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Abstract. We prove a new class of low-energy decompositions which,
amongst other consequences, imply that any finite set A of integers may
be written as A = B ∪ C, where B and C are disjoint sets satisfying

|{(b1, . . . , b2s) ∈ B2s |
s∑

i=1

bi =

s∑
i=1

bs+i}| ≪s |B|2s−(log log s)1/2−o(1)

and

|{(c1, . . . , c2s) ∈ C2s |
s∏

i=1

ci =

s∏
i=1

cs+i}| ≪s |C|2s−(log log s)1/2−o(1)

.

This generalises previous results of Bourgain–Chang on many-fold sum-
sets and product sets to the setting of many-fold energies, albeit with a
weaker power saving, consequently confirming a speculation of Balog–
Wooley. We further use our method to obtain new estimates for s-fold
additive energies of k-convex sets, and these come arbitrarily close to the
known lower bounds as s becomes sufficiently large. A key ingredient in
our proofs is an optimal variant of the s-fold Balog–Szemerédi–Gowers
theorem.

1. Introduction

This paper investigates topics surrounding the sum–product phenomenon,
a growing collection of results that concern themselves with notions of ad-
ditivity and multiplicativity amongst algebraic sets. This was first studied
by Erdős and Szemerédi [10], who analysed the cardinalities of the sumset

sA and the product set A(s), when s is a natural number and A is a finite,
non-empty subset of integers. Here, we write

sA = {a1 + · · ·+ as | a1, . . . , as ∈ A} and A(s) = {a1 . . . as | a1, . . . , as ∈ A}.
These sets measure the arithmetic structure of A, as evinced by the fact
that |sA| ≪s |A| whenever A is an arithmetic progression, and |A(s)| ≪s |A|
when A is a geometric progression. Erdős and Szemerédi conjectured that
these two notions can not simultaneously occur for a given finite set A of
integers, whence, at least one of the sumset or the product set must be
extremally large.

Conjecture 1.1. Let s ≥ 2, let ϵ > 0 and let A be a finite subset of integers.
Then

|sA|+ |A(s)| ≫s,ϵ |A|s−ϵ.

2010 Mathematics Subject Classification. 11B13, 11B30.
Key words and phrases. Sum-product phenomenon, Balog–Szemerédi–Gowers theorem.
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Since their influential work, this problem has been thoroughly studied
and generalised, and in particular, the s = 2 case of this conjecture has seen
a lot of progress in recent times, with techniques arising from a variety of
areas being utilised to tackle this question (see [12], [24]). The current best
known result in the s = 2 case is present in work of Rudnev and Stevens [20],
who showed that

|2A|+ |A(2)| ≫ϵ |A|4/3+2/1167−ϵ,

whenever A is a finite susbet of R. The cases when s ≥ 3 are in a more
contrasting situation, with very few results studying this problem. One
such result arose from the beautiful work of Bourgain–Chang [6], which, in
particular, implies that for any sufficiently large natural number s, and for
any finite set A of integers, we have

|sA|+ |A(s)| ≫s |A|bs , (1.1)

where we may choose bs ≫ (log s)1/4. Since their result, there has only been
one other improvement in this setting, namely, the work of Pálvölgyi and
Zhelezov [19], which allows one to take bs ≫ (log s)1−o(1).

We note that more robust notions of additivity and multiplicativity have
been analysed in reference to these type of problems, and thus, given a
natural number s and finite set A of real numbers, we define the s-fold
additive energy Es(A) of A to be

Es(A) = |{(a1, . . . , a2s) ∈ A2s | a1 + · · ·+ as = as+1 + · · ·+ a2s}|,

and the s-fold multiplicative energy Ms(A) of A to be

Ms(A) = |{(a1, . . . , a2s) ∈ A2s | a1 . . . as = as+1 . . . a2s}|.

Noting a simple application of the Cauchy-Schwarz inequality, we see that

Es(A)|sA| ≥ |A|2s and Ms(A)|A(s)| ≥ |A|2s, (1.2)

and consequently, whenever the sumset or the product set is small, the
respective energy must be large. Hence, these energies are concrete measures
of additivity and multiplicativity. Similarly, whenever either of Es(A) or

Ms(A) is small, then max{|sA|, |A(s)|} is large, and so, noting Conjecture
1.1, one might naively expect that given any finite set A of Z, either Es(A)
or Ms(A) must be small. However, we see that this is not the case, since we
may consider the set AN = {1, 2, . . . , N}∪ {N2, . . . , NN}, wherein, we have
Es(AN ),Ms(AN ) ≫s |AN |2s−1.

Despite this obstruction, we are able to prove the next best alternative,
that is, we are able to show that any finite set A of integers may be parti-
tioned into sets B and C, such that B has a small additive energy and C
has a small multiplicative energy.

Theorem 1.2. Let k ≥ 1 be a real number, let q be some even natural num-

ber, and write Λ = 6 + 180k log q, and s = 25+(1+120·2⌈30kΛ⌉)(⌈log k⌉+1). Then
for every finite, non-empty set A of integers, there exist pairwise disjoint
sets B,C such that A = B ∪ C and

Eq/2(B) ≪k,q |B|q−q/5 and Ms(C) ≪s |C|2s−k.
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We can utilise this theorem to generalise the aforementioned result of
Bourgain–Chang to the setting of energies, albeit with a weaker power sav-
ing.

Corollary 1.3. Let s be a sufficiently large natural number. Then for every
finite set A of integers, there exist disjoint sets B and C such that A = B∪C
and

Es(B) ≪s |B|2s−ηs and Ms(C) ≪s |C|2s−ηs ,

where ηs ≥ D(log log s)1/2(log log log s)−1/2, and D > 0 is some absolute
constant.

We remark that while such decompositions have been extensively studied,
Theorem 1.2 and Corollary 1.3 seem to be the first results which allow the
power saving ηs → ∞ as s → ∞, consequently confirming a speculation
of Balog and Wooley [2] in the integer setting. In fact, it was the latter
authors who originally studied these so called low energy decompositions,
and showed that given natural numbers s1, s2 ≥ 2, every finite subset A of
R may be partitioned as A = B ∪ C, where

Es1(B) ≪δ |A|2s1−1−δ and Ms2(C) ≪δ |A|2s2−1−δ (1.3)

for any δ < 2/33. Moroever, even though their work has since been further
refined by multiple authors, in part due to its close connection to Conjecture
1.1, the best value of δ that is known to be permissible in (1.3) still satisfies
δ < 3/11 (see [29, Theorem 1.8]).

We further note that these decompositions seem to be much harder to
study as compared to the corresponding sumset-product set bounds. Firstly,
the latter can be derived from the former using inequalities such as (1.2), and
in fact, Corollary 1.3 furnishes bounds of the shape (1.1) in a straightforward

manner, albeit with a weaker exponent of the form bs ≫ (log log s)1/2−o(1).
Secondly, unlike the sumset-product set case, there is no known analogue of
Conjecture 1.1 in the energy setting, in part due to the fact that there exist
arbitrarily large subsets A of N such that for every decomposition of A into
disjoint sets B and C, and for every choice of s1, s2 ≥ 2, one has either

Es1(B) ≫ |A|s1+
s1−1

3 or Ms2(C) ≫ |A|s2+
s2−1

3 .

We refer the reader to [2] for more details regarding this construction.
Our methods can be further utilised to provide a qualitative equivalence

between sumset-product set bounds of the shape (1.1) and low energy de-
compositions as presented in our results above. In order to state this, we
first record some notation, and so, given a set Z of real numbers, a natural
number m and a real number b ≥ 1, we denote (Z,m, b) to be a good tuple
if for every non-empty, finite subset A of Z, we have

|mA|+ |A(m)| ≫m |A|b. (1.4)

Theorem 1.4. Let (Z,m, b) be a good tuple, and let k, s1, s2 satisfy k = b/30

and s1 = 25+(1+500⌈k⌉s2)(⌈log k⌉+1) and s2 = 25+(1+120m)(⌈log k⌉+1). Then, for
every finite, non-empty subset A of Z, there exist disjoint sets B,C such
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that A = B ∪ C and

Es1(B) ≪k,m |B|2s1−k and Ms2(C) ≪k,m |C|2s2−k+1.

Thus, Theorem 1.4, when combined with (1.1), is able to deliver quantita-
tively weaker versions of Theorem 1.2 and Corollary 1.3 in a straightforward
manner. We end our discussion on this class of results by mentioning that
we can use the ideas present in this paper to derive further arithmetic infor-
mation concerning the sets B and C arising in the conclusion of Corollary
1.3, see, for example, Theorem 2.1. We discuss this, along with other appli-
cations of our method in §2.

We now move to another topic of interest in arithmetic combinatorics,
that is, the study of additive properties of convex sets. Thus, given any
finite subset I of real numbers, and a function f : R → R, we let f(I) =
{f(i) | i ∈ I}. With this definition in hand, we are interested in studying the
sumsets 2I and 2f(I), when f : R → R is a strictly convex function. Writing
IN = {1, . . . , N}, this problem was first studied by Erdős [9] in the case when
I = IN , who formalised the heuristic that convexity should perturb additive
structure, at least to some degree, and presented the following conjecture.

Conjecture 1.5. Let ϵ > 0 and let f : R → R be a strictly convex function.
Then

|f(IN ) + f(IN )| ≫ϵ N
2−ϵ.

