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Abstract. Let F be a non-archimedean local field of residue characteristic p ̸= 2. Let G be a
connected reductive group over F that splits over a tamely ramified extension of F . In [Yu01], Yu
constructed types which are called tame supercuspidal types and conjectured that Hecke algebras

associated with these types are isomorphic to Hecke algebras associated with depth-zero types

of some twisted Levi subgroups of G. In this paper, we prove this conjecture. We also prove
that the Hecke algebra associated with a regular supercuspidal type is isomorphic to the group

algebra of a certain abelian group.

1. Introduction

Let F be a non-archimedean local field of residue characteristic p 6= 2 and G be a connected
reductive group over F that splits over a tamely ramified extension of F . As explained in [Ber84],
the category R(G(F )) of smooth complex representations of G(F ) is decomposed into a product∏

[M,σ]G
R[M,σ]G(G(F )) of full subcategories R[M,σ]G(G(F )), called Bernstein blocks. Bernstein

blocks are parametrized by inertial equivalence classes [M,σ]G of cuspidal pairs. Each block
R[M,σ]G(G(F )) is equivalent to the category of modules over an algebra if [M,σ]G has an associ-
ated type as explained below. Let K be a compact open subgroup of G(F ), (ρ,W ) be an irreducible
representation of K, and s be an inertial equivalence class of a cuspidal pair. We say that (K, ρ) is
an s-type if Rs(G(F )) is precisely the full subcategory of R(G(F )) consisting of smooth represen-
tations which are generated by their ρ-isotypic components. In this case, Rs(G(F )) is equivalent
to the category of modules over the Hecke algebra H(G(F ), ρ) associated with (K, ρ) [BK98, The-
orem 4.3]. Therefore, to construct types and determine the structure of Hecke algebras associated
with the types are essential to understand the category R(G(F )).

In [MP94] and [MP96], Moy and Prasad defined the notion of depth of types and constructed
depth-zero types. Hecke algebras associated with depth-zero types were calculated in [Mor93]. In
[Mor93], Morris gave the generators and relations for Hecke algebras associated with depth-zero
types [Mor93, Theorem 7.12].

In [Yu01], Yu constructed types of general depth which are called tame supercuspidal types. His

construction starts with a tuple (
−→
G, y,−→r , ◦ρ−1,

−→
ϕ ), out of which it produces a sequence of types

(◦Ki, ◦ρi) in Gi(F ), where
−→
G =

(
G0 ⊊ G1 ⊊ . . . ⊊ Gd = G

)
is a sequence of twisted Levi subgroups

of G. Yu conjectured that the Hecke algebras associated with (◦Ki, ◦ρi) are all isomorphic [Yu01,
Conjecture 0.2]. In particular, Hecke algebras associated with these types are isomorphic to Hecke
algebras associated with depth-zero types, which are studied in [Mor93] as explained above.

In [Mis19], Mishra proved [Yu01, conjecture 0.2] under some conditions [Mis19, Theorem 6.4].
Following to this result, Adler and Mishra proved [Yu01, conjecture 0.2] under similar conditions
[AM21, Corollary 6.4]. However, these results cover only the cases that Hecke algebras are com-
mutative. In this paper, we prove [Yu01, Conjecture 0.2] without any assumptions. This is the
first topic of this paper.

The second topic of this paper is on regular supercuspidal types. In [Kal19], Kaletha defined
and constructed a large class of supercuspidal representations which he calls regular. Kaletha’s
construction starts with a regular tame elliptic pair (S, θ), where S is a tame elliptic maximal
torus, and θ is a character of S(F ) which satisfy some conditions [Kal19, Definition 3.7.5]. As ex-
plained in the paragraph following [Kal19, Definition 3.7.3], “most” supercuspidal representations
are regular when p is not too small. In this paper, we define and construct regular supercuspidal
types, which are constructed by the same data (S, θ) as Kaletha’s construction of regular super-
cuspidal representations. The regular supercuspidal representation constructed by (S, θ) contains
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the regular supercuspidal type constructed by the same (S, θ). We prove that the Hecke algebra
associated with the type constructed by (S, θ) is isomorphic to the group algebra of the quotient
of S(F ) by the unique maximal compact subgroup. This result is proved independent of [Yu01,
Conjecture 0.2] and the work of [Mor93].

We sketch the outline of this paper. In Section 3, we review Yu’s construction of supercuspidal
representations briefly. In Section 4, we prove [Yu01, Conjecture 0.2]. In Section 5, we review
Kaletha’s construction of regular supercuspidal representations, define regular supercuspidal types,
and determine the structure of Hecke algebras associated with regular supercuspidal types.

Acknowledgment. I am deeply grateful to my supervisor Noriyuki Abe for his enormous support
and helpful advice. He checked the draft and gave me useful comments. I would also like to thank
Jessica Fintzen. She checked the previous draft and gave me a lot of comments. I am supported
by the FMSP program at Graduate School of Mathematical Sciences, the University of Tokyo.

2. Notation and assumptions

Let F be a non-archimedean local field of residue characteristic p, kF be its residue field, and
G be a connected reductive group over F that splits over a tamely ramified extension of F . We
denote by Z(G) the center of G and by Gder the derived subgroup of G. We assume that p is an
odd prime.

We denote by B(G,F ) the enlarged Bruhat–Tits building of G over F . If T is a maximal,
maximally split torus of GE := G×F E for a field extension E over F , then A(T,E) denotes the
apartment of T inside the Bruhat–Tits building B(GE , E) of GE over E. For any y ∈ B(G,F ),
we denote by [y] the projection of y on the reduced building and by G(F )y (resp.G(F )[y]) the

subgroup of G(F ) fixing y (resp. [y]). For y ∈ B(G,F ) and r ∈ R̃≥0 = R≥0 ∪ {r+ | r ∈ R≥0}, we
write G(F )y,r for the Moy–Prasad filtration subgroup of G(F ) of depth r [MP94, MP96].

Suppose that K is a subgroup of G(F ) and g ∈ G(F ). We denote gKg−1 by gK. If ρ is a smooth
representation of K, gρ denotes the representation x 7→ ρ(g−1xg) of gK. If HomK∩gK(gρ, ρ) is non-
zero, we say g intertwines ρ.

3. Review of Yu’s construction

In this section, we recall Yu’s construction of supercuspidal representations and supercuspidal
types of G(F ) [Yu01].

