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ABSTRACT. Given an n × n random matrix Xn with i.i.d. entries of unit variance, the
circular law says that the empirical spectral distribution (ESD) of Xn/

√
n converges to

the uniform measure on the unit disk. Let Mn be a deterministic matrix that converges in
∗-moments to an operator x. It is known from the work by Śniady and Tao–Vu that the
ESD of Xn/

√
n+Mn converges to the Brown measure of x+ c, where c is Voiculescu’s

circular operator. We obtain a formula for the Brown measure of x + c which provides a
description of the limit distribution. This answers a question of Biane–Lehner for arbitrary
operator x.

Generalizing the case of circular and semi-circular operators, we also consider a family
of twisted elliptic operators that are ∗-free from x. For an arbitrary twisted elliptic operator
g, possible degeneracy then prevents a direct calculation of the Brown measure of x+g. We
instead show that the whole family of Brown measures are the push-forward measures of
the Brown measure of x+c under a family of self-maps of the plane, which could possibly
be singular. We calculate explicit formula for the case x is self-adjoint. In addition, we
prove that the Brown measure of the sum of an R-diagonal operator and a twisted elliptic
element is supported in a deformed ring where the inner boundary is a circle and the outer
boundary is an ellipse.

These results generalize some known results about free additive Brownian motions
where the free random variable x is assumed to be self-adjoint. The approach is based on
a Hermitian reduction and subordination functions.

Keywords: free probability, Brown measure, circular operator, elliptic operator, R-diagonal op-
erator, deformed random matrix model
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1. INTRODUCTION

1.1. Brown measure of free random variables and random matrices. Let M be a von
Neumann algebra with a faithful, normal, tracial state ϕ. The Fuglede-Kadison determinant
of x ∈ M is defined by

∆(x) = exp

(∫ ∞

0

log t dµ|x|(t)

)
,

where µ|x| is the spectral measure of |x| with respect to ϕ. Brown [18] proved that the
function log∆(x− λ) of λ is a subharmonic function whose Riesz measure is the unique,
compactly supported probability measure µx on C with the property that

log∆(x− λ) =

∫
C
log |z − λ|dµx(z), λ ∈ C.

The measure µx is called the Brown measure of a. In other words, µx is the distributional
Laplacian of the function log∆(x− λ) up to a constant.

Voiculescu’s free probability theory is a suitable framework to describe the limits of the
joint distribution of a family of random matrix models [52]. The convergence of ∗-mixed
moments of suitable random matrix models have been studied well. The ∗-mixed moments
of free random variables can be described using either analytic or combinatorial tools. For
non-normal random matrix models, very little is known about the limit of the empirical
spectral distribution (ESD) of a polynomial of independent random matrices, even for the
sum or product of two random matrices. The Brown measure of an operator in M is an
analogue of eigenvalue distribution of a finite dimensional matrix. The Brown measures of
the sum or product or a polynomial of free random variables are natural candidates for the
limits of the ESD of the sum or product or a polynomial of suitable random matrix models
as the size of the matrices tends to infinity.

LetXn be an n×n random matrix whose entries are independent identically distributed
copies of a complex random variable with zero mean and unit variance. The circular law
says that the ESD of Xn/

√
n converges weakly to the uniform measure on the unit disc

which is also the Brown measure of Voiculescu’s circular operator, denoted by c. The
circular law was established in the 1960s by Ginibre [27] for Gaussian distributed entries
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and was proved by Tao and Vu [51] under the minimal assumptions after a long list of
partial progresses (see [16] and references therein). In fact, Tao and Vu proved results
stronger than circular law. In particular, they showed the existence of the limit of the
summation Xn/

√
n + Mn where Mn is a deterministic n × n matrix satisfying some

technical conditions. In [48], Śniady showed that the ESD of Xn/
√
n+Mn converges to

the Brown measure of x+ c provided that Xn is a Ginibre ensemble and Mn converges in
∗-moments to x. Hence, by combining Tao–Vu’s replacement principle [51, Section 2], we
conclude that the ESD of Xn/

√
n +Mn converges to the Brown measure of x + c under

the minimal requirements on Xn when Mn converges in ∗-moments to x.
In the above-cited paper, Tao and Vu did not pursue what the limit actually is (see [51,

Theorem 1.17]) and they mentioned that the limit distribution ESD of Xn/
√
n+Mn was

established in a work of Krishnapur–Vu for the case whereMn is a diagonal matrix (equiv-
alently, x is a normal operator as the limit) and Xn is a Ginibre ensemble. But that work
has not appeared even as a preprint (communicated with Krishnapur). The case when x
is self-adjoint was known in the author’s joint work with Ho [39] using PDE methods.
The density formula when x is a Gaussian distributed normal operator was established in
a work of Bordenave-Caputo-Chafaï [17, Theorem 1.4] using random matrix techniques.
Their method can be extended to all normal operators [15]. Here we study the Brown
measure of the sum of free circular operator and a ∗-free random variable x with an arbi-
trary distribution, not necessarily normal, which finishes the description of the limit ESD
of Xn/

√
n + Mn. The present work answers an earlier question of Biane–Lehner [14,

Section 5] in general case.
The twisted elliptic operators generalize circular operator, semi-circular operator and

elliptic operator. Let ct be a circular operator with variance t, and let gt,γ be a twisted
elliptic operator, and let x be an operator ∗-free from {ct, gt,γ}. The calculation of the
Brown measure of x + gt,γ is more involved than x + ct because there is possibly degen-
eracy. We show that there is a remarkable connection between the Brown measure of the
addition of a free circular operator with a free random variable and the Brown measure of
the sum of an elliptic operator with the same free random variable, in the following sense:
the Brown measure of x + gt,γ is the push-forward measure of the Brown measures of
x+ ct under a natural self-map of the complex plane, which can be constructed explicitly.
The push-forward connection between x + ct and x + gt,γ was first proved in some very
special cases in [33, 39] under the assumption that x is self-adjoint. Our work extends this
connection to full generality without any restriction on the distribution of x. The multi-
plicative analogue of the push-forward connection have been studied in a related context
in our joint work with Ho [39] and by Hall-Ho [34].

We calculate explicit density Brown measure formulas for the case where x is self-
adjoint. In addition, we describe the Brown measure of the sum of an R-diagonal operator
and a twisted elliptic element. In this case, the Brown measure is supported in a deformed
ring where the inner boundary is a circle and the outer boundary is an ellipse. This can be
viewed as a deformation of the limit distribution in the single ring theorem [28] in random
matrix theory.

The present work extends previous results [14, 33, 38, 39] for the sum of a self-adjoint
operator with a circular operator or a (non-twisted) elliptic operator. All these work rely
on some PDE methods and did not explain why subordination functions appeared in the
Brown measure formulas. We use a completely different approach based on Hermitian re-
duction and subordination functions. The new method provides a conceptual explanation
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how subordination functions play a key role. The method and subordination results devel-
oped in this paper are likely to be useful in the study of non-normal random matrices. Our
main results provide potential applications to unify various important deformed random
matrix models (see [17, 19, 50, 51] for example).

1.2. Statements of the results. Let gt,γ be a twisted elliptic operator with parameters
t > 0 and γ ∈ C such that |γ| ≤ t (see Section 2.4 for the definition). Such operator
has the same distribution as an operator of the form eiθ(st1 + ist2) where θ ∈ [0, 2π],
and st1 , st2 are semicircular operators with variances t1, t2 respectively that are freely
independent in the sense of Voiculescu. The case when γ = t, the operator gt,γ is the
semicircular operator st with mean zero and variance t, and the case when γ ∈ [−t, t] the
operator gt,γ is an elliptic operator.

Let x ∈ M be a random variable that is free from {ct, gt,γ}. We show that the Brown
measure of x+ct can be calculated directly using subordination functions in free probabil-
ity. The Brown measure of x+gt,γ is not calculated directly. Instead, we show that there is
a natural push forward map between the Brown measure of x+ ct and the Brown measure
of x+ gt,γ . Our main results extends previous work [33, 38, 39] and are also applicable to
non-self-adjoint operators.

Fix t > 0 and x ∈ M. Consider the open set (see Proposition 3.1)

(1.1) Ξt =

{
λ ∈ C : ϕ

(
|λ− x|−2

)
>

1

t

}
,

where |λ− x| =
(
(λ− x)∗(λ− x)

)1/2
by functional calculus and

ϕ
(
|λ− x|−2

)
=

∫
R

1

u2
dµ|λ−x|(u).

For each λ ∈ Ξt, let w(0;λ, t) be a positive function of λ such that

ϕ((λ− x)∗(λ− x) + w(0;λ, t)2)−1) =
1

t
,

and let w(0;λ, t) = 0 for λ ∈ C\Ξt. For each λ ∈ C and ε > 0, denote by w(ε;λ, t)
the imaginary part of a subordination function (valued at iε) for the free convolution of the
symmetrization of µ|x−λ| and the semicircular distribution with variance t. We will show
that w(0;λ, t) = limε↓0 w(ε;λ, t) for any λ ∈ C (see Proposition 3.2).

We define the map Φ
(ε)
t,γ : C → C by

Φ
(ε)
t,γ(λ) = λ+ γ · ϕ

(
(λ− x− ct)

∗(((λ− x− ct)(λ− x− ct)
∗ + ε2)−1)

)
.(1.2)

We can rewrite it as (see Theorem 3.7)

Φ
(ε)
t,γ(λ) = λ+ γ · ϕ

(
(λ− x)∗(((λ− x)(λ− x)∗ + w(ε;λ, t))−1)

)
.

We then denote
Φt,γ(λ) = λ+ γ · p(0)λ (w(0;λ, t)),

where

(1.3) p
(0)
λ (w(0;λ, t)) = ϕ

[
(λ− x)∗

(
(λ− x)(λ− x)∗ + w(0;λ, t)2

)−1
]
.

For λ ∈ C\Ξt, the displayed formula in the right hand side of (1.3) means p(0)λ (0) =

limε→0 p
(0)
λ (ε) which is a finite value guaranteed by the fact that ϕ(|x − λ|−2) is finite

for such λ. We will show in Lemma 5.1 that limε→0 Φ
(ε)
t,γ = Φt,γ uniformly (see Lemma
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3.15). In addition, w(0;λ, t) is a real analytic function of λ ∈ Ξt and hence the function
Φt,γ is a real analytic function of λ in the set Ξt.

Theorem A (See Theorem 3.13 and Theorem 3.17). For every λ ∈ Ξt, we have

∆
(
x+ ct − λ

)2
= ∆

(
(x− λ)∗(x− λ) + w2

) [
exp(−w2/t)

]
,

and, if the map λ 7→ Φt,γ(λ) is non-singular at λ ∈ Ξt, then

∆(x+ gt,γ − z)2 = ∆(x+ ct − λ)2 exp (H(λ)) ,

where w = w(0;λ, t), z = Φt,γ(λ) and H(λ) = ℜ
(
γ(p

(0)
λ (w))2

)
.

We point out that we also have ∆(x+ ct− λ) = ∆(x− λ) for any λ ∈ C\Ξt (see The-
orem 3.13) which implies that µx+ct and µx coincide in the interior of C\Ξt. Moreover,
we obtain a general result on the support of the Brown measure (see Theorem 4.6) which
allows us to deduce that the interior of C\Ξt is not in the support of µx. Hence, our focus
is the Brown measure of µx+ct within the set Ξt. The above Fuglede-Kadison formulas
are fundamental in our study which allows us to calculate the Brown measure formulas.
The Brown measure of x+ ct can be described as follows.

Theorem B (See Theorem 4.2 and Theorem 4.7). The Brown measure of x + ct has no
atom and is supported in Ξt. It is absolutely continuous with respect to Lebesgue measure
in the open set Ξt, and the density of the Brown measure at any λ ∈ Ξt is strictly positive
which can be expressed as

(1.4)
1

π

(
1

t
− ∂

∂λ

(
ϕ
(
x∗((x− λ)(x− λ)∗ + w(0;λ, t)2)−1

)))
.

After this work was done, in a followup joint work with Belinschi and Yin [3, Section
7], we proved that the Brown measure of x + ct is absolutely continuous with respect to
Lebesgue measure on C and we also showed that the density function is bounded by 1/πt.
We can also rewrite the above density formula in some form without involving derivative
by implicit differentiation (see (4.2)), which shows that the density (1.4) is strictly positive
in Ξt. The subordination function w(0;λ, t) can be calculated explicitly for a large family
of operators that include all self-adjoint operators (see Section 6) andR-diagonal operators
(see Section 7). This generalizes a result in our earlier work with Ho [39] in which x is self-
adjoint. Unlike [39] and its generalizations for semicircular operators and elliptic operators
[33, 38], we do not use PDE methods.

Theorem C (See Theorem 5.5). The Brown measure of x+ gt,γ is the push-forward mea-
sure of the Brown measure of x+ ct by the map λ 7→ Φt,γ(λ). That is, for an arbitrary
Borel measurable set E in C, we have

µx+gt,γ (E) = µx+ct(Φ
−1
t,γ(E))).

The Brown measure of x+ gt,γ is supported on Φt,γ(Ξt).

The above push-forward connection between two different models was known in ear-
lier works [33, 38, 39] under additional assumption that x is self-adjoint for some certain
elliptic operators. Theorem C generalizes these results in two directions. Theorem C is
applicable for operators x not necessarily self-adjoint. In addition, the twisted elliptic op-
erator include semicircular operators and elliptic operators as special cases. What is more,
the proof of Theorem C provides a conceptual explanation about why such push-forward
map exists.
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The push-forward map Φt,γ may be rewritten in terms of the Brown measure µx+ct
solely as follows.

Theorem D (See Theorem 5.9 and Lemma 5.11). The Cauchy transform of µx+ct is a
continuous function defined on C. The map Φt,γ can be rewritten as

Φt,γ(λ) = λ+ γ ·Gµx+ct
(λ), λ ∈ C,

where

Gµx+ct
(λ) =

∫
C

1

λ− z
dµx+ct(z).

Example 1.5. [From circular law to elliptic/semicircular law] Take t = 1 and |γ| ≤ 1. Let
x = 0 and µ = δ0. In this case, the formula for the set Ξt is simplified as

Ξt = {λ ∈ C : |λ| < 1},

which is also the support of the standard circular operator c. Then the condition determin-
ing w(0;λ, t) is written as

1

|λ|2 + w(0;λ, t)2
= 1, |λ| < 1.

Hence w(0;λ, t) =
√

1− |λ|2. Then the push forward map is

Φt,γ(λ) =

{
λ+ γλ, for |λ| < 1;

λ+ γ
λ for |λ| ≥ 1.

Note that this map is a homeomorphism of C for |γ| < 1, but when |γ| = 1 it fails to be
injective.

The push-forward map Φt,γ not only connects different operator model and their corre-
sponding random matrix models, but also appears in other related contexts. For instance,
this map was used in a recent preprint of Hall-Ho [35, Section 2.2], where they proposed
conjectures concerning zeros of characteristic polynomials of deformed i.i.d. random ma-
trix model and deformed GUE or deformed elliptic random matrix model. See also [37] for
another work on zeros of certain random polynomials evolving under the heat flow. The
transport map in [37] is the same map as above in the case of Weyl polynomials.

We conjecture that Φt,γ is a self-homeomorphism of C provided that |γ| < t, and we
verify that this is indeed the case for self-adjoint and R-diagonal operators x (see Theo-
rem E and Theorem F). However, the map Φt,γ could be singular in general, as shown in
Example 1.5.

Let us outline the strategy for the proof of Theorem C. The possible degeneracy pre-
vents a direct calculation of the Brown measure of x+gt,γ . We will show that the map Φ

(ε)
t,γ

defined in (1.2) is a self-homeomorphism of C. We prove that the regularized Brown mea-
sure µx+gt,γ ,ε is the push-forward measure of µx+ct,ε under the regularized push-forward
map Φ

(ε)
t,γ . After we establish the convergence Φ

(ε)
t,γ → Φt,γ as ε tends to zero, Theorem

C would follow by push-forward connection between regularized Brown measures and the
fact that regularized Brown measures converge to Brown measure weakly. We hence have
the following commutative diagram.
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µx+ct,ε µx+gt,γ ,ε

µx+ct µx+gt,γ

ε→ 0
Φ

(ε)
t,γ

Φt,γ

ε→ 0

Theorem E (See Theorem 6.13 and Example 6.17). Let x be a self-adjoint operator that is
∗-free from gt,γ . For any |γ| ≤ t with γ ̸= t, the map Φt,γ is one-to-one and non-singular
in Ξt. The Brown measure of x+ gt,γ is the push-forward measure of the Brown measure
of x+ ct under the map Φt,γ .

Moreover, the Brown measure µx+gt,γ is concentrated on Φt,γ(Ξt) and the density is
given by

(1.5) dµx+gt,γ (z) =
1

2πτ1

dψt(a)

dδ(a)
dz1dz2, z ∈ Φt,γ(Ξt)

where z = z1 + iz2 = Φt,γ(a+ ib), τ1 = t− ℜ(γ), and ψt, δ are two increasing homeo-
morphisms of R onto R. In particular, if γ ∈ R (equivalently, gt,γ is an elliptic operator),
then z1 = δ(a) depending only on a, in which case the Brown measure is constant along
vertical lines.

The density formula could be understood as follows. For any self-adjoint operator x, it
is known [12] that there is a continuous function vt such that

Ξt = {a+ ib ∈ C : |b| < vt(a)}.
See Section 6.1 for a review. It is shown [39] that the density of x + ct is constant along
vertical segments in Ξt. In this case, for any fixed a ∈ R such that the vertical line through
a intersects the set Ξt, the map b 7→ Φt,γ(a+ib) is an affine transformation of b. Hence, the
Brown measure of x+gt,γ is expected to be constant along the trajectory of Φt,γ(a+ib) as
b varies in (−vt(a), vt(a)) such that a+ ib changes within Ξt. The formula (1.5) describe
precisely this observation. Indeed, as Φt,γ is one-to-one under the assumption of Theorem
E, the set Φt,γ(Ξt) can be parametrized by a + ib ∈ Ξt under the push-forward map
Φt,γ . Hence, we can say that the density formula (1.5) depends on only one parameter
and is constant in one direction. Theorem E can be viewed as an analogue result for the
free additive convolution in a recent work of Hall–Ho [34] concerning free multiplicative
Brownian motions. See Remark 6.18 for details.

We demonstrate the application of Theorem C to R-diagonal operators. Let T be an R-
diagonal that is ∗-free from {ct, gt,γ}. It is known that the sum of two freely independent
R-diagonal operators is again an R-diagonal operator [45]. The Brown measure of any
R-diagonal operator is supported in a single ring [29]. Let λ1, λ2 be inner and outer radii
of the support of the Brown measure of T + ct.

Theorem F (See Theorem 7.8). If T isR-diagonal, then the support of the Brown measure
of T + gt,γ is the deformed single ring where the inner boundary is the circle centered at
the origin with radius λ1, and the outer boundary is an ellipse rotated by some angle α
determined by γ, centered at the origin, with semi-axes λ2 − |γ|

λ2
, and λ2 +

|γ|
λ2

. The Brown
measure is absolutely continuous and its density is strictly positive in the support.

The Brown measure of T + gt,γ is the push-forward measure of the Brown measure
T + ct by the map Φt,γ . The map sends the circle centered at the origin with radius r to
the ellipse whose semi-axes are given by

a(r) = r − |γ|m(r)/r, b(r) = r + |γ|m(r)/r,
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where
m(r) = µT+ct({z ∈ C : |z| ≤ r}).

If |γ| < t, then both a(r) and b(r) are strictly increasing and the map Φt,γ is a homeo-
morphism.

We calculated explicit formulas for the quasi-nilpotent DT operator (introduced by
Dykema and Haagerup [20, 21]) and Haar unitary operator in the arXiv version of this
paper (arXiv:2108.09844v4).

