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ABSTRACT. In this paper we give a complete and explicit description of the Howe cor-
respondence of unipotent characters for a finite reductive dual pair of a symplectic group
and an even orthogonal group in terms of the Lusztig parametrization. That is, the con-
jecture by Aubert-Michel-Rouquier is confirmed.
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1. INTRODUCTION

1.1. Let ωψ
Sp2N

denote the character of the Weil representation (cf. [Gér77]) of a finite
symplectic group Sp2N (q) with respect to a nontrivial additive character ψ of a finite
field Fq of characteristic p 6= 2. Let (G,G′) be one of the following three basic types of
reductive dual pairs in Sp2N :

(1) two general linear groups (GLn ,GLn′ );
(2) two unitary groups (Un ,Un′ );
(3) one symplectic group and one orthogonal group (Sp2n ,Oε

n′ )

where ε=+ or−. Nowωψ
Sp2N

is regarded as a character of G×G′ and denoted byωψ
G,G′

via the homomorphisms G × G′ → G ·G′ ,→ Sp2N (q) where G,G′ denote the finite
groups of rational points of G,G′ respectively. Then ωψ

G,G′ is decomposed as a sum of
irreducible characters

ωψ
G,G′ =
∑

ρ∈E (G), ρ′∈E (G′)
mρ,ρ′ρ⊗ρ′

where each mρ,ρ′ is a non-negative integer, and E (G) denotes the set of irreducible char-
acters of G (i.e., the set of the characters of irreducible representations of G). Then it
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establishes a relation

ΘG,G′ = { (ρ,ρ′) ∈ E (G)×E (G′) | mρ,ρ′ 6= 0}
between E (G) and E (G′) which is called the Howe correspondence (or Θ-correspondence)
for the dual pair (G,G′). The main task is to describe the correspondence explicitly.

1.2. It is known that E (G) is partitioned as a disjoint union

E (G) = ⋃
(s )⊂(G∗)0

E (G)s

of Lusztig series E (G)s indexed by the conjugacy classes (s ) of semisimple elements in the
connected component (G∗)0 of the dual group G∗ of G. Elements in E (G)1 are called
unipotent characters. Lusztig shows that there exists a bijection

Ls : E (G)s −→E (CG∗ (s ))1

where CG∗ (s ) is the centralizer in G∗ of s (cf. [Lus77]). For a semisimple element s we
can define three groups G(0),G(1),G(2) so that there is a natural bijection

E (CG∗ (s ))1 'E (G(0)×G(1)×G(2))1

(cf. [Pan19a] subsection 6.2). Then we have a (modified) Lusztig correspondence

Ξs : E (G)s →E (G(0)×G(1)×G(2))1,

ρ 7→ ρ(0)⊗ρ(1)⊗ρ(2)
where ρ( j ) ∈ E (G( j ))1 for j = 0,1,2. Moreover, we have the corresponding decomposi-
tion s = s (0)× s (1)× s (2).

Recall that a class function on G is called uniform if it is a linear combination of the
Deligne-Lusztig virtual characters RT ,θ. For a class function f on G, let f ] denote its
projection on the subspace of uniform class functions.

Now let (G,G′) be a dual pair and suppose that ρ ∈ E (G)s , ρ′ ∈ E (G′)s ′ for some
s , s ′. For simplicity in this subsection we assume that the orthogonal group is even for a
symplectic/orthogonal dual pair. Then one can show that

• both G(0),G′(0) are products of general linear groups or unitary groups;
• both G(1),G′(1) are classical groups of the same type;
• (G(2),G′(2)) forms a reductive dual pair of either two general linear groups, two

unitary groups, or one symplectic group and one even orthogonal group.

It is known that unipotent characters are preserved in the Howe correspondence for the
dual pair (G(2),G′(2)) (cf. [AM93]). Then one can show that ρ⊗ρ′ occurs in ωψ

G,G′ (i.e.,
mρ,ρ′ 6= 0) if and only if the following conditions are satisfied:

(1) s (0) = s ′(0), G(0) 'G′(0) and ρ(0) = ρ′(0);
(2) G(1) 'G′(1) and ρ(1) = ρ′(1);
(3) ρ(2)⊗ρ′(2) occurs inωG(2),G′(2),1

whereωG(2),G′(2),1 denotes the unipotent part ofωψ

G(2),G′(2) , i.e, the following diagram

(1.1)

ρ
ΘG,G′−−−−→ ρ′

Ξs

y yΞs ′

ρ(0)⊗ρ(1)⊗ρ(2) id⊗id⊗Θ
G(2) ,G′(2)−−−−−−−−→ ρ′(0)⊗ρ′(1)⊗ρ′(2)
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commutes. Therefore we can reduce the Howe correspondence ΘG,G′ of general irre-
ducible characters to the correspondence ΘG(2),G′(2) of irreducible unipotent characters.

Remark 1.2. (1) If the pair (G,G′) consists of two general linear groups or two uni-
tary groups, then all the irreducible characters of G and G′ are uniform and so the
above commutative diagram can be read off from the result in [AMR96] théorème
2.6 (cf. [Pan19b] theorem 3.10).

(2) If (G,G′) consists of a symplectic group and an orthogonal group, using the de-
composition of ω]

G,G′ in [Sri79] and [Pan21], the commutativity of the diagram
(under proper choices of Ξs and Ξs ′ ) is proved in [Pan19a]. Unlike the cases of
general linear groups or unitary groups, most of the irreducible characters of sym-
plectic groups or orthogonal groups are not uniform. This is the main difference
and difficulty for studying the correspondence for symplectic/orthogonal dual
pairs.

1.3. So now we focus on the correspondences of irreducible unipotent characters for
symplectic/even-orthogonal dual pairs. First we review some results on the classification
of the irreducible unipotent characters by Lusztig in [Lus77], [Lus81] and [Lus82]. Let

Λ=
�

A
B

�
=
�

a1,a2, . . . ,am1

b1, b2, . . . , bm2

�
denote a reduced symbol, i.e., an ordered pair of two finite subsets A,B of non-negative
integers such that 0 6∈ A∩ B . Note that we always assume that a1 > a2 > · · · > am1

and
b1 > b2 > · · ·> bm2

. The rank and the defect of a symbol Λ (denoted by rk(Λ) and def(Λ)
respectively) are defined in (2.1). Let S denote the set of reduced symbols, and let Sn,d
denote the set of reduced symbols of rank n and defect d . Then we define the following
sets of symbols associated to G:

SSp2n
= {Λ ∈S | rk(Λ) = n, def(Λ)≡ 1 (mod 4)};

SO+2n
= {Λ ∈S | rk(Λ) = n, def(Λ)≡ 0 (mod 4)};

SO−2n
= {Λ ∈S | rk(Λ) = n, def(Λ)≡ 2 (mod 4)}.

(1.3)

Then Lusztig gives a parametrization of the set of irreducible unipotent characters E (G)1
by the set of symbols SG. The irreducible character parametrized by a symbol Λ will be
denoted by ρΛ.

For a symbol Λ=
�a1,a2,...,am1

b1,b2,...,bm2

�
, we associate it a bi-partition

(1.4) Υ (Λ) =
�

a1− (m1− 1),a2− (m1− 2), . . . ,am1−1− 1,am1

b1− (m2− 1), b2− (m2− 2), . . . , bm2−1− 1, bm2

�
.

Let (G,G′) = (Sp2n ,Oε
2n′ )where ε=+ or−. ForΛ ∈SG, Λ′ ∈SG′ , we write Υ (Λ) =

�λ
µ

�
and Υ (Λ′) =
�λ′
µ′
�
. Then we define a relationBG,G′ on SG×SG′ by

BSp2n ,O+
2n′
= { (Λ,Λ′) ∈SSp2n

×SO+
2n′
|µ´ λ′, µ′ ´ λ, def(Λ′) =−def(Λ)+ 1};

BSp2n ,O−
2n′
= { (Λ,Λ′) ∈SSp2n

×SO−
2n′
| λ′ ´µ, λ´µ′, def(Λ′) =−def(Λ)− 1}(1.5)

where the relation λ´µ on partitions is given in (2.10). Moreover, we define

(1.6) DSp2n ,O−
2n′
=DSp2n ,O+

2n′
=BSp2n ,O+

2n′
∩ (Sn,1×Sn′,0).
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Then it is proved in [Pan21] that

(1.7) ω]
G,G′,1 =

1
2

∑
(Σ,Σ′)∈DG,G′

RG
Σ ⊗RG′

Σ′ =
∑

(Λ,Λ′)∈BG,G′
ρ]Λ⊗ρ]Λ′

where RG
Σ and RG′

Σ′ are the almost characters given in Subsection 3.3 and Subsection 3.2.
In this article, we can go a step further to remove the uniform projection and obtain an

explicit description in terms of Lusztig’s symbols of the Howe correspondence of unipo-
tent characters for a symplectic/even-orthogonal dual pair:

Theorem 1.8. Let (G,G′) = (Sp2n ,Oε
2n′ ) where ε=+ or −. Then

ωG,G′,1 =
∑

(Λ,Λ′)∈BG,G′
ρΛ⊗ρΛ′ ,

i.e., (ρΛ,ρΛ′ ) occurs in ΘG,G′ if and only if (Λ,Λ′) ∈BG,G′ .

Remark 1.9. In [AMR96] théorème 5.5, théorème 3.10 and conjecture 3.11, Aubert,
Michel and Rouquier give an explicit description (in terms of partitions or bi-partitions)
of the correspondence of unipotent characters for a dual pair of either two general lin-
ear groups or two unitary groups, and they have a conjecture on the description of the
correspondence for a symplctic/even-orthogonal dual pair. A comparison between the
theorem above and their conjecture is in Subsection 3.5.

Combining the theorem and the commutativity between Howe correspondence and
Lusztig correspondence in (1.1), we obtain a complete description of the whole Howe
correspondence of irreducible characters for any finite reductive dual pair. Some applica-
tions of the description can be found in [Pan19a] and [Pan20].

1.4. The contents of the paper are organized as follows. In Section 2, we recall the defini-
tion and basic properties of symbols introduced by Lusztig. Then we discuss the relations
DZ ,Z ′ andBZ ,Z ′ which play the important roles in our main results. In Section 3, we recall
the Lusztig’s parametrization of irreducible unipotent characters of a symplectic group
or an even orthogonal group. Then we state our main theorems in Subsection 3.4. In
Section 4, we provide several properties of cells of a symplectic group or an even orthog-
onal group. These properties will be used in the proof of our main result: Theorem 1.8
in last two sections.

The author would like to thank the referee for careful reading and many helpful sug-
gestions.

2. SYMBOLS AND BI-PARTITIONS

In the first part of this section we recall the notion of “symbols” and “bi-partitions”
from [Lus77] §3.

