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Abstract. For any fixed relatively prime positive integers a, b and c
with min{a, b, c} > 1, we prove that the equation ax + by = cz has
at most two solutions in positive integers x, y and z, except for one
specific case which exactly gives three solutions. Our result is essen-
tially sharp in the sense that there are infinitely many examples al-
lowing the equation to have two solutions in positive integers. From
the viewpoint of a well-known generalization of Fermat’s equation, it is
also regarded as a 3-variable generalization of the celebrated theorem of
Bennett [M.A.Bennett, On some exponential equations of S. S. Pillai,
Canad. J. Math. 53(2001), no.2, 897-922] which asserts that Pillai’s
type equation ax − by = c has at most two solutions in positive integers
x and y for any fixed positive integers a, b and c with min{a, b} > 1.

1. Introduction

The history of the S-unit equations related to Diophantine equations is
very rich (cf. [Gy3, EvGyStTi, EvScSch, EvGy2]). Indeed, many diophan-
tine problems can be reduced to S-unit equations over number fields. Espe-
cially, the simplest one among those is the S-unit equation in two unknowns
over the rationals, which is written as follows:

(1.1) αX + βY + γZ = 0,

where α, β, γ are given non-zero integers, and X,Y, Z are unknown in-
tegers composed of finitely many given primes. The set of the prede-
termined primes for unknowns is as usual denoted by S. From the the-
ory on Diophantine approximations we know that there are only finitely
many solutions to equation (1.1), and effective upper bounds for their sizes
can be obtained by means of Baker’s theory of linear forms in logarithms
(cf. [Gy, Gy2, BuGy, GyYu]). Since any unknown can be expressed as a
product of powers of given primes, equation (1.1) is an exponential Diophan-
tine equation. Based upon this, one of the simplest examples of equation
(1.1) is

(1.2) ax − by = c,
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where a, b, c are fixed positive integers with min{a, b} > 1, and x, y are un-
known positive integers. This equation is a special case of Pillai’s equation,
and Pillai’s famous conjecture says that there are only finitely many pairs
of distinct powers with their difference fixed. It is also worth noting that
the case where c = 1 corresponds to a special one of Catalan’s equation
(cf. [Mi]).

In a series of papers in the 1930’s, Pillai [Pi, Pi2] actively studied equation
(1.2) and obtained some finiteness results on the number of solutions (for
more detail see [Be, Be2]). Early 1990’s, Scott [Sc] extensively investigated
equation (1.2) in the case where a is a prime with a motivation to a classi-
cal problem listed in R.K.Guy’s book [Gu], and he used strictly elementary
methods in quadratic fields to obtain very sharp upper bounds for the num-
ber of solutions in several cases. For more details on these topics or some
other related ones, see for example [ShTi, Be2, BerHa].

In the direction on the number of solutions to equation (1.2), Bennett
[Be] established the following definitive result.

Theorem (M.A. Bennett). For any fixed positive integers a, b and c with
min{a, b} > 1, equation (1.2) has at most two solutions in positive integers
x and y.

This result is essentially sharp in the sense that there are a number of
examples where there are two solutions to equation (1.2) (cf. [Be, (1.2)]).
The proof of Bennett uses lower bounds for linear forms in logarithms of two
algebraic numbers together with a ‘gap principle’, based upon an arithmetic
of exponential congruences, which gives rise to a large gap among three
hypothetical solutions. It should be also remarked that the non-coprimality
case, i.e., gcd(a, b) > 1 is handled just by a short elementary observation.
Several other works to estimate the number of solutions of more general
equations of type (1.2) were made available in the literature (cf. [BuLu,
ScSt, ScSt2, ScSt3]).

There is another example of equation (1.1), which is not only regarded
as a 3-variable generalization of equation (1.2), but also closely related to
the so-called generalized Fermat equation, that is, a Diophantine equation
arising from the quest to seek for all the relations that the sum of two powers
of ‘coprime’ positive integers is equal to another power (cf. [BeMiSi], [Co,
Ch.14]). It is the main subject in this article, given as follows:

(1.3) ax + by = cz,

where a, b, c are fixed coprime positive integers with min{a, b, c} > 1, and
x, y, z are unknown positive integers. Equation (1.3) is also one of the sim-
plest one among purely exponential Diophantine equations. It seems that
the earliest published work on solving equation (1.3) is due to Sierpiński
[Si], who solved the equation for (a, b, c) = (3, 4, 5). Just after this work,
Jeśmanowicz [Je] (who was a student of Sierpiński) considered equation
(1.3) for other primitive Pythagorean triples, and he posed the problem of
determining the solutions to the equation for any Pythagorean triple. His
problem is the most known unsolved problem concerning equation (1.3). In
a series of papers in the 1990’s, Terai gave some pioneer works on equation
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(1.3) for some families of (a, b, c) including Pythagorean triples, and later he
posed several problems including a generalization of the mentioned one of
Sierpiński-Jeśmanowicz, now called Terai’s conjecture (cf. [Te]). For more
details on these topics or some other related ones, see some recent papers
[CiMi, Lu2, Miy] and the references therein.

As mentioned before, from the theory of S-unit equations, we know that
equation (1.3) has at most finitely many solutions, moreover, the number
of solutions can be bounded by an absolute large number (see the excellent
survey of Győry [Gy4]). However, apparently a kind of such estimates is
far from the actual number, indeed, many existing works in the literature,
and also a much more general treatment to equation (1.1) (cf. [Theorem 1,
EvGyStTi]), suggest that equation (1.3) has few solutions in general. In this
direction, some important progresses have been made in the recent years by
several researchers. In a series of papers, Hu and Le [HuLe, HuLe2, HuLe3]
discussed equation (1.3) over the invertible residue classes modulo powers
of the base numbers of the equation. Using various elementary methods
including continued fractions, they found a large gap among three hypo-
thetical solutions, so-called ‘gap principle’, and the combination of their
gap principle and Baker’s method implies that equation (1.3) has at most
two solutions whenever the maximal value of a, b, c is sufficiently large (see
Proposition 2.1 below). Here we mention that there are infinitely many ex-
amples where there are two solutions to equation (1.3) (see (15.1) in the
final section). Since the exponential unknowns x, y and z are bounded by
an explicit constant depending only on a, b and c by Baker’s method, just a
finite search remains to be done in order to obtain the definitive result on the
number of solutions to equation (1.3) corresponding to Bennett’s mentioned
theorem. However, a kind of brute force computations is never enough to
settle that finite search. Related to this study, the work of Scott and Styer
[ScSt4] should be referred. They considerably improved the argument over
imaginary quadratic fields in [Sc] dealing with the case where c is a prime,
to obtain the same conclusion as that of the mentioned work of Hu and Le,
whenever c is odd (see Proposition 2.2 below). Actually, the main content
of this article is to completely handle the remaining finite search mentioned
before, as follows:

Theorem 1 (Main Theorem). For any fixed relatively prime positive inte-
gers a, b and c with min{a, b, c} > 1, equation (1.3) has at most two solutions
in positive integers x, y and z, except when (a, b, c) is (3, 5, 2) or (5, 3, 2)
which exactly gives three solutions.

This result is essentially sharp as indicated in the mentioned work of Hu
and Le, and its exceptional case comes from the identities 3+5 = 23, 33+5 =
25 and 3 + 53 = 27 (cf. (15.1)).

The proof of our theorem proceeds under the assumption that all a, b, c
are bounded from above explicitly and c is even, and consists of three main
important steps. The first step is to improve the gap principle of Hu and
Le. Their gap principle is derived by examining equation (1.3) modulo pow-
ers of each of a, b and c, and is expressed as some divisibility relation or
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some inequality. The main idea for the improving is to consider two con-
gruences ‘simultaneously’ in their treatment using modulus of each power of
the base numbers. Roughly saying, this replaces a factor in the inequality
from Hu and Le’s gap principle as a common factor of two of exponential
unknowns of the equation, where the value of an appearing factor is strictly
restricted from the viewpoint of generalized Fermat equations. In this stage,
by combining the improved gap principle together with the 2-adic analogue
of Baker’s method, the required bounds for max{a, b, c} for which theorem
holds true are substantially reduced. The second step is to find very sharp
upper bounds for all the exponential unknowns of at least two of three equa-
tions, which in what follows are called the first two equations, derived from
equation (1.3) by assuming the existence of three hypothetical solutions.
This is done elementarily by comparing the 2-adic valuations of both sides
of each of those three equations, a procedure that works only in the case
where c is even, which can be assumed from the mentioned work of Scott
and Styer. Working out these two steps together with several elementary
number theory methods yields at most finitely many possible values of all
parameters appearing in the first two equations. Finally, in each of those
cases, we check whether those two equations hold or not. At this point it is
worth noting that although the derived general bounds for all letters in those
equations are relatively sharp, a direct enumeration of all possible solutions
of the system formed by the first two equations is impossible. Therefore, we
worked very carefully and found efficient methods for solving that system in
reasonable computation time.

The organization of this article is as follows. In the next section, we
prepare some useful conditions which are consequences of previous existing
results related to equations (1.2) and (1.3). Section 3 is devoted to find
a sharp upper bound for z using a result of Bugeaud [Bu] on the 2-adic
estimate of the difference between two powers of algebraic numbers. On
the other hand, we find some 2-adic properties of z in Section 4, where one
of those yields an exact information in a certain case. We summarize the
contents of these sections together with the second main idea in the forth-
coming section, in particular, we deduce relatively small upper estimates
for all exponential unknowns of the first two equations. In Section 6, we
improve the gap principle of Hu and Le, and give some of its applications in
Section 7. In Section 8, we quote several existing works on the generalized
Fermat equation, and give their applications to the improved gap princi-
ple. Section 9 is devoted to study a certain Diophantine equation related
to equation (1.2). In Section 10, we use results established in the previous
section together with the preparations in Sections 6, 7 and 8 to settle the
case where the values of two z of the first two equations coincide. Sections
11 and 12 are devoted to exactly find all possible values of letters in the first
two equations, and we sieve those completely in Sections 13 and 14, and the
proof is completed. In the final section, we make a few remarks concerning
an extension of Theorem 1.
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All computations in this paper were performed using the computer pack-
age MAGMA [BoCaPl]. The total computation time needed for this article
did not exceed 17 hours.

2. Previous results and their consequences

We begin by quoting the following results on equations (1.2) or (1.3). The
first two play important roles in the proof of our theorem.

Proposition 2.1 ([HuLe3]). If max{a, b, c} > 1062, then Theorem 1 is true.

Proposition 2.2 ([ScSt4]). If c is odd, then Theorem 1 is true.

The following is a direct consequence of [Sc, Theorem 6].

Proposition 2.3. If c = 2, then Theorem 1 is true.

The following is a direct consequence of [ScSt, Theorem 1], and it is a
relevant analogue to Bennett’s result recalled above.

Proposition 2.4. For any fixed positive integers a, b and c with min{a, b}
> 1, the equation

ax + by = c

has at most two solutions in positive integers x and y.

Using Propositions 2.2, 2.3 and 2.4, we show a technical lemma.

Lemma 2.1. Theorem 1 is true in each of the following cases:

• a ≡ 1 (mod 4), b ≡ 1 (mod 4);
• max{a, b} < 11, c ≡ 0 (mod 2).

Proof. In the first case, we take equation (1.3) modulo 4 to see that cz ≡ 2
(mod 4), implying z = 1. Proposition 2.4 completes the proof.

In the second case, suppose that equation (1.3) has three solutions. By
Proposition 2.4, there exists at least one solution with z > 1 among them.
Since both a, b are composed of only primes in {3, 5, 7}, we have c = 2 by
[BeBi, Theorem 7.2]. Our lemma follows from Proposition 2.3. □

In order to prove our theorem, it suffices to consider the case where none
of a, b, c is a perfect power, and a, b, c are pairwise coprime. Moreover, in
view of Propositions 2.1, 2.2 and Lemma 2.1, we may assume any of the
conditions in (∗) below.

(∗)


none of a, b, c is a perfect power, a, b, c are pairwise coprime;

a ≡ −1 (mod 4) or b ≡ −1 (mod 4);

max{a, b} ≥ 11, max{a, b, c} ≤ 1062;

2 | c, c > 4.

In particular, in the sequel, we always assume that a, b, c are pairwise co-
prime, both a, b are odd and c is even.
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3. General upper bound for z

Here we find a relatively sharp upper bound for z in equation (1.3). For
this we prepare some lemmas.

The following is a slight improvement of a special case of [PedW, Lemma
2.2].

Lemma 3.1. Let v be a positive number. Assume that t
log2 t

≤ v for some

positive number t with t > e2, where e = exp(1). Then

t <

(
1 +

log log v0
log v0 − 1

)2

v log2(4v),

where v0 is any number with e < v0 < 2v1/2.

Proof. Firstly, note that the function T
log2 T

in T is increasing for T > e2.

Thus it suffices to consider the case where t
log2 t

= v. Define w and Y as

w = 2t1/2

log t and (1 + Y )w logw = t1/2. It is easy to see that Y > 0 as t > e2.

Observe that

(1 + Y )w logw = t1/2 =
w

2
log t = w log

(
(1 + Y )w logw

)
.

Thus
Y logw = log(1 + Y ) + log logw.

Since log(1 + Y ) < Y , we have Y < log logw
logw−1 , that is,

t1/2 <

(
1 +

log logw

logw − 1

)
w logw.

Since w = 2v1/2 = 2t1/2

log t > e by assumption, and the function log logW
logW−1 in

W is decreasing for W > e, the above displayed inequality leads to the
assertion. □

For a rational prime p and a non-zero integer A, let νp(A) denote as usual
the p-adic valuation of A, that is, the exponent of p in the prime factorization
of A.

The next lemma is well-known and gives a precise information on the
2-adic valuations of integers in certain forms.

Lemma 3.2. Let s be an odd integer with s ̸= ±1. For any positive integer
n, the following hold.

ν2(s
n − 1) = ν2(s

2 − 1)− 1 + ν2(n), if s ≡ 1 (mod 4) or 2 | n;
ν2(s

n − 1) = 1, if s ≡ 3 (mod 4) and 2 ∤ n;
ν2(s

n + 1) = ν2(s+ 1), if 2 ∤ n;
ν2(s

n + 1) = 1, if 2 | n.

Define the function log∗ as follows:

log∗(x) := logmax{x, e} (x > 0).

Note that (log∗ x)
2 is an increasing function.

The following proposition is a special case of [Bu, Theorem 2.13].
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Proposition 3.1. Let u1, u2 be coprime odd integers with u1, u2 ̸= ±1.
Assume that a positive integer g satisfies

ν2(uj
g − 1) ≥ E (j = 1, 2)

for some number E with E > 2. Let H1,H2 be real numbers satisfying

Hj ≥ log max{|uj |, 2E} (j = 1, 2).

Put

Λ = u1
b1 − u2

b2 (̸= 0),

where b1, b2 are positive integers. If ν2(u2 − 1) ≥ 2, then

ν2(Λ) ≤
36.1 g B2

(log 2)4E3
H1H2,

where

B = max

{
log
( b1
H2

+
b2
H1

)
+ log(E log 2) + 0.4, 6E log 2

}
.

We give an application of Proposition 3.1 as follows.

Lemma 3.3. Assume that max{a, b} ≥ 11. Put

α = min
{
ν2(a

2 − 1), ν2(b
2 − 1)

}
− 1, β = ν2(c).

Let (x, y, z) be a solution of equation (1.3) with z > 1. Then

z < max
{
c1, c2 log

2
∗(c3 log c)

}
(log a) log b,

where

(c1, c2, c3) =


(
1803.3m2

β
,
23.865m2

β
,
143.75(m2 + 1)

β

)
, if α = 2,(

2705m3

αβ
,
156.39m3

(
1 + log vα

vα−1

)2
α3β

,
646.9(m3 + 1)

α2β

)
, if α ≥ 3

with vα = 3α log 2− log(3α log 2), and

m2 =

{
log 8

logmin{a,b} , if min{a, b} ≤ 7,

1, if min{a, b} > 9,
m3 =

α log 2

log(2α − 1)
.

Remark 1. c1, c2, c3 are explicit constants depending only on α, β for α ≥ 3,
and also on m2 only if α = 2. Also, these numbers are decreasing on α (≥ 3)
and on β.

Proof of Lemma 3.3. Since c is even and z > 1, it follows from equation
(1.3) that ax + by ≡ 0 (mod 4). Therefore, one of the following cases holds.

(3.1)


a ≡ 1, b ≡ −1 (mod 4), 2 ∤ y;
a ≡ −1, b ≡ 1 (mod 4), 2 ∤ x;
a ≡ b ≡ −1 (mod 4), x ̸≡ y (mod 2).

Put Λ = ax + by. Since Λ = cz, we have

(3.2) z =
1

β
· ν2(Λ).
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In order to find an upper bound for ν2(Λ), let us apply Proposition 3.1. For
this, set u1, u2, b1, b2 as follows:

(u1, u2; b1, b2) =


(a,−b;x, y), if a ≡ 1, b ≡ −1 mod 4,

(−a, b;x, y), if a ≡ −1, b ≡ 1 mod 4,

(−a,−b;x, y), if a ≡ b ≡ −1 mod 4.

Then, by (3.1),

±Λ = u1
b1 − u2

b2 ,

u1 = ±a, u2 = ±b, min
{
ν2(u1 − 1), ν2(u2 − 1)

}
= α.

For any positive integer g and i ∈ {1, 2}, observe from Lemma 3.2 that

ν2(ui
g − 1) = ν2(ui

2 − 1)− 1 + ν2(g) = ν2(ui − 1) + ν2(g) ≥ α+ ν2(g).

Thus we may set

(g,E) :=

{
(2, 3), if α = 2,

(1, α), if α ≥ 3.

In what follows, let us separately consider the cases where α ≥ 3 and α = 2.
By symmetry of a and b, we may assume that a > b without loss of generality.

First, consider the case where α ≥ 3. Observe that

|u1| = a > b = |u2| ≥ 2α − 1.

Thus we may set H1 := log a and H2 := m3 log b. Proposition 3.1 together
with (3.2) gives

(3.3) z ≤ 36.1m3 B2

β(log 2)4α3
(log a) log b,

where

B = max

{
log
( x

m3 log b
+

y

log a

)
+ log(α log 2) + 0.4, 6α log 2

}
.

Since x < log c
log a z, y < log c

log b z, we have

B ≤ log max{zL′, 26α}
with

L′ =

(
1 + 1

m3

)
α (log 2) e0.4 log c

(log a) log b
.

If zL′ ≤ 26α, then inequality (3.3) yields

z ≤ 36.1m3(6α log 2)2

β(log 2)4 α3
(log a) log b <

2705m3

αβ
(log a) log b.

Suppose that zL′ > 26α. Then

z ≤ 36.1m3 log
2(zL′)

β(log 2)4α3
(log a) log b,

that is,

zL′

log2(zL′)
≤ 36.1m3L

′

(log 2)4α3β
(log a) log b =

p(m3 + 1) log c

α2β
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with p = 36.1·e0.4
(log 2)3

. Let us apply Lemma 3.1 to the above inequality with

v :=
p(m3 + 1) log c

α2β
, v0 :=

23α

3α log 2
, t := zL′.

Indeed, as zL′ > 26α,

2v1/2 ≥ 2

√
zL′

log2(zL′)
> v0.

Putting V =
(
1 + log log v0

log v0−1

)2
, we see that

z <
1

L′ V v log2(4v)

=
V (log a) log b(

1 + 1
m3

)
α(log 2) e0.4 log c

36.1·e0.4(m3+1)
(log 2)3

log c

α2β
log2(4v)

=
36.1V m3

(log 2)4α3β
log2(4v) (log a) log b

<
156.39V m3

α3β
log2∗

(
646.9(m3 + 1) log c

α2β

)
(log a) log b.

To sum up, the assertion is shown in this case.
Next, consider the case where α = 2. We proceed almost similarly to the

previous case, and use the same notation as seen in there. Observe that
2E = 8, and |u1| = a = max{a, b} > 10 by assumption. Thus we may set
H1 := log a and H2 := m2 log b. Proposition 3.1 gives

(3.4) z ≤ 36.1 gm2 B2

β(log 2)4(α+ 1)3
(log a) log b,

where

B = max

{
log
( x

m2 log b
+

y

log a

)
+ log

(
(α+ 1) log 2

)
+ 0.4, 6(α+ 1) log 2

}
.

Observe that

B ≤ log max
{
zL′, 26(α+1)

}
with

L′ =

(
1 + 1

m2

)
(α+ 1)(log 2) e0.4 log c

(log a) log b
.

If zL′ ≤ 26(α+1), then inequality (3.4) yields

z ≤
36.1 gm2

(
6(α+ 1) log 2

)2
β(log 2)4(α+ 1)3

(log a) log b <
1803.3m2

β
(log a) log b.