1.3. Discussions on methodologies. Our approach is based on a Hermitian reduction
method and subordination functions. The Hermitian reduction method was already used for
the calculation of Brown measure of quasi-nilpotent DT operators in Aagaard–Haagerup’s
work [1]. In physics literature, to our knowledge, the method was first used in two inde-
pendent work [23] and [40]. In the work by Jarosz and Nowak [41, 42], the authors used
Hermitian reduction approach to study the support of the Brown measure of x + igt for
self-adjoint x, where the method is not mathematically rigorous as written. The Hermit-
ian reduction also appeared in Voiculescu’s earlier work [53] which serves a motivation
to introduce free probability theory with amalgamation. The idea is to study the Brown
measure of a non-normal free random variable x by considering the Hermitian matrix

X =

[
0 x
x∗ 0

]
and the 2× 2 matrix-valued Cauchy transform

GX

([
iε λ

λ iε

])
= E

([
iε λ− x

(λ− x)∗ iε

]−1)
where E is the entry-wise conditional expectation E : M2(M) → M2(C). The entries of
the matrix-valued Cauchy transformGX carry important information for the calculation of
the Brown measure.

The Hermitian reduction method becomes more powerful by combining with subordi-
nation functions and this approach was outlined in Belinschi–Śniady–Speicher’s work [7].
In particular, it is showed [7] that one can iterate certain fixed point equation for subordi-
nation functions to approximate boundary values of subordination functions, and then get
approximation of Brown measure of an arbitrary polynomial of free random variables by
some numerical schemes. For the sums x + ct or x + gt,γ , we consider their Hermitian
reductions and treat them as the summation of self-adjoint free random variables in the
framework of operator-valued free probability. We then use the subordination functions in
operator-valued free probability theory to study the Brown measure of x+ ct or x+ gt,γ .
It turns out there are nice formulas for subordination functions and this allows us to obtain
explicit Brown measure formulas using subordination functions.

Our approach extends techniques from Aagaardd–Haagerup [1], and Haagerup–Schultz
[30], and Belinschi–Śniady–Speicher [7]. We can view the method in Section 3.3 as an
operator-valued version of Biane’s method used in [12]. To our best knowledge, the Her-
mitian reduction methods have not be used broadly enough to calculate the explicit Brown
measure formula, and existing results mainly focus on a single operator [1, 7, 30]. The
main technical issues when applying this approach are explicit formulas for subordina-
tion functions and analyticity of subordination functions and Cauchy transforms on their
domains. The present work overcomes these issues and demonstrates that they are also ap-
plicable to study the explicit formula of the Brown measure of the sum of two free random
variables x+ gt,γ . We expect that more applications of these methods are possible.
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The density formula of x+ct for a (unbounded) Gaussian distributed normal operator x
was established earlier by Bordenave-Caputo-Chafaï [17, Theorem 1.4], where they used
Hermitian reduction method and some non-trivial random matrix results. Their techniques
can be extended for an arbitrary normal operator. In particular, Proposition 4.3 in [17]
is a version of our subordination result in Theorem 3.7 for such operators. Some further
properties of the Brown measure formula of x + ct was studied in [15, Section 2]. Our
proof is different from the method used in [17] and this allows us to work on non-normal
operators. We emphasize that we are interested in the push-forward property between
circular case and elliptic case for an arbitrary operator x. The main results in the present
work can be extended to unbounded operators and this was done in a joint work with
Belinschi and Yin [3].

The paper has seven sections. After the Introduction and Preliminaries, in Section 3 we
study the sum of a circular operator and a free random variable. We obtain a formula for
the Fuglede-Kadison determinant ∆(x+ gt,γ − z) and ∆(x+ ct− λ) using subordination
functions. In Section 4, we study the Brown measures of x + ct. In Section 5, we show
that the Brown measure µx+gt,γ is the push-forward measure of µx+ct under the map Φt,γ .
In Section 6, we calculate the Brown measure of the sum of a twisted elliptic operator and
a self-adjoint operator. In Section 7, we calculate the push-forward map and the Brown
measure for the case that x is an R-diagonal operator.

2. PRELIMINARIES

2.1. Free probability and subordination functions. We recall the definition of freeness
with amalgamation over a subalgebra [49, 53]. An operator-valued W ∗-probability space
(A,E,B) consists of a von Neumann algebra A, a unital ∗-subalgebra B ⊂ A, and a con-
ditional expectation E : A → B. Thus, E is a linear, unital linear positive map satisfying:
(1) E(b) = b for all b ∈ B, and (2) E(b1xb2) = b1E(x)b2 for all x ∈ A, b1, b2 ∈ B. Let
(Ai)i∈I be a family of sublagebras B ⊂ Ai ⊂ A. We say that (Ai)i∈I are free with amal-
gamation over B with respect to the conditional expectation E (or free with amalgamation
in (A,E,B)) if

E(x1x2 · · ·xn) = 0

whenever there are n ≥ 1 and indexes i1, i2, · · · , in ∈ I such that i1 ̸= i2, i2 ̸= i3, · · · ,
in−1 ̸= in, and for j = 1, 2, · · · , n, we have xj ∈ Aij and E(xj) = 0.

Let (A,E,B) be an operator-valuedW ∗-probability space. The elements in A are called
(noncommuntative) random variables. We call

H+(B) = {b ∈ B : ∃ε > 0,ℑ(b) ≥ ε}

the Siegel upper half-plane of B, where we use the notation ℑ(b) = 1
2i (b − b∗). We set

H−(B) = {−b : b ∈ H+(B)}. The B-valued Cauchy transform GX of any self-adjoint
operator X ∈ A is defined by

GX(b) = E[(b−X)−1], b ∈ H+(B).

The B-valued Cauchy transform GX is a map from H+(B) to H−(B). The Cauchy trans-
form is one-to-one in {b ∈ H+(B) : ||b−1|| < ε} for ε sufficiently small, and Voiculescu’s
amalgamated R-transform is now defined for X ∈ A by

RX(b) = G
⟨−1⟩
X (b)− b−1

for b being invertible element of B suitably close to zero.
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Let X,Y be two self-adjoint operators that are free with amalgamation in (A,E,B).
The R-transform linearizes the free convolution in the sense that if X,Y are free with
amalgamation in (A,E,B), then

RX+Y (b) = RX(b) +RY (b)

for b in some suitable domain. There exist two analytic self-maps Ω1,Ω2 of the upper
half-plane H+(B) so that

(2.1) (Ω1(b) + Ω2(b)− b)−1 = GX(Ω1(b)) = GY (Ω2(b)) = GX+Y (b),

for all b ∈ H+(B). We refer the reader to [6, 13, 54] for details.
When M is a von Neumann algebra, B = C consists of scalar multiples of identity,

and ϕ is a normal, faithful tracial state on M. Then the pair (M, ϕ) replaces the triple
(M,C, ϕ). We say (M, ϕ) is a tracial W ∗-probability space. For any self-adjoint element
x ∈ M, let µ = µx be its spectral measure in (M, ϕ) determined by

ϕ(f(x)) =

∫
R
f(u)dµx(u)

for all f ∈ C(σ(x). The Cauchy transform of µ (or the Cauchy transform of x) can be
written as

Gµ(z) = Gx(z) = ϕ((z − x)−1) =

∫
R

1

z − u
dµ(u), z ∈ C+.

We also set Fµ(z) = Fx(z) = 1/Gµ(z). The reciprocal Cauchy transform Fµ maps the
upper half plane C+ into itself. The R-transform of µ is now an analytic function

(2.2) Rµ(z) = G⟨−1⟩
µ (z)− 1

z

where G⟨−1⟩
µ denotes the inverse function to Gµ, that is defined in a truncated Stolz angle

{z ∈ C : ℑz > β, |ℜz| < α(ℑz}) for some α, β > 0.
Suppose that the self-adjoint random variables x, y ∈ M are freely independent. Denote

by µ1 the spectral measure of x, and µ2 the spectral measure of y, and µ1 ⊞ µ2 the free
additive convolution of µ1 and µ2 in the sense that µ1⊞µ2 := µx+y . The R-transform (2.2)
also linearizes the free additive convolution [9] such that Rµ⊞ν(z) = Rµ(z) + Rν(z) in
the domain where all the three R-transforms are defined. In this scalar case, there exists a
unique pair of analytic maps ω1, ω2 : C+ → C+ such that

Fµ1⊞µ2
(z) = Fµ1

(ω1(z)) = Fµ2
(ω2(z)) = ω1(z) + ω2(z)− z

for all z ∈ C+. The above subordination relations can also be written in terms of Cauchy
transform. That is, Gµ1⊞µ2

(z) = Gµ1
(ω1(z)) = Gµ2

(ω2(z)). The existence of subor-
dination functions leads to many regularity results (see [4, 10] and the survey paper [8,
Chapter 6]). The regularity of subordination functions is important in our approach. See
Lemma 3.5 for example. For a probability measure µ on R, denote Hµ(z) = Fµ(z) − z.
In [5], Belinschi–Bercovici showed that ω1, ω2 can be obtained from the following fixed
point equations

ω1(z) = z +Hµ2
(z +Hµ1

(ω1(z))), ω1(z) = z +Hµ1
(z +Hµ2

(ω1(z))).

Although the subordination functions, in general, cannot be computed explicitly, they play
a key role in our study by adopting this fixed point approach. See Subsection 3.1 for details.
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2.2. The Brown Measure. The spectral theorem does not apply to non-normal operators.
The Brown measure of an operator in M was introduced by Brown [18] and is a natural
replacement of the spectral distribution of a non-normal operator. Given x ∈ M, the
Fuglede–Kadison determinant ∆(x) [26] of x is defined as

∆(x) = exp[ϕ(log(|x|))] ∈ [0,∞).

The Brown measure [18] of x is then defined to be the distributional Laplacian of the
subharmonic function log∆(x− λ). That is,

(2.3) µx =
1

2π
∇2
λ log∆(x− λ) =

2

π

∂

∂λ

∂

∂λ̄
log∆(x− λ).

In fact, µx is a probability measure supported on a subset of the spectrum of x. When
M =Mn(C) and ϕ is the normalized trace on Mn(C), for x ∈Mn(C), we have

log∆(x− λ) = log |det(x− λI)|1/n =
1

n

n∑
i=1

log |λ− λi|,

where λ1, · · · , λn are the eigenvalues of x. Hence the eigenvalue distribution of x can be
recovered by taking the distributional Lapalacian

1

n
(δλ1

+ · · · δλn
) =

1

2π
∇2
λ log |det(x− λI)|1/n.

It is useful to consider the regularized function

S(x, λ, ε) = ϕ(log((x− λ)∗(x− λ) + ε2)), ε > 0.

Then, by the tracial property of ϕ, we have log∆(x − λ) = 1
2 limε→0 S(x, λ, ε), and the

Brown measure is calculated as

µx =
1

4π
∇2
λ

(
lim
ε→0

ϕ(log((x− λ)∗(x− λ) + ε2))
)
.

It is known [30, 43] that, for any ε > 0, the function λ 7→ S(x, λ, ε) is subharmonic and
its Riesz measure is a probability measure, defined by

µx,ε =
1

4π
∇2
λS(x, λ, ε).

Moreover, µx,ε converges to µx weakly as ε tends to zero. This regularization process
makes the calculation of general operator in M more tractable. For the summation x + ct
and x + gt,γ , we are able to identify the domain Ξt, so that log∆(x+ ct − λ) is real
analytic for any λ ∈ Ξt, and log∆(x+ gt,γ − z) is real analytic for any z ∈ Φt,γ(Ξt) if
Φt,γ is non-singular. Hence, the Brown measures in this paper can be calculated in classic
sense. See Theorem 3.13 for details.

2.3. Hermitian reduction method for the sum of two free random variables. Let (M, ϕ)
be a tracial W ∗-probability space. We equip the algebra M2(M), the 2 × 2 matrices with
entries from M, with the conditional expectation E :M2(M) →M2(C) given by

(2.4) E
[
a11 a12
a21 a22

]
=

[
ϕ(a11) ϕ(a12)
ϕ(a21) ϕ(a22)

]
.

Then the triple (M2(M),E,M2(C)) is a operator-valued W ∗-probability space. Given
x ∈ M, let

(2.5) X =

[
0 x
x∗ 0

]
∈M2(M),
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which a self-adjoint element in M2(M). For λ ∈ C and δ ∈ C with ℑδ > 0, the element

(2.6) Θ(λ, δ) =

[
δ λ
λ̄ δ

]
∈M2(C)

belongs to the domain of the M2(C)-valued Cauchy GX . We now record that[
a b
c d

]−1

=

[
d(ad− bc)−1 −b(ad− cb)−1

−c(ad− bc)−1 a(ad− cb)−1

]
(2.7)

where a, d ∈ C and b, c ∈ M such that ad− bc is invertible (which is equivalent to ad− cb
is invertible). We then have

(2.8)

(Θ(λ, iε)−X)−1

=

[
−iε
(
(λ− x)(λ− x)∗ + ε2

)−1
(λ− x)

(
(λ− x)∗(λ− x) + ε2

)−1

(λ− x)∗
(
(λ− x)(λ− x)∗ + ε2

)−1 −iε
(
(λ− x)∗(λ− x) + ε2

)−1

]
.

and

(2.9) GX(Θ(λ, iε)) = E
(
(Θ(λ, iε)−X)−1

)
=

[
gX,11(λ, ε) gX,12(λ, ε)
gX,21(λ, ε) gX,22(λ, ε)

]
.

where

gX,11(λ, ε) = −iεϕ
((

(λ− x)(λ− x)∗ + ε2
)−1
)

gX,12(λ, ε) = ϕ
(
(λ− x)

(
(λ− x)∗(λ− x) + ε2

)−1
)

gX,21(λ, ε) = ϕ
(
(λ− x)∗

(
(λ− x)(λ− x)∗ + ε2

)−1
)

gX,22(λ, ε) = −iεϕ
((

(λ− x)∗(λ− x) + ε2
)−1
)
.

We note that by the tracial property of ϕ, we have

(2.10) gX+Y,11(λ, ε) = gX+Y,22(λ, ε), gX,21(λ, ε) = gX,12(λ, ε)

We observe that entries of the Cauchy transform (2.9) have symmetry similar to the matrix
Θ(λ, ε). This can be explained as follows. Define the map J :M2(C) →M2(C) by

b 7→ J(b) = −b∗.
Then we have GX(J(b)) = J(GX(b)). Notice that J(Θ(λ, iε)) = Θ(λ, iε) and hence
GX(Θ(λ, iε)) has symmetric property (2.10).

Equations (2.9) show that two diagonal entries of GX(Θ(λ, iε)) carry important infor-
mation to calculate the Brown measure of x. Let x and y be two ∗-free random variables.
We have to understand the M2(C)-valued distribution of[

0 x+ y
(x+ y)∗ 0

]
= X + Y =

[
0 x
x∗ 0

]
+

[
0 y
y∗ 0

]
in terms of the M2(C)-valued distributions ofX and of Y . Note thatX and Y are free over
M2(C). The subordination functions in this context are two analytic self-maps Ω1,Ω2 of
the upper half-plane H+(M2(C)) so that

(2.11) (Ω1(b) + Ω2(b)− b)−1 = GX(Ω1(b)) = GY (Ω2(b)) = GX+Y (b),

for every b ∈ H+(M2(C)). We shall be concerned with b = Θ(λ, iε). Indeed, we have, by
(2.9),

GX+Y (Θ(λ, iε)) =

[
gX+Y,11(λ, ε) gX+Y,12(λ, ε)
gX+Y,21(λ, ε) gX+Y,22(λ, ε)

]
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where

gX+Y,11(λ, ε) = −iεϕ
((

(λ− x− y)(λ− x− y)∗ + ε2
)−1
)

gX+Y,12(λ, ε) = ϕ
(
(λ− x− y)

(
(λ− x− y)∗(λ− x− y) + ε2

)−1
)

gX+Y,21(λ, ε) = ϕ
(
(λ− x− y)∗

(
(λ− x− y)(λ− x− y)∗ + ε2

)−1
)

gX+Y,22(λ, ε) = −iεϕ
((

(λ− x− y)∗(λ− x− y) + ε2
)−1
)
.

The idea of calculating the Brown measure of x + y is to separate the information of X
and Y in some tractable way. We achieve this by using subordination functions (2.11).

2.4. The elliptic operator and the operator-valued semicircular element. In the tracial
W ∗-probability space (M, ϕ), for t > 0, Voiculescu’s circular operator with variance t,
denoted by ct, is defined as

ct =
1√
2
(st + is′t)

where {st, s′t} is a free semicircular family and each of them has variance t.
Let t > 0 and γ ∈ C such that |γ| ≤ t. The twisted elliptic operator operator gt,γ can

be constructed as follows. Let {st1 , st2} be semicircular operators with zero expectation
and variance t1, t2 respectively such that {st1 , st2} are freely independent. For θ ∈ [0, 2π],
consider the operator yt1,t2,θ = eiθ(st1 + ist2), by choosing t1, t2 such that t1 + t2 = t,
t1 − t2 = |γ| and ei2θ = γ/|γ|, we can check directly that gt,γ and yt1,t2,θ have the same
∗-distribution, whose only nonzero free cumulants are given by

κ(y, y∗) = κ(y∗, y) = t, κ(y, y) = γ, κ(x∗, x∗) = γ,

where y = gt,γ . The operator gt,γ include the following operators as special cases: (i) if
γ = 0, y is a circular operator with variance t; (ii) if γ = t, y is a semicircular operator st
with variance t; (iii) if γ = −t, then y has the distribution as ist; (iv) if γ ∈ [−t, t], then y
has the same distribution as an elliptic operator.

In the operator-valued W ∗-probability space (A,E,B), following Voiculescu [53] and
Speicher [49], we say Y ∈ A is B-Gaussian or an operator-valued semicircular element
if and only if the R-transform has a particular simple form

(2.12) RY (b) = EB(Y bY ).

Condition (2.12) says that only B-cumulants of length two survive. Note that a linear com-
bination of two operator-valued semicircular elements in (A,E,B) is again an operator-
valued semicircular element.

The following result is a special case of [44, Example 19 in Section 9.4]. One can also
deduce it from a general formula about a relation between matrix-valued and scalar-valued
free cumulants in [46, Theorem 6.2] (or [44, Proposition 13 in Section 9.3]).

Proposition 2.1. Let gt,γ be a twisted elliptic operator with parameters t, γ in the tracial
W ∗-probability space (M, ϕ) and λ ∈ C. Denote

Y =

[
0 gt,γ
g∗t,γ 0

]
∈M2(M).

Then Y is an operator-valued semicircular element in the operator-valuedW ∗-probability
space (M2(M),E,M2(C)).
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3. THE FUGLEDE-KADISON DETERMINANT AND SUBORDINATION FUNCTIONS

Given t > 0 and γ ∈ C such that |γ| ≤ t, let y = gt,γ be a twisted elliptic operator and
let x be a random variable that is ∗-free from y in the W ∗-probability space (M, ϕ). In this
section, we study the Fuglede-Kadison determinant ∆(x+ y − λ) for λ ∈ C. We denote

(3.1) X =

[
0 x
x∗ 0

]
, Y =

[
0 y
y∗ 0

]
.

Note that X and Y are free over M2(C). There exist two analytic self-maps Ω1,Ω2 of
upper half-plane H+(M2(C)) of M2(C) such that

(3.2) (Ω1(b) + Ω2(b)− b)−1 = GX(Ω1(b)) = GY (Ω2(b)) = GX+Y (b),

for all b ∈ M2(C) with ℑb > 0. We choose

Θ(λ, iε) =

[
iε λ

λ iε

]
where ε > 0 and λ ∈ C. Our strategy is to find more explicit formulations for subordina-
tion functions Ω1,Ω2.

3.1. Subordination functions in free convolution with a semicircular distribution. Re-
call that λ ∈ Ξt defined in (1.1) if the following condition holds

(3.3) ϕ
[(
(x− λ)∗(x− λ)

)−1
]
>

1

t
.

For any λ ∈ Ξt, let w = w(0;λ, t) be the unique positive function of λ such that

(3.4) ϕ
[(
(x− λ)∗(x− λ) + w2

)−1
]
=

1

t
.

In this section, we show that w(0;λ, t) is the imaginary part of a subordination function
and it is a real analytic function of λ as long as (3.3) holds.

Proposition 3.1. The set Ξt is bounded and open for any t > 0.

Proof. For |λ| large enough, λ /∈ σ(x) and

lim
λ→∞

ϕ
[(
(x− λ)∗(x− λ)

)−1
]
= 0.

