),
the π-fiber over (M,p) is an open dense subset of the sub Grassmannian
G(2,WM,p) ⊂ G(2, Syz∨M) where WM,p ⊂ Syz∨M is the kernel of the evaluation
map at p1, · · · , pn. If n ≤ 4, WM,p has dimension ≥ dim Syz∨M − 2n ≥ 4,
so Xn → π(Xn) is birationally a G(2,m)-bundle with m ≥ 4. When n = 4,
a general (M,p) ∈ π(X4) has finite stabilizer in PGL4, and hence X4/PGL4

is uniruled. Since the moduli map X4/PGL4 d F16,4 is dominant and its
general fibers are birationally K3 surfaces, F16,4 is also uniruled. □

As in the cases g = 7, 13, the proof shows that the dual K3 fibration over
F16,4 is also uniruled.

5.2.14. The case g = 18. By Mukai [40], general K3 surfaces of genus 18
can be constructed as follows. Fix a smooth quadric Q in P8 and let Y =
OG(3, 9) be the orthogonal Grassmannian parametrizing 2-planes contained
in Q. We have a rank 2 homogeneous vector bundle F over Y such that
V = H0(Y,F ) is the 16-dimensional spin representation of Spin(9). If N is
a general 5-dimensional subspace of V , its common zero locus S N is a K3
surface of genus 18. The moduli map G(5,V)/SO(9)d F18 is birational.

Proposition 5.14. F18,5 is uniruled.

Proof. Let G(5,V)◦ be the open set of G(5,V) where the common zero locus
S N is a K3 surface. Consider the incidence correspondence

Xn = { (N, p1, · · · , pn) ∈ G(5,V)◦ × Yn | pi ∈ S N },
and let π : Xn → Yn be the projection. For p = (p1, · · · , pn) ∈ π(Xn),
the fiber π−1(p) is an open dense subset of the sub Grassmannian G(5,Vp)
where Vp ⊂ V is the subspace of sections vanishing at p1, · · · , pn. When
n = 5, Vp has dimension ≥ dim V − 5 · rk(F ) = 6, so π−1(p) has positive
dimension. Since the stabilizer in SO(9) of general p ∈ π(X5) has dimension
< dim π−1(p), the fiber π−1(p) is not contracted to one point by the moduli
map X5 d X5/SO(9) ∼ F18,5. Therefore F18,5 is uniruled. □

5.2.15. The case g = 20. Let E be the dual of the universal sub bundle
over the Grassmannian Y = G(4, 9), and put V = H0(

∧2 E) ' ∧2(C9)∨. By
Mukai [40], if N is a general 3-dimensional subspace of V , its common zero
locus S N is a K3 surface of genus 20. The moduli map G(3,V)/PGL9 d
F20 is birational.

Proposition 5.15. F20,5 is uniruled.

Proof. Let G(3,V)◦ be the open set of G(3,V) where the common zero locus
S N is a K3 surface. Consider the incidence correspondence

Xn = { (N, p1, · · · , pn) ∈ G(3,V)◦ × Yn | pi ∈ S N },
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and let π : Xn → Yn be the projection. If p = (p1, · · · , pn) ∈ π(Xn), then
π−1(p) is an open dense subset of the sub Grassmannian G(3,Vp) ⊂ G(3,V)
where Vp ⊂ V is the subspace of sections vanishing at p1, · · · , pn. When
n = 5, Vp has dimension ≥ dim V − 5 · rk(

∧2 E) = 6, so π−1(p) has positive
dimension. Since the stabilizer in PGL9 of general (p1, · · · , p5) ∈ π(X5) is
finite, π−1(p) is not contracted by the moduli map X5 d X5/PGL9 ∼ F20,5.
Therefore F20,5 is uniruled. □

5.2.16. The case g = 22. Farkas-Verra [19] proved that F22,1 is unirational
using special cubic 4-folds.
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