Suppose that zL′ > 26(α+1). Then

zL′

log2(zL′)
≤ 36.1 gm2 · L′

β(α+ 1)3(log 2)4
(log a) log b = p(m2 + 1)

log c

(α+ 1)2β
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with p = 36.1g e0.4

(log 2)3
. Let us apply Lemma 3.1 to the above inequality with

v := p(m2 + 1)
log c

(α+ 1)2β
, v0 := 82.073, t := zL′.

Indeed, as zL′ > 26(α+1) = 218,

2v1/2 ≥ 2

√
zL′

log2(zL′)
> 2

√
218

log2(218)
> v0.

Putting V =
(
1 + log log v0

log v0−1

)2
, we see that

z <
1

L′ V v log2(4v)

=
V (log a) log b(

1 + 1
m2

)
(α+ 1)(log 2) e0.4 log c

p(m2 + 1) log c

(α+ 1)2β
log2(4v)

=
pm2 V

(log 2) e0.4(α+ 1)3β
log2∗

(
4p(m2 + 1) log c

(α+ 1)2β

)
(log a) log b

=
36.1 gm2 V

(log 2)4(α+ 1)3β
log2∗

 4·36.1 g e0.4
(log 2)3

(m2 + 1) log c

(α+ 1)2β

 (log a) log b

<
23.865m2

β
log2∗

(
143.75(m2 + 1) log c

β

)
(log a) log b.

To sum up, the lemma is proved. □

4. 2-adic investigation of z

In this section, we show some results related concerning the 2-adic prop-
erties of z in equation (1.3). For this we prepare some notation as follows:

αa := ν2(a
2 − 1)− 1, αb := ν2(b

2 − 1)− 1,

α := min{αa, αb}, β := ν2(c).

Note that both a, b are congruent to ±1 modulo 2α and α ≥ 2.

Lemma 4.1. Let (x, y, z) be a solution of equation (1.3). Then either
(β, z) = (1, 1) or βz ≥ α.

Proof. We take equation (1.3) modulo 2α to see that either

cz ≡ ±2 (mod 2α) or cz ≡ 0 (mod 2α).

The first congruence implies that 2 ∥ cz since α ≥ 2, and the second one
means that ν2(c

z) ≥ α. □

Lemma 4.2. Let (x, y, z) = (X,Y, Z), (X ′, Y ′, Z ′) be two solutions of equa-
tion (1.3). Then XY ′ ̸= X ′Y, and

β ·min{Z,Z ′} ≤ α+ ν2(XY ′ −X ′Y ).
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Proof. Let A ∈ {a, b}. Since c is even, we use Lemma 6.2 (see below) for
(A,B,C;λ) = (a, b, c; 1) to see that

AE ≡ δ mod 2βmin{Z,Z′}(4.1)

for some δ ∈ {1,−1}, where E = |XY ′ −X ′Y | is a positive integer. Lemma
3.2 gives

βmin{Z,Z ′} ≤ ν2(AE − δ) ≤ ν2(A2 − 1)− 1 + ν2(E).
This shows the lemma as α = minA∈{a,b} ν2(A2 − 1)− 1. □

Finally, we show a sufficient condition to give an exact information on z
in a certain case.

Lemma 4.3. Let (x, y, z) = (X,Y, Z), (X ′, Y ′, Z ′) be two solutions of equa-
tion (1.3) with βZ ̸= 1 and βZ ′ ̸= 1. If X ̸≡ X ′ (mod 2), then Z = α/β or
Z ′ = α/β.

Proof. Without loss of generality, we may assume that X is odd and X ′ is
even. If Y ′ is even, then aX

′
+ bY

′
is a sum of two squares of odd integers,

so that aX
′
+ bY

′ ≡ 2 (mod 4), whereby βZ ′ = ν2(c
Z′
) = ν2(a

X′
+ bY

′
) = 1.

Thus, Y ′ is odd by assumption. To sum up,

(4.2) 2 ∤ X, 2 | X ′, 2 ∤ Y ′.

Take δa, δb ∈ {1,−1} such that a ≡ δa (mod 4) and b ≡ δb (mod 4). By
the definition of αa and αb,

2αa ∥ (a− δa), 2αb ∥ (b− δb).

Recall that min{αa, αb} = α. Then, for any solution (x, y, z) of equation
(1.3),

ax ≡ δa
x + 2u mod 2u+1, by ≡ δb

y + 2v mod 2v+1,

where u = αa+ν2(x) and v = αb+ν2(y). Replacing the modulus each of the

above congruences by 2min{u,v}+1 and adding the resulting relations yields

ax + by ≡ δ + 2u + 2v mod 2min{u,v}+1

with δ := δa
x + δb

y ∈ {−2, 0, 2}. This congruence implies that

ax + by ≡

{
2 (mod 4), if δ = ±2,

2min{u,v} (mod 2min{u,v}+1), if δ = 0, u ̸= v.

Since ν2(a
x + by) = ν2(c

z) = βz, we have

βz =

{
1, if δ = ±2,

min{u, v}, if δ = 0, u ̸= v.

We apply the previous argument with (x, y, z) = (X,Y, Z), (X ′, Y ′, Z ′).
In view of (4.2), we conclude that{

βZ = min{U, V }, if U ̸= V ,

βZ ′ = min{U ′, V ′}, if U ′ ̸= V ′,

where

U = αa, V = αb + ν2(Y ), U ′ = αa + ν2(X
′), V ′ = αb.
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Observe that U − V < U ′ − V ′. To sum up, these relations together imply
that 

αa − αb ≥ ν2(Y ), βZ ′ = V ′ = αb, if U ≥ V ,

αb − αa ≥ ν2(X
′), βZ = U = αa, if U ′ ≤ V ′,

βZ = U = αa, βZ ′ = V ′ = αb, if U < V and U ′ > V ′.

In particular, this shows the lemma. □

5. Preliminaries for Theorem 1

From now on, let (a, b, c) be any fixed triple of positive integers satisfying
(∗). Positive integers α, β are defined as in the previous section. From (∗),

(5.1) max{a, b} ≥ max{11, 2α + 1}, min{a, b} ≥ 2α − 1, c ≥ 3 · 2β.
Also, we suppose that equation (1.3) has three solutions, say (x, y, z) =
(xt, yt, zt) with t ∈ {1, 2, 3}, that is,

ax1 + by1 = cz1 , ax2 + by2 = cz2 , ax3 + by3 = cz3 .

Without loss of generality, we may assume that

(5.2) z1 ≤ z2 ≤ z3.

For each t ∈ {1, 2, 3}, we often refer to the equation axt + byt = czt as ‘t-th
equation’. The pair consisting of the 1st and 2nd equations is referred to as
‘the first two equations’.

It is obvious that

(5.3) xt <
log c

log a
zt, yt <

log c

log b
zt (t = 1, 2, 3).

Lemmas 4.1, 4.2 and 3.3 tell us that

(β, zt) = (1, 1) or zt ≥
α

β
(t = 1, 2);(5.4)

βzt ≤ α+ ν2(xtyt+1 − xt+1yt) (t = 1, 2);(5.5)

z3 < Hα,β,m2(c; a, b),(5.6)

respectively, where

Hα,β,m2(u; v, w) := max
{
c1, c2 log

2
∗(c3 log u)

}
· log v · logw.

From Remark 1, the lower index m2 of H makes sense only when α = 2.
In what follows, we simply write Hα,β,m2(u; v, w) = Hα,β,m2(u) when u =
v = w, also, Hα,β,m2(u; v) := Hα,β,m2(u; v, w)/ logw. H is decreasing on α
(≥ 3). Also, all indices α, β,m2 are often omitted.

Under this setting, we show some results as the first preliminaries in the
proof of Theorem 1.

Lemma 5.1. The following inequalities hold.

βz1 −
log(z1z2)

log 2
< α+

1

log 2
log

(
log2 c

(log a) log b

)
− log g

log 2
;(i)

βz2 −
log z2
log 2

< α+
logHα,β,m2(c)

log 2
− log g

log 2
,(ii)
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where g is the greatest odd divisor of gcd(x2, y2).

Proof. Let t ∈ {1, 2}. From (5.3),

|xtyt+1 − xt+1yt| < max{xtyt+1, xt+1yt} <
log2 c

(log a) log b
ztzt+1.

In particular, by (5.6),

(5.7) |x2y3 − x3y2| <
log2 c

(log a) log b
z2z3 < z2 · Hα,β,m2(c).

Also, by the definition of g,

ν2(xtyt+1 − xt+1yt) = ν2

(
xtyt+1 − xt+1yt

g

)
.

These relations together with (5.5) yield

βzt ≤ α+ ν2 (xtyt+1 − xt+1yt) ≤ α+
log( |xtyt+1 − xt+1yt|/g )

log 2

< α+
1

log 2
log

(
log2 c

g(log a) log b
ztzt+1

)
.

Thus

βzt −
log zt
log 2

< α+
1

log 2
log

(
log2 c

g(log a) log b
zt+1

)
.

This inequality for t = 1 immediately yields (i). Assertion (ii) follows from
the above inequality for t = 2 together with (5.6). □
Definition 5.1. For given α, β,m2, a, b, c and g, define U2 = U2(α, β,m2, c, g)
as the largest z2 among z2 satisfying inequality (ii) of Lemma 5.1, and define
U1 = U1(α, β,m2, a, b, c, g) as the largest z1 among z1 satisfying inequality
(i) of Lemma 5.1 with z2 replaced by U2.

As remarked before, m2 affects the definitions of U1,U2 only when α = 2.
Note that both U1,U2 are decreasing on β and g, and are increasing on c,
and on m2 if α = 2.

In what follows, let (†) denote the following case:

(†)

{
xI ̸≡ xJ (mod 2) or yI ̸≡ yJ (mod 2)

for some set {I, J} ⊂ {1, 2, 3}.

Lemma 5.2. In case (†), either (β, z1) = (1, 1) or z1 = α/β.

Proof. Suppose that (β, z1) ̸= (1, 1). Since z1 ≤ z2 ≤ z3, we have (β, zt) ̸=
(1, 1) for any t. Then Lemma 4.3 tells that zt = α/β for some t. In particular,
z1 ≤ zt ≤ α/β. On the other hand, z1 ≥ α/β by (5.4). These inequalities
together show that z1 = α/β. □
Lemma 5.3. z2 ≤ 230, max{x1, y1, x2, y2} < 4300 and max{a, b, c} > 1000.

Proof. On inequality (ii) of Lemma 5.1, put (β, c,m2) = (1, 1062, log 8log 3),

thereby

z2 −
log z2
log 2

< α+
logHα,1,log 8/ log 3(10

62)

log 2
.
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For each α with 2 ≤ α ≤ log(min{a,b}+1)
log 2 ≤ log 1062

log 2 (< 206), the above

inequality yields that U2(α, 1,
log 8
log 3 , 10

62, 1) ≤ 230. The second asserted

inequality follows from the inequality min{a, b}max{x1,y1,x2,y2} < cU2 with
min{a, b} ≥ 2α − 1. To obtain the third asserted inequality, for each possi-
ble a, b and c with max{a, b, c} ≤ 1000, and for each pair (z1, z2) satisfying
the inequalities in Lemma 5.1 and the restrictions of Lemma 5.2, one can
check by a brute force search (within 7 hours) that at least one of 1st and
2nd equations does not hold for any possible (x1, y1, x2, y2). □

6. Improving work of Hu and Le

In this section, we improve the gap principle of Hu and Le. To follow their
strategy, we start with several lemmas derived as consequences of [HuLe3].

Definition 6.1. Let r and s be coprime integers with s > 2. Define n(r, s)
to be the least positive integer among positive integer n’s for which rn is
congruent to 1 or −1 modulo s. Moreover, define δ = δ(r, s) ∈ {1,−1} and
a positive integer f = f(r, s) as follows:

δ ≡ rn(r,s) (mod s), f =
rn(r,s) − δ

s
.

In the following lemma, the first statement is elementary, and the second
one easily follows from the proof of [HuLe3, Lemma 4.4].

Lemma 6.1. Let r and s be coprime integers with s > 2. Then the following
hold.

(i) Let n′ be a positive integer satisfying

rn
′ ≡ δ′ mod s

for some δ′ ∈ {1,−1}. Then

n′ ≡ 0 mod n(r, s),

rn
′ − δ′ ≡ 0 mod (rn(r,s) − δ(r, s)).

(ii) Let t be a positive integer whose prime factors divide s. Assume that
s ̸≡ 2 (mod 4). Let n′ be any positive integer satisfying

rn
′ ≡ δ′ mod st

for some δ′ ∈ {1,−1}. Then

n′ ≡ 0 mod
t · n(r, s)

gcd
(
t, f(r, s)

) .
Let A,B and C be any fixed pairwise coprime integers greater than 1.

For each λ ∈ {1,−1}, consider the following equation:

(6.1) AX + λBY = CZ ,

where X,Y, Z are unknown positive integers. For our purpose, it suffices
to observe equation (6.1) under the following conditions (corresponding to
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(∗)):

(∗∗)


none of A,B,C is a perfect power;

2 | C, C > 4, max{A,B} ≥ 11, if λ = 1;

2 | A, A > 4, max{B,C} ≥ 11, if λ = −1.

The following lemma easily follows from the proof of [HuLe, Lemma 3.3].
It is worth noting that its first assertion is based upon the primitive divisor
theorem of Zsigmondy [Zs].

Lemma 6.2. Let (X,Y, Z) and (X ′, Y ′, Z ′) be two solutions of equation

(6.1). Assume that C min{Z,Z′} > 2. Then XY ′ ̸= X ′Y. Moreover, for each
A ∈ {A,B},

A |XY ′−X′Y | ≡ ±1 mod C min{Z,Z′}.

The following lemma easily follows from the proofs of [HuLe2, Lemma
4.6] and [HuLe3, Lemma 4.4].

Lemma 6.3. Let (X,Y, Z) and (X ′, Y ′, Z ′) be two solutions of equation
(6.1) such that Z < Z ′. Then the following hold.

(i) If CZ > 2, then

gcd
(
C, f(B,CZ)

)
| X ′, gcd

(
C, f(A,CZ)

)
| Y ′.

(ii) If CZ ̸≡ 2 (mod 4), then

gcd
(
CZ′−Z , f(B,CZ)

)
| X ′, gcd

(
CZ′−Z , f(A,CZ)

)
| Y ′.

Before going to state the improved gap principle, we show an elementary
lemma.

Lemma 6.4. Let (X,Y, Z) be a solution of equation (6.1) with λ = −1. Put
G = gcd(X,Y ). If G > 1, then

X <
G

G− 1

logC

logA
Z, Y <

G

G− 1

logC

logB
Z.

Proof. By the definition of G,

CZ = (AX/G)G−(BY/G)G = (AX/G−BY/G)
(
(AX/G)G−1+ · · ·+(BY/G)G−1

)
with AX/G −BY/G > 0. In particular,

A
G−1
G

X < CZ , B
G−1
G

Y < CZ .

These give the asserted inequalities. □

For any positive numbers P and Q, we define tP,Q as follows:

tP,Q :=
logmin{P,Q}
logmax{P,Q}

.

Now we state our improved gap principle.
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Proposition 6.1. Suppose that equation (6.1) has three solutions (X,Y, Z) =
(Xr, Yr, Zr) with r ∈ {1, 2, 3} such that Z1 < Z2 ≤ Z3. Put G2 = gcd(X2, Y2),
and

χ :=

{
2, if Z1 > 1, and λ = 1 or C > max{A,B},
1, otherwise.

(i) Suppose that CZ1 ≡ 2 (mod 4) with CZ1 > 2. Then

C | G2 · (X2Y3 −X3Y2),

C ≤ min{X2 logB, Y2 logA}
log(χCZ1 − 1)

· |X2Y3 −X3Y2|.

Moreover, if either λ = 1, or λ = −1 with G2 > 1, then

C < K · tA,B · Z2

Z1
· |X2Y3 −X3Y2|,

where

K =

{
Z1 logC

log(χCZ1−1)
, if λ = 1,

Z1 logC
log(χCZ1−1)

· G2
G2−1 , if λ = −1, G2 > 1.

(ii) Suppose that CZ1 ̸≡ 2 (mod 4). Then

CZ2−Z1 | G2 · (X2Y3 −X3Y2),

CZ2−Z1 ≤ min{X2 logB, Y2 logA}
log(χCZ1 − 1)

· |X2Y3 −X3Y2|.

Moreover, if either λ = 1, or λ = −1 with G2 > 1, then

CZ2−Z1 < K · tA,B · Z2

Z1
· |X2Y3 −X3Y2|,

where K is the same as in (i).

Proof. We fix the value of A ∈ {A,B}. Applying Lemma 6.2 for (X,Y, Z) =
(X2, Y2, Z2) and (X ′, Y ′, Z ′) = (X3, Y3, Z3) shows that

A |X2Y3−X3Y2| ≡ ε mod CZ2(6.2)

with X2Y3 − X3Y2 ̸= 0 and some ε ∈ {1,−1}. Since Z2 ≥ Z1, Lemma
6.1 (i) for (r, s) = (A, CZ1) together with congruence (6.2) tells us that
|X2Y3 −X3Y2| is divisible by n(A, CZ1). Put

n1 := n(A, CZ1).

Then

(6.3) |X2Y3 −X3Y2| = n1n2

for some positive integer n2. On the other hand,

An1 = CZ1f + δ,

where f = f(A, CZ1) and δ = δ(A, CZ1).
Suppose that f = 1. Then An1 = CZ1 ± 1. Observe that

An1 ≥ CZ1 − 1

{
= AX1 +BY1 − 1 > A, if λ = 1,

≥ C2 − 1 > C > A, if C > A and Z1 > 1.
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Thus, if Z1 > 1, and λ = 1 or C > A, then n1 > 1 and so the well-known
theorem of [Mi] on Catalan’s equation tells us that {An1 , CZ1} = {8, 9},
which contradicts (∗∗). By these observations,

(6.4) n1 = n(A, CZ1) ≥ log(χCZ1 − 1)

logA
.

(i) From (6.2) and (6.3),

An1n2 = CZ2h+ ε,

for some positive integer h. We substitute the mentioned expression of An1

into the above to see that

CZ2h+ ε = (CZ1f + δ)n2 = CZ1

n2∑
i=1

(
n2

i

)
(CZ1)i−1f i δn2−i + δn2 .

It is easy to see that ε = δn2 as ε ≡ δn2 (mod CZ1) with δ, ε ∈ {1,−1} and
CZ1 > 2 by assumption. Therefore,

CZ2−Z1h =

n2∑
i=1

(
n2

i

)
(CZ1)i−1f i δn2−i

= n2f δn2−1 + CZ1

n2∑
i=2

(
n2

i

)
(CZ1)i−2f i δn2−i.

Since Z2 > Z1 by assumption, we have n2f ≡ 0 (mod C), and so

n2 gcd(f, C) ≡ 0 mod C.

By (6.3),

(6.5) n1C | gcd(f, C) · |X2Y3 −X3Y2|.

On the other hand, Lemma 6.3 (i) for (X,Y, Z) = (X1, Y1, Z1), (X
′, Y ′, Z ′) =

(X2, Y2, Z2) and n = n1 tells us that{
gcd(f, C) | Y2, if A = A,

gcd(f, C) | X2, if A = B.

This together with (6.5) gives that

(6.6)

{
n(A,CZ1) · C | Y2 · |X2Y3 −X3Y2|, if A = A,

n(B,CZ1) · C | X2 · |X2Y3 −X3Y2|, if A = B.

This enables us to deduce the first asserted divisibility relation.
Moreover, from (6.4), inequalities (6.6) imply

(6.7)


log(χCZ1 − 1)

logA
C ≤ Y2 · |X2Y3 −X3Y2|,

log(χCZ1 − 1)

logB
C ≤ X2 · |X2Y3 −X3Y2|.

This implies the first asserted upper bound for C.
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Suppose that λ = 1. Since X2 < logC
logA Z2 and Y2 < logC

logB Z2, we use (6.7)

to see that

C <
logA

log(χCZ1 − 1)
· logC
logB

Z2 · |X2Y3 −X3Y2|,

C <
logB

log(χCZ1 − 1)
· logC
logA

Z2 · |X2Y3 −X3Y2|,

thereby

C <
Z1 logC

log(χCZ1 − 1)
· tA,B · Z2

Z1
· |X2Y3 −X3Y2|.

Suppose that λ = −1 and G2 > 1. Applying Lemma 6.4 for (X,Y, Z) =
(X2, Y2, Z2) gives

X2 <
G2

G2 − 1

logC

logA
Z2, Y2 <

G2

G2 − 1

logC

logB
Z2.

These inequalities together with (6.7) gives the remaining assertion.
(ii) Apply Lemma 6.1 (ii) for

(r, s, t, n′) = (A, CZ1 , CZ2−Z1 , |X2Y3 −X3Y2|),

together with congruence (6.2). Then

n1C
Z2−Z1 | gcd(CZ2−Z1 , f) · |X2Y3 −X3Y2|.