Hence, the set Ξt is bounded. For any ε ≥ 0, denote the function fε of λ by

fε(λ) = ϕ
[(
(x− λ)∗(x− λ) + ε

)−1
]
.

For any ε > 0, the function fε(λ) is a continuous function of λ. Observe that f0 is the
limit of the increasing sequence of fε, hence it is lower semi-continuous. The set Ξt can
be rewritten as Ξt = {λ : f0(λ) > 1/t} and therefore Ξt is open for any t > 0. □

For µ ∈ Prob(R,B) let µ̃ denote the symmetrization of µ. That is, µ̃ ∈ Prob(R,B) is
given by

µ̃(B) = 1
2 (µ(B) + µ(−B)), (B ∈ B).

For a probability measure µ on R, let

(3.5) hµ(s) =

∫
R

s

s2 + u2
dµ(u), s > 0.
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Proposition 3.2. Let µ1 = µ̃|x−λ| and µ2 be the semicircular distribution with variance

t. Denote µ = µ1 ⊞ µ2. Let ω(λ)
1 , ω

(λ)
2 be subordination functions such that

(3.6) Fµ(z) = Fµ1(ω
(λ)
1 (z)) = Fµ2(ω

(λ)
2 (z)).

For any ε > 0, set W1(ε) = ℑω(λ)
1 (iε), then W1(ε) satisfies the identity

(3.7) hµ1
(W1(ε)) =

∫ ∞

0

W1(ε)

W1(ε)2 + u2
dµ|x−λ|(u) =

W1(ε)− ε

t
.

Proof. For simplicity, we denote ωj = ω
(λ)
j for j = 1, 2. We have ω1(z) + ω2(z) =

z + Fµ(z). Notice that, by symmetry of µ1, µ2 and µ, we have

(3.8) Gµ(iε) =

∫
R

1

iε− u
dµ(u) =

∫
R

−iε

ε2 + u2
dµ(u) = −ihµ(ε).

and similarly

(3.9) Gµ1(iε) = −ihµ1(ε), Gµ2(iε) = −ihµ2(ε).

Let H1(z) = Fµ1
(z) − z and H2(z) = Fµ2

(z) − z. Then ω1 satisfy the following fixed
point equation

ω1(z) = z +H2(z +H1(ω1(z))).

Since µ2 is the semicircle distribution with variance t, its Cauchy transform satisfies

1

Gµ2
(z)

+ tGµ2
(z) = z,

Hence H2(z) = −tGµ2
(z) and the fixed point equation reads

ω1(z)− z = −tGµ2(z +H1(ω1(z))).

It is clear that ω1(iε) is pure imaginary. We then have

(3.10) iW1(ε)− iε = −tGµ2(iε+H1(iW1(ε)))

Note that z +H1(ω1(z)) = ω2(z). Hence

Gµ2
(iε+H1(iW1(ε))) = Gµ1

(iW1(ε)).

Using Gµ1
(iε) = −ihµ1

(ε), then Equation (3.10) implies

hµ1(W1(ε)) =
W1(ε)− ε

t

which yields (3.7). □

Note that the defining identity (3.7) for W1(0) reduces to the defining identity (3.4)
for w(0;λ, t) provided that W1(0) > 0. This suggess that w(0;λ, t) must be the bound-
ary value of the subordination function ω(λ)

1 parametrized by λ ∈ C that was defined in
Proposition 3.2. We put

(3.11) k(s, ε) =
s− ε

hµ(s)
, s > 0, ε > 0.
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Lemma 3.3. Given a probability measure µ on R, the function k is an analytic function
on (0,∞) × (0,∞). Moreover, for ε > 0, the map s 7→ k(s, ε) is a strictly increasing
bijection of (ε,∞) onto (0,∞), and for ε = 0, the map s 7→ k(s, 0) is a strictly increasing
bijection of (0,∞) onto

(
λ1(µ)

2,∞
)
, where

λ1(µ)
2 =

(∫
R

1

u2
dµ(u)

)−1

.

Proof. It is clear that k is analytic. Moreover, for ε > 0,

(3.12) k(s, ε) =
s− ε

s

(∫
R

1

s2 + u2
dµ(u)

)−1

,

which is a product two increasing and positive functions of s on (ε,∞). The monotonicity
properties of s 7→ k(s, ε) follows for ε ≥ 0. □

Definition 3.4. For λ ∈ C, set µ = µ|x−λ|. Let hµ, k as in (3.5) and (3.11) respectively.
For ε, t ∈ (0,∞), let w(ε;λ, t) denote the unique solution w ∈ (ε,∞) to the equation
k(w, ε) = t following Lemma 3.3. In other words, w = w(ε;λ, t) ∈ (ε,∞) is the unique
solution of the equation

(3.13)
∫ ∞

0

w

w2 + u2
dµ|x−λ|(u) =

w − ε

t
.

Note that λ ∈ Ξt if and only if t ∈ (λ1(µ)
2,∞). For λ ∈ Ξt, letw(0;λ, t) be the unique

solution w ∈ (0,∞) to the equation k(w, 0) = t, which is equivalent to

(3.14)
∫ ∞

0

1

w2 + u2
dµ|x−λ|(u) =

1

t
,

and can be rewritten as

(3.15) ϕ
[(
(x− λ)∗(x− λ) + w(0;λ, t)2

)−1
]
=

1

t
.

For λ ∈ C\Ξt, the operator (x− λ)∗(x− λ) exists in L1(M, ϕ), we set w(0;λ, t) = 0.

3.2. Convergence of subordination functions. By Proposition 3.2 and Definition 3.4,
we can view w(ε;λ, t) as a family of scalar-valued subordination functions with parameter
λ ∈ C. In this section, we study the convergence of w(ε;λ, t) to w(0;λ, t) as ε tends to
zero.

Lemma 3.5. The function (ε, t) 7→ w(ε;λ, t) is real analytic in (0,∞) × (0,∞). The
function λ 7→ w(0;λ, t) is a continuous function on C. Moreover,

lim
ε→0+

w(ε;λ, t) = w(0;λ, t).

In addition, for λ = a+ ib ∈ Ξt, the function (a, b) 7→ w(0;λ, t) is real analytic.

Proof. Let Ω = {(s, ε) ∈ R2 : 0 < ε < s}. Consider the analytic function

F (s, ε) = (k(s, ε), ε), (s, ε) ∈ Ω.

By Lemma 3.3, F is one-to-one map of Ω onto (0,∞) × (0,∞). Moreover, its inverse
function F−1 : (0,∞)× (0,∞) → Ω is given by

F−1(t, ε) = (w(ε;λ, t), ε), t, ε > 0.

We now calculate the determinant of Jacobian of F as

det(J(F ))(s, ε) =
∂

∂s
k(s, ε) > 0
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by (3.12).
We denote h(ε, λ) = hµ|λ−x|(ε) and observe that

h(ε, λ) =
1

2

∫ ∞

0

(
1

ε+ iu
+

1

ε− iu

)
dµ|λ−x|(u) = −ℑGµ̃|λ−x|(iε).

It follows that h and also k is analytic in ε. Hence, F−1 is analytic on (0,∞) × (0,∞).
Consequently, w(ε;λ, t) is analytic on (0,∞)× (0,∞).

Following notations in Lemma 3.3, we set µ = µ|x−λ| and λ1(µ)2 =
(∫∞

0
1
u2 dµ(u)

)−1
.

Recall that λ ∈ Ξt if and only if t > λ1(µ)
2. For λ ∈ Ξt, then t ∈ (λ1(µ)

2,∞) and
w(0;λ, t) > 0 by Definition 3.4. Since

∂

∂s
k(s, 0) =

∂

∂s

s

hµ(s)
> 0

for s > 0, where hµ is defined in Lemma 3.3. It follows that F is also analytic in some
neighborhood U0 of (w(0;λ, t), 0) and F has an analytic inverse F−1 in a neighborhood
V0 of F (s, 0) = (t, 0). Now

(3.16) lim
ε→0+

F−1(t, ε) = F−1(t, 0) = (w(0;λ, t), 0).

Hence, for λ ∈ Ξt,
lim
ε→0+

w(ε;λ, t) = w(0;λ, t).

Moreover, the function w(0;λ, t) is a real analytic function of (a, b) where λ = a+ ib.
We next study convergence for λ ∈ C\Ξt. Note that for fixed ε > 0, the map t 7→

w(ε;λ, t) is an increasing function of t, which can be verified directly from Lemma 3.3
and Definition 3.4. Hence, for λ ∈ C\Ξt, then t ≤ λ1(µ)

2, and for any t′ > λ1(µ)
2 we

have
lim sup
ε→0+

w(ε;λ, t) ≤ lim sup
ε→0+

w(ε;λ, t′) = w(0;λ, t′).

But t′ 7→ w(0;λ, t′) is a bijection of (λ1(µ)2,∞) onto (0,∞). It then follows that

lim
ε→0+

w(ε;λ, t) = 0

whenever λ ∈ C\Ξt.
Recall that w(0;λ, t) = 0 for λ ∈ C\Ξt and w(0;λ, t) > 0 in the open set Ξt. Hence,

to show that λ 7→ w(0;λ, t) is a continuous function in C, it remains to show that for any
λ0 ∈ C\Ξt and a sequence {λn} ⊂ Ξt converging to λ0, we have

lim
n→∞

w(0;λn, t) = 0.

Suppose this is not true. By dropping to a subsequence if necessary, we may assume that
there exists δ > 0 such that for all n, w(0;λn, t) > δ. In this case, we have∫ ∞

0

1

w(0;λn, t)2 + u2
dµ|x−λn|(u) =

1

t

which yields

(3.17)
∫ ∞

0

1

δ2 + u2
dµ|x−λn|(u) >

1

t

Hence we have

ϕ((|x− λ0|2 + δ2)−1) = lim
n→∞

ϕ((|x− λn|2 + δ2)−1) ≥ 1

t
,
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which implies that w(0;λ0, t) ≥ δ. This contradicts to our choice λ0 ∈ C\Ξt. Therefore,
λ 7→ w(0;λ, t) is a continuous function in C. □

Lemma 3.6. Fix t > 0, then the functions λ 7→ w(ε;λ, t) converge to the function λ 7→
w(0;λ, t) uniformly on C as ε tends to zero.

Proof. We denote w1 = w(ε1;λ, t), w2 = w(ε2;λ, t). We observe that ε1 < w1 < w2 for
any 0 < ε1 < ε2. Indeed, w1 is the unique solution of∫ ∞

0

w1

w2
1 + u2

dµ|x−λ|(u) =
w1 − ε1

t
,

which yields ∫ ∞

0

w1

w2
1 + u2

dµ|x−λ|(u) >
w1 − ε2

t
.

That is k(w1, ε2) < t. On the other hand, k(w2, ε2) = t. It follows from the monotonicity
of s 7→ k(s, ε) in Lemma 3.3 that w1 < w2.

We claim that w(ε;λ, t) < 2ε uniformly as ε tends to zero for C\B where B is a closed
ball with large radius. Assume that ||x−λ|| > M ≫ 1 for λ ∈ C\B. Sincew = w(ε;λ, t)
is the unique solution of ∫ ∞

0

w

w2 + u2
dµ|x−λ|(u) =

w − ε

t
,

it follows that

(3.18)
w − ε

t
<

w

w2 +M2
<

w

M2
.

One can then verity that w(ε;λ, t) < 2ε for λ ∈ C\B provided that the radius ofB is large
so that M is sufficiently large.

By Lemma 3.5, the function λ 7→ w(ε;λ, t) is a continuous function of λ for any
ε ≥ 0. Let B be a closed ball in C with large radius so that Ξt ⊂ B. Because w(ε;λ, t)
converges pointwise to the continuous function w(0;λ, t) as ε tends to zero by Lemma 3.5,
and {w(ε;λ, t)}ε>0 is a monotone sequence of continuous functions of λ, it follows by
Dini’s theorem that w(ε;λ, t) converge to the function w(0;λ, t) uniformly on the closed
ball B as ε tends to zero.

The above discussions show thatw(ε;λ, t) converge to the functionw(0;λ, t) uniformly
on C as ε tends to zero. □

3.3. The operator-valued subordination functions. Let y = gt,γ be a twisted elliptic
operator in (M, ϕ) and let x ∈ M be a random variable that is ∗-free from y. We recall that

GX(Θ(λ, iε)) =

[
gX,11(λ, ε) gX,12(λ, ε)
gX,21(λ, ε) gX,22(λ, ε)

]
,

and

GX+Y (Θ(λ, iε)) =

[
gX+Y,11(λ, ε) gX+Y,12(λ, ε)
gX+Y,21(λ, ε) gX+Y,22(λ, ε)

]
.

The main result in this section is the following.

Theorem 3.7. Let y = gt,γ ∈ M and x be a random variable that is free from y. We have

(3.19) Ω1(Θ(z, iε)) = Θ(z, iε)−RY (GX+Y (Θ(z, iε))).

For any ε > 0 and z ∈ C, using notations in (3.1) and (3.2), and set

(3.20) λ = z − γ · ϕ
(
(z − x− y)∗

(
(z − x− y)(z − x− y)∗ + ε2

)−1
)
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Then Ω1(Θ(z, iε)) = Θ(λ, iw(ε;λ, t)). That is,

Ω1

([
iε z
z iε

])
=

[
iw(ε;λ, t) λ

λ iw(ε;λ, t)

]
,(3.21)

where w(ε;λ, t) is defined in Proposition 3.2 and Definition 3.4. In addition, w(ε;λ, t)
can be expressed as

w(ε;λ, t) = ε+ tεϕ

((
(z − x− y)∗(z − x− y) + ε2

)−1
)

with λ given by (3.20).
The subordination relationGX+Y (Θ(z, iε)) = GX(Ω1(Θ(z, iε))) is expressed in terms

of z and ε as

E

([
iε z − (x+ y)

z − (x+ y)∗ iε

]−1
)

= E

([
iw(ε;λ, t) λ− x

λ− x∗ iw(ε;λ, t)

]−1
)
,

which is also equivalent to

gX+Y,11(z, ε) = gX,11(λ,w(ε;λ, t)), gX+Y,12(z, ε) = gX,12(λ,w(ε;λ, t)).(3.22)

In other words, we have

εϕ

((
(z − x− y)∗(z − x− y) + ε2

)−1
)

= w(ε;λ, t)ϕ

((
(λ− x)∗(λ− x) + w(ε;λ, t)2

)−1
)

(3.23)

and

ϕ

(
(z − x− y)∗

(
(z − x− y)(z − x− y)∗ + ε2

)−1
)

= ϕ

(
(λ− x)∗

(
(λ− x)(λ− x)∗ + w(ε;λ, t)2

)−1
)
.(3.24)

Proof. The only nonzero free cumulants of {y, y∗} are

κ(y, y∗) = κ(y∗, y) = t, κ(y, y) = γ, κ(y∗, y∗) = γ.

The operator Y =

[
0 y
y∗ 0

]
is an operator-valued semicircular element whoseR-transform

is explicitly given by
RY (b) = E(Y bY ), b ∈M2(C).

Hence, for b =
[
a11 a12
a21 a22

]
,

RY

([
a11 a12
a21 a22

])
=

[
a22κ(y, y

∗) a21κ(y, y)
a12κ(y

∗, y∗) a11κ(y
∗, y)

]
=

[
a22t a21γ
a12γ a11t

]
.

In particular, for any ε > 0 and z ∈ C, we have

(3.25) RY (Θ(z, iε)) = RY

([
iε z
z iε

])
=

[
iεt zγ
zγ iεt

]
.

Since X,Y are free with amalgamation in the operator-valued W ∗-probability space
(M2(M),E,M2(C)), we have

RX+Y (b) = RX(b) +RY (b).
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Hence
G

⟨−1⟩
X+Y (b) = G

⟨−1⟩
X (b) +RY (b).

By replacing b with GX+Y (β), we obtain a formula for the subordination function

(3.26) Ω1(β) = G
⟨−1⟩
X (GX+Y (β)) = β −RY (GX+Y (β))

for β in a neighborhood of infinity. Hence, for and z ∈ C and ε large, the identity (3.19)
holds:

Ω1(Θ(z, iε)) = Θ(z, iε)−RY (GX+Y (Θ(z, iε))).

We next show that (3.19) holds for any z ∈ C and ε > 0. Observing that the right hand
side of (3.19) is defined for any ε > 0, we only need to check that the right hand side of
(3.19) is the correct expression of Ω1(Θ(z, iε)). Recall that

GX+Y (Θ(z, iε)) =

[
gX+Y,11(z, ε) gX+Y,12(z, ε)
gX+Y,21(z, ε) gX+Y,22(z, ε)

]
holds for any z ∈ C and ε > 0. Hence,

RY (GX+Y (Θ(z, iε))) =

[
t · gX+Y,22(z, ε) γ · gX+Y,21(z, ε)
γ · gX+Y,12(z, ε) t · gX+Y,11(z, ε)

]
,

where we reminder the reader the notations of gX+Y,ij in Section 2.3 and

gX+Y,11(z, ε) = gX+Y,22(z, ε), gX+Y,12(z, ε) = gX+Y,21(z, ε).

Therefore, for ε > 0 large enough, by (3.19), we have

Ω1(Θ(z, iε)) =

[
iε− t · gX+Y,22(z, ε) z − γ · gX+Y,21(z, ε)
z − γ · gX+Y,12(z, ε) iε− t · gX+Y,11(z, ε)

]
.

In particular, for ε > 0 large enough, we have

the imaginary part of (1,1)-entry of Ω1(Θ(z, iε))

= ε+ it · gX+Y,22(z, ε)

= ε+ tεϕ

((
(z − x− y)∗(z − x− y) + ε2

)−1
)
> ε.

For any δ ∈ C+, ℑGX+Y (Θ(z, δ)) < 0 and hence ℑRY (GX+Y (Θ(z, δ))) < 0. Hence,
ℑΩ1(Θ(z, δ)) > ℑδ > 0 for any δ ∈ C+. The map δ 7→ RY (GX+Y (Θ(z, δ))) is a
complex analytic function of δ in C+. Since δ 7→ Ω1(Θ(z, δ)) is also a complex analytic
function of δ in C+ and ℑΩ1(Θ(z, δ)) > ℑδ, we conclude that for any ε > 0 we have

Ω1(Θ(z, iε)) = Θ(z, iε)−RY (GX+Y (Θ(z, iε)))

by the uniqueness of analytic functions.
For any z ∈ C and ε > 0, we denote

λ = z − γ · gX+Y,21(z, ε)(3.27)

= z − γ · ϕ
(
(z − x− y)∗

(
(z − x− y)(z − x− y)∗ + ε2

)−1
)

and

ε0 = ε+ it · gX+Y,22(z, ε)(3.28)

= ε+ tεϕ

((
(z − x− y)∗(z − x− y) + ε2

)−1
)
.
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Then, for any z ∈ C and ε > 0, we have

(3.29) Ω1(Θ(z, ε)) = Θ(λ, ε0) =

[
iε0 λ

λ iε0

]
Hence, the Cauchy transform of X at Ω1(Θ(z, ε)) is given by

GX(Ω1(Θ(z, ε))) = E[(Ω1(Θ(z, ε))−X)−1] =

[
gX,11(λ, ε0) gX,12(λ, ε0)
gX,21(λ, ε0) gX,22(λ, ε0)

]
.

On the other hand, we have

GX+Y (Θ(z, ε)) =

[
gX+Y,11(z, ε) gX+Y,12(z, ε)
gX+Y,21(z, ε) gX+Y,22(z, ε)

]
.

Therefore the subordination relation GX+Y (Θ(z, ε)) = GX(Ω1(Θ(z, ε))) is equivalent to

(3.30) gX+Y,11(z, ε) = gX,11(λ, ε0), gX+Y,12(z, ε) = gX,12(λ, ε0)

for any z ∈ C, ε > 0, where where λ, ε0 are given by the relations (3.28) and (3.27).
It remains to show that ε0 = w(ε;λ, t). We reminder the reader that

gX,11(λ, ε0) = gX,22(λ, ε0), gX,12(λ, ε0) = gX,21(λ, ε0).

Now the relation (3.28) can be rewritten as

ε0 = ε+ itgX,22(λ, ε0)

which is equivalent to

ε0 = ε+ t · ε0ϕ
((

(λ− x)∗(λ− x) + ε20
)−1
)
.