2.1. Symbols. A symbol is an ordered pair

Λ=
�

A
B

�
=
�

a1,a2, . . . ,am1

b1, b2, . . . , bm2

�
of two finite subsets A,B (possibly empty) of non-negative integers. We always assume
that elements in A,B are written respectively in strictly decreasing order, i.e., a1 > a2 >· · ·> am1

and b1 > b2 > · · ·> bm2
. A symbol is called degenerate if A= B , and it is called
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non-degenerate otherwise. The cardinality, size, rank and defect of a symbol Λ =
�A

B

�
are

defined by

|Λ|= |A|+ |B |,
size(Λ) = (|A|, |B |),

rank(Λ) =
m1∑
i=1

ai +
m2∑
i=1

bi −
�� |A|+ |B | − 1

2

�2�
,

def(Λ) = |A| − |B |

(2.1)

where |X | denotes the cardinality of a finite set X . For a symbol Λ, let Λ∗ (resp. Λ∗)
denote the first row (resp. second row) of Λ, i.e., Λ =

�Λ∗
Λ∗

�
. For a symbol Λ =

�A
B

�
, we

define its transpose Λt =
�B

A

�
. A symbol
�A

B

�
is called reduced if 0 6∈A∩B . If both Λ∗,Λ∗ are

the empty set, then Λ is denoted by
�−
−
�

or just ;.
We define an equivalence relation on symbols generated by�

a1,a2, . . . ,am1

b1, b2, . . . , bm2

�
∼
�

a1+ 1,a2+ 1, . . . ,am1
+ 1,0

b1+ 1, b2+ 1, . . . , bm2
+ 1,0

�
.

It is not difficult to see that ranks and defects are invariant on an equivalence class of
symbols. Moreover, each equivalence class contains a unique reduced symbol. In the
remaining part of this article, a symbol is always assumed to be reduced unless specified
otherwise.

A symbol Λ1 is called a subsymbol of another symbol Λ2, denoted by Λ1 ⊂ Λ2, if Λ∗1 ⊂
Λ∗2 and (Λ1)∗ ⊂ (Λ2)∗. If Λ1 ⊂ Λ2, we define the symbol substraction by

Λ2rΛ1 =
�
Λ∗2rΛ∗1

(Λ2)∗r (Λ1)∗

�
.

For two symbols Λ1,Λ2, we define their union and intersection by

Λ1 ∪Λ2 =
�
Λ∗1 ∪Λ∗2

(Λ1)∗ ∪ (Λ2)∗

�
, Λ1 ∩Λ2 =

�
Λ∗1 ∩Λ∗2

(Λ1)∗ ∩ (Λ2)∗

�
.

2.2. Special symbols. A symbol

(2.2) Z =
�

a1,a2, . . . ,am+1

b1, b2, . . . , bm

�
of defect 1 is called special if a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · ≥ am ≥ bm ≥ am+1; similarly a
symbol

(2.3) Z =
�

a1,a2, . . . ,am

b1, b2, . . . , bm

�
of defect 0 is called special if a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · ≥ bm−1 ≥ am ≥ bm . For a special
symbol Z , we define its subsymbol of “singles” ZI = Z r �Z∗∩Z∗

Z∗∩Z∗

�
. The degree of a special

symbol Z is defined to be

deg(Z) =

( |ZI|−1
2 , if Z has defect 1;
|ZI|
2 , if Z has defect 0.

For a subsymbol M ⊂ ZI, we denote

(2.4) ΛM = (Z rM )∪M t,
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i.e., ΛM is the symbol obtained from Z by switching the row position of entries in M and
keeping other entries unchanged. Note that Λ; = Z and ΛZI

= Z t.

Example 2.5. The symbol Z =
�4,3

3,2

�
is a special symbol of rank 8 and defect 0. Now

ZI =
�4

2

�
and so deg(Z) = 1. Then we have

M
�−
−
� � 4

−
� �−

2

� �4
2

�
ΛM

�4,3
3,2

� � 3
4,3,2

� �4,3,2
3

� �3,2
4,3

�
If Z is a special symbol of rank n and defect 1, we define

S Sp2n
Z = {ΛM |M ⊂ ZI, |M | even} ⊂SSp2n

,

SZ ,1 =S Sp2n
Z ∩Sn,1;

(2.6)

if Z is a special symbol of rank n and defect 0, we define

S O+2n
Z = {ΛM |M ⊂ ZI, |M | even} ⊂SO+2n

,

S O−2n
Z = {ΛM |M ⊂ ZI, |M | odd} ⊂SO−2n

,

SZ ,0 =S O+2n
Z ∩Sn,0.

(2.7)

It is not difficult to see that

|S G
Z |=


22deg(Z), if G= Sp2n ;

22deg(Z)−1, if G=Oε
2n and deg(Z)> 0;

1, if G=O+2n and deg(Z) = 0;

0, if G=O−2n and deg(Z) = 0.

Moreover, we have

SSp2n
=
⋃

Z special, rk(Z)=n, def(Z)=1

S Sp2n
Z ,

SOε
2n
=
⋃

Z special, rk(Z)=n, def(Z)=0

S Oε
2n

Z .

If the context is clear, S G
Z will be just denoted by SZ .

For ΛM1
,ΛM2
∈SZ , we define an addition

(2.8) ΛM1
+ΛM2

= ΛN where N = (M1 ∪M2)r (M1 ∩M2).

Note that Λ+Z = Λ and Λ+Λ = Z for any Λ ∈ SZ . Both S Sp2n
Z and S O+2n

Z are closed

under the addition with identity element Λ; = Z . This gives S Sp2n
Z ,S O+2n

Z a vector space

structure over the field F2 with two elements. On the other hand, if Λ1 ∈ S O+2n
Z and

Λ2 ∈ S O−2n
Z , it is easy to check that Λ1 +Λ2 ∈ S O−2n

Z ; moreover, if Λ1,Λ2 ∈ S O−2n
Z , then

Λ1+Λ2 ∈S O+2n
Z .

Example 2.9. (1) The symbol Z =
�2,0

1

�
is a special symbol of rank 2, defect 1 and

degree 1. Now ZI = Z and there are 4 subsymbols M of ZI of an even number of
entries, namely
�−
−
�
,
�2

1

�
,
�0

1

�
,
�2,0
−
�
. The corresponding ΛM are

�2,0
1

�
,
�1,0

2

�
,
�2,1

0

�
,
� −

2,1,0

�
.

Therefore,
SZ =S Sp4

Z =
¦�2,0

1

�
,
�1,0

2

�
,
�2,1

0

�
,
� −

2,1,0

�©
.
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The addition table of SZ is

+
�2,0

1

� �1,0
2

� �2,1
0

� � −
2,1,0

��2,0
1

� �2,0
1

� �1,0
2

� �2,1
0

� � −
2,1,0

��1,0
2

� �1,0
2

� �2,0
1

� � −
2,1,0

� �2,1
0

��2,1
0

� �2,1
0

� � −
2,1,0

� �2,0
1

� �1,0
2

�� −
2,1,0

� � −
2,1,0

� �2,1
−
� �1,0

2

� �2,0
1

�
(2) The symbol Z =

�3,1
2,0

�
is a special symbol of rank 4, defect 0 and degree 2. Now

ZI = Z and there are 16 subsymbols M of ZI. Half of them have an even number
of entries, and the other half have an odd number of entries. Then we see that

S O+8
Z = {�3,1

2,0

�
,
�2,0

3,1

�
,
�3,0

2,1

�
,
�2,1

3,0

�
,
�1,0

3,2

�
,
�3,2

1,0

�
,
�3,2,1,0
−
�
,
� −

3,2,1,0

�},
S O−8

Z = {�3,2,1
0

�
,
� 0

3,2,1

�
,
�3,1,0

2

�
,
� 2

3,1,0

�
,
�3,2,0

1

�
,
� 1

3,2,0

�
,
�2,1,0

3

�
,
� 3

2,1,0

�}.
2.3. Bi-partitions. For a partition λ = [λ1,λ2, . . . ,λk] with λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0,
define |λ|= λ1+ λ2+ · · ·+ λk . For two partitions λ= [λ1, . . . ,λk], µ= [µ1, . . . ,µl ], we
may assume that k = l by adding several 0’s if necessary, then we denote

(2.10) λ´µ if µ1 ≥ λ1 ≥µ2 ≥ λ2 ≥ · · · ≥ µk ≥ λk .

Let P2(n) denote the set of bi-partitions
�λ
µ

�
of n, i.e., the set of ordered pair of two

partitions λ,µ such that |λ|+ |µ| = n. It is easy to check that the mapping Υ in (1.4)
induces a bijection

Υ : Sn,d −→
(P2(n− ( d−1

2 )(
d+1

2 )), if d is odd;

P2(n− ( d
2 )

2), if d is even.

2.4. The relationsBZ ,Z ′ andDZ ,Z ′ . Let (G,G′) = (Sp2n ,Oε
2n′ )where ε=+ or−. Recall

that a relationBG,G′ betweenSG andSG′ , and a relationDSp2n ,O+
2n′

betweenSn,1 andSn′,0
are defined in (1.5) and (1.6). Let Z ,Z ′ be special symbols of ranks n, n′ and defects 1,0
respectively. Define a relationBZ ,Z ′ betweenS G

Z andS G′
Z ′ , and a relationDZ ,Z ′ between

SZ ,1 and SZ ′,0 by

BZ ,Z ′ =BG,G′ ∩ (S G
Z ×S G′

Z ′ ),

DZ ,Z ′ =DSp2n ,O+
2n′
∩ (SZ ,1×SZ ′,0).

(2.11)

It is not difficult to see that

(2.12) BG,G′ =
⋃
Z ,Z ′
BZ ,Z ′ and DG,G′ =

⋃
Z ,Z ′
DZ ,Z ′

where the disjoint union
⋃

Z ,Z ′ is taken over all special symbols Z ,Z ′ of ranks n, n′ and
defects 1,0 respectively.

The following three lemmas are from [Pan21] corollary 5.1, lemma 2.5, lemma 2.6:

Lemma 2.13. Let Z ,Z ′ be special symbols of ranks n, n′ and defects 1,0 respectively. Then
BZ ,Z ′ 6= ; if and only if DZ ,Z ′ 6= ;.
Lemma 2.14. Let Z ,Z ′ be special symbols of size (m+ 1, m), (m′, m′) respectively for some
non-negative integers m, m′. If DZ ,Z ′ 6= ;, then either m′ = m or m′ = m+ 1.
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Lemma 2.15. Let (G,G′) = (Sp2n ,Oε
2n′ )where ε=+ or−. Let Z ,Z ′ be two special symbols

of ranks n, n′ and sizes (m+ 1, m), (m′, m′) respectively where m′ = m, m+ 1. Let

Λ=
�

a1,a2, . . . ,am1

b1, b2, . . . , bm2

�
∈S G

Z , Λ′ =
�

c1, c2, . . . , cm′1
d1, d2, . . . , dm′2

�
∈S G′

Z ′ .

Then (Λ,Λ′) ∈BZ ,Z ′ if and only if one of the following conditions is satisfied:
m′1 = m2, ai > di , di ≥ ai+1, ci ≥ bi , bi > ci+1 for each i , if ε=+, m′ = m;

m′1 = m2+ 1, ai ≥ di , di > ai+1, ci > bi , bi ≥ ci+1 for each i , if ε=+, m′ = m+ 1;

m′1 = m2− 1, di ≥ ai , ai > di+1, bi > ci , ci ≥ bi+1 for each i , if ε=−, m′ = m;

m′1 = m2, di > ai , ai ≥ di+1, bi ≥ ci , ci > bi+1 for each i , if ε=−, m′ = m+ 1.

Example 2.16. Consider the dual pair (G,G′) = (Sp4,O+8 ), and Z =
�2,0

1

�
, Z ′ =
�3,1

2,0

�
.

