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Abstract. We consider inverse boundary value problems for general real principal type differential
operators. The first results state that the Cauchy data set uniquely determines the scattering
relation of the operator and bicharacteristic ray transforms of lower order coefficients. We also give
two different boundary determination methods for general operators, and prove global uniqueness
results for determining coefficients in nonlinear real principal type equations. The article presents
a unified approach for treating inverse boundary problems for transport and wave equations, and
highlights the role of propagation of singularities in the solution of related inverse problems.
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1. Introduction and main results

1.1. Motivation. This article studies inverse boundary value problems for linear and nonlinear
differential operators with variable coefficients. In many works in the theory of inverse boundary
value problems, it has been customary to focus on specific problems (e.g. the Calderón problem
for Laplace type equations, the inverse boundary problem for the wave equation that we will
call Gel’fand problem due to the roughly equivalent formulation posed in [Ge54Ge54], boundary and
scattering rigidity problems for transport equations, or geodesic X-ray transforms). However, there
have been unexpected connections between problems having different character, such as

• the explicit appearance of geodesic X-ray transforms in the Calderón problem [DKSU09DKSU09];
• a reduction from the Calderón problem to the Gel’fand problem involving the boundary
control method for the wave equation [DKLS16DKLS16]; and

• a direct relation between the boundary rigidity problem and the Calderón problem [PU05PU05].

In this article we will work in the spirit of a general point of view to linear partial differential
equations, as advocated in [Hö85Hö85]. The objective is to find structural conditions that allow us to
consider large classes of operators, and to identify fundamental principles that make it possible to
solve related inverse problems. In addition to obtaining results for general equations, we hope that
the new point of view will yield a better understanding of the methods that are currently available,
the connections between different problems, and the extent to which it is possible to push the
methods. Of course this is a large program and we view the present work as a starting point.
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Here, we will consider operators of real principal type and the consequences of propagation of
singularities for related inverse problems. This will include inverse problems for transport equations
(boundary and scattering rigidity) and wave equations (Gel’fand problem) as special cases. As an
example, if one knows the outgoing Dirichlet-to-Neumann map for the operator P appearing in the
wave equation on a Riemannian manifold (M, g) with time-independent magnetic potential A and
electric potential V , then up to suitable gauge transformations it is possible to recover

• the Taylor series of the coefficients at the boundary, up to the natural gauge,
• the scattering relation for the metric g,
• the geodesic X-ray transform of the magnetic potential A up to 2πZ, and
• the geodesic X-ray transform of the electric potential V .

We refer to [SY18SY18], where these results are obtained for Lorentzian wave equations, including
classical ones with time-dependent coefficients, and to references therein for earlier results. This
reduces the problem of finding the coefficients of P to the well studied boundary/lens rigidity one
and to the problem of inverting the geodesic X-ray transform on functions or more generally on
tensor fields.

In this work we prove counterparts of the above results for any real principal type differential
operator P . The scattering relation for the metric (i.e. for geodesic flow) will be replaced by the
scattering relation for the null bicharacteristic flow for P . The geodesic X-ray transform will in
turn be replaced by the relevant null bicharacteristic ray transform. In order to recover the actual
coefficients it remains to solve the related scattering rigidity and bicharacteristic ray transform
problems, if possible. These issues are left to forthcoming works. However, we will also prove
boundary determination results for real principal type operators (these can be used to recover
real-analytic coefficients), and interior determination results for related nonlinear operators.

1.2. Real principal type operators. Before stating the main results, we will need to give some
facts concerning real principal type operators. First we recall the definition of these operators from
[Hö85Hö85, Definition 26.1.8 in Section 26.1].

Definition. Let X be an open C∞ manifold. A properly supported pseudodifferential operator
P ∈ Ψm(X) is of real principal type if it has real homogeneous principal symbol pm of order m,
and if no complete null bicharacteristic of P stays over a compact subset of X.

Examples. Any real vector field with no trapped integral curves is of real principal type. The
wave operator ∂2t − ∆g0 in a space-time cylinder R ×M0, with (M0, g0) a Riemannian manifold,
is of real principal type, and so are more general Lorentzian wave operators and higher order
hyperbolic operators if the nontrapping condition is satisfied. Tricomi type operators x2∂

2
x1 + ∂2x2

are real principal type, but Keldysh type operators x1∂
2
x1 + ∂2x2 are not. Elliptic operators with

real principal symbol are real principal type, but they have no null bicharacteristics so for such
operators most of our results are void. Our results do apply to operators with elliptic factors such
as (∂2t − ∆g0)(∂

2
t + ∆g0). Of course, lower order terms with complex coefficients can be included

(heuristically, principal type operators are those whose main behaviour is described by the principal
symbol alone). We remark that different definitions of real principal type exist in the literature
(e.g. the stronger local condition dξp ̸= 0 appears, ensuring that null bicharacteristic curves have no
cusps). Moreover, operators such as the Schrödinger operator i∂t−∆ or the plate operator ∂2t +∆2

are not real principal type, but using a suitable (anisotropic) weighting for the time derivative
makes it possible to treat such operators in a similar way as real principal type operators, although
new phenomena appear (see e.g. [Ta04Ta04]). One could also consider systems of real principal type,
and there are several interesting physical examples (e.g. Maxwell and elastic wave equations).

2



A major feature of operators with real principal symbol is the fact that singularities propagate
along null bicharacteristics (i.e. integral curves of the Hamilton vector fieldHpm in the characteristic
set Char(P ) := {(x, ξ) ∈ T ∗X \ 0 ; pm(x, ξ) = 0}): if u solves Pu = 0 in X, then the wave front
set of u is contained in Char(P ) and it is invariant under the bicharacteristic flow there. In the
definition of real principal type operators, the condition that no complete null bicharacteristic of
P stays over a compact subset of X is a nontrapping condition for the bicharacteristic flow. It
ensures that the equation Pu = f can be solved in any compact set if f satisfies finitely many
linear constraints. These facts from [DH72DH72] and [Hö85Hö85, Section 26.1] are recalled in Section 22.

We wish to study inverse boundary value problems for real principal type operators. In order
to avoid technicalities related to the presence of a boundary, we will mostly focus on differential
operators on compact manifolds with smooth boundary. We will next examine the real principal
type condition and introduce several related definitions in the boundary case.

LetM be a compact manifold with smooth boundary and let P be a differential operator of order
m ≥ 1 having smooth coefficients on M . Assume that P has real principal symbol σpr[P ] = pm.
Then for any (x, ξ) ∈ Char(P ), there is a maximal interval [−τ−(x, ξ), τ+(x, ξ)], where τ±(x, ξ) ∈
[0,∞], such that the null bicharacteristic curve

γ = γx,ξ : [−τ−(x, ξ), τ+(x, ξ)] → T ∗M \ 0

with γx,ξ(0) = (x, ξ) cannot be extended to a strictly larger closed interval as a smooth bicharac-
teristic curve in T ∗M \ 0. A bicharacteristic curve is called maximal if it is defined in its maximal
interval. The null bicharacteristic flow for P is called nontrapping if τ±(x, ξ) < ∞ for every
(x, ξ) ∈ Char(P ). The operator P is said to be of real principal type on a compact manifold M
with boundary if it has real principal symbol, and if the null bicharacteristic flow is nontrapping.
We remark that the above definition is compatible with that of real principal type operators on
an open manifold, in the sense that any real principal type differential operator P on a compact
manifold M with boundary can be extended smoothly as a real principal type differential operator
in some open manifold X containing M (see [Hö85Hö85, proof of Theorem 26.1.7]).

We now define the (null bicharacteristic) scattering relation for P . This will be a map that takes
the initial point of a maximal null bicharacteristic to its end point, and vice versa. The definition
is chosen so that it allows the bicharacteristics to have arbitrary tangential intersections with the
boundary.

Definition. Let M be a compact manifold with boundary, and let P be a real principal type
differential operator in M . The (null) incoming and outgoing boundaries are defined as

∂±null(T
∗M) := {(x, ξ) ∈ Char(P ) ; τ∓(x, ξ) = 0}.

We set ∂′null(T
∗M) := ∂+null(T

∗M) ∪ ∂−null(T
∗M). The scattering relation for P is the map

αP : ∂′null(T
∗M) → ∂′null(T

∗M),

αP (x, ξ) :=

{
γx,ξ(τ+(x, ξ)), (x, ξ) ∈ ∂+null(T

∗M),

γx,ξ(−τ−(x, ξ)), (x, ξ) ∈ ∂−null(T
∗M).

It is immediate that ∂′null(T
∗M) ⊂ ∂(T ∗M) ∩ Char(P ), and that the scattering relation has the

following properties:

αP (∂
±
null(T

∗M)) = ∂∓null(T
∗M),

αP ◦ αP = Id.
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The next step is to consider boundary measurements for P . For second order operators it is
customary to consider a Dirichlet-to-Neumann map, which maps the Dirichlet boundary value (on
a suitable part of the boundary) of a solution of Pu = 0 inM (the outgoing one for wave equations)
to the Neumann boundary value. For a general real principal type operator P of order m ≥ 1, it
is not clear if there is a suitable well-posed boundary value problem or a corresponding boundary
map. However, one can always define boundary measurements in terms of the Cauchy data set.

For the next definition and for later purposes, we fix an auxiliary smooth Riemannian metric g
on M and let ∇ be the covariant derivative with respect to g. Then ∇ku is the kth total covariant
derivative of u, and the Cauchy data set below encodes the derivatives of solutions of Pu = 0 in
M up to order m− 1 on the boundary.

Definition. The Cauchy data set of P is defined as

CP = {(u|∂M ,∇u|∂M , . . . ,∇m−1u|∂M ) ; u ∈ Hm(M) solves Pu = 0 in M}.

We say that two differential operators P1 and P2 agree to infinite order on ∂M , if (P1 − P2)w
vanishes to infinite order on ∂M for any w ∈ C∞(M).

Note that even though CP depends on the choice of g, the property CP = CP̃ for two operators
is independent of g.

1.3. Determining the scattering relation and bicharacteristic ray transforms. Let P be
a differential operator of order m on M and let µ be a nonvanishing half density on M . We obtain
a differential operator Pµ acting on half densities by the following definition

Pµ = µPµ−1,(1.1)

where the operators µ : u 7→ uµ and µ−1 : uµ 7→ u give an isomorphism between functions and
half densities. Writing

∑m
j=0 p

µ
j for the polyhomogeneous full symbol of Pµ in a local coordinate

system, the subprincipal symbol

σsub[P
µ] = pµm−1 +

i

2

n∑
j=1

∂xjξjp
µ
m(1.2)

is an invariantly defined function on T ∗M \ 0, see e.g. [Hö85Hö85, Theorem 18.1.33].

We can now state the first main theorem, showing that the boundary measurements for any real
principal type differential operator P uniquely determine the scattering relation which depends on
the principal symbol pm. Moreover, if pm is known then the integrals of the subprincipal symbol
σsub[P

µ] over maximal null bicharacteristics are uniquely determined modulo 2πZ.
The result assumes that the coefficients of P have already been determined up to infinite order

on ∂M (after suitable gauge transformations); this is typically done using boundary determination
results, which are discussed later.

Theorem 1.1. Let M be a compact manifold with smooth boundary, and let P1, P2 be real principal
type differential operators of order m ≥ 1 on M . If

CP1 = CP2

and if P1 = P2 to infinite order on ∂M , then

∂′null,P1
(T ∗M) = ∂′null,P2

(T ∗M),

αP1 = αP2 .
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Moreover, if the principal symbols of P1 and P2 coincide, then for any nonvanishing half density µ
on M one has

exp

[
i

∫ T

0
σsub[P

µ
1 ](γ(t)) dt

]
= exp

[
i

∫ T

0
σsub[P

µ
2 ](γ(t)) dt

]
(1.3)

whenever γ : [0, T ] → T ∗M is a maximal null bicharacteristic curve for P1.

Remark. The equation (1.31.3) can be formulated equivalently without half densities as

exp

[
i

∫ T

0
(pm−1,1 − pm−1,2)(γ(t)) dt

]
= 0,

where
∑m

j=0 pj,1 and
∑m

j=0 pj,2 are polyhomogeneous full symbols of P1 and P2, acting on functions,
in a local coordinate system. The above expression is coordinate invariant by Lemma 3.23.2 under
the assumptions above, and the equivalence follows from (3.23.2) below.

The conclusion (1.31.3) is of course equivalent to∫ T

0
σsub[P

µ
1 ](γ(t)) dt =

∫ T

0
σsub[P

µ
2 ](γ(t)) dt modulo 2πZ.

This nonuniqueness modulo 2πZ is related to the Aharonov-Bohm effect, which appears when one
tries to determine subprincipal terms on domains with nontrivial topology (see Lemma 2.62.6).

The next result shows that it is also possible to determine bicharacteristic ray transforms of the
coefficients of order ≤ m− 2, and that no nonuniqueness modulo 2πZ appears in this case.

Theorem 1.2. Let M be a compact manifold with smooth boundary, let P be a real principal type
differential operator of order m ≥ 2 on M , and let Q1 and Q2 be differential operators of order
≤ m− 2 on M with Q1 = Q2 to infinite order on ∂M . If

CP+Q1 = CP+Q2 ,

then ∫ T

0
σpr[Q1](γ(t)) dt =

∫ T

0
σpr[Q2](γ(t)) dt(1.4)

whenever γ : [0, T ] → T ∗M is a maximal null bicharacteristic curve for P .

Remark. Note that σpr[Qj ](x, ξ) = qj1...jkj (x)ξj1 · · · ξjk is a polynomial in ξ in local coordinates.

Hence (1.41.4) may be written as∫ T

0
qj1...jk1 (x(t))ξj1(t) . . . ξjk(t) dt =

∫ T

0
qj1...jk2 (x(t))ξj1(t) . . . ξjk(t) dt

where γ(t) = (x(t), ξ(t)).

Note that the above theorems are rather general, in the sense that they are valid for

• differential operators of any order, with real principal symbol and satisfying the nontrapping
condition (in particular, no wellposedness assumptions are required); and

• any maximal null bicharacteristic, possibly with cusp points (such as for Tricomi operators)
or tangential intersections with the boundary.
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The proofs of the above theorems extend in a straightforward way to the case where one only
has access to measurements on a subset Γ ⊂ ∂M . Then one obtains information along null bichar-
acteristics that do not meet ∂M away from Γ. We refer to Section 44 for precise statements.

Another related case is that of hyperbolic operators, for instance the wave operator in a space-
time cylinder M0 × (0, T ), where the boundary measurements are typically given on the lateral
boundary ∂M0 × (0, T ) for outgoing solutions that vanish near t = 0. This case can also be
included with small modifications, and it is a special case of the following result.

Consider a differential operator P of order m on a smooth open manifold X equipped with a
smooth function ϕ. We say that P is strictly hyperbolic with respect to the level surfaces of ϕ (see
[Hö85Hö85, Definition 23.2.3]) if, writing pm = σpr[P ], one has pm(x, dϕ(x)) ̸= 0 for x ∈ X and if the
polynomial τ 7→ pm(x, ξ + τdϕ(x)) = 0 has m distinct real roots for all (x, ξ) ∈ T ∗X such that ξ is
linearly independent from dϕ(x). Without loss of generality we may assume that pm is real valued
(see [Hö85Hö85, Lemma 8.7.3]).

Let M1 ⊂ X be a compact domain with smooth boundary and let T > 0. We consider the
cylinder

M = {x ∈M1 ; 0 ≤ ϕ(x) ≤ T},(1.5)

and write Γ = ∂M ∩ ∂M1, Γ− = ∂M ∩ {x ∈M1 ; ϕ(x) = 0} and Γ+ = ∂M ∩ {x ∈M1 ; ϕ(x) = T}.
If Σ ⊂ ∂M , we use the shorthand notation

trm−1
Σ u = (u|Σ,∇u|Σ, . . . ,∇m−1u|Σ).

Finally we define the lateral Cauchy data set

C lat
P = {trm−1

Γ u ; u ∈ Hm(M) solves Pu = 0 in M and trm−1
Γ−

u = 0}.

We have the following analogue of Theorems 1.11.1 and 1.21.2.

Theorem 1.3. Let M be as in (1.51.5), and let P1, P2 be differential operators of order m ≥ 1, strictly
hyperbolic with respect to the level surfaces of ϕ. Suppose that P1 = P2 to infinite order on Γ.

If C lat
P1

= C lat
P2

, then

αP1(x, ξ) = αP2(x, ξ)

for any (x, ξ) ∈ ∂′null,P1
(T ∗M) such that both for j = 1, 2, the maximal null Pj-bicharacteristic

curve through (x, ξ) does not meet ∂(T ∗M) away from Γ.

Moreover, if the principal symbols of P1 and P2 coincide, then for any nonvanishing half density
µ on M one has

exp

[
i

∫ T

0
σsub[P

µ
1 ](γ(t)) dt

]
= exp

[
i

∫ T

0
σsub[P

µ
2 ](γ(t)) dt

]
(1.6)

whenever γ : [0, T ] → T ∗M is a maximal null bicharacteristic curve for P1 whose spatial projection
does not meet ∂M away from Γ.

Finally, if m ≥ 2 and if Pj = P +Qj where Qj has order ≤ m− 2 for j = 1, 2, then∫ T

0
σpr[Q1](γ(t)) dt =

∫ T

0
σpr[Q2](γ(t)) dt

whenever γ : [0, T ] → T ∗M is a maximal null bicharacteristic curve for P whose spatial projection
does not meet ∂M away from Γ.
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1.4. Boundary determination results. We proceed to the statement of boundary determination
results. Given (x, ξ) ∈ T ∗(∂M), the boundary determination results at x will depend on properties
of the characteristic polynomial in the normal direction, i.e. on the polynomial

τ 7→ pm(x, ξ + τν),

where ν is the inward pointing unit conormal to ∂M with respect to the auxiliary metric g. This
is a polynomial of order m with real coefficients, and hence has m complex roots counted with
multiplicity so that the non-real roots occur in complex conjugate pairs. We will employ two
methods for determining boundary values at x:

• (Elliptic region) If τ 7→ pm(x, ξ + τν) has a simple non-real root, we use exponentially
decaying solutions that concentrate near x to give an analogue of boundary determination
results for second order elliptic equations.

• (Hyperbolic region) If τ 7→ pm(x, ξ+τν) has at least two distinct real roots, we use solutions
concentrating near two null bicharacteristics through x and obtain an analogue of boundary
determination results for the wave equation.

In fact the regions could be mixed, and we will use a combination of both methods. The terminology
above is analogous to the case of second order operators [Hö85Hö85, Section 24.2]: if P is of second order
with real principal symbol p2 and the boundary is noncharacteristic, then the elliptic region (resp.
hyperbolic region) is the set of those points in (x, ξ) ∈ T ∗(∂M) such that the map τ 7→ p2(x, ξ+τν)
has no real zeros (resp. has two distinct real zeros).

The next result proves that the Cauchy data set determines the Taylor series of the principal
symbol of P at x, modulo a natural gauge invariance given by CP = CcP where c ∈ C∞(M,R) is
nonvanishing. The result assumes that there is some ξ ∈ T ∗

x (∂M) such that τ 7→ pm(x, ξ + τν) has
only simple roots, with an additional geometric condition for the real roots.

Definition. We say that two smooth curves γj = (xj , ξj) : [0, Tj ] → T ∗M intersect nicely at
x ∈ ∂M if x1(0) = x2(0) = x with ẋ1(0) and ẋ2(0) linearly independent, if the curves xj(t) never
intersect at the boundary again, and if ξ1(t) ̸= ξ2(s) when x1(t) = x2(s).

Example. Let P = ∂2t −∆g0 be the wave operator in the space-time cylinderM =M0×(0, T ) where
(M0, g0) is a compact Riemannian manifold with smooth boundary, and let (x0, t0) ∈ ∂M0× (0, T ).
Consider two null bicharacteristics γ1 and γ2 through (x0, t0) so that γ1 goes forward in time and
γ2 backward in time. Then γ1 and γ2 intersect nicely at (x0, t0). A similar picture holds for strictly
hyperbolic operators.

Theorem 1.4. Let M be a compact manifold with smooth boundary and let P1, P2 be real principal
type differential operators of order m ≥ 2. Assume that

CP1 = CP2 .

Suppose that x0 ∈ ∂M is noncharacteristic for Pj, and for some ξ0 ∈ T ∗
x0(∂M) the maps τ 7→

pm,j(x0, ξ0 + τν) have only simple roots. Moreover, assume one of the following conditions:

(1) some root is non-real, and no bicharacteristic corresponding to a real root returns to x0; or
(2) all roots are real, and whenever pm,1(x0, ξ0 + τ1ν) = pm,2(x0, ξ0 + τ2ν) = 0 for τ1 ̸= τ2 the

bicharacteristics through (x0, ξ0 + τ1ν) and (x0, ξ0 + τ2ν) intersect nicely at x0.

Then there is a nonvanishing function c ∈ C∞(M) so that in boundary normal coordinates (x′, xn)
(with respect to the background Riemannian metric) one has

(1.7) ∂jxn(pm,2(x, η)− c(x)pm,1(x, η))|x=x0 = 0, j ≥ 0, η ∈ T ∗
x0M.
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The next result considers boundary determination of Taylor series of lower order terms. It turns
out that to determine coefficients of order r, one needs that τ 7→ pm(x0, ξ0 + τν) has at least r+ 1
simple roots, with an additional geometric condition for the real roots.

Theorem 1.5. Let M be compact with smooth boundary, let P be a real principal type differential
operator of order m ≥ 2, and let Q1, Q2 be differential operators of order r ≤ m− 1. Assume that

CP+Q1 = CP+Q2 .

Suppose that for some (x0, ξ0) ∈ T ∗(∂M) the map τ 7→ pm(x0, ξ0 + τν) has at least s simple roots
τ1, . . . , τs with nonnegative imaginary parts, and assume one of the following two conditions:

(1) s ≥ r+1, one of the τj is non-real, and no bicharacteristic corresponding to a real τj returns
to x0; or

(2) s ≥ max(r + 1, 2), each τj is real, and for j ̸= k the bicharacteristics through (x0, ξ0 + τjν)
and (x0, ξ0 + τkν) intersect nicely at x0.

Then in boundary normal coordinates

∂jxnσpr[Q1](x0, η) = ∂jxnσpr[Q2](x0, η), j ≥ 0, η ∈ T ∗
x0M.

Moreover, if Q1 −Q2 has real principal symbol, the result is valid without the assumption that the
roots τj have nonnegative imaginary parts.

The results above give an immediate consequence for determining zero order terms.

Theorem 1.6. Let M be a compact manifold with smooth boundary, and let P be a real principal
type differential operator of order m ≥ 2. Let V1, V2 ∈ C∞(M), and assume that

CP+V1 = CP+V2 .

Then the Taylor series of V1 and V2 agree at any point x ∈ ∂M so that for some ξ ∈ T ∗
x (∂M), the

map τ 7→ pm(x, ξ + τν) either has a simple non-real root, or two distinct real roots τ1 and τ2 so
that the corresponding bicharacteristics intersect nicely at x.

In particular, if M , V1 and V2 are real-analytic and one such point x exists, then V1 = V2 in M .

The approach for proving the above results yields the following, perhaps surprising observations:

• It is possible to perform boundary determination for general real principal type operators,
including wave operators, just as for the Laplace operator by working in the elliptic region.
The method also works for elliptic operators of any order if sufficiently many roots are
simple.

• Boundary determination in the elliptic region is local in character (one does not need any
global assumption on behaviour of bicharacteristics).