This can be further rewritten as

ε0 − ε

ε0

(∫ ∞

0

1

ε20 + u2
dµ|x−λ|(u)

)−1

= t.

Hence, ε0 = w(ε;λ, t) is the unique solution to the above equation following Definition
3.4. This finishes the proof. □

For any z ∈ C and ε > 0, if λ is given by (3.20) which is rewritten as

λ = z − γ · gX+Y,21(z, ε).

Then by the subordination relate (3.22) and the proof of Theorem 3.7, we have

z = λ+ γ · gX+Y,21(z, ε) = λ+ γ · gX,21(λ,w(ε;λ, t)).

In Section 5.1, we show that the relation λ 7→ z = λ+ γ · gX,21(λ,w(ε;λ, t)) determines
a homeomorphism of the complex plane.

For any d ∈ H+(M2(C)), we denote

H(d) = d+RY (GX(d)).

Then by (3.19) for any z ∈ C and ε > 0, the identity H(Ω1(Θ(z, iε))) = Θ(z, iε) holds
tautologically. The following is a special case of [2, Lemma 4.2].

Lemma 3.8. For any d ∈ H+(M2(C)) such that ℑH(d) > 0 we have

(3.31) Ω1(H(d)) = d.

Corollary 3.9. Given ε > 0 and λ ∈ C, let z = λ + γ · gX,21(λ,w(ε;λ, t)), then
Ω1(Θ(z, iε)) = Θ(λ, iw(ε;λ, t)).
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Proof. Denote d = Θ(λ, iw(ε;λ, t)) =

[
iw(ε;λ, t) λ

λ iw(ε;λ, t)

]
. By Lemma 3.8, it

suffices to show that H(d) = Θ(z, iε) =

[
iε z
z iε

]
. Denote w = w(ε;λ, t). Recalling the

identity (3.25), by the definition of H and (3.13) in Definition 3.4, we have

the imaginary part of (1,1)-entry of H(d)

= w + t · gX,22(λ,w)
= w − twϕ

(
((λ− x)∗(λ− x) + w2)−1

)
= ε.

The (1, 2)-entry of H(d) is exactly equal to λ+ γ · gX,21(λ,w), which is z. □

3.4. The coupling Fuglede-Kadision determinants. To help us remember entries of the
Cauchy transform as in (2.9) are derivatives, we introduce the following notation.

Notation 3.10. For any t > 0, let ct be a circular operator with variance t. For γ ∈ C
such that |γ| ≤ t, denote by y = gt,γ the twisted elliptic operator with parameters t, γ.
For any x ∈ M, λ ∈ C and ε ≥ 0, we set

S(x, λ, ε) = log∆((x− λ)∗(x− λ) + ε2)

= log∆((x− λ)(x− λ)∗ + ε2).

It is convenient to introduce the following notations

p
c,(t)
λ (ε) =

∂S

∂λ
(x+ ct, λ, ε)

= −ϕ
[
(x+ ct − λ)∗

(
(x+ ct − λ)(x+ ct − λ)∗ + ε2

)−1
]

pg,(t,γ)z (ε) =
∂S

∂z
(x+ y, z, ε)

= −ϕ
[
(x+ y − z)∗

(
(x+ y − z)(x+ y − z)∗ + ε2

)−1
]

p
(0)
λ (ε) =

∂S

∂λ
(x, λ, ε) = −ϕ

[
(x− λ)∗

(
(x− λ)(x− λ)∗ + ε2

)−1
]

qc,(t)ε (λ) =
1

2

∂S

∂ε
(x+ ct, λ, ε) = εϕ

[(
(x+ ct − λ)∗(x+ ct − λ) + ε2

)−1
]

qg,(t,γ)ε (λ) =
1

2

∂S

∂ε
(x+ y, λ, ε) = εϕ

[(
(x+ y − λ)∗(x+ y − λ) + ε2

)−1
]

q(0)ε (λ) =
1

2

∂S

∂ε
(x, λ, ε) = εϕ

[(
(x− λ)∗(x− λ) + ε2

)−1
]

We also set

p
c,(t)

λ
(ε) =

∂S

∂λ
(x+ ct, λ, ε), p

g,(t,γ)
z (ε) =

∂S

∂z
(x+ y, z, ε), p

(0)

λ
(ε) =

∂S

∂λ
(x, λ, ε).

We note that

p
c,(t)

λ
(ε) = p

c,(t)
λ (ε), p

g,(t,γ)
z (ε) = p

g,(t,γ)
z (ε), p

(0)

λ
(ε) = p

(0)
λ (ε).

and the Cauchy transform can be written as

(3.32) GX+Y (Θ(λ, ε)) = E
[
(Θ(λ, ε)−X − Y )−1

]
=

[
−iq

(t,γ)
ε (λ) p

(t,γ)

λ
(ε)

p
(t,γ)
λ (ε) −iq

(t,γ)
ε (λ)

]
.
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Corollary 3.11. The subordination relation (3.22) is equivalent to

q
(0)
w(ε)(λ) = qg,(t,γ)ε (z) = qc,(t)ε (λ), p

(0)
λ (w(ε)) = pg,(t,γ)z (ε) = p

c,(t)
λ (ε).(3.33)

where w(ε) = w(ε;λ, t). In particular, we have

εϕ

((
(λ− x− ct)

∗(λ− x− ct) + ε2
)−1
)

= w(ε;λ, t)ϕ

((
(λ− x)∗(λ− x) + w(ε;λ, t)2

)−1
)

and

ϕ

(
(λ− x− ct)

∗((λ− x− ct)(λ− x− ct)
∗ + ε2

)−1
)

= ϕ

(
(λ− x)∗

(
(λ− x)(λ− x)∗ + w(ε;λ, t)2

)−1
)
.

Proof. We note that ct = gt,0. Then (3.20) reads z = λ if γ = 0. The result follows from
(3.23) and (3.24). □

The following proof was inspired by the proof of [30, Lemma 4.14].

Lemma 3.12. Let y = gt,γ and x be a random variable free from y. For any λ ∈ C and
(ε, t) ∈ (0,∞)× (0,∞), we have the coupling Fuglede-Kadison determinant formula

∆
(
(x+ y − z)∗(x+ y − z)) + ε2

)
= ∆

(
(x− λ)∗(x− λ) + w(ε)2

)
× exp

[
ℜ
(
γ · (p(0)λ (w(ε)))2

)
− (w(ε)− ε)2

t

]
(3.34)

where z = λ+ γ · p(0)λ (w(ε)) and w(ε) = w(ε;λ, t) is defined in Definition 3.4.

Proof. Fix λ ∈ C, then w(ε) = w(ε;λ, t) and p(0)λ (w(ε)) are then completely determined
by ε. Recall tha p(0)λ (w(ε)) = p

(t,γ)
z (ε), we have

z = λ+ γ · p(0)λ (w(ε)) = λ+ p(t,γ)z (ε).

Therefore,

d

dε
S(x+ y, z, ε)

=2q(t,γ)ε (z) +

(
γ · p(t,γ)z (ε)

d

dε
p(t,γ)z (ε) + γ · p(t,γ)z (ε)

d

dε
p
(t,γ)
z (ε)

)
=2q

(0)
w(ε)(λ) +

(
γ · p(0)λ (w(ε))

d

dε
p
(0)
λ (w(ε)) + γ · p(0)

λ
(w(ε))

d

dε
p
(0)

λ
(w(ε))

)
.

Definition 3.4 says that w(ε) satisfies

w(ε)− ε

t
= q

(0)
w(ε)(λ) = w(ε) · ϕ

[(
(λ− x)∗(λ− x) + w(ε)2

)−1
]
.
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Recall that 1
2
d
dεS(x, λ, ε) = q

(0)
ε (λ). We then have∫ ε

ε0

q
(0)
w(u)(λ)du

=

∫ ε

ε0

q
(0)
w(u)(λ)

d

du
w(u)du+

∫ ε

ε0

q
(0)
w(u)(λ)

d

du
(u− w(u))du

=
S(x, λ,w(ε))− S(x, λ,w(ε0))

2
− t ·

∫ ε

ε0

q
(0)
w(u)(λ)

(
d

du
q
(0)
w(u)(λ)

)
=
S(x, λ,w(ε))− S(x, λ,w(ε0))

2
− t

2

(
(q

(0)
w(ε)(λ))

2 − (q
(0)
w(ε0)

(λ))2
)

and

γ

∫ ε

ε0

p
(0)
λ (w(u))

(
d

du
p
(0)
λ (w(u))

)
du+ γ

∫ ε

ε0

p
(0)

λ
(w(u))

(
d

du
p
(0)

λ
(w(u))

)
=
γ

2

(
(p

(0)
λ (w(ε)))2 − (p

(0)
λ (w(ε0))

2

)
+
γ

2

(
(p

(0)

λ
(w(ε))2 − (p

(0)

λ
(w(ε0))

2

)
Hence, there exists a constant C such that

S(x+ y, z, ε)− S(x, λ,w(ε))

=
1

2

(
γ · (p(0)λ (w(ε)))2 + γ · (p(0)

λ
(w(ε))2 − 2t · (q(0)w(ε)(λ))

2

)
+ C

= ℜ
(
γ · (p(0)λ (w(ε)))2

)
− t · (q(0)w(ε)(λ))

2 + C

= ℜ
(
γ · (p(0)λ (w(ε)))2

)
− (w(ε)− ε)2

t
+ C.

It remains to show that C = 0. We have

S(x, λ, ε) =

∫ ∞

0

log(u2 + ε2)dµ|x−λ|(u).

Hence

(3.35) lim
ε→∞

(S(x, λ, ε)− 2 log ε) = lim
ε→∞

log

(
1 +

u2

ε2

)
dµ|x−λ|(u) = 0.

Observe that limε→∞(w(ε)− ε) = 0. Consequently, limε→∞ p
(0)
λ (w(ε)) = 0. Hence

lim
ε→∞

z = lim
ε→∞

(λ+ tp
(0)
λ (w(ε)) = λ

and by a similar estimation as (3.35)

lim
ε→∞

(S(x+ y, z, ε)− 2 log ε) = 0

Moreover,

lim
ε→∞

q
(0)
w(ε)(λ) = 0.

We conclude that C must be zero. □

Theorem 3.13. For λ ∈ C, set µ = µ|x−λ| and let w(0;λ, t) be as in Definition 3.4.
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(1) If λ ∈ Ξt, then

(3.36)
∆
(
x+ ct − λ

)2
= ∆

(
(x− λ)∗(x− λ) + w(0;λ, t)2

)
× exp

(
− (w(0;λ, t))2

t

)
.

(2) If λ /∈ Ξt, then
∆(x+ ct − λ) = ∆(x− λ).

Proof. The circular operator ct corresponds to γ = 0 for a twisted elliptic operator. If
λ ∈ Ξt, then w(0;λ, t) > 0. Hence the first part follows from (3.34) by letting ε tend to
zero. For the second part, note that

∆(x+ ct − λ)2 = lim
ε→0+

∆
(
(x+ ct − λ)∗(x+ ct − λ) + ε2

)
.

By Lemma 3.5, we know if λ /∈ Ξt, then limε→0+ w(ε;λ, t) = 0. Hence by (3.34), we
have

∆(x+ ct − λ)2 = lim
ε→0+

∆
(
(x+ ct − λ)∗(x+ ct − λ) + ε2

)
= lim
ε→0+

∆
(
(x− λ)∗(x− λ) + w(ε)2

)
× exp

[
− (w(ε)− ε)2

t

]
= ∆(x− λ)2.

This finishes the proof. □

In light of Lemma 3.12, we would like to let ε tend to zero for both sides of (3.34).
Note that the the left hand side of (3.34) is ∆

(
(x + y − z)∗(x + y − z)) + ε2

)
where

z = λ+ γ · p(0)λ (w(ε;λ, t)) also depends on ε. Hence, we need some regularity results to
allow us to take the limit as we wish. To this end, we introduce the map Ψc,0 given by

Ψc,0(λ, ε) = (λ,w(ε;λ, t))

where w(ε;λ, t) was given in Definition 3.4, and the map Ψc,g by

Ψc,g(λ, ε) = (z, ε)

where
z = λ+ γ · p(0)λ (w(ε;λ, t)).

Lemma 3.14. If λ ∈ Ξt, the Jacobian of Ψc,0 at (λ, 0) is invertible.

Proof. To show the Jacobian of Ψc,0 is invertible, it suffices to show that ∂w(ε;λ,t)
∂ε ̸= 0 at

ε = 0. Recall that w(ε;λ, t) is the unique solution s > 0 for∫ ∞

0

s

s2 + u2
dµ|x−λ|(u) =

s− ε

t
.

When ε = 0, note that w(0;λ, t) > 0 and we can rewrite (3.15) as∫ ∞

0

1

w(0;λ, t)2 + u2
dµ|x−λ|(u) =

1

t
.

A direct calculation shows that ∂w(ε;λ,t)
∂ε ̸= 0 at ε = 0 □

Lemma 3.15. The function p(0)λ (w(ε;λ, t)) converges uniformly to p(0)λ (w(0;λ, t)) on C
as ε tends to zero.
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Proof. For ε2 > ε1 > 0, we set wi = w(εi;λ, t)(i = 1, 2). Recall that w(ε;λ, t) > ε. By
the proof of Lemma 3.6, we have w1 < w2. By the resolvent identity, we have

p
(0)
λ (w(ε2;λ, t))− p

(0)
λ (w(ε1;λ, t))

=ϕ

[
(λ− x)∗

(
(λ− x)(λ− x)∗ + w2

2

)−1
]

− ϕ

[
(λ− x)∗

(
(λ− x)(λ− x)∗ + w2

1

)−1
]

=ϕ(AH1H2B)(w2 − w1),

where

A = (λ− x)∗
(
(λ− x)(λ− x)∗ + w2

1

)−1/2

B =
(
(λ− x)(λ− x)∗ + w2

2

)−1/2
(w1 + w2)

H1 =
(
(λ− x)(λ− x)∗ + w2

1

)−1/2

H2 =
(
(λ− x)(λ− x)∗ + w2

2

)−1/2
.

Since ε1 < w1 < w2, we have

||A|| ≤ 1, ||B|| ≤ 2.

We also have, for i = 1, 2,

ϕ(H2
i ) = ϕ(

(
(λ− x)(λ− x)∗ + w2

i

)−1
)

≤ ϕ(
(
(λ− x)(λ− x)∗ + w(0;λ, t)2

)−1
) ≤ 1

t
,

due to w(0;λ, t) ≤ wi. Therefore,

|ϕ(AH1H2B)| ≤ 2ϕ(H1H2) ≤ 2
√
ϕ(H2

1 )ϕ(H
2
2 ) ≤

2

t
,

which yields

|p(0)λ (w(ε2;λ, t))− p
(0)
λ (w(ε1;λ, t))| ≤

2

t
(w(ε2;λ, t)− w(ε1;λ, t)).

We note that for λ /∈ Ξt, then w(0;λ, t) = 0 and in this case the operator
(
(λ − x)(λ −

x)∗
)−1

is regarded as an unbounded operator affiliated with M. By Cauchy-Schwarz in-
equality, we have

|p(0)λ (0)|2 =

∣∣∣∣ϕ[(λ− x)∗
(
(λ− x)(λ− x)∗

)−1
]∣∣∣∣2

≤ ϕ

[ ∣∣∣(λ− x)∗
(
(λ− x)(λ− x)∗

)−1/2
∣∣∣2 ] · ϕ[((λ− x)(λ− x)∗

)−1
]
≤ 1

t
.

Hence, p(0)λ (w(ε;λ, t)) converges uniformly to p(0)λ (w(0;λ, t)) on C as ε tends to zero,
thanks to the uniform convergence of w(ε;λ, t) to w(0;λ, t) proved in Lemma 3.6. □

Definition 3.16. Define the map Φt,γ : C → C by

(3.37) Φt,γ(λ) = λ+ γ · p(0)λ (w(0;λ, t)), λ ∈ C.
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Theorem 3.17. Let y = gt,γ and x be a random variable free from x. Assume that
Φt,γ is non-singular at λ ∈ Ξt (the Jacobian of Φt,γ is invertible at λ). Then, (z, ε) 7→
∆
(
|x + gt,γ − z|2 + ε2

)
has a real analytic extension in a neighborhood of (Φt,γ(λ), 0).

Moreover,

(3.38) ∆(x+ gt,γ − z)2 = ∆(x+ ct − λ)2 exp
[
ℜ(γ(p(0)λ (w(0;λ, t)))2)

]
where z = Φt,γ(λ).

Proof. Notice that the right hand side of (3.36) is a real analytic function of λ by the an-
alyticity of w(0;λ, t) in Lemma 3.5. By Lemma 3.14, the Jacobian of the map (λ, ε) 7→
Ψc,0(λ, ε) = (λ,w(ε;λ, t)) is invertible. An application of inverse function theorem im-
plies that the map

(λ, ε) 7→ ∆
(
|x+ ct − λ|2 + ε2

)
has a real analytic extension in some neighborhood of (λ, 0). By choosing γ = 0 and an
arbitrary γ in Lemma 3.12, we can obtain that

(3.39) ∆
(
|x+ gt,γ − z|2 + ε2

)
= ∆

(
|x+ ct−λ|2 + ε2

)
exp

[
ℜ(γ(p(0)λ (w(ε;λ, t)))2)

]
,

where

z = λ+ γ · p(0)λ (w(ε;λ, t)).

By Lemma 3.15,

lim
ε→0+

p
(0)
λ (w(ε;λ, t)) = p

(0)
λ (w(0;λ, t)).

Hence, limε→0+ Ψc,g(λ, ε) = (Φt,γ(λ), 0). Since w(0;λ, t) > 0, then the assumption that
Φt,γ is non-singular at λ ∈ Ξt implies that the Jacobian of the map (λ, ε) 7→ Ψc,g(λ, ε) =
(z, ε) at (λ, 0) is invertible. Hence, the analyticity of ∆

(
|x + ct − λ|2 + ε2

)
in some

neighborhood of (λ, 0) implies that the map (z, ε) 7→ ∆
(
|x + gt,γ − z|2 + ε2

)
has a real

analytic extension in a neighborhood of (Φt,γ(λ), 0) by inverse function theorem. Hence,
(3.38) follows from (3.39) by letting ε tend to zero. □

Corollary 3.18. If λ ∈ Ξt, assume that Φt,γ is non-singular at λ ∈ Ξt, then

∆
(
(x+y − z)∗(x+ y − z))

)
= ∆

(
(x− λ)∗(x− λ) + w(0;λ, t)2

)
× exp

[
1

2
·
(
γ · (p(0)λ (w(0;λ, t)))2 + γ · (p(0)

λ
(w(0;λ, t))2

)
− w(0;λ, t)2

t

]
,(3.40)

where z = λ+ γ · p(0)λ (w(0;λ, t)).

4. BROWN MEASURE OF ADDITION WITH A CIRCULAR OPERATOR

In this section, we show that the Brown measure of x+ct has no atom and it is absolutely
continuous with respect to Lebesgue measure with strictly positive and real analytic density
in the open set Ξt, and the density formula can be expressed explicitly in terms of the
function w(0;λ, t).



28 PING ZHONG

4.1. The density formula in the domain Ξt. We first study the limits of pc,(t)λ (ε) as ε
tends to zero.

Lemma 4.1. For any t > 0. The function λ 7→ S(x + ct, λ, 0) is a real analytic function
for λ ∈ Ξt, and we have

p
c,(t)
λ (0) = p

(0)
λ (w(0;λ, t)),

Proof. By Corollary 3.11, we have

p
c,(t)
λ (ε) = p

(0)
λ (w(ε;λ, t)),

Recall that, by Lemma 3.5, for λ ∈ Ξt, limε→0 w(ε;λ, t) = w(0;λ, t) ∈ (0,∞). The
result then follows by letting ε tend to zero. □

The following result generalizes [39, Theorem 3.10] where x is assumed that to be self-
adjoint and [17, Theorem 1.4] where x is assumed to be a Gaussian distributed normal
operator (their techniques extend to the case when x is a normal operator as in [15]).