An input for Yu’s construction of supercuspidal representations of G(F ) is a tuple (
−→
G, y,−→r , ρ−1,

−→
ϕ )

where

D1:
−→
G =

(
G0 ⊊ G1 ⊊ . . . ⊊ Gd = G

)
is a sequence of twisted Levi subgroups of G that split

over a tamely ramified extension of F , i. e., there exists a tamely ramified extension E
of F such that Gi

E is split for 0 ≤ i ≤ d, and
(
G0

E ⊊ G1
E ⊊ . . . ⊊ Gd

E = GE

)
is a split

Levi sequence in GE in the sense of [Yu01, Section 1]; we assume that Z(G0)/Z(G) is
anisotropic;

D2: y is a point in B(G0, F ) ∩ A(T,E) whose projection on the reduced building of G0(F )
is a vertex, where T is a maximal torus of G0 (hence of Gi) whose splitting field E is a
tamely ramified extension of F ; we denote by Φ(Gi, T, E) the corresponding root system
of Gi for 0 ≤ i ≤ d;

D3: −→r = (r0, . . . , rd) is a sequence of real numbers satisfying{
0 < r0 < r1 < · · · < rd−1 ≤ rd (d > 0),

0 ≤ r0 (d = 0);

D4: ρ−1 is an irreducible representation of G0(F )[y] such that ρ−1 ↾G0(F )y,0
is the inflation

of a cuspidal representation of G0(F )y,0/G
0(F )y,0+;

D5:
−→
ϕ = (ϕ0, . . . , ϕd) is a sequence of characters, where ϕi is a character of Gi(F ); we

assume that ϕi is trivial on Gi(F )y,ri+ but non-trivial on Gi(F )y,ri for 0 ≤ i ≤ d − 1.
If rd−1 < rd, we assume that ϕd is trivial on Gd(F )y,rd+ but non-trivial on Gd(F )y,rd ,
otherwise we assume that ϕd = 1. Moreover, we assume that ϕi is Gi+1-generic of depth
ri relative to y in the sense of [Yu01, Section. 9] for 0 ≤ i ≤ d− 1.
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Using the datum, we define{
Ki = G0(F )[y]G

1(F )y,r0/2 · · ·G
i(F )y,ri−1/2,

Ki
+ = G0(F )y,0+G

1(F )y,(r0/2)+ · · ·Gi(F )y,(ri−1/2)+

for 0 ≤ i ≤ d. We also define subgroups J i, J i
+ of G for 1 ≤ i ≤ d as follows. For α ∈ Φ(G,T,E),

let Uα = UT,α denote the root subgroup of G corresponding to α. We set U0 = T . For x ∈ B(G,F ),

α ∈ Φ(G,T,E) ∪ {0}, and r ∈ R̃≥0, let Uα(E)x,r denote the Moy–Prasad filtration subgroup of
Uα(E) of depth r [MP94, MP96]. We define{

J i = G(F ) ∩ 〈Uα(E)y,ri−1
, Uβ(E)y,ri−1/2 | α ∈ Φ(Gi−1, T, E) ∪ {0}, β ∈ Φ(Gi, T, E)\Φ(Gi−1, T, E)〉,

J i
+ = G(F ) ∩ 〈Uα(E)y,ri−1

, Uβ(E)y,(ri−1/2)+ | α ∈ Φ(Gi−1, T, E) ∪ {0}, β ∈ Φ(Gi, T, E)\Φ(Gi−1, T, E)〉

for 1 ≤ i ≤ d. As explained in [Yu01, Section 1], J i and J i
+ are independent of the choice of a

maximal torus T of G0 so that T splits over a tamely ramified extension E of F and y ∈ A(T,E).
Yu constructed irreducible representations ρi and ρ′i of K

i for 0 ≤ i ≤ d inductively. First, we
put ρ′0 = ρ−1, ρ0 = ρ′0 ⊗ ϕ0.

Suppose that ρi−1 and ρ′i−1 are already constructed, and ρ′i−1 ↾Gi−1(F )y,ri−1
is 1-isotypic. In

[Yu01, Section 11], Yu defined a representation ϕ′
i−1 of Ki using the theory of Weil representation.

This representation only depends on ϕi−1. If ri−1 < ri, ϕ
′
i−1 ↾Gi(F )y,ri

is 1-isotypic. Let inf
(
ρ′i−1

)
be the inflation of ρ′i−1 via the map Ki = Ki−1J i → Ki−1J i/J i ' Ki−1/Gi−1(F )y,ri−1

. Now

we define ρ′i = inf
(
ρ′i−1

)
⊗ ϕ′

i−1, which is trivial on Gi(F )y,ri if ri−1 < ri. Finally, we define
ρi = ρ′i ⊗ ϕi.

We explain the construction of ϕ′
i−1. Let 〈·, ·〉i be a pairing on J i/J i

+ defined by 〈a, b〉i =

ϕ̂i−1(aba
−1b−1). Here, ϕ̂i−1 denotes an extension of ϕi−1 ↾K0Gi−1(F )y,0

toK0Gi−1(F )y,0G(F )y,(ri−1/2)+

defined in [Yu01, Section 4]. The pairing is well-defined because by [BT72, Proposition 6.4.44],
[J i, J i] is contained in J i

+. Note that since the order of every element in J i/J i
+ divides p, we

can regard J i/J i
+ as an Fp-vector space. By [Yu01, Lemma 11.1], this pairing is non-degenerate

on J i/J i
+. In addition, by the construction of ϕ̂i−1, for j ∈ J i

+, j
p is contained in Ker(ϕ̂i−1).

Therefore, the order of every element in ϕ̂i−1(J
i
+) divides p, and since ϕ̂i−1(J

i
+) is a non-trivial

subgroup of C×, this implies that ϕ̂i−1(J
i
+) is isomorphic to Fp. Hence we can regard 〈·, ·〉i as

a non-degenerate Fp-valued pairing on J i/J i
+ and J i/J i

+ as a symplectic space over Fp. For a

symplectic space (V, 〈, 〉) over Fp, we define the Heisenberg group V # of V to be the set V × Fp

with the group law (v, a)(w, b) = (v + w, a + b + 1
2 〈v, w〉). Yu constructed a canonical isomor-

phism j : J i/
(
J i
+ ∩Ker(ϕ̂i−1)

)
→ (J i/J i

+)× J i
+/

(
J i
+ ∩Ker(ϕ̂i−1)

)
' (J i/J i

+)
# in [Yu01, Propo-

sition 11.4]. Combining this isomorphism and the map Ki−1 → Sp
(
J i/J i

+

)
induced by the con-

jugation, we define Ki−1 ⋉ J i → Ki−1 ⋉
(
J i/

(
J i
+ ∩Ker(ϕ̂i−1)

))
→ Sp

(
J i/J i

+

)
⋉ (J i/J i

+)
#.