• Boundary determination in the hyperbolic region may be local or global in character. If
two null bicharacteristics only meet at their initial point (e.g. they go in opposite time
directions), one recovers the Taylor series at that point. If they meet at two distinct
boundary points, then one recovers a sum of contributions from these two points.

• Boundary determination for the wave operator is possible also at the bottom of a space-
time cylinder, and this argument is global in character. Measuring local Cauchy data at
the bottom is not enough to determine the Taylor series of coefficients, since the Cauchy
problem is well-posed (i.e. Cauchy data at the bottom does not carry any information about
the coefficients). However, it is possible to use two null bicharacteristics intersecting at a
point in the bottom, and information measured at the lateral boundary can be used to
determine the Taylor series of coefficients at the bottom.

8



1.5. Nonlinear equations. We will next state our results for nonlinear equations whose principal
part is a linear real principal type operator. In this case, instead of obtaining conditional results
that reduce the problem of recovering coefficients to inverting a scattering relation or ray transform,
we can actually determine the unknown coefficients at all points satisfying a geometric condition.
Here we adapt the methods initiated in the case of Einstein equations and nonlinear wave equations
[KLU18KLU18, KLOU14KLOU14, LLLS21LLLS21, FO20FO20], which are based on higher order linearizations and use the fact
that the presence of nonlinear interactions may make the inverse problem easier to solve.

The model equation that we consider here is

Pu+ a(x, u) = 0 in M

where P is a linear real principal type differential operator of order m and a(x, u) is a nonlinearity
satisfying the following conditions: for a fixed integer s > max(m,n/2),

a(x, z) is holomorphic in z near 0 as a Hs(M)-valued function,(1.8)

a(x, 0) = ∂za(x, 0) = ∂2za(x, 0) = 0.(1.9)

The condition ∂2za(x, 0) = 0 simplifies the proof, and possibly could be removed with extra work.
The condition ∂za(x, 0) = 0 however is important, since it ensures that the equation is not linear
(if one removes this assumption then one could only determine the genuinely nonlinear parts, i.e.

∂jza(x, 0) for j ≥ 2).

We consider boundary measurements given in terms of the Cauchy data set with δ > 0 small,

Ca,δ = {(u|∂M ,∇u|∂M , . . . ,∇m−1u|∂M ) ; u ∈ Hs(M), Pu+ a(x, u) = 0, and ∥u∥Hs(M) ≤ δ}.
Here it is instrumental to work in the regime of small solutions, since the argument relies on
higher order linearizations around the zero solution. We will also need to make a weak uniqueness
assumption for the linearized equation and its adjoint. The space

N(P ) = {u ∈ Hm
0 (M) ; Pu = 0 in M}

is always finite dimensional (see Proposition 2.22.2). We will assume that this space is trivial, which
roughly means that the linearized equation does not admit nontrivial compactly supported solu-
tions.

Theorem 1.7. Let M be a compact manifold with smooth boundary, and let P be a real principal
type differential operator on M . Let a, ã satisfy (1.81.8)–(1.91.9), and assume that a and ã agree to high
order on ∂M in the sense that

a( · , z)− ã( · , z) ∈ Hs
0(M) for z near 0.

Assume also that

N(P ) = N(P ∗) = {0}.
If for any sufficiently small δ > 0 there is δ1 < δ so that

Ca,δ1 ⊂ Cã,δ,

then

a(x0, z) = ã(x0, z) for any x0 ∈ B and any z near 0,

where

B = {x0 ∈M int ; there are two maximal null bicharacteristics whose spatial

projections xj, j = 1, 2, only intersect once at x0 and

the tangent vectors of xj are linearly independent at x0}.
9



Example. Let M be a compact subdomain of the space-time cylinder M0 × (0, T ) where (M0, g0)
is a compact Riemannian manifold with boundary, and let P = ∂2t −∆g0 be the wave operator. If
(x0, t0) ∈ M and if there is a geodesic η(s) in M0 so that η(0) = x0 and some Jacobi field along
η only vanishes when s = 0, then by looking at the corresponding variation through geodesics one
can show that (x0, t0) is in the set B of Theorem 1.71.7. In particular, (x0, t0) ∈ B if there is at
least one geodesic through x0 with no conjugate points, but one may have (x0, t0) ∈ B even if
all geodesics through x0 have conjugate points as long as some variation field only vanishes when
s = 0. A similar argument can be given for general real principal type operators by looking at
variation fields of null bicharacteristic curves. However, this argument fails in the special situation
when x0 ∈ M0 and every M0-geodesic through x0 has a conjugate point y of maximal order (i.e.
the space of normal Jacobi fields vanishing both at x0 and y has maximal order dim(M0) − 1).
The sphere is the standard example of a manifold where any point is maximally conjugate to its
antipodal point. If M0 contains a neighborhood of the hemisphere, then the set B in Theorem 1.71.7
would be empty.

1.6. Special cases. We next give a few basic examples illustrating the above results, related to

• the boundary / scattering rigidity problem; and
• the inverse boundary problem for the Lorentzian wave equation.

Example 1.8. (Boundary / scattering rigidity) Let (M0, g0) be a compact Riemannian manifold
with strictly convex boundary, and assume that the geodesic flow in (M0, g0) is nontrapping. Let
M := SM0 = {(x, v) ∈ TM0 ; |v|g0 = 1} be the unit sphere bundle of M0, and let

P := X +A

where X is the geodesic vector field in SM0 and A ∈ C∞(SM0). Since P is a first order operator,
projections of null bicharacteristic curves to M are integral curves of P (i.e. geodesics in SM0)
and the nontrapping assumption ensures that P is of real principal type. Moreover, the scattering
relation αP induces a corresponding relation β : ∂(SM0) → ∂(SM0) so that β ◦ πM = πM ◦ αP
where πM is the projection T ∗M → M . Thus β is just the scattering relation for the metric g0 in
M0. The Cauchy data set is

CP = {u|∂(SM0) ; (X +A)u = 0 in SM0}.

Theorem 1.11.1 states that CP determines αP , and hence β, as well as the quantities∫
η
A(η(t)) dt modulo 2πZ

whenever η is a maximal geodesic in SM0. Conversely, the above information uniquely determines
CP (see Theorem 4.44.4). These results are quite elementary since P is of first order, but it is instruc-
tive to observe that the inverse boundary problem for X+A is equivalent to the scattering rigidity
problem of determining a metric g0 up to gauge from its scattering relation β, and to determining
A from its geodesic X-ray transform. It is well known that a general function A ∈ C∞(SM0) is
not determined uniquely by its X-ray transform. In fact, the kernel of the X-ray transform on
C∞(SM0) consists precisely of the functions A = XB where B ∈ C∞(SM0) with B|∂SM0 = 0 (the
proof is an elementary argument combined with [PSU12PSU12, Proposition 5.2]). However, in applica-
tions A often arises from a function or a tensor field on the base manifold M0 and there are many
available results in this case.
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Example 1.9. (Lorentzian wave equation) Let (M, g) be a compact Lorentzian manifold with
boundary, and consider the canonical wave operator □g on M . In local coordinates,

□gu = −|g|−1/2∂xj (|g|1/2gjk∂xku),

where |g| = det(gjk) and (gjk) is the inverse of (gjk). The principal symbol p2 of □g is

p2(x, ξ) = gjkξjξk = ⟨ξ, ξ⟩g.(1.10)

In this case, results similar to Theorems 1.11.1-1.61.6 are contained in [SY18SY18], with stability estimates.

The operator□g is not necessarily of real principal type if no further assumptions on the geometry
is made. Writing Sn for the unit sphere of dimension n, a counter-example is given byM = S1×M0,
where M0 is a compact domain with boundary on Sn, containing a closed geodesic, and g(t, x) =
−dt2 + g0(x) for (t, x) ∈ S1 ×M0 with dt and g0 the natural metrics on S1 and Sn, respectively.
Indeed, in this case there is a closed null geodesic on M , and □g is not of real principal type.

If all null geodesics exit M , then □g is of real principal type. This is the case, for example,
if (X, g) is a globally hyperbolic Lorentzian manifold and M ⊂ X is a compact domain with
smooth boundary. We refer to the books [O’N83O’N83, Ri09Ri09] for the definition and properties of globally
hyperbolic Lorentzian manifolds. The classical case where M =M0 × (0, T ) for some T > 0 and

g(x, t) = −dt2 + g0(x),(1.11)

with (M0, g0) a Riemannian manifold with boundary, is covered in Theorem 1.31.3.

Let a be a one form on M , and consider the wave operator P = (d + ia)∗(d + ia). Here the
adjoint is induced by the Lorentzian inner product g and d is the exterior derivative. Then the
principal symbol of P is given by p2 in (1.101.10). Defining a half density in a local coordinate system

by µ = |g|1/4|dx1 ∧ . . . ∧ dxn|1/2, consistent with the volume form, yields that

σsub[P
µ](x, ξ) = gjkajξk = ⟨a, ξ⟩g.

The expression exp
[
i
∫ T
0 σsub[P

µ](γ(t)) dt
]
, cf. (1.31.3), gives the parallel transport map with respect

to the connection d+ia along the bicharacteristic γ : [0, T ] → T ∗M of P as follows: if z(t) = π(γ(t))
where π : T ∗M →M is the natural projection, and if S(t) is a parallel section of the trivial bundle

M × C along z(t) (i.e. Ṡ(t) + ia(ż(t))S(t) = 0), then S(T ) = exp
[
−i

∫ T
0 σsub[P

µ](γ(t)) dt
]
S(0).

Let V ∈ C∞(M) have principal symbol v0(x, ξ) = V (x), and suppose that P has principal symbol
p2 in (1.101.10). Then the map in (1.41.4) corresponds to

LV (γ) =

∫ T

0
v0(γ(t))dt =

∫ T

0
V (π(γ(t)))dt,

where γ : [0, T ] → T ∗M is a maximal bicharacteristic of P . This is the light ray transform of
V . It is known that L is invertible in the case of certain stationary, globally hyperbolic manifolds
[FIO21FIO21], and in the case of certain real analytic manifolds [St17St17]. We refer also to [FIKO21FIKO21] for the
case of product geometries of the form (1.111.11).

We remark that the gauge invariances in Theorems 1.11.1-1.61.6, when specialized to the Lorentzian
wave equation, are slightly different from those in [SY18SY18]. In the boundary determination result
in Theorem 1.51.5 there is no gauge invariance a → a − dψ where ψ ∈ C∞(M) satisfies ψ|∂M = 0,
whereas such a gauge invariance appears in [SY18SY18, Lemma 2]. This is due to the fact that our
boundary measurements (Cauchy data set) for P are defined in terms of a reference Riemannian
metric on M , whereas [SY18SY18] defines boundary measurements in terms of the Lorentzian metric g
and 1-form a appearing in P . The gauge invariances are discussed in more detail in Section 22.
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1.7. Methods. The proofs of our theorems are essentially based on propagation of singularities
for real principal type operators. If P is such an operator, propagation of singularities is often
understood as a regularity result stating that if a solution u of Pu = 0 is smooth at some point
on a null bicharacteristic curve, then u has to be smooth at all points on this curve. This result
has a complement stating that for any suitable non-trapped null bicharacteristic segment γ for P ,
there is a function u solving Pu = 0 away from the end points of γ so that the wave front set of
u is precisely on γ, see [DH72DH72] and [Hö85Hö85, Theorem 26.1.7]. This complementary result, which is
basically a quasimode (or approximate solution) construction, produces interesting special solutions
to the equation Pu = 0. It is this result and its variants that will be useful in the solution of inverse
problems.

It is natural to define the Cauchy data set for sufficiently smooth solutions of Pu = 0. Thus the
singular solutions mentioned above are not directly useful, but rather we will use a semiclassical
version of such a quasimode construction. There are various methods for constructing quasimodes.
If the null bicharacteristic segment has no cusps, a classical geometrical optics or Gaussian beam
type construction is sufficient (see e.g. [BL67BL67, Hö71Hö71, Ra82Ra82, Ra01Ra01]). The general case with cusps is
more involved, and in [DH72DH72] it is dealt with by conjugating P microlocally in a full neighborhood
of the null bicharacteristic segment to the normal form Dx1 using Fourier integral operators. In
principle the quasimode construction in this article could be done by implementing a semiclassical
version of the Fourier integral operator conjugation argument (see [DKLS16DKLS16] for a special case).
However, in the proofs of the main theorems we need to perform various computations with these
quasimodes on manifolds with boundary. To handle the boundary effects it is beneficial to have
a more direct construction. We will use a modification of the Gaussian beam construction based
on representing the quasimode as an integral of Gaussian wave packets (coherent states) over the
bicharacteristic as in [PU93PU93, KV98KV98]. This approach resolves the problems near cusps and gives
an elementary and direct construction. In [GUW16GUW16], which describes a general framework, such
quasimodes are called semiclassical states associated with isotropic submanifolds of phase space.

Given a quasimode v concentrating near a null bicharacteristic, we employ the solvability theory
of real principal type operators to produce exact solutions of Pu = 0 that are close to v. We use
these special solutions to pass from the Cauchy data set CP to the scattering relation or null bichar-
acteristic ray transform by using two different methods: a mix-and-match construction combined
with semiclassical propagation of singularities, or an integral identity (Lemma 2.82.8) analogous to
standard identities used in the Calderón and Gel’fand problems. For the boundary determination
results we again use integral identities and solutions concentrating near null bicharacteristics in the
hyperbolic region. However, in the elliptic region we need different special solutions that concen-
trate near a boundary point and are exponentially decreasing in the interior (Theorem 5.15.1). These
solutions are analogous to those used in boundary determination for elliptic second order equations.
Similar arguments appear in the construction of a boundary parametrix for the wave equation in
the elliptic region (see e.g. [Ta81Ta81, Chapter IX]). The coefficients are eventually recovered via the
complex stationary phase method, see [Hö85Hö85, Section 7.7] or [MS74MS74] for the original approach.

The proof of Theorem 1.71.7 for nonlinear equations is based on higher order linearizations. The
idea is that given solutions v1, . . . , vN of the linearized equation (i.e. Pvj = 0) and small parameters
ε1, . . . , εN , there is a small solution u of the nonlinear equation Pu+ a(x, u) = 0 so that u is close
to ε1v1 + . . . + εNvN . Taking suitable derivatives with respect to εj and using the knowledge of
the Cauchy data of small solutions, one recovers information about Taylor coefficients of a(x, u)
integrated against products of the solutions vj . The key point is to use special solutions vj that
concentrate along different null bicharacteristic curves, which leads to the geometric condition in
Theorem 1.71.7.
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1.8. Previous literature and outlook. There is a large literature on inverse boundary problems
of the above type, and we only give a few relevant references. The prototype for Theorems 1.11.1–1.31.3
are corresponding results for the wave equation, going back to [RS88RS88, Ra90Ra90, St89St89] in the Euclidean
case. The scattering relation was considered in [Gu76Gu76], and [Uh04Uh04] outlines how to determine the
scattering relation for a Riemannian metric from the hyperbolic Dirichlet-to-Neumann map. The
case of Lorentzian wave equations is discussed in [SY18SY18], together with references to earlier work.
Boundary determination results for wave equations may be found in [SU90SU90, SU05SU05, Mo14Mo14, SY18SY18].
Boundary determination for second order elliptic equations goes back to [KV84KV84, SU88SU88], with [LU89LU89,
DKSU09DKSU09] considering the geometric case.

Inverse problems for nonlinear hyperbolic equations have been studied in [KLU18KLU18, KLOU14KLOU14,
LUW18LUW18], and we have also used ideas from related results for elliptic equations [LLLS21LLLS21, FO20FO20].
We also mention the work [Is91Is91] studying inverse boundary problems for certain general equations
of the form P (D)u + V u = 0, where P (D) is a constant coefficient operator. The present article
addresses similar questions for operators with variable coefficients.

As mentioned above, we consider this article to be a starting point in approaching inverse prob-
lems from a more general point of view. This point of view, in addition to the particular theorems
stated here, is one of the main contributions of this article. It suggests many future directions
including the following:

1. What kind of information about P (more precisely, about the principal symbol σpr[P ]) can
be determined from the null bicharacteristic scattering relation αP ? If P is the geodesic
vector field on the unit sphere bundle of a compact Riemannian manifold with boundary,
this is the scattering/lens/boundary rigidity problem studied in [PU05PU05, SUV16SUV16, SUV21SUV21].

2. For which operators P and for which classes of functions on T ∗M is the null bicharacteristic
ray transform invertible? If P is the geodesic vector field, this transform is the geodesic
ray transform for which there is a substantial literature, see the survey paper [IM19IM19]. If
P is the wave operator on a Lorentzian manifold, this transform is the light ray transform
studied in [FIKO21FIKO21, FIO21FIO21, LOSU20LOSU20, St17St17, VW21VW21].

3. The real principal type condition includes a nontrapping assumption for the null bicharac-
teristic flow. Can one obtain results in the presence of (sufficiently mild) trapping? For the
geodesic vector field and hyperbolic trapping, this has been studied in detail in [Gu17Gu17].

4. We have only considered uniqueness results stating that CP uniquely determines some
information about P . Is it possible to study stability, reconstruction, range characterization,
or further partial data cases? Moreover, instead of looking at scalar operators, can one give
similar results for real principal type systems?

5. In this article we have studied the consequences of propagation of singularities for inverse
problems for real principal type operators. What other classes of operators or general
mechanisms for inverse problems could be studied in this way?

6. In examples such as the Calderón or Gel’fand problem, knowing the Cauchy data set is
equivalent to knowing a boundary map (Dirichlet-to-Neumann map) which is a pseudo-
differential or a Fourier integral operator. In these cases one can determine information
about the coefficients by symbol computations. Our proofs are similar, but we use integral
identities as a substitute for symbol computations. If P is a general operator, is it possible
to associate a symbol or Lagrangian manifold directly to the Cauchy data set CP ?

7. The symbol computations mentioned in the previous item only use the singularities of the
integral kernel of the boundary map. The arguments in this article are in a similar spirit.
Is it possible to extract information from the C∞ part of the integral kernel? This is what
happens in the Calderón problem, see e.g. [Sa17Sa17] for a related discussion. Also the Boundary
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Control method, originating from [Be87Be87], uses the smooth part in the case of wave equations
with time-independent coefficients.

The rest of the article is organized as follows. In Section 22 we collect some preliminaries related
to real principal type operators, semiclassical wave front sets, and Cauchy data sets. Section 33 gives
the construction of semiclassical quasimodes associated with null bicharacteristic segments. Section
44 proves Theorems 1.11.1–1.31.3 related to determining the scattering relation and bicharacteristic ray
transforms from the Cauchy data set. The boundary determination results, Theorems 1.41.4–1.61.6, are
established in Section 55. Finally, Section 66 considers semilinear equations and proves Theorem 1.71.7.
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2. Preliminaries

Real principal type operators. We begin by recalling basic facts about real principal type
operators from [Hö85Hö85, Section 26.1].

First assume that P ∈ Ψm(X) is properly supported and has real homogeneous principal symbol
p = σpr[P ] of order m. The bicharacteristic curves of P are integral curves of the Hamilton vector
field Hp on T ∗X \ 0. In local coordinates, a bicharacteristic curve γ(t) = (x(t), ξ(t)) solves the
Hamilton equations

ẋ(t) = dξp(x(t), ξ(t)),

ξ̇(t) = −dxp(x(t), ξ(t)).

The function p is constant along any bicharacteristic curve. In particular, the bicharacteristic curves
in the characteristic set p−1(0) are called null bicharacteristic curves. A major feature of operators
with real principal symbol is the fact that singularities propagate along null bicharacteristics: if
Pu = f in X, then WF(u) \WF(f) is contained in p−1(0) and is invariant under the flow of Hp.

The operator P is of real principal type if it additionally satisfies a nontrapping assumption: no
bicharacteristic curve stays over a compact subset of X infinitely long. Combined with propagation
of singularities, this implies that any solution of Pu ∈ C∞ in X with a compact singular set has to
be smooth.

Remark 2.1. Several different conditions related to real principal type operators appear in the
literature, such as dξp ̸= 0, or that dp and the canonical 1-form ξj dx

j are linearly independent
(equivalently, Hp is not radial, i.e. proportional to the radial direction ξj ∂ξj ). We wish to clarify
the relations between these conditions. Clearly

dξp ̸= 0 =⇒ Hp is not radial.

Moreover, if dξp(x0, ξ) ̸= 0 then the bicharacteristic through (x0, ξ) moves away from x0. Thus

dξp ̸= 0 at any (x0, ξ) ∈ p−1(0) =⇒ P is real principal type near x0.
14



In the converse direction,

P is real principal type =⇒ Hp is not radial anywhere on p−1(0),

since if Hp were radial at some (x0, ξ0) ∈ p−1(0), then there would be a bicharacteristic γ(t) =
(x0, ξ(t)) staying over x0 for infinite time. The Tricomi operator P = x2∂

2
1 + ∂22 is of real principal

type, but does not satisfy dξp ̸= 0 on p−1(0) (in fact null bicharacteristic curves may have cusps).

We will next give a solvability result for real principal type operators. This is a direct adaptation
of [Hö85Hö85, Theorem 26.1.7], but we will state it in a form adapted to manifolds with boundary.

Let us introduce some notation for Sobolev spaces and distributions. Let X be an open manifold
and let M be a compact subdomain with boundary. We fix some Riemannian metric on X with
volume form dV , and consider Sobolev spaces Hs(M) and Hs

loc(X) with respect to the L2 norm
induced by dV . Here we slightly abuse notation and write Hs(M) instead of Hs(M int), where the
latter space can be defined as the restriction of Hs

loc(X) to M int.

The distribution space D ′(X) is the set of continuous linear functionals on C∞
c (X), and we

identify functions u ∈ L1
loc(X) with distributions using the pairing

(u, φ) =

∫
X
uφ̄ dV, φ ∈ C∞

c (X).

We continue to write (u, φ) for the distributional pairing. Here we deviate from standard practice
by requiring that the pairing is conjugate linear in the second variable. This convention will be
helpful below.

Write EM (X) = EM for those elements in some space E(X) that are supported in M . With
respect to the distributional pairing, one has for any s ∈ R the duality statements (see e.g. [AS20AS20,
Section 2])

(Hs(M))∗ = H−s
M , (Hs

M )∗ = H−s(M), (C∞(M))∗ = D ′
M .

We also write (u, φ) for the pairings for spaces on M . Any differential operator P on M induces
a map P : D ′

M → D ′
M via

(Pv, φ) = (v, P ∗φ),

where P ∗ is the formal L2 adjoint of P . Finally, given a set S ⊂ C∞
M , we consider its annihilator

S⊥ = {v ∈ D ′
M ; (v, φ) = 0 for all φ ∈ S}.

Proposition 2.2. Let P be a real principal type differential operator of order m ≥ 1 on a compact
manifold M with smooth boundary, and let s ∈ R.

(a) If u ∈ D ′
M solves Pu = f in X where f ∈ Hs

M , then u ∈ Hs+m−1
M .

(b) The set

N(P ) = {v ∈ D ′
M ; Pv = 0}

is a finite dimensional space contained in C∞
M .

(c) Define the space

Ys = {v ∈ D ′
M ; P ∗v ∈ Hs

M}.
Then Ys ⊂ Hs+m−1

M , and for some Cs > 0 one has the estimates

(2.1) ∥v∥Hs+m−1
M

≤ Cs(∥P ∗v∥Hs
M

+ ∥v∥Hs+m−2
M

), v ∈ Ys,

and

(2.2) ∥v∥Hs+m−1
M

≤ Cs∥P ∗v∥Hs
M
, v ∈ Ys ∩N(P ∗)⊥.
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(d) Given any f ∈ Hs(M) ∩N(P ∗)⊥, there is a solution u ∈ Hs+m−1(M) of the equation

Pu = f in M.