Theorem 4.2. The Brown measure is absolutely continuous with respect to Lebesgue mea-
sure in the open set Ξt. The density of the Brown measure at λ ∈ Ξt is given by

(4.1)
1

π

(
1

t
− ∂

∂λ

(
ϕ
(
x∗((x− λ)(x− λ)∗ + w(0;λ, t)2)−1

)))
where w = w(0;λ, t) is determined by

ϕ((x− λ)∗(x− λ) + w(0;λ, t)2)−1) =
1

t
.

It can also be expressed as

(4.2)
1

π

(
|ϕ((λ− x)(h−1)2)|2

ϕ((h−1)2)
+ w(0;λ, t)2ϕ(h−1k−1)

)
where h = h(λ,w(0;λ, t)) and k = k(λ,w(0;λ, t)) for

h(λ,w) = (λ− x)∗(λ− x) + w2

and
k(λ,w) = (λ− x)(λ− x)∗ + w2.

In particular, the density of the Brown measure of x+ ct is strictly positive in the set Ξt.

After the present article was released to arXiv, in a joint work with Belinschi and Yin
[3, Section 7], we obtain the following strengthened result.

Theorem 4.3. [3, Theorem 7.10 and Lemma 7.11] The Brown measure µx+ct is absolutely
continuous with respect to Lebesgue measure on the complex plane. The density functions
of both µx+ct,ε and µx+ct are bounded by 1/πt.

Proof of Theorem 4.2. For λ ∈ Ξt, we have ϕ
[(
(x− λ)∗(x− λ)

)−1
]
> 1

t , and

∆
(
(x+ ct − λ)∗(x+ ct − λ)

)
= ∆

(
(x− λ)∗(x− λ) + w(0;λ, t)2

)
· exp

[
−t(q(0)w(0;λ,t)(λ))

2
]

by Theorem 3.13. In addition, w(0;λ, t) ∈ (0,∞) and (a, b) 7→ w(0;λ, t) for λ = a+ ib
is real analytic by Lemma 3.5. Hence, λ 7→ log∆(x+ ct − λ) is real analytic. We put

g(λ) = log∆
(
(x+ ct − λ)∗(x+ ct − λ)

)
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The Brown measure can be calculated as

dµx+ct(λ) =
1

π

∂2

∂λ∂λ
g(λ).

where the Laplacian can be calculated in the usual sense.
By the identity x∗(xx∗ + ε)−1 = (x∗x+ ε)−1x∗ and tracial property, then Lemma 4.1

is equivalent to
∂

∂λ
g(λ) = ϕ

(
∂h

∂λ
k−1

)
= ϕ

(
h−1 ∂h

∂λ

)
where ∂h

∂λ = (λ− x)∗. We can continue to take the derivative directly

∂2

∂λ∂λ
g(λ) =

∂

∂λ
ϕ

(
h−1 ∂h

∂λ

)
=

∂

∂λ
ϕ
(
(λ− x)∗((x− λ)∗(x− λ) + w(0;λ, t)2)−1

)
=

∂

∂λ
ϕ

(
λ

t
− ϕ

(
x∗((x− λ)∗(x− λ) + w(0;λ, t)2)−1

))
=

1

t
− ∂

∂λ

(
ϕ
(
x∗((x− λ)∗(x− λ) + w(0;λ, t)2)−1

))
.

Then the first formula (4.1) is established.
We adapt the calculation in [30, Lemma 2.8] to get another form of the density formula.

By [32, Lemma 3.2], since g(λ) is a real analytic function of λ, we have

∂2

∂λ∂λ
g(λ) =

∂

∂λ
ϕ

(
h−1 ∂h

∂λ

)
= ϕ

(
−h−1

(
∂h

∂λ
+ 2w

∂w

∂λ

)
h−1 ∂h

∂λ
+ h−1 ∂2h

∂λ∂λ

)
(4.3)

= ϕ

(
−h−1 ∂h

∂λ
h−1 ∂h

∂λ
+ h−1 ∂2h

∂λ∂λ

)
− 2w

∂w

∂λ
ϕ

(
∂h

∂λ
(h−1)2

)
and

∂h

∂λ
=
∂h(λ,w)

∂λ
= λ− x;

and
∂2h

∂λ∂λ
=

∂

∂λ
(λ− x)∗ = 1.

We now apply the identity x(x∗x + ε)−1 = (xx∗ + ε)−1x to x = λ − x and ε = w2,
we find that

−∂h
∂λ
h−1 ∂h

∂λ
+

∂2h

∂λ∂λ
= 1− x(x∗x+ w2)−1x∗

= 1− (xx∗ + w2)−1xx∗

= w2(xx∗ + w2)−1

= w2k−1.

Now, w(0;λ, t) is determined by

ϕ((x− λ)∗(x− λ) + w(0;λ, t)2)−1) =
1

t



30 PING ZHONG

which can be rewritten as

ϕ(h−1) =
1

t
.

Take implicit differentiation ∂
∂λ

and apply again [32, Lemma 3.2], we then obtain

ϕ

(
h−1

(
∂h

∂λ
+ 2w

∂w

∂λ

)
h−1

)
= 0,

where ∂h
∂λ

= λ− x. This implies

−2w
∂w

∂λ
=
ϕ
(
∂h
∂λ

(h−1)2
)

ϕ((h−1)2)
.

By the tracial property, we observe that

ϕ

(
∂h

∂λ
(h−1)2

)
= ϕ

(
∂h

∂λ
(h−1)2

)
.

We therefore can continue to simplify (4.3) as

∂2

∂λ∂λ
g(λ) = ϕ

(
−h−1 ∂h

∂λ
h−1 ∂h

∂λ
+ h−1 ∂2h

∂λ∂λ

)
− 2w

∂w

∂λ
ϕ

(
∂h

∂λ
(h−1)2

)

= w2ϕ(h−1k−1) +

∣∣∣ϕ(∂h
∂λ

(h−1)2
)∣∣∣2

ϕ((h−1)2)

= w2ϕ(h−1/2k−1h−1/2) +

∣∣ϕ ((λ− x)(h−1)2
)∣∣2

ϕ((h−1)2)
> 0

for any λ ∈ Ξt. This finishes the proof. □

4.2. The support of the Brown measure of x + ct. Theorem 4.2 does not tell us the
Brown measure of x + ct outside the open set Ξt. We will show that the Brown measure
of x+ ct is supported in the closure of Ξt.

Lemma 4.4. The Brown measures of x and x+ct coincide in the complement of the closure
Ξt. That is

µx|(Ξt)c
= µx+ct |(Ξt)c

.

In particular, µx+ct(Ξt) = 1 if and only if µx(Ξt) = 1.

Proof. For λ ∈ (Ξt)
c, by Theorem 3.13, we have

log∆(x− λ) = log∆(x+ ct − λ).

Hence, ∫
C
log |z − λ|dµx(z) =

∫
C
log |z − λ|dµx+ct(z)

for any λ ∈ (Ξt)
c. Then two Brown measures coincide in the open set (Ξt)c due to the

Unicity Theorem of logarithmic potential (see [47, Theorem 2.1 in Chapter II]). □

We are grateful to Hari Bercovici for providing us a proof of the following result which
is a refinement of an argument in [29, Proposition 4.6].
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Lemma 4.5. Let µ be a finite Borel measure on C. Define I : C → (0,∞] by

Iµ(λ) =

∫
C

1

|λ− z|2
dµ(z).

Then Iµ(λ) is infinite almost everywhere relative to µ.

Proof. Without loss of generality, we may assume that µ is compactly supported. For
every λ ∈ C there exists λ′ ∈ supp(µ) such that Iµ(λ) ≤ 4Iµ(λ

′). Indeed, take λ′ to be
the closest point to λ, so

|λ− λ′| ≤ |λ− z|, z ∈ supp(µ).

Then
|λ′ − z| ≤ |λ− λ′|+ |λ− z| ≤ 2|λ− z|, z ∈ supp(µ),

and this yields the desired inequality. Thus, if I(λ) is bounded on supp(µ) then it is
bounded everywhere.

If {λ ∈ supp(µ) : I(λ) < +∞} has positive µ measure, we may further assume that
there exists C > 0 such that

I(λ) < C, λ ∈ supp(µ).

Otherwise, we can replace µ by a restriction µ to some compact set. Suppose this bound-
edness actually happens, and choose R > 0 large enough that |z| + 1 < R for every
z ∈ supp(µ). We observe that

+∞ >

∫
|λ|<R

I(λ) dm2(λ) ≥
∫
supp(µ)

[∫
|λ−z|<1

dm2(λ)

|λ− z|2

]
dµ(z),

where m2 denotes Lebesgue measure on the complex plane. Since the integral inside the
bracket is +∞ for every z, we conclude that µ must be the zero measure. Therefore, Iµ(λ)
is infinite almost everywhere relative to µ. □

The following result provides a new characterization of the support of the Brown mea-
sure of an arbitrary operator. The result also improves [36, Theorem 1.2] where a condition
of local boundedness of (T − λ)−1 in L4-norm is required.

Theorem 4.6. Let λ ∈ C and T ∈ M. If ϕ(|T − λ|−2) <∞, then∫
C

1

|z − λ|2
dµT (z) ≤ ϕ(|T − λ|−2).

If ϕ(|T − λ|−2) <∞ in some neighborhood of λ0, then λ0 /∈ supp(µT ).

Proof. Observe that for any t ∈ (0, 1), we have 2 log t > − 1
t2 . Hence,

2

∫ 1

0

log tdµ|T−λ|(t) > −
∫ 1

0

1

t2
dµ|T−λ|(t)

> −
∫ ∞

0

1

t2
dµ|T−λ|(t)

= −ϕ(|T − λ|−2) > −∞.

By [30, Proposition 2.16], the operator T − λ has an inverse (T − λ)−1 that is possibly
unbounded operator affiliated with M and the Brown measure µ(T−λ)−1 of (T − λ)−1
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can be defined. Moreover, µ(T−λ)−1 is the push-forward measure of µT via the map z 7→
(z − λ)−1. Hence, by [30, Theorem 2.19], we obtain
(4.4)∫

C

1

|z − λ|2
dµT (z) =

∫
C
|z|2dµ(T−λ)−1(z) ≤ ||(T − λ)−1||22 = ϕ(|T − λ|−2).

If ϕ(|T − λ|−2) < ∞ in some neighborhood of λ0. It then follows by Lemma 4.5 that
µT (U) = 0 thanks to (4.4). Hence, λ0 /∈ supp(µT ). □

Theorem 4.7. For any x ∗-free from ct, the Brown measure µx+ct of x + ct has no atom
and is supported in the closure Ξt.

Proof. Given λ ∈ (Ξt)
c, we have

log∆(x− λ) = log∆(x+ ct − λ),

which yields that ∫ ∞

0

log |t|dµ|x−λ|(t) =

∫ ∞

0

log |t|dµ|x+ct−λ|(t).

In addition, we have ϕ(|x− λ|−2) ≤ 1/t, and as in the proof of Theorem 4.6, we have∫ 1

0

log t dµ|x−λ|(t) > −∞.

Hence, ∫ 1

0

log t dµ|x+ct−λ|(t) > −∞.

It follows by [30, Proposition 2.16] that µx+ct−λ({0}) = 0. Hence µx+ct({λ}) = 0 for
any λ ∈ C\Ξt, since µx+ct−λ is the translation of µx+ct by −λ. Recall that µx+ct is
absolutely continuous in Ξt. It follows that µx+ct has no atom in C.

For any λ ∈ (Ξt)
c, there is some neighborhood U of λ such that ϕ(|x−z|−2) ≤ 1/t for

z ∈ U . By Theorem 4.6, µx(U) = 0. Hence, µx((Ξt)c) = 0. By Lemma 4.4, the Brown
measure of x+ct coincides with the Brown measure of xwithin the open set (Ξt)c. Hence,
µx+ct((Ξt)

c) = 0 and thus the Brown measure is supported in the closure Ξt, thanks to
Theorem 4.2. □

5. BROWN MEASURE OF ADDITION WITH AN ELLIPTIC OPERATOR

In this section, we show the Brown measure of µx+gt,γ is the push-forward measure of
µx+ct under the map Φt,γ defined in (3.37), which is

Φt,γ(λ) = λ+ γ · p(0)λ (w(0;λ, t)), λ ∈ C.

Recall that for λ /∈ Ξt we havew(0;λ, t) = 0 and p(0)λ (0) = limε→0 p
(0)
λ (ε). The existence

of this limit is due to the fact that ϕ(|λ− x|−2) ≤ 1/t for λ /∈ Ξt.
We define the function Φ

(ε)
t,γ on C by

Φ
(ε)
t,γ(λ) = λ+ γ · ∂S(x+ ct, λ, ε)

∂λ

= λ+ γ · ϕ
(
(λ− x− ct)

∗(((λ− x− ct)(λ− x− ct)
∗ + ε2)−1)

)
By the subordination relation (3.22), we can also write it as

(5.1) Φ
(ε)
t,γ(λ) = λ+ γ · p(0)λ (w(ε;λ, t)), λ ∈ C
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where

p
(0)
λ (w(ε;λ, t)) = ϕ

[
(λ− x)∗

(
(λ− x)(λ− x)∗ + w(ε;λ, t)2

)−1
]
.

By Notation 3.10, these maps can also be expressed as

Φ
(ε)
t,γ(λ) = λ+ γ · ∂S

∂λ
(x, λ,w(ε;λ, t)), λ ∈ C.

For λ ∈ Ξt, since w(0;λ, t) > 0, we have

Φt,γ(λ) = λ+ γ · ∂S
∂λ

(x, λ,w(0;λ, t)), λ ∈ Ξt.

Lemma 5.1. The function Φ
(ε)
t,γ converges to Φt,γ uniformly on C as ε tends to zero.

Proof. This follows from Lemma 3.15 which says that p(0)λ (w(ε;λ, t)) converges uni-
formly to p(0)λ (w(0;λ, t)) as ε tends to zero. □

Our strategy is to show first that the regularized Brown measure µx+gt,γ ,ε is the push-
forward measure of the regularized Brown measure of µx+ct,ε under that map Φ

(ε)
t,γ . We

then show that Φ(ε)
t,γ converges to Φt,γ uniformly on C as ε tends to zero.

5.1. Regularized Brown measure and the regularized push-forward map.

Proposition 5.2. The map Φ
(ε)
t,γ is a C∞-self-diffeomorphism of C.

Proof. It is clear that Φ(ε)
t,γ is a real analytic map of C. Assume that z = Φ

(ε)
t,γ(λ1) =

Φ
(ε)
t,γ(λ2) for λ1, λ2 ∈ Ξt. Then, by the subordination relation in Theorem 3.7, we have,

for i = 1, 2,

pg,(t,γ)z (ε) = p
c,(t)
λi

(ε) = p
(0)
λi

(w(ε;λi, t)),

where z = Φ
(ε)
t,γ(λi)(i = 1, 2). Rewrite the map Φ

(ε)
t,γ as

Φ
(ε)
t,γ(λ) = λ+ γ · p(0)λ (w(ε;λ, t)) = λ+ γ · pg,(t,γ)z (ε).

Then the condition z = Φ
(ε)
t,γ(λ1) = Φ

(ε)
t,γ(λ2) yields that λ1 = λ2. Hence, Φ(ε)

t,γ is one-to-
one in C.

It follows from Corollary 3.9 that the map Φ
(ε)
t,γ is also surjective. Its inverse map (see

Theorem 3.7) is (
Φ

(ε)
t,γ

)−1
(z) = z − γ · pg,(t,γ)z (ε),

which is also a C∞ map of C. □

Remark 5.3. Proposition 5.2 also follows directly from Corollary 3.9.

Theorem 5.4. The regularized Brown measure µx+gt,γ ,ε is the push-forward measure of
the regularized Brown measure of µx+ct,ε under the map Φ

(ε)
t,γ . That is,

µx+gt,γ ,ε(·) = µx+ct,ε

((
Φ

(ε)
t,γ

)−1
(·)
)
.
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Proof. Let Γ ⊂ C be a simply connected domain with piecewise smooth boundary. Since
the regularized map Φ

(ε)
t,γ is a self-diffeomorphism of C, it suffices to show that

(5.2) µx+ct,ε(Γ) = µx+gt,γ ,ε(Φ
(ε)
t,γ(Γ))).

The domain Φ
(ε)
t,γ(Γ)) is also a simply connected domain with piecewise smooth boundary.

For λ ∈ C, set

z = Φ
(ε)
t,γ(λ) = λ+ γ · p(0)λ (w(ε;λ, t)).

By Theorem 3.7 and Notation 3.10, we have

p
(0)
λ (w(ε;λ, t)) = p

c,(t)
λ (ε) =

∂S(x+ ct, λ, ε)

∂λ
= pg,(t,γ)z (ε) =

∂S(x+ gt,γ , z, ε)

∂z
.

Write λ = λ1 + iλ2 ∈ C and z = z1 + iz2 ∈ C, and we denote the vector fields

P c(λ1, λ2) = ℜ(pc,(t)λ (ε)), Qc(λ1, λ2) = −ℑ(pc,(t)λ (ε));

and

P g(z1, z2) = ℜ(pg,(t,γ)z (ε)), Qg(z1, z2) = −ℑ(pg,(t,γ)z (ε)).

We then have

p
c,(t)
λ (ε) = P c(λ1, λ2)− iQc(λ1, λ2),

and

P c(λ1, λ2) = P g(z1, z2), Qc(λ1, λ2) = Qg(z1, z2).

Let γ = γ1 + iγ2, then we have

(5.3)
z1 = λ1 + γ1P

c(λ1, λ2) + γ2Q
c(λ1, λ2);

z2 = λ2 + γ2P
c(λ1, λ2)− γ1Q

c(λ1, λ2).

Denote the differential form α in C as

(5.4) α = −Qgdz1 + P gdz2.

Since Φ(ε)
t,γ is one-to-one, we can change variables from z to λ, which really means that we

pull back the 1-form α by the map Φ
(ε)
t,γ . Letting β be the pulled-back form, and also using

formulas (5.3) for z1, z2, we get

β = −Qcd(λ1 + γ1P
c + γ2Q

c)

+ P cd(λ2 + γ2P
c − γ1Q

c).

We can write this as

(5.5)
β = −Qcdλ1 + P cdλ2 − γ1(P

cdQc +QcdP c) + γ2(P
cdP c −QcdQc)

= −Qcdλ1 + P cdλ2 + d

[
− γ1P

cQc +
1

2
γ2((P

c)2 − (Qc)2)

]
.
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Hence, by Green’s formula and the definition of 1-forms α and β, we have

µx+gt,γ ,ε(Φ
(ε)
t,γ(Γ))

=
1

4π

∫
∂Φ

(ε)
t,γ(Γ)

−∂S(x+ gt,γ , z, ε)

∂z2
dz1 +

∂S(x+ gt,γ , z, ε)

∂z1
dz2

=
1

2π

∫
∂Φ

(ε)
t,γ(Γ)

α =
1

2π

∫
∂Γ

β

=
1

2π

∫
∂Γ

−Qc(λ1, λ2)dλ1 + P c(λ1, λ2)dλ2

=
1

4π

∫
∂Γ

−∂S(x+ ct, λ, ε)

∂λ2
dλ1 +

∂S(x+ ct, λ, ε)

∂λ1
dλ2

= µx+ct,ε(Γ),

where we used (5.5) to deduce the fourth identity. □

5.2. Addition with an elliptic operator. In this section, we show the Brown measure of
µx+gt,γ is the push-forward measure of µx+ct under the map Φt,γ . Hence, the following
diagram commutes.

µx+ct,ε µx+gt,γ ,ε

µx+ct µx+gt,γ

ε→ 0
Φ

(ε)
t,γ

Φt,γ

ε→ 0

Theorem 5.5. The Brown measure of µx+gt,γ is the push-forward measure of the Brown
measure µx+ct under the map Φt,γ .

Proof. It is known in Theorem 5.4 that∫
C
F (u)dµx+gt,γ ,ε(u) =

∫
C
F ◦ Φ(ε)

t,γ(u)dµx+ct,ε(u)

for any F ∈ C∞
c (C). The regularized Brown measure converges to the Brwon measure

weakly as ε tends to zero. In addition, Φ(ε)
t,γ converges to Φt,γ uniformly by Lemma 3.6. It

follows that, for any F ∈ C∞
c (C),∫

C
F (u)dµx+gt,γ (u) =

∫
C
F ◦ Φt,γ(u)dµx+ct(u).