Using this divisibility relation together with Lemma 6.3 (ii) for (X,Y, Z) =
(X1, Y1, Z1), (X

′, Y ′, Z ′) = (X2, Y2, Z2) and n = n1, we can show the asser-
tions almost similarly to case (i). □

In the remaining parts of this section, we apply Proposition 6.1 to special
cases concerning equation (6.1). For this we prepare two lemmas from the
works of Hu and Le.

The following lemma directly follows from the proofs of [HuLe3, Lemmas
3.2 and 3.4].

Lemma 6.5. Let (X,Y, Z) be a solution of equation (6.1) for λ = 1. Then
the following hold.

(i) If A2X < CZ , then

0 <
logC

logB
− Y

Z
<

2

ZCZ/2 logB
.

(ii) Let (X ′, Y ′, Z ′) be another solution of equation (6.1) for λ = 1. If
X > X ′ and Z ≤ Z ′, then

0 <
logC

logB
− Y ′

Z ′ <
2

Z ′AX−X′CZ′−Z logB
.

The following lemma directly follows from the argument in [HuLe3, Sec-
tion 5].
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Lemma 6.6. Let (X,Y, Z) and (X ′, Y ′, Z ′) be two solutions of equation
(6.1) for λ = 1. Assume that both Y/Z and Y ′/Z ′ are convergents in the

simple continued fraction expansion to logC
logB . If Y/Z < Y ′/Z ′ < logC

logB , then

Z ′ >
1

Z
(
logC
logB − Y

Z

) .
Proposition 6.2. Suppose that equation (6.1) for λ = 1 has three solutions
(X,Y, Z) = (Xr, Yr, Zr) with r ∈ {1, 2, 3} such that Z1 = Z2 < Z3. Then
one of the following inequalities holds.

CZ2/2/Z2 < max
t∈{1,2}

{
|X3Z2 −XtZ3|, |Y3Z2 − YtZ3|

}
;

CZ2/2 <
2

logmin{A,B}
Z3.

Proof. Since Z1 = Z2,

(6.8) AX1 +BY1 = AX2 +BY2 = CZ2 .

Note that X1 ̸= X2, Y1 ̸= Y2, and that X1 < X2 if and only if Y2 < Y1. By
symmetry of indices 1 and 2 in the assertion, we may assume that

(6.9) X1 < X2, Y2 < Y1.

Also, from the equations in (6.8), observe that

BY2 | (AX2−X1 − 1), AX1 | (BY1−Y2 − 1), AX2−X1 ·BY1−Y2 ≡ 1 mod CZ2 .

These imply that

AX2−X1 > BY2 , BY1−Y2 > AX1 ,(6.10)

max{AX2−X1 , BY1−Y2} > CZ2/2.(6.11)

By symmetry of A and B in the assertion, we may assume that AX2−X1 >
BY1−Y2 . From (6.11),

(6.12) AX2−X1 > CZ2/2.

Suppose that X2 ≤ X3. From (6.9) observe that the equation CX′ −
BY ′

= AZ′
has three solutions (X ′, Y ′, Z ′) = (Zr, Yr, Xr) with r ∈ {1, 2, 3}

satisfying X1 < X2 ≤ X3. Since AX1 is odd, Proposition 6.1 (ii) yields that

gcd(Y2, Z2) |Z2Y3 − Z3Y2| ≥ AX2−X1 .

It follows from (6.12) that

(6.13) gcd(Y2, Z2) |Z2Y3 − Z3Y2| > CZ2/2.

Suppose that X3 < X2. From (6.8) and (6.10) observe that

CZ1 = CZ2 > AX2 = AX1AX2−X1 > AX1BY1−Y2 > A2X1 .

Lemma 6.5 (i) for (X,Y, Z) = (X1, Y1, Z1) tells us that

(0 <)
logC

logB
− Y1

Z1
<

2

Z1CZ1/2 logB
.
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If the RHS above is greater than 1/(2Z1
2), then CZ1/2

Z1
< 4

logB . It is easy to

see that this leads to a contradiction to (∗∗). Thus,

(6.14)
logC

logB
− Y1

Z1
<

2

Z1CZ1/2 logB
≤ 1

2Z1
2 .

On the other hand, since X3 < X2 and Z2 < Z3, Lemma 6.5 (ii) for
(X,Y, Z) = (X2, Y2, Z2), (X

′, Y ′, Z ′) = (X3, Y3, Z3) gives

(0 <)
logC

logB
− Y3

Z3
<

2

Z3AX2−X3CZ3−Z2 logB
.

Suppose that the RHS above is greater than 1/(2Z3
2). Then

4Z3 > (logB)AX2−X3CZ3−Z2 ≥ (A logB)CZ3−Z2 ≥ (A logB) · C.

Put α := min{ν2(A2−1), ν2(B
2−1)}−1. Since max{A,B} ≥ max{11, 2α+

1} by (∗∗), and min{A,B} ≥ 2α − 1, we have A logB ≥ c(α) ≥ 3 log 11,
where c(α) := (2α − 1) logmax{11, 2α + 1}. Then Z3 > 1

4(A logB)C > 10,
so that

Z2 > Z3 −
log(4Z3)

logC
>

4

5
Z3.

This gives rise to a sharp lower bound for Z2, that is, Z2 ≥
⌈
1
5 c(α)C

⌉
(≥ 9).

However, this is incompatible, for any α ≥ 2 and C ≥ 6, with

2ν2(C)Z2

Z2
2 <

2α log2C

log(2α − 1) · logmax{11, 2α + 1}
,

which is shown in the same way as Lemma 5.1 (i). Therefore,

(6.15)
logC

logB
− Y3

Z3
<

2

Z3AX2−X3CZ3−Z2 logB
≤ 1

2Z3
2 .

To sum up, by a well-known criterion of Legendre on the continued frac-
tion, we may conclude, from inequalities (6.14) and (6.15), that both Y1

Z1
, Y3
Z3

are convergents in the simple continued fraction expansion to logC
logB . The

fact that Y1
Z1

̸= Y3
Z3

follows from Lemma 6.2 for the two solutions (X1, Y1, Z1)

and (X3, Y3, Z3). Moreover, Lemma 6.6 for (X,Y, Z) = (X1, Y1, Z1) and
(X ′, Y ′, Z ′) = (X3, Y3, Z3), together with (6.14) and (6.15) tells us that

(6.16) Z3 >
logB

2
CZ1/2 =

logB

2
CZ2/2,

or Z1 >
logB
2 AX2−X3CZ3−Z2 . It is easily observed that the latter inequality

does not hold similarly to the observation used to show (6.15). The assertion
follows from (6.13) and (6.16), having in view symmetries of indices 1 and
2, and of A and B. □

The second assertion of the next proposition is not directly used below
(cf. proof of Proposition 12.3 (iii)).

Proposition 6.3. Assume that A < C. Suppose that equation (6.1) for
λ = −1 has three solutions (X,Y, Z) = (Xr, Yr, Zr) with r ∈ {1, 2, 3} such
that Z1 = Z2 < Z3. Then the following hold.
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(i) If X3 > max{X1, X2}, then one of the following inequalities holds.

CZ2/Z2 < max
t∈{1,2}

|XtZ3 −X3Z2|;

CZ2/2/Z2 < max
t∈{1,2}

|YtZ3 − Y3Z2|;

CZ2/2 <
2

logC
X3.

(ii) If X3 ≤ max{X1, X2}, then one of the following inequalities holds.

CZ2 < Z3 · max
t∈{1,2}

|XtZ3 −X3Z2|;

CZ2/Z2
2 < |X1 −X2| · Z3 · max

t∈{1,2}
|YtZ3 − Y3Z2|.

Proof. Since Z1 = Z2,

(6.17) AX1 −BY1 = AX2 −BY2 = CZ2 .

Note that X1 ̸= X2, Y1 ̸= Y2, and that X1 < X2 if and only if Y1 < Y2.
Also, X1 > 1 as A < C in equations (6.17). By symmetry of indices 1 and
2 in the assertion, we may assume that X1 < X2 and Y1 < Y2. Thus,

(6.18) 1 < X1 < X2.

In particular, AX1 ≡ 0 (mod 4). Also, from (6.17),

BY1 | (AX2−X1 − 1), AX1 | (BY2−Y1 − 1).

Thus

(6.19) AX2−X1 > BY1 , BY2−Y1 > AX1 .

Let us consider several cases separately.
First, suppose that

Y2 ≤ Y3.

Observe that the equationAX′−CY ′
= BZ′

has three solutions (X ′, Y ′, Z ′) =
(Xr, Zr, Yr) with r ∈ {1, 2, 3} satisfying Y1 < Y2 ≤ Y3. Since BY1 is odd,
Proposition 6.1 (ii) yields

gcd(X2, Z2) |X2Z3 −X3Z2| ≥ BY2−Y1 .

As BY2−Y1 > AX1 > CZ2 by (6.17) and (6.19), we have

(6.20) gcd(X2, Z2) |X2Z3 −X3Z2| > CZ2 .

Second, suppose that

Y3 < Y2, X2 < X3.

Then the equation CX′
+ BY ′

= AZ′
has three solutions (X ′, Y ′, Z ′) =

(Zr, Yr, Xr) with r ∈ {1, 2, 3} satisfying X1 < X2 < X3. Proposition 6.1 (ii)
yields

gcd(Z2, Y2) |Z2Y3 − Z3Y2| ≥ AX2−X1 .

If B2Y1 ≥ AX1 , then, since AX2−X1 > BY1 by (6.19),

(6.21) gcd(Y2, Z2) |Y2Z3 − Y3Z2| > BY1 ≥ AX1/2 > CZ2/2.
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Suppose that B2Y1 < AX1 . Lemma 6.5 (i) for the solution (Y1, Z1, X1) gives

(0 <)
logA

logC
− Z1

X1
<

2

X1AX1/2 logC
.

Similarly to (6.14), we can show that the right hand side above is at most
1

2X1
2 . On the other hand, since Y3 < Y2 and X2 < X3, Lemma 6.5 (ii) for

the two solutions (Y2, Z2, X2), (Y3, Z3, X3) gives

(0 <)
logA

logC
− Z3

X3
<

2

X3BY2−Y3AX3−X2 logC
.

Suppose that the right hand side above is greater than 1
2X3

2 . Then

4X3 > (logC)BY2−Y3AX3−X2 ≥ (B logC) logA.

By using the same argument as in the proof of Proposition 6.2 (where it

was shown that Y3
Z3

is a convergent of logC
logB ), the above inequalities give

X2 > 1
5c(α)A, where α = min{ν2(B2 − 1), ν2(C

2 − 1)} − 1 and c(α) is
defined as in Proposition 6.2. Moreover, by applying Lemma 5.1 we obtain

2ν2(A)X1

X1X2
<

2α log2A

log(2α − 1) · logmax{11, 2α + 1}
,

2ν2(A)X2

X2
< 2αH

α,β, log 8
log 3

(A).

We check that there is no quadruple (α,A,X1, X2) satisfying both of these
inequalities. Thus, similarly to the arguments in the proof of Proposition
6.2, we can conclude that Z1

X1
, Z3
X3

are distinct convergents to logA
logC . Then

Lemma 6.6 shows that

(6.22) X3 >
logC

2
AX1/2 >

logC

2
CZ1/2,

or X1 >
logC
2 BY2−Y3AX3−X2 . It is shown that the latter inequality does not

hold as observed in showing (6.15).
To sum up, assertion (i) follows from the combination of inequalities

(6.20), (6.21), (6.22), in view of the symmetry of indices 1 and 2.
Finally, suppose that

Y3 < Y2, X3 ≤ X2.

If Y1 ≤ Y3 and X3 ≤ X1, then AX1 = BY1+CZ1 < BY3+CZ3 = AX3 ≤ AX1 ,
which is absurd. Thus, Y3 < Y1 or X1 < X3.

Consider the case where Y3 < Y1 (< Y2) and X3 ≤ X1. Observe that the

equation AX′ − CY ′
= BZ′

has three solutions (X ′, Y ′, Z ′) = (Xr, Zr, Yr)
with r ∈ {3, 1, 2} satisfying Y3 < Y1 < Y2. Then Proposition 6.1 (ii) yields

gcd(X1, Z1) |X1Z2 −X2Z1| ≥ BY1−Y3 .

On the other hand,

AX3 −BY3 = CZ3 = CZ3−Z1(AX1 −BY1).

Since X3 ≤ X1, we reduce this relation modulo AX3 to see that

CZ3−Z1BY1−Y3 ≡ 1 mod AX3 .

This gives that CZ3−Z1BY1−Y3 > AX3 > CZ3 , so that

BY1−Y3 > CZ1 .
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These inequalities together yield

(6.23) gcd(X1, Z1) |X1Z2 −X2Z1| > CZ1 .

Consider the case where Y3 < Y1 (< Y2) and X1 < X3 ≤ X2. Since the

equation CX′
+ BY ′

= AZ′
has three solutions (X ′, Y ′, Z ′) = (Zr, Yr, Xr)

with r ∈ {1, 3, 2} satisfying X1 < X3 ≤ X2, Proposition 6.1 (ii) yields

gcd(Z3, Y3) |Z3Y2 − Z2Y3| ≥ AX3−X1 .

On the other hand, reducing the relation BY3+CZ3 = AX3 = AX3−X1(BY1+
CZ1) modulo CZ1 yields AX3−X1BY1−Y3 ≡ 1 (mod CZ1), in particular,

AX3−X1BY1−Y3 > CZ1 .

Since Z2 gcd(X1, Z1) |X1 −X2| ≥ BY1−Y3 as seen in the previous case, these
inequalities together yield

(6.24) gcd(Y3, Z3) |Y2Z3 − Y3Z2| · Z2 gcd(X1, Z1) |X1 −X2| > CZ1 .

Consider the case where Y1 ≤ Y3 < Y2 and X1 < X3 ≤ X2. Reducing
equation BY3 + CZ3 = AX3−X1(BY1 + CZ1) modulo CZ1 yields AX3−X1 ≡
BY3−Y1 (mod CZ1), in particular,

max{AX3−X1 , BY3−Y1} > CZ1 .

Suppose that AX3−X1 > CZ1 . Since the equation CX′
+ BY ′

= AZ′
has

three solutions (X ′, Y ′, Z ′) = (Zr, Yr, Xr) with r ∈ {1, 3, 2} satisfying X1 <
X3 ≤ X2, Proposition 6.1 (ii) yields

(6.25) gcd(Z3, Y3) |Z3Y2 − Z2Y3| ≥ AX3−X1 > CZ1 .

Suppose that BY3−Y1 > CZ1 . Since Y1 < Y3, and the equation AX′ −
CY ′

= BZ′
has three solutions (X ′, Y ′, Z ′) = (Xr, Zr, Yr) with r ∈ {1, 3, 2}

satisfying Y1 < Y3 < Y2, Proposition 6.1 (ii) yields

(6.26) gcd(X3, Z3) |X3Z2 −X2Z3| ≥ BY3−Y1 > CZ1 .

To sum up, assertion (ii) follows from the combination of inequalities
(6.20), (6.23), (6.24), (6.25) and (6.26), and the symmetry of indices 1 and
2. □

7. Applications

Here we give three applications of Proposition 6.1 to equation (1.3) having
three solutions. For this we prepare some notation.

Based upon (5.2), let (i, j, k) and (l,m, n) be permutations of {1, 2, 3}
such that

xi ≤ xj ≤ xk, yl ≤ ym ≤ yn.

To ensure the uniqueness of these, we assume that i < j if xi = xj , and j < k
if xj = xk, and that l < m if yl = ym, and m < n if ym = yn. Also, define
non-negative integers dz, dx, dy and positive integers g2, gx, gy as follows:

dz := z2 − z1, dx := xj − xi, dy := ym − yl,

g2 := gcd(x2, y2), gx := gcd(yj , zj), gy := gcd(xm, zm).
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Lemma 7.1. Suppose that dz > 0 with cz1 ≡ 2 (mod 4). Then

c < min

{
2α+1−z2

(g2
′)2

g2
,
(g2

′)2

g2
,

log c

log(c− 1)
ta,b z2

}
· z2Hα,1,m2(c)

with g2
′ = gcd(c, g2).

Proof. Note that (β, z1) = (1, 1). We apply Proposition 6.1 (i) for (A,B,C;λ) =
(a, b, c; 1) and (Xr, Yr, Zr) = (xr, yr, zr) with r ∈ {1, 2, 3}. Then

c | (g2′)2 ·
x2y3 − x3y2

g2
,(7.1)

c <
log c

log(c− 1)
· ta,b z2 · |x2y3 − x3y2|.(7.2)

By (5.7), it is easy to see that the assertion for the second part in min follows
from (7.1), and the third one follows from (7.2). It remains to consider the
first part.

Since 2 ∥ c, and g2 is odd (cf. Lemma 8.2 (i)), we use divisibility relation
(7.1) to see that (cg2/2)/(g2

′)2 is an odd positive divisor of x2y3 − x3y2.
Thus

ν2(x2y3 − x3y2) = ν2

(
x2y3 − x3y2
(cg2/2)/(g2′)2

)
≤ 1

log 2
log

(
|x2y3 − x3y2|
(cg2/2)/(g2′)2

)
= 1− log c

log 2
+

1

log 2
log

(
(g2

′)2

g2
· |x2y3 − x3y2|

)
.

Since z2 ≤ α+ ν2(x2y3 − x3y2) by (5.5) for t = 2, it follows that

log c

log 2
≤ −z2 + α+ 1 +

1

log 2
log

(
(g2

′)2

g2
· |x2y3 − x3y2|

)
.

This together with (5.7) implies the remaining assertion. □

Lemma 7.2. Suppose that dz > 0 with cz1 ≡ 0 (mod 4). Then

cdz < min

{
2α−βz1 (g2

′)2

g2
,

z1 log c

log(χcz1 − 1)
ta,b

z2
z1

}
· log2 c

(log a) log b
z2z3

with g2
′ = gcd(cdz , g2), where χ = 2 if z1 > 1, and χ = 1 if z1 = 1.

Proof. The proof proceeds along similar lines to that of Lemma 7.1. We
apply Proposition 6.1 (ii) for (A,B,C;λ) = (a, b, c; 1) and (Xr, Yr, Zr) =
(xr, yr, zr) with r ∈ {1, 2, 3}. Then

cz2−z1 | (g2′)2 ·
x2y3 − x3y2

g2
,(7.3)

cz2−z1 <
z1 log c

log(χcz1 − 1)
· ta,b ·

z2
z1

· |x2y3 − x3y2|.(7.4)

By (5.7), the assertion for the second part in min follows from (7.4). It
remains to consider the first part.
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Since 2β ∥ c, and g2 is odd as 4 | cz1 , we use (7.3) to see that (c/2β)z2−z1g2/(g2
′)2

is an odd positive divisor of x2y3 − x3y2. Thus

ν2(x2y3 − x3y2) = ν2

(
x2y3 − x3y2

(c/2β)z2−z1g2/(g2′)2

)
≤ 1

log 2
log

(
|x2y3 − x3y2|

(c/2β)z2−z1g2/(g2′)2

)

= β(z2 − z1)− (z2 − z1)
log c

log 2
+

log
(
(g2′)2

g2
· |x2y3 − x3y2|

)
log 2

.

Since βz2 ≤ α+ ν2(x2y3 − x3y2) by (5.5) for t = 2, it follows that

(z2 − z1)
log c

log 2
≤ α− βz1 +

1

log 2
log

(
(g2

′)2

g2
· |x2y3 − x3y2|

)
.

This together with (5.7) implies the remaining assertion. □

Lemma 7.3. Suppose that dx > 0. Then

(i) adx <
(gx

′)2

gx
· log c
log b

· zjzk ≤ log c

log b
· zj2zk

with gx
′ = gcd(adx , gx). Moreover, if gx > 1, then

adx <
(gx

′)2

gx − 1
· log a
log b

· xjzk;(ii)

adx <

(
gx

gx − 1

)2

· log2 a

log(a− 1) log b
· tb,c · (xj + dx + dx

2) zk.(iii)

Note that Lemma 7.3 holds with (b, y, l,m, n) instead of (a, x, i, j, k) by
symmetry of a and b.

Proof of Lemma 7.3. Apply Proposition 6.1 (ii) for (A,B,C;λ) = (c, b, a;−1)
and (Xr, Yr, Zr) = (zt, yt, xt) with (r, t) ∈ {(1, i), (2, j), (3, k)}. Then

(7.5) axj−xi | (gx′)2 ·
yjzk − ykzj

gx
.

Moreover, if gx > 1, then

(7.6) axj−xi <
log a

log(a− 1)
· gx
gx − 1

· tb,c ·
xj
xi

· |yjzk − ykzj |.

From (5.3) for t ∈ {j, k},

|yjzk − ykzj | < max{yjzk, ykzj} <
log c

log b
zjzk.

Since axj−xi ≤ (gx′)2

gx
· |yjzk − ykzj | by (7.5), the above inequality yields (i).