Here, for all finite sets A,B ⊂ R, we define A∗B = {a∗ b | a ∈ A, b ∈ B},
where the operation ∗ ∈ {+,−, ·}. Furthermore, defining the set Nk =
{1, 2k, . . . , Nk} for every k ∈ N, we may use the classical result |N2 +N2| =
N2−o(1) (see [14]) to discern that Conjecture 1.5 is expected to be sharp.
This has also been analysed in the more general case of I being an arbitrary
finite subset of R, wherein, Elekes, Nathanson and Ruzsa [8] used incidence
geometric methods to prove that

|f(I) + f(I)| ≫ |I|3/2K−1
2 , (1.5)

with K2 = |2I|/|I|. We see that choosing f(x) = log x gives sum-product
type estimates, while setting I = IN delivers bounds for sumsets of convex
sets. As in the case of Conjecture 1.1, much work has been done recently on
refining such bounds, culminating in the work of Stevens and Warren [25],
who showed that

|f(I) + f(I)| ≫ |I|30/19−o(1)K−1
2 ,

in process, recovering the best known result known towards Conjecture 1.5.
Furthermore, various authors have studied generalisations of estimates of

the above kind, by imposing higher levels of convexity on the function f (see,
for instance, [13], [7], [18], [23]). More precisely, given some interval I ⊆ R
and natural number k ≥ 2, we write f to be (k − 1)-convex on I if all the

derivatives f (1), . . . , f (k) exist and are non-vanishing on I. Furthermore,
given a non-empty, finite subset I of I, we write K = |2I − I|/|I| and
A = f(I).

In this setting, Hanson, Roche-Newton and Rudnev [13] proved that

|2k−1A− (2k−1 − 1)A| ≫k |A|kK−2k+k+1(log |A|)−Ok(1), (1.6)
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a bound that can be interpreted as a higher convexity version of (1.5). More-
over, this is sharp up to some multiplicative constant, since the function
f(x) = xk can be seen to be (k − 1)-convex, whence, we can choose I = IN
and A = Nk, and use the observation that |mNk−nNk| ≪k,m,n Nk for each
m,n ∈ N.

Noting the above estimates, it is natural to ask whether an energy variant
of such a bound can hold, and this is precisely the content of our next result.

Theorem 1.6. Let k ≥ 2 be a natural number, let I ⊆ R be an interval and
let f : I → R be (k−1)-convex on I. Then, for every s ∈ N and every finite
I ⊆ I, writing A = f(I) and K = |2I − I|/|I|, we have

Es(A) ≪s,k |A|2s−k+(4k−4)s−ηk +Kcs,k ,

where ηk ∈ (0, 1) and cs,k > 0 are absolute constants.

As before, we note that Theorem 1.6 is sharp up to a factor of |A|(4k−4)s−ηk ,
where the latter becomes arbitrarily small as s becomes appropriately large.
In order to see this, we can set f(x) = xk and I = IN in Theorem 1.6 to
produce the bound

Es(Nk) ≪s,k N2s−k+(4k−4)s−ηk ,

whereupon, we may use the following elementary estimate to confirm our
claim

Es(Nk) ≥ N2s|sNk|−1 ≫s,k N2s−k. (1.7)

Furthermore, while we have not carefully optimised our arguments to
obtain the best possible value of ηk in Theorem 1.6, one could take 2−k ≪
ηk ≪ 2−k. Thus, there exists C > 0, such that for any κ ≥ 1, whenever

s ≥ 2C2k log(kκ), we have (4k − 4)s−ηk ≤ 1/κ, that is,

Es(A) ≪s,k |A|2s−k+1/κ +Kcs,k .

This can be compared with the recent work of Bradshaw, Hanson and Rud-
nev [7, Theorem 1.4], who, under the hypothesis of Theorem 1.6, showed
that

Es(A) ≪s,k K2k−2k+2αk |A|2s−k+αk , (1.8)

where s ≥ 2k−1 and αk =
∑k−1

j=1 j2
−j . Since 1/2 ≤ αk ≤ 2 for every k ≥ 2,

we see that (1.8) misses the lower bound in (1.7) by a factor of at least |A|1/2,
and so, our result provides sharper upper bounds when s ≥ 2C2k log k and
K ≪ |A|Os,k(1). On the other hand, we note that their result provides non-
trivial bounds in a much larger regime than ours, that is, when s ≥ 2k−1,
as well as that (1.8) exhibits a better dependence on the parameter K. Our
method also provides almost sharp bounds for additive energies between
multiple (k − 1)-convex sets, see, for instance, Corollary 2.2.

A key ingredient in the proofs of all of our aforementioned results is an
inverse theorem that converts information on s-fold energies into bounds
for many-fold sumsets. In order to introduce this, we first note that when-
ever |sA| ≤ K|A| for some K ≥ 1, inequality (1.2) implies that Es(A) ≥
|A|2s−1/K. While the converse implication is not true, the next best alter-
native is given by the Balog–Szemerédi–Gowers theorem (see [1], [11], [21],
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[26]), which roughly states that whenever Es(A) ≥ |A|2s−1/K, then there
exists A′ ⊆ A such that

|A′| ≫ |A|/KO(1) and |sA′| ≪ KO(s)|A|. (1.9)

In order to see this, we first utilise Lemma 3.1 to deduce that E2(A) ≥
|A|3/K and then apply Lemma 3.5 with some standard modifications to

obtain A′ ⊆ A such that |A′| ≫ |A|/KO(1) and |A′ + A′| ≪ KO(1)|A′|,
whereupon, Lemma 3.6 delivers the claimed estimate.

Hence, while (1.9) is effective when K ≪ϵ |A|ϵ for small values of ϵ > 0, the

factor KO(s) may grow too big when K is large in terms of |A|, consequently
providing ineffective bounds for |sA′|. Moreover, whenever K ≫ |A|λ for
some λ > 0, the size of A′ obtained via (1.9) may be too small for many
applications. Building upon some ideas from [15] and [5], we prove a gener-
alisation of this result, wherein, upon including a parameter that measures
the relative size of Es/2(A), we obtain a conclusion with a much better
dependence on K.

Theorem 1.7. Let s ≥ 4 be an even natural number, let A ⊆ R be a
finite, non-empty set and let K,M ≥ 1 be real numbers satisfying Es(A) ≥
|A|2s−1/K and Es/2(A) ≤ M|A|s−1/K. Then there exists A′ ⊆ A such that
for each m,n ∈ N ∪ {0}, we have

|A′| ≫ |A|/M82 and |mA′ − nA′| ≪m,n M240(m+n)K|A|. (1.10)

A big advantage of Theorem 1.7 that we can already note is that the size
of the set A′ obtained in (1.10) is independent of K, and only depends on
the parameter M. This allows us the possibility of applying these inverse
arguments effectively even in the setting when K is large, say, when K ≫
|A|λ, for large values of λ. A similar remark can be made for the upper
bound for |mA′ − nA′| that is presented in (1.10) . In particular, letting A
satisfy Es(A) = |A|2s−1/K and Es/2(A) ≤ M|A|s−1/K, an amalgamation of
Theorem 1.7 and inequality (1.2) yields the bound

|A|2s−1K−1 = Es(A) ≥ Es(A
′) ≥ |A′|2s|sA′|−1 ≫s M−O(s)|A|2s−1K−1.

Thus, whenever M is small enough in terms of K, say, when M ≪ Ko(1),
our conclusion can be seen to be almost optimal, even for large values of K.

Finally, we justify our remark that Theorem 1.7 can be interpreted as a
generalisation of (1.9). In order to see this, note that Lemma 3.1 implies
that for every even s ∈ N, we have

|A|−sEs(A) ≤ Es/2(A) ≤ |A|s−1. (1.11)

Thus, for any set A ⊆ R satisfying Es(A) ≥ |A|2s−1/K, we may always
chooseM = K in the hypothesis of Theorem 1.7, which then yields estimates
of the same shape as (1.9). In fact, an application of Hölder’s inequality,
along with some arguments akin to the one used in Lemma 3.2 implies

that we may always set M = K
1
2
+ 1

2s−2 , but that too supplies a conclusion
of the same form as (1.9). We present a more detailed discussion regarding
Theorem 1.7, as well as its equivalent formulation in the form of Proposition
2.3, in §2.
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We finish this section by providing a brief outline of our paper. We use §2
to discuss some further applications of our method. In §3, we record some
preliminary lemmata that we will use frequently through the paper. We
then employ §4 to present the general set up for procuring our low energy
decompositions. In §5, we will use these ideas, in conjunction with the
aforementioned work of Bourgain–Chang, to prove Theorem 1.2 and related
results, such as Corollary 1.3 and Theorem 2.1. Similarly, we utilise §6 to
proving Theorem 1.4. We turn to the proof of Theorem 1.6 in §7, and this
will involve combining iterative applications of Proposition 2.3 with sumset
estimates of the form (1.6). Finally, we conclude this paper by recording
the proof of Proposition 2.3 in §8.

Notation. In this paper, we use Vinogradov notation, that is, we write
X ≫z Y , or equivalently Y ≪z X, to mean |X| ≥ Cz|Y | where C is some
positive constant depending on the parameter z. Moreover, for every θ ∈ R,
we use e(θ) to denote e2πiθ, and for every non-empty, finite set Z, we use
|Z| to denote the cardinality of Z.

Acknowledgements. The author is grateful for support and hospitality
from University of Bristol and Purdue University. The author would like to
thank Trevor Wooley for his guidance and encouragement.