Combining this map and the Weil representation of Sp
(
J i/J i

+

)
⋉ (J i/J i

+)
# associated with the

central character ϕ̂i−1, we construct a representation ϕ̃i−1 of Ki−1 ⋉ J i. Let inf(ϕi−1) be the

inflation of ϕi−1 via the map Ki−1 ⋉ J i → Ki−1, then inf(ϕi−1) ⊗ ϕ̃i−1 factors through the map
Ki−1⋉J i → Ki−1J i = Ki. We define ϕ′

i−1 be the representation of Ki whose inflation toKi−1⋉J i

is inf(ϕi−1)⊗ ϕ̃i−1.

For open subgroups K1,K2 of Gi(F ) and a representation ρ of K1, let indK2

K1
ρ denote the

compactly induced representation of K2.

Theorem 3.1 ([Yu01, Theorem 15.1]). The representation πi = ind
Gi(F )
Ki ρi of Gi(F ) is an irre-

ducible supercuspidal representation of depth ri for 0 ≤ i ≤ d.

For the proof of this theorem, Yu uses [Yu01, Proposition 14.1] and [Yu01, Theorem 14.2], which
are pointed out in [Fin19] to be false. However, Fintzen uses an alternative approach in [Fin19]
and proves [Yu01, Theorem 15.1] without using [Yu01, Proposition 14.1] or [Yu01, Theorem 14.2].

Next, we review Yu’s construction of supercuspidal types. We start with a datum (
−→
G, y,−→r , ◦ρ−1,

−→
ϕ )

satisfying D1, D2, D3, D5 and ◦D4:
◦D4: ◦ρ−1 is an irreducible representation of G0(F )y such that ◦ρ−1 ↾G0(F )y,0

is the inflation

of a cuspidal representation of G0(F )y,0/G
0(F )y,0+,



4 KAZUMA OHARA

instead of D4. We then follow the above construction replacing Ki with
◦Ki = G0(F )yG

1(F )y,r0/2 · · ·G
i(F )y,ri−1/2,

and construct an irreducible representation ◦ρi of
◦Ki.

Proposition 3.2. Let (
−→
G, y,−→r , ρ−1,

−→
ϕ ) be a datum satisfying D1, D2, D3, D4, D5 and ◦ρ−1 be

an irreducible representation of G0(F )y which is contained in ρ−1 ↾G0(F )y . Then (
−→
G, y,−→r , ◦ρ−1,

−→
ϕ )

satisfies D1, D2, D3, ◦D4, D5 and the representation ◦ρi constructed above is an si- type in the
sense of [BK98], where si is the inertial equivalence class of [Gi, πi]Gi .

Proof. Note that ◦Ki is the unique maximal compact subgroup of Ki, and ◦ρi is contained in
ρi ↾◦Ki . Then this proposition follows from [BK98, Proposition 5.4]. □

Types obtained in this way are called tame supercuspidal types. In the following, we write
Kd,Kd

+,
◦Kd, ρd,

◦ρd, πd simply by K,K+,
◦K, ρ, ◦ρ, π, respectively.

4. Hecke algebra isomorphism

Let K be a compact open subgroup of G(F ) and (ρ,W ) be an irreducible representation of K.
We define a Hecke algebra H(G(F ), ρ) associated with (K, ρ) as in [BK98, Section 2] and write
Ȟ(G(F ), ρ) for H(G(F ), ρ̌), where ρ̌ is the contragredient of ρ. So, Ȟ(G(F ), ρ) is the C-vector
space of compactly supported functions Φ : G(F ) → EndC(W ) satisfying

Φ(k1gk2) = ρ(k1) ◦ Φ(g) ◦ ρ(k2), ki ∈ K, g ∈ G(F ),

and for Φ1,Φ2 ∈ Ȟ(G(F ), ρ), the product Φ1 ∗ Φ2 is defined by

(Φ1 ∗ Φ2) (x) =

∫
G(F )

Φ1(y) ◦ Φ2(y
−1x)dy.

Here, we normalize the Haar measure of G(F ) so that vol(K) = 1. If s is an inertial equivalence
class of a cuspidal pair and (K, ρ) is an s-type, the Bernstein block associated with s is equivalent
to the category of H(G(F ), ρ)-modules [BK98, Theorem 4.3]. We restrict our attention to Hecke
algebras associated with tame supercuspidal types, defined in Section 3.

Let (
−→
G, y,−→r , ρ−1,

−→
ϕ ) be a datum satisfying D1, D2, D3, D4, D5 and ◦ρ−1 be an irreducible

representation of G0(F )y which is contained in ρ−1 ↾G0(F )y . We construct a [G, π]G-type (◦K, ◦ρ)
as in Section 3.

We define
supp

(
Ȟ (G(F ), ◦ρ)

)
=

⋃
f∈Ȟ(G(F ),◦ρ)

supp(f),

where supp(f) denotes the support of f . We call it the support of Ȟ (G(F ), ◦ρ). Note that

supp
(
Ȟ (G(F ), ◦ρ)

)
= {g ∈ G(F ) | g intertwines ◦ρ}.

Proposition 4.1. The support of Ȟ (G(F ), ◦ρ) is contained in ◦KG0(F )[y]
◦K. Moreover, an ele-

ment g ∈ G0(F )[y] intertwines
◦ρ if and only if g intertwines ◦ρ−1.

Remark 4.2. By [Yu01, Remark 3.5], G0(F )[y] normalizes ◦K, so ◦KG0(F )[y]
◦K = G0(F )[y]

◦K.