NowS Sp4
Z andS O+8

Z ′ are given in Example 2.9. Then by Lemma 2.15, it is not difficult to
see thatBZ ,Z ′ is given by

BZ ,Z ′
�3,1

2,0

� �2,0
3,1

� �3,0
2,1

� �2,1
3,0

� �3,2
1,0

� �1,0
3,2

� �3,2,1,0
−
� � −

3,2,1,0

��2,0
1

� Ø�1,0
2

� Ø�2,1
0

� Ø� −
2,1,0

� Ø

Here a check mark “Ø” in row Λ ∈ S Sp4
Z and column Λ′ ∈ S O+8

Z ′ means that (Λ,Λ′) ∈
BZ ,Z ′ . We also see that DZ ,Z ′ =BZ ,Z ′ r

�
(
� −

2,1,0

�
,
�3,2,1,0
−
�
)
	
. Note that (Z ,Z ′) ∈DZ ,Z ′ .

3. FINITE HOWE CORRESPONDENCE OF UNIPOTENT CHARACTERS

In the first part of this section we review the parametrization of (irreducible) unipotent
characters of a symplectic group or an even orthogonal group by Lusztig in [Lus81] and
[Lus82]. A comparison of our main result and the conjecture in [AMR96] is in the final
subsection.

3.1. Deligne-Lusztig virtual characters. If G is connected, let RT,θ = RG
T,θ denote the

Deligne-Lusztig virtual character of G with respect to a rational maximal torus T and an
irreducible character θ ∈ E (T ) where T = TF . If G=Oε

n , we define

ROε
n

T,θ
= IndOε

n (q)
SOε

n (q)
RSOε

n

T,θ
.

Let V (G) denote the space of class functions on G which is an inner product space
with an orthonormal basis E (G). Let V (G)] denote the subspace of V (G) spanned by all
Deligne-Lusztig virtual characters of G. For f ∈ V (G), the orthogonal projection f ] of
f over V (G)] is called the uniform projection of f , and f is called uniform if f ] = f .

If G is connected, it is well-known that the regular character RegG of G is uniform
(cf. [Car85] corollary 7.5.6). Because RegOε = IndOε

SOε (RegSOε ), we see that RegOε is also
uniform. Therefore, we have

(3.1) ρ(1) = 〈ρ,RegG〉G = 〈ρ],RegG〉G = ρ](1).
In particular, ρ] 6= 0 for any ρ ∈ E (G).
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3.2. Unipotent characters of Sp2n(q). From [Lus77] theorem 8.2, there exists a bijec-
tive parametrization SSp2n

→ E (Sp2n)1 denoted by Λ 7→ ρΛ. It is know that there is a
one-to-one correspondence between the setP2(n) and the set E (Wn) for the Weyl group
Wn of Sp2n (cf. [GP00] theorem 5.5.6). Then for a symbol Σ ∈ Sn,1, we can associate a
uniform function RΣ on Sp2n(q) given by RΣ = Rχ where Rχ = RG

χ is defined in [Pan21]
subsection 3.2, and χ ∈ E (Wn) associated to Υ (Σ)where Υ is the bijectionSn,1→P2(n)
given in (1.4).

For a special symbol Z of rank n and defect 1, let VZ = V (G)Z denote the subspace
spanned by {ρΛ |Λ ∈SZ }. It is known that {RΣ |Σ ∈SZ ,1 } forms an orthonormal basis

for the uniform projection V ]Z of the space VZ . The following proposition is modified
from [Lus81] theorem 5.8:

Proposition 3.2 (Lusztig). Let G = Sp2n , Z a special symbol of rank n and defect 1. For
Σ ∈SZ ,1, we have

〈RΣ,ρΛ〉G =
(
(−1)〈Σ,Λ〉2−deg(Z), if Λ ∈SZ ;

0, otherwise

where 〈, 〉 : SZ ,1×SZ → F2 is given by 〈ΛN ,ΛM 〉= |N ∩M | (mod 2).

From the proposition we see that if ρΛ ∈SZ , then

ρ]Λ =
1

2deg(Z)

∑
Σ∈SZ ,1

(−1)〈Σ,Λ〉RΣ;

and if Σ ∈SZ ,1, then

RΣ =
1

2deg(Z)

∑
Λ∈SZ

(−1)〈Σ,Λ〉ρΛ.

Example 3.3. Let Z =
�2,0

1

�
, a special symbol of rank 2, degree 1 and defect 1. Now the

table of (−1)〈Σ,Λ〉 for Σ ∈SZ ,1 and Λ ∈SZ is�2,0
1

� �2,1
0

� �1,0
2

� � −
2,1,0

��2,0
1

�
1 1 1 1�2,1

0

�
1 1 −1 −1�1,0

2

�
1 −1 1 −1

In the leftmost column are allΣ ∈SZ ,1 and in the topmost row are allΛ ∈SZ . Therefore,
we have

R(2,0
1 ) =

1
2

�
ρ(2,0

1 ) +ρ(2,1
0 ) +ρ(1,0

2 ) +ρ( −2,1,0)
�
,

R(2,1
0 ) =

1
2

�
ρ(2,0

1 ) +ρ(2,1
0 )−ρ(1,0

2 )−ρ( −2,1,0)
�
,

R(1,0
2 ) =

1
2

�
ρ(2,0

1 )−ρ(2,1
0 ) +ρ(1,0

2 )−ρ( −2,1,0)
�
.

3.3. Unipotent characters of Oε
2n(q). From [Lus77] theorem 8.2, we know that there

exists a bijective parametrization SOε
2n
→ E (Oε

2n(q))1 by Λ 7→ ρΛ. It is also known that
ρΛt = ρΛ · sgn.

For a special symbol Z of rank n and defect 0, as in the symplectic case, let VZ denote
the subspace spanned by {ρΛ |Λ ∈SZ }.
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• If Z is degenerate, i.e., deg(Z) = 0, then S O−2n
Z = ;, S O+2n

Z = {Z} and ρZ = RO+2n
Z ,

i.e., V (O+2n)Z = V (O+2n)
]
Z is one-dimensional.

• If Z is non-degenerate, i.e., deg(Z)≥ 1, thenΣ ∈SZ ,0 if and only ifΣt ∈SZ ,0. It is

known that ROε
2n
Σt = εROε

2n
Σ (cf. [Pan21] subsection 3.4). Let S̄Z ,0 denote a complete

set of representatives of cosets {Σ,Σt} in SZ ,0, then { 1p
2

ROε
2n
Σ | Σ ∈ S̄Z ,0 } forms

an orthonormal basis for V ]Z .

The following proposition is a modification for Oε
2n from [Lus82] theorem 3.15:

Proposition 3.4 (Lusztig). Let G = Oε
2n where ε = + or −, Z a non-degenerate special

symbol of rank n and defect 0. For any Σ ∈SZ ,0, we have

〈RG
Σ ,ρΛ〉G =
(
(−1)〈Σ,Λ〉2−(deg(Z)−1), if Λ ∈SZ ;

0, otherwise

where 〈, 〉 : SZ ,0×SZ → F2 by 〈ΛM ,ΛN 〉= |M ∩N | (mod 2).

From the proposition we see that if ρΛ ∈SZ (with Z non-degenerate), then

ρ]Λ =
1

2deg(Z)

∑
Σ∈S̄Z ,0

(−1)〈Σ,Λ〉RG
Σ ;

and if Σ ∈SZ ,0, then

RG
Σ =

1
2deg(Z)−1

∑
Λ∈SZ

(−1)〈Σ,Λ〉ρΛ.

3.4. Strategy of the proof of the main result. Let (G,G′) = (Sp2n ,Oε
2n′ ) where ε=+

or −. All the efforts in this article are to remove the uniform projection of both sides of
identity (1.7). The proof will be divided into two stages (Section 5 and Section 6):

• To recover the relation between ωG,G′,1 and
∑
(Λ,Λ′)∈BG,G′ ρΛ⊗ρΛ′ from the uni-

form projection, we will use the technique learned from [KS05], pp.436–438.
That is, we reduce the problem into a system of linear equations. To write down
these equations, we need the theory of “cells” by Lusztig from [Lus81] theorem
5.6 and [Lus82] proposition 3.13. The variables of the linear system are the mul-
tiplicities of those ρΛ ⊗ ρΛ′ occurring in ωG,G′,1. The solutions must be non-
negative integers, that is the reason why we are almost able to solve the equa-
tions. This means that little information is lost after taking the uniform projec-
tion. Due to the disconnectedness of Oε

2n , irreducible characters ρΛ′ ,ρΛ′t are not
distinguishable by Deligne-Lusztig virtual characters. So in the first stage we can
only conclude that ρΛ⊗ρΛ′ or ρΛ⊗ρΛ′t occur inωG,G′,1 if and only if (Λ,Λ′) or
(Λ,Λ′t) occur inBG,G′ .• Because the Howe correspondence and the parametrization Λ 7→ ρΛ are both
compatible with parabolic induction, the ambiguity in the first stage can be re-
moved once the correspondence of unipotent cuspidal characters is fixed. The
proof of the theorem is in Subsection 6.1 for def(Λ′) > 0, and in Subsection 6.3
for def(Λ′) = 0.

3.5. The conjecture by Aubert-Michel-Rouquier. In Theorem 1.8, we describe the
Howe correspondence of unipotent characters in terms of Lusztig’s “symbols”; the con-
jecture in [AMR96] p.383 describes the correspondence in terms of “bi-partitions”. The
main difference between these two descriptions is that a bi-partition does not contain the
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information of the “defect” of a symbol which is controlled by the unipotent cuspidal
characters. Therefore, the description in [AMR96] p.383 needs to specify the correspon-
dence of unipotent cuspidal characters first. Now we want to make the comparison more
explicit.

In our convention, we always assume that the defect of a symbol for a symplectic group
(resp. split even orthogonal group, non-split even orthogonal group) is 1 (mod 4) (resp. 0
(mod 4), 2 (mod 4)). Our convention is different from the original one in [Lus77] p.134
where the defect of a symbol is always assumed to be non-negative. In particular, the
unique unipotent cuspidal character ζk of Sp2k(k+1)(q) by our convention is parametrized
by ζk = ρΛk

where

(3.5) Λk =

(�2k ,2k−1,...,1,0
−
�
, if k is even;� −

2k ,2k−1,...,1,0

�
, if k is odd.

Note that def(Λk ) = (−1)k (2k + 1).

Example 3.6. Suppose that G= Sp2k(k+1)+2t , L= Sp2k(k+1)×Tt where Tt is t -copies of
GL1. The irreducible constituents ρΛ in RG

L (ζk ) are parametrized by

Sk(k+1)+t ,(−1)k (2k+1) = {Λ | def(Λ) = (−1)k (2k + 1), Υ (Λ) ∈P2(t )}.
For the cases that k = 0,1,2 and t = 0,1,2 those Λ are given by the table:

t 0 1 2
k Υ (Λ)
�−
−
� �1

−
� �−

1

� � 2
−
� �1,1

−
� �1

1

� �−
2

� � −
1,1

�
0 Λ
�0
−
� �1

−
� �1,0

1

� �2
−
� �2,1

0

� �2,0
1

� �1,0
2

� �2,1,0
2,1

�
1 Λ
� −

2,1,0

� � 1
3,2,1,0

� � −
3,1,0

� � 2
3,2,1,0

� � 2,1
4,3,2,1,0

� � 1
4,2,1,0

� � −
4,1,0

� � −
3,2,0

�
2 Λ
�4,3,2,1,0
−
� �5,3,2,1,0

−
� �5,4,3,2,1,0

1

� �6,3,2,1,0
−
� �5,4,2,1,0

−
� �6,4,3,2,1,0

1

� �5,4,3,2,1,0
2

� �6,5,4,3,2,1,0
2,1

�

For k ≥ 1, let ζ I
k ,ζ II

k be the unipotent cuspidal characters of Oεk

2k2 (q)where εk = (−1)k

such that (ζk ,ζ II
k ) and (ζk ,ζ I

k+1) occur in the Howe correspondence (cf. [AM93]). Then
we have ζ I

k = ρΛ′k and ζ II
k = ρΛ′tk where

(3.7) Λ′k =
(�2k−1,2k−2,...,1,0

−
�
, if k is even;� −

2k−1,2k−2,...,1,0

�
, if k is odd.