Suppose that gx > 1. By Lemma 6.4 for (A,B,C) = (c, b, a) and (X,Y, Z) =
(zj , yj , xj),

yj <
gx

gx − 1

log a

log b
xj , zj <

gx
gx − 1

log a

log c
xj .
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Since yk < log c
log b zk, we have

|yjzk − ykzj | < max{yjzk, ykzj} <
gx

gx − 1

log a

log b
xjzk.

This together with (7.5) yields (ii). Similarly, (iii) follows from (7.6) and
the inequality xj

2/xi ≤ xj + dx + dx
2. □

8. Restrictions on Common divisors among solutions

The following is a well-known conjecture as a generalization of Fermat’s
last theorem, known as the generalized Fermat conjecture.

Conjecture 1. Let p, q and r be any positive integers satisfying 1/p+1/q+
1/r < 1. Then all solutions (X,Y, Z) with XY Z ̸= 0 and gcd(X,Y ) = 1 of
the Diophantine equation

(8.1) Xp + Y q = Zr

come from the following ten identities:

1p + 23 = 32, 72 + 25 = 34, 132 + 73 = 29,

173 + 27 = 712, 114 + 35 = 1222, 15490342 + 338 = 156133,

962223 + 438 = 300429072, 22134592 + 14143 = 657,

153122832 + 92623 = 1137, 762713 + 177 = 210639282.

The following is just a collection, needed for our purpose, from the existing
results on Conjecture 1 (cf. [BeChDaYa], [BeMiSi], [Co, Ch.14]).

Lemma 8.1. Conjecture 1 is true for any (p, q, r) in the following table:

(p, q, r) reference(s)
(N,N,N), N ≥ 3 [Wi], [TaWi]
(N,N, 2), N ≥ 4 [DarMe], [Po]
(N,N, 3), N ≥ 3 [DarMe], [Po]
(2, 4, N), N ≥ 4 [El], [BeElNg], [Br]
(2, N, 4), N ≥ 4 [BeSk], [Br]
(2, N, 6), N ≥ 3 [BeChDaYa], [Br]
(2, 6, N), N ≥ 3 [BeCh], [Br]

(3, 3, N), 3 ≤ N ≤ 109 [Kr], [Br2], [Da], [DaSik2]
(2, 3, N), N ∈ {7, 8, 9, 10, 15} [PoShSt], [Br], [Zu], [Sik], [SikSt]

(3, 4, 5) [SikSt]
(5, 5, 7), (7, 7, 5) [DaSik]

(5, 5, N), N ≥ 2, 5 | Z [DaSik]

The result of [DaSik] in the last line of the above table indicates that
equation (8.1) with (p, q, r) = (5, 5, N) and N ≥ 2 has no solutions satisfying
5 | Z.

As almost direct consequences of Lemma 8.1, together with Lemma 5.3,
we can show the following lemmas which are useful to restrict the values of
g2, gx and gy appearing in the previous section.
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Lemma 8.2. The following hold.

(i) If 2 | g2, then (β, z1, z2) = (1, 1, 1).
(ii) If 3 | g2, then z2 ≤ 2.
(iii) If 5 | g2, then 5 ∤ c or z2 = 1.
(iv) Suppose that 2 | z2. Then g2 ∈ {1, 3}. Moreover, g2 = 1 if z2 > 2.
(v) If 3 | z2, then g2 = 1.

Lemma 8.3. The following hold.

(i) If 3 | gx and xj ≤ 109, then xj ≤ 2.
(ii) If 4 | gx or 6 | gx, then xj = 1.
(iii) If 5 | gx, then 5 ∤ a or xj = 1.
(iv) Suppose that 2 | xj . Then gx ∈ {1, 3}. Moreover, if 4 | xj , then

gx = 1.
(v) If 3 | xj , then gx ≤ 2.

Note that Lemma 8.3 holds with (b, y, l,m, n) instead of (a, x, i, j, k) by
symmetry of a and b.

9. Diophantine equation Ax +By = AX +BY

Let A and B be coprime integers greater than 1. Here we study the
following purely exponential equation:

(9.1) Ax +By = AX +BY ,

where x, y,X, Y are unknown positive integers with x ̸= X and y ̸= Y . It
is easy to see that x < X if and only if y > Y .

Below, we give two results on equation (9.1).

Lemma 9.1. Let (x, y,X, Y ) be a solution of equation (9.1) with x < X
and y > Y. Then the following hold.

(i) BY | (AX−x − 1), Ax | (By−Y − 1).
(ii) x/X + Y/y < 1.
(iii) If A > B > 2, then y > X and y ≥ 4.

Proof. (i) The assertions readily follow from the equation

(9.2) Ax(AX−x − 1) = BY (By−Y − 1)

with gcd(A,B) = 1.

(ii) From (i), Ax < By−Y and BY < AX−x, that is, x
y−Y < logB

logA < X−x
Y ,

so that xY
Xy < (1− x

X )(1− Y
y ). This yields the assertion.

(iii) We follow an argument in [Lu, p. 213] to see that if y ≤ X then

AX−1 +BX−1 ≤ AX −BX ≤ AX −By = Ax −BY < Ax ≤ AX−1.

This contradiction shows that y > X.
Suppose that y ≤ 3. Then (X,x, y) = (2, 1, 3) as y > X > x. Thus,

Y = 1 by (ii), so that A + B3 = A2 + B. This yields an integral point
(X ,Y) = (B,A) of the elliptic curve Y2 − Y = X 3 − X . However, none of
those points gives a proper pair (A,B) with A > B > 2. Thus, y ≥ 4. □
Lemma 9.2. Let (x, y,X, Y ) be a solution of equation (9.1) with x < X
and y > Y. Suppose that X − x = 1. Then A > B, and the following hold.
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(i) A ≡ −xB2Y −BY +1 (mod B3Y ). In particular, A ≥ B3Y −xB2Y −
BY + 1.

(ii) Assume that B > 2. Then one of the following cases holds.
(ii-1) y > (3Y − 1)X, and

A ≥

{
1
2B

3Y + 1
2B

2Y −BY + 1, if B is odd,
1
2B

3Y −BY + 1, if B is even.

(ii-2) It holds that

A = rB2Y −BY + 1, x ≥ BY − r,

where r is some positive integer satisfying r ≡ −x (mod BY )
with r ≤ ⌊BY /2⌋.

In particular, case (ii-1) holds if x < BY /2.

Proof. First, under the assumption that (X − x) | x, we show the following
congruence:

(9.3) AX−x ≡ −BY + 1 mod B2Y .

By Lemma 9.1 (i), AX−x = 1 +KBY with some K ∈ N. Substituting this
into (9.2) yields

Ax ·K = By−Y − 1.

Suppose that (X − x) | x. Then Ax ≡ 1 (mod BY ). We reduce the last

displayed equality modulo Bmin{y−Y,Y } to see that

K ≡ −1 mod Bmin{y−Y,Y }.

Thus, for obtaining (9.3), it suffices to show that y ≥ 2Y . Since X ≤ 2x,
this inequality follows from Lemma 9.1 (ii). In what follows, suppose that
X − x = 1.

(i) By congruence (9.3), A = LB2Y − BY + 1 with some L ∈ N. Substi-
tuting this into (9.2) yields

(LB2Y −BY + 1)x(LBY − 1) = By−Y − 1.

Observe that

(LB2Y −BY + 1)x(LBY − 1) ≡ (−xBY + 1)(LBY − 1) mod B2Y

≡ (x+ L)BY − 1 mod B2Y .

We reduce the previous equality modulo B2Y to see that (x+L)BY ≡ By−Y

(mod B2Y ), so that

x+ L ≡ By−2Y mod BY .

It suffices to show that y ≥ 3Y . This follows from the inequalities A ≥
B2Y −BY + 1 > B2Y−1, and A ≤ Ax < By−Y .

(ii) Set r be the integer satisfying r ≡ x (mod BY ) with |r| ≤ ⌊BY /2⌋.
By (i), A = (TBY − r)B2Y − BY + 1 with some T ∈ Z. It is clear that
TBY − r ≥ 1. If T < 0, then −r ≥ 1 − TBY ≥ 1 + BY > ⌊BY /2⌋,
which is absurd. If T = 0, then A = −rB2Y − BY + 1 with r < 0, and
x ≥ BY − r (> BY /2) since x ≡ r (mod BY ), so case (ii-2) holds.

Finally, suppose that T > 0. Then A ≥ B3Y − rB2Y − BY + 1. This
together with r ≤ ⌊BY /2⌋ easily gives the asserted lower bounds for A in
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case (ii-1). Also, from those observe that A ≥ (1/k) · B3Y , where k = 2 if
2 ∤ B, and k = 64/31 if 2 | B with B > 2. On the other hand,

By = AX ·
1− 1

A

1− 1
By−Y

> AX · (1− 1
A).

Since B/k ≥ 4/3 as B > 2, these inequalities together show that

y >
logA

logB
X +

log(1− 1
A)

logB
> (3Y − log k

logB )X − log(4/3)
logB ≥ (3Y − 1)X.

Thus, case (ii-1) holds. □

In the forthcoming two sections, we apply results in Sections 6, 7, 8
and 9 to find all possible values of a, b, c (together with those of α, β) and
x1, y1, z1, x2, y2, z2. More precisely, in the next section, we sieve all those
remaining cases with z1 = z2 by using the system formed of the first two
equations, that is,

(9.4)

{
ax1 + by1 = cz1 ,

ax2 + by2 = cz2 .

For these purposes, we prepare several notation and give a few remarks as
follows. In each of any forthcoming situations, let Ma,Mb,Mc denote any
uniform upper bound for a, b, c, respectively. Then any computer program
used for sieving depends on the sizes of these numbers, and it proceeds
faster for smaller values of them. Thus, throughout those programs, we
always replace Ma,Mb,Mc by any smaller ones whenever those are found.
The details on the iterations coming from these are omitted in most cases
in the text. The situation is similar for the lower bounds for a, b and c. In
what follows, in each of the situations, let a0, b0, c0 denote any uniform lower
bound for a, b, c, respectively. These numbers may be chosen appropriately
according to each case together with (∗), (5.1) and Lemma 5.3. For example,
in any case with a > b, we may choose those numbers as follows:

a0 = max{1000, 2α + 1, 3 · 2β + 1}, c0 = 3 · 2β, if a > max{b, c},
a0 = max{11, 2α + 1}, c0 = max{1000, 3 · 2β, 2α + 2}, if c > a > b,

with b0 = 2α − 1.
To treat system (9.4), it is very efficient to rely upon the existing results

on ternary Diophantine equations, which are summarized in Lemma 8.1.
Indeed, those results restrict the divisibility properties of the exponential
unknowns (as already seen in Lemmas 8.2 and 8.3), and reduce considerably
the computation time for showing results. However, we often omit the details
on those applications for simplicity of the presentation.

10. Case where z1 = z2

Here we examine the case of z1 = z2, where system (9.4) is

(10.1) ax1 + by1 = ax2 + by2 = cz1 .
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Without loss of generality, we may assume that x1 < x2 and y1 > y2.
Applying Lemma 9.1 for (A,B) = (a, b) and (x, y,X, Y ) = (x1, y1, x2, y2)
gives

(10.2)


ax1 | (bDy − 1), by2 | (aDx − 1);

max{x2, y1} ≥ 4 x1/x2 + y2/y1 < 1;

y1 > x2, x1 < Dy, if a > b;

x2 > y1, y2 < Dx, if b > a,

where Dx := x2−x1, Dy := y1−y2. Also, recall from Lemma 5.2 that either
(β, z1) = (1, 1) or z1 = α/β if one of dx, dy, Dx, Dy is odd. In case (†) with
c < max{a, b}, we have z1 = α/β as z1 > 1. We often use these conditions
implicitly below.

Let us begin with the following lemma.

Lemma 10.1. If dz = 0, then

cz1/2 <
log c

logmin{a, b}
z1

2z3, min{a, b} < cz1/4.

Proof. Suppose that z1 = z2. The second inequality immediately follows
from system (10.1) with max{x2, y1} ≥ 4 by (10.2). Apply Proposition 6.2
with (A,B,C) = (a, b, c) and (Xr, Yr, Zr) = (xr, yr, zr) for r = 1, 2, 3. Then

cz2/2 < 2
logmin{a,b} z3, or

cz2/2

z2
< max

t∈{1,2}
{ |x3z2 − xtz3|, |y3z2 − ytz3| }

< max
t∈{1,2}

{x3z2, xtz3, y3z2, ytz3}

< max
t∈{1,2}

{
log c

log a
z3z2,

log c

log a
ztz3,

log c

log b
z3z2,

log c

log b
ztz3

}
=

log c

logmin{a, b}
z2z3.

These together show the first asserted inequality as z2 = z1. □
Using this lemma, we first deal with the case where c > max{a, b}.

Proposition 10.1. If c > max{a, b}, then dz > 0.

Proof. It suffices to consider the case where a > b. Suppose on the contrary
that c > a > b and z1 = z2. Since log c

log b z3 < H(c; a, c) < H(c) by (5.6),

Lemma 10.1 yields

(10.3) cz1/2 < z1
2 · H

α,β, log 8
log 3

(c).

We use this inequality to find all possible values of the letters in system
(10.1), and we sieve them as follows.

By (5.1),

(10.4) β ≤
⌊
log(Mc/3)

log 2

⌋
, 2 ≤ α ≤

⌊
logMmin{a,b}

log 2

⌋
.

Also, from (5.4),

(10.5) β = z1 = 1 or
⌈α
β

⌉
≤ z1 ≤ U1(α, β,

log 8
log 3 , a0, b0,Mc, 1).
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First, let us find a smaller upper bound for c. Since c1/2 ≤ cz1/2/z1
2,

inequality (10.3) yields

c1/2 < max
{
H

2,1, log 8
log 3

(c),H3,1(c)
}
.

This implies that c < 1.4 · 1013. Thus we set Mc and Mmina,b as this upper
bound.

Next, for each of the values of β, α and z1 satisfying (10.4) and (10.5), we
use inequality (10.3) to find an upper bound for c, say cu. At the same time,
an upper bound for b (= min{a, b}) is found, say bu, by the second inequality

of Lemma 10.1, that is, bu := ⌊cuz1/4⌋. Let LIST be the list composed of all
possible tuples (β, α, z1, bu, cu).

Third, for each tuple in LIST, we find all possible values of b, y1, y2, a, x2
and x1 in turn by using the following relations:

b ≤ bu, 4 ≤ y1 ≤
⌊
log cu
log b

z1

⌋
, y2 < y1 − 1, a ≤ au, a | (bDy − 1),

1 < x2 ≤ min

{⌊
log cu
log a

z1

⌋
, y1 − 1

}
, x1 < min{x2, Dy}.

Finally, for each of the found tuples (a, b, x1, y1, x2, y2), we check whether
the system (10.1) holds or not, as well as the divisibility in (10.2). As it turns
result, the only remaining tuple is (a, b, x1, y1, x2, y2) = (13, 3, 1, 7, 3, 1) with
c = 2200, where a short modular arithmetic argument shows that there is no
other triple (x, y, z) satisfying 13x+3y = 2200z. The proof is completed. □
Remark 2. The information on β and z1 can be also used to check whether
system (10.1) holds or not.

In what follows, we keep the notation in the proof of Proposition 10.1 and
set m2 = log 8

log 3 uniformly. Also, inequalities (10.4) and (10.5) are implicitly

used.
For dealing with the case where c < max{a, b}, we show two lemmas.

Lemma 10.2. If dz = 0, then dx > 0 and dy > 0.

Proof. By symmetry of a and b, it suffices to show that dx > 0. Suppose on
the contrary that z1 = z2 and xi = xj (< xk). Then {i, j} ∋ 3. Let (I, J) be
the permutation of {i, j} such that J = 3. Note that {I, k} = {1, 2}, zI =
zk = z1 and xI = xJ = x3.

Since zI = zk and xI = xj < xk, it follows that yk < yI . Also, observe
that czI −byI = axI = axJ = czJ −byJ and zI = z1 ≤ z3 = zJ . Thus, yI ≤ yJ .
To sum up, yk < yI ≤ yJ , so that dy = yI − yk > 0 with gy = gcd(xI , z1).
Now Lemma 7.3 (i) with the base b gives

bdy < gy ·
log c

log a
· zIzJ = gy · z1 ·

log c

log a
z3.

By (5.6),

bdy < gy · z1 · H(c; b, c).(10.6)

Similarly to the use of (10.3), we use inequality (10.6) to find all possible
values of the letters in system (10.1), and we sieve them. We distinguish
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two cases according to whether a > max{b, c} or b > max{a, c}. Note that
the conditions in (10.2) correspond to

axI | (bdy − 1), byk | (aDx − 1),

max{xk, yI} ≥ 4,

{
yI > xk, if a > b,

xk > yI , if b > a,
xI/xk + yk/yI < 1

with Dx = xk − xI .

Case where a > max{b, c}.

Since axI < bdy and gy ≤ xI , we see from (10.6) that a ≤ axI/xI <

bdy/gy < z1H(c; b, c) < z1H(a), so that

(10.7) a < z1H(a).

Also, since c < a < bdy/xI ,

bdy < gy · z1 · dy/xI · H
(
bdy/xI ; b, b

)
.(10.8)

First, we use inequality (10.7) with β = 1 to find that a < 2.3 · 107. Thus
we set Ma := 2.3 · 107. Note that

xI ≤ z1 − 2, xI < dy <

⌊
logMc

log b0
z1

⌋
.

Next, for each of possible tuples (β, α, z1, xI , dy), we use inequality (10.8)
to find an upper bound for b, say bu, thereby an upper bound for a is also
obtained, say au, from the divisibility relation axI | (bdy − 1). At the same
time, we find an upper bound for c and another upper bound for b, say
cu, bu

′, respectively, by using the following inequalities from Lemma 10.1:

cz1/2 < z1
2H(c; au, c), b < cu

z1/4.

Third, for each of the found tuples (β, α, z1, xI , dy, au,min{bu, bu′}, cu), we
find all possible values of b, a, yI , yk and xk in turn by using the following
relations:

b ≤ min{bu, bu′}, a ≤ au, axI | (bdy − 1), dy < yI ≤
⌊
log cu
log b

z1

⌋
,

yk = yI − dy, xI < xk ≤ min

{⌊
log cu
log a

z1

⌋
, yI − 1

}
.

Finally, we verify that system (10.1) does not hold for any found tuple
(a, b, x1, y1, x2, y2).

Case where b > max{a, c}.

In case (†), we have z1 = α/β, and yk < yI < zI = z1 ≤ α < 2α−1
2 ≤ a

2 .
Thus, if dy = 1, by Lemma 9.2, we can use the following relations:

b ≡ −yka
2xI − axI + 1 mod a3xI ,

b ≥ 1
2a

3xI + 1
2a

2xI − axI + 1, xk > (3xI − 1)yI .
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Since c < b, inequality (10.6) yields

bdy < gcd(xI , z1) · z1 · H(b).(10.9)

First, we use the inequality b < z1
2 ·H(b) with β = 1 to see that b < 3.1 ·106,

and set Mb := 3.1 · 106. Note that

xI ≤ xk − 2 ≤
⌊
logMc

log a0
z1

⌋
− 2, dy ≤ z1 − 2.

Next, for each possible tuple (β, α, z1, xI , dy), we use inequality (10.9) to
find an upper bound for b, say bu. Similarly to the previous case, we use
the inequalities a < bu

dy/xI , cz1/2 < z1
2H(c; bu, c) and a < cz1/4, to find

upper bounds for a and c, say au, cu, respectively. Finally, we verify that
system (10.1) does not hold for any possible tuples (a, b, x1, y1, x2, y2) coming
from all possible tuples (β, α, z1, xI , dy, au, bu, cu) found similarly to the case
where a > max{b, c}.

To sum up, the lemma is proved by Proposition 10.1. □
Lemma 10.3. Suppose that dz = 0. Then{

k = 3, if a > max{b, c};
n = 3, if b > max{a, c}.

Proof. By symmetry of a and b, it suffices to consider the case where a > b.
Suppose on the contrary that a > max{b, c} and k ̸= 3. Then {i, j} ∋ 3. Let
(I, J) be the permutation of {i, j} such that J = 3. Note that {I, k} = {1, 2}
and zI = zk = z1. Further, we know that dx > 0 by Lemma 10.2.

We claim that

(10.10) z3 < U3 := max

{
(1 + ε)z1 +

(1 + ε) log a

log c
· dx + 1, 2531 log b

}
with ε = 250. First, suppose that a(1+ε)xJ > byJ . Then czJ = axJ + byJ <
2a(1+ε)xJ , so that

zJ < 1 +
(1 + ε) log a

log c
xJ .

Since xJ = xI − (xI − xJ) and xI < log c
log a zI , it follows that

z3 < 1 + (1 + ε)z1 +
(1 + ε) log a

log c
|xI − xJ |.