Hence, µx+gt,γ is the push-forward measure of µx+ct under the map Φt,γ . □

5.3. Some further properties of the push-forward map. In this section, we study the
special case when the map Φt,γ is nonsingular.

Lemma 5.6. Given t > 0, γ ∈ C such that |γ| ≤ t, and λ ∈ Ξt, assume that the Jacobian
of Φt,γ is invertible at λ, then the function z 7→ S(x+ gt,γ , z, 0) is a real analytic function
of z in a neighborhood of Φt,γ(λ). Moreover, we have

(5.6) pg,(t,γ)z (0) = p
c,(t)
λ (0), p

g,(t,γ)
z (0) = p

c,(t)

λ
(0),

where z = Φt,γ(λ).
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In particular, if the map λ 7→ Φt,γ(λ) is non-singular at all λ ∈ Ξt, the functions
z 7→ S(x+gt,γ , z, 0) is a real analytic function of z for all z ∈ Φt,γ(Ξt), and the identities
(5.6) hold for any λ ∈ Ξt.

Proof. By Theorem 3.17, under the assumption that the Jacobian of Φt,γ at λ is invertible,
we know that the map (z, ε) 7→ ∆

(
|x + gt,γ − z|2 + ε2

)
has a real analytic extension in

a neighborhood of (Φt,γ(λ), 0). It follows that, we may take the limit as ε goes to zero in
the following identity from Corollary 3.11

p
g,(t,γ)
z(ε) (ε) = p

c,(t)
λ (ε),

where z(ε) = Φ
(ε)
t,γ(λ). This yields, at z = Φt,γ(λ) we have

pg,(t,γ)z (0)− p
c,(t)
λ (0) = 0.

Similarly, we have,

p
g,(t,γ)
z (0)− p

c,(t)

λ
(0) = 0

as well. The the above argument works for any λ ∈ Ξt if the map Φt,γ is non-singular at
any λ ∈ Ξt. This concludes the statement. □

Remark 5.7. It is interesting to compare Lemma 5.6 with Lemma 4.1. Choose z = λ +

γp
(0)
λ (w(ε;λ, t)). If the map Φt,γ associated with x is singular, it turns out limε→0+ p

g,(t,γ)
z (ε)

has a limit that depends on λ. Hence, the condition in Lemma 5.6 is necessary. See Exam-
ple 6.15.

Proposition 5.8. If the map λ 7→ Φt,γ(λ) is non-singular at all λ ∈ Ξt, then the map
λ 7→ Φt,γ(λ) is one-to-one in Ξt.

Proof. Assume that z = Φt,γ(λ1) = Φt,γ(λ2) for λ1, λ2 ∈ Ξt. Then, by Lemma 5.6, we
have, for i = 1, 2,

pg,(t,γ)z (0) = p
c,(t)
λi

(0) = p
(0)
λi

(w(0;λi, t)).

Rewrite the map Φt,γ as

Φt,γ(λ) = λ+ p
(0)
λ (w(0;λ, t)) = λ+ pg,(t,γ)z (0),

where z = Φt,γ(λ). Then the condition z = Φt,γ(λ1) = Φt,γ(λ2) yields that λ1 = λ2.
Hence, Φt,γ is one-to-one in Ξt. □

5.4. An intrinsic formulation of the push-forward map. We establish another formula-
tion of the push-forward map Φt,γ without invovling the subordination function w(ε;λ, t)
and the boundary value w(0;λ, t). This is possible due to Theorem 4.3 obtained in our
joint work with Belinschi and Yin [3]. We put some technical results in Appendix A. The
Cauchy transform of a probability measure µ on C is a function defined on C as following

Gµ(λ) = lim
ε↓0

∫
|λ−z|≥ε

1

λ− z
dµ(z).

The integral above is finite at every λ if there exists s > 1 such that µ ({z : |z − λ| ≤ r}) ≤
rs for all r > 0.

The following is the main result in this Section.
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Theorem 5.9. The map Φt,γ definied in (3.37) can be rewritten as

Φt,γ(λ) = λ+ γ ·Gµx+ct
(λ), λ ∈ C.

For λ not on the boundary set ∂(Ξt) of Ξt, the map Φt,γ is rewritten as

Φt,γ(λ) = λ+ γ · ∂S
∂λ

(x+ ct, λ, 0), λ /∈ ∂(Ξt).

Similar to the approach in Section 5.1, we first establish an analogous result for the
regularized map Φ

(ε)
t,γ .

Lemma 5.10. The map Φ
(ε)
t,γ can be rewritten as

Φ
(ε)
t,γ(λ) = λ+ γ · ∂S

∂λ
(x+ ct, λ, ε) = λ+ γ ·Gµx+ct,ε

(λ)

for any λ ∈ C.

Proof. By the definition of Φ(ε)
t,γ given by (5.1) and the subordination relation, we have

p
(0)
λ (w(ε;λ, t)) = ϕ

[
(λ− x)∗

(
(λ− x)(λ− x)∗ + w(ε;λ, t)2

)−1
]

= ϕ

[
(λ− x− ct)

∗((λ− x− ct)(λ− x− ct)
∗ + ε2

)−1
]

=
∂S

∂λ
(x+ ct, λ, ε).

Note that the regularized Brown measure µx+ct,ε is absolutely continuous and its density
is bounded on the complex plane thanks to Theorem 4.3 (or [30, Lemma 2.8]). Then the
second identity follows from Theorem A.6 in Appendix A. □

Lemma 5.11. The Cauchy transform of µx+ct is continuous on C. Moreover,

(5.7) lim
ε→0

Gµx+ct,ε
(λ) = Gµx+ct

(λ)

for any λ ∈ C.

Proof. The first claim follows from Lemma A.5 as µx+ct satisfies the condition thanks to
Theorem 4.3.

Note that the function z 7→ 1
λ−z is locally integrable. Denote by Bρ(λ) the disk

Bρ(λ) = {w : |λ− w| < ρ}. Given ρ < min
{

1
4 ,

1
4|λ| ,

1
4∥x+ct∥

}
, we choose a continuous

function χ defined on the complex plane with compact support such that: (1) χ(z) ∈ [0, 1]
for all z ∈ C; (2) supp(χ) ⊂ B2/ρ(λ); (3) χ(z) = 1 for z ∈ B1/ρ(λ)\B2ρ(λ); (4)
χ(z) = 0 for z ∈ Bρ(λ). Then

lim
ε→0

∫
C

χ(z)

λ− z
dµx+ct,ε(z) =

∫
C

χ(z)

λ− z
dµx+ct(z).

By Theorem 4.3, for µ being either µx+ct,ε or µx+ct , we have∣∣∣∣∣
∫
B2ρ(λ)

1− χ(z)

λ− z
dµ(z)

∣∣∣∣∣ ≤ 1

πt

∫
B2ρ(λ)

∣∣∣∣ 1

λ− z

∣∣∣∣ dm2(z)

≤ 1

πt

∫ 2π

0

∫ 2ρ

0

drdθ =
4ρ

t
,

where m2 denotes Lebesgue measure on the complex plane.
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For z with |z| ≥ 1
2ρ , then z /∈ spec(x + ct), hence z is not in the support of µx+ct

or equivalently z /∈ Ξt. Moreover, the density of µx+ct,ε (see [30, Lemma 2.8]) can be
estimated as

1

4π
ε2ϕ
(
(|z − x− ct|2 + ε2)−1(|(z − x− ct)

∗|2 + ε)−1
)

≤ 1

4π
ϕ
(
(|z − x− ct|2 + ε2)−1

)
≤ 1

4π
· (∥z − x− ct∥)−2

≤ 1

4π

1

(|z| − ∥x+ ct∥)2
≤ 1

π|z|2

where we used the assumption ∥x+ct∥ < 1
4ρ ≤ |z|

2 . By the choice of ρ, if z ∈ C\B1/ρ(λ),
then |z| ≥ 1

2ρ . Hence, there exists some C > 0 such that∣∣∣∣∣
∫
C\B1/ρ(λ)

1− χ(z)

λ− z
dµx+ct,ε(z)

∣∣∣∣∣ ≤ Cρ,

for any λ fixed.
Putting the above results together, we obtain

lim
ε→0

∫
C

1

λ− z
dµx+ct,ε(z) =

∫
C

1

λ− z
dµx+ct(z)

for any λ ∈ C. □

We then study the derivative of S(x+ ct, λ, 0) outside Ξt.

Proposition 5.12. For any λ /∈ Ξt, we have
∂S

∂λ
(x+ ct, λ, 0) = Gµx+ct

(λ) = Gµx
(λ).

Proof. By Theorem 3.13, for λ /∈ Ξt we have

log∆(x+ ct − λ) = log∆(x− λ)

=

∫
C
log |λ− z|dµx(z) =

∫
C
log |λ− z|dµx+ct(z).

Taking the partial derivatives imply the desired identities. □

We next study the derivative of S(x+ ct, λ, 0) in Ξt.

Proposition 5.13. Given t > 0 and λ ∈ Ξt, we have
∂S

∂λ
(x+ ct, λ, 0) = p

(0)
λ (w(0;λ, t)) = Gµx+ct

(λ).

Proof. By Theorem 3.13 and Notation 3.10, for λ ∈ Ξt, we have

S(x+ ct, λ, 0) = log∆(x+ ct − λ)2

= log∆(|x− λ|2 + w2)− w2

t
,

where w = w(0;λ, t) is defined in Definition 3.4 by∫ ∞

0

1

w2 + u2
dµ|x−λ|(u) =

1

t
.
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We have
∂ log∆(|x− λ|2 + w2)

∂λ
= ϕ((λ− x)∗(|λ− x|2 + w2)−1)

+ 2w · ∂w
∂λ

· ϕ((|λ− x|2 + w2)−1)

= ϕ((λ− x)∗(|λ− x|2 + w2)−1) +
2w

t
· ∂w
∂λ

.

Cancelling the second term ∂
∂λ

(
w2

t

)
yields

∂S

∂λ
(x+ ct, λ, 0) = ϕ((λ− x)∗(|λ− x|2 + w2)−1) = p

(0)
λ (w).

This established the first identity. The second identity follows from Theorem A.6 in Ap-
pendix A and the fact that µx+ct is absolutely continuous with respect to Lebesgue measure
and its density function h is bounded by the constant 1/πt. □

Proof of Theorem 5.9. By Lemma 5.10 and Lemma 5.11, we have

Φt,γ(λ) = lim
ε→0

Φ
(ε)
t,γ(λ) = λ+ γ ·Gµx+ct

(λ),

for any λ ∈ C. The second formulation of Φt,γ is a combination of statements in Proposi-
tion 5.12 and Proposition 5.13. □

6. ADDITION WITH A SELF-ADJOINT OPERATOR

The special case when x is self-adjoint has drawn much attention in previous work
[33, 38, 39]. In this section, we apply our main result to generalize main results in those
work. The generalization can be viewed as the addition analogue of recent work [34]
concerning free multiplicative Brownian motions.

6.1. Subordination functions. Let x be self-adjoint and µ = µx be its spectral measure.
We first study the subordination function as in Definition 3.4 and Proposition 3.2. The set
Ξt is expressed as

(6.1) Ξt =

{
λ = a+ ib :

∫
R

1

(u− a)2 + b2
dµ(u) >

1

t

}
.

For λ ∈ Ξt (which is equivalent to t > λ1(µ)
2), the condition subordination function

w(0;λ, t) is determined by the condition (3.14), that can be rewritten as

(6.2)
∫
R

1

(u− a)2 + b2 + w(0;λ, t)2
dµ(u) =

1

t
.

Following Biane’s work [12, Section 3] on the spectral measure of x+ gt, we set

Ut =

{
a ∈ R :

∫
R

1

(u− a)2
dµ(u) >

1

t

}
,

and define vt as follows

(6.3) vt(a) = inf

{
y > 0 :

∫
R

1

(a− x)2 + y2
dµ(x) ≤ 1

t

}
, a ∈ R.

We then set
Ωt = {a+ ib : |b| > vt(a)}.
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(A) The domain Ξt for t = 1 and x distributed as 0.4δ−2 + 0.1δ−0.8 +
0.5δ1. The graph of vt is the solid curve above the x-axis.
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(B) The 2000× 2000 random matrix simulation for the Brown measure of
x+ c.

FIGURE 1. The domain Ξt, the graph of vt, and Brown measure simu-
lation.

It follows that vt(a)2 = b2 + w(0;λ, t)2 with λ = a + ib if λ ∈ Ξt; and vt(a) = 0 if
{a + ib : b ∈ R} ∩ Ξt = ∅. By regularity of w(0;λ, t) in Lemma 3.5, we see that vt is a
continuous function (see [12] for the original definition and [39, Section 2.3] for a review).

Proposition 6.1. The subordination function w(0;λ, t) as in Definition 3.4 can be ex-
pressed as

w(0;λ, t) =

{√
vt(a)2 − b2, for λ = a+ ib ∈ Xt;

0, for λ = a+ ib /∈ Ξt.

In particular, a 7→ vt(a) is a continuous function defined on R, and is real analytic and
vt(a) > 0 if {a+ ib : b ∈ R} ∩ Ξt ̸= ∅.

Moreover, we have Ξt ∩ R = Ut, and

Ξt = {a+ ib ∈ C : |b| < vt(a)}

and
Ωt = {a+ ib : |b| ≥ vt(a)} =

(
Ξt
)c
.

Definition 6.2. For t > 0 and vt as defined in (6.3), we set

(6.4) ψt(a) = a+ t

∫
R

a− u

(a− u)2 + vt(a)2
dµ(u), a ∈ R,

and

(6.5) ht(a) = t

∫
R

a− u

(a− u)2 + vt(a)2
dµ(u), a ∈ R.
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The following result play a key role in the following discussion. It is taken from [12,
Lemma 5] and [39, Theorem 3.14].

Proposition 6.3. The function a 7→ ψt(a) is a homeomorphism of R onto R. Moreover, if
vt(a) > 0 or equivalently {a+ ib : b ∈ R} ∩ Ξt ̸= ∅, then

0 <
dψt(a)

da
< 2.

Consequently, if vt(a) > 0, then

(6.6) −1 <
dht(a)

da
< 1.

Finally, we need the following useful result taken from [12].

Lemma 6.4. [12, Lemma 3] and [12, Proposition 3] The Cauchy transform of Gµ has a
continuous extension to Ωt which is Lipschitz with Lipschitz constant ≤ 1/t, and one has

|Gµ(z)|2 ≤
∫
R

1

|z − u|2
dµ(u) ≤ 1

t

for z ∈ Ωt. Moreover, the support of µ is contained in the closure of Ut. Consequently,
supp(µ) ⊂ Ξt.

6.2. The push-forward map. Let x be a self-adjoint operator and µ = µx be its spectral
measure. We study the map Φt,γ as defined in Section 4. We note that when γ = t, the
operator gt,γ is a semicircular operator gt with mean zero and variance t and the Brown
measure of x+ gt is just the spectral measure of x+ gt. Hence, we will assume that γ ̸= t
throughout this section. Let τ = t− γ and τ = τ1 + iτ2. Since |γ| ≤ t, we see that τ1 > 0
if γ ̸= t.

Using notations in Subsection 6.1, we have

Φt,γ(λ) = λ+ γ

∫
R

λ− u

(u− a)2 + b2 + w(0;λ, t)2
dµ(u), λ ∈ C,

and, if λ ∈ Ξt then Φt,γ(λ) can be rewritten as

Φt,γ(λ) = λ+ γ

∫
R

λ− u

(u− a)2 + vt(a)2
dµ(u), λ ∈ Ξt.

Proposition 6.5. For any |γ| ≤ t and γ ̸= t, we have

Φt,γ(λ) =

{
ψt(a)− τ

t ht(a) + i τbt , for λ ∈ Ξt;

λ+ γGµ(λ) for λ /∈ Ξt.

Proof. We rewrite Φt,γ(λ) as

Φt,γ(λ) = Φt,t(λ)− τ

∫
R

λ− u

(u− a)2 + b2 + w(0;λ, t)2
dµ(u);

and if λ ∈ Ξt, we can further rewrite it as

Φt,γ(λ) = Φt,t(λ)− τ

∫
R

λ− u

(u− a)2 + vt(a)2
dµ(u)

= Φt,t(λ)−
τ

t
ht(a) + i

τb

t
, λ ∈ Ξt,
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where we used (6.2) and the definition of ht in (6.5). If λ ∈ Ξt, we have

Φt,t(λ) = λ+ t

∫
R

λ− u

(u− a)2 + b2 + w(0;λ, t)2
dµ(u)

= ψt(a) + i

(
b− t

∫
R

b

(u− a)2 + b2 + w(0;λ, t)2
dµ(u)

)
= ψt(a)

where we used (6.2) and the definition of ψt in (6.4). This proves the case when λ ∈ Ξt.
Recall that

(
Ξt
)c

= Ωt and supp(µ) ⊂ Ut ⊂ Ξt (recall Lemma 6.4). When λ /∈ Ξt,
then w(0;λ, t) = 0. Hence, when λ = a+ ib /∈ Ξt,

Φt,γ(λ) = λ+ γ

∫
R

λ− u

(u− a)2 + b2
dµ(u)

= λ+ γ

∫
R

1

λ− u
dµ(u) = λ+ γGµ(λ).

This finishes the proof. □

The following result says that Φt,γ is injective on
(
Ξt
)c

. It can be viewed as a general-
ization of [12, Lemma 4] where the latter studies the inverse map of subordination function
for the free additive convolution of x+ gt (see also [39, Section 2.4] and [34, Proposition
5.5]). We include a proof for convenience.

Proposition 6.6. The map Φt,γ(λ) is an injective map when restricted to
(
Ξt
)c

and is
conformal when λ is in the interior of

(
Ξt
)c

.

Proof. If λ ∈
(
Ξt
)c

, by Proposition 6.5, we have Φt,γ(λ) = λ + γGµ(λ). Hence, for
α1, α2 ∈

(
Ξt
)c

, we have

Φt,γ(α1)− Φt,γ(α2) = α1 − α2 + γ(Gµ(α1)−Gµ(α2))

= (α1 − α2)

(
1 + γ

Gµ(α1)−Gµ(α2)

α1 − α2

)
.

Then, by Cauchy-Schwarz inequality,∣∣∣∣Gµ(α1)−Gµ(α2)

α1 − α2

∣∣∣∣ = ∣∣∣∣∫
R

1

(α1 − u)(α2 − u)
dµ(u)

∣∣∣∣
≤
(∫

R

dµ(u)

|α1 − u|2

∫
R

dµ(u)

|α2 − u|2

)1/2

≤ 1

t

where we used Lemma 6.4 in the final step. It can be shown that we can not have equality
in the Cauchy-Schwarz inequality used above. Indeed, if equality holds, then∣∣∣∣∫

R

1

(α1 − u)(α2 − u)
dµ(u)

∣∣∣∣ = 1

t

for some α1, α2 ∈
(
Ξt
)c

= Ωt. One can show that µ must be a Dirac measure (see [12,
Lemma 4] for details). Therefore,

Φt,γ(α1)− Φt,γ(α2) ̸= 0

for α1 ̸= α2 and α1, α2 ∈
(
Ξt
)c

. □

Lemma 6.7. For |γ| ≤ t and γ ̸= t, let τ = t − γ and τ = τ1 + iτ2, then we have
0 < |τ |2

tτ1
≤ 2.
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Proof. The assumption implies directly that τ1 > 0. Write γ = γ1 + iγ2, then τ1 = t− γ1
and τ2 = γ2. Hence

|τ |2 − 2tτ1 = (t− γ1)
2 + γ22 − 2t(t− γ1) = |γ|2 − t2 ≤ 0.

The result then follows. □

Theorem 6.8. For any |γ| ≤ t and γ ̸= t, the map Φt,γ is a smooth, injective map on Ξt.
Moreover, the determinant of the Jacobian of Φt,γ is strictly positive at all λ ∈ Ξt and can
be expressed

(6.7) det(Jacobian(Φt,γ))(λ) =
τ1
t

[
1 +

(
1− |τ |2

tτ1

)
d ht(a)

da

]
, λ = a+ ib,

where τ = τ1 + iτ2 and ht is defined in 6.5.