Note that def(Λ′k ) = (−1)k2k.

Example 3.8. Suppose that G =Oεk

2k2+2t where εk = (−1)k , L =Oεk

2k2 ×Tt where Tt is
t -copies of GL1. For k ≥ 1, the irreducible constituents ρΛ in each RG

L (ζ
I

k ), RG
L (ζ

II
k ) are

parametrized respectively by:

Sk2+t ,(−1)k 2k = {Λ | def(Λ) = (−1)k2k , Υ (Λ) ∈P2(t )},
Sk2+t ,(−1)k+12k = {Λ | def(Λ) = (−1)k+12k , Υ (Λ) ∈P2(t )}.
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For the cases that k = 0,1,2 and t = 0,1,2 those Λ are given by the table:

t 0 1 2
k Υ (Λ)

�−
−
� �1

−
� �−

1

� � 2
−
� �1,1

−
� �1

1

� �−
2

� � −
1,1

�
0 Λ

�−
−
� �1

0

� �0
1

� �2
0

� �2,1
1,0

� �1
1

� �0
2

� �1,0
2,1

�
1 I Λ

� −
1,0

� � 1
2,1,0

� � −
2,0

� � 2
2,1,0

� � 2,1
3,2,1,0

� � 1
3,1,0

� � −
3,0

� � −
2,1

�
II Λ
�1,0
−
� �2,0

−
� �2,1,0

1

� �3,0
−
� �2,1

−
� �3,1,0

1

� �2,1,0
2

� �3,2,1,0
2,1

�
2 I Λ

�3,2,1,0
−
� �4,2,1,0

−
� �4,3,2,1,0

1

� �5,2,1,0
−
� �4,3,1,0

−
� �5,3,2,1,0

1

� �4,3,2,1,0
2

� �5,4,3,2,1,0
2,1

�
II Λ
� −

3,2,1,0

� � 1
4,3,2,1,0

� � −
4,2,1,0

� � 2
4,3,2,1,0

� � 2,1
5,4,3,2,1,0

� � 1
5,3,2,1,0

� � −
5,2,1,0

� � −
4,3,1,0

�
Following the notation in [AMR96], let Θζk ,ζ II

k
and Θζk ,ζ I

k+1
be the mappings between

bi-partitions defined in [AMR96] p.383. (Note that ζk is denoted by λk in [AMR96], etc.)
Moreover, let xi , x∗i and X ,X ∗ be the notations used in [AMR96] p.383. Then [AMR96]
conjecture 3.11 describes the correspondence in terms of bi-partitions “φ�ψ” by

• the relation Θζk ,ζ II
k

is given by φ�ψ 7→X ∗(φ)�Xψ; and
• the relation Θζk ,ζ I

k+1
is given by φ�ψ 7→Xφ�X ∗(ψ).

Proposition 3.9. Keep the notations as above. If we apply the identification

(3.10)
�
φ

ψ

�
7→
(
φ�ψ, if def(Λ)> 0;

ψ�φ, if def(Λ)≤ 0

where
�φ
ψ

�
= Υ (Λ), then the statement in Theorem 1.8 is equivalent to the statement in

[AMR96] conjecture 3.11.

Proof. For k ≥ 0, we define

Bζk ,ζ II
k
=
¨
(Λ,Λ′) ∈ ⋃

n,n′≥0

BSp2n ,O
εk
2n′
| def(Λ) = (−1)k (2k + 1)

«
;

Bζk ,ζ I
k+1
=
¨
(Λ,Λ′) ∈ ⋃

n,n′≥0

BSp2n ,O
εk+1
2n′
| def(Λ) = (−1)k (2k + 1)

«
.

Now we want to show that the description of Howe correspondence in terms ofBζk ,ζ II
k

and Bζk ,ζ I
k+1

is equivalent to the description in terms of Θζk ,ζ II
k

and Θζk ,ζ I
k+1

respectively
under the identification in (3.10).

For two symbols Λ,Λ′ we write
�φ
ψ

�
= Υ (Λ) and
�φ′
ψ′
�
= Υ (Λ′). First we consider the

correspondencesBζk ,ζ II
k

and Θζk ,ζ II
k

.

(1) Suppose that k is even. Then εk =+. Now (Λ,Λ′) ∈Bζk ,ζ II
k

if and only if
• def(Λ) = 2k + 1 and def(Λ′) =−2k
• ψ′ ´φ and ψ´φ′

Now def(Λ) > 0 and def(Λ′) ≤ 0, so by (3.10) we have the identifications
�φ
ψ

� 7→
φ�ψ and
�φ′
ψ′
� 7→ψ′�φ′. Then it is not difficult to see that the conditionψ′ ´φ

and ψ ´ φ′ is equivalent to the condition ψ′ � φ′ = x∗i (φ) � x j (ψ) for some
i , j ≥ 0.

(2) Suppose that k is odd. Then εk =−. Now (Λ,Λ′) ∈Bζk ,ζ II
k

if and only if
• def(Λ) =−2k − 1 and def(Λ′) = 2k
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• φ′ ´ψ and φ´ψ′
Now def(Λ) < 0 and def(Λ′) > 0, so we have

�φ
ψ

� 7→ ψ�φ and
�φ′
ψ′
� 7→ φ′ �ψ′.

Then the condition φ′ ´ ψ and φ ´ ψ′ is equivalent to the condition φ′�ψ′ =
x∗i (ψ)� x j (φ) for some i , j ≥ 0.

Next we consider the correspondencesBζk ,ζ I
k+1

and Θζk ,ζ I
k+1

.

(3) Suppose that k is even. Then εk+1 =−. Now (Λ,Λ′) ∈Bζk ,ζ I
k+1

if and only if

• def(Λ) = 2k + 1 and def(Λ′) =−2(k + 1)
• φ′ ´ψ and φ´ψ′

Now def(Λ) > 0 and def(Λ′) ≤ 0, so we have
�φ
ψ

� 7→ φ�ψ and
�φ′
ψ′
� 7→ ψ′ �φ′.

Then the condition φ′ ´ ψ and φ ´ ψ′ is equivalent to the condition ψ′�φ′ =
xi (φ)� x∗j (ψ) for some i , j ≥ 0.

(4) Suppose that k is odd. Then εk+1 =+. Now (Λ,Λ′) ∈Bζk ,ζ I
k+1

if and only if

• def(Λ) =−2k − 1 and def(Λ′) = 2(k + 1)
• ψ′ ´φ and ψ´φ′

Now def(Λ) < 0 and def(Λ′) > 0, so we have
�φ
ψ

� 7→ ψ�φ and
�φ′
ψ′
� 7→ φ′ �ψ′.

Then the condition ψ′ ´ φ and ψ ´ φ′ is equivalent to the condition φ′�ψ′ =
xi (ψ)� x∗j (φ) for some i , j ≥ 0.

Hence the proposition is proved. □

4. CELLS FOR A SYMPLECTIC GROUP OR AN EVEN ORTHOGONAL GROUP

In this section, we provide several technical lemmas which are needed in the next two
sections.

4.1. Consecutive pairs. Let G = Sp2n or Oε
2n where ε = + or −, and let Z be a special

symbol of rank n, ZI the subsymbol of singles of Z .
A pair
�s

t

�⊂ ZI is called consecutive if there is no other entries in Z lying between s and
t i.e., there is no entry x in Z such that s < x < t or t < x < s . For a set of (disjoint)
consecutive pairs Ψ0 in ZI, we define:

SZ ,Ψ0
= {ΛM |M ≤ Ψ0 },

S Ψ0
Z =S G,Ψ0

Z = {ΛM ∈S G
Z |M ⊂ ZIrΨ0 }

(4.1)

where M ≤ Ψ0 means that M is a subset of pairs in Ψ0 and is regarded as a subsymbol of
ZI. If Ψ0 = ;, it is clear that SZ ,Ψ0

= {Z} and S Ψ0
Z = S G

Z . If M ≤ Ψ0, then |M ∗| = |M∗|
and hence def(ΛM ) = def(Z). Therefore SZ ,Ψ0

⊂ SZ ,1 if def(Z) = 1; and SZ ,Ψ0
⊂ SZ ,0 if

def(Z) = 0. Suppose that δ = deg(Z) and δ0 is the number of pairs in Ψ0. Then it is not
difficult to see that

|SZ ,Ψ0
|= 2δ0 ,

|S Ψ0
Z |=


22(δ−δ0), if def(Z) = 1;

22(δ−δ0)−1, if def(Z) = 0, and δ >δ0;

1, if def(Z) = 0, δ = δ0, and ε=+;

0, if def(Z) = 0, δ = δ0, and ε=−.

(4.2)

Note that if Λ1 ∈S Ψ0
Z and Λ2 ∈SZ ,Ψ0

, then Λ1+Λ2 is in S G
Z .



14 SHU-YEN PAN

Remark 4.3. Note that S G,Ψ0
Z is always a subset of S G

Z ; and SZ ,Ψ0
is a subset of S G

Z if

G= Sp2n or O+2n . However, SZ ,Ψ0
is a subset of S O+2n

Z even if G=O−2n .

Lemma 4.4. Let G= Sp2n or O+2n , Z a special symbol of rank n, Ψ0 a set of consecutive pairs
in ZI. Then SZ ,Ψ0

∩S G,Ψ0
Z = {Z}.

Proof. Because now we assume that G= Sp2n or O+2n , both SZ ,Ψ0
and S G,Ψ0

Z are subsets

of S G
Z . Suppose that ΛM ∈ SZ ,Ψ0

∩S G,Ψ0
Z for some M ⊂ ZI. From (4.1), we see that the

only possible M is the empty set, and so ΛM = Z . □

Example 4.5. Let G = Oε
8, and let Z =
�3,1

2,0

�
. Now ZI = Z , and

��1
0

�	
,
��1

2

�	
,
��3

2

�	
, and��3

2

�
,
�1

0

�	
are the possible nonempty set of consecutive pairs Ψ0 in ZI. Then we have

ε Ψ0

��1
0

�	 ��1
2

�	 ��3
2

�	 ��3
2

�
,
�1

0

�	
SZ ,Ψ0

��3,1
2,0

�
,
�3,0

2,1

�	 ��3,1
2,0

�
,
�3,2

1,0

�	 ��3,1
2,0

�
,
�2,1

3,0

�	 ��3,1
2,0

�
,
�3,2

1,0

�
,
�3,0

2,1

�
,
�2,0

3,1

�	
+ S G,Ψ0

Z

��3,1
2,0

�
,
�2,1

3,0

�	 ��3,1
2,0

�
,
�1,0

3,2

�	 ��3,1
2,0

�
,
�3,0

2,1

�	 ��3,1
2,0

�	
− S G,Ψ0

Z

��3,2,1
0

�
,
� 1

3,2,0

�	 ��3,1,0
2

�
,
� 1

3,2,0

�	 ��3,1,0
2

�
,
� 3

2,1,0

�	 ;
Let us give an example to see how to compute this table. If Ψ0 =

��1
0

�	
and ε = −, then

the possible subsymbols M of ZIrΨ0 =
�3

2

�
with odd number of entries are

�−
2

�
and
�3
−
�
,

and so the possible ΛM are
�3,2,1

0

�
and
� 1

3,2,0

�
. Hence S G,Ψ0

Z =
��3,2,1

0

�
,
� 1

3,2,0

�	
. Note that

SZ ,Ψ0
does not depend on ε.