Next, suppose that a(1+ε)xJ < byJ . From J-th equation,

czJ

byJ
=

axJ

byJ
+ 1 <

1

b
ε

1+ε
yJ

+ 1.

Put λ := zJ log c− yJ log b (> 0). We find that

log λ < − ε

1 + ε
yJ log b.

On the other hand, from [La, Corollary 2;(m,C2) = (10, 25.2)],

log λ > −25.2 log b log c
(
max

{
log
( zJ
log b

+
yJ
log c

)
+ 0.38, 10

})2
.
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These inequalities together yield

yJ
log c

< 25.2 (1 + 1/ε)
(
max

{
log
( 2yJ
log c

+ 1
)
+ 0.38, 10

})2
.

This implies that yJ/ log c < 2520 (1 + 1/ε). Inequality (10.10) for this case
follows from the fact that λ is small.

Secondly, in several cases according to the value of gx, we apply Lemma
7.3 together with inequality (10.10) to find all possible values of the letters
in (10.1) and sieve them. We proceed basically along similar lines to the
proof of the previous lemma.

Case where gx = 1.

Lemma 7.3 (i) gives

adx <
log c

log b
· zjzk < z1 U3

′, adx < z1H(a).

where U3
′ = max

{
(1+ε)z1 log c

log b0
+ (1+ε) log a

log b0
·dx+log c, 2523 log c

}
. The second

inequality above gives a smaller bound for a, that is, we can set Ma :=
2.7 · 1011 and also that dx ≤ 2. For each possible tuple (β, α, dx, z1), we use
the first inequality above to find an upper bound for a, say au. Also, upper
bounds for c and b, say cu, bu, respectively, are found by using the following
inequalities from Lemma 10.1:

cz1/2 < z1
2 U3

′, b < cu
z1/4.

Finally, we check that system (10.1) does not hold for any tuple (a, b, x1, y1, x2, y2)
coming from all possible tuples (β, α, z1, au, bu, cu).

Case where gx ∈ {2, 5}.

Since gcd(g′x, a) = 1 by Lemma 8.3 (iii), and xj ≤ xk < log c
log a zk, Lemma

7.3 (ii) gives

adx <
log a

log b
· xjzk <

log c

log b
· zk2 <

log a

log b0
· z12.

It turns out that there is no quadruple (β, α, dx, z1) satisfying the above
inequalities.

Case where gx = 3.

Since 2 ≤ xj < min{zj , zk} ≤ z2, it follows from Lemmas 5.3 and 8.3 (i)
that xj = 2. Thus, xi = 1, dx = 1, so that Lemma 7.3 (ii) gives

a <
32

3− 1
· log a
log b

· 2 · zk =
9 log a

log b0
· z1.

It turns out that there is no triple (β, α, z1) satisfying the above inequal-
ities.

Case where gx ̸∈ {1, 2, 3, 5}.
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Note that gx ≥ 7 as 4 ∤ gx and 6 ∤ gx by Lemma 8.3 (ii). Lemma 7.3 (iii)
gives

adx <
(7/6)2 log2 a

log(a− 1) log b
· tb,c ·

(
xj + dx + dx

2
)
zk

≤ (49/36) log a

log(a− 1)
· log a

logmax{b0, c0}
·
(
z1 − 1 + dx + dx

2
)
z1.

It turns out that there is no quadruple (β, α, dx, z1) satisfying the above
inequalities. □
Proposition 10.2. If c < max{a, b}, then dz > 0.

Proof. It suffices to consider the case where a > b. Suppose on the contrary
that a > max{b, c} and z1 = z2. Then k = 3 and dx = x2 − x1 > 0 by
the combination of Lemmas 10.2 and 10.3. Since the argument is almost
similar to that of Lemma 10.3, we omit the details in the following. The
main difference is that U3 is replaced by H(c; a, b) from (5.6).

Case where gx ∈ {1, 2, 5}.
Lemma 7.3 (i) together with Lemma 8.3 (iii) gives

adx <
log c

log b
· z1z3 < z1H(c; a, c).

Note that adx < z1H(a) and this implies small upper bounds for a and dx.
The remaining part is handled almost similarly to the proof of the previous
lemma. However, remark that we can efficiently use the additional condition
that Dx = dx and gcd(y2, z1) ∈ {1, 2, 5} in checking system (10.1).

Case where gx = 3.

This case is also handled almost similarly to the previous lemma, in par-
ticular, dx = 1, and it is easy to verify that Lemma 9.2 can be used, so
that the additional condition that a ≡ −x1b

2y2 − by2 + 1 (mod b3y2) and
y1 > (3y2 − 1)x2 can be efficiently used.

Case where gx ̸∈ {1, 2, 3, 5}.
First, Lemma 7.3 (i) gives

adx <
log c

log b
· z12z3 < z1

2H(a).

This implies small upper bounds for a and dx. Next, together with gx ≥ 7,
Lemma 7.3 (iii) implies

adx <
49

36
·
(
log c

log a
z1 + dx + dx

2

)
H(c; a, a).

The remaining part is handled similarly to the previous lemma, where the
additional condition gcd(y2, z1) ≥ 7 is efficiently used. □

In view of Propositions 10.1 and 10.2, the conclusion of this section is:

Proposition 10.3. z1 ̸= z2.
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The total computation time for this proposition was about 5 minutes.
By Proposition 10.3, it remains to consider the case where z1 < z2, where

the initial upper bound for max{a, b, c} in (∗) can be replaced by 5 · 1027 by
[HuLe2, Lemma 4.7].

11. Case where z1 < z2 with c > max{a, b}: finding bounds

The aim of this section is to provide a list of all possible values or upper
bounds of some letters in system (9.4) satisfying z1 < z2 with c > max{a, b}.
We distinguish two cases according to whether cz1 is divisible by 4 or not.

Let us begin with the following lemma to give an upper bound for g2 in
terms of z2.

Lemma 11.1. g2 <
log c

logmax{a,b} z2.

Proof. From 2nd equation, min{x2, y2} < log c
logmax{a,b} z2. On the other hand,

g2 | min{x2, y2} by the definition of g2. These relations together readily
yield the assertion. □

In what follows, for any numbers P1, P2, . . . , Pk and Q1, Q2, . . . , Qk, the
notation [P1, P2, . . . , Pk] ≤ [Q1, Q2, . . . , Qk] means that Pi ≤ Qi for any i.

Proposition 11.1. Suppose that

dz > 0, cz1 ≡ 2 mod 4.

Then β = 1, z1 = 1, c > max{a, b}, and the following hold.

(i) Suppose that g2 = 1. Then

α ≤ 17, z2 ≤ 18, c < 1.1 · 106.

More exactly, one of the following cases holds.
• z2 ≤ 14, c < 7.9 · 105, (x1, y1) = (1, 1), min{a, b} ≤ 7;
• [α, z2] ≤ [17, 18], c < 1.1 · 106, (x1, y1) = (1, 1), min{a, b} > 7;
• z2 ≤ 14, c < 7.9 · 105, (x1, y1) ̸= (1, 1), min{a, b} ≤ 7;
• [α, z2] ≤ [9, 14], c < 1.1 · 106, (x1, y1) ̸= (1, 1), min{a, b} > 7.

(ii) Suppose that g2 > 1. Then

α ≤ 22, z2 ≤ 23, c < 1.9 · 107.

More exactly, one of the following cases holds.
• (α, z2) = (2, 2), c < 5.2·106, g2 = 3, (x1, y1) ̸= (1, 1), min{a, b} >
7;

• z2 = 2, c < 8.7 · 105, g2 = 3, (x1, y1) ̸= (1, 1), min{a, b} ≤ 7;
• z2 = 11, c < 1600, g2 = 5, min{a, b} ≤ 7;
• [α, z2] ≤ [13, 13], c < 1.6·105, g2 = 5, (x1, y1) = (1, 1), min{a, b} >
7;

• [α, z2] ≤ [5, 11], c < 4500, g2 = 5, (x1, y1) ̸= (1, 1), min{a, b} >
7;

• z2 ≤ 13, c < 1.5 · 105, g2 = 7, min{a, b} ≤ 7;
• [α, z2] ≤ [19, 19], c < 5·106, g2 = 7, (x1, y1) = (1, 1), min{a, b} >
7;
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• [α, z2] ≤ [11, 17], c < 5·106, g2 = 7, (x1, y1) ̸= (1, 1), min{a, b} >
7;

• z2 = 5, c < 1.5 · 106, g2 ≥ 11, min{a, b} ≤ 7;
• [α, z2] ≤ [22, 23], c < 1.9·107, g2 ≥ 11, (x1, y1) = (1, 1), min{a, b} >
7;

• [α, z2] ≤ [11, 19], c < 1.2·107, g2 ≥ 11, (x1, y1) ̸= (1, 1), min{a, b} >
7.

Proof. Here we just indicate how we find a list of all possible pairs (α, z2)
with the corresponding upper bound for c. It suffices to consider the case
where a > b.

From c = ax1 + by1 by 1st equation, observe that c ≥ max{1000, 2α+1 +
2α − 2}, and{

a = max{a, b} ≥ c/2 + 2, if (x1, y1) = (1, 1);

c ≥ (2α − 1)2 + (2α + 1) = 22α − 2α + 2, if (x1, y1) ̸= (1, 1).

This affects the choice of the values of a0 and c0. By Lemma 7.1,

(11.1) c < min

{
2α+1−z2 (g2

′)2

g2
,
(g2

′)2

g2
,

T log c

log(c− 1)
z2

}
· z2Hα,1,m2(c)

where g2
′ = gcd(c, g2), and

T =

{
1, if b > 7,
log b
log a0

, if b ∈ {3, 5, 7}.

Note that g2 is odd by Lemma 8.2 (i).
Similarly to Section 10, firstly setting Mc = 5 · 1027, we use inequality

(11.1) to find an upper bound for c for each possible pair (α, z2) satisfy-
ing (10.4) and α ≤ z2 ≤ U2(α, 1,m2,Mc, g2) by (5.4), where each of the
procedures is implemented in two versions according to whether b > 7 or
not, and to (x1, y1) = (1, 1) or not. Moreover, we proceed in several cases
according to the value of g2 as explained below, where we only indicate the
specialization or relaxation of the inequality (11.1).

Case where g2 = 1.

Inequality (11.1) becomes

c < min

{
2α+1−z2 , 1,

T z2 log c

log(c− 1)

}
· z2Hα,1,m2(c).

Case where g2 > 1.

Lemma 8.2 (iv, v) tells us that gcd(z2, 6) = 1 if g2 > 3. Moreover, z2 ̸≡ 0
(mod g2) by Lemma 8.1. We proceed in several subcases.

(i) Case where g2 ≡ 0 (mod 3).

Lemma 8.2 (ii, iv) tells us that g2 = 3, z2 = 2, and so α = 2, (x1, y1) ̸=
(1, 1). Inequality (11.1) is

c < 2 min

{
3,

2T log c

log(c− 1)

}
· H2,1,m2(c).
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(ii) Case where g2 = 5.

By Lemma 8.2 (iii), g2
′ = 1, and also gcd(z2, 7) = 1 by Lemma 8.1.

Inequality (11.1) is

min

{
2α+1−z2

5
,
T z2 log c

log(c− 1)

}
· z2Hα,1,m2(c).

(iii) Case where g2 = 7.

Inequality (11.1) is used with g2, g2
′ replaced by 7. Note that gcd(z2, 5) =

1.

(iv) Case where g2 > 7.

Note that g2 ≥ 11. From Lemma 11.1, inequality (11.1) yields

c < min

{
2α+1−z2 log c

log a0
,
log c

log a0
,

T log c

log(c− 1)

}
· z22Hα,1,m2(c).

By these observations, we find the finite list of all possible pairs (α, z2)
with the corresponding upper bound for c, and those satisfy the stated
conditions. □

The following lemma is a supplement to Proposition 11.1 and helps to
reduce the computation time to sieve the given cases with (x1, y1) = (1, 1)
(see Section 13.1.2).

Lemma 11.2. Under the hypothesis of Proposition 11.1, assume that min{a, b} >
7 and (x1, y1) = (1, 1). Then min{x2, y2} ≤ 7. Moreover, if min{x2, y2} ≥ 4,
then the following holds.

min{a, b} ≤


11, if min{x2, y2} = 7,

19, if min{x2, y2} = 6,

45, if min{x2, y2} = 5,

177, if min{x2, y2} = 4.

Proof. Since x2 ≤ x3 or y2 ≤ y3, one of the following cases holds.

(i, j, k) = (1, 2, 3), dx = x2 − x1 ≥ min{x2, y2} − 1;

(l,m, n) = (1, 2, 3), dy = y2 − y1 ≥ min{x2, y2} − 1.

Let us consider only the former case as the latter one is similarly handled.
From the assumption that min{x2, y2} ≥ 4, we have dx ≥ 3.

Similarly to Proposition 10.2, we apply Lemma 7.3 (iii) together with
Lemmas 5.3 and 8.3 to see that

adx <
49

36
· log a

log(a− 1)
·
(
logMc

log a
z2 + dx + dx

2

)
H(Mc; a, a).

Note that m2 = 1 since min{a, b} > 7, and we can set Mc := 5 · 106 by
Proposition 11.1. Finally, for each dx ≥ 3, similarly to Proposition 11.1, we
use the above inequality to find an upper bound for a for each possible pair
(α, z2). The result implies the assertion. □
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Proposition 11.2. Suppose that

dz > 0, cz1 ≡ 0 mod 4, c > max{a, b}.
Then the following hold.

(i) Suppose that g2 = 1. Then

[β, α, z2] ≤ [10, 18, 19], dz = 1, c < 1.5 · 106.
More exactly, one of the following cases holds.

• [β, z2] ≤ [7, 14], c < 1.5 · 106, min{a, b} ≤ 7.
• [β, α, z2] ≤ [10, 18, 19], c < 1.1 · 106, min{a, b} > 7.

(ii) Suppose that g2 > 1. Then

[β, α, z2, dz] ≤ [10, 19, 23, 4], c < 3.4 · 106.
More exactly, one of the following cases holds.

• β ≤ 7, c < 5.5 · 105, min{a, b} ≤ 7, (z2, z1, g2) = (2, 1, 3);
• [β, α] ≤ [9, 8], c < 6.5 · 105, min{a, b} > 7, (z2, z1, g2) =
(2, 1, 3);

• [β, z2] = [1, 11], c < 1600, min{a, b} = 3, g2 = 5;
• [β, α, z2] ≤ [1, 16, 17], c < 7.6 · 104, min{a, b} > 7, g2 = 5;
• [β, z2] ≤ [1, 13], c < 1.5 · 105, min{a, b} ≤ 7, g2 = 7;
• [β, α, z2] ≤ [1, 18, 19], c < 7.5 · 105, min{a, b} > 7, g2 = 7;
• [β, z2] ≤ [2, 13], c < 2.9 · 106, min{a, b} ≤ 7, g2 ≥ 11.
• [β, α, z2] ≤ [2, 19, 23], c < 3.4 · 106, min{a, b} > 7, g2 ≥ 11.

Proof. Here we just indicate how we find a list of all possible triples (β, α, z2)
with the corresponding upper bound for c. It suffices to consider the case
where a > b. We proceed along similar lines to that of Proposition 11.1.

By Lemma 7.2,

(11.2) cdz < min

{
2α−βz1

(g2
′)2

g2
,

T log c

log(c− 1)

z2
z1

}
· z2H(c),

where g2
′ = gcd(cz2−z1 , g2) and T is the same as in the proof of Proposition

11.1. Note that g2 is odd by Lemma 8.2 (i). We use inequality (11.2) to
find an upper bound for c for each dz and for each triple (β, α, z2) satisfying
(10.4) and ⌈α/β⌉ ≤ z1 ≤ U1(α, β,m2, a0, b0,Mc, g2) with z2 = z1 + dz and
Mc = 5 · 1027, where each of the procedures is implemented in two versions
according to whether b > 7 or not. Moreover, we proceed in several cases
according to the value of g2 as indicated below.

Case where g2 = 1.

Inequality (11.2) becomes

cdz < min

{
2α−βz1 ,

T log c

log(c− 1)

z2
z1

}
· z2H(c).

Case where g2 > 1.

From Lemma 11.1, inequality (11.2) yields

(11.3) cdz < min

{
log c

log a0
2α−βz1 ,

T log c

log(c− 1)

1

z1

}
· z22H(c).
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Note that gcd(z2, 6) = 1 if g2 > 3 and that z2 ̸≡ 0 (mod g2). We proceed in
several subcases.

(i) Case where g2 ≡ 0 (mod 3).

Since g2 = 3 and z2 = 2, it follows that z1 = 1, dz = 1, so that inequality
(11.2) gives

c < min

{
6 · 2α−β,

4T log c

log(c− 1)

}
· H(c).

(ii) Case where dz ≥ 2.

Note that g2 ≥ 5 by a previous case. It turns out that there is no case
satisfying inequality (11.3).

(iii) Case where g2 = 5, dz = 1.

Since g2
′ = 1, inequality (11.2) is

c < min

{
2α−βz1

5
,

T log c

log(c− 1)

z2
z1

}
· z2H(c)

with gcd(z2, 7) = 1.

(iv) Case where g2 = 7, dz = 1.

Inequality (11.2) is used with both g2 and g2
′ replaced as 7 and with

gcd(z2, 5) = 1.

(v) Case where g2 > 7, dz = 1.

Inequality (11.3) is used with g2 ≥ 11.
By these observations, we find a finite list of all possible tuples (dz, β, α, z2)

with the corresponding upper bound for c, and those satisfy the stated con-
ditions. □

12. Case where z1 < z2 with c < max{a, b}: finding bounds

The aim of this section is to provide a list of all possible values or upper
bounds of some letters in system (9.4) satisfying z1 < z2 with c < max{a, b}.
It suffices for us to do this when a > b. We proceed basically in two cases
according to whether dx = 0 or not.

We begin with a technical lemma that gives relatively small upper bounds
for dz, dx and dy. This helps to reduce the computation time for establishing
the forthcoming propositions.

Lemma 12.1. Suppose that dz > 0 and a > max{b, c}. Then dz ≤ 7, dx ≤ 2
and dy ≤ 10.

Proof. Observe that z1 > 1 and g2 < z2 as a > c, in particular, cz1 ≡
0 (mod 4). First, Lemma 7.2 yields cdz < min

{
2α−βz1 , 1/z1

}
· z22H(c).

Similarly to the previous sections, we use this inequality, for all possible
triples (β, α, z2), to restrict the values of c and dz. The result gives the
asserted bound for dz and also c < 5.2 · 106. Second, we apply Lemma 7.3
similarly as in the proofs of Lemma 10.3 and Proposition 10.2. It reveals
that adx < 9/4 · (z2 − 1 + dx + dx

2)H(Mc; a, a) with Mc = 5.2 · 106. For
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all possible triples (β, α, z2), we use this inequality to restrict the values of
a and dx, which gives the asserted bound for dx. Finally, using Lemma 7.3
with the base b, we find that

bdy <
(9/4) log2 b log c

log(b− 1) log2 a

(
log c

log b
z2 + dy + dy

2

)
z3

<
9 log b

4 log(b− 1)

(
z2 + dy + dy

2
)
H(Mc; b,Mc).

It is easy to see that if dy > 10, then this inequality holds for no possible
triple (β, α, z2). □

Lemma 12.1 is implicitly used in the sequel.

Proposition 12.1. Suppose that

dz > 0, a > max{b, c}, dx > 0.

Then k = 3, and the following hold.

(i) Suppose that gx = 1. Then

[β, α, z1, z2] ≤ [6, 18, 18, 21], a < 1.9 · 106.
More exactly, one of the following cases holds.

• [β, z1, z2] ≤ [1, 14, 17], a < 1.9 · 106, c < 2.1 · 105, b ≤ 7;
• [β, α, z1, z2] ≤ [6, 18, 18, 21], a < 1.1 · 106, b > 7.

(ii) Suppose that gx > 1. Then

a < 3.4 · 106, z2 ≤ 22.

More exactly, one of the following cases holds.
• [β, α, z1, z2] ≤ [1, 2, 12, 13], a < 3000, dx = 2.
• [β, α, z1, z2] ≤ [4, 17, 17, 21], a < 7.3 · 105, (gx, dx) = (2, 1).
• [β, z1, z2] ≤ [1, 3, 8], a < 4.2 · 106, c < 2.1 · 105, (gx, dx) =
(3, 1), b ≤ 7;

• [β, α, z1, z2] ≤ [7, 17, 17, 21], a < 3.8·106, c < 1.7·106, (gx, dx) =
(3, 1), b > 7;

• [β, α, z1, z2] = [1, 15, 15, 17], a < 4.9 · 104, c < 400, (gx, dx) =
(5, 1), b > 7;

• [β, α, z1, z2] ≤ [3, 19, 19, 22], a < 3.4 · 106, c < 6.7 · 105, gx ≥
7, dx = 1,

where z1 = α/β if dx = 1.