2. Further applications and discussion

We commence this section by presenting versions of results from §1 that
study mixed energies. One of the motivations behind this is to show that
the sets B,C arising from our decomposition in Corollary 1.3 not only have
low additive and multiplicative energies respectively, but also that this de-
composition has a doubly orthogonal flavour, that is, B and C have a small
mutual additive and multiplicative energy. We begin this endeavour by sup-
plying some suitable notation, and thus, given any natural number s and
any finite subsets A1, . . . , A2s of R, we define

Es(A1, . . . , A2s) = |{(a1, . . . , a2s) ∈ A1 × · · · ×A2s |
s∑

i=1

ai =
s∑

i=1

as+i}|,

and

Ms(A1, . . . , A2s) = |{(a1, . . . , a2s) ∈ A1×· · ·×A2s | a1 . . . as = as+1 . . . a2s}|.
Next, for all finite sets B,C of real numbers, writing Bi = B for every
1 ≤ i ≤ s and Ci = C for every 1 ≤ i ≤ s, we define

Es(B,C) = Es(B1, . . . , Bs, C1, . . . , Cs)

and

Ms(B,C) = Ms(B1, . . . , Bs, C1, . . . , Cs).

We can interpret Es(B,C) and Ms(B,C) as measures of additive and mul-
tiplicative interactions between the sets B and C.

Theorem 2.1. Let s ∈ N be sufficiently large, and let A ⊆ Z be a finite set.
Then there exist disjoint sets B,C such that A = B ∪ C, and

max{Es(B),Ms(C), Es(B,C),Ms(B,C)} ≪s |A|2s−γs ,
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where γs ≫ (log log s)1/2(log log log s)−1/2. Moreover, if 0 /∈ A, then for
every A1, . . . , A2s ∈ {B,C}, we either have

Es(A1, . . . , A2s) ≪s |A|2s−γs or Ms(A1, . . . , A2s) ≪s |A|2s−γs . (2.1)

Thus, the sets B and C prescribed by Theorem 2.1 not only have small
additive and multiplicative energies respectively, but there is also low arith-
metic interaction between the two sets. Moreover, it is interesting to note
that in the case of (2.1), we must restrict to the case when 0 /∈ A, but we
will show that this condition is, in fact, necessary.

Writing A = {0, 1, 2, . . . , N}, we suppose that A = B∪C for some disjoint
sets B,C, and without loss of generality, we may further assume that |B| ≥
N/2. We now set Ai = Ai+s = B for every 2 ≤ i ≤ s, and if 0 ∈ B, we set
A1 = As+1 = B, otherwise we set A1 = As+1 = C. In either case, applying
the Cauchy-Schwarz inequality gives us

Es(A1, . . . , A2s) ≥ Es−1(B) ≥ |B|2s−2|sB|−1 ≫s N
2s−3,

while
Ms(A1, . . . , A2s) ≥ |B|2s−2 ≫s N

2s−2,

since 0 · b2 . . . bs = 0 · bs+1 . . . b2s for every b2, . . . bs, bs+2, . . . , b2s ∈ B. This
confirms our claim.

As previously mentioned, we can also generalise Theorem 1.6 to the case
when we consider additive interactions between multiple (k−1)-convex sets.

Corollary 2.2. Let k, s ≥ 2 be natural numbers. Morevoer, for every 1 ≤
i ≤ 2s, let Ii ⊆ R be an interval, let fi : Ii → R be (k − 1)-convex, and let
Ii ⊆ Ii be a finite set, with Ai = fi(Ii) and Ki = |2Ii − Ii|/|Ii|. Then, we
have

Es(A1, . . . , A2s) ≪s,k (K1 . . .K2s)
Os,k(1)(|A1|

1
2s . . . |A2s|

1
2s )2s−k+(4k−4)s−ηk ,

where ηk ∈ (0, 1).

Proof. Theorem 1.6 implies that Es(Ai) ≪s,k KOs,k(1)|Ai|2s−k+(4k−4)s−ηk for
every 1 ≤ i ≤ 2s, which further combines with Lemma 3.2 to deliver the
required bound. □

Moreover, while Theorem 1.6 and Corollary 2.2 and inequalities (1.6) and
(1.8) can be seen as higher convexity generalisations of (1.5), the methods
used herein differ significantly from the previous work done around these
topics. For example, Elekes, Nathanson and Ruzsa used incidence geometric
tools to prove (1.5), whereas the authors in [13] and [7] employed more
elementary combinatorial methods in their work. On the other hand, we
rely heavily on a variety of tools from arithmetic combinatorics, including
our variant of the s-fold Balog–Szemerédi–Gowers theorem, that is, Theorem
1.7. We present this in an equivalent formulation below.

Proposition 2.3. Let ν, δ be positive real numbers such that ν ≥ 1, and
let s ≥ 4 be some even number. Moreover, suppose that A is some finite,
non-empty set of real numbers such that Es(A) ≥ |A|2s−ν . Then we either
have

Es/2(A) > |A|s−ν+δ
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or there exists some A′ ⊆ A such that |A′| ≫ |A|1−82δ, and for each m,n ∈
N ∪ {0}, we have

|mA′ − nA′| ≪m,n |A|ν+240(m+n)δ.

We note that this readily implies Theorem 1.7, by setting K = |A|ν−1

and M = |A|δ. Furthermore, recalling (1.11), we see that Proposition 2.3
roughly states that whenever Es/2(A) and Es(A) follow an almost optimal
relation, then we can obtain a very strong control over the many-fold sumsets
of a large enough subset A′ of A. Another such inverse result arises in work
of Shkredov [22], who showed that whenever E2(A) and the so-called higher
energy follow an almost optimal relation, then one can obtain a conclusion
of a similar strength as Proposition 2.3. This result has found a variety of
applications in arithmetic combinatorics and related areas, for instance, we
point the reader to some of our recent work on threshold breaking estimates
for additive energies of sets lying on curves and spheres (see [16], [17]).
Similarly, Bateman and Katz [3] studied structure theorems for sets Λ that,
amongst other properties, satisfied almost optimal relations between E2(Λ)
and E4(Λ), and this formed a crucial ingredient in their breakthrough work
on the cap set problem. Relatives of these ideas also present themselves in
the recent groundbreaking work of Bloom–Sisask [4] on Roth’s theorem on
arithmetic progressions.

We end this section by noting that even in the case when A = Nk, ob-
taining near optimal bounds for Es(Nk) for smaller values of s, say, when
s = o(k2), is incredibly hard, and any significant progress in that direction
would imply major improvements in Waring’s problem. Thus, writing s0(k)
to be the smallest value of s for which we have

Es(Nk) ≪s,k,ϵ N
2s−k+ϵ

for every ϵ > 0, the problem of finding optimal estimates for s0(k) has been
studied by multiple authors, with the current best known bounds arising
from the work of Wooley [28, Corollary 14.7], who proved that s0(k) ≤
k2 − k + 2⌊

√
2k + 2⌋. We refer the reader to Section 14 of the latter paper

for more details regarding this topic.

3. Preliminaries

We begin by recording some preliminary definitions and results that we
require in our proof of Theorem 1.6. Thus, given a finite, non-empty set A
of real numbers, for each n ∈ R, we write rs(n) to denote the number of
solutions to the equation x1 + · · · + xs = n with x1, . . . , xs ∈ A. Thus, for
any n ∈ R, we have rs(n) ≥ 1 if and only if n ∈ sA. Moreover, a standard
double counting argument implies that∑

n∈sA
rs(n) = |A|s and

∑
n∈sA

rs(n)
2 = Es(A). (3.1)

Additionally, given a finite subset X of R, we use 1X to denote the charac-
teristic function of X, that is, given n ∈ R, we have 1X(n) = 1 if n ∈ X,
and 1X(n) = 0 otherwise. We now record some inequalities concerning
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the relation between the representation function rs and the additive energy
Es(A).

Lemma 3.1. Let A be a set of real numbers and let s be a natural number.
Then, whenever s is even, we have

sup
n

rs(n) ≤ Es/2(A).

Similarly, for each 1 ≤ l < s, we have

Es(A) ≤ |A|2s−2lEl(A).

Proof. Let G be the finitely generated abelian group spanned by elements of
A. We begin by defining, for any finitely supported functions f, g : R → R,
the convolution

(f ∗ g)(x) =
∑
n∈G

f(n)g(x− n) for each x ∈ R.

Moreover, we can extend this definition for many-fold convolutions, by writ-
ing f ∗1 f(x) = (f ∗ f)(x) and f ∗s f(x) = (f ∗ (f ∗s−1 f))(x) for each s ≥ 2.
Finally, for each 1 ≤ p < ∞, we denote the lp(G) norms of f to be

∥f∥p = (
∑
n∈G

|f(n)|p)1/p and ∥f∥∞ = sup
n∈G

|f(n)|.

From these definitions, we see that rs(n) = (1A ∗s−1 1A)(n), and so, we can
further rewrite (3.1) as

∥1A ∗s−1 1A∥1 = |A|s, and ∥1A ∗s−1 1A∥22 = Es(A).

We can now use Young’s convolution inequality to deduce that

sup
n

rs(n) = ∥1A ∗s−1 1A∥∞ ≤ ∥(1A ∗s/2−1 1A)∥22 = Es/2(A),

whenever s is even. Similarly, for every 1 ≤ l < s, we can again apply
Young’s convolution inequality to discern that

Es(A)1/2 = ∥1A ∗s−1 1A∥2 ≤ ∥1A ∗s−l−1 1A∥1∥1A ∗l−1 1A∥2
= |A|s−lEl(A)1/2,

which delivers the required estimate. □

We now bound Es(A1, . . . , A2s) in terms of Es(A1), . . . , Es(A2s).

Lemma 3.2. Given finite, non-empty sets A1, . . . , A2s of real numbers, we
have

Es(A1, . . . , A2s) ≤ Es(A1)
1/2s . . . Es(A2s)

1/2s.