Moreover, there is a bounded linear operator Es : Hs(M) ∩ N(P ∗)⊥ → Hs+m−1(M) such
that PEsf = f .

Proof. Parts (a) and (b) follow from [Hö85Hö85, Theorems 26.1.4 and 26.1.7], after extending P as a
real principal type operator to a slightly larger open manifold X. To prove part (c), note that
by part (a) one has Ys ⊂ Hs+m−1

M , and Ys with norm ∥v∥Ys = ∥v∥Hs+m−2
M

+ ∥P ∗v∥Hs
M

becomes a

Hilbert space. The inclusion map ι : Y → Hs+m−1
M has closed graph, and the closed graph theorem

yields (2.12.1). This in turn implies (2.22.2). Indeed, if (2.22.2) were false one would have a sequence (vj) in

Ys ∩N(P ∗)⊥ with ∥vj∥Hs+m−1
M

= 1 and ∥P ∗vj∥Hs
M

→ 0, and by compact Sobolev embedding some

subsequence would converge strongly in Hs+m−2
M to some v ∈ Hs+m−2

M ∩ N(P ∗)⊥ with P ∗v = 0.
Then (2.12.1) would give ∥v∥Hs+m−2

M
≥ 1/C, and we would obtain a contradiction since v would be a

nonzero element of both N(P ∗) and N(P ∗)⊥.

Finally, we prove part (d). Given f ∈ Hs(M) ∩ N(P ∗)⊥, we define the (conjugate) linear
functional

ℓf : P ∗C∞
M → C, ℓf (P

∗v) = (f, v) for v ∈ C∞
M .

This is well defined by the assumption on f . One has

|(f, v)| ≤ ∥f∥Hs(M)∥v∥H−s
M

≤ C∥f∥Hs(M)∥P ∗v∥
H

−(s+m−1)
M

, v ∈ C∞
M ,

since this holds for v ∈ C∞
M ∩ N(P ∗)⊥ by (2.22.2) (with s replaced by −s −m − 1) and both sides

remain the same when a function in N(P ∗) is added to v. Thus, denoting by W the closure of

P ∗C∞
M in H

−(s+m−1)
M , ℓf extends uniquely to a bounded functional on W such that

|ℓf (w)| ≤ C∥f∥Hs(M)∥w∥H−(s+m−1)
M

, w ∈W.

Let Q be the orthonormal projection from H
−(s+m−1)
M to W , and define

ℓ̄f : H
−(s+m−1)
M → C, ℓ̄f (u) = ℓf (Qu).

Then ℓ̄f is a bounded linear functional on H
−(s+m−1)
M , and it depends linearly on f by construction.

By duality there exists uf ∈ Hs+m−1(M) with ∥uf∥Hs+m−1(M) ≤ C∥f∥Hs(M) such that

(uf , P
∗v) = (f, v), v ∈ C∞

M .

In particular Puf = f in M int. Letting Esf = uf concludes the proof. □

Semiclassical wave front sets. Next, we will consider the action of real principal type operators
on functions depending on a small parameter h > 0. We recall certain semiclassical notions following
[Zw12Zw12]. A family u = uh ⊂ L2

loc(X), 0 < h ≤ 1, is called L2-tempered if for any χ ∈ C∞
c (X) there

is N ≥ 0 so that

∥χuh∥L2 = O(h−N )

as h→ 0. We say that uh is semiclassically smooth at (x0, ξ0) ∈ T ∗X if, in some local coordinates
near x0, there is φ ∈ C∞

c with χ = 1 near x0 and ψ ∈ C∞
c with ψ = 1 near ξ0 so that

ψFh(φuh) = OL2(h∞)
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where Fh is the semiclassical Fourier transform,

Fhf(ξ) = (2πh)−n
∫
Rn

e−i
x·ξ
h f(x) dx.

The definition is independent of the choice of local coordinates. The semiclassical wave front set
WFscl(uh) is the complement of those points (x0, ξ0) ∈ T ∗X at which uh is semiclassically smooth.
Roughly, one can think of WFscl(uh) as the set where the family uh is localized in phase space as
h→ 0.

We will need the following characterization of the semiclassical wave front set in terms of FBI
(Fourier-Bros-Iagolnitzer) transforms. This is a local statement and reduces to the corresponding
result in Euclidean space [Zw12Zw12, Theorem 13.14].

Proposition 2.3. Let u = uh be L2-tempered in X. One has (x0, ξ0) /∈ WFscl(u) if and only if∫
X
u(y)eiΨ(y;x,ξ)/hb(y) dV (y) = O(h∞)

uniformly over (x, ξ) near (x0, ξ0), where Ψ = Ψ( · ;x, ξ) and b = b( · ) are smooth functions in X
so that, in some local coordinates near x0,

Ψ(y;x, ξ) = ξ · (y − x) +
i

2
|y − x|2, supp(b) is close to x0, b = 1 near x0.

If uh and vh are L
2-tempered, the semiclassical wave front set has the following simple properties:

• If uh and vh are semiclassically smooth at (x0, ξ0), then so is uh + vh. Thus

WFscl(uh)△WFscl(vh) ⊂ WFscl(uh + vh) ⊂ WFscl(uh) ∪WFscl(vh),

where A△B = (A \B) ∪ (B \A).
• If ∥χvh∥L2 = O(h∞) for χ ∈ C∞

c (X), then WFscl(vh) = ∅ and WFscl(uh+ vh) = WFscl(uh).

The following result is a semiclassical version of the propagation of singularities theorem.

Proposition 2.4. Let P be a real principal type differential operator in an open manifold X, and
let uh be L2-tempered. If

Puh = fh in X

where fh is L2-tempered, then WFscl(uh) \ WFscl(fh) is invariant under the Hamiltonian flow of
the principal symbol of P .

Proof. Define Ph := hmP , so that the semiclassical principal symbol of Ph is precisely the same
as the classical principal symbol of P . Then Phuh = hmfh, and the result follows from [Zw12Zw12,
Theorem 12.5]. □

Cauchy data sets. Next we will discuss Cauchy data sets, starting with three basic invariance
properties.

Lemma 2.5. Let P be a differential operator of order m, and let c ∈ C∞(M) be nonvanishing.
Then

CP = CcP .

If additionally c|∂M = 1 and ∇jc|∂M = 0 for 1 ≤ j ≤ m− 1, then

CP = CP+c−1[P,c].
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Moreover, if Φ : M → M is a diffeomorphism such that Φ and IdM agree to order m − 1 on ∂M ,
then

CP = CΦ∗P .

Here Φ∗P is the differential operator on M defined via Φ∗P (Φ∗v) = Φ∗(Pv) for v ∈ C∞(M).

Proof. The first part is clear, and the second part follows from the formula

P (cv) = cPv + [P, c]v.

The third part holds since u and Φ∗u agree to order m− 1 on ∂M by the assumption on Φ. □

It is instructive to verify how these invariances affect the scattering relation and bicharacteristic
ray transforms. The next lemma shows that Theorem 1.11.1 is consistent with the above invariances. It
also shows that ifM is simply connected, then changing P to P +c−1[P, c] changes the subprincipal
symbol by a term ∂ξapm∂aφ for some φ ∈ C∞(M) with φ|∂M = 0. If P is a second order operator
and A is a 1-form encoding the first order coefficients, this corresponds to the standard invariance
A → A + dφ obtained by conjugating P with e±iφ. See e.g. [DKSU09DKSU09, SY18SY18] for the Riemannian
and Lorentzian cases. However, if M has nontrivial topology, there is a more general invariance
(corresponding to A→ A+dφ+h in the second order case) described by harmonic 1-forms h whose
integrals over closed loops are in 2πiZ. This is related to the Aharonov-Bohm effect where in fact
the Cauchy data sets may differ if the integrals of h over closed loops are not in 2πiZ, see [AB59AB59]
and the review [Es15Es15]. This fact also explains the nonuniqueness modulo 2πZ in Theorem 1.11.1.

Lemma 2.6. All three invariances in Lemma 2.52.5 preserve the scattering relation αP (for the third
one one needs to assume m ≥ 2). Moreover, if M is connected and if c ∈ C∞(M,C) satisfies
c|∂M = 1, then

(2.3) σsub[(P + c−1[P, c])µ] = σsub(P
µ)− i

n∑
a=1

∂ξapm(∂aφ+ ha)

for some φ ∈ C∞(M,C) with φ|∂M = 0, and for some harmonic 1-form h = ha dx
a on M (with

respect to the auxiliary Riemannian metric) whose tangential part vanishes on ∂M and which
satisfies ∫

η
h ∈ 2πiZ for any closed loop η in M.

The integral of
∑n

a=1 ∂ξapm(∂aφ + ha) over any null bicharacteristic segment between boundary
points is in 2πiZ.

Proof. Note that if P has real principal symbol and c ∈ C∞(M,R) is nonvanishing, then changing
P to cP or P+c−1[P, c] does not change the null bicharacteristic flow. Replacing P by Φ∗P changes
the null bicharacteristics in the interior, but not at the boundary if Φ and IdM agree to first order
on ∂M . Thus the three invariances above preserve the scattering relation at least when m ≥ 2.

If P has full symbol with polyhomogeneous expansion
∑m

j=0 pj(x, ξ) in some local coordinate

system, then the order m− 1 term in the corresponding expansion for P + c−1[P, c] is

pm−1(x, ξ)− ic−1
n∑
a=1

∂ξapm(x, ξ)∂ac(x).

Thus (2.32.3) follows if we can prove that

c−1dc = dφ+ h
18



where φ and h are as stated. This is just the Hodge decomposition for the 1-form c−1dc, which can
be obtained by using the auxiliary Riemannian metric g on M and solving

−∆gφ = δg(c
−1dc) in M, φ|∂M = 0.

It follows that h := c−1dc − dφ is harmonic (i.e. dh = δgh = 0) with vanishing tangential part on
∂M . If η is a closed loop in M , we have∫

η
h =

∫
η
c−1dc =

∫
c◦η

dz

z
.

The last quantity is 2πi times the winding number of the curve c ◦ η in C \ {0}, and hence belongs
to 2πiZ.

Finally, using that M is connected, we may fix x0 ∈ ∂M and define the function

ψ :M → C/2πiZ, ψ(x) =

∫
ηx0,x

h modulo 2πiZ

where ηx0,x is any smooth curve from x0 to x in M . This is well defined by the condition on h, and

e±ψ are well defined smooth functions M → C \ {0}. Moreover,

d(ce−φe−ψ) = (c−1dc− dφ− h)ce−φe−ψ = 0.

Thus ce−φe−ψ is a constant. Evaluating at x0 gives that c = eφeψ and that eψ|∂M = ce−φ|∂M = 1,
i.e. ψ(y) = 0 modulo 2πiZ whenever y ∈ ∂M . Now, if γ : [0, T ] → M , γ(t) = (x(t), ξ(t)) is a null
bicharacteristic segment between boundary points, the fact that ∂ξapm(x(t), ξ(t)) = ẋa(t) yields∫ T

0
(∂ξapm∂aφ)(γ(t)) dt =

∫ T

0

d

dt
(φ(x(t))) dt = 0

since φ|∂M = 0. For the part involving h we have∫ T

0
(∂ξapmha)(γ(t)) dt =

∫ T

0
h(ẋ(t)) dt.

Now we may write ψ(x(t)) =
∫
ηx0,x(0)

h+
∫ t
0 h(ẋ(s)) ds modulo 2πiZ, leading to∫ T

0
(∂ξapmha)(γ(t)) dt = ψ(x(T ))− ψ(x(0)) = 0 modulo 2πiZ

since ψ(y) = 0 modulo 2πiZ for y ∈ ∂M . □

Note also that the gauge invariances in Lemma 2.52.5 are formulated in a different way compared
to the usual invariances in the Calderón or Gel’fand problems for second order operators. For
instance, if ḡ is a Riemannian metric, A is a 1-form and q is a function on M , the corresponding
second order operator (written in local coordinates) in the Calderón problem is

Pu = |ḡ|−1/2(Dj +Aj)(|ḡ|1/2ḡjk(Dk +Ak)u) + qu.

In this case one typically defines a normal derivative with respect to ḡ and A, leading to the Cauchy
data set

C̃P = {(u|∂M , (du+ iAu)(νḡ)|∂M ; Pu = 0 in M},
see [DKSU09DKSU09]. The Cauchy data set in this article is instead defined in terms of a (known) reference
Riemannian metric g on M as

CP = {(u|∂M ,∇gu|∂M ) ; Pu = 0 in M}.
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Of course, if ḡ and A are known on ∂M , then CP determines C̃P and vice versa. However, the
difference between CP and C̃P implies for instance that there is no analogue of the gauge invariance
A→ A+ dψ with ψ|∂M = 0 in our boundary determination result for the subprincipal symbol.

Finally, we discuss a simple but fundamental integral identity. We first give a characterization
of the inclusion CP1 ⊂ CP2 in terms of an estimate for a certain inner product.

Lemma 2.7. Let P1 and P2 be differential operators of order m. One has CP1 ⊂ CP2 if and only
if for any u1 ∈ Hm(M) solving P1u1 = 0 in M , there is Cu1 > 0 so that

(2.4) |((P1 − P2)u1, v)L2(M)| ≤ Cu1∥P ∗
2 v∥H−m(M), v ∈ Hm(M).

Proof. Assume that CP1 ⊂ CP2 and that u1 ∈ Hm(M) solves P1u1 = 0 in M . Then we can find
ũ2 ∈ Hm(M) with P2ũ2 = 0 in M so that u1 − ũ2 ∈ Hm

0 (M). For any v ∈ Hm(M), one has in
terms of L2(M) inner products

((P1 − P2)u1, v) = −(P2u1, v) = −(P2(u1 − ũ2), v) = −(u1 − ũ2, P
∗
2 v).

The inequality (2.42.4) follows from the duality of Hm
0 (M) and H−m(M).

Conversely, let u1 ∈ Hm(M) solve P1u1 = 0, and assume that (2.42.4) holds. Then f := −P2u1
satisfies

(2.5) |(f, v)| ≤ C∥P ∗
2 v∥H−m(M), v ∈ Hm(M).

Define a linear functional

ℓf : P ∗
2H

m(M) → C, ℓf (P
∗
2 v) = (f, v).

This is well defined and bounded with respect to the H−m(M) norm by (2.52.5). By the Hahn-Banach
theorem ℓf extends continuously to H−m(M), and by duality there is w ∈ Hm

0 (M) so that

(f, v) = ℓf (P
∗
2 v) = (w,P ∗

2 v), v ∈ Hm(M).

It follows that P2w = f = −P2u1. Thus ũ2 := u1 + w solves P2ũ2 = 0 with u1 − ũ2 ∈ Hm
0 (M).

This proves that CP1 ⊂ CP2 . □

If we choose v in (2.42.4) to be a solution of P ∗
2 v = 0, we immediately obtain an integral identity

from the condition CP1 = CP2 . For our applications we indeed need P1 − P2 to appear on the left
hand side, and thus one of the functions needs to solve the adjoint equation.

Lemma 2.8. If CP1 = CP2, then

((P1 − P2)u1, u2)L2(M) = 0

whenever uj ∈ Hm(M) solve P1u1 = P ∗
2 u2 = 0 in M .

3. Quasimode construction

We will now proceed to the construction of approximate solutions that concentrate near an
injective segment of a null bicharacteristic curve. This can be done for any operator with real
principal symbol. Below π : T ∗X → X is the natural projection.
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Theorem 3.1. Let P be a differential operator of order m on a smooth manifold X, with real
valued principal symbol pm. Let γ : [0, T ] → T ∗X \ 0 be a segment of a null bicharacteristic curve.
If γ is injective on [0, T ], there is a family u = uh ∈ C∞

c (X) for 0 < h ≤ 1 such that

WFscl(u) = γ([0, T ]), WFscl(Pu) = γ(0) ∪ γ(T ),

and ∥Pu∥Hs(K) = O(h∞) whenever s ∈ R and K ⊂ X is compact and disjoint from the end points

of π ◦ γ. Moreover, if P̃ is another differential operator on X with the same principal symbol as P
and if v = vh is the analogous family for P̃ ∗, then for any differential operator Q of order ℓ ≥ 0 on
X whose coefficients vanish near the end points of π ◦ γ one has

(3.1) lim
h→0

h−
n+1
2

+ℓ

∫
X
(Qu)v̄ dV = c0

∫ T

0
qℓ(γ(t)) exp

[
−i

∫ t

0
(pm−1 − p̃m−1)(γ(s)) ds

]
dt

where c0 ̸= 0 is the constant in (3.373.37), qℓ is the principal symbol of Q, and
∑m

j=0 pj and
∑m

j=0 p̃j

are the polyhomogeneous full symbols of P and P̃ in a local coordinate system.

Note that the fact that Pu = O(h∞) away from the end points of π ◦ γ means that u is an
approximate solution for P away from these points.

The formula (3.13.1) is related to the semiclassical limit measure for the family u. In fact, one could
also prove that for any a ∈ C∞

c (T ∗X) vanishing near the end points of γ one has

lim
h→0

h−
n+1
2 (Oph(a)uh, uh)L2(X) =

∫ T

0
rγ(t)a(γ(t)) dt

where Oph(a) is the semiclassical Weyl quantization of a, and for any nonvanishing half density µ

rγ(t) = c0 exp

[
−i

∫ t

0
(σsub[P

µ]− σsub[(P
∗)µ])(γ(s)) ds

]
.

The formulation (3.13.1) will be convenient for our applications, and it does not involve semiclassical
quantization. The expression on the right hand side of (3.13.1) must be coordinate invariant since the
left hand side is, however, this can also be seen directly as follows:

Lemma 3.2. Let P and P̃ be two differential operators of order m on X with the same principal
symbol, and denote by

∑m
j=0 pj and

∑m
j=0 p̃j their polyhomogeneous full symbols in a local coordinate

system. Then pm−1 − p̃m−1 is an invariantly defined function on T ∗X \ 0.

Proof. Let µ be a half density on X and write
∑m

j=0 qj and
∑m

j=0 q̃j for the polyhomogeneous full

symbols of Pµ and P̃µ in a local coordinate system. Then qm = pm and

qm−1 = pm−1 − iµ∂ξjpm ∂xjµ
−1.

Analogous statements hold for P̃µ, and recalling the definition of subprincipal symbol in (1.21.2), we
see that the function

σsub[P
µ]− σsub[P̃

µ] = pm−1 − p̃m−1(3.2)

is defined invariantly on T ∗X \ 0. □

In the following, we will assume that P has order m ≥ 1 and its principal symbol is denoted by
pm ∈ C∞(T ∗X). We will write in local coordinates

γ(t) = (x(t), ξ(t))
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so that (x(t), ξ(t)) satisfies the Hamilton equations

ẋ(t) = dξpm(x(t), ξ(t)), ξ̇(t) = −dxpm(x(t), ξ(t)).
More invariantly, we define x(t) = π(γ(t)) where π : T ∗X → X was the natural projection.

We will use the following standard result related to conjugating a differential operator by expo-
nentials. This is the“fundamental asymptotic expansion lemma” stated in [Ta81Ta81, Section VIII.7] or
[Tr80Tr80, Section VI.3] for pseudodifferential operators and real valued phase functions, and in [Tr80Tr80,
Section X.4] for complex valued phase functions. In our case of differential operators, the proof is
just an elementary computation in local coordinates and it is given in Appendix AA.

Lemma 3.3. Let Φ be a smooth real or complex valued function. Then

e−iΦ/hP (eiΦ/hu) =

m∑
j=0

hj−mRju, h > 0,

where each Rj is a differential operator of order j. In particular, R1u = 1
iLu + bu where L is a

(possibly complex) vector field and b = bP is a function. In local coordinates one has

R0u = pm(x,∇Φ(x))u,

Lu = ∂ξjpm(x,∇Φ(x))∂ju,

b =
1

2i
∂ξjξkpm(x,∇Φ(x))∂jkΦ(x) + pm−1(x,∇Φ(x)),

where pm−1 is the order m − 1 term in the polyhomogeneous expansion of the full symbol of P in
these coordinates.

There are several methods for constructing quasimodes concentrating near an injective null
bicharacteristic segment γ : [0, T ] → T ∗X \ 0 where γ(t) = (x(t), ξ(t)). We first give a brief
discussion of such methods, to motivate the construction given in this paper.

Local case. To construct a quasimode u locally near x(t0) with ẋ(t0) ̸= 0 it is enough to use the

geometrical optics ansatz u = eiφ/ha where φ is a smooth real valued phase function solving the
eikonal equation pm(x, dφ(x)) = 0. If ẋ(t0) ̸= 0 this equation can always be solved locally near
x(t0), but global solutions do not exist in general if there are caustic points (i.e. points where the
projection Λ → X fails to have bijective differential where Λ ⊂ T ∗X \ 0 is a Lagrangian manifold
associated with the eikonal equation, see [Hö85Hö85, Section 6.4]).

Global case without cusps. More generally, if γ is injective on [0, T ] and has no cusps in the
sense that ẋ(t) ̸= 0 for t ∈ [0, T ], one can use a Gaussian beam type construction. If x(t) is also

injective on [0, T ], this amounts to looking for a quasimode u = eiΦ/ha where Φ and a are complex
valued (more generally if x(t) is not injective the quasimode will be a finite sum of such functions).
The phase function Φ is required to solve the eikonal equation only on the bicharacteristic in the
sense that

(3.3) pm(x, dΦ(x)) = 0 to infinite order on x([0, T ]).

The construction of Φ and a can be carried out very explicitly in global Fermi type coordinates
near x([0, T ]). This boils down to solving one nonlinear ODE (matrix Riccati equation) for the
Hessian of Φ on x([0, T ]), and linear ODEs for the derivatives of Φ and a along x([0, T ]).

These Gaussian beam type constructions are very classical and go back at least to [BL67BL67, Hö71Hö71]
with further treatments e.g. in [Ra82Ra82, Ra01Ra01, KKL01KKL01]. A version of this construction is also given
in [Hö85Hö85, Section 24.2], where the existence of the required complex phase function is explained
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in terms of properties of complex Lagrangian planes in the complexification of T ∗X. However,
the construction always breaks down when the bicharacteristic has a cusp. In fact, if (3.33.3) holds
near x(t0) where ẋ(t0) = 0, then looking at first order derivatives in (3.33.3) and using the Hamilton
equations implies that

0 = −ξ̇(t0) + Φ′′(x(t0))ẋ(t0) = −ξ̇(t0).
Hence one would have dpm(γ(t0)) = 0 and γ(t) ≡ γ(t0), which contradicts the assumption that γ
is injective on [0, T ].

We mention also the related construction of the propagator for hyperbolic equations as a global
oscillatory integral with a complex-valued phase function [LSV94LSV94, SV97SV97, CLV19CLV19].

General case. Let us now assume that γ is injective on [0, T ] but ẋ(t) may vanish. In the classical
case (i.e. without a parameter), a construction of a quasimode u associated with γ such that
Pu ∈ C∞ was given in [DH72DH72] and [Hö85Hö85, Section 26.1]. The argument proceeds by constructing a
canonical transformation χ near γ([0, T ]) that straightens γ in phase space into the curve η(x1) =
((x1, 0), en) in T ∗Rn, and by quantizing χ using suitable amplitudes to obtain Fourier integral
operators A and B such that BPA roughly corresponds to Dx1 microlocally near γ([0, T ]). One
then constructs an explicit quasimode U for Dx1 in Rn associated with η, and u = AU will be the
required quasimode for P . This phase space construction is not affected by the presence of cusps.