Lemma 4.6. Let Ψ0 be a set of consecutive pairs in ZI. Suppose that Λ1,Λ′1 ∈ S G,Ψ0
Z and

Λ2,Λ′2 ∈SZ ,Ψ0
. If ρΛ1+Λ2

= ρΛ′1+Λ′2 , then Λ1 = Λ
′
1 and Λ2 = Λ

′
2.

Proof. If ρΛ1+Λ2
= ρΛ′1+Λ′2 , then Λ1+Λ2 = Λ

′
1+Λ

′
2. Note that Λ+Z = Λ and Λ+Λ= Z

for any Λ ∈S G
Z . Therefore we have

Λ1+Λ
′
1 = Λ1+Λ2+Λ

′
1+Λ2 = Λ

′
1+Λ

′
2+Λ

′
1+Λ2 = Λ2+Λ

′
2.

(1) Suppose that G= Sp2n or O+2n . Note that bothSZ ,Ψ0
andS G,Ψ0

Z are closed under

addition and SZ ,Ψ0
∩S G,Ψ0

Z = {Z} by Lemma 4.4.
(2) Suppose that G = O−2n . Now SZ ,Ψ0

⊂ SO+2n
and is still closed under addition.

Moreover, Λ1+Λ
′
1 ∈S O+2n ,Ψ0

Z , and SZ ,Ψ0
∩S O+2n ,Ψ0

Z = {Z} by Lemma 4.4, again.

Therefore, for both (1) and (2), we conclude that Λ1 +Λ
′
1 = Z , i.e., Λ1 = Λ

′
1 + Z = Λ′1.

Similarly, we have Λ2 = Λ
′
2. □

4.2. Cells. We first recall the notion of “cells” by Lusztig from [Lus81] and [Lus82].
Let Z be a special symbol with symbol of singles ZI, and let δ = deg(Z). Then we have
|ZI|= 2δ + def(Z) from Subsection 2.2.

(1) If Z is of defect 1, then an arrangement of ZI is defined to be a partition Φ of the
2δ+1 singles in ZI into δ (disjoint) pairs and one isolated element such that each
pair contains one entry in the first row and one entry in the second row of ZI.

(2) If Z is of defect 0, then an arrangement of ZI is defined to be a partition Φ of the
2δ singles in ZI into δ pairs such that each pair contains one entry in the first
row and one entry in the second row of ZI.
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A set Ψ of some pairs (possibly empty) in Φ is called a subset of pairs of Φ and is denoted
by Ψ ≤ Φ. Note that if Ψ ≤ Φ, then Ψ does not contain the isolated element in the
arrangementΦ. A subset of pairsΨ of an arrangementΦ of ZI can be regarded a subsymbol
of ZI, and as usual let Ψ∗ (resp. Ψ∗) denote the set of entries in the first (resp. second) row
in Ψ.

Example 4.7. The symbol Z =
�4,2,0

3,1

�
is a special symbol of rank 6 and defect 1, and

ZI = Z . The following are all possible arrangements of ZI:

Φ1 =
��4

3

�
,
�2

1

�
,
�0
−
�	

, Φ2 =
��4

1

�
,
�2

3

�
,
�0
−
�	

, Φ3 =
�� 4
−
�
,
�2

3

�
,
�0

1

�	
,

Φ4 =
�� 4
−
�
,
�2

1

�
,
�0

3

�	
, Φ5 =
��4

3

�
,
�2
−
�
,
�0

1

�	
, Φ6 =
��4

1

�
,
�2
−
�
,
�0

3

�	
.

Each Φi has 4 subsets of pairs, for example,

{Ψ | Ψ ≤ Φ1 }=
�;,��43�	,��21�	,��43�, �21�		 .

Each Ψ is regarded as a subsymbol of ZI, and so we have

{Ψ | Ψ ≤ Φ1 }=
�;, �43�, �21�, �4,2

3,1

�	
.

For a subset of pairs Ψ of an arrangement Φ of ZI, recall that the following uniform
class function on G is defined in [Lus81]:

(4.8) Rc = Rc(Z ,Φ,Ψ) =
∑
Ψ ′≤Φ
(−1)|(ΦrΨ)∩Ψ ′∗|RΛΨ′

where ΛΨ ′ = (ZrΨ ′)∪Ψ ′t is defined as in (2.4), and (ΦrΨ)∩Ψ ′∗ is understood to be the
set of entries ((ΦrΨ)∗∪ (ΦrΨ)∗)∩Ψ ′∗. Note that def(ΛΨ ′ ) = def(Z), and RΛΨ′ = RG

ΛΨ′
is

given in Subsection 3.2 and Subsection 3.3.

Remark 4.9. Our notation is slightly different from that in [Lus81] and [Lus82]. More
precisely, the uniform class function Rc(Z ,Φ,Ψ) in (4.8) is denoted by R(c(Z ,Φ,ΦrΨ)) in
[Lus81] and [Lus82].

For a subset of pairs Ψ of an arrangement Φ of ZI,

• if def(Z) = 1, we define

(4.10) CΦ,Ψ = {ΛM ∈SZ | |M ∩Ψ ′| ≡ |(ΦrΨ)∩Ψ ′∗| (mod 2) for all Ψ ′ ≤ Φ};
• if def(Z) = 0, we define

(4.11) CΦ,Ψ = {ΛM |M ⊂ ZI, |M ∩Ψ ′| ≡ |(ΦrΨ)∩Ψ ′∗| (mod 2) for all Ψ ′ ≤ Φ}.
Such a set CΦ,Ψ is called a cell. From the definition it is not difficult to see that a symbol
ΛM is in CΦ,Ψ if and only if the subsymbol M of ZI satisfies the following two conditions:

• M contains either none or two entries of each pair in Ψ; and
• M contains exactly one entry of each pair in ΦrΨ.

In particular, it is clear from the definition that if Ψ consists of all pairs in Φ, then we have

(4.12) CΦ,Ψ = {ΛM |M ≤ Φ}.
Remark 4.13. (1) Suppose that Z is of rank n and defect 1 and ΛM ∈ CΦ,Ψ ⊂S Sp2n

Z
for some Φ,Ψ. The requirement that |M | is even (cf. (2.6)) implies that M must
contain the isolated element in the arrangement Φ if Φr Ψ consists of an odd
number of pairs; and M does not contain the isolated element if ΦrΨ consists of
an even number of pairs.
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(2) Suppose that Z is of rank n and defect 0. We shall see in Lemma 4.32 that CΦ,Ψ ⊂
S O+2n

Z if Φr Ψ consists of an even number of pairs; and CΦ,Ψ ⊂ S O−2n
Z if Φr Ψ

consists of an odd number of pairs.

Example 4.14. Suppose that Z =
�4,2,0

3,1

�
, Φ= {�4−�, �23�, �01�} and Ψ = {�01�}. There are four

possible M ⊂ ZI that satisfies the condition in (4.10), namely,
�4,2,0

1

�
,
�4,2
−
�
,
�4,0

3,1

�
and
�4

3

�
, and

resulting ΛM are
� 1

4,3,2,0

�
,
� 0

4,3,2,1

�
,
�3,2,1

4,0

�
and
�3,2,0

4,1

�
respectively, i.e.,

CΦ,Ψ =
�� 1

4,3,2,0

�
,
� 0

4,3,2,1

�
,
�3,2,1

4,0

�
,
�3,2,0

4,1

�	
.

Lemma 4.15. Suppose that both ΛM1
,ΛM2

are in CΦ,Ψ for some arrangement Φ of ZI and
some Ψ ≤ Φ. Then

|M1 ∩Ψ ′| ≡ |M2 ∩Ψ ′| (mod 2)

for any Ψ ′ ≤ Φ.

Proof. Suppose that ΛM1
,ΛM2
∈CΦ,Ψ . Then by (4.10) or (4.11) we have

|M1 ∩Ψ ′| ≡ |(ΦrΨ)∩Ψ ′∗| ≡ |M2 ∩Ψ ′| (mod 2)

for all subsets Ψ ′ of pairs of Φ. □

Lemma 4.16. Let Z be a special symbol, Φ an arrangement of ZI, Ψ0 a subset of consecutive
pairs, and Λ ∈S Ψ0

Z . If Λ ∈CΦ,Ψ for some Ψ ≤ Φ, then Ψ0 ≤ Ψ .

Proof. Suppose that Λ= ΛM for some M ⊂ ZIrΨ0, i.e., M ∩Ψ0 = ;. From the rule before
Remark 4.13, the assumption Λ ∈ CΦ,Ψ implies that M contains exactly one entry from
each pair in ΦrΨ. Therefore we must have Ψ0 ≤ Ψ. □

4.3. Cells for a symplectic group. In this subsection, let G= Sp2n , and let Z be a special
symbol of rank n and defect 1.

Lemma 4.17. Let Z be a special symbol of defect 1, Φ a fixed arrangement of ZI, Ψ,Ψ ′ subsets
of pairs of Φ. Then

(i) |CΦ,Ψ |= 2deg(Z);
(ii) if Ψ 6= Ψ ′, then CΦ,Ψ ∩CΦ,Ψ ′ = ;;

(iii) SZ =
⋃
Ψ≤ΦCΦ,Ψ .

Proof. Let z0 denote the isolated element in Φ. Suppose that ΛM is an element of CΦ,Ψ .
From the conditions before Remark 4.13, we can write M = M1 ∪M2 where M1 consists
of exactly one element from each pair of ΦrΨ and possibly z0 so that |M1| is even, and
M2 consists of some pairs from Ψ.

Let δ = deg(Z). Suppose that Ψ consists of δ ′ pairs for some δ ′ ≤ δ. So we have 2δ
′

possible choices for M2. We have 2δ−δ ′ choices when we chose one element from each
pair in ΦrΨ and we have two choices to choose z0 or not. However, the requirement
that |M1| is even implies that the possible choices of M1 is exactly 2δ−δ ′ . Thus the total
choices for M is 2δ

′ · 2δ−δ ′ = 2δ and hence (i) is proved.
Suppose Ψ 6= Ψ ′ and ΛM ∈ CΦ,Ψ ∩CΦ,Ψ ′ for some M ⊂ ZI. Without loss of generality,

we may assume that Ψ 6⊆ Ψ ′, so there is a pair
�s

t

� ∈ Φ such that
�s

t

� ∈ Ψ and
�s

t

� 6∈ Ψ ′. By
the two conditions before Remark 4.13, ΛM ∈ CΦ,Ψ implies that |M ∩ �st�| = 0 or 2, and
ΛM ∈CΦ,Ψ ′ implies that |M ∩ �st�|= 1. We get a contradiction and hence (ii) is proved.