Proof. It suffices to show that for each ϵ > 0, we have

Es(A1, . . . , A2s) ≤ Es(A1)
1/2s . . . Es(A2s)

1/2s + ϵ.

We begin this endeavour by defining, for every pair ξ,R of real numbers
satisfying ξ ̸= 0 and R > 0, the quantity I(R, ξ) =

∫
[0,R] e(ξα)dα. When

ξ ̸= 0, we see that

|I(R, ξ)| = |(2πiξ)−1(e(ξR)− 1)| ≪ |ξ|−1, (3.2)
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whereas I(R, 0) = R. Moreover, for every 1 ≤ i ≤ 2s, we define the exponen-
tial sum fi(α) =

∑
a∈Ai

e(aα), while we useA to denote the set A1×· · ·×A2s,
and we use a = (a1, . . . , a2s) to denote an element in A. Next, we write

U = {a ∈ A |
s∑

i=1

(ai − ai+s) = 0}, and V = {a ∈ A |
s∑

i=1

(ai − ai+s) ̸= 0},

and T0 = (A1+ · · ·+As−As+1−· · ·−A2s)\{0}, and Ti = (sAi− sAi)\{0}
for each 1 ≤ i ≤ 2s. Finally, we set ξ0 = minξ∈T0 |ξ|, and ξi = minξ∈Ti

|ξ|,
for each 1 ≤ i ≤ 2s.

With this notation in hand, we see that∫
[0,R]

s∏
i=1

(fi(α)fs+i(α))dα =
∑
a∈U

I(R, 0) +
∑
a∈V

I(R,

s∑
i=1

(ai − ai+s))

= REs(A1, . . . , A2s) +O(|A1| . . . |A2s|ξ−1
0 ), (3.3)

where the last step follows from (3.2). Similarly, for each 1 ≤ i ≤ 2s, we
have ∫

[0,R]
|fi(α)|2sdα = REs(Ai) +O(|Ai|2sξ−1

i ). (3.4)

We may now use Hölder’s inequality to deduce that∫
[0,R]

f1(α) . . . fs(α)fs+1(α) . . . f2s(α)dα ≤
2s∏
i=1

(∫
[0,R]

|fi(α)|2sdα
)1/2s

,

which then combines with (3.3) and (3.4) to deliver the estimate

Es(A1, . . . , A2s) +O

(
|A1| . . . |A2s|

Rξ0

)
≤

2s∏
i=1

(
Es(Ai) +O

(
|Ai|2s

Rξi

))1/2s

.

Choosing R ∈ R to be sufficiently large in terms of ϵ, s, |A|, ξ0, . . . , ξ2s, say,
R ≥ ϵ−1(4s2|A|)4s2

∑2s
i=0 ξ

−1
i , supplies the desired inequality. □

We note that such results can also be extended for multiplicative energies
of sets of positive real numbers. In order to see this, note that for any finite
set A ⊆ (0,∞), we can consider the set ϕ(A), where ϕ(x) = log x. In this
case, we have

x1 . . . xs = xs+1 . . . xs+r if and only if
s∑

i=1

ϕ(xi) =
s∑

i=1

ϕ(xs+i),

for every s, r ∈ N and for every x1, . . . , xs+r ∈ A. Consequently, we see
that Ms(X) = Es(ϕ(X)) for every s ∈ N and for every X ⊆ A. Similarly,

for every m,n ∈ N ∪ {0} and for every X ⊆ A, we have |X(m)/X(n)| =
|mϕ(X)− nϕ(X)|.

Lemma 3.3. Let A1, . . . , A2s be finite subsets of R \ {0}. Then

Ms(A1, . . . , A2s) ≤ 22sMs(A1)
1/2s . . .Ms(A2s)

1/2s.
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Proof. Writing Ai = (−Ai,1) ∪ Ai,2 where Ai,1, Ai,2 ⊆ (0,∞) for every 1 ≤
i ≤ 2s, we have

Ms(A1, . . . , A2s) =
∑

1≤j1,...,j2s≤2

Ms((−1)j1A1,j1 , . . . , (−1)j2sA2s,j2s)

≤
∑

1≤j1,...,j2s≤2

Ms(A1,j1 , . . . , A2s,j2s), (3.5)

where the last inequality follows from the fact that whenever x1 . . . xs =
xs+1 . . . x2s, then |x1| . . . |xs| = |xs+1| . . . |x2s|. As before, writing ϕ(X) =
{log x | x ∈ X} for every finite set X ⊆ (0,∞) and consequently applying
Lemma 3.2, we discern that

Ms(A1,j1 , . . . , A2s,j2s) = Es(ϕ(A1,j1), . . . , ϕ(A2s,j2s)) ≤
2s∏
i=1

Es(ϕ(Ai,ji))
1/2s

=

2s∏
i=1

Ms(Ai,ji)
1/2s ≤

2s∏
i=1

Ms(Ai)
1/2s,

for every 1 ≤ j1, . . . , j2s ≤ 2. Combining this with (3.5) finishes our proof
of Lemma 3.3. □

As in the case of Theorem 2.1, the condition Ai ⊆ R \ {0} is necessary in
the above lemma, since we may choose A1 = As+1 = {0} and Ai = As+i =
PN for every 2 ≤ i ≤ s, where PN is the set of first N primes. In this case,
since we have Ms(PN ) ≪s N s, we get 22sMs(A1)

1/2s . . .Ms(A2s)
1/2s ≪s

N s−1, while Ms(A1, . . . , A2s) ≥ N2s−2 due to the fact that 0 · x2 . . . xs =
0 · xs+2 . . . x2s for any x2, . . . , xs, xs+2, . . . , x2s ∈ R.

Lemma 3.4. Let A1, . . . , An be pairwise disjoint finite sets of real numbers,
and let A0 = A1 ∪ · · · ∪An. Then

Es(A0) ≤ n2s−1
n∑

i=1

Es(Ai) ≤ n2s sup
1≤i≤n

Es(Ai).

Moreover, if 0 /∈ A0, then

Ms(A0) ≤ 22sn2s−1
n∑

i=1

Ms(Ai) ≤ (2n)2s sup
1≤i≤n

Ms(Ai).

Proof. A straightforward application of Lemma 3.2 and Hölder’s inequality
implies that

Es(A0) =
∑

1≤i1,...,i2s≤n

Es(Ai1 , . . . , Ai2s) ≤
∑

1≤i1,...,i2s≤n

2s∏
j=1

Es(Aij )
1/2s

=
( n∑
i=1

Es(Ai)
1/2s

)2s ≤ n2s−1
n∑

i=1

Es(Ai) ≤ n2s sup
1≤i≤n

Es(Ai),

whence we obtain the first inequality stated in Lemma 3.4. The proof of
the second inequality follows mutatis mutandis, except we apply Lemma 3.3
instead of Lemma 3.2. □
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Our proof of Proposition 2.3 will be using the Balog–Szemerédi–Gowers
theorem, or more specifically, the following reformulation of the same that
can be expressed in terms of estimates on restricted sumsets on graphs
(see [1, Theorem 5]).

Lemma 3.5. Let A,B be finite subsets of an additive abelian group Z and
let G be a subset of A×B with S = {a+ b | (a, b) ∈ G}. If |A|, |B|, |S| ≤ N
and |G| ≥ αN2, then there exists an A′ ⊆ A such that

|A′ +A′| ≤ 238

3

log(32/α)

α7
N and |A′| ≥ 3

216
α3

log(32/α)
N

We will also be using a classical result in additive combinatorics that
bounds the size of many-fold sumsets in terms of the cardinality of two-
fold sumsets. Thus, we record the Plünnecke–Ruzsa theorem [27, Corollary
6.29].

Lemma 3.6. Let A be a finite subset of some additive abelian group G. If
|A+A| ≤ K|A|, then for all non-negative integers m,n, we have

|mA− nA| ≤ Km+n|A|.

We now present further details regarding the aforementioned work of
Bourgain–Chang, and we begin this endeavour by defining, for each finite
set A of integers and for every real number q ≥ 1, the quantity

λq(A) = sup

(∫
[0,1)

|
∑
n∈A

cne(nθ)|qdθ
)1/q

,

where the supremum is being taken over all sequences {cn}n∈A satisfying∑
n∈A |cn|2 ≤ 1. We remark that estimates on λq(A) imply bounds for addi-

tive energies of subsets of A, namely, we can use orthogonality to infer that
for every non-empty subset B of A, we have

|B|−sEs(B) =

∫
[0,1)

∣∣∑
n∈B

|B|−1/2e(nθ)
∣∣2sdθ ≤ λ2s(A)2s,

whence, we get Es(B) ≤ λ2s(A)2s|B|s. We now record the following result of
Bourgain–Chang [6, Proposition 2] which produces upper bounds for λq(A)
whenever A has a small product set.

Lemma 3.7. Let γ > 0 and q > 2. Then there exists a constant Λ = Λ(γ, q)
such that if A is a finite set of integers and K is some real number satisfying
|A ·A| ≤ K|A|, then

λq(A) < KΛ|A|γ .

In fact, this bound has recently been quantitatively strengthened [19],
wherein, it is now known that when γ < log q, one may choose Λ = 6(1 +
log q
γ ). In order to see this, observe that a combination of [19, Theorem 1.3]

and Lemma 3.6 yields the bound

λq(A) ≤ (|A(3)||A|−1)2+1/ϵ|A|2ϵ log q ≤ (|A ·A||A|−1)6+3/ϵ|A|2ϵ log q,
for every 0 < ϵ < 1/2. We may now set ϵ = γ/(2 log q) to confirm our claim.
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Finally, we note a straightforward corollary from the work of Hanson,
Roche-Newton and Rudnev [13], which will play an important role in our
proof of Theorem 1.6.