A semiclassical version of the above construction could be used to prove Theorem 3.13.1. However,
we will give a direct proof based on a modification of the Gaussian beam construction. This
construction is motivated by the fact that a standard semiclassical quasimode U for Dx1 associated
with η,

U(x1, x
′) = eixn/h−|x′|2/h

can be thought of as a superposition of Gaussian wave packets along η. If A is a semiclassical
Fourier integral operator quantizing χ, then u = AU would be a superposition of Gaussian wave
packets along the curve x(t). We will thus look for the quasimode u directly in the form

u =

∫ T

0
eiΦ(x,t)/ha(x, t) dt

where Φ and a are smooth complex valued functions in M × [0, T ], and each eiΦ( · ,t)/ha( · , t) is a
Gaussian wave packet at x(t) oscillating in direction ξ(t). The same idea appears in [PU93PU93, KV98KV98].
The phase function Φ will be chosen to satisfy

(3.4) pm( · , dxΦ( · , t)) + ∂tΦ( · , t) = 0 to infinite order at x(t) for t ∈ [0, T ].

This generalizes (3.33.3) to the case where Φ may depend on t. The construction boils down to solving
the same matrix Riccati equation as in the usual Gaussian beam construction, but it is not affected
by the presence of cusps. By (3.43.4) we have that pm(x, dxΦ(x, t)) is small near x([0, T ]) modulo
terms of the form ∂tΦ(x, t), but such terms can be dealt with using integration by parts in the
formula for u.

After this motivating discussion, we will give a proof of the theorem. This will be done in detail
since we will need to use the precise form of the quasimodes, including formulas within the proof,
in the computations required for studying the inverse problems.

Proof of Theorem 3.13.1. The proof will be carried out in several steps.

Step 1. Setup.
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We look for an approximate solution of Pu = 0 in the form

(3.5) u(x) =

∫ T

0
eiΦ(x,t)/ha(x, t) dt

where Φ and a are smooth complex valued functions in X × [0, T ]. By Lemma 3.33.3, we have

(3.6) Pu(x) =

∫ T

0
eiΦ(x,t)/h

[
h−mpm(x, dxΦ(x, t))a(x, t)

+ h1−m(
1

i
La+ ba)(x, t) +

m∑
j=2

hj−mRja(x, t)

]
dt.

We wish to find Φ(x, t) so that

(3.7) Φ(x(t), t) = 0, dxΦ(x(t), t) = ξ(t),

and so that

(3.8) pm( · , dxΦ( · , t)) + ∂tΦ( · , t) = 0 to infinite order at x(t).

Moreover, we wish to find a(x, t) ∼
∑∞

j=0 h
jaj(x, t) so that each aj is smooth and independent of

h, and one has the transport equations

1

i
(∂t + L)a0 + ba0 = 0 to infinite order at x(t),(3.9)

1

i
(∂t + L)a1 + ba1 = −R2a0 to infinite order at x(t),(3.10)

1

i
(∂t + L)a2 + ba2 = −R3a0 −R2a1 to infinite order at x(t),(3.11)

...

Step 2. Local construction of Φ.

Fix t0 ∈ [0, T ]. We first construct Φ in a small neighborhood of (x(t0), t0). Computing in local
coordinates, we have (writing ∂xjpm = ∂xjpm(x,∇xΦ(x, t)) etc):

∂xj (pm(x,∇xΦ)) = ∂xjpm + ∂ξapm∂xaxjΦ,(3.12)

∂xjxk(pm(x,∇xΦ)) = ∂xjxkpm + ∂xjξapm∂xaxkΦ+ ∂xkξapm∂xaxjΦ(3.13)

+ ∂ξaξbpm∂xaxjΦ∂xbxkΦ+ ∂ξapm∂xaxjxkΦ,

∂γx(pm(x,∇xΦ)) = ∂ξapm∂xa∂
γ
xΦ+ F γ(∇|γ|−1pm,∇|γ|−1

x Φ)∇|γ|
x Φ(3.14)

+Gγ(∇|γ|pm,∇|γ|−1
x Φ), |γ| ≥ 3.

In the last statement (which is easily proved by induction) ∇kf collects all derivatives of f up to
order k, and F γ and Gγ are polynomials in their arguments.

Motivated by (3.73.7), we look for Φ locally having the form

Φ(x, t) = ξ(t) · (x− x(t)) +
1

2
H(t)(x− x(t)) · (x− x(t)) + Φ3(x, t)

where H(t) is some complex symmetric matrix depending smoothly on t, and Φ3( · , t) vanishes to
third order at x(t). Then

(3.15) Φ(x(t), t) = 0, ∇xΦ(x(t), t) = ξ(t), ∂xjxkΦ(x(t), t) = Hjk(t).
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One has ξ(t) · ẋ(t) = 0 by the Hamilton equations and homogeneity. Thus it also follows that

(3.16) ∂tΦ(x, t) = (ξ̇(t)−H(t)ẋ(t)) · (x− x(t)) +G(x, t)(x− x(t)) · (x− x(t))

for some matrix valued function G(x, t).

We first show that (3.83.8) holds to first order. By (3.153.15) and (3.163.16), one has

pm(x,∇xΦ) + ∂tΦ(x, t)
∣∣
x=x(t)

= 0.

We next use (3.123.12), the Hamilton equations and (3.153.15) to obtain

∂xj (pm(x,∇xΦ))
∣∣
x=x(t)

= −ξ̇j(t) +Haj(t)ẋa(t)

By (3.163.16) we also have

∂xj (∂tΦ(x, t))
∣∣
x=x(t)

= ξ̇j(t)−Hja(t)ẋa(t)

and therefore (3.83.8) holds to first order.

To show that (3.83.8) holds to second order, we rewrite (3.133.13) as

∂xjxk(pm(x,∇xΦ))
∣∣
x=x(t)

= (D +BH +HBt +HCH)jk(t) + ẋa(t)∂xaxjxkΦ(x(t), t)

where B(t), C(t) and D(t) are the matrices

(3.17) Djk(t) := ∂xjxkpm(γ(t)), Bja(t) = ∂xjξapm(γ(t)), Cab(t) = ∂ξaξbpm(γ(t)).

Moreover, we note that

∂xjxk(∂tΦ(x, t))
∣∣
x=x(t)

= ∂t(∂xjxkΦ(x(t), t))− ẋa(t)∂xaxjxkΦ(x(t), t).

Adding these two identities and using (3.153.15), we have

(3.18) ∂xjxk(pm(x,∇xΦ) + ∂tΦ(x, t))
∣∣
x=x(t)

= (Ḣ +HCH +BH +HBt +D)jk(t).

Given any complex symmetric matrix H0 with Im(H0) positive definite, the matrix Riccati equation

(3.19) Ḣ +HCH +BH +HBt +D = 0, H(t0) = H0,

has a smooth complex symmetric matrix solution H(t) where Im(H(t)) is positive definite, see
[KKL01KKL01, Lemma 2.56]. The solution exists globally in the set where B, C and D are smooth, i.e.
in the whole coordinate patch. Choosing such a solution ensures that (3.83.8) holds to second order.

Finally, let r ≥ 3 and assume that we have prescribed ∂βxΦ(x(t), t) for |β| ≤ r − 1 so that (3.83.8)
holds to order r − 1. Let |γ| = r. Evaluating (3.143.14) at x(t) gives

∂γx(pm(x,∇xΦ))
∣∣
x(t)

= ẋa(t)∂xa∂
γ
xΦ+ F γ(∇|γ|−1pm,∇|γ|−1

x Φ)∇|γ|
x Φ+Gγ(∇|γ|pm,∇|γ|−1

x Φ)
∣∣
x(t)

.

Moreover, one has

∂γx∂tΦ(x(t), t) = ∂t(∂
γ
xΦ(x(t), t))− ẋa(t)∂xa∂

γ
xΦ(x(t), t).

Adding the above two equations gives

∂γx(pm(x,∇xΦ) + ∂tΦ)
∣∣
x(t)

(3.20)

= ∂t(∂
γ
xΦ(x(t), t)) + F γ(∇|γ|−1pm,∇|γ|−1

x Φ)∇|γ|
x Φ+Gγ(∇|γ|pm,∇|γ|−1

x Φ)
∣∣
x(t)

.

Thus (3.83.8) will hold to order r provided that

∂t(∂
γ
xΦ(x(t), t)) + F γ(∇|γ|−1pm,∇|γ|−1

x Φ)∇|γ|
x Φ+Gγ(∇|γ|pm,∇|γ|−1

x Φ) = 0, |γ| = r.

These equations over all γ with |γ| = r can be understood as a linear system of ODEs for the
vector (∂γxΦ(x(t), t))|γ|=r, and given any initial data at t0 this system has a smooth solution. Thus
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we have constructed the formal Taylor series of Φ at (x(t), t), and applying Borel summation gives
the required function Φ locally.

Step 3. Global construction of Φ.

We wish to glue together the local constructions in Step 2. To do this, we cover [0, T ] by finitely
many open intervals I1, . . . , IR so that 0 ∈ I1, T ∈ IR, Ij ∩ Ij+1 ̸= ∅, and each x(Ij) is contained
in some coordinate patch (Uj , yj). We first construct Φ1 near x(I1) as in Step 2 with Im(H(0))
positive definite. Choosing some t1 ∈ I1 ∩ I2, we then construct Φ2 near x(I2) as in Step 2 so that
the initial data for the ODEs for Φ2 at (x(t1), t1) matches the Taylor series of Φ1 at (x(t1), t1) when
Φ1 is written in the y2 coordinates.

We claim that one has

(3.21) Φ1 = Φ2 to infinite order at any (x(t), t) where t ∈ I1 ∩ I2.

This holds to first order since Φj(x(t), t) = 0 and dxΦj(x(t), t) = ξ(t). For the higher order case, it
is enough to use the invariant statements

pm( · , dxΦj( · , t)) + ∂tΦj( · , t)|x(t) = 0 to high order for t ∈ I1 ∩ I2 and j = 1, 2

and the formulas (3.183.18) and (3.203.20), which imply that in some local coordinates y, both ∂γyΦ1(x(t), t)
and ∂γyΦ2(x(t), t) satisfy the same first order ODEs and have the same initial data when t = t1.

Repeating the above process finitely many times, we see that the formal Taylor series of Φ( · , t)|x(t)
varies smoothly with t for t ∈ [0, T ]. We can obtain a global smooth function Φ with this Taylor
series by a Borel summation scheme that is compatible across coordinate patches. To do this, we
use the auxiliary Riemannian metric on X with covariant derivative ∇. Then the tensor fields

Tj(t) = ∇j
xΦ( · , t)|x(t),

defined in terms of the formal Taylor series of Φ, are invariantly defined and depend smoothly on
t ∈ [0, T ]. The map E(t, v) = (expx(t)(v), t) for t ∈ [0, T ] and v ∈ Tx(t)M is a local diffeomorphism

near each (t, 0) and it is injective on [0, T ]×{0}. Hence it is a diffeomorphism onto a neighborhood
of {(x(t), t) ; t ∈ [0, T ]} (see e.g. [KS13KS13, Lemma 7.3]). We may define a smooth function Φ as the
Borel sum

Φ(x, t) =
∞∑
j=0

Tj(t)(V (x, t), . . . , V (x, t))

j!
χ(|V (x, t)|/εj)

where V (x, t) is the projection of E−1(x, t) to the v component, χ ∈ C∞
c (R) satisfies χ = 1 near

0, and εj are suitable small numbers (see [Hö85Hö85, Theorem 1.2.6]). To check that Φ indeed has the
right Taylor series, observe that for small s

Φ(expx(t)(sv), t) =

∞∑
j=0

Tj(t)(v, . . . , v)

j!
sjχ(s|v|/εj).

If η(s) is a geodesic, the formula ∂js(f(η(s)) = ∇η̇(s)(∇η̇(s)(· · · (∇η̇(s)f))) = ∇jf(η̇(s), . . . , η̇(s))

shows that Φ defined as above satisfies ∇j
xΦ( · , t)|x(t) = Tj(t).

Step 4. Construction of a.
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Recall that we wish to find a(x, t) ∼
∑∞

j=0 h
jaj(x, t) so that aj solve the transport equations

(3.93.9)–(3.113.11). Evaluating the first equation at x(t) gives that

1

i
(∂t + L)a0 + ba0

∣∣
x=x(t)

=
1

i
∂t(a0(x(t), t)) + b(x(t))a0(x(t), t).

This will vanish provided that

(3.22) a0(x(t), t) = exp

[
−i

∫ t

0
b(x(s)) ds

]
where, for the sake of definiteness, we have chosen the initial value

a(x(0), 0) = 1.

Taking first order derivatives in (3.93.9) gives

∂xj

[
1

i
(∂t + L)a0 + ba0

] ∣∣
x=x(t)

=
1

i
∂t(∂xja0(x(t), t)) + qkj (t)∂xka0(x(t), t)) + rj(t)a0(x(t), t)

where qkj , rj are independent of a0. Requiring this to vanish leads to a linear ODE system for

(∂xja0(x(t), t))
n
j=1, which can be solved as above. Continuing this process gives the formal Taylor

series of a0( · , t) at x(t) within a coordinate patch. As in Step 4, covering x([0, T ]) by finitely many
coordinate patches and solving the ODEs for a0 in the next coordinate patch with initial data
obtained from the previous coordinate patch, we see that the formal Taylor series of a0( · , t)|x(t)
depends smoothly on t ∈ [0, T ]. Applying Borel summation as in Step 4 yields a smooth function
a0 satisfying (3.93.9). The amplitudes a1, a2, . . . are constructed analogously. The support of a can
be chosen to be contained in any fixed small neighborhood of {(x(t), t) ; t ∈ [0, T ]}.

Step 5. Further properties of Φ.

Here we collect some further properties of the phase function Φ(x, t) for later use. Again, in
order to have coordinate invariant statements, we use the auxiliary Riemannian metric g on X. We
also equip X × [0, T ] with the product metric g ⊕ e, where e is the Euclidean metric on R.

First we fix the choice for the initial data for H(t) by assuming that the quasimode near x(0)
is constructed using Riemannian normal coordinates at x(0), and when H(t) is written in these
coordinates one chooses in (3.193.19) the initial value

H(0) = iId.

Next recall from (3.73.7) that

(3.23) Φ(x(t), t) = 0, dxΦ(x(t), t) = ξ(t), ∂xjxkΦ(x(t), t) = Hjk(t).

In particular, Im(Φ( · , t)) vanishes to first order at x(t). Consequently the Riemannian Hessian
∇2
x Im(Φ)|(x(t),t) = (∂xjxkIm(Φ) − Γljk∂xlIm(Φ)) dxj ⊗ dxk is equal to Im(Hjk(t)) dx

j ⊗ dxk. This

shows that Im(H(t)) is an invariantly defined 2-tensor field along x(t), and

∇2
x Im(Φ)|(x(t),t) = Im(H(t)).

Now Im(H(0)) is positive definite, and this property is preserved for solutions of the matrix Riccati
equation. This shows that there is c > 0 with

∇2
x Im(Φ)|(x(t),t)(v, v) ≥ c|v|2, uniformly over t ∈ [0, T ].

Thus if supp(a) is chosen sufficiently small, we will have

(3.24) Im(Φ(x, t)) ≥ cd(x, x(t))2, (x, t) ∈ supp(a).
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We will next consider derivatives of Φ with respect to t. By (3.163.16) one has

(3.25) ∂tΦ(x(t), t) = 0.

Differentiating (3.163.16) further, we have

(3.26) dx∂tΦ(x(t), t) = (ξ̇j(t)−Hjk(t)ẋ
k(t)) dxj

which is an invariantly defined 1-form along x(t) since the left hand side is invariant. Similarly

(3.27) ∂2tΦ(x(t), t) = −(ξ̇j(t)−Hjk(t)ẋ
k(t))ẋj(t).

Step 6. Wave front set of Pu.

We now study the wave front set of Pu using the formula (3.63.6). By (3.83.8) we have

pm(x, dxΦ(x, t)) = −∂tΦ(x, t) + r(x, t)

where r( · , t) vanishes to infinite order at x(t). We observe that∫ T

0
eiΦ(x,t)/hh−m(−∂tΦ(x, t))a(x, t) dt = −h−m

∫ T

0

h

i
∂t(e

iΦ(x,t)/h)a(x, t) dt

= h1−m
∫ T

0
eiΦ(x,t)/h 1

i
∂ta(x, t) dt+

1

i
h1−m(eiΦ(x,0)/ha(x, 0)− eiΦ(x,T )/ha(x, T )).

Thus, using the formula for Pu in (3.63.6), we have

Pu(x) =
1

i
h1−m(eiΦ(x,0)/ha(x, 0)− eiΦ(x,T )/ha(x, T ))

+

∫ T

0
eiΦ(x,t)/h

h−m(ra)(x, t) + h1−m(
1

i
(∂ta+ La) + ba)(x, t) +

m∑
j=2

hj−mRja(x, t)

 dt.

By (3.93.9)–(3.113.11) we further have

Pu(x) =
1

i
h1−m(eiΦ(x,0)/ha(x, 0)− eiΦ(x,T )/ha(x, T )) +

∫ T

0
eiΦ(x,t)/h

 m∑
j=0

hj−mrj(x, t)

 dt(3.28)

where each rj is a smooth function with supp(rj) ⊂ supp(a) and rj( · , t) vanishes to infinite order
at x(t). By (3.243.24), for any N there is CN so that∣∣∣ ∫ T

0
eiΦ(x,t)/h

 m∑
j=0

hj−mrj(x, t)

 dt
∣∣∣ ≤ CN

∫ T

0
e−cd(x,x(t))

2/h

 m∑
j=0

hj−md(x, x(t))N

χ(x, t) dt
where χ is the characteristic function of supp(a). Thus the L2(X) norm of the last term in (3.283.28)
is O(h∞). Since the first two terms on the right of (3.283.28) are Gaussian wave packets at γ(0) and
γ(T ) with nonvanishing amplitudes, it follows (see [Zw12Zw12, Section 8.4.2]) that

WFscl(Pu) = γ(0) ∪ γ(T ).
Similarly, it follows from (3.283.28) that ∥Pu∥Hs(K) = O(h∞) whenever K ⊂ X is compact and disjoint
from the end points of π ◦ γ.

Step 7. Wave front set of u.
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Let (x0, ξ0) ∈ T ∗X. We will test whether (x0, ξ0) is in WFscl(u) by integrating u against the

wave packet eiΨ/hb, where Ψ = Ψ( · ;x0, ξ0) and b are as in Proposition 2.32.3. Note in particular that

Ψ(x0) = 0, dΨ(x0) = ξ0, ∇2 Im(Ψ)(x0) > 0, b(x0) ̸= 0.

Moreover, since b is supported close to x0, we have

dΨ ̸= 0 in supp(b) \ {x0}, Im(Ψ)(x) ≥ cd(x, x0)
2 in supp(b).

We thus need to study the integral

I(h) :=

∫
X
ueiΨ/hb dV =

∫ T

0

∫
X
eiΘ(x,t)/hr(x, t) dV dt

where
Θ(x, t) := Φ(x, t)−Ψ(x), r(x, t) := a(x, t)b(x).

We will show that I(h) = O(h∞) if (x0, ξ0) /∈ γ([0, T ]) (see cases 7a and 7b below), and I(h) ∼ h
n+1
2

if (x0, ξ0) ∈ γ([0, T ]) (see case 7c below). Then Proposition 2.32.3 proves that WFscl(u) = γ([0, T ]).

Case 7a. First assume that x0 /∈ x([0, T ]). By the properties of Φ and Ψ and by the triangle
inequality,

(3.29) Im(Θ(x, t)) ≥ c(d(x, x(t))2 + d(x, x0)
2) ≥ c

2
d(x(t), x0)

2 ≥ c′ > 0

uniformly over supp(r). Thus in this case I(h) = O(e−C/h).

Case 7b. Let x0 ∈ x([0, T ]), but ξ0 ̸= ξ(t) for any t ∈ I0 where I0 = {t ∈ [0, T ] ; x(t) = x0}. Note
that

dx,tΘ(x(t), t) = (ξ(t)− dxΨ(x(t)), 0).

It follows that dx,tΘ(x(t), t) is nonvanishing for any t ∈ I0. Thus if we choose χ ∈ C∞
c ([0, T ])

supported close to I0 with χ = 1 near I0, then nonstationary phase [Hö85Hö85, Theorem 7.7.1], together
with its boundary version [Hö85Hö85, Theorem 7.7.17(i)] if 0 ∈ I0 or T ∈ I0, implies that∫ T

0

∫
X
eiΘ(x,t)/hr(x, t)χ(t) dV dt = O(h∞).

If we replace χ by 1− χ in the integrand, we are in the region where d(x(t), x0) ≥ c > 0 and by

(3.293.29) the resulting integral is O(e−C/h).

Case 7c. Let now (x0, ξ0) = (x(t0), ξ(t0)) for some t0 ∈ [0, T ]. The phase function satisfies

Im(Θ) ≥ 0, Θ(x(t0), t0) = 0, dx,tΘ(x(t0), t0) = 0.

In order to use stationary phase, we need to show that the Hessian ∇2
x,tΘ|(x(t0),t0) is invertible.

Computing in Riemannian normal coordinates at (x(t0), t0) and using (3.263.26)–(3.273.27), we have

(3.30) ∇2
x,tΘ|(x(t0),t0) =

(
H +G ξ̇ −Hẋ

(ξ̇ −Hẋ)t (Hẋ− ξ̇) · ẋ

)
where everything is evaluated at t = t0 and G := −∇2Ψ̄(x0) satisfies Im(G) > 0. If (∇2

x,tΘ)ζ = 0

where ζ =

(
v
z

)
∈ Cn+1 with v ∈ Cn and z ∈ C, looking at imaginary parts gives

0 = Im(∇2
x,tΘ)ζ · ζ̄ = |Im(G)1/2v|2 + |Im(H)1/2(v − ẋz)|2.

Thus v = 0 and ẋz = 0. If ẋ(t0) ̸= 0 this implies that ζ = 0, showing that ∇2
x,tΘ|(x(t0),t0) is

invertible. If ẋ(t0) = 0 we additionally use that 0 = ∇2
x,tΘ

(
0
z

)
=

(
ξ̇z
0

)
, so ξ̇(t0)z = 0. But
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the condition ẋ(t0) = 0 implies that ξ̇(t0) ̸= 0 (otherwise dp would vanish at γ(t0) so γ(t) ≡ γ(t0),
contradicting the assumption that γ is injective). Thus z = 0, showing that ∇2

x,tΘ|(x(t0),t0) is
invertible also when ẋ(t0) = 0.

Now if χ ∈ C∞
c ([0, T ]) is supported near t0 and satisfies χ = 1 near t0, then stationary phase

[Hö85Hö85, Theorem 7.7.5], or its boundary version [Hö85Hö85, Theorem 7.7.17(iii)] if t0 = 0 or t0 = T ,
implies that ∫ T

0

∫
X
eiΘ(x,t)/hr(x, t)χ(t) dV dt = c0h

n+1
2 +O(h

n+1
2

+1)

where c0 ̸= 0 since r(x0, t0) ̸= 0. When we replace χ by 1− χ in the integrand, then we are either
in the region where x(t) is away from x0 (case 7a) or x(t) is close to x0 but ξ(t) is away from ξ0
(case 7b), and the resulting integral is O(h∞). Combining these facts gives that I(h) ∼ h

n+1
2 .

Step 8. Semiclassical measure.

Let u be as above, and let v be the corresponding quasimode for P̃ ∗. Then u and v have the
form

u(x) =

∫ T

0
eiΦ(x,t)/ha(x, t) dt, v(x) =

∫ T

0
eiΦ(x,s)/hβ(x, s) ds.