We know that |SZ |= 22δ from Subsection 2.2, and we have 2δ choices of Ψ for a fixed
arrangement Φ. Therefore (iii) follows from (i) and (ii) directly. □
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Proposition 4.18. Let G = Sp2n , Z a special symbol of rank n and defect 1, Φ an arrange-
ment of ZI and Ψ ≤ Φ. Then

Rc(Z ,Φ,Ψ) =
∑
Λ∈CΦ,Ψ

ρΛ.

In particular, the class function
∑
Λ∈CΦ,Ψ

ρΛ is uniform.

Proof. Let ΛM be a symbol in CΦ,Ψ . From Proposition 3.2, we have

〈ρΛM
, RΛΨ′ 〉=

1
2δ
(−1)|M∩Ψ ′|

where δ = deg(Z) and Ψ ′ ≤ Φ. Then by (4.8) and (4.10), we have

〈ρΛM
, Rc(Z ,Φ,Ψ)〉= 1

2δ
∑
Ψ ′≤Φ
(−1)|(ΦrΨ)∩Ψ ′∗|(−1)|M∩Ψ ′| = 1

2δ
∑
Ψ ′≤Φ

1= 1.

This means ρΛ occurs with multiplicity one in Rc(Z ,Φ,Ψ) for each Λ ∈CΦ,Ψ . From [Lus81]
theorem 5.6 we know that Rc(Z ,Φ,Ψ) is a sum of 2δ distinct irreducible characters of G and
CΦ,Ψ has also 2δ elements. As all the ρΛ are non-isomorphic, the result follows. □

Example 4.19. Let Z =
�2,0

1

�
, a special symbol of rank 2 and defect 1. Now ZI = Z has

two possible arrangements Φ, namely
��2

1

�
,
�0
−
�	

and
��0

1

�
,
�2
−
�	

; and each arrangement Φ
has two subsets of pairs Ψ, namely the only pair in Φ and the empty symbol

�−
−
�
. So we

have the following table:

Φ Ψ Rc(Z ,Φ,Ψ)
∑
Λ∈CΦ,Ψ

ρΛ��2
1

�
,
�0
−
�	 �2

1

�
R(2,0

1 ) +R(1,0
2 ) ρ(2,0

1 ) +ρ(1,0
2 )�−

−
�

R(2,0
1 )−R(1,0

2 ) ρ(2,1
0 ) +ρ( −2,1,0)��0

1

�
,
�2
−
�	 �0

1

�
R(2,0

1 ) +R(2,1
0 ) ρ(2,0

1 ) +ρ(2,1
0 )�−

−
�

R(2,0
1 )−R(2,1

0 ) ρ(1,0
2 ) +ρ( −2,1,0)

The equality between Rc(Z ,Φ,Ψ) and
∑
Λ∈CΦ,Ψ

ρΛ can easily be seen from the identities in
Example 3.3.

Remark 4.20. Note that in [Lus81] theorem 5.6, the cardinality q of the base field is as-
sumed to be large, however, according the comment by the end of [Lus82] the restriction
is removed by a result of Asai.

Remark 4.21. If Ψ consists of all pairs in Φ, then (ΦrΨ)∩Ψ ′∗ = ; and (−1)|(ΦrΨ)∩Ψ ′∗| = 1
for any Ψ ′ ≤ Φ, and by (4.12) the identity in Proposition 4.18 becomes∑

Ψ ′≤Φ
RΛΨ′ =
∑
Ψ ′≤Φ

ρΛΨ′ .

Lemma 4.22. Suppose that Z is a special symbol of defect 1 with ZI =
�s1,s2,...,sδ+1

t1,t2,...,tδ

�
where

δ = deg(Z). Let Φ1,Φ2 be two arrangements of ZI given by

Φ1 =
��s1

t1

�
,
�s2

t2

�
, · · · , �sδtδ�, �sδ+1−
�	

, Φ2 =
��s1−
�
,
�s2

t1

�
,
�s3

t2

�
, · · · , �sδ+1

tδ

�	
.

Then for any Ψ1 ≤ Φ1 and any Ψ2 ≤ Φ2, we have |CΦ1,Ψ1
∩CΦ2,Ψ2

|= 1.

Proof. Let Ψ1 ≤ Φ1 and Ψ2 ≤ Φ2. Suppose that ΛM is in the intersection CΦ1,Ψ1
∩CΦ2,Ψ2

for
some M ⊂ ZI with |M | even. From the two conditions before Remark 4.13, we have the
following inferences:
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(1) if si ∈M and
�si

ti

�≤ Ψ1, then ti ∈M ;

(2) if si 6∈M and
�si

ti

�≤ Ψ1, then ti 6∈M ;

(3) if si ∈M and
�si

ti

� 6≤ Ψ1, then ti 6∈M ;

(4) if si 6∈M and
�si

ti

� 6≤ Ψ1, then ti ∈M ;

(5) if ti ∈M and
�si+1

ti

�≤ Ψ2, then si+1 ∈M ;

(6) if ti 6∈M and
�si+1

ti

�≤ Ψ2, then si+1 6∈M ;

(7) if ti ∈M and
�si+1

ti

� 6≤ Ψ2, then si+1 6∈M ;

(8) if ti 6∈M and
�si+1

ti

� 6≤ Ψ2, then si+1 ∈M

for i = 1, . . . ,δ. This means that for any fixed Ψ1,Ψ2, the set M is uniquely determined
by the “initial condition” whether s1 belongs to M or not. So now there are two possible
choices of M one of which contains s1 and the other does not. Moreover, from (1)–(8)
above, it is easy to see that both possible choices of M are complement subsets to each
other in ZI, i.e., the two possible choices of M form a partition of ZI. Moreover, among
the two possible choices of M , there is only one whose cardinality is even, and hence the
lemma is proved. □

Lemma 4.23. Let Z be a special symbol of defect 1, and let Φ1,Φ2 be the two arrangements
of ZI given in Lemma 4.22. For any given Λ ∈ SZ , there exist Ψ1 ≤ Φ1 and Ψ2 ≤ Φ2 such
that CΦ1,Ψ1

∩CΦ2,Ψ2
= {Λ}.

Proof. Let Λ ∈SZ , and let Φ1,Φ2 be the two arrangements given in Lemma 4.22. By (iii)
of Lemma 4.17, there is a subset of pairs Ψi of Φi such that Λ ∈ CΦi ,Ψi

for i = 1,2, i.e.,
Λ ∈CΦ1,Ψ1

∩CΦ2,Ψ2
. Then the lemma follows from Lemma 4.22 immediately. □

Example 4.24. Let Z =
�6,4,2,0

5,3,1

�
. Then Z is a special symbol of defect 1 and degree 3, and

ZI = Z . Now Φ1 =
��6

5

�
,
�4

3

�
,
�2

1

�
,
�0
−
�	

and Φ2 =
��4

5

�
,
�2

3

�
,
�0

1

�
,
�6
−
�	

are two arrangements in
Lemma 4.22. We have the following table:�−

−
� �4

5

� �2
3

� �0
1

� �4,2
5,3

� �2,0
3,1

� �4,0
5,1

� �4,2,0
5,3,1

��−
−
� � −

6,5,4,3,2,1,0

� � 6,5
4,3,2,1,0

� �6,5,4,3
2,1,0

� �6,5,4,3,2,1
0

� � 4,3
6,5,2,1,0

� � 2,1
6,5,4,3,0

� �4,3,2,1
6,5,0

� �6,5,2,1
4,3,0

��6
5

� �5,4,3,2,1,0
6

� �6,4,3,2,1,0
5

� �6,2,1,0
5,4,3

� � 6,0
5,4,3,2,1

� �5,2,1,0
6,4,3

� �5,4,3,0
6,2,1

� � 5,0
6,4,3,2,1

� �6,4,3,0
5,2,1

��4
3

� �3,2,1,0
6,5,4

� �6,5,3,2,1,0
4

� �6,5,4,2,1,0
3

� �6,5,4,0
3,2,1

� �4,2,1,0
6,5,3

� � 3,0
6,5,4,2,1

� � 4,0
6,5,3,2,1

� �6,5,3,0
4,2,1

��2
1

� � 1,0
6,5,4,3,2

� �6,5,1,0
4,3,2

� �6,5,4,3,1,0
2

� �6,5,4,3,2,0
1

� �4,3,1,0
6,5,2

� � 2,0
6,5,4,3,1

� �4,3,2,0
6,5,1

� �6,5,2,0
4,3,1

��6,4
5,3

� � 5,4
6,3,2,1,0

� � 6,4
5,3,2,1,0

� � 6,3
5,4,2,1,0

� �6,3,2,1
5,4,0

� � 5,3
6,4,2,1,0

� �5,4,2,1
6,3,0

� �5,3,2,1
6,4,0

� �6,4,2,1
5,3,0

��4,2
3,1

� � 3,2
6,5,4,1,0

� �6,5,3,2
4,1,0

� �6,5,4,2
3,1,0

� �6,5,4,1
3,2,0

� � 4,2
6,5,3,1,0

� � 3,1
6,5,4,2,0

� � 4,1
6,5,3,2,0

� �6,5,3,1
4,2,0

��6,2
5,1

� �5,4,3,2
6,1,0

� �6,4,3,2
5,1,0

� � 6,2
5,4,3,1,0

� � 6,1
5,4,3,2,0

� � 5,2
6,4,3,1,0

� �5,4,3,1
6,2,0

� � 5,1
6,4,3,2,0

� �6,4,3,1
5,2,0

��6,4,2
5,3,1

� �5,4,1,0
6,3,2

� �6,4,1,0
5,3,2

� �6,3,1,0
5,4,2

� �6,3,2,0
5,4,1

� �5,3,1,0
6,4,2

� �5,4,2,0
6,3,1

� �5,3,2,0
6,4,1

� �6,4,2,0
5,3,1

�
In the leftmost column are all 8 possible subset of pairs Ψ1 ≤ Φ1, and in the topmost row
are all 8 possible Ψ2 ≤ Φ2. The 8 symbols in the row indexed by Ψ1 are the elements in
CΦ1,Ψ1

, and the 8 symbols in the column indexed by Ψ2 are the elements in CΦ2,Ψ2
. For

example if Ψ1 =
�6

5

�
, then

CΦ1,Ψ1
=
��5,4,3,2,1,0

6

�
,
�6,4,3,2,1,0

5

�
,
�6,2,1,0

5,4,3

�
,
� 6,0

5,4,3,2,1

�
,
�5,2,1,0

6,4,3

�
,
�5,4,3,0

6,2,1

�
,
� 5,0

6,4,3,2,1

�
,
�6,4,3,0

5,2,1

�	
.