Lemma 3.8. Let k ≥ 2 be a natural number, let I ⊆ R be an interval, let
f : I → R be (k − 1)-convex on I, let I ⊆ I be a finite set, with A = f(I)
and K = |2I − I|/|I|. Moreover, let A′ ⊆ A such that |A′| ≥ C|A|. Then

|2k−1A′ − (2k−1 − 1)A′| ≫k |A′|k(C/K)2
k−k−1(log |A|)−2k+1−k−3.

Proof. Let I ′ be the subset of I such that A′ = f(I ′). In this case, we see that
|I ′| ≥ C|I|, whence, |2I ′ − I ′| ≤ K|I| ≤ KC−1|I ′|. Applying [13, Theorem
1.4] yields the desired conclusion. □

4. Set up for the decomposition

We will use this section to prove two results that will perform a key
role in our proofs of Theorems 1.2 and 1.4. Our first result in this section
encapsulates the Balog–Szemerédi–Gowers type philosophy, that is, given
any finite set A of real numbers, either we should expect a power saving
over the trivial bound for Ms(A), or there must exist a large subset B of A
such that the many-fold product sets of B are suitably small.

Lemma 4.1. Let k ≥ 1 be a real number, let m ≥ k be a natural number.
Let U ≥ 120m and s ≥ 25+(1+U)(⌈log k⌉+1) be some natural numbers and let
A be a finite set of positive real numbers. Then either Ms(A) < |A|2s−k or
there must exist B ⊆ A such that

|B| ≥ C|A|1−82k/U and |B(m)| ≤ Cm|A|3k, (4.1)

for some absolute constants C,Cm > 0.

Proof. We begin by noting that it is sufficient to consider the case when
s = s0, where s0 = 25+(1+U)(⌈log k⌉+1), since whenever s is strictly larger,
we may use Lemma 3.1 to derive the inequality Ms(A) ≤ |A|2s−2s0Ms0(A),
which then allows us to infer the desired result from the conclusion derived
in the s = s0 case. Thus setting s = s0, we may further assume that
Ms(A) ≥ |A|2s−k, since otherwise we are done. In this case, noting the
discussion following Lemma 3.2, we may apply a multiplicative version of
Proposition 2.3 to deduce that either

Ms/2(A) > |A|s−k+k/U ,

or there exists some B ⊆ A such that

|B| ≥ C|A|1−82k/U and |B(m)| ≤ Cm|A|k(1+240m/U) ≤ Cm|A|3k. (4.2)

Since the latter conclusion would mean that we are done, we may assume
that Ms/2(A) > |A|s−k(1−1/U). We can now iterate this argument multiple
times to deduce that

Ms/2r(A) > |A|s/2r−1−k(1−1/U)r ,

for every r satisfying 2r ≤ s/4. Upon comparing this with the trivial bound

Ms/2r(A) ≤ |A|s/2r−1−1,
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we infer that k(1− 1/U)r ≥ 1, that is,

r ≤ log k

log( U
U−1)

<
log k

log(U+1
U )

≤ (1 + U) log k,

where the last step utilises the fact that log(1 + x) > x
x+1 whenever x > 0.

Since s ≥ 25+(1+U)(⌈log k⌉+1), we may choose r = 2 + (1 + U)(⌈log k⌉ + 1)
to obtain a contradiction, whence, there must exist a set B ⊆ A satisfying
(4.2), and so, we are done. □

In the forthcoming sections, we will use Lemma 4.1 to deduce inverse
results that may then be iteratively applied to obtain a decomposition of
A into a sequence of subsets, such that each such subset either has a small
multiplicative energy or a small additive energy. An important aspect of
such algorithmic arguments is to ensure that they finish in an appropriate
number of steps, and in this endeavour, we present the following lemma.

Lemma 4.2. Let 0 < c < 1 and C > 0 be constants. Let A0 = A, and for
each i ≥ 1, define Ai = Ai−1 \ Ui where |Ui| ≥ C|Ai−1|1−c. Then, for some

r ≤ 2(log |A|+ 2) + C−1 |A|c
2c−1 , we must have |Ar| ≤ 1.

Proof. Let j be the smallest natural number such that |Aj | ≤ |A|/2. Then,
for each 1 ≤ i ≤ j, we see that |Ui| ≥ C|Ai−1|1−c ≥ C|A|1−c2c−1, and so, we
have

|A|/2 ≤ |Aj−1| = |A| −
j−2∑
i=1

|Ui| ≤ |A| − C(j − 2)|A|1−c2c−1.

Upon simplifying the above inequality, we see that j ≤ 2 + C−12−c|A|c,
whence, we can proceed with at most

log |A|+1∑
n=0

(2 + C−12−c|A|c2−nc) ≤ 2(log |A|+ 2) + C−1 |A|c

2c − 1

number of steps before |Ai| ≤ 1, for some i ∈ N. □

5. Proof of Theorem 1.2

We dedicate this section to proving Theorem 1.2 and Corollary 1.3. More-
over, for the purposes of this section, we will fix k ≥ 1 to be some real num-
ber, q to be some even natural number, and we will let γ = 1/(30k). With
q, γ fixed, we will write Λ = Λ(q, γ) to be the constant arising in the con-
clusion of Lemma 3.7. Noting the discussion following Lemma 3.7, we may
choose Λ = 6(1 + log q/γ) = 6 + 180k log q. Finally, we will set l = ⌈30kΛ⌉,
and m = 2l, and U = 120m, and s = 25+(1+U)(⌈log k⌉+1).

As mentioned in §3, we begin by presenting a lemma that allows us to
show that any set with a sizeable amount of multiplicative energy contains
a suitably large subset with a small additive energy.
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Lemma 5.1. Let A be a non-empty, finite subset of natural numbers such
that Ms(A) ≥ |A|2s−k. Then, there exists a subset B of A such that |B| ≥
C|A|1−82k/U and

Eq/2(B) ≪k,q |B|q−q/4.

Proof. We note that our choice of k,m,U and s satsify the hypothesis of
Lemma 4.1, and so, we may apply the same to obtain a subset B of A
satisfying (4.1). In particular, this means that

l−1∏
i=0

|B(2i+1)|
|B(2i)|

=
|B(m)|
|B|

≤ Cm
|A|3k

|B|
,

whence, there exists some 0 ≤ i ≤ l − 1, such that

|B(2i) ·B(2i)|
|B(2i)|

=
|B(2i+1)|
|B(2i)|

≤ C1/l
m

|A|3k/l

|B|1/l
.

We now use Lemma 3.7 to deduce that

λq(B
(2i)) < CΛ/l

m

|A|3kΛ/l

|B|Λ/l
|B(2i)|γ ,

which, as per the discussion preceding Lemma 3.7, implies that for every

non-empty subset D of B(2i), we have

Eq/2(D) ≤ CqΛ/l
m

|A|3qkΛ/l

|B|qΛ/l
|B(2i)|qγ |D|q/2.

Note that there exists some natural number g such that g · B ⊆ B(2i), and
since additive energies remain invariant under affine transformations, we see
that

Eq/2(B) = Eq/2(g ·B) ≤ CqΛ/l
m

|A|3qkΛ/l

|B|qΛ/l
|B(2i)|qγ |B|q/2

≤ CqΛ/l+q
m |A|3qkΛ/l+3qkγ |B|q(1/2−Λ/l),

where we have used the fact that |B(2i)| ≤ |B(m)| ≤ Cm|A|3k. Recalling that

|B| ≥ C|A|1−82k/U , we get

Eq/2(B) ≤ C
qΛ/l
m

C(1−82k/U)−1 |B|
3qkΛ/l+3qkγ

1−82k/U |B|q(1/2−Λ/l).

Furthermore, using the fact that (1− x)−1 ≤ 1 + 2x whenever x ≤ 1/2, we
see that

3qkΛ/l + 3qkγ

1− 82k/U
≤ 3qk(1 + 164k/U)(Λ/l + γ).

Noting that 164k/U ≤ 1/10 and l ≥ 30kΛ, we deduce that

Eq/2(B) ≤ C
qΛ/l
m

C(1−82k/U)−1 |B|11q/50|B|q/2 ≪k,q |B|q−q/4,

which is the claimed estimate. □

We are now ready to proceed with our proof of Theorem 1.2.
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Proof of Theorem 1.2. We begin by noting that it suffices to prove Theorem
1.2 for finite subsets of natural numbers. In order to see this, let A be a
finite subset of integers and write A = A1 ∪ A2 ∪ A3, where A1 ⊆ [1,∞)
and A2 ⊆ (−∞,−1] and A3 ⊆ {0}. Note that whenever A3 is non-empty,
we trivially have Ms(A3) = Es(A3) ≤ |A|s. On the other hand, applying
Theorem 1.2 for the set A1, we see that A1 = B1 ∪ C1 such that

Eq/2(B1) ≪k,q |B1|q−q/5 and Ms(C1) ≤ |C1|2s−k.

Similarly, since −A2 ⊆ N, and Es(−X) = Es(X) and Ms(−X) = Ms(X) for
every finite subset X of real numbers, we may apply Theorem 1.2 to deduce
that A2 = B2 ∪ C2 where B2 and C2 satisfy the relevant energy estimates.
We now set B = B1 ∪B2 ∪A3 and use Lemma 3.4 to furnish the bound

Eq/2(B) ≪k,q |B|q−q/5.