Note that u and v have the same phase function Φ since both P and P̃ have principal symbol pm.
Moreover, β is an amplitude analogous to a satisfying

β(x(t), t) = exp

[
−i

∫ t

0
bP̃ ∗(x(s)) ds

]
+O(h).

Using Lemma 3.33.3, we have

Qu(x) =

∫ T

0
eiΦ(x,t)/h

[
h−ℓqℓ(x, dxΦ(x, t))a(x, t) +

ℓ∑
j=1

hj−ℓRja(x, t)

]
dt

where Rj is now defined in terms of Q. We only need to consider the h−ℓ term, since the argument
below will show that the other terms will be lower order as h→ 0. Then∫

X
Quv̄ dV = h−ℓ

∫ T

0

[∫ T

0

∫
X
eiΦ(x,t)/hqℓ(x, dxΦ(x, t))a(x, t)eiΦ(x,s)/hβ(x, s) dV dt

]
ds

+ lower order terms.

For any fixed s ∈ [0, T ] we will study the integral inside the brackets, i.e. the integral

Is(h) :=

∫ T

0

∫
X
eiΘs(x,t)/hrs(x, t) dV dt

where
Θs(x, t) := Φ(x, t)− Φ(x, s), rs(x, t) = a(x, t)β(x, s)qℓ(x, dxΦ(x, t)).

Using the conditions for Φ, one has

Im(Θs) ≥ 0 on supp(rs), Θs(x(s), s) = 0, dx,tΘs(x(s), s) = 0.

The formula (3.303.30) with the choices Ψ(x) = Φ(x, s) and t0 = s shows that

(3.31) M(s) := ∇2
x,tΘs|(x(s),s) =

(
2iIm(H) ξ̇ −Hẋ

(ξ̇ −Hẋ)t (Hẋ− ξ̇) · ẋ

)
.
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Again, this is the representation of ∇2
x,tΘs|(x(s),s) in Riemannian normal coordinates at (x(s), s).

The argument after (3.303.30) shows that M(s) is invertible and hence we can use stationary phase to
evaluate Is(h). However, since there is an additional integration over s, we need to ensure that all
constants are uniform over s ∈ [0, T ]. To do this, first we show that there is c > 0 with

(3.32) |M(s)ζ| ≥ c|ζ|, uniformly over s ∈ [0, T ].

In fact, it is enough to prove that

(3.33) det(M(s)) = α0 det(Im(H(s)))

for some constant α0 ̸= 0. The computation below will show that

α0 =
i

2
(2i)n(|ẋ(0)|2 + |ξ̇(0)|2).

Since Im(H(s)) is positive definite for s ∈ [0, T ], (3.323.32) is a consequence of (3.333.33) and the Cramer
rule for computing M(s)−1.

For proving (3.333.33), we write

ρ(s) := H(s)ẋ(s)− ξ̇(s), R(s) := Re(H(s)), I(s) := Im(H(s)).

Here R(s) and I(s) are real symmetric matrices. The Schur complement formula for the determi-
nant of a block matrix yields

det(M(s)) = det(2iI(s))f(s)
where

f(s) := ρ(s) · (ẋ(s)− (2iI(s))−1ρ(s)) =
i

2
I(s)−1ρ(s) · ρ(s).

In the last equality we used the fact that ẋ = Im(I−1ρ). We thus have

(3.34) ḟ(s) =
i

2

[
−I−1İI−1ρ · ρ̄+ I−1ρ̇ · ρ̄+ I−1ρ · ¯̇ρ

]
.

To compute ρ̇, note that from the Hamilton equations and (3.173.17) we obtain the formulas

ẍ = Btẋ+ Cξ̇, ξ̈ = −Dẋ−Bξ̇.

Using these formulas together with the matrix Riccati equation (3.193.19), we obtain

(3.35) ρ̇ = −(HC +B)ρ.

Finally, taking the imaginary part of the matrix Riccati equation (3.193.19) we have

(3.36) İ + ICR+RCI +BI + IBt = 0.

Inserting the formulas (3.353.35) and (3.363.36) into (3.343.34) proves that ḟ(s) ≡ 0. This shows (3.333.33), where

α0 = (2i)nf(0) and f(0) = i
2ρ(0) · ρ(0) =

i
2(|ẋ(0)|

2 + |ξ̇(0)|2).
Having proved (3.323.32), the Taylor formula shows that there is δ > 0 with

|dx,tΘs(expx(s)(v), s+ z)| ≥ c

2

∣∣∣∣( v
z

)∣∣∣∣ , ∣∣∣∣( v
z

)∣∣∣∣ ≤ δ, s ∈ [0, T ].

In normal coordinates at (x(s), s) this means that

|(x− x(s), t− s)|
|Θ′

s(x, t)|
≤ C, |(x− x(s), t− s)| ≤ δ, s ∈ [0, T ].

This is precisely the condition in the stationary phase theorem [Hö85Hö85, Theorem 7.7.5] that will
make the constants uniform over s ∈ [0, T ]. Note that since Q vanishes near the end points of γ,
we do not need to worry about boundary contributions. Thus, if χ ∈ C∞

c (R) satisfies χ = 1 for
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|t| ≤ δ/2 and supp(χ) ⊂ (−δ, δ), and if the support of β(x, s) is chosen sufficiently small depending
on δ, then the stationary phase theorem implies that∣∣∣∣∫ T

0

∫
X
eiΘs(x,t)/hrs(x, t)χ(t− s) dV dt− h

n+1
2 (det(M(s)/2πi))−1/2rs(x(s), s)

∣∣∣∣ ≤ Ch
n+3
2

uniformly over s ∈ [0, T ]. There is no |g|1/2 term coming from dV since the computation is done in
Riemannian normal coordinates. Moreover, if we replace χ(t− s) by 1− χ(t− s) in the integrand,
then one is either in the region where x(t) is close to x(s) but |t − s| ≥ δ/2, so that the integral
will be O(h∞) uniformly over s ∈ [0, T ] by nonstationary phase as in Case 7b above, or one is in
the region where x(t) is away from x(s) and one can use Gaussian decay as in Case 7a above. It
follows that

|Ih(s)− h
n+1
2 (det(M(s)/2πi))−1/2rs(x(s), s)| ≤ Ch

n+3
2

uniformly over s ∈ [0, T ]. By (3.333.33) this may be rewritten as

Ih(s) = c0h
n+1
2 det(I(s))−1/2 exp

[
−i

∫ s

0

[
bP (x(σ))− bP̃ ∗(x(σ))

]
dσ

]
qℓ(γ(s)) +O(h

n+3
2 )

uniformly over s ∈ [0, T ], where

(3.37) c0 = (2πi)
n+1
2 α

− 1
2

0 =
2π

n+1
2

(|ẋ(0)|2 + |ξ̇(0)|2)1/2
.

This proves that, as h→ 0,

hℓ−
n+1
2

∫
X
Quv̄ dV → c0

∫ T

0
det(I(s))−1/2 exp

[
−i

∫ s

0

[
bP (x(σ))− bP̃ ∗(x(σ)))

]
dσ

]
qℓ(γ(s)) ds.

Using the properties of Φ and the notation (3.173.17), the function b = bP in Lemma 3.33.3 satisfies

bP (x(t)) =
1

2i
tr(C(t)H(t)) + pm−1(γ(t)).

As p̃m = pm is real, the adjoint P̃ ∗, defined with respect the L2(M) inner product associated to g,
has in some local coordinates the full symbol

pm +
1

i

n∑
j=1

(∂xjξjpm + |g|−1/2∂ξjpm∂xj |g|
1/2) + p̃m−1 + r,

where r contains the terms of order ≤ m− 2. Thus, in normal coordinates at x(t),

bP̃ ∗(x(t)) =
1

2i
tr(C(t)H(t)) +

1

i
tr(B(t)) + p̃m−1(γ(t)).

It follows that

bP (x(t))− bP̃ ∗(x(t)) =
1

i
tr(C(t)R(t) +B(t)) + pm−1(γ(t))− p̃m−1(γ(t)).

Moreover, using (3.363.36) and symmetries of trace,

∂t(log det I) = tr(I−1İ) = − tr(CR+ I−1RCI + I−1BI +Bt) = −2 tr(CR+B)

which gives, using that I(0) = Id,

det I(t) = exp

[
−2

∫ t

0
tr(C(s)R(s) +B(s)) ds

]
.

32



These facts imply that

det(I(t))−1/2 exp

[
−i

∫ t

0

[
bP (x(s))− bP̃ ∗(x(s)))

]
ds

]
= exp

[
−i

∫ t

0
(pm−1(γ(s))− p̃m−1(γ(s))) ds

]
.

This finally proves that

hℓ−
n+1
2

∫
X
Quv̄ dV → c0

∫ T

0
qℓ(γ(t)) exp

[
−i

∫ t

0
(pm−1(γ(s))− p̃m−1(γ(s))) ds

]
dt

where c0 ̸= 0 is given in (3.373.37). □

Remark 3.4. For later purposes, we observe that if M is a compact subset of X disjoint from the
end points of γ, then for k ≥ 0 one has

(3.38) ∥u∥Hk(M) = O(h
n+1
4

−k).

This follows from (3.13.1) upon taking P̃ = P ∗, u = v and Q = R∗χ2R where R is elliptic of order k
(one can take k even) and χ ∈ C∞

c (X) satisfies χ = 1 near M and χ = 0 near the end points of γ.

Remark 3.5. It is possible to view the construction in Theorem 3.13.1 formally in terms of a quasi-
mode construction in X × R for the operator

Q(x, t,Dx, Dt) := h1−mDt + P (x,Dx).

If γ(s) = (x(s), ξ(s)) is an injective null bicharacteristic segment for P , then (x(s), s, ξ(s), 0) is a
similar bicharacteristic segment for Q and its spatial projection η(s) = (x(s), s) satisfies η̇(s) ̸= 0

everywhere. One can then think of eiΦ(x,t)/ha(x, t) as a quasimode for Q near the curve η, and
integrating in t produces a quasimode for P .

We will also formulate a result related to computing the values of u at x(t) away from cusp
points. This involves stationary phase in the t variable. Near cusp points the phase function will
have a degenerate critical point in t and the behaviour is more complicated. For example, if P is
the Tricomi operator, one can check from the construction that the phase function will have cubic
behaviour near cusps. For such phase functions, at least if they are real valued, the asymptotics
involve Airy functions [Hö85Hö85, Theorem 7.7.18].

Lemma 3.6. If u is the function in Theorem 3.13.1 and if t0 ∈ (0, T ) is such that ẋ(t0) ̸= 0 and
x(t) ̸= x(t0) for t ̸= t0, then

u(x(t0)) = h1/2
1

cγ(t0)
exp

[
−i

∫ t0

0
bP (x(s)) ds

]
+O(h3/2)

where cγ is a smooth function depending on γ that is nonvanishing at any t0 satisfying the assump-
tion above.

Proof. We will give the proof under the more general assumption that ẋ(t) ̸= 0 for any t with
x(t) = x(t0), and x(t0) is not one of x(0) or x(T ). Write x0 = x(t0), and recall that

u(x0) =

∫ T

0
eiΦ(x0,t)/ha(x0, t) dt.

Let It0 = {t ∈ [0, T ] ; x(t) = x0}. Since ẋ(t) ̸= 0 when t ∈ It0 , points of It0 are isolated and hence
It0 = {s1, . . . , sN} where s1 < s2 < . . . < sN and one of the sj is t0.
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Note first that if t is away from It0 , then x(t) is bounded away from x0 and thus by (3.243.24) the

contribution of this region to u(x0) is O(e−C/h). At points of It0 , since x(sj) = x0, the formulas
(3.233.23)–(3.273.27) imply that

Φ(x0, sj) = 0, ∂tΦ(x0, sj) = 0, ∂2tΦ(x0, sj) = (Hẋ− ξ̇) · ẋ|sj
where H, ẋ, ξ̇ are written in terms of Riemannian normal coordinates at x0. Since Im(H(sj)) > 0
and since ẋ(sj) ̸= 0 by assumption, we have ∂2tΦ(x0, sj) ̸= 0 and hence we can use stationary phase
[Hö85Hö85, Theorem 7.7.5] near each sj . This implies that

u(x0) = h1/2
N∑
j=1

1

cγ(sj)
a(x0, sj) +O(h3/2)

where

cγ(sj) =

(
2πi

H(sj)ẋ(sj) · ẋ(sj)

)1/2

and, since x0 = x(sj), by (3.223.22) one has

a(x0, sj) = exp

[
−i

∫ sj

0
bP (x(s)) ds

]
.

Now if t0 satisfies the assumption of the theorem, then N = 1 and the result follows. □

4. Determining the scattering relation and ray transforms

We will next prove Theorem 1.11.1. The main idea for recovering the scattering relation is the
following: if γ1 is a maximal null bicharacteristic for P1 in M starting at (x0, ξ0), one constructs a
solution u1 of P1u1 = 0 in a neighborhood X of M so that WFscl(u1) is on the extension γ̆1 of γ1
to X. Using the assumption CP1 = CP2 , there is a solution ũ2 of P2ũ2 = 0 in M having the same
Cauchy data as u1 on ∂M . In fact one can extend ũ2 so that P2ũ2 = 0 near M and u1 = ũ2 outside
M (this is the mix-and-match construction mentioned in the introduction). One then considers the
maximal null bicharacteristic γ2 of P2 in M going through (x0, ξ0).

The above construction ensures that WFscl(u1|X\M ) contains a part near (x0, ξ0) and also a part
near αP1(x0, ξ0). Since u1 = ũ2 outside M , also WFscl(ũ2|X\M ) contains these two parts. On the
other hand, since P2ũ2 = 0 near M and since γ2 contains (x0, ξ0), by semiclassical propagation of
singularities WFscl(ũ2|X\M ) must also contain parts near the start and end points of γ2. Combining
these conditions eventually leads to the fact that αP1(x0, ξ0) = αP2(x0, ξ0). In the proof we need
to deal with the possibility of tangential contacts with ∂M , which adds some technicalities.

If the principal parts of P1 and P2 agree, the recovery of subprincipal information in Theorem
1.11.1 is also based on constructing solutions concentrating near a maximal null bicharacteristic.
However, instead of using the mix-and-match construction, it is more convenient to employ the
integral identity in Lemma 2.82.8 and the formula for the semiclassical limit measure in (3.13.1).

Proof of Theorem 1.11.1. The proof will be done in several steps.

Step 1. Preparation.

We begin by extending both P1 and P2 smoothly to a slightly larger manifold X, in such a way
that P1 = P2 in X \M (this is possible since P1 = P2 to infinite order at ∂M). The principal
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symbols pj = pj,m of Pj then satisfy

(4.1) p1 = p2 in T ∗(X \M int).

In particular, the null directions on ∂(T ∗M) are the same for P1 and P2. Note also that if X is
chosen sufficiently small, both P1 and P2 will be real principal type in X (i.e. the nontrapping
condition will hold in X), see [Hö85Hö85, proof of Theorem 26.1.7].

Let (x0, ξ0) ∈ ∂′null,P1
(T ∗M), and let γ1 : [0, T1] → T ∗M \ 0 be the maximal null bicharacteristic

for P1 with γ1(0) = (x0, ξ0) (the case where γ1(T1) = (x0, ξ0) is analogous). We denote by γ̆1 the
maximal continuation of γ1 as a null bicharacteristic of P1 in X. Since γ1 is maximal, there is a
strictly increasing sequence (t−j )

∞
j=1 with t−j → 0 and a strictly decreasing sequence (t+j )

∞
j=1 with

t+j → T1 such that

γ1(t
±
j ) ∈ T ∗(X \M).

Since d(x1(t
±
j ),M) → 0 as j → ∞, where x1(t) = π(γ1(t)), after passing to subsequences we may

choose a strictly decreasing sequence (κj) with

(4.2) d(x1(t
±
j+1),M) < κj < d(x1(t

±
j ),M), κj → 0.

Then Xj := {x ∈ X ; d(x,M) < κj} is an open manifold so that M ⊂ Xj ⊂⊂ X and

(4.3) γ1(t
±
j ) ∈ T ∗(X \Xj).

Let γ2 : [−S2, T2] → T ∗M \0 be the maximal null bicharacteristic for P2 in M with γ2(0) = (x0, ξ0)
and S2, T2 ≥ 0.

Step 2. Strategy.

We wish to show that S2 = 0 or T2 = 0, i.e. (x0, ξ0) ∈ ∂′null,P2
(T ∗M), and that

{γ1(0), γ1(T1)} = {γ2(−S2), γ2(T2)}.
This will imply that ∂′null,P1

(T ∗M) ⊂ ∂′null,P2
(T ∗M) and αP1 = αP2 on ∂′null,P1

(T ∗M). Changing

the roles of P1 and P2 then implies that ∂′null,P1
(T ∗M) = ∂′null,P2

(T ∗M) and αP1 = αP2 .

Below we will work with j fixed, and we will suppress j from the notation of u1 etc.

Step 3. There is u1 ∈ Hm(Xj) with P1u1 = 0 in Xj and WFscl(u1) = γ̆1([t
−
j , t

+
j ]) ∩ T ∗Xj .

Let v1 be the quasimode associated to γ̆1|[t−j ,t+j ] in X constructed in Theorem 3.13.1, satisfying

WFscl(v1) = γ̆1([t
−
j , t

+
j ]), WFscl(P1v1) = γ̆1(t

−
j ) ∪ γ̆1(t

+
j ).

Then ∥P1v1∥Hs(Xj) = O(h∞) for any fixed s since WFscl(P1v1) is away from Xj using (4.34.3). Let

u1 = v1|Xj + r1, where r1 ∈ Hs+m−1(Xj) is the solution given in Proposition 2.22.2 of the equation

P1r1 = −P1v1 in Xj

with

∥r1∥Hs+m−1(Xj) ≲ ∥P1v1∥Hs(Xj) = O(h∞).

Then WFscl(u1) = WFscl(v1|Xj ) = γ̆1([t
−
j , t

+
j ]) ∩ T ∗Xj , and P1u1 = 0 in Xj .

Step 4. There is ũ2 ∈ Hm(Xj) so that P2ũ2 = 0 in Xj , ũ2 = u1 in Xj \M , and ũ2 is L2-tempered.
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To prove this we invoke the assumption CP1 = CP2 , which implies that there is w2 ∈ Hm(M)
such that

P2w2 = 0 in M, ∇kw2|∂M = ∇ku1|∂M for k ≤ m− 1.

Define the function

ũ2 :=

{
w2, in M,
u1, in Xj \M.

Then ũ2 ∈ Hm(Xj), and P2ũ2 = 0 in Xj since this holds separately in M and Xj \M . It remains
to show that ũ2 is L2-tempered. First note that u1 − ũ2 is in Hm

M (Xj) and solves

P2(u1 − ũ2) = −P2u1.

We may add a function in N(P2) to ũ2 so that one still has P2ũ2 = 0 in Xj and ũ2 = u1 in Xj \M ,

and additionally u1 − ũ2 ∈ N(P2)
⊥. Then (2.22.2) implies that

(4.4) ∥u1 − ũ2∥L2
M

≲ ∥P2(u1 − ũ2)∥L2
M

= ∥P2u1∥L2(M) ≲ ∥u1∥Hm(M).

Thus ∥ũ2∥L2(M) ≲ ∥u1∥Hm(M) = O(h
n+1
4

−m) by (3.383.38). It follows that ũ2 is L2-tempered.

Step 5. γ1(σ−) = γ2(−S2) and γ1(σ+) = γ2(T2) for some σ± ∈ {0, T1}.

By Step 3 we have WFscl(u1) = γ̆1([t
−
j , t

+
j ]) ∩ T ∗Xj . Since ũ2 = u1 in Xj \M , we further have

(4.5) WFscl(ũ2|Xj\M ) = (γ̆1([t
−
j , 0)) ∪ γ̆1((T1, t

+
j ])) ∩ T

∗(Xj \M).

Using (4.24.2) we have γ̆1(t
±
k ) ∈ WFscl(ũ2|Xj\M ) for k > j, and since the wave front set is closed this

implies that γ1(0), γ1(T1) ∈ WFscl(ũ2). However, since γ1(0) = γ2(0), semiclassical propagation of
singularities for the solution ũ2 of P2ũ2 = 0 in Xj , together with the maximality of γ2, implies

that γ̆2(τ
j,±
k ) ∈ WFscl(ũ2|Xj\M ) for some increasing sequence τ j,−k → −S2 and decreasing sequence

τ j,+k → T2 where γ̆2 is the continuation of γ2 to X. After passing to subsequences, we may assume

that −S2 − 1/k < τ j,−k < −S2 and T2 < τ j,+k < T2 + 1/k.

Up to now we have been working with a fixed j. Next we consider the diagonal sequences τ j,±j
as j → ∞, and note that by (4.54.5) one has

(4.6) γ̆2(τ
j,±
j ) = γ̆1(σ

±
j )

for some σ±j with σ±j ∈ [t−j , 0] ∪ [T1, t
+
j ].

It follows that τ j,−j → −S2 and τ j,+j → T2, as well as (possibly after passing to subsequences)

σ±j → σ± for some σ± ∈ {0, T1}. Thus by (4.64.6) one has

γ1(σ−) = γ2(−S2), γ1(σ+) = γ2(T2).

Step 7. ∂′null,P1
(T ∗M) = ∂′null,P2

(T ∗M) and αP1 = αP2 .

Now if σ− ̸= σ+, then necessarily T1 > 0 and {σ−, σ+} = {0, T1}. Thus
{γ1(0), γ1(T1)} = {γ2(−S2), γ2(T2)}.

In particular, (x0, ξ0) = γ1(0) = γ2(0) is one of the endpoints of γ2, so either S2 = 0 or T2 = 0.

On the other hand, assume that σ− = σ+ = 0 (the case σ± = T1 is analogous). Then γ2(−S2) =
γ2(T2) and consequently S2 = T2 = 0 (since γ2|[−S2,T2] is injective by the real principal type
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assumption). We wish to prove that also T1 = 0. If this is not true, then T1 > 0 and γ1(0) ̸= γ1(T1)
using that γ1|[0,T1] is injective. Returning to (4.64.6), after passing to subsequences if necessary, it

follows that σ±j ≤ 0 for all j. Now in local coordinates in T ∗M , the curves γ̆j(t) for small t are

very close to the line (x0, ξ0) + tγ̇1(0) where γ̇1(0) = γ̇2(0) ̸= 0 by (4.14.1) and the real principal type

assumption. Since τ j,−j < 0, τ j,+j > 0 and σ±j ≤ 0, this leads to a contradiction with (4.64.6). This
proves that T1 = 0 and

{γ1(0), γ1(T1)} = {γ2(−S2), γ2(T2)}
also when σ+ = σ−.

We have now proved the claims stated in Step 2, and thus Step 7 is complete.

Step 8. If P1 and P2 have the same principal symbol and if µ is a half density on M , one has

exp

[
i

∫ T

0
σsub[P

µ
1 ](γ(t)) dt

]
= exp

[
i

∫ T

0
σsub[P

µ
2 ](γ(t)) dt

]
whenever γ : [0, T ] → T ∗M \ 0 is a maximal null bicharacteristic in M .

By the Remark after Theorem 1.11.1, it is enough to prove that

exp

[
i

∫ T

0
(pm−1,1 − pm−1,2)(γ(t)) dt

]
= 0.

Write Q = P1 −P2. Since P1 = P2 in X \M , the operator Q is a differential operator with smooth
coefficients in X that vanishes in X \M and has principal symbol

qm−1 = pm−1,1 − pm−1,2.

We denote by γ̆ the continuation of γ as a null bicharacteristic curve in X.