Proposition 4.1 follows easily from [Yu01, Corollary 15.5]. Indeed, according to [Yu01, Corol-
lary 15.5], if g ∈ G(F ) intertwines ◦ρ, then g ∈ ◦KG0(F )◦K, and an element g ∈ G0(F ) intertwines
◦ρ if and only if g intertwines ◦ρ−1. Moreover, by using the argument in the proof of [MP96, Propo-
sition 6.6], we can prove that if g ∈ G0(F ) intertwines ◦ρ−1, then g ∈ G0(F )[y]. However [Yu01,
Corollary 15.5] relies on [Yu01, Proposition 14.1] and [Yu01, Theorem 14.2], which are pointed out
in [Fin19] to be false. In the following, we prove Proposition 4.1 using an argument by Fintzen in
[Fin19, Theorem 3.1], which does not rely on [Yu01, Proposition 14.1] or [Yu01, Theorem 14.2].

For the first claim, it is enough to show that if g ∈ G(F ) intertwines ◦ρ, then g ∈ ◦KG0(F )[y]
◦K.

The first step is the following Lemma.

Lemma 4.3. If g ∈ G(F ) intertwines ◦ρ, then g ∈ ◦KG0(F )◦K.

Proof. This follows from [Yu01, Proposition 4.1] and [Yu01, Proposition 4.4]. Note that [Yu01,
Proposition 4.4] is also true if we replace ρi with

◦ρ. □
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Next, we prove the following Lemma.

Lemma 4.4. If g ∈ G0(F ) intertwines ◦ρ, then g ∈ G0(F )[y].

Proof. Let f be a nonzero element of Hom◦K∩g(◦K) (
g(◦ρ) , ◦ρ). We write Vf for the image of f . By

[Yu01, Proposition 4.4], ◦ρ ↾K+ is θd-isotypic, where

θd =

d∏
j=0

ϕ̂j ↾K+
.

This implies that G0(F )y,0+ (⊂ K+) acts on ◦ρ by θd, and
gG0(F )y,0+ acts on g(◦ρ) by gθd. For

h ∈ G0(F )y,0 ∩ gG0(F )y,0+ and 0 ≤ j ≤ d,

gϕ̂j(h) = ϕ̂j(g
−1hg) = ϕj(g

−1hg) = ϕj(g)
−1ϕj(h)ϕj(g) = ϕj(h) = ϕ̂j(h).

Hence, G0(F )y,0 ∩ gG0(F )y,0+ acts on g(◦ρ) by θd. Therefore, if we let

U ′
−1 =

(
G0(F )y,0 ∩ gG0(F )y,0+

)
G0(F )y,0+,

U ′
−1 acts on Vf by θd.
From the construction, ◦ρ is decomposed as

◦ρ =

d⊗
i=−1

Vi,

where V−1 is the inflation of ◦ρ−1 via the map

◦K = G0(F )yJ
1 · · · Jd → G0(F )yJ

1 · · · Jd/J1 · · · Jd ' G0(F )y/G
0(F )y,r0 ,

Vi is the inflation of ϕ′
i via the map

◦K = ◦Ki+1J i+2 · · · Jd → ◦Ki+1J i+2 · · · Jd/J i+2 · · · Jd = ◦Ki+1/Gi+1(F )y,ri+1
,

for 0 ≤ i ≤ d− 2, Vd−1 = ϕ′
d−1, and Vd = ϕd.

Let T be a maximal torus of G0 so that T splits over a tamely ramified extension E of F and
y, g ·y ∈ A(T,E). Such a torus exists by the fact that any two points of B(G0, F ) is contained in
an apartment of B(G0, F ) and by the discussion in the beginning of [Yu01, Section 2]. We define

Ui = G(F ) ∩ 〈Uα(E)y,ri/2 | α ∈ Φ(Gi+1, T, E)\Φ(Gi, T, E), α(y − g ·y) < 0〉,

for 0 ≤ i ≤ d− 1. Since Ui is contained in J i+1, the action of Ui on Vj is trivial for −1 ≤ j ≤ i− 1.

For, i + 1 ≤ j, Ui is contained in ◦Kj , which acts on Vj by ϕ′
j ↾◦Kj= ϕj ⊗ ϕ̃j . Here, the action

of ◦Kj by ϕ̃j factors through the map ◦Kj → Sp
(
Jj+1/Jj+1

+

)
induced by the conjugation. By

[BT72, Proposition 6.4.44],

[Jj+1, Ui] ⊂ [Jj+1, Gj(F )y,0+] ⊂ Jj+1
+ .

Therefore, the action of Ui by ϕ̃j is trivial, hence Ui acts on Vj by ϕj . For j = i, Ui acts on Vi by

the Heisenberg representation ϕ̃i of J
i+1/J i+1

+ . Putting these arguments together, we see that the
action of Ui by

◦ρ is (
⊗i−1

j=−1IdVj

)
⊗ ϕ̃i ⊗

(
⊗d

j=i+1ϕj

)
.

On the other hand, for α ∈ Φ(Gi+1, T, E)\Φ(Gi, T, E) which satisfies α(y − g ·y) < 0, we have

g−1

Uα(E)y,ri/2 = g−1

Uα(E)g·y,(ri/2)−α(y−g·y)

= Ug−1α(E)y,(ri/2)−α(y−g·y)

⊂ Ug−1α(E)y,(ri/2)+.

Here, g−1α denotes the character t 7→ α(gtg−1) of g−1

T , and Ug−1α = Ug−1T ,g−1α denotes the

corresponding root subgroup. Since J i+1
+ is independent of the choice of a maximal torus, and

g−1

T is a maximal torus of G0 so that g−1

T splits over E and y ∈ A(g
−1

T,E), g−1

Ui ⊂ J i+1
+ ⊂

Ki+1
+ ⊂ Kd

+. As ◦ρ ↾Kd
+
is θd-isotypic, Ui acts on Vf by gθd ↾Ui .

By the construction of ϕ̂j in [Yu01, Section 4], ϕ̂j is trivial on

G(F ) ∩ 〈Ug−1α(E)y,(rj/2)+ | α ∈ Φ(G,T,E)\Φ(Gj , T, E)〉
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for 0 ≤ j ≤ d− 1. Therefore, for j ≤ i, g−1

Ui is contained in Ker(ϕ̂j). This implies that

gθd ↾Ui
=

d∏
j=i+1

gϕ̂j ↾Ui
=

d∏
j=i+1

gϕj ↾Ui
=

d∏
j=i+1

ϕj ↾Ui
.