Proof. By Proposition 6.5, for λ ∈ Ξt, we have

Φt,γ(λ) = ψt(a)−
τ

t
ht(a) + i

τb

t
.

Recall ψt(a) = a+ ht(a). Hence, for Φt,γ(λ) = z1 + iz2, we deduce

z1 = z1(a, b) = a+
(
1− τ1

t

)
ht(a)−

τ2
t
b, z2 = z2(a, b) = −τ2

t
ht(a) +

τ1
t
b.(6.8)

We then have

Jacobian(Φt,γ(λ)) =
[
1 +

(
1− τ1

t

)
h′t(a) − τ2

t
− τ2

t h
′
t(a)

τ1
t

]
.

It follows that

det(Jacobian(Φt,γ))(λ) =
τ1
t

[
1 +

(
1− |τ |2

tτ1

)
d ht(a)

da

]
.

By Proposition 6.3, −1 < h′t(a) < 1, hence we have

−1 <

(
1− |τ |2

tτ1

)
d ht(a)

da
< 1

thanks to Lemma 6.7. This implies that det(Jacobian(Φt,γ))(λ) is independent of b and
det(Jacobian(Φt,γ))(λ) > 0 for all λ ∈ Ξt.

The non-singular property of Φt,γ implies that Φt,γ is one-to-one in Ξt by Proposition
5.8. In this case, we can actually prove it directly. If a1+ ib1, a2+ ib2 ∈ Ξt and Φt,γ(a1+
ia2) = Φt,γ(b1 + ib2). Then we have, by using (6.8),

a1 − a2 +
(
1− τ1

t

)
(ht(a1)− ht(a2)) = −τ2

t
(b2 − b1)

−τ2
t
(ht(a1)− ht(a2)) =

τ1
t
(b2 − b1),

which yields (by canceling b2 − b1),

(a1 − a2) +

(
1− |τ |2

tτ1

)
(ht(a1)− ht(a2)).

By the first part of the proof, we see that the function a 7→ τ1
t

[
1 +

(
1− |τ |2

tτ1

)
d ht(a)
da

]
is

strictly positive. Consequently, a1 = a2. We then deduce that b1 = b2. The injectivity
property is established. □

Corollary 6.9. For any |γ| ≤ t and γ ̸= t, the map Φt,γ is a homeomorphism of C to C.



44 PING ZHONG

Proof. We show that Φt,γ(Ξt) ∩ Φt,γ ((Ξt)
c) = ∅. Recall that(

Ξt
)c

= {a+ ib : |b| ≥ vt(a)} = Ωt.

For λ0 = a + ib so that b ≥ vt(a), if Φt,γ(λ0) ∈ Φt,γ(Ξt), consider the vertical half-line
{λ = a + id : d ≥ b} starting at λ0. Since limd→∞ Φt,γ(a + id) = ∞, we then see that
there is another point λ1 = a + ib1 where b1 > b so that Φt,γ(λ1) ∈ ∂(Φt,γ(Ξt)), the
boundary of Φt,γ(Ξt). On the other hand Φt,γ(a+ivt(b)) ∈ ∂(Φt,γ(Ξt)), and both λ1 and
a+ ivt(b) are in (Ξt)

c, this contradicts to Proposition 6.6. Therefore,

Φt,γ(Ξt) ∩ Φt,γ ((Ξt)
c) = ∅.

Since Φt,γ is a continuous function on C and it maps a neighborhood of infinity to some
neighborhood of infinity, one can then deduce that Φt,γ(C) = C by some standard argu-
ments in topology. We conclude that Φt,γ is a homeomorphism of C to C due to Proposi-
tion 6.6 and Theorem 6.8. □

6.3. Brown measure of addition with a self-adjoint operator. We apply results in Sec-
tion 4 to give a new proof for the Brown measure of x + ct and recover a result in our
previous work with Ho [39]. We then study the Brown measure of x + gt,γ that extends
results by Hall and Ho [33, 38] to all twisted elliptic operators. The result about x + gt,γ
in this section is the additive counterparts of the results of Hall-Ho [34].

Theorem 6.10. [39, Theoorem 3.10] For λ = a + ib ∈ Ξt, then the Brown measure of
x+ ct is absolutely continuous at λ and the density at λ is given by

dµx+ct(a+ ib) =
1

πt

(
1− t

2

d

da

∫
R

u

(a− u)2 + vt(a)2
dµ(u)

)
da db,

which can also be expressed as

(6.9) dµx+ct(a+ ib) =
1

2πt

dψt(a)

da
da db.

In particular, the density is constant along the vertical directions.

Proof. One can deduce the density formula directly from the general formula in Theorem
4.2. We note that

∂

∂λ

(
ϕ
(
x∗((x− λ)(x− λ)∗ + w(0;λ, t)2)−1

))
=

∂

∂λ

(∫
R

u

(a− u)2 + b2 + w(0 : λ, t)2
dµ(u)

)
=

1

2

∂

∂a

(∫
R

u

(a− u)2 + vt(a)2
µ(u)

)
where we used the fact that the integration is independent of b. The first formula then
follows from (4.1). Using the formula for ψt in (6.4), we have

dψt(a)

da
=

d

da

(
a+ t

∫
R

a− u

(a− u)2 + vt(a)2
dµ(u)

)
= 2− t

d

da

∫
R

u

(a− u)2 + vt(a)2
dµ(u)

where we used (6.2). This establish the second formula. □
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Proposition 6.11. [39, Lemma 3.11 and Proposition 3.16] and [12, Corollary 3 and
Proposition 3] The Brown measure µx+ct concentrates in Ξt. In other words, µx+ct

(
Ξt
)
=

1. The spectral measure of x+ gt is the push-forward of the Brown measure µx+ct under
the map λ 7→ Φt,t, where

Φt,t(a+ ib) = ψt(a), for a ∈ Ut, |b| ≤ vt(a).

Consequently, the spectral measure of x + gt is absolutely continuous and its density is
given by

pt(ψt(a)) =
vt(a)

πt
.

Moreover, the support of µ is contained in the closure of Ut.

Proof. Recall that Ξt = {a + ib ∈ C : a ∈ Ut, |b| < vt(a)}, and vt > 0 if a ∈ Ut,
and vt = 0 if a ∈ R\Ut. Since τ = 0 in this case, it follows by Proposition 6.5 that the
push-forward map Φt,t from µx+ct to µx+gt can be calculated as

Φt,t(λ) =

{
ψt(a), for λ ∈ Ξt,

λ+ tGµ(λ), for λ /∈ Ξt,

where λ = a + ib. Moreover, for a ∈ Ut, the integration of the density of µx+ct over the
vertical line segment {a+ ib : |b| < vt(a)} is vt(a)

πt
dψt(a)
da by the density formula (6.9). By

the push-forward property from µx+ct to µx+gt , it then follows that

pt(ψt(a)) =
vt(a)

πt
.

The measure µx+gt has no atom at ending points of components of Ut because µx+ct has
no atom. Hence, µx+gt is absolutely continuous. It follows that µx+ct(Ξt) = µx+gt(Ut) =
1. This finishes the proof. □

Lemma 6.12. Let δ(a) = δt,γ(a) = a+
(
1− |τ |2

tτ1

)
ht(a), then a 7→ δ(a) is a homeomor-

phism of R onto R. Then,
0 < δ′(a) < 2

for all a ∈ Ut and a ∈
(
Ut
)c

. Moreover, if a ∈ Ut,

δ′(a) =
t

τ1
· det(Jacobian(Φt,γ))(λ).

Proof. Using the characterization of Ξt and Ut in Proposition 6.1, it follows that the result
holds for a ∈ Ut. Indeed, we have

δ′(a) =
t

τ1
· det(Jacobian(Φt,γ))(λ)

for any λ ∈ Ξt such that ℜ(λ) = a. If a ∈
(
Ut
)c

, by Lemma 6.4, then supp(µ) ∩
(
Ut
)c

=
∅. Hence, vt(a) = 0 and

ht(a) = t

∫
R

1

a− u
dµ(u) = tGµ(a).

It follows that |h′t(a)| ≤ 1 thanks to Lemma 6.4. Note that a 7→ ht(a) is strictly convex on
any open interval in

(
Ut
)c

. Hence, h′t(a) can not take local maximum in the open interval.
We then conclude that 0 < h′t(a) < 1 if a ∈

(
Ut
)c

. □
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FIGURE 2. The Brown measure simulation (top) of x + ct for t = 0.5,
and the Brown measure simulation (bottom) of x+ gt,γ for t = 0.5 and
γ = 0.25 + 0.25i, where x is distributed as 0.25δ−1 + 0.5δ0 + 0.25δ1.

Theorem 6.13. Let x be a self-adjoint operator that is free from gt,γ . For any |γ| ≤ t with
γ ̸= t, the map Φt,γ is non-singular at any λ ∈ Ξt. The Brown measure of x+ gt,γ is the
push-forward map of the Brown measure of x+ ct under the map Φt,γ .

Moreover, the Brown measure µx+gt,γ takes the full measure on Φt,γ(Ξt) and the den-
sity is given by

(6.10) dµx+gt,γ (z) =
1

2πτ1

dψt(a)

dδ(a)
dz1dz2, z ∈ Φt,γ(Ξt)

where z = z1 + iz2 = Φt,γ(a+ ib) and

δ(a) = a+

(
1− |τ |2

tτ1

)
ht(a).

Proof. By Theorem 6.8, we deduce that Φt,γ is non-singular at any λ ∈ Ξt. Recall that if
a+ ib ∈ Ξt, then a ∈ Ut. Using the density formula for x+ ct in (6.9) and determinant of
the Jacobian of Φt,γ as in (6.7), it then follows that the density of x+gt,γ can be expressed
as

1

2πt

dψt(a)/da

det(Jacobian(Φt,γ)(λ))
=

1

2πτ1

dψt(a)/da

dδ(a)/da
=

1

2πτ1

dψt(a)

dδ(a)
.

The result is established. □
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Example 6.14. [14, Example 5.3] The Brown measure of gt,γ is the uniform measure in
the rotated ellipse with parametrization

eiα
(√

teiθ +
|γ|√
t
e−iθ

)
,

for θ ∈ [0, 2π], where α is such thatγ = |γ|e2iα.

Proof. Take x = 0 and µ = δ0. The formula for the set Ξt is simplified as

Ξt = {λ = a+ ib : |λ| <
√
t}.

The condition determining w(0;λ, t) is written as

1

|λ|2 + w(0;λ, t)2
=

1

t
, |λ| <

√
t.

Hence w(0;λ, t) =
√
(t− |λ|2)+. Then Φt,γ(λ) = λ + γ λ

|λ|2+w(0;λ,t)2 = λ + γ
t λ when

|λ| <
√
t. Write γ = |λ|eiα. Then for any 0 < r <

√
t, the circle centered at origin with

radius r is mapped to the ellipse with parametrization

reiθ +
r|γ|
t
ei(α−θ).

Moreover, for |λ| <
√
t and λ = a+ ib, we have

ht(a) = t
a

|λ|2 + w(0;λ, t)2
= a.

Hence, the determinant of the Jacobian of the map Φt,γ is the constant

det(Jacobian(Φt,γ))(λ) =
τ1
t

[
1 +

(
1− |τ |2

tτ1

)]
, λ = a+ ib,

where τ1 + iτ2 = τ = t − γ. Recall that the density of the Brown measure of ct is the
uniform measure on the circle {λ : |λ| <

√
t}. Therefore, the Brown measure of gt,γ is the

uniform measure on the ellipse with parametrization
√
teiθ+|γ|ei(α−θ)/

√
t for θ ∈ [0, 2π],

where α is determined by γ = |γ|e2iα. The result follows. □

We now discuss some special cases which allow us to recover main results in [33, 38].

Example 6.15 (The semicircular operator). If γ = t, the operator gt,γ is a semicircular
operator st with mean zero and variance t. Let x be a self-adjoint operator that is freely
independent from st The push-forward map Φt,t is given in Proposition 6.11 (obtained in
[39]). More precisely, the push-forward map sends each vertical line segments in Ξt to a
single point.

In this case, the injectivity of Φt,t fails dramatically, and the statement of Lemma 5.6
does not hold. Indeed, by Theorem 3.7, for any ε > 0, we have

pg,(t,t)z (ε) = p
(0)
λ (w(ε))

where w(ε) = w(ε;λ, t) and z = Φt,γ(λ). By the Notation 3.10, This can be rewritten as

−ϕ
[
(x+ gt − z)∗

(
(x+ gt − z)(x+ gt − z)∗ + ε2

)−1
]

= −ϕ
[
(x− λ)∗

(
(x− λ)(x− λ)∗ + w(ε)2

)−1
]
.
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By Lemma 3.5, for any λ ∈ Ξt (equivalently, t > λ1(µ|x−λ|)), we have

lim
ε→0+

p
(0)
λ (w(ε)) = −ϕ

[
(x− λ)∗

(
(x− λ)(x− λ)∗ + w(0;λ, t)2

)−1
]

= p
(0)
λ (w(0;λ, t)).

Hence, for any λ ∈ Ξt, by choosing z = λ(t) = λ+ γp
(0)
λ (w(ε)), we have

lim
ε→0+

pg,(t,t)z (ε) = −ϕ
[
(x− λ)∗

(
(x− λ)(x− λ)∗ + w(0;λ, t)2

)−1
]

= p
(0)
λ (w(0;λ, t)).

We note that p(0)λ (w(0;λ, t)) can be expressed as

p
(0)
λ (w(0;λ, t)) =

∫
R

λ− u

(a− u)2 + b2 + w(0;λ, t)2
dµ(u)

=

∫
R

a− u

(a− u)2 + vt(a)2
dµ(u)− ib

t
,

where we used (6.2) and the fact that b2 + w(0;λ, t)2 = vt(a)
2 for a+ ib ∈ Ξt.

To summarize, for a ∈ R fixed so that vt(a) > 0, then: (1) the limit pg,(t,t)z (ε) as
ε tends to zero have different limit as long as (z, ε) tends to (ψt(a), 0) along different
paths (λ(t), ε) depending on b; (2) although the limε→0+ λ(t) = Φt,t(a + ib) = ψt(a)

for any −vt(a) ≤ b ≤ vt(a), the limit of the partial derivative limε→0+ p
g,(t,t)
z (ε) de-

tects the value b and remembers where it came from. Namely, by looking at the limit
limε→0+ λ(t) = Φt,t(a + ib) we can not identify b since Φt,t is not one-to-one, but the
limit of the partial derivative limε→0+ p

g,(t,t)
z (ε) does the work. This phenomena is differ-

ent from what Lemma 5.6 told us when Φt,γ is one-to-one.

Example 6.16 (The imaginary multiple of a semicircular operator). If γ = it, the operator
gt,γ has the same distribution as ist. Let x be a self-adjoint operator freely independent
from st. In this case, τ = 2t, and for λ ∈ Ξt, we have

Φt,it(λ) = ψt(a)− 2ht(a) + 2ib

= a− ht(a) + 2ib

= t

∫
R

u

(u− a)2 + vt(a)2
dµ(u) + 2ib

and

δt,it(a) = a− ht(a) = t

∫
R

u

(u− a)2 + vt(a)2
dµ(u).

Example 6.17 (The elliptic operator). If γ = s ∈ R with −t < s < t, the operator gt,γ has
the same distribution as an elliptic operator. In this case, τ = t − s, and for λ ∈ Ξt, we
have

Φt,s(λ) = ψt(a)−
t− s

t
ht(a) + i

t− s

t
b

= a+
s

t
ht(a) + i

t− s

t
b

=

(
a+ s

∫
R

a− u

(a− u)2 + vt(a)2
dµ(u)

)
+ i

(t− s)b

t
,
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and

δt,s(a) = a+ s

∫
R

a− u

(a− u)2 + vt(a)2
dµ(u).

We also note that Φt,s(λ) = z1 + iz2 where

z1 = δt,s(a), z2 =
(t− s)b

t

and ψt(a) can be written as

ψt(a) = z1 +
t− s

t
ht(a) = z1 + (t− s)

∫
R

a− u

(a− u)2 + vt(a)2
dµ(u).

Therefore, the density of the Brown measure at its support Φt,s(Ξt) is given by

dµx+gt,s(z1 + iz2)

=
1

2π(t− s)

(
1 + (t− s)

d

dz1

∫
R

a− u

(a− u)2 + vt(a)2
dµ(u)

)
dz1dz2,

if vt(a) > 0. Here we reminder the reader that the map a 7→ z1 = δt,s(a) is a homeomor-
phism from R to R. This recovers the main result in [33, 38]

Remark 6.18. [The twisted (ν, δ)−coordinate.] Fix a ∈ R, as in the proof of Theorem 6.8
(see (6.8)), the map b 7→ Φt,γ(a + ib) is an affine transform of b. The density formula of
x + ct in Theorem 6.10 is independent of b. Hence, the density formula of x + gt,γ must
depend only on one parameter. It is indeed the case as in Theorem 6.13, where the density
is expressed in terms of parameter a coming from Ξt, the support of x+ ct.

We now describe an analogue of the formulation in the recent work [34] where the
authors study the free multiplicative Brownian motions as follows. For z = z1 + iz2,
consider twisted (ν, δ)−coordinate determined by

a+ ib = iτν + δ,

where ν, δ ∈ R. They can be written as

δ = a+
τ2
τ1
b, ν =

b

τ1
.

Using notations in the proof of Theorem 6.8 and the formula of Φt,γ(λ) as in (6.8), for
λ = λ1 + iλ2 ∈ Ξt, we have

δ(Φt,γ(λ)) = z1 +
τ2
τ1
z2

=
[
a+

(
1− τ1

t

)
ht(a)−

τ2
t
b
]
+
τ2
τ1

(
−τ2
t
ht(a) +

τ1
t
b
)

= a+

(
1− |τ |2

tτ1

)
ht(a) = δt,γ(a),

and

ν(Φt,γ(λ)) =
z2
τ1

=
1

t

[
b− τ2

τ1
ht(a)

]
.

We can then say that the Brown measure µx+gt,γ is constant along the ν-direction.
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7. ADDITION WITH AN R-DIAGONAL OPERATOR

The family ofR-diagonal operators was introduced by Nica-Speicher [45] which covers
a large class of interesting operators in free probability theory. The circular operator and
Haar unitary operator are special examples of R-diagonal operators. They have a num-
ber of remarkable symmetric properties. In a breakthrough paper, Haagerup–Larsen [29]
calculated the Brown measure of any bounded R-diagonal operator and they showed that
the Brown measure of T can be expressed in terms of the S-transform of the operator
T ∗T . This is the first nontrivial example of Brown measure formula after L. Brown intro-
duced the definition in 1983. In [30], Haagerup-Schultz gave a second proof of the Brown
measure formula of R-diagonal operators which also work for unbounded R-diagonal op-
erators. In [55], we used subordination ideas and obtained simplification of technical ar-
guments in Haagerup-Schultz’s work.

The Brown measure of an R-diagonal operator is the limit of the ESD of certain non-
normal random matrix model called single ring theorem named after Feinberg and Zee (see
[28] and the earlier physics paper [24, 25]).

In this section, we apply the results in Section 4 and Section 5 to study the Brown
measures of T + ct and T + gt,γ where T and {ct, gt,γ} are ∗-free. It is well-known that
the sum of two R-diagonal operator is again R-diagonal. The new observation from [55]
will be used in Section 7.2 to describe the push-forward map. We show that the Brown
measure of T + gt,γ is supported in a deformed ring where the inner boundary is a circle
and the outer boundary is an ellipse. The push-forward map Φt,γ sends a family of circles
to a family of ellipses.

7.1. The work of Haagerup–Schultz and gradient functions. Following [30, Section
4], we introduce some auxiliary functions. Let λ ∈ C \ {0}, we set

hT (s) = s ϕ
(
(T ∗T + s2)−1

)
, s > 0,(7.1)

hT−λ(ε) = ε ϕ
(
[(T − λ)∗(T − λ) + ε2]−1

)
, ε > 0.(7.2)

and

λ1(T ) = 1/
√
ϕ((T ∗T )−1), λ2(T ) =

√
ϕ(T ∗T ).