Similarly, we may write C = C1 ∪ C2 and use Lemma 3.4 to obtain the
estimate

Ms(C) ≪s |C|2s−k.

Thus, from this point on, we will assume that A is a finite subset of natural
numbers.

We begin by running an algorithm to procure sets B and C with desirable
arithmetic properties. Thus, we set A0 = A and B0 = ∅. Moreover, for
every i ≥ 1, at the beginning of the ith iteration, we will assume that
we have two disjoint sets Ai−1 and Bi−1 such that Ai−1 ∪ Bi−1 = A. If
Ms(Ai−1) ≤ |Ai−1|2s−k, we stop our algorithm. On the other hand, if

Ms(Ai−1) > |Ai−1|2s−k,

we apply Lemma 5.1 to deduce the existence of Di ⊆ Ai−1 such that |Di| ≥
C|Ai−1|1−82k/U and

Eq/2(Di) ≪k,q |Di|q−q/4. (5.1)

We write Ai = Ai−1 \Di and Bi = Bi−1∪Di, and proceed to commence the
(i+ 1)th iteration.

As per Lemma 4.2, such an algorithm can run for at most r steps, where

r is some natural number satisfying r ≤ 2(log |A| + 2) + C−1 |A|c
2c−1 and c =

82k/U . Setting B = Br and C = Ar, we see that

Ms(C) ≤ |C|2s−k.

Moreover, if C ̸= A, that is, if B is non-empty, we have B = D1 ∪ · · · ∪Dr

where each Di satisfies (5.1). Combining Lemma 3.4 along with (5.1), we
get

Eq/2(B) ≤ rq sup
1≤i≤r

Eq/2(Di) +O(1) ≪k,q r
q|Di|q−q/4.

Finally, noting our upper bounds for r, we deduce that

Eq/2(B) ≪k,q |A|82qk/U |B|q−q/4. (5.2)
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We further observe that |D1| ≥ |A|1−82k/U , whence, |A|
82qk
U ≤ |D1|

82qk
U−82k .

Additionally, since U ≥ 120 · 230kΛ, where Λ ≥ 6, we see that

82qk

U − 82k
≤ 164qk

U
≤ q/20.

Combining this with (5.2) and the fact that |D1| ≤ |B|, we discern that

Eq/2(B) ≪k,q |B|q−q/5,

and so, we are done. □

We end this section by showing how Corollary 1.3 and Theorem 2.1 may
be deduced by combining our results from §2 along with Theorem 1.2.

Proof of Corollary 1.3. Since s is sufficiently large, there exists a real num-
ber k ≥ 4 such that upon setting q = 10⌈k⌉, and

Λ = 6 + 180k log q, and U = 120 · 2⌈30kΛ⌉, and s1 = 25+(1+U)(⌈log k⌉+1),

we have log log s1 ≫ log log s ≥ log log s1. Moreover, our choice of k, q,Λ
and s1 satisfy the hypothesis of Theorem 1.2, whence, there exist pairwise
disjoint set B,C such that A = B ∪ C and

Eq/2(B) ≪k,q |B|q−q/5 ≤ |B|q−k, and Ms1(C) ≪s1 |C|2s1−k.

We may now use Lemma 3.1 along with the fact that s ≥ s1 to deduce that

Es(B) ≪k,q |B|s−k and Ms(C) ≪s |C|2s−k.

Thus, it suffices to show that k ≫ (log log s)1/2(log log log s)−1/2, and this
follows from noting that

log log s ≪ log log s1 ≪ log(2U) + log(log k + 1) ≪ k2 log q ≪ k2 log k,

whenceforth, we obtain the claimed estimate. □

Proof of Theorem 2.1. We apply Corollary 1.3 to deduce the existence of
pairwise disjoint sets B and C such that A = B ∪ C and

Es(B) ≪s |B|2s−ηs and Ms(C) ≪s |C|2s−ηs , (5.3)

where ηs ≫ (log log s)1/2(log log log s)−1/2. Moreover, given any set X of real
numbers and any n ∈ R, we write qs(X;n) = |{(x1, . . . , xs) ∈ Xs | x1 . . . xs =
n}|. With this notation in hand, we see that

Ms(B,C) =
∑
n∈Z

qs(B;n)qs(C;n),

whence, we may apply the Cauchy-Schwarz inequality to deduce that

Ms(B,C) ≤
(∑
n∈Z

qs(B;n)2)
)1/2(∑

n∈Z
qs(C;n)2)

)1/2
= Ms(B)1/2Ms(C)1/2.

Combining this with (5.3) and the trivial boundMs(B) ≤ |B|2s−1, we obtain
the required estimate for Ms(B,C), with γs = (ηs +1)/2. Furthermore, the
case of Es(B,C) can be resolved mutatis mutandis.
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Finally, given any A1, . . . , A2s ∈ {B,C}, at least s of these sets must be
the same, and so, suppose that A1 = · · · = As. If A1 = · · · = As = C,
Lemma 3.3 implies that

Ms(A1, . . . , A2s) ≪s Ms(C)1/2
2s∏

i=s+1

(|Ai|2s−1)1/2s ≪s |A|2s−ηs/2−1/2,

while if A1 = · · · = As = B, we can apply Lemma 3.2 to discern that

Es(A1, . . . , A2s) ≤ Es(B)1/2
2s∏

i=s+1

(|Ai|2s−1)1/2s ≪s |A|2s−ηs/2−1/2. □

6. Proof of Theorem 1.4

We use this section to prove Theorem 1.4, and so, let (Z,m, b) be a good
tuple. Here, note that m ≥ b trivially, and furthermore, we will assume that
b ≥ 30, since otherwise, we may use trivial bounds of the shape

Es(A) ≤ |A|2s−1, (6.1)

to finish our proof.

Lemma 6.1. Let (Z,m, b) be a good tuple. Let k = b/30, let U2 = 120m, let

s2 = 25+(1+U2)(⌈log k⌉+1), let U1 = 500⌈k⌉s2 and let s1 = 25+(1+U1)(⌈log k⌉+1).
Then for every finite, non-empty subset A of Z, we have either Es1(A) <
|A|2s1−k, or there exists some subset A1 ⊆ A such that

|A1| ≥ C|A|1−82k/U1 and Ms2(A1) < |A1|2s2−k,

or |A| ≤ Ck,m, where Ck,m is some positive constant.

Proof. Let A be a non-empty finite subset of Z. We may suppose that we
have Es1(A) ≥ |A|2s1−k, since otherwise, we are done. Furthermore, we may
apply arguments as in the proof of Lemma 4.1 to find a subset A1 of A such
that

|A1| ≥ C|A|1−82k/U1 and |mA1| ≤ Cm|A|3k.
Here, we have used the facts that s1 ≥ 25+(1+U1)(⌈log k1⌉+1) and U1 ≥ 120m.
We can now assume that Ms2(A1) ≥ |A1|2s2−k, since otherwise we would be
done, whence, as before, we obtain a subset A2 of A1 such that

|A2| ≥ C|A1|1−82k/U2 and |A(m)
2 | ≤ Cm|A1|3k.

This implies that

|A(m)
2 | ≤ CmC(1−82k/U2)−1 |A2|

3k
1−82k/U2 ,

and

|mA2| ≤ |mA1| ≤ Cm|A|3k ≪k,m |A2|
3k

(1−82k/U1)(1−82k/U2) .

Noting the elementary inequality (1+x)−1 ≤ 1+2x whenever 0 ≤ x ≤ 1/2,
and the fact that U2 ≥ U1 ≥ 120k, we see that

|A(m)
2 | ≪k,m |A2|9k, and |mA2| ≪k,m |A2|27k.

Putting this together with (1.4) and the fact that k = b/30, we discern that

|A2|b ≪k,m |A2|9b/10,
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from which, we can infer that |A2| ≪k,m 1, and consequently, we have
|A| ≪k,m 1, thus finishing our proof of Lemma 6.1. □

Proof of Theorem 1.4. Let A be a finite, non-empty subset of Z. As in the
proof of Theorem 1.2, it suffices to consider the case when A ⊆ (0,∞). Thus,
assuming the aforementioned condition, we proceed algorithmically, and so,
we set A0 = A. At the start of the ith iteration, we will have two disjoint
sets Ai−1 and Bi−1 such that A = Ai−1∪Bi−1. In case Es1(Ai−1) < |A|2s1−k

or |Ai−1| ≤ Ck,m, we stop the iteration, else, we apply Lemma 6.1 to deduce
the existence of some subset Di ⊆ Ai−1 such that

|Di| ≥ C|Ai−1|1−82k/U1 and Ms2(Di) < |Di|2s2−k. (6.2)

In this case, we set Ai = Ai−1 \ Di and Bi = Bi−1 ∪ Di, and proceed to
commence the (i+ 1)th iteration.

Noting Lemma 4.2, we see that such an algorithm can run for at most r
steps, where

r ≤ 2(log |A|+ 2) + C−1 |A|82k/U1

282k/U1 − 1
. (6.3)

Thus, we must have A = Ar ∪ Br, where either Es1(Ar) < |Ar|2s1−k or
|Ar| ≤ Ck,m, and consequently, we find that

Es1(Ar) ≪k,m |Ar|2s1−k.

Moreover, if the set Br is non-empty, then Br = D1 ∪ · · · ∪ Dr, where Di

satisfies (6.2) for every 1 ≤ i ≤ r. Combining inequalities (6.2) and (6.3)
with Lemma 3.4, we see that

Ms2(Br) ≤ (2r)2s2 sup
1≤i≤r

Ms2(Di) ≪k,m C−2s2 |A|164ks2/U1 |Br|2s2−k.