Hence, Ui acts on Vf by (
⊗i

j=−1IdVj

)
⊗

(
⊗d

j=i+1ϕj

)
.

Comparing the action of Ui by
◦ρ and the action of Ui on Vf , we conclude that Vf is contained in

V−1 ⊗ (⊗d−1
i=0 V

Ui
i )⊗ Vd.

We study the subspace V Ui
i for 0 ≤ i ≤ d−1. Recall that Vi is the space of the Weil representation

of Sp
(
J i+1/J i+1

+

)
⋉ (J i+1/J i+1

+ )#. We write W i+1 = J i+1/J i+1
+ . We define the subspace (W i+1)1

to be the image of Ui in W i+1, (W i+1)2 to be the image of

G(F ) ∩ 〈Uα(E)y,ri/2 | α ∈ Φ(Gi+1, T, E)\Φ(Gi, T, E), α(y − g ·y) = 0〉

in W i+1, and (W i+1)3 to be the image of

G(F ) ∩ 〈Uα(E)y,ri/2 | α ∈ Φ(Gi+1, T, E)\Φ(Gi, T, E), α(y − g ·y) > 0〉

in W i+1. Note that (W i+1)k is written by Vk in [Yu01, Section 13] for 1 ≤ k ≤ 3. By
[Yu01, Lemma 13.6], (W i+1)1, (W

i+1)3 are totally isotropic subspaces of the symplectic space(
W i+1, 〈, 〉i+1

)
and

(W i+1)1
⊥
= (W i+1)1 ⊕ (W i+1)2, (W

i+1)3
⊥
= (W i+1)2 ⊕ (W i+1)3.

Let Pi+1 be the maximal parabolic subgroup of Sp(W i+1) that preserves (W i+1)1. Then we obtain
the natural map

ι : Pi+1 → Sp
(
(W i+1)1

⊥
/(W i+1)1

)
' Sp

(
(W i+1)2

)
.

We write (ϕ̃i)2 for the Weil representation of Sp
(
(W i+1)2

)
⋉ ((W i+1)2)

# associated with the

central character ϕ̂i. By [Gér77, Theorem 2.4 (b)], the restriction of ϕ̃i from Sp
(
W i+1

)
⋉ (W i+1)#

to Pi+1 ⋉ (W i+1)# is given by

ind
Pi+1⋉(W i+1)#

Pi+1⋉((W i+1)1⊕((W i+1)2)#)
(ϕ̃i)2 ⊗ (χi+1 ⋉ 1).

Here, we regard (ϕ̃i)2 be a representation of Pi+1⋉
(
(W i+1)1 ⊕ ((W i+1)2)

#
)
by defining the action

of (W i+1)1 to be trivial and defining the action of Pi+1 to be the composition of ι and (ϕ̃i)2. The
character χi+1 of Pi+1 is χE+ of [Gér77, Lemma 2.3 (d)], which factors through the natural map
Pi+1 → GL((W i+1)1). Since (W i+1)3 is a complete system of representatives for(

Pi+1 ⋉ (W i+1)#
)
/
(
Pi+1 ⋉

(
(W i+1)1 ⊕ ((W i+1)2)

#
))

,

as a representation of Pi+1 ⋉
(
(W i+1)1 ⊕ ((W i+1)2)

#
)
,

ind
Pi+1⋉(W i+1)#

Pi+1⋉((W i+1)1⊕((W i+1)2)#)
(ϕ̃i)2 ⊗ (χi+1 ⋉ 1) '

⊕
v3∈(W i+1)3

v3(ϕ̃i)2 ⊗ (χi+1 ⋉ 1).

Since (W i+1)1 acts on (ϕ̃i)2 trivially, (W i+1)1 acts v3(ϕ̃i)2 by

v1 7→ ϕ̂i(v3
−1v1v3v1

−1) = 〈v3−1, v1〉i+1.

We note that (W i+1)3
⊥
= (W i+1)2⊕ (W i+1)3. Hence, for every element v3 ∈ (W i+1)3 there exists

v1 ∈ (W i+1)1 such that 〈v3−1, v1〉i+1 6= 0. Therefore,(
ind

Pi+1⋉(W i+1)#

Pi+1⋉(W i+1)1⊕((W i+1)2)#
(ϕ̃i)2 ⊗ (χi+1 ⋉ 1)

){1}⋉((W i+1)1×{0})
' (ϕ̃i)2 ⊗ χi+1

as a representation of Pi+1.
The image of Ui via the special isomorphism constructed in [Yu01, Proposition 11.4] is (W i+1)1×

{0} ⊂ (W i+1)#. Therefore Pi+1 acts on V Ui
i by (ϕ̃i)2 ⊗ χi+1.

We define
U−1 = G(F ) ∩ 〈Uα(E)y,0 | α ∈ Φ(G0, T, E), α(y − g ·y) < 0〉.

Then, U ′
−1 is contained in U−1G

0(F )y,0+. By [BT72, Proposition 6.4.44],

[J i+1, G(F )y,0+] ⊂ J i+1
+ ,
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so the image of G0(F )y,0+ in Sp
(
W i+1

)
is trivial. Also, by [BT72, Proposition 6.4.44],

[Gi+1(F )y,f(1,2) , U−1] ⊂ Gi+1(F )y,f1 ,

where f(1, 2) and f1 are functions on Φ(Gi+1, T, E) ∪ {0} defined by

f(1,2)(α) =


ri

(
α ∈ Φ(Gi, T, E) ∪ {0}

)
ri
2

(
α ∈ Φ(Gi+1, T, E)\Φ(Gi, T, E), α(y − g ·y) ≤ 0

)
( ri2 )+

(
α ∈ Φ(Gi+1, T, E)\Φ(Gi, T, E), α(y − g ·y) > 0

)
,

f1(α) =


ri

(
α ∈ Φ(Gi, T, E) ∪ {0}

)
ri
2

(
α ∈ Φ(Gi+1, T, E)\Φ(Gi, T, E), α(y − g ·y) < 0

)
( ri2 )+

(
α ∈ Φ(Gi+1, T, E)\Φ(Gi, T, E), α(y − g ·y) ≥ 0

)
and for h = f(1,2), f1,

Gi+1(F )y,h = G(F ) ∩ 〈Uα(E)y,h(α) | α ∈ Φ(Gi+1, T, E) ∪ {0}〉.