Proof. Here we just indicate how we find a list of all possible tuples (β, α, z1, z2)
with the corresponding upper bounds for a and c. We proceed basically sim-
ilarly to the proofs of Propositions 11.1 and 11.2.

First, we use Lemma 7.2. Since a > c, z1 > 1 and g2 < z2, it follows that

(12.1) cdz < min

{
2α−βz1(z2 − 1),

T z2
z1

}
· z2H(c),

where T = 1 if b > 7 and T = log b
log(c+1) if b ≤ 7. For each dz and for each possi-

ble tuple (β, α, z1) satisfying (10.4) and ⌈α/β⌉ ≤ z1 ≤ U1(α, β,m2, a0, b0,Mc, 1)
with Mc = 5·1027, we use inequality (12.1) to find an upper bound for c, say
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cu, where each of the procedures is implemented in two versions according
to whether b > 7 or not.

Next, for each of the found tuples (dz, β, α, z2, cu), we use an inequality
from Lemma 7.3 to find an upper bound for a, where the used inequality
depends on the size of c. For this we proceed in several cases according to
the value of gx. Below, we just indicate the used inequality from Lemma 7.3
with additional remarks.

Case where gx = 1, k = 3.

By Lemma 7.3 (i) with (5.6),

adx <
log c

log b
· zjzk ≤ log c

log b
· z2z3 ≤ z2H(cu; a, cu).

Case where gx = 1, k ̸= 3.

By Lemma 7.3 (i), we have

adx <
log cu
log b0

· z22.

Case where gx > 1, k ̸= 3.

Since xj ≤ xk < zk ≤ z2, Lemma 7.3 yields

adx <
9
4 log

2 a

log(a− 1) logmax{b0, c0}
·
(
z2 − 1 + dx + dx

2
)
z2.

Case where gx > 1, k = 3, dx ≥ 2.

Since xj <
log c
log a z2, Lemma 7.3 implies

adx <
9

4

(
log cu
log a

z2 + dx + dx
2

)
H(cu; a, a).

Case where gx > 1, k = 3, dx = 1.

By Lemma 5.2, z1 = α/β. Note that j ∈ {1, 2} and j-th equation is
axj + byj = czj with both yj , zj divisible by gx. Then zj ≥ max{gx, xj + 1}.
We proceed in several subcases.

(i) Case where gx = 2.

Note that 2 ∤ xj , so xj ≥ 3. Thus, zj ≥ 4 and 2 | zj . From Lemma 8.1,
3 ∤ zj . Since gx

′ = 1, Lemma 7.3 (ii) yields

a <
log a

log b
· xjz3 <

log c

log b
· z2z3 < z2H(cu; a, cu).

(ii) Case where gx ≡ 0 (mod 3).

Note that (xj , xi) = (2, 1), gx = 3 and zj is not divisible by any of
6, 7, 8, 9, 10 and 15. Lemma 7.3 yields that a < 9min{1, T}H(cu; a, a), where

T = 1 if b > 7, and T = log a
log(a−1)

log b
log c0

if b ≤ 7.
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(iii) Case where gx = 5.

Since gcd(xj , 2 · 3 · 5 · 7) = 1, we have xj ≥ 11, so that zj ≥ 12. Since
gx

′ = 1, Lemma 7.3 (ii) yields that a < 1
4z2H(cu; a, cu).

(iv) Case where gx ̸∈ {1, 2, 3, 5}.
Note that gx ≥ 7, and Lemma 7.3 (iii) implies that

a <
49

36

(
min

{
log cu
log a

z2, z2 − 1

}
+ 2

)
H(cu; a, a).

By these observations, we find a list of finitely many possible tuples
(dz, β, α, z2, cu) with the corresponding upper bound for a, and those satisfy
the stated conditions. □

Proposition 12.2. Suppose that

dz > 0, a > max{b, c}, dx = 0, k = 3.

Then

[β, α, z1, z2] ≤ [4, 16, 16, 18], c < 1.1 · 106, g2 = 1.

Proof. Since the method is similar to that employed to prove Proposition
12.1, we just indicate the inequality used to find an upper bound for c or a
for each possible tuple (β, α, z1, z2). We distinguish two cases according to
whether g2 = 1 or not. Note that since cz1 + by2 = cz2 + by1 we can apply
the restrictions from Lemmas 9.1 and 9.2.

Case where g2 = 1.

By Lemma 7.2,

cdz < min

{
2α−βz1 ,

T z2
z1

}
· z2H(c).

where T is the same as in inequality (12.1). This gives an upper bound for
c, and the found tuples satisfy the stated conditions.

Case where g2 > 1.

By Lemma 8.2 (i, ii), we have gcd(g2, 6) = 1, so that g2 ≥ 5. Thus,
xj = x2 ≥ g2 ≥ 5. First, for each possible tuple (β, α, z1, z2), we can use
inequality (12.1) to find an upper bound for c, say cu. Next, for each of the
found tuples (β, α, z1, z2, cu), we apply Proposition 6.3 (i) for (A,B,C) =
(c, b, a) and (Xr, Yr, Zr) = (zt, yt, xt) with (r, t) ∈ {(1, i), (2, j), (3, k)}. Then
one of the following inequalities is found.

axj < xj · max
t∈{1,2}

{
|ztx3 − z3xj |

}
,(12.2)

axj/2 < xj · max
t∈{1,2}

{
|ytx3 − y3xj |

}
,(12.3)

axj/2 <
2

log a
z3.(12.4)
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In cases (12.2) and (12.3), respectively, we see that

axj < xj · max
t∈{1,2}

{ztx3, z3xj}

≤ xj · max
t∈{1,2}

{
zt ·

log c

log a
z3, z3xj

}
≤ xj · z3 · max

t∈{1,2}

{
log c

log a
zt, xj

}
= xj · z3 ·

log c

log a
z2;

axj/2 < xj · max
t∈{1,2}

{ytx3, y3xj}

< xj · max
t∈{1,2}

{
log c

log b
zt ·

log c

log a
z3,

log c

log b
z3 · xj

}
= xj ·

log c

log b
z3 · max

t∈{1,2}

{
log c

log a
zt, xj

}
= xj ·

log c

log b
z3 ·

log c

log a
z2.

These together with (12.4) and (5.6) imply one of the following inequalities:

axj/xj < z2H(cu;S, cu); axj/2/xj < z2H(cu); axj/2 < 2H(cu;S),

where S = a − 2 if b > 7 and S = b if b ≤ 7. Each of these inequalities
together with xj ≥ 5 gives an upper bound for a, and the found tuples
satisfy the stated conditions. □

Proposition 12.3. Suppose that

dz > 0, a > max{b, c}, dx = 0, k ̸= 3.

Then y3 ≥ max{y1, y2}, and

[β, α, z1, z2] ≤ [7, 19, 21, 23], a < 1.1 · 1010.

More exactly, one of the following cases holds.

(i) y1 ≤ y2, dz ≥ 2, bdy ≡ cdz (mod amin{x1,x2}), bdy < cdz , and one of
the following cases holds.

• [β, α, z1, z2] ≤ [5, 17, 17, 19], cdz < 1.6 · 105, g2 = 1;
• [β, α, z1, z2] ≤ [2, 17, 21, 23], cdz < 2.5 · 105, g2 ≥ 5.

(ii) y1 ≤ y2, dy ≥ 2, bdy ≡ cdz (mod amin{x1,x2}), bdy > cdz , and one of
the following cases holds.

• [β, α, z1, z2] ≤ [6, 9, 21, 22], bdy < 4.9 · 105, gy ∈ {1, 2, 5};
• [β, α, z1, z2] ≤ [1, 9, 21, 22], bdy < 6.5 · 105, gy ≥ 7.

(iii) y1 > y2, x1 < x2, a
x1 | (bdycdz − 1), gy ∈ {1, 2}, and one of the

following cases holds.
• x1 = 1, [β, α, z1, z2] ≤ [7, 19, 20, 21], a < 1.1 · 1010, b < 6.5 ·
105, c < 6.5 · 105, g2 = 1;

• x1 ≥ 2, [β, α, x1, z1, z2] ≤ [4, 15, 3, 20, 21], a < 6.6 · 104, b <
5.5 · 104, c < 6.4 · 104, g2 = 1;

• x1 = 1, [β, α, z1, z2] ≤ [4, 18, 18, 19], a < 1.1 · 1010, b < 6.2 ·
105, c < 6.2 · 105, g2 ≥ 5;

• x1 ≥ 2, [β, α, x1, z1, z2] ≤ [3, 15, 3, 18, 19], a < 9.6 · 104, b <
5.9 · 104, c < 9.6 · 104, g2 ≥ 5.
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Proof. First, we rewrite the three equations as

ax + byI = czI , axJ + byJ = czJ , ax + by3 = cz3

with {I, J} = {1, 2} and x = x3.
Note that cz3 < 2max{ax, by3}. If cz3 < 2ax, then cz3 < 2ax < 2czI , so

z3 ≤ zI . This implies that zI = z3, which is absurd as (yI , zI) ̸= (y3, z3).

Thus cz3 < 2by3 , so that 2by3 > cz2 > bmax{y1,y2}, which shows the first
assertion. Therefore, dy = |y2 − y1| with n = 3.

Next, we show the following:

by2−y1 ≡ cdz mod amin{x1,x2},(12.5)

z3 < U3 := max{250z2, 2531 log b}.(12.6)

Congruence (12.5) follows from reducing 1st and 2nd equations modulo

amin{x1,x2}. Let ε = 248. If a(1+ε)x ≥ by3 , then cz3 = ax + by3 < 2a(1+ε)x <
2c(1+ε)zI , so that z3 ≤ log 2

log c + (1 + ε)zI < 250zI . If a(1+ε)x < by3 , then in-

equality z3 < 2531 log b is deduced almost similarly to the proof of inequality
(10.10). To sum up, (12.6) holds.

Third, we combine Lemma 7.2 with inequality (12.6). Since (g2′)2

g2
≤ g2 <

z2, we have

(12.7) cdz < min

{
2α−βz1Z,

Tz2
z1

}
· (log2 c) z2 U3

′

logmax{a0, c+ 1}
,

where Z = 1 if g2 = 1, and Z = z2 − 1 if g2 > 1, and T is the same as in
(12.1), and U3

′ = max{250z2/ log b0, 2531}. Note that g2 ≥ 5 if g2 > 1.
Fourth, we apply Lemma 7.3 with the base b together with (12.6) to see

that

bdy <
log cu
logC

· zm U3, if gy ∈ {1, 2, 5},

bdy <
(49/36) log b

log(b− 1)
·
(
zm + dy + dy

2
) log cu
logC

U3, if gy ̸∈ {1, 2, 5},
(12.8)

where cu is any upper bound for c, and C = max{a0, b + 2, cu + 1}. Note
that gy ≥ 7 if gy ̸∈ {1, 2, 5}.

In the remaining cases, we proceed in three cases separately. In each
of those cases, similarly to previous propositions, we just indicate how we
find a list of all possible tuples composed of β, α, x1, z2, dz, dy and the cor-
responding upper bounds for some of a, b, c.

Case where y2 ≥ y1 and bdy < cdz .

Note that m = 2. By congruence (12.5), we have amin{x1,x2} < cdz , in
particular, dz > 1 as a > c. Taking these restrictions into consideration, we
use inequality (12.7) to find an upper bound for c for each possible tuple
(β, α, dz, z2), where these procedures are implemented in versions according
to whether b > 7 or not, and whether g2 = 1 or not. The found tuples
satisfy the conditions stated in (i).

Case where y2 ≥ y1 and bdy > cdz .
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Similarly to the previous case, we have amin{x1,x2} < bdy and dy > 1. Note
that z2 ≥ 2gy as gy = gcd(x2, z2) with x2 < z2. Taking these restrictions
into consideration, similarly to the previous case, we find a list of all possible
tuples (β, α, dz, z2, cu) with cu the corresponding upper bound for c derived
from inequality (12.7). Finally, for each of the found tuples and for each dy,
we use inequality (12.8) to find an upper bound for b in four cases according
to whether gy = 1, 2, 5 or gy ≥ 7. The found tuples satisfy the conditions
stated in (ii).

Case where y1 > y2.

Note that m = 1 with gy = gcd(x1, z1), and z1 ≥ 2gy. We proceed

almost similarly to the previous case. Now we have ax1 < bdycdz from
congruence (12.5), in particular, dy + dz > x1 as a > max{b, c}. Taking
these into consideration, for each x1 we have a list of all possible tuples
(α, β, dy, dz, z2, au, bu, cu) where bu is the corresponding upper bound for b

and au := ⌊(bu · cu)1/x1⌋ is the corresponding upper bound for a. The found
tuples satisfy the conditions stated in (iii). □

Under the assumption that equation (1.3) has three solutions (xt, yt, zt)
with t ∈ {1, 2, 3} satisfying z1 < z2 ≤ z3, the propositions established
in the previous two sections provide us middle-sized bounds on the base
numbers a, b, c and on the exponential unknowns xt, yt, zt for t ∈ {1, 2}.
Although those bounds are relatively sharp, a direct enumeration of the
possible solutions of system (9.4) is still impossible. In order to find efficient
methods for reducing the obtained bounds, we need to be more sophisticated
than in the case where z1 = z2. In the next two sections, we investigate
system (9.4) with z1 < z2 and explicitly present our reduction algorithms
for the cases c > max{a, b} and c < max{a, b}, respectively. Note that it
suffices to consider the case where a > b.

13. Case where z1 < z2 and c > max{a, b}: Sieving

The aim of this section is to show that there is no solution of system
(9.4) fulfilling the statements of Propositions 11.1 and 11.2, respectively. It
suffices to consider the case where c > a > b, and we put

a0 = max{11, 2α + 1}, b0 = 2α − 1, c0 = max{1000, 3 · 2β, 2α + 2}.

Recall that these numbers are uniform lower bounds for a, b and c, respec-
tively.

We proceed in two cases according to whether cz1 ≡ 2 (mod 4) or cz1 ≡ 0
(mod 4).

13.1. Case where cz1 ≡ 2 (mod 4). System (9.4) is

(13.1)

{
ax1 + by1 = c,

ax2 + by2 = cz2

with β = 1.
First, we give several restrictions on the solutions of system (13.1).



Special type of unit equations in two unknowns 47

Lemma 13.1. Let (x1, y1, x2, y2, z2) be a solution of system (13.1). Then
the following hold.

(i) x2 or y2 is odd.
(ii) If both x1 and x2 are odd, then y1 or y2 is odd.
(iii) If both x1 and x2 are even, then y1 is even.
(iv) One of x1, x2, y1 and y2 is even.
(v) x2 > x1 or y2 > y1.
(vi) max{x2, y2} ≥ z2.
(vii) x1y2 ̸= x2y1, y1z2 ̸= y2, x1z2 ̸= x2.
(viii) min{x1, x2} < |y1z2 − y2|.
(ix) Assume that b < 11. Then (2 ∤ x2 or 3 ∤ z2) and (3 ∤ x2 or 2 ∤ z2).

Proof. (i) This is a direct consequence of Lemma 8.2 (i).
(ii) Suppose that both x1, x2 are odd and both y1, y2 are even. Then

axi ≡ a (mod 4) and byi ≡ 1 (mod 4) for i ∈ {1, 2}. Since c ≡ 2 (mod 4)
and z2 > 1, 1st equation leads to a ≡ c − 1 ≡ 1 (mod 4), while 2nd one
leads to a ≡ cz2 − 1 ≡ −1 (mod 4). These are incompatible.

(iii, iv) These are shown similarly to (ii).
(v, vi) These easily follow from the inequality ax1 + by1 < ax2 + by2 = cz2

with c > max{a, b}.
(vii) This is a direct consequence of applying Lemma 6.2 to the equations

in (13.1).

(viii) We take the equations in (13.1) modulo amin{x1,x2} to see that

b |y1z2−y2| ≡ 1 (mod amin{x1,x2}). Since a > b, and y1z2−y2 ̸= 0 by (vii), the
found congruence leads to the assertion.

(ix) If 2 | x2 and 3 | z2, then 2nd equation is of the form A2 + by2 = C3

with b ∈ {3, 5, 7}. For S = {b}, we compute the S-integral points (A,C)
on this elliptic curve. None of the found points leads to a solution of the
system. The remaining case is similarly handled. □

Lemma 13.2. Let (x1, y1, x2, y2, z2) be a solution of system (13.1). Then{
a |x1z2−x2| ≡ 1 mod 2bmin{y1,y2},

b |y1z2−y2| ≡ 1 mod 2amin{x1,x2},
(13.2)

a ≥ a1, b ≤ b1,

where

a1 := max{a0, b+ 2}, b1 := ⌊cmin{1/x1,1/y1,z2/x2,z2/y2}⌋.

Moreover, the following hold.

(i) Suppose that ax2 > by2 and ax1 > by1 . Then

0 < x2 − x1z2 ≤ t1, a ≤ a2,

where t1 =
⌊ log 2
log a0

z2
⌋
, and

a2 := min
{⌊

2z2/(x2−x1z2)
⌋
, ⌊cz2/x2⌋

}
.
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(ii) Suppose that ax2 > by2 and ax1 < by1 . Then the following hold.

(a)

{
y1 > x1, x1y2 < x2y1, x2 − x1z2 ≥ 1,

y2 − y1z2 ≤ t2, x2 − y1z2 ≤ t3,

where t2 =
⌊ log 2
log b0

(z2 − 1)
⌋
and t3 =

⌊ log 2
log a0

z2
⌋
.

a ≥ a4 := max
{
a1,
⌊
by1z2/x2/21/x2

⌋
+1
}
,(b)

a ≤ a5 := min
{⌊

2z2/x2 by1z2/x2⌋, ⌊cz2/x2⌋,
⌊
by1/x1⌋

}
.(c)

(iii) Suppose that ax2 < by2 and ax1 > by1 . Then the following hold.

(a)

{
y2 > x2, x1y2 > x2y1, y2 − y1z2 ≥ 1, y2 ≥ x1z2,

x2 − x1z2 ≤ t4,

where t4 =
⌊ log 2
log a0

(z2 − 1)
⌋
.

a ≥ a6 := max
{
a1,
⌊
by2/(x1z2)/21/x1

⌋
+1
}
,(b)

a ≤ a7 := min
{⌊

21/(x1z2)by2/(x1z2)
⌋
, ⌊c1/x1⌋, ⌊by2/x2⌋

}
.(c)

(iv) Suppose that ax2 < by2 and ax1 < by1 . Then the following hold.

(a)

{
y2 > x2, y1 > x1, y2 − x1z2 ≥ 1,

x2 − y1z2 ≤ t5, 2 ≤ y2 − y1z2 ≤ t6,

where t5 =
⌊ log 2
log a0

(z2 − 1)
⌋
and t6 =

⌊ log 2
log b0

z2
⌋
.

(b) a ≤ a8 := min
{
⌊cz2/x2⌋, ⌊by1/x1⌋, ⌊by2/x2⌋

}
.

Proof. From (13.1),

(13.3) ax2 + by2 = (ax1 + by1)z2 .

The congruences in (13.2) follow by reducing equation (13.3) modulo bmin{y1,y2}

and amin{x1,x2}, respectively. The next asserted upper bound for b follows
easily from system (13.1).

(i) From (13.3) with ax1 > by1 and ax2 > by2 , observe that

ax2 < ax2 + by2 =(ax1 + by1)z2 < (2ax1)z2 = 2z2ax1z2 ,

ax1z2 <(ax1 + by1)z2 = ax2 + by2 < 2ax2 .

These inequalities together imply

(13.4)
1

2
< ax2−x1z2 < 2z2 .

The left-hand inequality shows that x2 − x1z2 ≥ 0, so that x2 − x1z2 > 0
by Lemma 13.1 (vii), while the right-hand one implies that x2 − x1z2 <
log 2
log a z2 < t1 + 1.

On the other hand, a < 2
z2

x2−x1z2 by the right-hand inequality of (13.4).
Also, by (13.1), ax2 < cz2 , leading to a ≤ a2.

(ii) Since ax1 < by1 and by1 < (ax2/y2)y1 with a > b, we have y1 > x1
and x1y2 < y1x2. The remaining three inequalities in (a) can be proven in
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exactly the same way as the corresponding results in (i). It remains to show
(b) and (c).

Observe from (13.3) that

by1z2 < ax2 + by2 < 2ax2 , ax2 < (ax1 + by1)z2 < 2z2by1z2 .

The former inequality yields a > by1z2/x2/21/x2 , and so (b) holds, while the

latter inequality implies that a < (2z2by1z2)1/x2 , leading to (c).
(iii)-(iv) These are shown similarly to (i) and (ii). □

In what follows, we proceed in two cases according to whether (x1, y1) =
(1, 1) or not.

13.1.1. Case where cz1 ≡ 2 (mod 4) with (x1, y1) ̸= (1, 1). As already men-
tioned at the end of Section 9, it is very efficient to rely upon the existing
results on ternary Diophantine equations which are summarized in Lemma
8.1. In our algorithms we use Lemma 8.1 without any further explicit refer-
ence and combine it with Lemmas 13.1 and 13.2.