We now use Theorem 3.13.1 with P = P1 and P̃ = P2 and construct quasimodes v1, v2 associated
with γ̆|[−ε1,T+ε2] with εj chosen so that the end points are outside M . Then ∥P1v1∥Hs(M) =
∥P ∗

2 v2∥Hs(M) = O(h∞). As in Step 3, we construct solutions uj = vj + rj of P1u1 = 0 and
P ∗
2 u2 = 0 in M with ∥rj∥Hs+m−1(M) = O(h∞).

Since CP1 = CP2 and Q = P1−P2 vanishes outsideM , the integral identity in Lemma 2.82.8 implies
that

0 = (Qu1, u2)L2(M) = (Qv1, v2)L2(X) +O(h∞).

Multiplying this identity by h−
n+1
2

+m−1 and using (3.13.1), we obtain∫ T

0
qm−1(γ(t)) exp

[
−i

∫ t

0
qm−1(γ(s)) ds

]
dt = 0.

The integrand is equal to i∂t(exp
[
−i

∫ t
0 qm−1(γ(s)) ds

]
), hence it follows that

exp

[
−i

∫ T

0
qm−1(γ(t)) dt

]
= 1.

This is the required statement. □

Remark 4.1. If the maximal null bicharacteristic γ : [0, T ] → T ∗M \ 0 is sufficiently nice, e.g.
ẋ(t) ̸= 0 and x(t) is injective on [0, T ], one can give an alternative proof of Step 8 by using the mix-
and-match construction and a similar argument as in Steps 3–5. That is, one constructs solutions
of Pjuj = 0 associated with γ, and defines another solution of P2ũ2 = 0 in X1 so that ũ2 = u1
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outside M . By semiclassical propagation of singularities, u2 − ũ2 is O(h∞) at the end point x(T ).
Comparing the values of u1 and u2 at x(T ) using Lemma 3.63.6 proves Step 8.

Proof of Theorem 1.21.2. The proof is the same as in Step 8 in the proof of Theorem 1.11.1. By Lemma
2.82.8, the assumption CP+Q1 = CP+Q2 implies the integral identity

((Q1 −Q2)u1, u2)L2(M) = 0

whenever uj ∈ Hm(M) solve (P +Q1)u1 = (P ∗ +Q∗
2)u2 = 0 in M . We wish to find such solutions

uj that are close to the quasimodes constructed in Theorem 3.13.1.

Let γ : [0, T ] → T ∗M \ 0 be a maximal null bicharacteristic in M . We extend P as a smooth
differential operator to some slightly larger open manifold X and let γ̆ be the continuation of γ
to X. We also extend Qj smoothly to X so that the coefficients of Q1 − Q2 vanish outside X.
Choose some εj > 0 so that γ̆(−ε1) and γ̆(T + ε2) are in X \M . Let v1 = v1,h ∈ C∞

c (X) be the
quasimode given by Theorem 3.13.1 related to γ̆|[−ε1,T+ε2] satisfying ∥(P + Q1)v1∥Hs(M) = O(h∞),
and let v2 = v2,h be the corresponding quasimode satisfying ∥(P ∗ +Q∗

2)v2∥Hs(M) = O(h∞).

We define uj = vj + rj , where rj are correction terms satisfying

(P +Q1)r1 = f1 in M, (P ∗ +Q∗
2)r2 = f2 in M,

where f1 = −(P + Q1)v1|M and f2 = −(P ∗ + Q∗
2)v2|M . Note that fj ∈ C∞(M) with f1 ∈

N(P ∗
1 +Q∗

1)
⊥ and f2 ∈ N(P +Q2)

⊥. By Proposition 2.22.2, there exist solutions rj ∈ Hs+m−1(M) of
the above equations with the norm estimates

∥rj∥Hs+m−1(M) ≲ ∥fj∥Hs(M) = O(h∞).

Then uj ∈ Hs+m−1(M) also solve (P +Q1)u1 = (P ∗ +Q∗
2)u2 = 0 in M .

Inserting the solutions uj in the integral identity, we obtain that∫
M
(Q1 −Q2)v1v̄2 dV = O(h∞).

Using Theorem 3.13.1 and the fact that the coefficients of Q1−Q2 vanish outside M , this implies that∫ T

0
σpr[(Q1 −Q2)](γ(t)) dt = 0.

Here we also used that the subprincipal symbols of P+Q1 and P+Q2 agree, so that the exponential
factor in (3.13.1) goes away. □

We next consider the case of strictly hyperbolic operators and prove Theorem 1.31.3. First we verify
that strictly hyperbolic operators are indeed real principal type (this should be well known, for a
proof see [OSSU20OSSU20, Appendix A]).

Lemma 4.2. Let X be an open manifold, let ϕ ∈ C∞(X,R), and let P be a strictly hyperbolic
differential operator of order m in X with respect to the level surfaces of ϕ. Then P is of real
principal type in X.

Proof of Theorem 1.31.3. We begin by establishing suitable analogues of Proposition 2.22.2 (see Step 1
below) and Lemma 2.82.8 (Step 2 below), and then indicate the minor modifications required in the
proofs of Theorems 1.11.1 and 1.21.2 by giving a proof of (1.61.6) (Step 3 below). The other claims can be
proven using analogous modifications.
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Choose an open manifold Y1 ⊂ X so that M1 ⊂ Y1 and Y1 is compact. Define

X1 = {x ∈ Y1 ; 0 < ϕ(x) < T}.

Step 1. Given any f ∈ Hs
0(X1), with s ≥ 1, there is a solution u ∈ Hs+m−1(X1) of P1u = f

satisfying trm−1
Γ−

u = 0 and

∥u∥Hs+m−1(X1) ≤ C∥f∥Hs(X1).(4.7)

We define the space

H = {u ∈ Hs+m−1(X1) ; P1u ∈ Hs
0(X1), tr

m−1
Γ−

u = 0},

equipped with the norm defined by

∥u∥2H = ∥u∥2Hs+m−1(X1)
+ ∥P1u∥2Hs(X1)

.

Now H is a Hilbert space and writing P = P1|H, P : H → Hs
0(X1) is clearly continuous. Let

us show that P is surjective. Let f ∈ Hs
0(X1). We may extend f by zero to obtain a function

in Hs(X), still denoted by f . By [Hö85Hö85, Theorem 23.2.4] there is u ∈ Hs+m−1
loc (X) such that

supp(u) ⊂ ϕ−1([0,∞)) and P1u = f on X1. Hence P is surjective.

It follows now (see [EHN96EHN96, Proposition 2.3 and 2.4]) that the pseudoinverse P † of P is continuous
P † : Hs

0(X1) → H and PP †f = f . Thus u = P †f solves Pu = f with the continuous dependence
(4.74.7).

Step 2. If C lat
P1

= C lat
P2

, then

((P1 − P2)u1, u2)L2(M) = 0(4.8)

whenever uj ∈ Hm(M) solve P1u1 = P ∗
2 u2 = 0 in M , trm−1

Γ−
u1 = 0 and trm−1

Γ+
u2 = 0.

As C lat
P1

⊂ C lat
P2

we can find ũ2 ∈ Hm(M) such that P2ũ2 = 0 in M and trm−1
Γ∪Γ−

ũ2 = trm−1
Γ∪Γ−

u1.

Then, using also trm−1
Γ+

u2 = 0,

((P1 − P2)u1, u2) = −(P2u1, u2) = −(P2(u1 − ũ2), u2) = −(u1 − ũ2, P
∗
2 u2) = 0.

Step 3. If P1 and P2 have the same principal symbol and if µ is a half density on M , one has

exp

[
i

∫ T

0
σsub[P

µ
1 ](γ(t)) dt

]
= exp

[
i

∫ T

0
σsub[P

µ
2 ](γ(t)) dt

]
whenever γ : [0, T ] → T ∗M \ 0 is a maximal null bicharacteristic in M that does not meet ∂(T ∗M)
away from Γ.

It is again enough to prove

exp

[
i

∫ T

0
qm−1(γ(t)) dt

]
= 1,(4.9)

where qm−1 is the principal symbol of Q = P1−P2. We denote by γ̆ the continuation of γ as a null
bicharacteristic curve in X.
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We use Theorem 3.13.1 with P = P1 and P̃ = P2 to obtain quasimodes v1, v2 associated with
γ̆|[−ε1,T+ε2] with εj chosen so that the end points are outside X1. Observe that, when X1 is chosen

small enough, vj can be constructed so that, writing Σ = ϕ−1(0)∪ϕ−1(T ), one has supp(vj)∩Σ = ∅.
We choose χ ∈ C∞(X1) so that χ = 1 in M and that χ = 0 near ∂X1 \ Σ. Finally we choose
r1 ∈ Hm(X1) so that P1r1 = −χP1v1, tr

m−1
Γ−

r1 = 0 and that (4.74.7) holds with s = 1. Then

∥r1∥Hm(X1) ≤ C∥χP1v1∥H1(X1) = O(h∞),

and setting u1 = v1 + r1, it follows that P1u1 = 0 in M .

Note that P2 is strictly hyperbolic also with respect to the level surfaces of −ϕ. Repeating
the argument in Step 1, with P1 replaced by P2 and ϕ by −ϕ, we see that there is a solution
r2 ∈ Hs+m−1(X1) of P2r2 = −χP2v2 satisfying trm−1

Γ+
r2 = 0 and ∥r2∥H1(X1) = O(h∞). We set

u2 = v2 + r2.

Since CP1 = CP2 and Q = P1 − P2 vanishes outside M , the integral identity (4.84.8) implies that

0 = (Qu1, u2)L2(M) = (Qv1, v2)L2(X) +O(h∞).

Multiplying this identity by h−
n+1
2

+m−1 and using (3.13.1), we obtain (4.94.9) as in the proof of Theo-
rem 1.11.1. □

The next results either follow by small modifications of the above proofs or are of auxiliary nature,
and hence the proofs are omitted (they may be found in the arXiv version [OSSU20OSSU20, Appendix A]).
First we show that one can obtain partial data results in the corresponding inverse problems. Let
Γ ⊂ ∂M be a nonempty open set. We use the notation

∥trm−1
Γ u∥2Hm−1(Γ) =

m−1∑
j=0

∥∇ju|Γ∥2L2(Γ),

and consider the partial Cauchy data set

CP,Γ = {(u|Γ,∇u|Γ, . . . ,∇m−1u|Γ) ;u ∈ Hm(M) solves Pu = 0 in M and

∥trm−1
∂M\Γ u∥Hm−1(∂M\Γ) ≤ ∥trm−1

Γ u∥Hm−1(Γ)}.

The last condition means that we are only using solutions of Pu = 0 whose Cauchy data on ∂M \Γ
is not much larger than the Cauchy data on Γ (the constant 1 in the inequality is quite arbitrary
and could be replaced by any other fixed constant). For simplicity we do not consider the scattering
relation in the following result.

Theorem 4.3. Let M be a compact manifold with smooth boundary, let P1, P2 be real principal
type differential operators of order m ≥ 1 in M , and let Γ ⊂ ∂M be a nonempty open set. Assume
that P1 = P2 to infinite order on ∂M . If the principal symbols of P1 and P2 coincide, then for any
nonvanishing half density µ on M one has

exp

[
i

∫ T

0
σsub[P

µ
1 ](γ(t)) dt

]
= exp

[
i

∫ T

0
σsub[P

µ
2 ](γ(t)) dt

]
(4.10)

whenever γ : [0, T ] → T ∗M is a maximal null bicharacteristic curve for P1 whose spatial projection
intersects Γ transversally and does not meet ∂M away from Γ.

Finally, if m ≥ 2 and if Pj = P +Qj where Qj has order ≤ m− 2 for j = 1, 2, then then∫ T

0
σpr[Q1](γ(t)) dt =

∫ T

0
σpr[Q2](γ(t)) dt(4.11)
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whenever γ : [0, T ] → T ∗M is a maximal null bicharacteristic curve for P whose spatial projection
intersects Γ transversally and does not meet ∂M away from Γ.

Finally, we show that for first order operators a converse of Theorem 1.11.1 holds: the scattering
relation and integrals of the subprincipal symbol modulo 2πZ determine the Cauchy data set, at
least under a strict convexity assumption. The result is stated for C∞ Cauchy data sets since
we use a regularity result from [PU05PU05, PSU12PSU12] stated in the C∞ case. Note that any first order
differential operator with real principal symbol in M is of the form P = 1

iL + V , where L is a
real vector field in M and V ∈ C∞(M). Let X be an open manifold containing M , and extend L
smoothly to X. We say that M is strictly convex for L if

d2

dt2
(ρ(x(t))

∣∣∣∣
t=0

< 0

whenever ρ ∈ C∞(X) is a boundary defining function for M (i.e. M = {ρ ≥ 0} and dρ ̸= 0 on
∂M), and x(t) is an integral curve of L so that x(0) ∈ ∂M and ẋ(0) ∈ T (∂M). A local coordinate
computation shows that this condition does not depend on the extension or on the choice of ρ.

Theorem 4.4. Let M be compact with smooth boundary, and let Pj =
1
iLj + Vj be real principal

type differential operators of order 1 in M . Assume that is M is strictly convex for L1 and L2.
Suppose that

αP1 = αP2 , exp

[
−i

∫ T1

0
V1(x1(t)) dt

]
= exp

[
−i

∫ T2

0
V2(x2(t)) dt

]
whenever xj : [0, Tj ] → M are maximal integral curves of Lj with x1(0) = x2(0). Then the C∞

Cauchy data sets of P1 and P2 are equal:

{u|∂M ; u ∈ C∞(M), P1u = 0 in M} = {u|∂M ; u ∈ C∞(M), P2u = 0 in M}.

5. Boundary determination

In this section we assume that M is a compact manifold with smooth boundary and that P is a
real principal type differential operator of orderm ≥ 2. We consider the problem of determining the
boundary values of coefficients of P and their derivatives (possibly up to gauge) from the knowledge
of CP . For (x0, ξ0) ∈ T ∗(∂M), we give two arguments for determining boundary values at x0 (these
arguments were already described in the introduction, recall also that ν is the inner unit conormal
vector to ∂M with respect to the auxiliary Riemannian metric on M):

• (Elliptic region) If t 7→ pm(x0, ξ0 + tν) has a simple non-real root, we use exponentially
decaying solutions that concentrate near x0 to give an analogue of boundary determination
results for second order elliptic equations.

• (Hyperbolic region) If t 7→ pm(x0, ξ0 + tν) has at least two distinct real roots, we use
solutions concentrating near two null bicharacteristics through x0 and obtain an analogue
of boundary determination results for the wave equation.

In fact the regions could be mixed, and we will use a combination of both methods. Here are
some examples:

• If P = ∂2t −∆g0 is the wave operator in M := M0 × (0, T ), then the elliptic region (resp.
hyperbolic region) at (x0, t0) ∈ ∂M0 × (0, T ) is the set of spacelike covectors (resp. timelike
covectors) in T ∗

(x0,t0)
(∂M).

• If P is elliptic, then all roots of t 7→ pm(x0, ξ0 + tν) are non-real.
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• If m is odd, the map t 7→ pm(x0, ξ0 + tν) always has a real root unless x0 is a characteristic
boundary point.

• If P is strictly hyperbolic with respect to the level surfaces of ϕ ∈ C∞(X,R) (see Section 11),
and if x0 in an interior point of ∂M∩{ϕ = c} for some c, then by definition t 7→ pm(x0, ξ0+tν)
has m distinct real roots.

• If P = (∂2t −∆g0)(∂
2
t +∆g0) in M0 × (0, T ), there can be both real and non-real roots.

The special solutions in the hyperbolic region will be the ones constructed in Theorem 3.13.1. In
the elliptic region, new special solutions will be required. Their construction is based on the fact
that whenever x ∈ ∂M and t 7→ pm(x, ξ + tν) has a simple non-real root, there is an approximate
solution of Pu = 0 in M with complex phase that concentrates near x, decays exponentially in
the interior, and whose boundary value oscillates in direction ξ. The argument is similar to the
construction of a boundary parametrix for the wave equation in the elliptic region, see e.g. [Ta81Ta81,
Chapter IX].

Theorem 5.1. Let P be a differential operator of order m ≥ 2 in M (here the principal symbol
pm is allowed to be complex valued). Let x ∈ ∂M , and assume that for some ξ ∈ T ∗

x∂M the map
z 7→ pm(x, ξ+ zν) has a simple root z with positive imaginary part. Fix s > 0. For 0 < h ≤ 1 there
exists u = uh ∈ C∞(M) having the form

u = eiΦ/ha

where dΦ|x = ξ+ zν, a is supported near x, a|∂M can be prescribed arbitrarily near x independently
of h, Im(Φ) ≥ 0 on supp(a), and

∥u∥L2(M) ∼ h1/2, ∥u∥Hk(M) ≲ h−k+1/2, ∥Pu∥Hs(M) = O(h∞).

Proof. Choose local coordinates near x so that x corresponds to 0, M is given by {xn ≥ 0} near
0, the unit conormal ν corresponds to (0, 1), and the cotangent vector ξ corresponds to (ξ′, 0) with

ξ′ ∈ Rn−1. Write u = eiΦ/ha. By Lemma 3.33.3, we have

Pu = eiΦ/h

h−mpm(x, dΦ)a+ h1−m(
1

i
La+ ba) +

m∑
j=2

hj−mRja

 .
We first construct a smooth complex function Φ so that near 0,

Φ(x′, 0) = x′ · ξ′,
Im(∂nΦ(x

′, 0)) > 0,

pm(x, dΦ) = 0 to infinite order on {xn = 0}.
(5.1)

In fact, if we define Φ(x′, 0) = x′ · ξ′, then
pm(x, dΦ)|xn=0 = pm(x

′, 0, ξ′, ∂nΦ(x
′, 0)).

This vanishes if ∂nΦ(x
′, 0) is a root of z 7→ pm(x

′, 0, ξ′, z). By assumption there exists a simple
root with positive imaginary part when x′ = 0, hence also for x′ near 0, and we denote this root
by z(x′). Then z(x′) depends smoothly on x′ since it is a simple root, and we may define

(5.2) ∂nΦ(x
′, 0) = z(x′).

Next we compute

∂xn(pm(x, dΦ))|xn=0 = ∂xnpm(x
′, 0, ξ′, z(x′)) + ∂ξjpm(x

′, 0, ξ′, z(x′))∂jnΦ(x
′, 0).

We wish to choose ∂2nΦ(x
′, 0) so that this vanishes. However, writing

pm(x
′, 0, ξ′, ξn) = (ξn − z(x′))q(x′, ξ′, ξn)
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where q(x′, ξ′, z(x′)) ̸= 0, we see that ∂ξnpm(x
′, 0, ξ′, z(x′)) ̸= 0, and hence we may define

∂2nΦ(x
′, 0) = − 1

∂ξnpm
(∂xnpm +

n−1∑
α=1

∂ξαpm∂αnΦ)
∣∣∣
(x′,0,ξ′,z(x′))

.

With this choice we have ∂xn(pm(x, dΦ))|xn=0 = 0. Continuing this process allows us to prescribe
∂3nΦ(x

′, 0), ∂4nΦ(x
′, 0), . . . so that ∂2xn(pm(x, dΦ)), ∂

3
xn(pm(x, dΦ)), . . . vanish on {xn = 0}. Using

Borel summation we obtain a smooth function Φ with the required Taylor series at xn = 0, so that
Φ satisfies (5.15.1).

We now construct the amplitude a by Borel summation in the form

a ∼
∞∑
j=0

hjaj

where the ak are smooth functions independent of h, and they satisfy the following transport
equations to infinite order on {xn = 0}:

1

i
La0 + ba0 = 0,

1

i
La1 + ba1 = −R2a0,

1

i
La2 + ba2 = −R3a0 −R2a1,

...

The first equation on {xn = 0} reads as

1

i
∂ξjpm(x

′, 0, ξ′, z(x′))∂ja0(x
′, 0) + b(x′, 0)a0(x

′, 0) = 0.

We define a0(x
′, 0) = η(x′) where η is any given function in C∞

c (Rn−1) supported close enough
to 0. We have seen that ∂ξnpm(x

′, 0, ξ′, z(x′)) ̸= 0, hence we may solve ∂na(x
′, 0) from the above

equation as

∂na0(x
′, 0) = − i

∂ξnpm
(
1

i

n−1∑
α=1

∂ξαpm∂αa0 + ba0)
∣∣
(x′,0,ξ′,z(x′))

.

Continuing in this way, we may define ∂jna0(x
′, 0) for j ≥ 2 and apply Borel summation to obtain

a smooth function a0 with the required Taylor series at {xn = 0}, so that 1
iLa0 + ba0 = 0 to

infinite order on {xn = 0}. The functions aj for j ≥ 1 are constructed in a similar way (one may
set aj(x

′, 0) = 0 for j ≥ 1), so that all the transport equations are satisfied to infinite order on
{xn = 0}. This completes the construction of the amplitude.

We have now constructed a smooth function

u = eiΦ/ha

so that

Pu ∼ eiΦ/h
∞∑
j=0

hj−mfj

where each fj vanishes to infinite order on {xn = 0} and |fj | ≲ 1 uniformly over h ≤ 1. Near 0 one
has

cxn ≤ Im(Φ(x′, xn)) ≤ Cxn
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for some c, C > 0. Thus if supp(a) is chosen to be sufficiently close to 0, one has

∥u∥2L2(M) ∼
∫
{|x′|≤1}

∫ 1

0
e−xn/h dxn dx

′ ∼ h,

∥u∥2Hk(M) ≲ h−2k

∫
{|x′|≤1}

∫ 1

0
e−xn/h dxn dx

′ ∼ h1−2k,

and

∥Pu∥HN (M) ≲ h−m−N∥e−cxn/hO(x∞n )∥L2(supp(a)) = O(h∞).

The result follows. □

The next example gives a useful interpretation for a boundary determination result for the wave
equation. This will motivate the corresponding proof for general real principal type operators.

Example 5.2. Let (M0, g0) be compact with smooth boundary, let V ∈ C∞(M0 × (0, T )), and
consider the Dirichlet problem for the wave equation

(∂2t −∆g0 + V )u = 0 in M0 × (0, T ), u|∂M0×(0,T ) = f, u|t=0 = ∂tu|t=0 = 0.

The Dirichlet-to-Neumann map is given by

ΛV : f 7→ ∂νu|∂M0×(0,T ).

The boundary determination result in [SY18SY18] shows that for a small neighborhood Γ ⊂ ∂M0 ×
(0, T ) of a boundary point (x0, t0), the localized map ΛΓ

V : C∞
c (Γ) → C∞(Γ), f 7→ ΛV f |Γ is a

pseudodifferential operator and the Taylor series of V at (x0, t0) can be computed from the symbol
of ΛΓ

V .

Consider coordinates (x1, x
′, t) and assume that Γ corresponds to {x1 = 0}. The symbol of ΛΓ

V

can be computed by testing against highly oscillatory functions f(x′, t) = χ(x′, t)ei(x
′·ξ′+t)/h where

χ is a smooth cutoff and ξ′ is in the hyperbolic region (i.e. there are two null directions at (x0, t0)
whose projection to T ∗(∂M0 × (0, T )) is (0, ξ′, 1)). The argument in [SY18SY18] gives roughly (when
the cutoff χ is made to depend on h in a suitable way) that

lim
h→0

hα((ΛV − Λ0)f, f)L2(Γ) = cV (x0, t0)

where c ̸= 0 and α is a suitable number depending on n.