Note that the image of Gi+1(F )y,f(1,2) (resp.Gi+1(F )y,f1) in W i+1 is (W i+1)1 ⊕ (W i+1)2 (resp.

(W i+1)1). Therefore, the image of U−1 in Sp
(
W i+1

)
is contained in Pi+1, and the image of U−1

via the map

ι : Pi+1 → Sp
(
(W i+1)1

⊥
/(W i+1)1

)
' Sp

(
(W i+1)2

)
is trivial. Moreover, since U−1 is a pro-p subgroup of G0(F ), the image in GL((W i+1)1) under the
natural map Pi+1 → GL((W i+1)1) is a p-group, hence contained in the commutator subgroup of

GL((W i+1)1). Therefore, χi+1 is trivial on the image of U−1. These arguments imply that ϕ̃i(U
′
−1)

is trivial for 0 ≤ i ≤ d−1, so the action of U ′
−1 on (⊗d−1

i=0 V
Ui
i )⊗Vd is θd-isotypic. Since U

′
−1 acts on

Vf by θd and Vf is contained in V−1⊗(⊗d−1
i=0 V

Ui
i )⊗Vd, this implies that V

U ′
−1

−1 is nonzero. As [y] is a

vertex, if g 6∈ G0(F )[y], the image of U ′
−1 in G0(F )y,0/G

0(F )y,0+ is a unipotent radical of a proper

parabolic subgroup of G0(F )y,0/G
0(F )y,0+. This contradicts that

◦ρ−1 ↾G0(F )y,0
is the inflation of

a cuspidal representation of G0(F )y,0/G
0(F )y,0+. Therefore we obtain that g ∈ G0(F )[y]. □

We prove the second claim of Proposition 4.1 using an argument in [Yu01, Proposition 4.6]. Since
G0(F )[y] is contained in K and Vi is a restriction of a representation of K to ◦K for 0 ≤ i ≤ d, if

g ∈ G0(F )[y] intertwines
◦ρ−1, then g intertwines ◦ρ. We prove that the converse is true. Assume

that g ∈ G0(F )[y] intertwines
◦ρ. Since Vd is a restriction of a character of G(F ), g also intertwines

⊗d−1
j=−1Vi. If d = 0 it implies that g intertwines ◦ρ−1. Suppose d ≥ 1. We prove that g intertwines

⊗d−2
j=−1Vi. Let f be a nonzero element of Hom◦K (g(◦ρ) , ◦ρ). We write f =

∑
j f

′
j ⊗ f ′′

j , where

f ′
j ∈ EndC(⊗d−2

i=−1Vi) and f ′′
j ∈ EndC(Vd−1). We may assume that {f ′

j} is a linearly independent
set.

Since the action of Jd on ⊗d−2
i=−1Vi is trivial, for x ∈ Jd we obtain∑

j

f ′
j ⊗

(
f ′′
j ◦ (gϕ′

d−1)(x)
)
=

∑
j

f ′
j ⊗

(
ϕ′
d−1(x) ◦ f ′′

j

)
.

The linearly independence of {fj} implies that f ′′
j ∈ HomJd(gϕ′

d−1, ϕ
′
d−1). By [Yu01, Propo-

sition 12.3], HomJd(gϕ′
d−1, ϕ

′
d−1) is 1-dimensional, so we may assume that there is only one

j. We write f = f ′ ⊗ f ′′, where f ′ ∈ EndC(⊗d−2
i=−1Vi) and f ′′ ∈ HomJd(gϕ′

d−1, ϕ
′
d−1). Since

g ∈ G0(F )[y] ⊂ K, HomK(gϕ′
d−1, ϕ

′
d−1) = EndK(ϕ′

d−1) is 1-dimensional, and it is a subspace of
HomJd(gϕ′

d−1, ϕ
′
d−1), which is also 1-dimensional. Therefore HomJd(gϕ′

d−1, ϕ
′
d−1) = HomK(gϕ′

d−1, ϕ
′
d−1),

and f ′′ isK-equivariant. This implies that f ′ is a nonzero element in Hom◦K(g(⊗d−2
j=−1Vi),⊗d−2

j=−1Vi),

and g intertwines ⊗d−2
j=−1Vi. Then, an inducting argument implies that g intertwines ◦ρ−1.

Remark 4.5. In the recent work [FKS21], a modification of Yu’s construction called the twisted
Yu construction was given by Fintzen, Kaletha, and Spice. The modification is obtained by twisting
the data in the original construction by a sign character ϵ defined in [FKS21, 4.1]. They showed
that the validity of [Yu01, Proposition 14.1] and [Yu01, Theorem 14.2] can be restored if we use
the twisted construction instead of the original construction (see [FKS21, Corollary 4.1.11] and
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[FKS21, Corollary 4.1.12]). Hence, the validity of [Yu01, Corollary 15.5] can also be restored, and
we can prove Proposition 4.1 directly in this case.

We now prove [Yu01, Conjecture 0.2].

Theorem 4.6. There is a support-preserving algebra isomorphism

Ȟ (G(F ), ◦ρ) ' Ȟ
(
G0(F ), ◦ρ−1

)
.

Here, we say that an isomorphism η : Ȟ (G(F ), ◦ρ) → Ȟ
(
G0(F ), ◦ρ−1

)
is support-preserving if

for every f ∈ Ȟ (G(F ), ◦ρ), supp(f) = ◦Ksupp(η(f))◦K.

Remark 4.7. According to [Mis19, Corollary 6.3], the center of Ȟ (G(F ), ◦ρ) is isomorphic to the
center of Ȟ

(
G0(F ), ◦ρ−1

)
. In particular, [Yu01, Conjecture 0.2] holds if these Hecke algebras are

commutative. However, these Hecke algebras are not commutative in general (see [HV15, 4.4]).
Hence, our result is more general than [Mis19, Corollary 6.3].

Proof of Theorem 4.6. We set

G0
◦ρ = {g ∈ G0(F )[y] | g intertwines ◦ρ.} = {g ∈ G0(F )[y] | g intertwines ◦ρ−1.}.