Proposition 11.1 gives us a list of all possible values of α and z2 together
with the corresponding upper bound for c, say cu = cu(α, z2). We note that
this list is fairly short. Namely, the number of elements in this list is at
most 122 in each case under consideration.

We divide our algorithm in four parts according to (i)-(iv) of Lemma 13.2.
The basic strategy is similar in each of these parts, where the cases b > 7
and b ∈ {3, 5, 7} are distinguished. First we give the details of our reduction
method for case (i) under the assumption that b > 7.

(i) Case where ax2 > by2 and ax1 > by1 with b > 7.

Step I. Initialization. We have an explicitly determined list of all possible
triples (α, z2, cu) satisfying system (13.1). We put these data into the list
named clist.

Step II. We generate a list named list1 containing elements of the form
[x1, y1, x2, y2, α, z2, cu], where the last three elements are the same as the
elements of clist, while the first four elements are the possible solutions
(x1, y1, x2, y2) restricted by Lemmas 13.1 and 13.2 (i). The construction of
list1 is given by the following program.

for each element of clist do

for x1 := 1 to
⌊
(log cu)/ log a0

⌋
do

for x2 := 1 to
⌊
z2(log cu)/ log a0

⌋
do

for y1 := 1 to
⌊
(log cu)/ log b0

⌋
do

for y2 := 1 to
⌊
z2(log cu)/ log b0

⌋
do

sieve using Lemmas 13.1 and 13.2 (i)

end

In the last line of the above program, we take into account the restrictions
from Lemma 13.1 together with the fact that 0 < x2 − x1z2 ≤ t1, where
t1 =

⌊ log 2
log a0

z2
⌋
by Lemma 13.2 (i).
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Step III. Using the elements of list1 and the bounds a1, a2 and b1, we
check for each of possible values of a and b whether congruences (13.2) hold
or not. It turned out that in each case at least one of them does not hold.
The details are given as follows. First, from (∗), we are in one of the cases:

[a, b] ≡ [−1, 1], [−1,−1], [1,−1] mod 2α,

where [a, b] ≡ [u, v] (mod 2α) means a ≡ u (mod 2α) and b ≡ v (mod 2α).
Define the list sig =

[
[−1, 1], [−1,−1], [1,−1]

]
as a possible list of signatures.

We proceed as follows.

begin

for each element of list1 do

for each element s of sig do

da := s[1] and db := s[2] and Tb := ⌈(b0 − db)/2
α⌉

for b := Tb · 2α + db to b1 by 2α do

Ta := ⌈(a1 − da)/2
α⌉

for a := Ta · 2α + da to a2 by 2α do

if (ax2 > by2) and (ax1 > by1) then

sieve using congruences (13.2), equation (13.3)
and the relation ν2(a

x2 + by2) = z2.
end

We implemented the above algorithms and it turned out there is no solution
of system (13.1). Case (i) with b ≤ 7 can be handled similarly, the only
difference being that in Step III the range for b is replaced by b ∈ {3, 5, 7}.

By using the same strategy as above we can handle the cases according
to (ii)-(iv) of Lemma 13.2, as well.

13.1.2. Case where cz1 ≡ 2 (mod 4) with (x1, y1) = (1, 1). Note that only
cases (i) and (iii) of Lemma 13.2 can occur.

(i) Case where ax2 > by2.

We can proceed exactly in the same way as in case (i) of subsection 13.1.1.

(iii) Case where ax2 < by2.

We basically follow the method described in (iii) of the case (x1, y1) ̸=
(1, 1) with one important modification when b > 7. Namely, in order to
increase the efficiency of our algorithm, we make use of Lemma 11.2, which
says that min{x2, y2} ≤ 7 and provides us the sharp upper bounds for b,
that is, 177, 45, 19 and 11, according to the cases min{x2, y2} = 4, 5, 6 and
7, respectively. We built in these information in our program and it turned
out there is no solution to the system.

The total computation time in Subsection 13.1 did not exceed 3 hours.

13.2. Case where cz1 ≡ 0 (mod 4). Note that β > 1 or z1 > 1. Also,
Proposition 11.2 provides us a list of possible tuples (β, α, z1, z2, cu), where
cu is the corresponding upper bound for c. We call this list by clist. From
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(9.4),

(ax1 + by1)z2 = (ax2 + by2)z1 ,(13.5)

(cz1 − by1)x2 = (cz2 − by2)x1 .(13.6)

First, we deal with a special case.

Lemma 13.3. Under the hypothesis of Proposition 11.2, the system (9.4)
has no solution (x1, y1, z1, x2, y2, z2) satisfying (z1, z2) ∈ {(1, 2), (2, 3)}.

Proof. We proceed in two cases according to whether (z1, z2) = (1, 2) or
(2, 3). By Proposition 11.2, we may assume that c ≤ cu, where cu = 6.5 ·105
if (z1, z2) = (1, 2), and cu = 1.5 · 106 if (z1, z2) = (2, 3).

I. Case where (z1, z2) = (1, 2).

System (9.4) is

(13.7) ax1 + by1 = c, ax2 + by2 = c2.

Note that 2x1 ̸= x2 by Lemma 6.2. We further consider several subcases.

I/(i). Case where x1 ≥ 2 or x2 ≥ 4.

From system (13.7), observe that

a < min{c1/x1 , c2/x2} ≤ c1/2 ≤ cu
1/2.

Then a is small. It is not hard to enumerate all possible tuples (a, b, x1, y1, x2, y2),
and to verify that none of those satisfies equation (13.7).

I/(ii). Case where (x1, x2) = (1, 3).

It is not hard to see that y1 > 1. From (13.7), a < cu
2/3 and b < cu

1/2,
thereby both a and b are small enough to deal with this case similarly to
case I/(i).

I/(iii). Case where (x1, x2) = (1, 1).

Actually, this case can be handled by the methods described in Section
10. However, we tackle this with an important idea to find a good restriction
on solutions, which will play an important role in other difficult cases.

From (13.7), we have

(13.8) c+ by2 = c2 + by1 , c− by2/2 =
a

c+ by2/2
.

We apply Lemma 9.2 with (A,B) = (c, b) and (x, y,X, Y ) = (1, y2, 2, y1) to
see that

y2 > 6y1 − 2 ≥ 4, c ≡ −b2y1 − by1 + 1 (mod b3y1).

In particular, b is small as b < cz2/y2 ≤ cu
2/5. On the other hand, since

a < c, the second equation in (13.8) leads to 0 < c− by2/2 < 1. Therefore,

c = ⌊by2/2⌋+ 1.

These restrictions on the values of b, c, y1 and y2 are so strong that we can
verify by brute force that the first equation in (13.8) does not hold in any
possible cases.
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II. Case where (z1, z2) = (2, 3).

System (9.4) is

(13.9) ax1 + by1 = c2, ax2 + by2 = c3.

We proceed similarly to case I.

II/(i). Case where x1 ≥ 4 or x2 ≥ 5.

Since a < cu
3/5 by (13.9), a is small enough to deal with this case similarly

to I/(i).

II/(ii). Case where x2 = 4 and y2 ≥ 7.

Since a < cu
3/4 and b < cu

3/7 by (13.9), a and b are small enough to deal
with this case similarly to I/(ii).

II/(iii). Case where x2 = 4 and y2 ≤ 2.

Note that y2 = 1. Since a > b and y2 = 1, it follows from 2nd equation
that c3/2−a2 = b

c3/2+a2
< 1

a , which yields that ⌈a4/3⌉ ≤ c ≤ ⌊(a2+1/a)2/3⌋.
Using these inequalities, we apply the algorithm described in Lemma 13.5
(see below) to deal with this case.

II/(iv). Case where (x2 = 4 and y2 ∈ {3, 4, 5, 6}) or x2 = 3.

This case is handled by applying Lemma 8.1 to 2nd equation.

II/(v). Case where x1 = 3 and x2 ≤ 2.

Since a is relatively small as a < cu
2/3, and x2 is very small, this case can

be handled similarly to case II/(i).

II/(vi). Case where (x1, x2) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}.
The case where x1 = 1 or x2 = 1 can be dealt with by the same algorithm

as in case II/(iii). Finally, assume that x1 = x2 = 2. Since c2+by2 = c3+by1

from system (13.9), this case is dealt with by methods similar to those
described in Section 10. □

By Proposition 11.2 together with Lemma 13.3, we may assume in system
(9.4) that

z2 − z1 = 1, z2 ≥ 4.

The next lemma is an analogue to Lemma 13.1 from the case where cz1 ≡ 2
(mod 4), and it can be proved almost similarly.

Lemma 13.4. Let (x1, y1, z1, x2, y2, z2) be a solution of system (9.4). As-
sume that cz1 ≡ 0 (mod 4). Then the following hold.

(i) If a ≡ 1 (mod 4) and b ≡ −1 (mod 4) then both y1, y2 are odd.
(ii) If a ≡ −1 (mod 4) and b ≡ 1 (mod 4) then both x1, x2 are odd.
(iii) If a ≡ b ≡ −1 (mod 4), then x1 ̸≡ y1 (mod 2) and x2 ̸≡ y2 (mod 2).
(iv) One of x1 and y1 is odd, and one of x2 and y2 is odd.
(v) x1 < x2 or y1 < y2.
(vi) (x1 ≥ z1 or y1 ≥ z1) and (x2 ≥ z2 or y2 ≥ z2).
(vii) x1y2 ̸= x2y1, x1z2 ̸= x2z1, y1z2 ̸= y2z1.
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(viii) min{x1, x2} < |y1z2 − y2z1|.
(ix) (x1 ̸= z1 or y1 ≥ z1) and (y1 ̸= z1 or x1 ≥ z1) and (x2 ̸= z2 or

y2 ≥ z2) and (y2 ̸= z2 or x2 ≥ z2).
(x) If b < 11, then (2 ∤ x1 or 3 ∤ z1) and (3 ∤ x1 or 2 ∤ z1) and (2 ∤ x2 or

3 ∤ z2) and (3 ∤ x2 or 2 ∤ z2).

Finally, using the established lemmas, we further show three lemmas,
where the latter two of them together show the contrary to the condition
from Lemma 13.4 saying that x1 < x2 or y1 < y2 in (9.4).

Lemma 13.5. Under the hypothesis of Proposition 11.2, if system (9.4) has
a solution (x1, y1, z1, x2, y2, z2), then

min{ax1 , by1} ≥ c, min{ax2 , by2} ≥ c2.

Proof. First, we illustrate the method to show that ax1 ≥ c. Suppose on the
contrary that ax1 < c. If y1 ≤ z1, then c > ax1 = cz1−by1 ≥ cz1−bz1 ≥ cz1−1,
so that z1 < 2, which is absurd as z1 ≥ 3. Thus y1 > z1. On the other hand,
from 1st equation, observe that

cz1/2 − by1/2 =
ax1

cz1/2 + by1/2
<

c

cz1/2
< 1.

Thus
⌈by1/z1⌉ =: cL ≤ c ≤ cU :=

⌊
(1 + by1/2)2/z1

⌋
.

Since y1 > z1, it is very often observed that cL > cU for given b, y1 and
z1. For each of the elements (β, α, z1, cu) in clist and for each possible tuple
(b, c, x1, y1, x2, y2) satisfying

z1 < y1 ≤
⌊
log cu
log b0

z1

⌋
, b0 ≤ b ≤

⌊
cu

z1/y1
⌋
, max{c0, cL} ≤ c ≤ min{cU , cu},

y2 ≤
⌊
log c

log b
z2

⌋
, x1 ≤

⌊
log c

log a0
z1

⌋
, x2 ≤

⌊
log c

log a0
z2

⌋
with z2 = z1+1, we check equation (13.6) does not hold. Thus the inequality
ax1 ≥ c holds. The remaining inequalities can be shown exactly in the same
way by changing the roles of a, b and indices 1, 2, respectively. □
Lemma 13.6. Under the hypothesis of Proposition 11.2, if system (9.4) has
a solution (x1, y1, z1, x2, y2, z2), then x1 ≥ x2.

Proof. Suppose that x1 < x2. Recall that we may assume that z2 = z1 + 1.
First, consider the case where y1 < y2. From (9.4), ax1(c − ax2−x1) =

−by1(c− by2−y1). This implies that

ax1 | (c− by2−y1), by1 | (c− ax2−x1)

with (c−by2−y1) (c−ax2−x1) < 0. These together yield that ax1 ≤ c−by2−y1

or by1 ≤ c − ax2−x1 , thereby ax1 < c or by1 < c. However, this contradicts
Lemma 13.5.

Second, consider the case where y1 ≥ y2. From (9.4), ax1(ax2−x1 − c) =
by2(cby1−y2 − 1) with ax2−x1 − c > 0 and cby1−y2 − 1 > 0. Since ax1 |
(cby1−y2 − 1) and by2 | (ax2−x1 − c), we have

ax1 < cby1−y2 , by2 < ax2−x1 .
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These together with equation (13.5) yield

ax2z1 < (by1 + cby1−y2)z2 = by1z2(1 + c/by2)z2 ,

by1z2 < (ax2 + ax2−x1)z1 = ax2z1(1 + 1/ax1)z1 .

Thus
1

(1 + 1/ax1)1/x2
· b

y1z2
x2z1 < a < (1 + c/by2)z2/(x2z1) · b

y1z2
x2z1 .

Since b < a < c, and c2 < by2 by Lemma 13.5, it follows that

(13.10)
1

(1 + 1/a1x1)1/x2
· b

y1z2
x2z1 < a < (1 + 1/cLL)

z2/(x2z1) · b
y1z2
x2z1 ,

where a1 = max{a0, b+ 2} and cLL = max{c0, by2/2}.
We are now in the position to give the details of our reduction algorithm.

Step I. In the sequel, we call a pair of integers [u, v] with u, v ∈ {1,−1} the
signature of [a, b] denoted by s = s([a, b]) if [a, b] ≡ [u, v] (mod 2α). From
(∗), we know that s ∈ {[−1,−1], [1,−1], [−1, 1]}. On the other hand, Lemma
13.4 (i,ii,iii) shows, for instance, that if a tuple [x1, y1, x2, y2] is a solution of
(9.4) with [x1, y1, x2, y2] ≡ [0, 1, 1, 0] (mod 2), then s([a, b]) = [−1,−1]. On
distinguishing between the 16 possible cases of [x1, y1, x2, y2] according to
the parities of x1, y1, x2 and y2, between the 3 cases of possible signatures
of [a, b] and using Lemma 13.4, we can assign to each tuple [x1, y1, x2, y2]
the corresponding signatures of [a, b]. This way we can rule out 36 cases
of the total of 16 × 3 = 48 cases, and we obtain a list of possible parities
and signatures denoted by parsig. The elements of parsig are of the form[
px1, py1, px2, py2, [sa, sb]

]
, where, for i = 1, 2, we write pxi, pyi = 1 or 2

according to whether xi, yi are odd or even, respectively. Moreover, [sa, sb]
denotes the corresponding signatures of [a, b]. parsig is explicitly given as
follows:

parsig =
[[
2, 1, 2, 1, [−1,−1]

]
,
[
2, 1, 1, 2, [−1,−1]

]
,
[
1, 2, 1, 2, [−1,−1]

]
,[

1, 2, 2, 1, [−1,−1]
]
,
[
2, 1, 2, 1, [1,−1]

]
,
[
2, 1, 1, 1, [1,−1]

]
,[

1, 1, 2, 1, [1,−1]
]
,
[
1, 1, 1, 1, [1,−1]

]
,
[
1, 2, 1, 2, [−1, 1]

]
,[

1, 2, 1, 1, [−1, 1]
]
,
[
1, 1, 1, 2, [−1, 1]

]
,
[
1, 1, 1, 1, [−1, 1]

]]
.

Now, for each element in clist and each element in parsig, we use Lemma
8.1 together with Lemmas 13.4 and 13.5 (see also Remark 3 below) to sieve
considerably the possible solutions [x1, y1, z1, x2, y2, z2] of system (9.4). This
way we obtain a list named list1 having elements of the form

[α, β, x1, y1, z1, x2, y2, z2, cu, bmax, [sa, sb]
]
,

where [sa, sb] denotes the signature of [a, b] and bmax is defined as

bmax := min
{
cu, ⌊cuz1/x1⌋, ⌊cuz1/y1⌋, ⌊cuz2/x2⌋, ⌊cuz2/y2⌋

}
.

The above algorithm for generating list1 is given by the following program.

begin

for each element of clist do
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z1 := z2 − 1
for each element of parsig do

for x1 := px1 to ⌊z1(log cu)/ log a0⌋ by 2 do

for y1 := py1 to ⌊z1(log cu)/ log b0⌋ by 2 do

for x2 := px2 to ⌊z2(log cu)/ log a0⌋ by 2 do

for y2 := py2 to ⌊z2(log cu)/ log b0⌋ by 2 do

if x1y2 − x2y1 mod 2βz1−α = 0 then

sieve using Lemmas 13.4 and 13.5

put the result
[
α, β, x1, y1, z1, x2, y2, z2, cu, bmax, [sa, sb]

]
into list1

end

Step II. In order to create list2 composed of all possible tuples [a, b, x1, y1, z1, x2, y2, z2],
by using inequalities (13.10), we proceed as follows.

begin

for each element of list1 do

Tb := ⌈(b0 − sb)/2
α⌉

for b := Tb · 2α + sb to bmax by 2α do

amin := max
{
a1,
⌈
(1 + 1/a1

x1)−1/x2 · b
y1z2
x2z1

⌉}
amax := min

{
cu, ⌊cuz1/x1⌋, ⌊cuz2/x2⌋,

⌊
(1 + 1/cLL)

z2/(x2z1) · b
y1z2
x2z1

⌋}
Ta := ⌈(amin − sa)/2

α⌉
for a := Ta · 2α + sa to amax by 2α do

test whether equation (13.5) holds or not

put the result [a, b, x1, y1, z1, x2, y2, z2] into list2
end

It turned out that list2 is empty.
Finally, we mention that the restriction from Lemma 13.4 (x) was very

efficient for the case where b ≤ 7. □

Remark 3. Throughout our program implemented in the proof of Lemma
13.6, we may assume by Lemma 13.5 that min{x1, x2} = x1 ≥ 2 and
min{y1, y2} = y2 ≥ 3. On the one hand, for generating list1 in Step I,
we combined that information with Lemma 13.4. This way we excluded a
lot of candidates from our list1 since the number of tuples satisfying x1 = 1
or y2 ≤ 2 is large. On the other hand, the second advantage is that amin in
Step II becomes larger as x1 increases.

Lemma 13.7. Under the hypothesis of Proposition 11.2, if system (9.4) has
a solution (x1, y1, z1, x2, y2, z2), then y1 ≥ y2.

Proof. We may assume that x1 ≥ x2 by Lemma 13.6. Suppose on the
contrary that y1 < y2. Starting with these two inequalities, we can proceed
as in the proof of Lemma 13.6. Thus we just indicate the key points on
the implemented algorithms. First, we generate the list list1 exactly in
the same way as in Step I of Lemma 13.6. Second, we closely follow the
method of Step II of Lemma 13.6, where the only difference arises from the
fact that min{y1, y2} = y1 and min{x1, x2} = x2. Namely, system (9.4)
with z2 − z1 = 1 implies that by1(by2−y1 − c) = ax2(cax1−x2 − 1), whence
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by1 < cax1−x2 and ax2 < by2−y1 . These together with equation (13.5) yield

1(
1 + 1/max{c0, a1x2/2}

)1/x1
·b

y2z1
x1z2 < a <

(
1+1/max{by1 , c0}

)z1/(x1z2) ·b
y2z1
x1z2 .

We can proceed exactly in the same way as in Lemma 13.6 by using the
corresponding parameters amin and amax indicated by the above inequalities.

□

The total computation time in Subsection 13.2 did not exceed 1 hour.

14. Case where z1 < z2 and c < max{a, b}: Sieving

The aim of this section is to show that there is no solution of system (9.4)
fulfilling the statements of Propositions 12.1, 12.2 and 12.3, respectively.
However, the case under the hypothesis of Proposition 12.2 can be handled
similarly to Section 10, since the system is reduced to the equation cz1+by2 =
cz2 + by1 and both b, c are relatively small.

It suffices to consider the case where a > max{b, c}, and we put

a0 = max{1001, 2α + 1, 3 · 2β + 1}, b0 = 2α − 1, c0 = 3 · 2β.

These numbers are lower bounds for a, b and c, respectively. We can use
both equations (13.5) and (13.6). Moreover, since z1 ≥ 2 as a > c, we have
cz1 ≡ 0 (mod 4), so that Lemma 13.4 can be used. The restrictions from
Lemmas 8.1 and 13.4 will be used several times in our reduction procedure
without any further explicit reference.

We proceed in two cases according to Propositions 12.1 or 12.3.