From the table we can conclude that |CΦ1,Ψ1
∩CΦ2,Ψ2

|= 1 for anyΨ1 ≤ Φ1 and anyΨ2 ≤ Φ2.
Note that the 64 symbols in the above table are all the symbols in thisSZ . Here we give an
example to show how to compute this table following the rule in the proof of Lemma 4.22.
Suppose that Ψ1 =

��2
1

�	
and Ψ2 =
��4

5

�
,
�2

3

�	
, and suppose that ΛM ∈ CΦ1,Ψ1

∩CΦ2,Ψ2
for

some M ⊂ ZI with |M | even.
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• If 6 ∈ M , now
�6

5

� 6≤ Ψ1, so 5 6∈ M by (3); now
�4

5

� ≤ Ψ2, so 4 6∈ M by (6); now�4
3

� 6≤ Ψ1, so 3 ∈ M by (4); now
�2

3

�≤ Ψ2, so 2 ∈ M by (5); now
�2

1

�≤ Ψ1, so 1 ∈ M
by (1); now
�1

0

� 6≤ Ψ2, so 0 6∈M by (7), then we obtain M =
�6,2

3,1

�
.

• If 6 6∈ M , now
�6

5

� 6≤ Ψ1, so 5 ∈ M by (4); now
�4

5

� ≤ Ψ2, so 4 ∈ M by (5); now�4
3

� 6≤ Ψ1, so 3 6∈ M by (3); now
�2

3

�≤ Ψ2, so 2 6∈ M by (6); now
�2

1

�≤ Ψ1, so 1 6∈ M
by (2); now
�1

0

� 6≤ Ψ2, so 0 ∈M by (8), then we obtain M =
�4,0

5

�
.

Now
�6,2

3,1

�
,
�4,0

5

�
are the only two subsymbols M of ZI satisfying the two conditions be-

fore (4.12) for both Ψ1 =
��2

1

�	 ≤ Φ1 =
��6

5

�
,
�4

3

�
,
�2

1

�
,
�0
−
�	

and Ψ2 =
��4

5

�
,
�2

3

�	 ≤ Φ2 =�� 6
−
�
,
�4

5

�
,
�2

3

�
,
�0

1

�	
. However, we need |M | to be even to make ΛM ∈ SZ . So we conclude

that
�4,3,1,0

6,5,2

�
= Λ(6,2

3,1) is the only symbol in this intersection CΦ1,Ψ1
∩CΦ2,Ψ2

.

Lemma 4.25. Let Z be a special symbol of defect 1, and let Λ1,Λ2 be two distinct symbols in
SZ . There exists an arrangement Φ of ZI with two subsets of pairs Ψ1,Ψ2 such that Λi ∈CΦ,Ψi

for i = 1,2 and CΦ,Ψ1
∩CΦ,Ψ2

= ;.
Proof. Suppose that Λ1 = ΛM1

and Λ2 = ΛM2
for M1, M2 ⊂ ZI. Because M1 6=M2 and both

|M1| and |M2| are even, it is clear that we can find a pair Ψ =
�s

t

�
such that one of M1, M2

contains exactly one of the two elements s , t and the other set contains either both s , t
or none, i.e.,

(4.26) |M1 ∩Ψ| 6≡ |M2 ∩Ψ| (mod 2).

LetΦ be any arrangement of ZI that containsΨ as a subset of pairs. By (iii) of Lemma 4.17,
we know that ΛM1

∈ CΦ,Ψ1
and ΛM2

∈ CΦ,Ψ2
for some subsets of pairs Ψ1,Ψ2 of Φ. Then

by Lemma 4.15 and (4.26) we see that Ψ1 6= Ψ2. Finally, by (ii) of Lemma 4.17, we know
that CΦ,Ψ1

∩CΦ,Ψ2
= ;. □

Example 4.27. Let Z =
�6,4,2,0

5,3,1

�
, and keep the notation in Example 4.24. Let Λ,Λ′ be

distinct symbols in SZ . Then Λ,Λ′ must be in different rows or different columns in the
table in Example 4.24. If Λ,Λ′ are in different rows, then we let Φ = Φ1 and we see that
there are two different subsets of pairs Ψ1,Ψ ′1 ≤ Φ such that Λ ∈ CΦ,Ψ1

, Λ′ ∈ CΦ,Ψ ′1
and

of course CΦ,Ψ1
∩ CΦ,Ψ ′1

= ;. If Λ,Λ′ are in different columns, then we let Φ = Φ2 and
we have two different columns CΦ,Ψ2

,CΦ,Ψ ′2
containing Λ,Λ′ respectively, and with empty

intersection.

We need stronger versions of Lemma 4.23 and Lemma 4.25.

Lemma 4.28. Let Z be a special symbol of defect 1, Φ an arrangement of ZI, Ψ a subset of
pairs in Φ, Ψ0 a set of consecutive pairs in ZI such that Ψ0 ≤ Ψ . Then

CΦ,Ψ = (CΦ,Ψ ∩S Ψ0
Z )+SZ ,Ψ0

:= {Λ1+Λ2 |Λ1 ∈ (CΦ,Ψ ∩S Ψ0
Z ), Λ2 ∈SZ ,Ψ0

}.
Proof. Let ΛM be an element in CΦ,Ψ for some M ⊂ ZI. Then M = M1 ∪M2 where M1 =
M ∩ (ZI r Ψ0) and M2 = M ∩ Ψ0. And we have ΛM = ΛM1

+ ΛM2
since M1 ∩ M2 = ;

(cf. (2.8)). From the requirement of M before Remark 4.13, M needs to contain either
none or two entries from each pair in Ψ0, we see that M2 is a subset of pairs in Ψ0, i.e.,
M2 ≤ Ψ0 and hence ΛM2

∈ SZ ,Ψ0
. Now M1 also satisfies the condition in (4.10), and so

ΛM1
∈ CΦ,Ψ . Moreover, M1 ⊂ ZI r Ψ0 and |M1| is even, so we have ΛM1

∈ S Ψ0
Z . Then

ΛM1
∈ CΦ,Ψ ∩S Ψ0

Z . On the other hand, if ΛM3
∈ CΦ,Ψ ∩S Ψ0

Z and ΛM4
∈ SZ ,Ψ0

for some
M3, M4, then it is obvious that ΛM3

+ΛM4
= ΛM3∪M4

∈CΦ,Ψ . □
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Example 4.29. Suppose that Z =
�4,2,0

3,1

�
, Φ= {�4−�, �23�, �01�} and Ψ0 = Ψ = {

�0
1

�}. Then

SZ ,Ψ0
=
��4,2,0

3,1

�
,
�4,2,1

3,0

�	
, S Ψ0

Z =
��4,2,0

3,1

�
,
�4,3,0

2,1

�
,
�3,2,0

4,1

�
,
� 0

4,3,2,1

�	
Now by Example 4.14, we see that

CΦ,Ψ ∩S Ψ0
Z =
��3,2,0

4,1

�
,
� 0

4,3,2,1

�	
.

Now �3,2,0
4,1

�
+
�4,2,0

3,1

�
=
�3,2,0

4,1

�
,
� 0

4,3,2,1

�
+
�4,2,0

3,1

�
=
� 0

4,3,2,1

�
,�3,2,0

4,1

�
+
�4,2,1

3,0

�
=
�3,2,1

4,0

�
,
� 0

4,3,2,1

�
+
�4,2,1

3,0

�
=
� 1

4,3,2,0

�
,

i.e., we do have CΦ,Ψ = (CΦ,Ψ ∩S Ψ0
Z )+SZ ,Ψ0

.

Lemma 4.30. Let Z be a special symbol of defect 1, and let Ψ0 be a set of consecutive pairs
in ZI. For any given Λ ∈S Ψ0

Z , there exist two arrangements Φ1,Φ2 of ZI with subsets of pairs
Ψ1,Ψ2 respectively such that Ψ0 ≤ Ψi for i = 1,2, and

C \
Φ1,Ψ1
∩C \

Φ2,Ψ2
= {Λ}

where C \
Φi ,Ψi

:=CΦi ,Ψi
∩S Ψ0

Z .

Proof. Because Ψ0 is a set of consecutive pairs in ZI, the symbol Z ′ given by Z ′ = Z rΨ0

is still a special symbol of the same defect and Z ′I = ZI rΨ0. Because Λ ∈ S Ψ0
Z , we can

write Λ = Λ′ ∪Ψ0 (cf. Subsection 2.1) for a unique Λ′ ∈ SZ ′ . Write Z ′I =
�s ′1,s ′2,...,s ′

δ1+1

t ′1,t ′2,...,t ′
δ1

�
and

define

Φ′1 =
n�s ′1

t ′1

�
,
�s ′2

t ′2

�
, · · · , �s ′δ1

t ′
δ1

�
,
�s ′
δ1+1
−
�o

and Φ′2 =
n�s ′1−�, �s ′2t ′1�, �s ′3t ′2�, · · · , �s ′δ1+1

t ′
δ1

�o
.

By Lemma 4.23, we know that there exist sets of pairs Ψ ′1,Ψ ′2 of Φ′1,Φ′2 respectively such
that

CΦ′1,Ψ ′1
∩CΦ′2,Ψ ′2

= {Λ′}.
Now Ψ0 itself can be regarded as an arrangement of itself, so from (4.12) we have

CΨ0,Ψ0
= {ΛN ∈SΨ0

|N ≤ Ψ0 }.
Now let Φi = Φ

′
i ∪Ψ0, Ψi = Ψ

′
i ∪Ψ0 for i = 1,2, so we have Ψ0 ≤ Ψi ≤ Φi for i = 1,2.

From Lemma 4.28, we can see that

CΦi ,Ψi
= {Λ1 ∪Λ2 |Λ1 ∈CΦ′i ,Ψ ′i , Λ2 ∈CΨ0,Ψ0

}.
Therefore

CΦ1,Ψ1
∩CΦ2,Ψ2

= {Λ′ ∪Λ2 |Λ2 ∈CΨ0,Ψ0
},

and hence

C \
Φ1,Ψ1
∩C \

Φ2,Ψ2
=CΦ1,Ψ1

∩CΦ2,Ψ2
∩S Ψ0

Z = {Λ′ ∪Ψ0}= {Λ}.
□

Lemma 4.31. Let Z be a special symbol of defect 1, and let Ψ0 be a set of consecutive pairs in
ZI. Let Λ1,Λ2 be two distinct symbols inS Ψ0

Z . There exists an arrangement Φ of ZI with two
subsets of pairs Ψ1,Ψ2 such that Ψ0 ≤ Ψi and Λi ∈CΦ,Ψi

for i = 1,2, and CΦ,Ψ1
∩CΦ,Ψ2

= ;.
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Proof. Let Z ′ be defined as in the proof of the previous lemma, i.e., Z ′ = ZrΨ0. Then we
known that Λi = Λ

′
i ∪Ψ0 for Λ′i ∈SZ ′ . Clearly, Λ′1,Λ′2 are distinct. Then by Lemma 4.25,

we know that there is an arrangement Φ′ of Z ′ with subsets of pairs Ψ ′1,Ψ ′2 such that
Λ′i ∈CΦ′,Ψ ′i for i = 1,2 and CΦ′,Ψ ′1 ∩CΦ′,Ψ ′2 = ;. Let Φi = Φ

′
i ∪Ψ0, Ψi = Ψ

′
i ∪Ψ0 for i = 1,2.

Then as in the proof of the previous lemma, we can see that

CΦ,Ψ1
∩CΦ,Ψ2

= {Λ1 ∪Λ2 |Λ1 ∈CΦ′1,Ψ ′1
∩CΦ′2,Ψ ′2

, Λ2 ∈CΨ0,Ψ0
}= ;.

□

It is clear that if Ψ0 = ;, then Lemma 4.30 and Lemma 4.31 are reduced to Lemma 4.23
and Lemma 4.25 respectively.