The second equation follows from Proposition 4.1. By Proposition 4.1 and Remark 4.2, the support
of Ȟ (G(F ), ◦ρ) is G0

◦ρ
◦K, and the support of Ȟ

(
G0(F ), ◦ρ−1

)
is G0

◦ρ
◦K0. Fix a complete system of

representatives {gi}i ⊂ G0
◦ρ for

G0
◦ρ

◦K/◦K = G0
◦ρ

◦K0/◦K0 = G0
◦ρ/

(
G0

◦ρ ∩ ◦K0
)
.

For each gi, Hom◦K0(gi(◦ρ−1),
◦ρ−1) is 1-dimensional. We fix a basis (Tgi)−1 of this space. We

define
Tgi = (Tgi)−1 ⊗ ϕ′

0(gi)⊗ . . .⊗ ϕ′
d(gi).

The element Tgi is a basis of the 1-dimensional vector space Hom◦K(gi(◦ρ), ◦ρ). We define fgi ∈
Ȟ (G(F ), ◦ρ) and (fgi)−1 ∈ Ȟ

(
G0(F ), ◦ρ−1

)
by

fgi(x) =

{
Tgi ◦ ◦ρ(k) (x = gik, k ∈ ◦K)

0 (otherwise),

(fgi)−1(x) =

{
(Tgi)−1 ◦ ◦ρ−1(k) (x = gik, k ∈ ◦K0)

0 (otherwise).

Then as vector spaces,

Ȟ (G(F ), ◦ρ) =
⊕
i

Cfgi , Ȟ
(
G0(F ), ◦ρ−1

)
=

⊕
i

C(fgi)−1

and fgi 7→ (fgi)−1 gives a support preserving vector space isomorphism Ȟ (G(F ), ◦ρ) → Ȟ
(
G0(F ), ◦ρ−1

)
.

We will show that it is an algebra isomorphism. Let gi1 , gi2 be representatives, and take gi3 so
that gi1gi2 ∈ gi3

◦K0. We simply write g1, g2, g3 for gi1 , gi2 , gi3 , respectively. For x ∈ G, we have

(fg1 ∗ fg2)(x) =
∫
G

fg1(y) ◦ fg2(y−1x)dy

=

∫
◦K

Tg1 ◦ ◦ρ(k) ◦ fg2(k−1g1
−1x)dk

=

{
Tg1 ◦ Tg2 ◦ ◦ρ((g1g2)

−1g3k
′) (x = g3k

′, k′ ∈ ◦K)

0 (otherwise)

= c · fg3(x),
where c satisfies

c · Tg3 = Tg1 ◦ Tg2 ◦ ◦ρ((g1g2)
−1g3).

By a similar calculation, we obtain

(fg1)−1 ∗ (fg2)−1 = c−1 · (fg3)−1,

where c−1 satisfies

c−1 · (Tg3)−1 = (Tg1)−1 ◦ (Tg2)−1 ◦ ◦ρ−1((g1g2)
−1g3).



HECKE ALGEBRAS FOR TAME SUPERCUSPIDAL TYPES 9

By the definition of Tgi ,

Tg1 ◦ Tg2 ◦ ◦ρ((g1g2)
−1g3)

=
(
(Tg1)−1 ◦ (Tg2)−1 ◦ ◦ρ−1((g1g2)

−1g3)
)
⊗

 d⊗
j=0

ϕ′
j(g1) ◦ ϕ′

j(g2) ◦ ϕ′
j((g1g2)

−1g3)


=

(
(Tg1)−1 ◦ (Tg2)−1 ◦ ◦ρ−1((g1g2)

−1g3)
)
⊗

 d⊗
j=0

ϕ′
j(g3)


= c−1 · (Tg3)−1 ⊗

 d⊗
j=0

ϕ′
j(g3)


= c−1 · Tg3 .

This implies that c = c−1 and the isomorphism constructed above is an algebra isomorphism. □

5. Hecke algebras for regular supercuspidal types

Firstly, we review the definition and the construction of regular supercuspidal representations.
In this section, we assume that p is odd, is not a bad prime for G, and dose not divide the order
of the fundamental group of Gder. These assumptions are needed for the existence of a Howe
factorization.

Let (S, θ) be a regular tame elliptic pair, i. e., S is a tame elliptic maximal torus of G, and θ is a
character of S(F ) which satisfy the conditions in [Kal19, Definition 3.7.5]. Let [y] be the point of
reduced building of G over F which is associated to S in the sense of the paragraph above [Kal19,
Lemma 3.4.3] and chose y ∈ B(G,F ) such that the projection of y on the reduced building is [y].

From (S, θ), we define a sequence of twisted Levi subgroups

−→
G =

(
S = G−1 ⊂ G0 ⊊ . . . ⊊ Gd = G

)
in G and a sequence of real numbers −→r = (0 = r−1, r0, . . . , rd) as in [Kal19, 3.6].

A Howe factorization of (S, θ) is a sequences of characters
−→
ϕ = (ϕ−1, . . . , ϕd), where ϕi is a

character of Gi(F ) satisfying

θ =

d∏
i=−1

ϕi ↾S(F )

and some additional technical conditions (see [Kal19, Definition 3.6.2]). By [Kal19, Proposi-

tion 3.6.7], (S, θ) has a Howe factorization. We take a Howe factorization
−→
ϕ . Using the pair

(S, ϕ−1), we define an irreducible representation ρ−1 of G0(F )[y] as follows.
Let G◦

y be the reductive quotient of the special fiber of the connected parahoric group scheme

of G0 associated to y and S◦ be the reductive quotient of the special fiber of the connected Néron
model of S. Then S◦ ⊂ G◦

y is an elliptic maximal torus. The restriction of ϕ−1 to S(F )0 factors

through a character ϕ̄−1 : S◦(kF ) → C×.
Let κ(S,ϕ̄−1) = ±RS◦,ϕ̄−1

be the irreducible cuspidal representation of G◦
y(kF ) arising from the

Deligne–Lusztig construction applied to S◦ and ϕ̄−1 [DL76, Section 1]. We identify it with its
inflation to G0(F )y,0. We can extend κ(S,ϕ̄−1) to a representation κ(S,ϕ−1) of S(F )G0(F )y,0 [Kal19,

3.4.4]. Now we define ρ−1 = ind
G0(F )[y]

S(F )G0(F )y,0
κ(S,ϕ−1).