It is known that the Brown measure of T is supported in a single ring and λ1(T ), λ2(T )
are inner and outer radii of this ring.

Proposition 7.1. [30, Definition 4.9] For any λ ∈ C \ {0}, the equation

(7.3) (s− ε)2 − s− ε

hT (s)
+ |λ|2 = 0

has a unique solution s = s(|λ|, t) in the interval (0,∞) and

hT−λ(ε) = hT (s(|λ|, ε)), ε > 0.

For λ ∈ (λ1(T ), λ2(T )), the equation

(7.4) s2 − s

hT (s)
+ |λ|2 = 0

has a unique solution s = s(|λ|, 0) in the interval (0,∞).
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Proposition 7.2. [30, Lemma 4.10, Remark 4.11] The function (λ, ε) 7→ s(λ, ε) is analytic
in (0,∞)× (0,∞). Moreover,

lim
ε→0

s(λ, ε) =


0, if 0 < λ ≤ λ1(T );

s(λ, 0), if λ ∈ (λ1(T ), λ2(T ));

+∞, if, λ ≥ λ2(T ).

From now on, we denote by s(λ, 0) = limε→0 s(λ, ε) for any λ > 0.

Lemma 7.3. [30, Lemma 4.14] Let T be an R–diagonal element in M, let λ ∈ C \ {0},
and let ε > 0. We then have:

(7.5) ∆
(
(T − λ)∗(T − λ) + ε2

)
=

|λ|2

|λ|2 + (s(|λ|, ε)− ε)2
∆
(
T ∗T + s(|λ|, ε)2

)
.

Theorem 7.4. [30, Theorem 4.15] Let T ∈ M be R–diagonal, we have
(i) If λ1(T ) < |λ| < λ2(T ), then

(7.6) ∆(T − λ) =

(
|λ|2

|λ|2 + s(|λ|, 0)2
∆(T ∗T + s(|λ|, 0)2)

) 1
2

.

(ii) If |λ| ≤ λ1(T ), then ∆(T − λ) = ∆(T ).
(iii) If |λ| ≥ λ2(T ), then ∆(T − λ) = |λ|.

Remark 7.5. The reader might notice that formulas in this section are similar to our results
in Section 3. Indeed, circular operator is an R-diagonal operator. In [55], we used sub-
ordination ideas to give a simplified proof for Haagerup-Schultz’s results and the Brown
measure formula of R-diagonal operators. By choosing x = 0, then Theorem 3.13 is a
special case of Theorem 7.4. In a joint work with Bercovici [11], we obtained a Fuglede-
Kadison formula for operator T + x where x is an arbitrary operator ∗-free from T , which
generalizes some free probability results obtained in [22, 31].

The following result can be deduced from the Fuglede-Kadison formulas in Lemma 7.3
and Theorem 7.4 and the defining equations for s(|λ|, ε) and s(|λ|, 0). See [55] for details.

Lemma 7.6. [55, Section 4] Let T be an R-diagonal operator. We have partial derivative
formula

(7.7) ϕ((λ− T )∗[(λ− T )(λ− T )∗ + ε2]−1) =
λ

|λ|2
(s(|λ|, ε)− ε)2

(s(|λ|, ε)− ε)2 + |λ|2
,

for any ε > 0, and

lim
ε↓0

ϕ((λ− T )∗[(λ− T )(λ− T )∗ + ε2]−1)

=


0, for 0 < |λ| ≤ λ1(T );
λ

|λ|2
s(|λ|,0)2

s(|λ|,0)2+|λ|2 , for λ1(T ) < |λ| < λ2(T );
λ

|λ|2 , for |λ| ≥ λ2(T ),

where s(|λ|, ε) and s(|λ|, 0) are defined in Definition 7.1. Moreover, the Brown measure
µT is the rotationally invariant probability measure such that

µT {z ∈ C : |z| ≤ r} =
s(r, 0)2

s(r, 0)2 + r2
, 0 < r <∞
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7.2. The push-forward map and Brown measure. We use Lemma 7.6 to study proper-
ties of the push-forward map from the Brown measure of T + ct to the Brown measure
of T + gt,γ . Observe that the Brown measure of T + eiθgt,γ is the same as the Brown
measure of eiθ(T + gt,γ). In this section, we may restrict ourselves to the case γ ∈ R,
but the general result will follow easily. So we still keep using the complex notation γ as
before.

Proposition 7.7. For x = T , the map Φt,γ is expressed as

Φt,γ(λ) = λ+
γ

λ

s(|λ|, 0)2

s(|λ|, 0)2 + |λ|2
= λ+ γ · µT+ct({z ∈ C : |z| ≤ |λ|})

λ
,(7.8)

for any λ ∈ C, where for λ ∈ Ξt, s = s(|λ|, 0) is determined by

s2 − s

h(s)
+ |λ|2 = 0

and h(s) = s · ϕ(((T + ct)
∗(T + ct) + s2)−1).

The regularized map Φ
(ε)
t,γ is expressed as

(7.9) Φ
(ε)
t,γ(λ) = λ+

γ

λ

(s(|λ|, ε)− ε)2

(s(|λ|, ε)− ε)2 + |λ|2
,

where s = s(|λ|, ε) is determined by

(s− ε)2 − s− ε

h(s)
+ |λ|2 = 0.

Proof. We have the following equivalent definition of the regularized push-forward map

Φ
(ε)
t,γ(λ) = λ+

∂

∂λ
S(T + ct, λ, ε).

The result follows by applying Lemma 7.6. □

Since T and ct are free to each other, we can calculate

ϕ((T + ct)
∗(T + ct)) = ϕ(T ∗T ) + ϕ(c∗t ct) = λ2(T )

2 + t.

Hence, λ2(T + ct) =
√
λ2(T )2 + t. Although it is not important here, one can actually

show that λ1(T + ct) =
√

(λ1(T )2 − t)|+ ([11]). When x is an R-diagonal operator T ,
the set Ξt is also the interior of the support of the Brown measure of T + ct. That is,

Ξt = {λ ∈ C : (λ1(T )
2 − t)|+ < |λ|2 < λ2(T )

2 + t}.

Theorem 7.8. Let γ = |γ|ei2α such that |γ| ≤ t. Set x = T and use notations in Section
5. For any r > 0, the push-forward map Φt,γ sends the circle Cr centered at the origin
with radius r to the ellipse

eiα
(
reiθ +

e−iθ|γ|m(r)

r

)
, 0 ≤ θ ≤ 2π,(7.10)

where
m(r) = µT+ct({z ∈ C : |z| ≤ r}).

The semi-axes of the ellipse are

a(r) = r − |γ|m(r)/r, b(r) = r + |γ|m(r)/r.

Moreover, both a(r) and b(r) are increasing functions of r in the interval (0,∞). When
|γ| < t, then both a(r) and b(r) are strictly increasing and the map Φt,γ is a self-
homeomorphism of C.
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FIGURE 3. The 4000×4000 random matrix simulation for Brown mea-
sures of u+ ct and u+ gt with t = 0.5.

In particular, the Brown measure of T+gt,γ is supported in the deformed ring where the
inner boundary is the circle with radius λ1(T + ct) and the outer boundary is the ellipse

eiα
(
λ2e

iθ +
e−iθ|γ|
λ2

)
, 0 ≤ θ ≤ 2π,

where λ2 = λ2(T + ct) is the outer radii of the support of the Brown measure of T + ct.

Proof. We follow notations used in Proposition 7.7. Recall that, by Lemma 7.6, we have

m(r) = µT+ct({z ∈ C : |z| ≤ r}) = s(r, 0)2

s(r, 0)2 + r2
.

We can rewrite a(r), b(r) as

a(r) = r − γ

r

s(r, 0)2

s(r, 0)2 + r2
, b(r) = r +

γ

r

s(r, 0)2

s(r, 0)2 + r2
.

For any ε > 0, we set

a(r, ε) = r − γ

r

(s(r, ε)− ε)2

(s(r, ε)− ε)2 + r2
, b(r, ε) = r +

γ

r

(s(r, ε)− ε)2

(s(r, ε)− ε)2 + r2
.

Then, by (7.9), we see that the regularized map Φ
(ε)
t,γ sends Cr to an ellipse Er,ε centered

at the origin, whose semi-axes |a(r, ε)|, b(r, ε). Since a(r, ε) > 0 for large r and Φ
(ε)
t,γ is a

homeomorphism (see Proposition 5.2), it follows that a(r, ε) > 0 for any r > 0. Moreover,
it forces that the region enclosed by the ellipse Er,ε increases as r increases. That is,

a(r1, ε) < a(r2, ε), b(r1, ε) < b(r2, ε)

for any 0 < r1 < r2. By letting ε go to zero and using Proposition 7.2 (or the fact that
Φ

(ε)
t,γ converges uniformly to Φt,γ in C by Lemma 5.1), we deduce

a(r1) ≤ a(r2), b(r1) ≤ b(r2), 0 < r1 < r2.

Note that a(r) = b(r) = r for 0 < r ≤ λ1(T + ct) and

m(r) =

{
0, for 0 ≤ r ≤ λ1(T + ct),

1, for r > λ2(T + ct).
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Hence, for r > λ1(T + ct), we have a(r) > λ1(T + ct). Therefore, a(r) > 0 for all r.
From (7.8), we then see that Φt,γ maps the circle Cr := {z : |z| = r} to an ellipse Er with
parametrization

eiα
(
reiθ +

|γ|e−iθm(r)

r

)
, 0 ≤ θ ≤ 2π,

whose semi-axes are a(r), b(r).
When |γ| < t, we write

(7.11) a(r) = r

(
1− |γ|

t

)
+

|γ|
t

(
r − tm(r)

r

)
.

The previous discussion shows that the second term of the right hand side of (7.11) is
increasing. Therefore, a′(r) > 0 for all r ∈ (0,∞). Similary, b′(r) > 0 for all r ∈ (0,∞).
This implies that Φt,γ is a self-homeomorphism of C that maps circles centered at the
origin to a family of ellipses. □
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APPENDIX A. THE DISTRIBUTIONAL DERIVATIVE OF THE LOGARITHMIC POTENTIAL

We establish some elementary results about computing the distributional derivative of
the logarithmic potential of a regularized Brown measure. The results in this Appendix are
useful in Section 5.4.

Lemma A.1. Suppose f is a locally integrable function on Rn, with n ≥ 1. Suppose also
that f is continuously differentiable on Rn \ {0} and that ∂f/∂xj is locally integrable on
Rn (not just on Rn \ {0} ). Finally, suppose that

(A.1) lim
x→0

|x|n−1
f(x) = 0.

Then ∂f/∂xj in the distribution sense is computed by integrating a test function against the
classical partial derivative, and the one point where the classical derivative is not defined.
In the case n = 1, the condition (A.1) can be replaced by the condition that limx→0 f(x)
exists.

Proof. The distributional derivative is computed by looking at the integral

−
∫
Rn

f(x)
∂χ

∂xj
(x) dnx,
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where χ is a test function. Since f is locally integrable, the above integral exists and can
be computed as

− lim
ε→0

∫
Rn\Dε

f(x)
∂χ

∂xj
(x) dnx,

where Dε is the ball of radius ε centered at the origin. Once a ball around the origin has
been cut out, everything is C1 and we can integrate by parts to get
(A.2)

−
∫
Rn\Dε

f(x)
∂χ

∂xj
(x) dnx = −

∫
Sε

f(x)χ(x) vj dΓ+

∫
Rn\Dε

∂f

∂xj
(x)χ(x) dnx,

where Sε is the sphere of radius ε, vj is the jth component of the outward (with respect to
Rn \Dε) unit normal, and Γ is the surface area measure on the sphere Sε.

Now, |vj | ≤ 1 and χ is bounded, so the first (boundary) term on the right-hand side of
(A.2) can be bounded using the area of the sphere, which is proportional to εn−1:∣∣∣∣∫

Sε

f(x)χ(x) vj dΓ

∣∣∣∣ ≤ Cεn−1 sup
Sε

|f(x)| ,

where the right-hand side of the above inequality tends to zero by the assumption (A.1).
Letting ε→ 0 in (A.2) using the local integrability of ∂f/∂xj therefore gives

−
∫
Rn

f(x)
∂χ

∂xj
(x) dnx =

∫
Rn

∂f

∂xj
(x)χ(x) dnx,

which is what we wanted to show.
In the case n = 1, if limx→0 f(x) exists, we can add a constant to f (without changing

the distributional derivative) so that the limit is zero and (A.1) will hold with n = 1. □

Example A.2. If n = 2 and f(x) = log |x| , then (A.1) holds. Furthermore,

∂f

∂xj
=

1

|x|
∂

∂xj
|x| = 1

|x|
xj
|x|
,

which is a locally integrable near the origin.

We now turn to the logarithmic potential Sµ and Cauchy transform Gµ of a compactly
supported probability measure on the complex plane C, defined as

Sµ(z) =

∫
C
log(|z − w|2) dµ(w),

Gµ(z) = lim
ε↓0

∫
|z−w|≥ε

1

z − w
dµ(w).

We will work on probability measures µ satisfying

(A.3) µ ({w : |z − w| ≤ r}) ≤ rs

for some s > 1. By an elementary argument using Fubini’s theorem and the local integra-
bility of the functions log

(
|z|2
)

and 1/z, we can show (1) that the integrals defining Sµ(z)
and Gµ(z) are finite at every z, and (2) that Sµ and Gµ are locally integrable functions on
the complex plane.

Recall that the regularized Brown measure µx,ε of x ∈ M is determined by∫
C
log |λ− z|dµx,ε(z) =

1

2
log∆(|x− λ|2 + ε2).
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Then, by [30, Lemma 2.8], the regularized measure µx,ε is absolutely continuous, and its
density (up to a constant 1/4π) is

∂2

∂λ̄∂λ
log∆(|x− λ|2 + ε2)(A.4)

= ε2ϕ((|x− λ|2 + ε2)−1(|(x− λ)∗|2 + ε2)−1) ≤ 4ε2/|λ|4,

provided that |λ| > 2∥x∥.

Lemma A.3. For any R > 0 and ε > 0, we have∫
C

∫
|z|≤R

| log |w − z||d2zdµx,ε(w) <∞.

Proof. We denote

I1(w) =

∫
|z|≤R

| log(|w − z|)|d2z

and change the variable u = w − z to get

I1(w) =

∫
|u−w|≤R

| log(|u|)|d2u.

We then consider two cases: |w| ≤ R+ 1 and |w| > R+ 1.
If |w| ≤ R + 1, we note that |u| ≤ |u − w| + |w| ≤ 2R + 1. Thus, we have {u :

|u− w| ≤ R} ⊂ {u : |u| ≤ 2R+ 1} and in this case

I1(w) ≤ C :=

∫
|u|≤2R+1

| log(|u|)|d2u.

If |w| > R + 1, then |u| ≥ |w| − |u − w| ≥ 1 when |u − w| ≤ R. Thus, log(|u|) ≥ 0
when |u− w| ≤ R. In addition, note that |u| ≤ |u− w|+ |w| ≤ R+ |w|, we then get

I1(w) ≤ πR2 log(R+ |w|).

Therefore, we have

I1(w) ≤

{
C for |w| ≤ R+ 1,

πR2 log(R+ |w|) for |w| > R+ 1.

By (A.4), the density of dµx+ct,ε decays of the order 1/|w|4 for large |w|. It follows that∫
C I1(w)dµ(w) <∞. □

Corollary A.4. If µx,ε is the regularized Brown measure of x ∈ M with parameter ε > 0,
then the distributional z-derivative of the log potential is the Cauchy transform.

Proof. Suppose that χ is a test function supported in the ball {z : |z| ≤ R}. In addition,
we may suppose that |χ(z)| ≤ 1 and

∣∣∣∂χ(z)∂z

∣∣∣ ≤ 1. We denote

I2(w) =

∫
|z|≤R

1

|z − w|
d2z.

Note that I2(0) = 2πR. Then we have

I2(w) ≤

{
2π for |z − w| ≤ 1,

πR2 for |z − w| > 1.
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It follows that

(A.5)
∫
C

∫
|z|≤R

1

|z − w|
d2zdµx,ε(w) <∞.

Lemma A.3 and Equation (A.5) guarantee that we can apply Fubini’s theorem in the
following calculation:

−
∫
|z|≤R

∂χ

∂z
(z)

∫
C
log(|z − w|2) dµ(w) d2z

= −
∫
C

∫
|z|≤R

∂χ

∂z
(z) log(|z − w|2) d2z dµ(w)

=

∫
C

∫
|z|≤R

χ(z)
∂

∂z
log(|z − w|2) d2z dµ(w)

=

∫
C

∫
|z|≤R

χ(z)
1

z − w
d2z dµ(w)

=

∫
|z|≤R

χ(z)

∫
C

1

z − w
dµ(w) d2z,

where we used Lemma A.1 to derive the second identity. This finishes the verification. □

We next study the continuity of the Cauchy transform of a probability measure on C
under some regularity conditions.

Proposition A.5. Given a probability measure µ on the complex plane C, suppose that
µ is absolutely continuous with respect to Lebesgue measure and its density function h
satisfying ||h||∞ < C, then the Cauchy transform of µ is a uniformly continuous function
on C.

Proof. Let Bρ(λ) be the disk Bρ(λ) = {w : |λ− w| < ρ}. Then

(A.6)

∣∣∣∣∣
∫
Bρ(λ)

1

λ− w
dµ(w)

∣∣∣∣∣ ≤ C

∫
Bρ(λ)

∣∣∣∣ 1

λ− w

∣∣∣∣ d2w ≤ C

∫ 2π

0

∫ ρ

0

1

r
rdrdθ = 2πCρ.

Given ε > 0, if |λ1 − λ2| < min{ε, ε3}, then for any w /∈ Bε(λ1) ∪Bε(λ2), we note that∣∣∣∣ 1

λ1 − w
− 1

λ2 − w

∣∣∣∣ = ∣∣∣∣ λ1 − λ2
(λ1 − w)(λ2 − w)

∣∣∣∣ < ε.

The condition |λ1−λ2| < min{ε, ε3} ensure thatBε(λ1)∪Bε(λ2) ⊂ B2ε(λi) for i = 1, 2.
We hence have∫

Bε(λ1)∪Bε(λ2)

∣∣∣∣ 1

λ1 − w
− 1

λ2 − w

∣∣∣∣ dµ(w)
≤
∫
B2ε(λ1)

∣∣∣∣ 1

λ1 − w

∣∣∣∣ dµ(w) + ∫
B2ε(λ2)

∣∣∣∣ 1

λ2 − w

∣∣∣∣ dµ(w) ≤ 8πCε,

and ∫
C\(Bε(λ1)∪Bε(λ2))

∣∣∣∣ 1

λ1 − w
− 1

λ2 − w

∣∣∣∣ dµ(w) < ε.

Therefore, |Cµ(λ1)− Cµ(λ2)| < (8πC + 1)ε provided that |λ1 − λ2| < min{ε, ε3}. □
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Theorem A.6. If µ is a compactly supported probability measure on the plane, suppose
that µ is absolutely continuous with respect to Lebesgue measure and its density function
h satisfying ||h||∞ < C, and Sµ has a continuous derivative on some open domain O, then
the z-derivative of the log potential is the Cauchy transform of µ.

In particular, for any z ∈ C we have

(A.7)
∂Sµx+ct,ε

(z)

∂z
=

∫
C

1

z − w
dµx+ct,ε(w).

Proof. Since the distributional derivative of a continuously differentiable function concide
with the usual derivative almost every where, by Corollary A.4, ∂Sµ(z)

∂z = Cµ(z) almost
everywhere. Proposition A.5 implies that Cµ is continuous on C. If ∂Sµ(z)

∂z is continuous
on O, then it follows that the identity ∂Sµ(z)

∂z = Cµ(z) holds for every z ∈ O.
It is shown that Sµx+ct,ε

has a continuous derivative on C and µx+ct,ε is absolutely
continuous with respect to Lebesgue measure and its density function is bounded by 1/4πt
(see Theorem 4.3 or [3, Lemma 7.11]). Hence, (A.7) holds for all z ∈ C. □
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