14.1. On the system under the hypothesis of Proposition 12.1.
Proposition 12.1 provides us all possible tuples (α, β, z1, z2, au, cu), where
au and cu are the corresponding upper bounds for a and c, respectively. We
put these data in the list named aclist. In the sequel, we proceed in two
cases according to whether dz = 1 or not.

14.1.1. Case where dz > 1. Note that 2 ≤ dz ≤ 6 and each cu is very small.
The order of magnitude of cu is between 7 and 826, where smaller values
occur for larger dz’s.

We begin with the following lemma.

Lemma 14.1. Under the hypothesis of Proposition 12.1, if system (9.4) has
a solution (x1, y1, z1, x2, y2, z2) with dz > 1, then z1 ≥ 2dz.

Proof. Suppose on the contrary that z1 < 2dz. Since z2 − z1 = dz ∈
{2, 3, 4, 5, 6}, the possible pairs [z1, z2] are given as follows:

[z1, z2] ∈
[
[2, 4], [3, 5], [2, 5], [3, 6], [4, 7], [5, 8], [2, 6], [3, 7], [4, 8], [5, 9],

[6, 10], [7, 11], [2, 7], [3, 8], [4, 9], [5, 10], [6, 11], [7, 12], [8, 13],

[9, 14], [2, 8], [3, 9], [4, 10], [5, 11], [6, 12]
]
.

We set dzlist as the list composed of these pairs. If b > c, then max{xi, yi} <
zi for i ∈ {1, 2}. Now, for each element of aclist and for xi, yi in that ranges,
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we use the restrictions from Lemmas 8.1 and 13.4 to generate a list named
list1 of the form [α, β, x1, y1, z1, x2, y2, z2, au, cu], as follows:

for each element of aclist do

for x1 := 1 to z1 − 1 do

for y1 := 1 to z1 − 1 do

for x2 := 1 to z2 − 1 do

for y2 := 1 to z2 − 1 do

if x1y2 − x2y1 mod 2βz1−α = 0
sieve using Lemmas 8.1 and 13.4 and put the result into

list1
end

Note that once list1 is generated, we have not only a list of possible solutions
xi, yi, zi of (9.4) but also upper bounds for a, b, c, as well (i.e., b < a ≤ au
and c ≤ cu). Using these bounds we basically check for each possible case
whether equation (13.6) holds or not. We proceed as follows.

for each element of list1 do

Tc := ⌈(c0/2β − 1)/2⌉;
for c := (2Tc + 1) · 2β to cu by 2β+1 do

for s in [−1, 1] do

for b := ⌈(max{b0, c+ 1} − s)/2α⌉ · 2α + s to au by 2α do

if (cz1 − by1 > 0) and (cz2 − by2 > 0) then

if equation (13.6) holds

then

a′ := (cz1 − by1)1/x1

if a′ is an integer and gcd(a′, b, c) = 1 then put the result

[a′, b, c, x1, y1, z1, x2, y2, z2] into list2
end

It turned out that list2 is empty. If b < c, then we can use the inequality
b < c to proceed exactly in the same way as above with appropriate upper
bounds for y1 and y2 on creating list1. □

The next lemma is an analogue to Lemma 13.5, where the condition dz > 1
is very important to run the described algorithm in a reasonable amount of
time.

Lemma 14.2. Under the hypothesis of Proposition 12.1, if system (9.4) has
a solution (x1, y1, z1, x2, y2, z2) with dz > 1, then

min{ax1 , by1} ≥ cdz , min{ax2 , by2} ≥ cdz+1.

Proof. The proof is similar to that of Lemma 13.5. We only show that
ax1 ≥ cdz , since the treatment of the remaining inequalities is similar. By
Lemma 14.1, we may assume that z1 ≥ 2dz. Suppose on the contrary that
ax1 < cdz . Since ax1 < cdz ≤ cz1/2, from 1st equation, we have cz1/2−by1/2 =

ax1

cz1/2+by1/2
< 1, thereby

(14.1)
⌈
(cz1/2 − 1)

2/y1
⌉
=: bL ≤ b ≤ bU :=

⌊
cz1/y1

⌋
.
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Recall that the bounds c ≤ cu in clist are (very) sharp. Moreover, on
combining this information with inequalities (14.1), it very often holds that
bL > bU for given c, y1 and z1. We construct a list named list1 consisting of
elements of the form [b, c, y1, z1, z2].

for each element of aclist do

Tc := ⌈(c0/2β − 1)/2⌉;
for c := (2Tc + 1) · 2β to cu by 2β+1 do

for y1 := 1 to ⌊z1(log c)/ log b0⌋ do

bmin := max{b0, bL} and bmax := min{bU , au − 2}
for s in [−1, 1] do

Tb := ⌈(bmin − s)/2α⌉
for b := Tb · 2α + s to bmax by 2α do

put [b, c, y1, z1, z2] into list1
end

Since z1 ≥ 2dz and ax1 < cdz , we observe that x1 < dz. Finally, using list1
and the above range for x1, we basically check whether equation (13.6) holds
or not.

for each element of list1 do

for x1 := 1 to dz − 1 do

for x2 := 1 to z2 − 1 do

for y2 := 1 to ⌊z2(log c)/ log b⌋ do

if equation (13.6) holds then

a′ := (cz1 − by1)1/x1

if (a′ > max{b, c}) and gcd(a′, b, c) = 1 and (a′x1 < cdz) then

print [a′, b, c, x1, y1, z1, x2, y2, z2].
end

It turned out that there is no output. □

In the following two lemmas together, we show the contrary to the con-
dition from Lemma 13.4 (iv), saying that x1 < x2 or y1 < y2 in (9.4).

Lemma 14.3. Under the hypothesis of Proposition 12.1, if system (9.4) has
a solution (x1, y1, z1, x2, y2, z2) with dz > 1, then x1 ≥ x2.

Proof. We closely follow the method described in the proof of Lemma 13.6.
Suppose on the contrary that x1 < x2.

If y1 < y2, then ax1(cdz − ax2−x1) = −by1(cdz − by2−y1). This equation
implies that max{ax1 , by1} < cdz , which contradicts Lemma 14.2. Thus
y1 ≥ y2. Then ax1(ax2−x1 − cdz) = by2(cdzby1−y2 − 1), and this implies that

ax1 | (cdzby1−y2 − 1), by2 | (ax2−x1 − cdz)

with cdzby1−y2 − 1 > 0 and ax2−x1 − cdz > 0. Thus

ax1 < cdzby1−y2 , by2 < ax2−x1 .
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These inequalities together with equation (13.5) yield

ax2z1 < (by1 + cdzby1−y2)z2 = by1z2(1 + cdz/by2)z2 ,

by1z2 < (ax2 + ax2−x1)z1 = ax2z1(1 + 1/ax1)z1 .

Since cdz+1 ≤ by2 by Lemma 14.2, it follows that

(14.2)
1

(1 + 1/a1x1)1/x2
· b

y1z2
x2z1 < a < (1 + 1/cL)

z2/x2z1 · b
y1z2
x2z1

with a1 = max{a0, b+ 2} and cL = max{c0, by2/(dz+1)}.
We are now in the position to give the details of our reduction algorithm

in this case. We proceed exactly in the same way as in Lemma 13.6 with
some appropriate modifications.

Step I. We follow Step I in the proof of Lemma 13.6 with the follow-
ing modifications. By using aclist, the list parsig defined in Lemma 13.6
and the inequalities xi < zi for i ∈ {1, 2}, we generate a list named list1
containing elements of the form

[
α, β, x1, y1, z1, x2, y2, z2, au, bmax, [sa, sb]

]
,

where [sa, sb] denotes the signature of [a, b], and bmax is defined by

bmax := min
{
au, ⌊cuz1/x1⌋, ⌊cuz1/y1⌋, ⌊cuz2/x2⌋, ⌊cuz2/y2⌋

}
.

Step II. We follow Step II in the proof of Lemma 13.6 with a single
modification in the bound amax for a according to (14.2), namely:

amax := min
{
au, ⌊cuz1/x1⌋, ⌊cuz2/x2⌋,

⌊
(1 + 1/cL)

z2/(x2z1) · b
y1z2
x2z1

⌋}
.

Using the program occurring in Step II in the proof of Lemma 13.6 with the
above bounds we check that equation (13.5) holds in no case. □

Lemma 14.4. Under the hypothesis of Proposition 12.1, if system (9.4) has
a solution (x1, y1, z1, x2, y2, z2) with dz > 1, then y1 ≥ y2.

Proof. Since the method of the proof and the resulting algorithm are similar
to the ones used to prove Lemma 14.3, along with the proof of Lemma 13.7,
we only indicate the key points of the algorithm. By Lemma 14.3 we may
assume that x1 ≥ x2, and suppose on the contrary that y1 < y2. In Step I,
we generate list1 exactly in the same way as in the proof of Lemma 14.3.
In Step II, we closely follow the method of Lemma 14.3, where the only
difference comes from the fact that min{y1, y2} = y1 and min{x1, x2} = x2.
Namely, in this case,

1(
1 + 1/max{c0dz , a1dz/(dz+1)·x2}

)1/x1
· b

y2z1
x1z2

< a <

(
1 +

1

max{by1 , cdz}

)z1/(x1z2)

· b
y2z1
x1z2 .

Using these inequalities, we can proceed exactly in the same way as in the
proof of Lemma 14.3 with the corresponding changes of amin and amax. □
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14.1.2. Case where dz = 1. We begin with the following lemma, which is
an analogue of Lemma 13.3 in the case where a > max{b, c} and (z1, z2) =
(2, 3).

Lemma 14.5. Under the hypothesis of Proposition 12.1, system (9.4) has
no solution (x1, y1, z1, x2, y2, z2) satisfying (z1, z2) = (2, 3).

Proof. Suppose the contrary. Since a > c and axi < czi for i ∈ {1, 2}, we
have x1 = 1 and x2 ≤ 2. Note that the case where x2 = 1 is reduced to the
equation c2+by2 = c3+by1 with both b, c suitably small, so we only consider
the case where x2 = 2. Then system (9.4) is

(14.3) a+ by1 = c2, a2 + by2 = c3.

Note that au ≤ aU := 4.5 · 106 in any element in aclist.
Suppose that y1 ≤ y2. We reduce the equations modulo by1 to see that

by1 | (a − c), so that by1 < a. This together with the equations implies

that c2 < 2a < 2c3/2, yielding a contradiction. Thus we may assume that
y1 > y2. From (14.3), a(a− c) = by2(cby1−y2 − 1), leading to by2 < a. Since
a2 > c3/2 by the second equation, we have

(14.4) c < 21/3aU
2/3.

If y1 ≥ 4, then the first equation together with (14.4) implies that b <

21/6aU
2/6. By this estimate of b and (14.4), both b and c are small enough

to check by a brute force search that equation (13.6) does not hold in any
case. Finally, suppose that y1 ≤ 3. Since y1 > y2, we use Lemma 13.4 (vii) to

see that (y1, y2) = (3, 1). In this case, b | (c−1), in particular, b < 21/3aU
2/3

by (14.4). Then we can deal with this case similarly to the previous case. □
By Lemma 14.5, in what follows we may assume that z2 ≥ 4.
The next lemma can be regarded as a common analogue of Lemma 13.5

and of Lemma 14.2 in the case dz = 1.

Lemma 14.6. Under the hypothesis of Proposition 12.1, if system (9.4) has
a solution (x1, y1, z1, x2, y2, z2) with dz = 1, then min{ax2 , by2} ≥ c2.

Proof. We only show that ax2 ≥ c2 since the treatment of the inequality
by2 ≥ c2 is similar. Suppose on the contrary that ax2 < c2. Similarly to the
proof of Lemma 13.5, we can use 2nd equation together with z2 ≥ 4 to see
that

y2 > z2,
⌈
by2/z2

⌉
≤ c ≤

⌊
(by2/2 + 1)2/z2

⌋
.

The details of the algorithm to create the list named list1 including all
possible tuples [b, c, z1, y2, z2] are given below.

for each element of aclist do

for y2 := 1 to ⌊z2(log au)/ log b0⌋ do

for each s in [−1, 1] do

for b := ⌈(b0 − s)/2α⌉ · 2α + s to ⌊auz2/y2⌋ by 2α do

cmin := max
{
c0, ⌈by2/z2⌉

}
and cmax := min

{
cu, ⌊(by2/2 + 1)2/z2⌋

}
Tc := ⌈(c0/2β − 1)/2⌉;
for c := (2Tc + 1) · 2β to cmax by 2β+1 do
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put the result [b, c, z1, y2, z2] into list1
end

Finally, for each element of list1 and each possible tuple (x1, y1, x2) we check
equation (13.6) does not hold. □

We finish this subsection by the following lemma giving the contrary to
an assertion in Lemma 13.4.

Lemma 14.7. Under the hypothesis of Proposition 12.1, if system (9.4) has
a solution (x1, y1, z1, x2, y2, z2) with dz = 1, then x1 ≥ x2 and y1 ≥ y2.

Proof. This can be proved on the lines of the proofs of Lemmas 14.3 and
14.4. □

The total computation time for Subsection 14.1 did not exceed 4 hours,
where the most time consuming part was Lemma 14.6.

14.2. On the system under the hypothesis of Proposition 12.3.
Proposition 12.3 provides us with some upper bounds and possible solu-
tions of system (9.4) which are classified in three cases denoted by (i)-(iii).
We present our reduction algorithms in each of these cases.

(i) We are in the case where

dz ∈ {2, 3, 4, 5}, bdy < cdz ≤ cU := 2.5 · 105

with dy = y2−y1. Further, we have a list of all possible tuples [α, β, z1, z2, cu],
where cu is the corresponding (sharp) upper bound for c. By applying the
same method as in Step I in the proof of Lemma 13.6, we generate a list
named list1 having elements of the form

[α, β, x1, y1, z1, x2, y2, z2, bmax, cmax, sa, sb],

where [sa, sb] is the signature of the pair [a, b], cmax = cu and bmax is an
upper bound for b defined as

bmax := min
{⌊

cu
1/(y2−y1)

⌋
, ⌊cuz1/y1⌋, ⌊cuz1/x1⌋, ⌊cuz2/y2⌋, ⌊cuz2/x2⌋

}
.

Finally, for each element of list1, we loop through the values of c := c0 to
cmax by 2β+1 and the values of b := ⌈(b0 − sb)/2

α⌉ · 2α + sb to bmax by 2α,
to verify that equation (13.6) does not hold in any case.

(ii) We are in the case where

max{amin{x1,x2}, cdz} < bdy ≤ bU := 5.4 · 105

with dy = y2−y1. Further, we have a list of all possible tuples [α, β, z1, z2, dy, bu],
where bu is the corresponding (sharp) upper bound for b. We proceed in two
cases according to whether dz = 1 or not.

If dz > 1, then c2 ≤ cdz < bU , so that c ≤ ⌊bU 1/2⌋(< 103). This together
with b ≤ bu shows that both b, c are so small that we can apply the same
algorithm as in (i).

In the case where dz = 1, a short modular arithmetic computation (cf. proof
of Lemma 13.6) leads to x1 ≥ x2. We further proceed in two cases according
to whether x2 = 1 or not.
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If x2 ≥ 2, then a2 ≤ ax2 = amin{x1,x2} < bU , so that a ≤ ⌊bU 1/x2⌋ ≤
⌊bU 1/2⌋. Thus both a, b are so small that we can apply the same method as
in the case dz ≥ 2 and verify that equation (13.5) (with dz = 1) does not
hold in any possible cases.

Finally, in the case where dz = 1 and x2 = 1, we proceed as follows. The
case where a > c2 is dealt with by a previous method since both b, c are
small enough as c ≤ a1/2 < bU

1/2. Thus suppose that a < c2. Since z2 ≥ 4
as k ̸= 3, it follows from 2nd equation that cz2/2 − by2/2 = a

cz2/2+by2/2
< 1,

which sharply restricts the value of c in terms of b, y2 and z2. Using this fact
and b is small, we can apply the algorithm described in the proof of Lemma
13.5.

(iii) We are in the case where

(14.5) x1 < x2, ax1 < bdycdz

with dy = y1 − y2. Further, we have a list named abclist containing all
possible tuples [α, β, x1, z2, au, bu, cu, dz, dy], where au, bu, cu are the corre-
sponding upper bounds for a, b, c, respectively. A quick check on abclist
shows that if dz ≥ 2 or dy ≥ 2 then at least one of the bounds bu and cu is
small (about 103 or less) and the other is middle sized (about 5 ·105 or less).
Then this case can be handled similarly to (i) and (ii) with the parameters
cmax and bmax given as cmax = cu and

bmax = min
{
bu, ⌊cuz1/y1⌋, ⌊cuz1/x1⌋, ⌊cuz2/y2⌋, ⌊cuz2/x2⌋

}
.

Moreover, if dz = dy = 1, then both of these bounds are middle sized, while,
unfortunately, the bound au becomes large (≈ 1010). Thus, we have to find
another reduction procedure which avoids the use of au.

Finally, we consider the case where (dz, dy) = (1, 1). We follow the method
applied in Step I of Lemma 13.6 to generate the corresponding list named
list1 having elements satisfying (dz, dy) = (1, 1) of the form

[α, β, x1, y1, z1, x2, y2, z2, bmax, cmax, sa, sb].

The pair [sa, sb] is the signature of [a, b] while the bounds cmax and bmax are

defined by cmax := cu and bmax := min
{
bu, ⌊cuz1/y1⌋

}
. A quick look shows

that list1 does not include any element satisfying (y1, z1) = (2, 2). Thus, if
y1 ≤ z1, then z1 > 2, which together with the inequality bc > ax1 by (14.5)
shows that bc > ax1 = cz1 − by1 ≥ cz1 − bz1 > cz1−1 + bz1−1 ≥ c2 + b2, a
contradiction. Therefore, it remains to consider the case where y1 > z1. We
note that since y1 > z1 and the orders of magnitude of bu and cu are the
same, the quantity ⌊cuz1/y1⌋ is smaller than bu, resulting in a sharper upper
bound bmax for b. This observation is crucial in order to have a reasonable
running time. The remaining task can be dealt with similarly to cases (i)
and (ii).

The total computation time of Section 14 did not exceed 5 hours.
The conclusion of Sections 13 and 14 together is:

Proposition 14.1. z1 = z2.
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In view of Propositions 10.3 and 14.1, the proof of Theorem 1 is finally
completed.

15. Concluding remarks

Theorem 1 says that there is only one example which allows equation
(1.3) to have three solutions in positive integers. On the other hand, a
simple search in a suitably finite region using computer (cf. [ScSt4, Section
3]) finds a number of examples where there are two solutions to (1.3) in
positive integers x, y and z, corresponding to the following set of equations:

5 + 3 = 23, 5 + 33 = 25, 53 + 3 = 27;

13 + 3 = 24, 13 + 35 = 28;

5 + 22 = 32, 52 + 2 = 33;

7 + 2 = 32, 72 + 25 = 34;

3 + 23 = 11, 32 + 2 = 11;

10 + 3 = 13, 10 + 37 = 133;

3 + 25 = 35, 33 + 23 = 35;(15.1)

89 + 2 = 91, 89 + 213 = 912;

5 + 27 = 133, 53 + 23 = 133;

3 + 28 = 259, 35 + 24 = 259;

13 + 37 = 2200, 133 + 3 = 2200;

91 + 213 = 8283, 912 + 2 = 8283;

(2k − 1) + 2 = 2k + 1, (2k − 1)2 + 2k+2 = (2k + 1)2,

where k is any integer with k ≥ 2.
While Theorem 1 is essentially sharp, as indicated by (15.1), it is natu-

ral, in light of a lot of existing works on the solutions of equation (1.3), to
believe that something rather stronger is true. A formulation in this direc-
tion is posed by Scott and Styer [ScSt4], which is regarded as a 3-variable
generalization of [Be, Conjecture 1.3], as follows:

Conjecture 2. For any fixed relatively prime positive integers a, b and c
with min{a, b, c} > 1, equation (1.3) has at most one solution in positive
integers x, y and z, except for those triples (a, b, c) corresponding to (15.1).

There are many results in the literature which support this conjecture.
However, Conjecture 2 seems completely out of reach. It is worth noting that
it solves several open problems on the solutions of equation (1.3) for some in-
finite families of (a, b, c), including not only the conjecture of Sierpiński and
Jeśmanowicz on primitive Pythagorean triples, but also its generalization
posed by Terai as mentioned in the first section. Finally, we mention that
Conjecture 2 seems not to follow directly from some of well-known conjec-
tures closely related to ternary Diophantine equations including generalized
Fermat conjecture and any effective version of abc conjecture.
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[BeMiSi] M.A. Bennett, P. Mihăilescu and S. Siksek, The generalized Fermat equation, in

Springer volume Open Problems in Mathematics, 2016, 173–205.
[BeSk] M.A. Bennett and C. Skinner, Ternary Diophantine equations via Galois repre-

sentations and modular forms, Canad. J. Math. 56 (2004), 23–54.
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38.
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