Recalling that U1 = 500⌈k⌉s2, we see that

|A|164ks2/U1 ≪k,m |D1|(164ks2/U1)(1+164k/U1) ≪k,m |Br|492ks2/U1 ≪k,m |Br|,

whence, we have

Ms2(Br) ≪k,m |Br|2s2−k+1.

Setting B = Br and C = Ar finishes the proof of Theorem 1.4. □

7. Proof of Theorem 1.6

In this section, we present our proof of Theorem 1.6. Thus, let k ≥ 2 be
a natural number, let I ⊆ R be an interval, let f : I → R be (k− 1)-convex
on I and let I ⊆ I be a finite set, with A = f(I) and K = |2I − I|/|I|. In
this case, our main aim is to prove that the estimate

Es(A) ≪s,k |A|2s−k+(4k−4)s−ηk +KOs,k(1)

holds for every natural number s, where ηk = log(1 + T−1
k ) with

Tk = 2(82k + 82 · (2k − k − 1) + 240 · 2k).

Since ηk ∈ (0, 1), we see that whenever s ≤ 3, we may use the trivial estimate
(6.1) to prove Theorem 1.6, whence, we may assume that s ≥ 4. In fact, we
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begin by focusing on the case when s = 2r+1 for some r ∈ N, and so, we
record the following lemma.

Lemma 7.1. Let s = 2r+1 for some r ∈ N. Then either Es(A) ≪s,k

|A|2s−k+(2k−2)s−ηk or |A| ≪s,k KOs,k(1).

Proof. Writing Es(A) = |A|2s−k+Λ, we may assume that Λ > (k − 1)s−ηk ,
since otherwise, we are done. We first study the case when Es/2(A) ≤
|A|s−k+Λ+δ, where δ = ΛT−1

k . Setting m = n+1 = 2k−1, we use Proposition
2.3 and Lemma 3.8 to deduce the existence of some set A′ ⊆ A such that
|A′| ≫ |A|1−82δ, and

|mA′ − nA′| ≫k |A|k−82δk(|A|−82δ/K)2
k−k−1(log |A′|)−2k+1−k−3,

and

|mA′ − nA′| ≪k |A|k−Λ+240·2kδ.

Putting these together, we see that

|A|Λ−δ(82k+82·(2k−k−1)+240·2k) ≪k (log |A|)2k+1+k+3K2k−k−1.

As δ = ΛT−1
k , we see that the left hand side in the above inequality is at

least |A|Λ/2. Moreover, since Λ > (k − 1)s−ηk and log |A| ≪ϵ |A|ϵ for every
ϵ > 0, we may deduce that

|A| ≪s,k K4sηk (2k−k−1)(k−1)−1
,

and so, Lemma 7.1 holds true in this case.
Hence, we can assume that

Es/2(A) > |A|s−k+Λ+δ = |A|s−k+Λ(1+T−1
k ),

in which case, we may iterate this argument several times to obtain the
inequality

Es/2r(A) > |A|s/2r−1−k+Λ(1+T−1
k )r .

Since s = 2r+1, we see that the trivial bound Es/2r(A) ≤ |A|s/2r−1−1 com-

bines with the above inequality to furnish the estimate Λ(1+T−1
k )r < k−1.

Simplifying this, we get Λ(s/2)log(1+T−1
k ) < k − 1, that is,

Λ < (k − 1)2log(1+T−1
k )s− log(1+T−1

k ).

Since Tk > 1, the number log(1 + T−1
k ) is a positive constant lying between

0 and 1, thus giving us

Λ < (2k − 2)s− log(1+T−1
k ),

and so, we finish the proof of Lemma 7.1. □

We may combine the above lemma with the trivial estimate (6.1) to show
that Theorem 1.6 holds whenever s = 2r+1 for some r ∈ N.

Now, let s ≥ 4 and r ≥ 1 be natural numbers such that 2r < s < 2r+1.
As before, we may now apply Lemma 7.1 to discern that either E2r(A) ≪r,k

|A|2r+1−k+(2k−2)2−rηk or |A| ≪s,k KOs,k(1). In the latter case, we can again
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apply (6.1) to obtain the desired bound, and so, it suffices to consider the
former case. Here, we can use Lemma 3.1 with l = 2r to infer that

Es(A) ≤ E2r(A)|A|2s−2r+1 ≪s,k |A|2s−k+(2k−2)2
−r log(1+T−1

k
)

.

Furthermore, since s < 2r+1, we have (log s−1) log(1+T−1
k ) < r log(1+T−1

k ),
which, in turn, implies that

2−r log(1+T−1
k ) < s− log(1+T−1

k )2log(1+T−1
k ) ≤ 2s− log(1+T−1

k ).

Inserting this in the preceding inequality finishes the proof of Theorem 1.6.

8. Proof of Proposition 2.3

As previously mentioned, in parts of this section, we follow a combination
of ideas from our work on [15, Theorem 1.1], which itself involved utilising
some of the methods in [5].

For the rest of this section, we will fix s ≥ 4 to be an even natural number
and A to be some finite subset of R. We begin by claiming that it suffices to
prove our theorem in the case when Es(A) = |A|2s−ν . In order to see this,

note that if Es(A) > |A|2s−ν , then we can write Es(A) = |A|2s−ν′ for some
1 ≤ ν ′ < ν. Moreover, assuming the theorem to hold for sets A and real
numbers ν ′ satisfying Es(A) = |A|2s−ν′ , we would have that either

Es/2(A) > |A|2s−ν′+δ,

or there exists some subset A′ of A such that |A′| ≫ |A|1−82δ and

|mA′ − nA′| ≪m,n |A|ν′+240(m+n)δ

for each n,m ∈ N∪ {0}. Observing the fact that ν ′ < ν confirms our claim.
Thus, from this point onwards, we may assume that A satisfies

Es(A) = |A|2s−ν , (8.1)

and that

Es/2(A) ≤ |A|s−ν+δ, (8.2)

since if the latter inequality does not hold, we are done. We will now utilise
these inequalities to construct a hypergraph G on As such that there are
few distinct sums of the form a1 + · · ·+ as, with (a1, . . . , as) ∈ G. Thus, for
each t ∈ N and for each H ⊆ At, we define the restricted sumset

Σ(H) = {a1 + · · ·+ at | (a1, . . . , at) ∈ H},

and with this notation in hand, we record the following lemma.

Lemma 8.1. Let A be a finite set of real numbers satisfying inequalities
(8.1) and (8.2). Then there exists a hypergraph G ⊆ As such that

|G| > |A|s−δ/2 and |Σ(G)| ≤ 4|A|ν .

Proof. Writing S = {n ∈ R | rs(n) ≥ 2−1|A|s−ν}, we see that∑
n/∈S

rs(n)
2 < 2−1|A|s−ν

∑
n

rs(n) = 2−1|A|2s−ν ,
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which can then be combined with (3.1) and (8.1) to get∑
n∈S

rs(n)
2 = Es(A)−

∑
n/∈S

rs(n)
2 > 2−1|A|2s−ν .

We can now use Lemma 3.1 with (8.2) and the preceding inequalities to
deduce that

|A|s−ν+δ
∑
n∈S

rs(n) ≥
∑
n∈S

rs(n)
2 > 2−1|A|2s−ν ,

and consequently, we have
∑

n∈S rs(n) > 2−1|A|s−δ. Moreover, we observe
that

|A|2s−ν = Es(A) ≥
∑
n∈S

rs(n)
2 ≥ (2−1|A|s−ν)2|S|,

whence, |S| ≤ 4|A|ν . With these bounds in hand, we define our hypergraph
G ⊆ As as G = {(a1, . . . , as) ∈ As |

∑s
i=1 ai ∈ S}. This implies that

|G| =
∑
n∈S

rs(n) > 2−1|A|s−δ and |Σ(G)| = |S| ≤ 4|A|ν ,

and so, we finish the proof of our lemma. □

We now perform some standard graph theoretic pruning in order to obtain
large subsets of As/2 satisfying suitable combinatorial properties. We start
this step of our proof by introducing some notation, and so, given any t ∈ N,
any H ′ ⊆ At, any n ∈ R and any y = (y1, . . . , yt) ∈ At, we define

Σ(y) = y1 + · · ·+ yt and r(H ′;n) = |{y ∈ H ′ | Σ(y) = n}|.

As before, a simple double counting argument delivers the expression∑
n∈Σ(H′)

r(H ′;n) = |H ′|. (8.3)

Moreover, given u, v ∈ N, and w ∈ Au,w′ ∈ Av, we write (w,w′) =

(w1, . . . , wu, w
′
1, . . . , w

′
v). Finally, given x ∈ As/2 and H ⊆ As, we write

RH(x) = {y ∈ As/2 | (x,y) ∈ H}.

We note that∑
y∈As/2

∑
x∈As/2

1RG(x)(y) =
∑

x∈As/2

|RG(x)| = |G| > 2−1|A|s−δ,

whence, a straightforward application of the Cauchy-Schwarz inequality
gives us ∑

y∈As/2

(
∑

x∈As/2

1RG(x)(y))
2 > 2−2|A|2s−2δ|A|−s/2.

Simplifying the above, we get∑
x,x′∈As/2

|RG(x) ∩RG(x
′)| =

∑
y∈As/2

∑
x,x′∈As/2

1RG(x)(y)1RG(x′)(y)

> 2−2|A|3s/2−2δ,
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whereupon, we see that there must exist some x in As/2 such that∑
x′∈As/2

|RG(x) ∩RG(x
′)| > 2−2|A|s−2δ.