Proposition 5.1. Let (S, θ) be a regular tame elliptic pair and Gi, ri, ϕi, ρ−1 be as above. Then,(
(Gi)di=0, y, (ri)

d
i=0, ρ−1, (ϕi)

d
i=0

)
satisfies D1, D2, D3, D4, D5.

Proof. This is a part of [Kal19, Proposition 3.7.8]. □

Using this datum, we construct an irreducible supercuspidal representation π(S,θ) of G(F ), which
only depends on (S, θ). An irreducible supercuspidal representation of G(F ) obtained in this way
is called regular.
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Next, we define regular supercuspidal types. Let (S, θ) be a regular tame elliptic pair and define
Gi, ri, ϕi, κ(S,ϕ−1) as above. We define

◦ρ−1 = ind
G0(F )y
G0(F )y∩S(F )G0(F )y,0

◦κ(S,ϕ−1),

where ◦κ(S,ϕ−1) denotes the restriction of κ(S,ϕ−1) to G0(F )y ∩ S(F )G0(F )y,0.

Proposition 5.2. The representation ◦ρ−1 is an irreducible representation of G0(F )y.

Proof. This is essentially the same as [Kal19, Proposition 3.4.20], which is the same as the one for
[DR09, Lemma 4.5.1].

Since G0(F )y ∩ S(F )G0(F )y,0 contains G0(F )y,0 and κ(S,ϕ−1) ↾G0(F )y,0
= κ(S,ϕ̄−1) is irreducible,

◦κ(S,ϕ−1) is also irreducible. Therefore it is enough to show that if g ∈ G0(F )y intertwines ◦κ(S,ϕ−1),

then g ∈ G0(F )y∩S(F )G0(F )y,0. Suppose g ∈ G0(F )y intertwines ◦κ(S,ϕ−1), then g also intertwines

κ(S,ϕ̄−1). Hence, by [DL76, Theorem 6.8], there is h ∈ G0(F )y,0 so that Ad(hg)
(
S◦, ϕ̄−1

)
=(

S◦, ϕ̄−1

)
. By [Kal19, Lemma 3.4.5], there is l ∈ G0(F )y,0+ so that Ad(lhg)

(
S, ϕ−1 ↾S(F )0

)
=(

S, ϕ−1 ↾S(F )0

)
. Thus lhg ∈ S(F ) by the regularity of θ, and g ∈ G0(F )y ∩ S(F )G0(F )y,0. □

This proposition implies that
(
(Gi)di=0, y, (ri)

d
i=0,

◦ρ−1, (ϕi)
d
i=0

)
satisfies D1, D2, D3, ◦D4, D5.

We construct a [G, π(S,θ)]G-type (◦K, ◦ρ) from this datum. We call types obtained in this way
regular supercuspidal types.

Remark 5.3. Let (S, θ) be a regular tame elliptic pair. Let ρ−1 be the representation of G0(F )[y]
and ◦ρ−1 be the representation of G0(F )y defined as above. If ρ′ is an irreducible representation
of G0(F )y which is contained in ρ−1 ↾G0(F )y then there is g ∈ G0(F )[y] so that ρ′ is equivalent to
g(◦ρ−1). Now,

ρ′ 'g (◦ρ−1) ' ind
G0(F )y
G0(F )y∩gS(F )g−1G0(F )y,0

◦κ(gSg−1,gϕ)

and
(
gSg−1,gϕ

)
is a regular tame elliptic pair. Therefore, the [G, π(S,θ)]G-type constructed by the

datum
(
(Gi)di=0, y, (ri)

d
i=0, ρ

′, (ϕi)
d
i=0

)
is regular supercuspidal.

We determine the structure of Hecke algebras associated with regular supercuspidal types. So,
let (S, θ) be a regular tame elliptic pair and (◦K, ◦ρ) be as above. We consider the Hecke algebra
Ȟ (G, ◦ρ) associated with the type (◦K, ◦ρ).

Proposition 5.4. The support of Ȟ (G(F ), ◦ρ) is S(F )◦K.

Proof. By Proposition 4.1, it is enough to show that g ∈ G0(F )[y] intertwines
◦ρ−1 if and only

if g ∈ S(F )G0(F )y. If g ∈ S(F )G0(F )y, it is obvious that g intertwines ◦ρ−1. Conversely,
suppose that g ∈ G0(F )[y] intertwines

◦ρ−1. By the construction of ◦ρ−1, there exists g0 ∈ G0(F )y
so that gg0 intertwines ◦κ(S,ϕ−1). Then, as in the proof of Proposition 5.2, we conclude that

gg0 ∈ S(F )G0(F )y,0, and so g ∈ S(F )G0(F )y. □

We define S(F )b = ◦K∩S(F ) = G0(F )y∩S(F ), which is the unique maximal compact subgroup
of S(F ).

Corollary 5.5. The algebra Ȟ (G(F ), ◦ρ) is isomorphic to the group algebra C[S(F )/S(F )b] of
S(F )/S(F )b.

Proof. Since ◦ρ−1 is the restriction of ind
S(F )G0(F )y
S(F )G0(F )y,0

κ(S,ϕ−1) to G0(F )y, we can extend ◦ρ−1 to

S(F )G0(F )y. Therefore, we can extend ◦ρ to S(F )◦K. Then, the claim follows from a general
proposition below. □

Proposition 5.6. Let K be a compact open subgroup of G(F ) and (ρ,W ) be an irreducible repre-
sentation of K. Assume that the intertwiner

K ′ = {g ∈ G(F ) | g intertwines ρ.}

is a group which normalizes K, and ρ extends to a representation ρ′ of K ′. Then, the Hecke algebra
Ȟ(G(F ), ρ) associated with (K, ρ) is isomorphic to the group algebra C[K ′/K] of K ′/K.
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Proof. We can prove the claim by using the same argument in the proof of [BK98, Proposition 5.6].
For [k′] = k′K ∈ K ′/K, we define f[k′] ∈ Ȟ(G(F ), ρ) by

f[k′](x) =

{
ρ′(x) (x ∈ [k′])

0 (otherwise).

Then, as a vector space

Ȟ(G(F ), ρ) =
⊕

[k′]∈K′/K

Cf[k′],

and for [k′1], [k
′
2] ∈ K ′/K, f[k′

1]
∗ f[k′

2]
= f[k′

1k
′
2]
. Hence, Ȟ(G(F ), ρ) is isomorphic to the group

algebra of K ′/K. □
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