On the other hand, one has the integral identity

((ΛV − Λ0)f, f)L2(Γ) =

∫
M0

∫ T

0
V uū0 dt dV

where u is the solution given above, and u0 solves (∂2t −∆g0)u0 = 0 in M0 × (0, T ) with Dirichlet
data f and vanishing Cauchy data on {t = T}. Since u has vanishing Cauchy data on {t = 0} and
highly oscillatory boundary data, it is related to a null bicharacteristic (possibly with reflections)
that starts at (x0, t0) and moves forward in time. Similarly, since u0 has vanishing Cauchy data
on {t = T}, it is related to a null bicharacteristic starting at (x0, t0) and moving backward in
time. Thus the product uū0 concentrates near the intersection of the projections of these two
bicharacteristics, i.e. near the point (x0, t0). Analyzing the integral over M0 × (0, T ) when h → 0
then leads to a proof for recovering V (x0, t0).
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Proof of Theorem 1.41.4. Let P1, P2 be real principal type differential operators of order m ≥ 2.
Assume that

CP1 = CP2 .

The integral identity in Lemma 2.82.8 implies that

(5.3) ((P1 − P2)u1, u2)L2(M) = 0

whenever uj ∈ Hm(M) are solutions of P1u1 = 0 and P ∗
2 u2 = 0 in M . Depending on the roots of

the characteristic polynomial, we will use different special solutions uj to prove the theorem. The
strategy however will be the same: the main point is to prove that pm,2(x, ξ + · ν) vanishes at the
roots of pm,1(x, ξ + · ν) whenever (x, ξ) ∈ T ∗(∂M) is close to (x0, ξ0), i.e. that

(5.4)

{
pm,2(x, ξ + τν) = 0 for any τ ∈ C for which pm,1(x, ξ + τν) = 0,

whenever (x, ξ) ∈ T ∗(∂M) is close to (x0, ξ0).

Here and below, we will use the fact that the assumptions of the theorem remain true for any
(x, ξ) ∈ T ∗(∂M) that is close enough to (x0, ξ0).

Let us show how (5.45.4) implies the claim (1.71.7) for j = 0 (the case j ≥ 1 will be done later). By (5.45.4)
the polynomial τ 7→ pm,2(x, ξ+ τν) vanishes at each of the m distinct roots of τ 7→ pm,1(x, ξ+ τν).
The fact that x is a noncharacteristic boundary point for Pj implies that both maps are polynomials
of degree exactly m in τ . Thus one must have, for some c(x, ξ) ̸= 0, that

pm,2(x, ξ + τν) = c(x, ξ)pm,1(x, ξ + τν), τ ∈ R.

Multiplying by τ−m and letting τ → ∞ gives that

c(x, ξ) =
pm,2(x, νx)

pm,1(x, νx)
.

Thus in fact c(x, ξ) = c(x). For (x, ξ) ∈ T ∗(∂M) close to (x0, ξ0) we obtain

pm,2(x, ξ + τνx) = c(x)pm,1(x, ξ + τνx), τ ∈ R.

For any x ∈ ∂M near x0, the set {ξ + τνx ; τ ∈ R and (x, ξ) is near (x0, ξ0)} is open in T ∗
xM . By

real-analyticity in the fiber variable one then has

pm,2(x, ξ) = c(x)pm,1(x, ξ), x ∈ ∂M near x0, ξ ∈ T ∗
xM,

where c is a smooth nonvanishing function near x0 on ∂M given by

c(x) =
pm,2(x, νx)

pm,1(x, νx)
.

This proves the desired claim (1.71.7) for j = 0.

The proof of (5.45.4) will be divided in several cases.

Case (1). We first assume condition (1) in the theorem, i.e. that pm,2(x, ξ + σν) = 0 for some
non-real σ ∈ C (if this holds for pm,1 instead we obtain the result by interchanging P1 and P2;
note that the conclusion of the theorem remains invariant under this change). Since P2 has real
principal symbol, the non-real roots come in complex conjugate pairs and hence we may assume
that Im(σ) > 0.

Using Theorem 5.15.1 for P ∗
2 , there are smooth functions

v2 = v2,h = h−1/2eiΦ2/ha2
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where dΦ2|x = ξ+σν, a2|∂M is independent of h with a2(x) ̸= 0, ∥v2∥L2 ∼ 1, and for any fixed but
suitably large s

∥P2v2∥Hs(M) = O(h∞).

By the solvability result for real principal type operators in Proposition 2.22.2(d), there exist smooth
solutions u2 = u2,h = v2 + r2 of P2u2 = 0 in M such that

∥r2∥Hs+m−1(M) = O(h∞).

Let {τ1, . . . , τm} be the complex roots of τ 7→ pm,1(x, ξ + τν). By assumption these are all
distinct. Let τ be one of these roots. We wish to prove that pm,2(x, ξ + τν) = 0, which establishes
(5.45.4). We will consider two subcases.

Subcase (1a). Suppose that τ is non-real. We may assume that Im(τ) > 0 (since if Im(τ) < 0, then
τ̄ is also a root and the argument below shows that pm,2(x, ξ+τ̄ ν) = 0, and hence pm,2(x, ξ+τν) = 0
since the roots come in complex conjugate pairs).

Using Theorem 5.15.1 for P1, we obtain solutions u1 = u1,h of P1u1 = 0 inM of the form u1 = v1+r1,
and

v1 = h−1/2eiΦ1/ha1

where dΦ1|x = ξ + τν, a1|∂M is independent of h with a1(x) ̸= 0, ∥v1∥L2 ∼ 1, and

∥r1∥Hs+m−1(M) = O(h∞).

Inserting the solutions u1 and u2 into (5.35.3), we obtain that∫
M
(P1 − P2)(v1)v̄2 dV = O(h∞).

The explicit form of v1 and v2 together with Lemma 3.33.3 gives that

0 = lim
h→0

hm
∫
M
(P1 − P2)(v1)v̄2 dV

= lim
h→0

h−1

∫
M
(pm,1(x, dΦ1)− pm,2(x, dΦ1))e

i(Φ1−Φ̄2)/ha1ā2 dV.(5.5)

Write q(x) := pm,1(x, dΦ1(x)) − pm,2(x, dΦ1(x)) and Θ := Φ1 − Φ̄2. By the construction of the
functions Φj , see (5.15.1)–(5.25.2), in boundary normal coordinates (for g) near 0 one has

Θ(x′, xn) = (τ − σ̄)xn +O(x2n).

Note that τ and σ depend on x′, and Im(τ − σ̄) > 0. If the support of aj is chosen small enough,
one has as h→ 0

h−1

∫
M
eiΘ/hqa1ā2 dV

= h−1

∫
{xn>0}

ei(τ−σ̄)xn/h+O(x2n)/hqa1ā2|g|1/2 dx

=

∫
{xn>0}

ei(τ−σ̄)xn+hO(x2n)(qa1ā2|g|1/2)(x′, hxn) dx

→
∫
{xn>0}

ei(τ−σ̄)xn(qa1ā2|g|1/2)(x′, 0) dx

=

∫
Rn−1

i

τ − σ̄
(qa1ā2|g|1/2)(x′, 0) dx′.
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In the last step we used that
∫∞
0 eiwxn dxn = i

w when Im(w) > 0. Since aj(x
′, 0) can be chosen

arbitrarily near 0, we obtain that q(x′, 0) = 0 near 0. This means that

pm,1(x
′, 0, ξ′, τ(x′)) = pm,2(x

′, 0, ξ′, τ(x′)).

But τ(x′) was a root of t 7→ pm,1(x
′, 0, ξ′, t), so it is also a root for pm,2, i.e. pm,2(x, ξ + τν) = 0.

This proves (5.45.4) whenever τ is non-real.

Subcase (1b). Now suppose that τ is real. Let γ : [0, T ] → T ∗M be the maximal null P1-
bicharacteristic curve with γ(0) = (x0, ξ0 + τνx0). Extend M to a slightly larger open manifold
X, extend P1 smoothly as a real principal type operator to X, and let γ̆(t) = (x(t), ξ(t)) be the
extension of γ. Choose t− < 0 and t+ > T so that γ̆(t±) are outsideM , and let v1 be the quasimode
in Theorem 3.13.1 associated with γ̆|[t−,t+] with ∥P1v1∥Hs(M) = O(h∞) for some fixed large s > 0. Use
Proposition 2.22.2(d) to find r1 with ∥r1∥Hs+m−1(M) = O(h∞) so that u1 = v1 + r1 solves P1u1 = 0 in
M . Recall that v1 has the form

v1(x) =

∫ t+

t−

eiΦ1(x,t)/ha1(x, t) dt

Recall also from (3.233.23)–(3.253.25) that

(5.6) Φ1(x(t), t) = 0, dxΦ1(x(t), t) = ξ(t), ∂tΦ1(x(t), t) = 0,

and

(5.7) Im(Φ1(x, t)) ≥ cd(x, x(t))2, (x, t) ∈ supp(a1).

As discussed in (3.233.23)–(3.273.27), the quantity I = Im((∂xjxkΦ1))|(x0,0) is invariantly defined and we
may write

(5.8) ∇2
x,tIm(Φ1)|(x0,0) =

(
I −Iẋ

−(Iẋ)t Iẋ · ẋ

)
Inserting the solutions u1 and u2 in (5.35.3), we obtain that∫

M
((P1 − P2)v1)v̄2 dV = O(h∞).

Inserting the expressions for v1 and v2 and using Lemma 3.33.3, it follows that∫
M

∫ t+

t−
(pm,1(x, dxΦ1(x, t))− pm,2(x, dxΦ1(x, t)))e

i(Φ1(x,t)−Φ̄2(x))/ha1(x, t)ā2(x) dt dV

+ lower order terms = O(h∞).

Let x′ be normal coordinates at x0 on ∂M (for the metric induced by g), and let (x′, xn) be
corresponding boundary normal coordinates so that x0 corresponds to 0. Since a2 is supported
near x0, the M -integral can be written in these coordinates and we have

(5.9)

∫
{xn>0}

∫ t+

t−

eiΘ(x,t)/hq(x, t) dt dx+ lower order terms = O(h∞)

where q(x, t) = (pm,1(x, dxΦ1(x, t)) − pm,2(x, dxΦ1(x, t)))a1(x, t)ā2(x)|g(x)|1/2 and the phase Θ is
given by Θ(x, t) = Φ1(x, t)− Φ̄2(x).

We wish to use stationary phase to show that the main contribution to the integral (5.95.9) comes
from the region near t = 0. Note first that

dxΘ(0, 0) = ξ(0)− ξ0 − σ̄ν = (τ − σ̄)ν, ∂tΘ(0, 0) = 0.
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We next study the Hessian of Im(Θ) in the (x′, xn, t) coordinates. By (5.85.8) we have

∇2
x,tIm(Θ)|(0,0) =

(
I −Iẋ

−(Iẋ)t Iẋ · ẋ

)
+∇2

x,tIm(Φ2)|(0,0)

By (5.15.1) we have ∇2
x′,tIm(Φ2)|(0,0) = 0. If ζ ′ = (v′, z)t with v′ ∈ Cn−1, and if ζ = (v′, 0, z)t, it

follows that

(5.10) ∇2
x′,tIm(Θ)|(0,0)ζ ′ · ζ̄ ′ =

(
I −Iẋ

−(Iẋ)t Iẋ · ẋ

)
ζ · ζ̄ = |I1/2(

(
v′

0

)
− ẋz)|2.

If the right hand side vanishes, then ẋnz = 0 and v′ = ẋ′z. But the fact that τ is a simple root of
t 7→ pm,1(x0, ξ0 + tν) implies that

(5.11) ẋn(0) = ∂ξnpm,1(x0, ξ0 + τν) ̸= 0.

Thus we get z = 0 and v′ = 0. This proves that ∇2
x′,tΘ|(0,0) is invertible.

If χ(t) is a smooth cutoff supported near 0 with χ = 1 near 0, the above discussion together with
stationary phase on manifolds with boundary [Hö85Hö85, Theorem 7.7.17(ii)] implies that∫

{xn>0}

∫ t+

t−

eiΘ(x,t)/hq(x, t)χ(t) dt dx = c0h
n+2
2 q(0, 0) +O(h

n+4
2 ), c0 ̸= 0.

If we replace χ(t) by 1 − χ(t) in the integrand, then the fact that the x-integral is over a small
neighborhood of x0 and the assumption that γ never returns to x0 after t = 0 implies that the
corresponding integral is over the region where x(t) is bounded away from x0, and hence the

corresponding integral is O(e−C/h). Multiplying (5.95.9) by h−
n+2
2 and letting h → 0 implies that

q(0, 0) = 0, i.e.

pm,1(x, dxΦ1(x, t))− pm,2(x, dxΦ1(x, t))|(0,0) = pm,1(x0, ξ0 + τν)− pm,2(x0, ξ0 + τν) = 0.

Since pm,1(x0, ξ0 + τν) = 0, we obtain pm,2(x0, ξ0 + τν) = 0. This also holds for (x, ξ) ∈ T ∗(∂M)
close to (x0, ξ0), which proves (5.45.4) for real τ .

Case (2). We now assume condition (2) in the theorem, i.e. that all roots for τ 7→ pm,j(x0, ξ0+ τν)
are real and simple and have the stated properties. Let σ be such that pm,2(x0, ξ0 + σν) = 0, and
let τ be any root of t 7→ pm,1(x0, ξ0 + tν) = 0. We want to prove that pm,2(x0, ξ0 + τν) = 0, which
would imply (5.45.4).

We again use the integral identity (5.35.3) with suitable special solutions uj . Let γj : [0, Tj ] → T ∗M
be the maximal null Pj-bicharacteristic curves with γ1(0) = (x0, ξ0+ τν) and γ2(0) = (x0, ξ0+σν),
and let γ̆j(t) = (xj(t), ξj(t)) be extensions to a slightly larger manifold X so that the end points
of γ̆j |[t−j ,t+j ] are outside M . As in Subcase (1b) above, let uj = vj + rj solve P1u1 = 0 and

P ∗
2 u2 = 0 in M , where vj is the quasimode provided by Theorem 3.13.1 associated with γ̆j |[t−j ,t+j ] and

∥rj∥Hs+m−1(M) = O(h∞) for some fixed large s. Then vj has the form

vj(x) =

∫ t+j

t−j

eiΦj(x,t)/haj(x, t) dt

where the phase functions Φj satisfy the counterparts of (5.65.6)–(5.85.8) with x(t), ξ(t), and I replaced
by xj(t), ξj(t), and Ij . Moreover, aj is supported in a small neighborhood of the curve (xj(t), t).
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Inserting the solutions uj in (5.35.3), we obtain

(5.12)

∫
M

∫ t+1

t−1

∫ t+2

t−2

eiΘ(x,t,s)/hq(x, t, s) ds dt dV (x) + lower order terms = O(h∞)

where Θ(x, t, s) = Φ1(x, t)− Φ2(x, s) and

q(x, t, s) = (pm,1(x, dxΦ1(x, t))− pm,2(x, dxΦ1(x, t)))a1(x, t)a2(x, s).

The integral in (5.125.12) is over a fixed small neighborhood of the set

E := {(x̄, t, s) ; x̄ ∈M, x1(t) = x2(s) = x̄}.
Again, we want to use stationary phase to show that the main contribution comes from t = s = 0.
First note that if x1(t) = x2(s) = x̄, then

Θ(x̄, t, s) = 0, dxΘ(x̄, t, s) = ξ1(t)− ξ2(s), ∂t,sΘ(x̄, t, s) = 0.

By the assumption that the bicharacteristics intersect nicely, one has E = {(x0, 0, 0)}∪K where K
is a compact subset of M int× [ε, T1]× [ε, T2] for some ε > 0, and in K one always has ξ1(t) ̸= ξ2(s).
This shows that when (t, s) is away from (0, 0), and if the supports of aj were chosen small enough,
the integral in (5.125.12) is O(h∞) by nonstationary phase.

It remains to evaluate the integral∫
M

∫
R2

eiΘ(x,t,s)/hq(x, t, s)χ(t, s) ds dt dV (x)

where χ(t, s) is a cutoff function with small support and with χ = 1 near (0, 0). Note that the
M -integral is over a small neighborhood of x0. Now

Θ(x0, 0, 0) = 0, dxΘ(x0, 0, 0) = ξ1(0)− ξ2(0) = (τ − σ)ν, ∂t,sΘ(x0, 0, 0) = 0.

Let x′ be normal coordinates on ∂M near x0, and let (x′, xn) be corresponding boundary normal co-
ordinates so that x0 corresponds to 0. Let v′ ∈ Cn−1 and write ζ ′ = (v′, z, w)t and ζ = (v′, 0, z, w)t.
Arguing as in (5.105.10), we compute

∇2
x′,t,sIm(Θ)|(0,0,0)ζ ′ · ζ̄ ′ = ∇2

x,t,sIm(Θ)|(0,0,0)ζ · ζ̄

= |I1/2
1 (

(
v′

0

)
− ẋ1z)|2 + |I1/2

2 (

(
v′

0

)
− ẋ2w)|2.

Assume that the last quantity vanishes. Using that τ and σ are simple roots, we have ẋ1,n(0) ̸= 0
and ẋ2,n(0) ̸= 0 as in (5.115.11). Since I1 and I2 are positive definite, we obtain z = w = 0 and v′ = 0.
This proves that ∇2

x′,t,sΘ|(0,0,0) is invertible. Thus stationary phase [Hö85Hö85, Theorem 7.7.17(ii)]
yields that∫

M

∫
R2

eiΘ(x,t,s)/hq(x, t, s)χ(t, s) ds dt dV (x) = c0h
n+3
2 q(x0, 0, 0) +O(h

n+5
2 ), c0 ̸= 0.

Multiplying (5.125.12) by h−
n+3
2 and letting h→ 0 we obtain that q(x0, 0, 0) = 0, i.e.

pm,1(x0, ξ0 + τν) = pm,2(x0, ξ0 + τν).

Thus pm,2(x0, ξ0 + τν) = 0. This remains true for (x, ξ) ∈ T ∗(∂M) close to (x0, ξ0), which proves
(5.45.4).

Concluding the proof. We have now proved (5.45.4) in all cases. As discussed after (5.45.4), this gives
the claim (1.71.7) for j = 0. To prove this for all j, we assume that the claim has already been proved
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for j ≤ k − 1. Extend the function c as a smooth nonvanishing function to M , and replace P1 by
c−1P1 (so pm,1 is replaced by c−1pm,1). By Lemma 5.45.4 we still have CP1 = CP2 , and

(5.13) ∂jxn(pm,1 − pm,2)(x
′, 0, η) = 0 when j ≤ k − 1, x′ is close to 0, η ∈ Rn.

Thus by the Taylor formula, for x near 0 one has

(5.14) pm,1(x, η)− pm,2(x, η) = xknf(x, η), f(x′, 0, η) =
1

k!
∂kxn(pm,1 − pm,2)(x

′, 0, η).

Let us assume that we are in Subcase (1a), with pm,1(x, ξ + τν) = 0 and Im(τ) > 0 where

τ = τ(x′). Multiplying (5.35.3) by hm−k, we have

0 = lim
h→0

hm−k
∫
M
(P1 − P2)(v1)v̄2 dV

= lim
h→0

h−k−1

∫
M
(pm,1(x, dΦ1)− pm,2(x, dΦ1))e

i(Φ1−Φ̄2)/ha1ā2 dV.

Note that pm,1(x, dΦ1(x)) − pm,2(x, dΦ1(x)) = xknr(x) where r(x) := f(x, dΦ1(x)). Arguing as in
Subcase (1a), we get

h−k−1

∫
M
eiΘ/hxknra1ā2 dV

= h−k−1

∫
{xn>0}

ei(τ−σ̄)xn/h+O(x2n)/hxknra1ā2|g|1/2 dx

=

∫
{xn>0}

xkne
i(τ−σ̄)xn+hO(x2n)(ra1ā2|g|1/2)(x′, hxn) dx

→
∫
{xn>0}

xkne
i(τ−σ̄)xn(ra1ā2|g|1/2)(x′, 0) dx′

=

∫
Rn−1

Γ(k + 1)

(−i(τ − σ̄))k+1
(ra1ā2|g|1/2)(x′, 0) dx′

using that
∫∞
0 tkeiwt dt = Γ(k+1)

(−iw)k+1 when Im(w) > 0. Since aj(x
′, 0) can be chosen arbitrarily near

0, we obtain that r(x′, 0) = 0 near 0, i.e. that for (x, ξ) ∈ T ∗(∂M) close to (x0, ξ0)

(5.15) ∂kxn(pm,1 − pm,2)(x, ξ + τν) = 0.

This is true for each of the m distinct zeros τ of t 7→ pm,1(x
′, 0, ξ′, t), hence by real-analyticity in

the fiber variable it follows that

∂kxn(pm,1 − pm,2)(x
′, 0, η) = c̃(x′)pm,1(x

′, 0, η)

where c̃(x′) is smooth near 0′ and has the invariant expression

c̃(y) =
∂kxn(pm,1 − pm,2)(y, νy)

pm,1(y, νy)
.

We now replace P1 by (1 − χ(x)c̃(x′)xkn/(k!))P1 where χ is a cutoff to a small neighborhood of 0
with χ = 1 near 0. Then CP1 and condition (5.135.13) remain unchanged, and we have

∂kxn(pm,1 − pm,2)(x
′, 0, η) = 0.

The argument above shows that if (1.71.7) holds for j ≤ k − 1, then possibly after replacing c by
some ck, (1.71.7) holds for j ≤ k. The Taylor coefficients of ck at xn = 0 up to order k are uniquely
determined by (1.71.7). Thus we may use Borel summation to construct a smooth nonvanishing
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function c ∈ C∞(M) with this Taylor series at xn = 0 near 0, and with this choice of c the
condition (1.71.7) holds for all j. This concludes the proof if we are in Subcase (1a).

The arguments for Subcase (1b) and Case 2 are quite analogous, and we will only give a sketch
for Subcase (1b). Again we arrange so that (5.145.14) holds. Then (5.95.9) is replaced by∫

{xn>0}

∫ t+

t−

eiΘ(x,t)/hxknr(x, t) dt dx+ lower order terms = O(h∞)

where r(x, t) = f(x, dxΦ1(x, t))a1(x, t)ā2(x)|g(x)|1/2. As discussed in Subcase (1b), the main con-
tribution comes from the integral∫

{xn>0}

∫
R
eiΘ(x,t)/hxknr(x, t)χ(t) dt dx

where χ(t) is a cutoff to the region near t = 0. We write

eiΘ/h =

(
h

i∂xnΘ
∂xn

)k
(eiΘ/h).

Integrating by parts and noting that the boundary terms always vanish due to the xkn factor, we
see that the largest contribution with respect to h comes when all the ∂xn derivatives hit the xkn
factor. This term has the form

(ih)k(k!)

∫
{xn>0}

∫
R
eiΘ(x,t)/h(∂xnΘ)−kr(x, t)χ(t) dt dx.

The stationary phase argument in Subcase (1b) gives that r(0, 0) = 0, i.e. that f(x0, dΦ1(x0, 0)) = 0,
which means that

∂kxn(pm,1 − pm,2)(x0, ξ0 + τν) = 0.

This is the counterpart of (5.155.15). The argument after (5.155.15) can now be repeated to conclude the
proof. □

Remark 5.3. The proof shows that even when the principal parts of Pj have complex coefficients
(and if the equations Pju = f are solvable in a suitable sense), it is possible to obtain boundary
determination results when t 7→ pm(x, ξ + tν) has sufficiently many simple non-real roots whose
imaginary parts have suitable signs.

Finally, we give the proof of Theorem 1.51.5 on boundary determination for lower order terms. The
proof is very similar to that of Theorem 1.41.4, so we will only sketch the required modifications.

Proof of Theorem 1.51.5. Let Pj := P +Qj and Q := Q1−Q2, and let q(x, ξ) be the principal symbol
of Q. We need to show that

∂jxnq(x0, η) = 0, j ≥ 0, η ∈ Rn.