This leads us to define the hypergraph

G1 = {(y, z) ∈ G | y ∈ As/2 and z ∈ RG(x)},
in which case, the preceding inequality implies that

|G1| =
∑

y∈As/2

|RG(y) ∩RG(x)| > 2−2|A|s−2δ.

Writing

Y = {y ∈ As/2 | |RG(y) ∩RG(x)| ≥ 2−3|A|s/2−2δ}, (8.4)

we observe that∑
y/∈Y

|RG(y) ∩RG(x)| < 2−3|A|s/2−2δ
∑
y/∈Y

1 ≤ 2−3|A|s−2δ,

and as a result, we discern that∑
y∈Y

|RG(y) ∩RG(x)| =
∑

y∈As/2

|RG(y) ∩RG(x)| −
∑
y/∈Y

|RG(y) ∩RG(x)|

> 2−3|A|s−2δ.

This implies that |Y ||A|s/2 > 2−3|A|s−2δ, whenceforth, we have |Y | >

2−3|A|s/2−2δ. Furthermore, since∑
z∈RG(x)

|{y ∈ Y | (y, z) ∈ G1}| =
∑
y∈Y

|RG(y) ∩RG(x)| > 2−3|A|s−2δ,

there exists some z ∈ RG(x) such that

|{y ∈ Y | (y, z) ∈ G1}| > 2−3|A|s/2−2δ. (8.5)

Fixing such a z, we write Y1 = {y ∈ Y |(y, z) ∈ G1}.
Next, we consider the set S1 ⊆ Σ(Y1), where

S1 =

{
n ∈ Σ(Y1)

∣∣∣∣ r(Y1;n) > |Y1|
2|Σ(Y1)|

}
.

Upon defining Y2 = {y ∈ Y1 | Σ(y) ∈ S1}, we see that

|Y1\Y2| =
∑

n∈Σ(Y1\Y2)

r(Y1\Y2;n) ≤ 2−1|Σ(Y1)|−1|Y1||Σ(Y1\Y2)| ≤ 2−1|Y1|,

which, when amalgamated with (8.5), delivers the bound

|Y2| = |Y1| − |Y1 \ Y2| ≥ 2−1|Y1| > 2−4|A|s/2−2δ. (8.6)

We recall that Y2 ⊆ Y1 ⊆ Y , and so, (8.4) implies that for each y ∈ Y2, we
have

|RG(y) ∩RG(x)| ≥ 2−3|A|s/2−2δ. (8.7)

Lastly, we claim that

|Σ(Y2)| ≤ |Σ(Y1)| ≤ |Σ(G1)|, and |Σ(RG(y) ∩RG(x))| ≤ |Σ(G1)| (8.8)
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for each y ∈ Y2. In order to see this, note that for each y ∈ Y1, we have
(y, z) ∈ G1, and so, Σ(Y1) + Σ(z) ⊆ Σ(G1). This combines with the fact
that Y2 ⊆ Y1 to deliver the first inequality stated in (8.8). Similarly, we may
deduce the second inequality in (8.8) by noting that for each y′ ∈ RG(x),
we have (x,y′) ∈ G1.

With the sets Y2 and RG(x) in hand, we will now use their suitable com-
binatorial properties to extract some additive structure between Σ(Y2) and
Σ(RG(x)). This allows for a combined application of the Balog–Szemerédi–
Gowers theorem and the Plünnecke–Ruzsa theorem, which is what we will
proceed with in the forthcoming lemma. For ease of exposition, we denote
M = 4|A|ν and α = 2−37|A|−20δ.

Lemma 8.2. There exists a set U ′ ⊆ Σ(Y2) such that for every m,n ∈
N ∪ {0}, we have

|U ′| ≥ 2−20α4M, and |mU ′ − nU ′| ≤ (262α−12)m+n|U ′|. (8.9)

Proof. We begin our proof by applying the Cauchy-Schwarz inequality on
(8.3) to infer that

|Σ(H)|
∑

n∈Σ(H)

r(H;n)2 ≥ |H|2,

for any H ⊆ As/2. Moreover, since
∑

n∈Σ(H) r(H;n)2 ≤ Es/2(A), we can

combine the preceding inequality and (8.2) to note that

|Σ(H)| ≥ |H|2Es/2(A)−1 ≥ |H|2|A|−s+ν−δ.

Substituting H = Y2 in the above and combining this with (8.6), we deduce
that

|Σ(Y2)| > 2−8|A|s−4δ|A|−s+ν−δ = 2−8|A|ν−5δ.

Similarly, noting (8.7), we infer that for each y ∈ Y2, we have

|Σ(RG(y) ∩RG(x)| ≥ 2−6|A|s−4δ|A|−s+ν−δ = 2−6|A|ν−5δ.

Thus, upon writing U = Σ(Y2) and V = Σ(RG(x)) and defining

r(U, V ;n) = |{(u, v) ∈ U × V | u+ v = n}|

for each n ∈ R, we see that the preceding discussion implies that∑
n∈Σ(G1)

r(U, V ;n) =
∑

n∈Σ(G1)

|{(a, b) ∈ Σ(Y2)× Σ(RG(x)) | n = a+ b}|

≥ |Σ(Y2)| min
y∈Y2

|Σ(RG(y) ∩RG(x))| ≥ 2−14|A|2ν−10δ.

Applying the Cauchy-Schwarz inequality on the left hand side above, we get

|Σ(G1)|
∑

n∈Σ(G1)

r(U, V ;n)2 ≥ 2−28|A|4ν−20δ.

Since G1 ⊆ G, we have |Σ(G1)| ≤ 4|A|ν , and as a result, we deduce that∑
n∈Σ(G1)

r(U, V ;n)2 ≥ 2−28|A|4ν−20δ|Σ(G1)|−1 ≥ 2−30|A|3ν−20δ.
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We may rewrite the above inequality as∑
n∈Σ(G1)

r(U, V ;n)2 ≥ 2−30|A|−20δ|A|3ν = 2αM3,

whereupon, we define S = {n ∈ U + V | r(U, V ;n) ≥ αM}. If |S| > M ,
we let S ′ be a subset of S such that |S ′| = M , and in this case, we trivially
have ∑

n∈S′

r(U, V ;n) ≥ αM |S′| = αM2.

On the other hand, if |S| ≤ M , we let S ′ = S, and note that∑
n∈S′

r(U, V ;n)2 =
∑

n∈U+V

r(U, V ;n)2 −
∑
n/∈S′

r(U, V ;n)2

> 2αM3 − αM
∑
n/∈S′

r(U, V ;n)

≥ 2αM3 − αM |U ||V | ≥ 2αM3 − αM3 = αM3.

Moreover recalling (8.8), we see that |U |, |V | ≤ |Σ(G)| ≤ 4|A|ν = M , and so,
we get r(U, V ;n) ≤ |U | ≤ M . Combining this with the preceding discussion
then gives us ∑

n∈S′

r(U, V ;n) ≥ αM2.

In either case, we define G ⊆ U×V to be G = {(u, v) ∈ U×V | u+v ∈ S ′},
and note that |G| =

∑
n∈S′ r(U, V ;n) ≥ αM2. We may now use Lemma 3.5

to deduce the existence of U ′ ⊆ U such that

|U ′| ≥ 2−163α3M(log(32/α))−1 ≥ 2−20α4M

and

|U ′ + U ′| ≤ 2383−1 log(32/α)α−7M ≤ 242α−8M.

In particular, these imply that

|U ′ + U ′| ≤ 242α−8220α−4|U ′| = 262α−12|U ′|,

which further combines with Lemma 3.6 to give us

|mU ′ − nU ′| ≤ (262α−12)m+n|U ′|

for every m,n ∈ N ∪ {0}, and so, we are done. □

Choosing the set U ′ ⊆ U = Σ(Y2) as in the conclusion of Lemma 8.2, we
may define Y3 = {y ∈ Y1 | Σ(y) ∈ U ′}, and note that

|Y3| =
∑
n∈U ′

r(Y1;n) ≥ |U ′| |Y1|
2|Σ(Y1)|

≥ 2−21α4M
|Y1|

|Σ(G)|
≥ 2−21α4|Y1|,

where the last two inequalities follow from combining inequalities (8.8) and
(8.9) along with the fact that |Σ(G1)| ≤ |Σ(G)| ≤ M . Putting this together
with the lower bound (8.5) for |Y1|, we find that

|Y3| ≥ 2−24α4|A|s/2−2δ.



ENERGY ESTIMATES IN SUM-PRODUCT AND CONVEXITY PROBLEMS 27

Moreover, since Y3 ⊆ As/2, there exists some w ∈ As/2−1 and a subset
A′ ⊆ A such that

|A′| ≥ |Y3||A|−s/2+1 ≥ 2−24α4|A|1−2δ,

and (w, a) ∈ Y3 for each a ∈ A′. In particular, this implies that for each
a ∈ A′, the element Σ(w) + a ∈ Σ(Y3), whereupon, for each m,n ∈ N∪ {0},
we have

mA′ − nA′ + (m− n)Σ(w) ⊆ mΣ(Y3)− nΣ(Y3) ⊆ mU ′ − nU ′.

Combining this with (8.9), we conclude that

|mA′ − nA′| ≤ (262α−12)m+n|U ′| ≤ (262α−12)m+nM.

Substituting M = 4|A|ν and α = 2−37|A|−20δ in the above, we see that

|A′| ≥ 2−24α4|A|1−2δ = 2−172|A|1−82δ,

and

|mA′ − nA′| ≤ 2506(m+n)+2|A|ν+240(m+n)δ,

and consquently, we finish our proof of Proposition 2.3.
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