The integral identity (5.35.3) becomes

(Qu1, u2)L2(M) = 0

for solutions of P1u1 = 0 and P ∗
2 u2 = 0 in M .

Now pm,1 = pm,2 = pm. By assumption t 7→ pm(x0, ξ0+tν) has s distinct simple roots {τ1, . . . , τs},
and these roots have nonnegative imaginary parts. We want to prove that

(5.16) q(x0, ξ0 + τjν) = 0, 1 ≤ j ≤ s.
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Assume first that some root σ ∈ {τ1, . . . , τs} is non-real, with Im(σ) > 0. This is the counterpart
of Case (1). Let τ be one of the roots τ1, . . . , τs. If τ is non-real, then Im(τ) > 0, and we argue as
in Subcase (1a) above. The counterpart of (5.55.5) is

0 = lim
h→0

h−1

∫
M
q(x, dΦ1(x))e

i(Φ1−Φ̄2)/ha1ā2 dV.

Evaluating the limit as in Subcase (1a), we obtain that

q(x0, ξ0 + τν) = 0.

Thus t 7→ q(x0, ξ0 + tν) vanishes at each non-real root τ in the set {τ1, . . . , τs}. However, if τ is
a real root, the argument in Subcase (1b) implies that q(x0, ξ0 + τν) = 0 also in this case. This
proves (5.165.16) if one of the roots is non-real.

Next assume that all roots in {τ1, . . . , τs} are real, and s ≥ max(r + 1, 2). Let σ be one of these
roots, and let τ ̸= σ be another one of these roots. The argument in Case (2) implies that

q(x0, ξ0 + τν) = 0.

Now q(x0, ξ0 + τν) = 0 at each root τ ̸= σ, and choosing σ to be a different root (this is where we
need s ≥ 2) implies (5.165.16).

Finally, if q(x, ξ) is real valued and if some τ = τj is such that Im(τ) < 0, then the argument
above shows that q(x0, ξ0 + τ̄ ν) = 0. Taking complex conjugates gives q(x0, ξ0 + τν) = 0. Thus
if Q1 − Q2 has real principal symbol, then (5.165.16) holds without the assumption that the roots τj
have nonnegative imaginary parts.

Now, the polynomial t 7→ q(x0, ξ0 + tν) has degree r, and (5.165.16) implies that it has at least
s ≥ r + 1 distinct roots. Thus

q(x0, ξ0 + tν) = 0, t ∈ R.
The same result holds when (x0, ξ0) is varied slightly, and real-analyticity in η implies that

q(x0, η) = 0, η ∈ T ∗
x0M.

Arguing as in the end of proof of Theorem 1.41.4 gives that

∂jxnq(x0, η) = 0, j ≥ 0, η ∈ T ∗
x0M.

This finishes the proof. □

6. Semilinear equations

In this section we prove Theorem 1.71.7 related to semilinear equations of the form

Pu+ a(x, u) = 0 in M

where a(x, z) is a nonlinearity satisfying the following conditions. Fix an integer s > max(m,n/2),
and assume initially that

a(x, z) is holomorphic in z near 0 as a Hs(M)-valued function,(6.1)

a(x, 0) = ∂za(x, 0) = 0.(6.2)

In this section we assume the solutions to be complex valued.

The proof is based on constructing solutions uε1,...,εr to the semilinear equation that are close to
ε1v1 + . . .+ εrvr, where vj are suitable solutions of the linearized equation Pvj = 0 concentrating
near null bicharacteristics, and on higher order linearization with respect to the parameters εj . The
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following result will allow us to construct such solutions under the weak uniqueness assumption
N(P ∗) = {0}.

Lemma 6.1. Let M be a compact manifold with smooth boundary, and let P be a real principal
type differential operator on M with N(P ∗) = {0}. Assume that a(x, z) satisfies (6.16.1)–(6.26.2). There
exist δ, C > 0 such that for any v in the set

Xδ = {v ∈ Hs(M) ; ∥v∥Hs(M) < δ},

there is a solution u = S(v) ∈ Hs(M) of

Pu+ a(x, u) = Pv in M

which satisfies

(6.3) ∥u− v∥Hs(M) ≤ C∥v∥2Hs(M).

The map S : Xδ → Hs(M), v 7→ u is C∞. In particular, if we define

Uδ = {v ∈ Xδ ; Pv = 0},

then for any v ∈ Uδ the function u = S(v) solves Pu+ a(x, u) = 0 in M .

Proof. Since N(P ∗) = {0}, Proposition 2.22.2 shows that there is a bounded linear map E : Hs(M) →
Hs+m−1(M) with PE = Id. Given v ∈ Xδ we wish to find a solution u = v+r of Pu+a(x, u) = Pv.
It is enough to find r solving the fixed point equation

(6.4) r = Tv(r)

where Tv(r) = −E(a(x, v + r)).

We now study (6.46.4) for v ∈ Xδ, and show that Tv is a contraction on Xδ for δ small enough. All
constants below will be uniform over v ∈ Xδ. Note first that by (6.16.1), for some δ0, R > 0 one has

(6.5)

∞∑
j=0

∥∂jza(x, 0)∥Hs(M)

j!
δj0 ≤ R.

Then (6.26.2) and the fact that Hs(M) for s > n/2 is an algebra imply that

(6.6) ∥a(x,w)∥Hs(M) ≤
∞∑
j=2

∥∂
j
ua(x, 0)

j!
wj∥Hs(M) ≤ Cs

∞∑
j=2

∥∂jua(x, 0)∥Hs(M)

j!
Cjs∥w∥

j
Hs(M).

If δ is chosen small enough, (6.56.5) yields

(6.7) ∥a(x,w)∥Hs(M) ≤ C∥w∥2Hs(M), w ∈ Xδ,

and similarly

(6.8) ∥∂ua(x,w)∥Hs(M) ≤ C∥w∥Hs(M), w ∈ Xδ.

Now

(6.9) ∥Tv(w)∥Hs ≤ ∥E(a(x, v + w))∥Hs+m−1 ≤ C∥a(x, v + w)∥Hs ≤ C∥v + w∥2Hs , w ∈ Xδ,

showing that T maps Xδ to itself when δ is small. Similarly,

∥Tv(u)− Tv(w)∥Hs ≤ ∥E(a(x, v + u)− a(x, v + w))∥Hs+m−1 ≤ C∥a(x, v + u)− a(x, v + w)∥Hs

≤ C

(∫ 1

0
∥∂ua(x, v + (1− t)u+ tw)∥Hs dt

)
∥u− w∥Hs .
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By (6.86.8), if δ is small enough one has

(6.10) ∥Tv(u)− Tv(w)∥Hs ≤ 1

2
∥u− w∥Hs , u, w ∈ Xδ.

We have proved that there is δ > 0 so that for any v ∈ Xδ, the map Tv : Xδ → Xδ satisfies
(6.96.9)–(6.106.10). By the Banach fixed point theorem, there is a unique r = rv ∈ Xδ solving r = Tv(r).
Writing u = S(v) = v + r we obtain a solution of Pu+ a(x, u) = Pv. The estimate (6.96.9) yields

∥r∥Hs = ∥Tv(r)∥Hs ≤ C∥v + r∥2Hs ≤ C(∥v∥2Hs + ∥r∥2Hs),

and since r ∈ Xδ it follows that for δ small enough

∥u− v∥Hs = ∥r∥Hs ≤ C∥v∥2Hs .

To show that S is C∞, consider the map

F : Xδ ×Xδ → Xδ, F (v, r) = r − Tv(r) = r + E(a(x, v + r)).

Now F is C∞ by (6.16.1). It satisfies F (0, 0) = 0 and

DrF(0,0)(h) = h+ E(∂ua(x, 0)h) = h.

Thus DrF(0,0) is a homeomorphism, and the implicit function theorem [RR04RR04, Theorem 10.6] shows
that there is a smooth map G near 0 in Xδ so that F (v, r) = 0 near 0 iff r = G(v). But F (v, r) = 0
iff r = rv, which shows that G(v) = rv and that v 7→ rv is C∞. It follows that also S is C∞. □

The next technical lemma shows that if u is a small solution to Pu + a(x, u) = 0 depending
smoothly on a solution v of Pv = 0, and if the Cauchy data sets for nonlinearities a and ã coincide,
then the corresponding small solution of Pũ + ã(x, ũ) = 0 with u − ũ ∈ Hm

0 (M) also depends
smoothly on v. The argument requires the uniqueness assumption N(P ) = {0}.

Lemma 6.2. Let M be a compact manifold with smooth boundary, and let P be a real principal
type differential operator on M with N(P ) = N(P ∗) = {0}. Suppose that a, ã satisfy (6.16.1)–(6.26.2)
and they agree to high order on ∂M in the sense that

(6.11) a( · , z)− ã( · , z) ∈ Hs
0(M) for z near 0.

Assume that for any sufficiently small δ > 0 there is δ1 < δ so that Ca,δ1 ⊂ Cã,δ.

If δ is small enough, given any v ∈ Uδ and solution u = S(v) of Pu+a(x, u) = 0 there is a small
solution ũ ∈ Hs(M) of Pũ+ ã(x, ũ) = 0 such that u− ũ ∈ Hm

0 (M), the map v 7→ ũ is C∞ from Uδ
to Hs(M), and

(6.12) ∥ũ− v∥Hs(M) ≤ C∥v∥2Hs(M).

Proof. Fix any small δ > 0. By assumption there is δ1 < δ with Ca,δ1 ⊂ Cã,δ. Moreover, by
(6.36.3) there is δ2 < δ1 so that v ∈ Uδ2 implies that u = S(v) ∈ Xδ1 . Thus for any v ∈ Uδ2 there
is ũ ∈ Xδ solving Pũ + ã(x, ũ) = 0 such that u − ũ ∈ Hm

0 (M). We need to show that the map

S̃ : Uδ2 → Hs(M), v 7→ ũ is smooth. In order to do this, write w = wv := u− ũ ∈ Hs(M)∩Hm
0 (M),

and note that w solves

Pw = f, f := ã(x, u− w)− a(x, u).

We wish to express w as the solution of a fixed point equation as in Lemma 6.16.1, and show that the
map v 7→ wv is smooth.
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We first prove that in fact w ∈ Hs+m−1
0 (M) and Pw = f ∈ Hs

0(M). Let M be contained in
some larger manifold X, let ŭ be some Hs

comp(X) extension of u, and let w̆ be the zero extension
of w outside M . Then w̆ ∈ Hm

M (X) solves

Pw̆ = ã(x, ŭ− w̆)− a(x, ŭ) a.e. in X

since the right hand side vanishes outside M by the assumption (6.116.11). By the argument leading
to (6.66.6), the right hand side is in fact in Hm

M (X) since Hm
comp(X)∩L∞(X) is an algebra, see [KP88KP88]

for the latter fact. Regularity for real principal type operators (see Proposition 2.22.2(a)) then implies

that w̆ ∈ H
m+(m−1)
M (X). Bootstrapping this regularity argument gives w̆ ∈ Hs+m−1

M (X), which

yields w ∈ Hs+m−1
0 (M) and f ∈ Hs

0(M) as required.

Next we define the spaces

Y := {φ ∈ Hs+m−1
0 (M) ; Pφ ∈ Hs

0(M)}

and

Z := {f ; f = Pφ for some φ ∈ Y }.
Now Y with norm ∥φ∥Y = ∥φ∥Hs+m−1 + ∥Pφ∥Hs is a Hilbert space. Moreover, Z is a closed
subspace of Hs(M) (and of Hs

0(M)): if Pφj → f in Hs(M) where φj ∈ Y , then the condition
N(P ) = {0} and the estimate (2.22.2) imply that

∥φj − φk∥Hs+m−1 ≲ ∥Pφj − Pφk∥Hs .

Thus (φj) is a Cauchy sequence in Hs+m−1
0 (M) and converges to some φ in this space. Since

Pφj → f in Hs
0(M), we have f = Pφ ∈ Hs

0(M) showing that Z is closed in Hs(M).

The map P : Y → Z, φ→ Pφ is linear, bounded and bijective by the assumption N(P ) = {0}.
The open mapping theorem ensures that there is a bounded inverse G : Z → Y . Let Q be the
orthonormal projection to Z in Hs(M). We may now rewrite the equation

Pw = ã(x, u− w)− a(x, u), w ∈ Y,

equivalently as

(6.13) w = GQ(ã(x, u− w)− a(x, u)).

Consider the map

F : Xδ ×Xδ → Hs(M), F (v, w) = w −GQ(ã(x, S(v)− w)− a(x, S(v))).

Then F is C∞ and DwF(0,0)h = h, hence by the implicit function theorem there is a smooth map
H near 0 in Xδ so that F (v, w) = 0 near 0 iff w = H(v). But F (v, wv) = 0, showing that the map
v 7→ wv is smooth. Moreover, writing u = v + r where r satisfies

∥r∥Hs ≲ ∥v∥2Hs ,

the equation (6.136.13) together with (6.26.2) implies that

∥w∥Hs ≲ ∥v + r − w∥2Hs + ∥v + r∥2Hs ≲ ∥w∥2Hs + ∥v∥2Hs .

Since ∥w∥Hs is small, this gives ∥w∥Hs ≲ ∥v∥2Hs , and (6.126.12) follows. □

Proof of Theorem 1.71.7. We begin by fixing solutions v1, v2, v3 ∈ Hs(M) of Pvj = 0 (we will later
choose vj to concentrate near certain null bicharacteristics). Let ε = (ε1, ε2, ε3), and define uε =
S(ε1v1 + ε2v2 + ε3v3). Then uε depends smoothly on each εj , and by (6.36.3) one has

u0 = 0, ∂εjuε|ε=0 = vj .
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Differentiating the equation Puε+a(x, uε) = 0 and using the conditions ∂kua(x, 0) = 0 for k = 0, 1, 2,
we see that v123 := ∂ε1ε2ε3uε|ε=0 satisfies

(6.14) Pv123 + ∂3ua(x, 0)v1v2v3 = 0.

We now let ũε = S̃(ε1v1 + ε2v2 + ε3v3) be the function in Lemma 6.26.2. Then ũε depends smoothly
on the εj , and using (6.126.12) we have

ũ0 = 0, ∂εj ũε|ε=0 = vj .

Similarly, differentiating the equation Pũε + ã(x, ũε) = 0 shows that ṽ123 := ∂ε1ε2ε3 ũε|ε=0 satisfies

(6.15) P ṽ123 + ∂3uã(x, 0)v1v2v3 = 0.

Since uε − ũε ∈ Hm
0 (M), also v123 − ṽ123 ∈ Hm

0 (M). Subtracting the equations (6.146.14) and (6.156.15)
and integrating against v4 where P̄ ∗v4 = 0 (so that P ∗v̄4 = 0) yields that

(6.16)

∫
M
(∂3ua(x, 0)− ∂3uã(x, 0))v1v2v3v4 dV = 0.

We have proved that (6.166.16) holds for any solutions vj with Pvj = 0 for 1 ≤ j ≤ 3 and P̄ ∗v4 = 0.
We now assume that x0 ∈ B, i.e. there are two maximal null bicharacteristics γj : [−Sj , Tj ] →
T ∗M \ 0, γj(t) = (xj(t), ξj(t)), j = 1, 2, so that the curves x1 and x2 only intersect at x0 when
t = 0 and ẋ1(0) ∦ ẋ2(0). Let γ3(t) = (x3(t), ξ3(t)) be the null bicharacteristic with x3(0) = x0 and
ξ3(0) = −ξ1(0) (if m is odd γ3(t) = (x1(t),−ξ1(t)), while if m is even γ3(t) = (x1(−t),−ξ1(−t))).
Similarly, let γ4(t) = (x4(t), ξ4(t)) be the null bicharacteristic with x4(0) = x0 and ξ4(0) = −ξ2(0)
(this is a null bicharacteristic for P̄ ∗ since P has real principal symbol). We consider solutions

vj = qj + rj

where qj is a quasimode given by Theorem 3.13.1 associated with γj extended slightly outside M , so
that ∥Pqj∥Hs(M) = O(h∞) and qj is supported in a small neighborhood of the curve xj(t), and rj are
solutions of Prj = −Pqj in M obtained from Proposition 2.22.2 and satisfy ∥rj∥Hs+m−1(M) = O(h∞).
Then (6.166.16) gives

(6.17)

∫
M
(∂3ua(x, 0)− ∂3uã(x, 0))q1q2q3q4 dV = O(h∞).

Since x1(t) and x2(t) only intersect at x0, the product q1q2q3q4 is supported in a small neighbor-
hood of x0. By (3.53.5) each qj has the form

qj(x) =

∫ Tj

−Sj

eiΦj(x,tj)/haj(x, tj) dtj

where the maximal null bicharacteristic γj is defined on [−Sj , Tj ] with xj(0) = x0 for 1 ≤ j ≤ 4.
Using (3.233.23)–(3.273.27), the phase functions satisfy

Im(Φj) ≥ 0, Φj(x0, 0) = 0, dx,tjΦj(x0, 0) = (ξj(0), 0),

and

∇2
x,tjΦj(x0, 0) =

(
Hj −Hj ẋj + ξ̇j

(−Hj ẋj + ξ̇j)
t (Hj ẋj − ξ̇j) · ẋj

)
where the last expression is computed in Riemannian normal coordinates at x0 and evaluated at
tj = 0. Recall that Im(Hj) are positive definite matrices.

Inserting the formulas for qj into (6.176.17) and writing t = (t1, . . . , t4), we obtain that

(6.18)

∫
M

∫
R4

(∂3ua(x, 0)− ∂3uã(x, 0))e
iΘ(x,t)/hb(x, t) dt dV = O(h∞)
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where b(x, t) is supported in a small neighborhood of (x0,0) in M
int × R4 by the assumption that

x1(t) and x2(t) only intersect once at t = 0. Here we have written

Θ(x, t) = Φ1(x, t1) + . . .+Φ4(x, t4), b(x, t) = a1(x, t1) · · · a4(x, t4).
Since we have arranged that

ξ1(0) + ξ2(0) + ξ3(0) + ξ4(0) = 0,

the properties of Φj above ensure that

Im(Θ) ≥ 0, Θ(x0,0) = 0, dx,tΘ(x0,0) = 0.

To show that the Hessian of Θ is invertible at (x0,0), we write z = (z1, . . . , z4) and observe that

(6.19) ∇2
x,tΘ(x0,0)

(
v
z

)
=


∑4

j=1[Hj(v − ẋjzj) + ξ̇jzj ]

−(H1ẋ1 − ξ̇1) · (v − ẋ1z1)
...

−(H4ẋ4 − ξ̇4) · (v − ẋ4z4)

 .

If (6.196.19) vanishes, this would imply that

0 = ∇2
x,tIm(Θ)(x0,0)

(
v
z

)
·
(
v
z

)
=

4∑
j=1

|Im(Hj)
1/2(v − ẋjzj)|2

and hence v − ẋjzj = 0 for 1 ≤ j ≤ 4. Thus in particular ẋ1z1 = ẋ2z2, and the condition
ẋ1(0) ∦ ẋ2(0) implies that z1 = z2 = 0. But the choice of γ3 and γ4 implies that when tj = 0,

ẋ3 = (−1)m−1ẋ1, ξ̇3 = (−1)mξ̇1, ẋ4 = (−1)m−1ẋ2, ξ̇4 = (−1)mξ̇2.

Since v − ẋjzj = 0 and since ẋ1(0) and ẋ2(0) are nonvanishing, this yields z3 = (−1)m−1z1 and
z4 = (−1)m−1z2. Thus zj = 0 for 1 ≤ j ≤ 4 and also v = 0, showing that ∇2

x,tΘ(x0,0) is invertible.

Now using stationary phase in (6.186.18), we obtain

c0(∂
3
ua(x0, 0)− ∂3uã(x0, 0))h

n+4
2 = O(h

n+4
2

+1)

where c0 ̸= 0 since the amplitudes aj(x, tj) are nonvanishing at (x0, 0). This proves that ∂
3
ua(x0, 0) =

∂3uã(x0, 0) whenever x0 ∈ B.

We have proved that
∂kua(x0, 0) = ∂kuã(x0, 0), k ≤ 3.

To prove that this holds also for k = 4, we consider uε = S(ε1v1 + . . .+ ε4v4) where Pvj = 0 and
repeat the above argument (now looking at the ∂ε1ε2ε3ε4 derivative at ε = 0) to obtain that∫

M
(∂4ua(x, 0)− ∂4uã(x, 0))v1v2v3v4v5 dV = 0

whenever P̄ ∗v5 = 0. We now let vj be a solution related to γj above for 1 ≤ j ≤ 4, with the
difference that now v4 solves Pv4 = 0 instead of P̄ ∗v4 = 0. We also choose v5 to be any solution of
P̄ ∗v5 = 0 with v5(x0) ̸= 0 so that v5 is independent of h. For instance, it is enough to choose v5 to
be related to the null bicharacteristic γ1 through x0 = x1(0), so that ẋ1(0) ̸= 0 and x1(t) ̸= x1(0)
for t ̸= 0 by the assumption that x0 ∈ B. Then Lemma 3.63.6 gives that v5(x0) ̸= 0, when h = h0
and h0 is fixed but sufficiently small. The argument above now gives that

(∂4ua(x0, 0)− ∂4uã(x0, 0))v5(x0) = 0.

Since v5(x0) ̸= 0, we have proved that

∂kua(x0, 0) = ∂kuã(x0, 0), k ≤ 4.
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Continuing in this way shows that all derivatives of a(x0, · ) − ã(x0, · ) vanish at 0, which implies
that a(x0, · ) = ã(x0, · ) by analyticity. □

Appendix A. Additional proofs

In this appendix we give for completeness the proof of Lemma 3.33.3.

Proof of Lemma 3.33.3. Fix some local coordinates and write

Pu =

m∑
r=0

n∑
j1,...,jr=1

pj1···jr(x)Dj1 · · ·Djr .

In terms of these local coordinates

pm(x, ξ) =
n∑

j1,...,jm=1

pj1···jm(x)ξj1 · · · ξjm ,

∂ξapm(x, ξ)va =

n∑
j1,...,jm=1

pj1···jm(x)(vj1ξj2 · · · ξjm + . . .+ ξj1 · · · ξjm−1vjm),

∂ξaξbpm(x, ξ)vab =

n∑
j1,...,jm=1

pj1···jm(x)
[
(vj1j2 + vj2j1)ξj3 · · · ξjm

+ (vj1j3 + vj3j1)ξj2ξj4 · · · ξjm + . . .+ (vjm−1jm + vjmjm−1)ξj1 · · · ξjm−2

]
.

One also has pm−1(x, ξ) =
∑n

j1,...,jm−1=1 pj1···jm−1(x)ξj1 · · · ξjm−1 . We now compute

e−iΦ/hP (eiΦ/hu) =
m∑
r=0

n∑
j1,...,jr=1

pj1···jr(x)(Dj1 + h−1∂j1Φ) · · · (Djr + h−1∂jrΦ)u

=
m∑
j=0

hj−mRju

where each Rj is a differential operator of order j and

R0u = pm(x,∇Φ)u,

R1u = pm−1(x,∇Φ) +
∑

j1,...,jm

pj1···jm(x)
[
Dj1(∂j2Φ · · · ∂jmΦu)

+ ∂j1ΦDj2(∂j3Φ · · · ∂jmΦu) + . . .+ ∂j1Φ · · · ∂jm−1ΦDjmu
]

= pm−1(x,∇Φ) +
1

i
∂ξapm(x,∇Φ)∂au+

1

2i
∂ξaξbpm(x,∇Φ)∂abΦ. □
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