4.4. Cells for an even orthogonal group. In this subsection, let G=Oε
2n for ε=+ or

−, Z a special symbol of rank n and defect 0, Φ an arrangement of ZI, and Ψ ≤ Φ.

Lemma 4.32. If ΦrΨ consists of an even number of pairs, then CΦ,Ψ ⊂S O+2n
Z ; on the other

hand, if ΦrΨ consists of an odd number of pairs, then CΦ,Ψ ⊂S O−2n
Z .

Proof. Suppose that ΛM ∈ CΦ,Ψ for some M ⊂ ZI. Then from the condition before Re-
mark 4.13, we know that M contains exactly one element from each pair in ΦrΨ and
contains either none or two elements in each pair in Ψ. This implies that |M | is odd if
ΦrΨ consists of odd number of pairs; and |M | is even if ΦrΨ consists of even number
of pairs. Hence the lemma follows from the definition in (2.7). □

Example 4.33. Suppose that Z =
�5,3,1

4,2,0

�
, Φ =
��5

4

�
,
�3

2

�
,
�1

0

�	
, and Ψ =
��5

4

�
,
�1

0

�	
. Now Z is

a special symbol of rank 9 and defect 0, and ZI = Z . To construct a subsymbol M of ZI
such that ΛM ∈CΦ,Ψ , we need to choose one element from each pair in ΦrΨ = ��32�	 and
choose a subset of pairs of Ψ. Hence we have 8 possible subsets M , namely,

�3
−
�
,
�3,1

0

�
,
�5,3

4

�
,�5,3,1

4,0

�
,
�−

2

�
,
� 1

2,0

�
,
� 5

4,2

�
,
� 5,1

4,2,0

�
. Hence

CΦ,Ψ =
�� 5,1

4,3,2,0

�
,
� 5,0

4,3,2,1

�
,
� 4,1

5,3,2,0

�
,
� 4,0

5,3,2,1

�
,
�5,3,2,1

4,0

�
,
�5,3,2,0

4,1

�
,
�4,3,2,1

5,0

�
,
�4,3,2,0

5,1

�	
.

Note that ΦrΨ consists of one pair, so CΦ,Ψ ⊂S O−18
Z .

Lemma 4.34. Let Z be a special symbol of rank n and defect 0, Φ a fixed arrangement of ZI,
and Ψ,Ψ ′ subsets of pairs of Φ. Suppose that deg(Z)≥ 1. Then

(i) Λ ∈CΦ,Ψ if and only if Λt ∈CΦ,Ψ ;
(ii) |CΦ,Ψ |= 2deg(Z);

(iii) if Ψ 6= Ψ ′, then CΦ,Ψ ∩CΦ,Ψ ′ = ;;
(iv) we have

S O+2n
Z =
⋃

Ψ≤Φ, #(ΦrΨ) even

CΦ,Ψ and S O−2n
Z =
⋃

Ψ≤Φ, #(ΦrΨ) odd

CΦ,Ψ

where #(ΦrΨ)means the number of pairs in ΦrΨ .

Proof. Suppose that ΛM ∈ CΦ,Ψ for some M ⊂ ZI. Then it is easy to check that (ΛM )
t =

ΛZIrM . It is clear that M satisfies the condition that it consists of exactly one element
from each pair in ΦrΨ and a subset of pairs of Ψ if and only if ZIrM satisfies the same
condition. Hence (i) is proved.

Let δ = deg(Z). From the conditions before Remark 4.13, we can write M =M1∪M2
where M1 consists of exactly one element from each pair ofΦrΨ, and M2 consists of some
pairs from Ψ. Suppose that Ψ contains δ ′ pairs for some δ ′ ≤ δ. So we have 2δ

′
possible
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choices for M2 and 2δ−δ ′ choices for M1. Thus the total choices for M is 2δ
′ · 2δ−δ ′ = 2δ

and hence (ii) is proved.
The proof of (iii) is similar to that of Lemma 4.17.
For any fixed arrangement Φ of ZI, we have

S O+2n
Z ∪S O−2n

Z =
⋃
Ψ≤Φ

CΦ,Ψ

by the same argument of the proof of Lemma 4.17. Then (iv) follows from Lemma 4.32
immediately. □

Let G=Oε
2n where ε=+ or −, and let Z be a special symbol of rank n and defect 0.

A subset of pairs Ψ of an arrangement Φ of ZI is called admissible for Φ if #(ΦrΨ) is even
when ε=+; and #(ΦrΨ) is odd when ε=−.

Proposition 4.35. Let G =Oε
2n , Z a special symbol of rank n and defect 0, Φ an arrange-

ment of ZI with an admissible subset of pairs Ψ . Then

ROε

c(Z ,Φ,Ψ) =
∑
Λ∈CΦ,Ψ

ρΛ.

Proof. If ε =+ and Z is of degree 0, i.e., Z is degenerate, then it is clear that Φ = Ψ = ;,
c(Z ,Φ,Ψ) = CΦ,Ψ = {Z} and RO+

Z = ρZ . If ε = − and Z degenerate, then c(Z ,Φ,Ψ) =
CΦ,Ψ = ;. So the proposition holds if Z is degenerate.

Now suppose that δ = deg(Z) ≥ 1. Let C SOε

Φ,Ψ be a subset of CΦ,Ψ such that C SOε

Φ,Ψ

contains exactly one element from each pair {Λ,Λt} ⊂CΦ,Ψ . Therefore |C SOε

Φ,Ψ |= 2δ−1 by
(ii) of Lemma 4.34. By the argument in the proof of Proposition 4.18, we can show that
〈ρSOε

Λ , RSOε

c(Z ,Φ,Ψ)〉SOε = 1 for every Λ ∈ CΦ,Ψ . Moreover, we know that RSOε

c(Z ,Φ,Ψ) is a sum

of 2δ−1 distinct irreducible characters of SOε(q) by [Lus82] proposition 3.13. Thus we
have

RSOε

c(Z ,Φ,Ψ) =
∑
Λ∈C SOε

Φ,Ψ

ρSOε

Λ ,

and then

ROε

c(Z ,Φ,Ψ) = IndOε

SOεRSOε

c(Z ,Φ,Ψ) =
∑
Λ∈C SOε

Φ,Ψ

IndOε

SOερSOε

Λ =
∑
Λ∈C SOε

Φ,Ψ

(ρΛ+ρΛt ) =
∑
Λ∈CΦ,Ψ

ρΛ.

□

Lemma 4.36. Let Λ1,Λ2 be two symbols in S G
Z such that Λ1 6= Λ2,Λt

2. There exists an
arrangementΦ of ZI with admissible subsets of pairsΨ1,Ψ2 such thatΛi ,Λ

t
i ∈CΦ,Ψi

for i = 1,2
and CΦ,Ψ1

∩CΦ,Ψ2
= ;.

Proof. Suppose that Λ1 = ΛM1
and Λ2 = ΛM2

for M1, M2 ⊂ ZI. The assumption that
Λ1 6= Λ2,Λt

2 means that M1 6= M2 and M1 6= (ZIrM2). Then it is clear that we can find a
pair Ψ =
�s

t

�
in ZI such that one of M1, M2 contains exactly one of the two elements s , t

and the other set contains either both s , t or none, i.e.,

(4.37) |M1 ∩Ψ| 6≡ |M2 ∩Ψ| (mod 2).

LetΦ be any arrangement of ZI that containsΨ as a subset of pairs. By (iv) of Lemma 4.34,
we know that ΛM1

∈ CΦ,Ψ1
and ΛM2

∈ CΦ,Ψ2
for some subsets of pairs Ψ1,Ψ2 of Φ. Then

by Lemma 4.3 and (4.37) we see that Ψ1 6= Ψ2. Finally, by (iii) of Lemma 4.34, we know
that CΦ,Ψ1

∩CΦ,Ψ2
= ;. □
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Example 4.38. Let Z =
�5,3,1

4,2,0

�
. Then Z is a special symbol of rank 9 and defect 0, and

ZI = Z . Let Φ1 = {
�5

4

�
,
�3

2

�
,
�1

0

�}, Φ2 = {
�5

0

�
,
�3

4

�
,
�1

2

�} be two arrangements of ZI.

(1) Suppose that ε=+. Then we have the following table:�5
0

� �3
4

� �1
2

� �5,3,1
4,2,0

��5
4

� �4,3,2,1,0
5

�
,
� 5

4,3,2,1,0

� �5,3,2,1,0
4

�
,
� 4

5,3,2,1,0

� �5,1,0
4,3,2

�
,
�4,3,2

5,1,0

� �5,3,2
4,1,0

�
,
�4,1,0

5,3,2

��3
2

� �5,4,3
2,1,0

�
,
�2,1,0

5,4,3

� �5,4,2,1,0
3

�
,
� 3

5,4,2,1,0

� �5,4,3,1,0
2

�
,
� 2

5,4,3,1,0

� �5,4,2
3,1,0

�
,
�3,1,0

5,4,2

��1
0

� �5,4,3,2,1
0

�
,
� 0

5,4,3,2,1

� �5,4,0
3,2,1

�
,
�3,2,1

5,4,0

� �5,4,3,2,0
1

�
,
� 1

5,4,3,2,0

� �5,4,1
3,2,0

�
,
�3,2,0

5,4,1

��5,3,1
4,2,0

� �5,2,1
4,3,0

�
,
�4,3,0

5,2,1

� �5,3,0
4,2,1

�
,
�4,2,1

5,3,0

� �4,3,1
5,2,0

�
,
�5,2,0

4,3,1

� �5,3,1
4,2,0

�
,
�5,3,1

4,2,0

�
In the leftmost column are the four subsets of odd number of pairs Ψ1 of Φ1
(so that #(Φ1 rΨ1) is even), and in the topmost row are the four subsets of odd
number of pairsΨ2 ofΦ2. The row indexed byΨ1 is the cell CΦ1,Ψ1

and the column
indexed by Ψ2 is the cell CΦ2,Ψ2

, and we see that CΦ1,Ψ1
∩CΦ2,Ψ = {Λ,Λt} for some

Λ ∈S O+18
Z . Note that the 32 symbols in the table are all elements in S O+18

Z .
(2) Suppose that ε=−. Then we have the following table:�−

−
� �5,3

4,0

� �3,1
4,2

� �5,1
2,0

��−
−
� �5,4,3,2,1,0

−
�
,
� −

5,4,3,2,1,0

� �3,2,1,0
5,4

�
,
� 5,4

3,2,1,0

� �5,4,1,0
3,2

�
,
� 3,2

5,4,1,0

� �5,4,3,2
1,0

�
,
� 1,0

5,4,3,2

��5,3
4,2

� �5,2,1,0
4,3

�
,
� 4,3

5,2,1,0

� �4,2,1,0
5,3

�
,
� 5,3

4,2,1,0

� �5,3,1,0
4,2

�
,
� 4,2

5,3,1,0

� �4,3,1,0
5,2

�
,
� 5,2

4,3,1,0

��3,1
2,0

� �5,4,3,0
2,1

�
,
� 2,1

5,4,3,0

� � 3,0
5,4,2,1

�
,
�5,4,2,1

3,0

� �5,4,2,0
3,1

�
,
� 3,1

5,4,2,0

� �5,4,3,1
2,0

�
,
� 2,0

5,4,3,1

��5,1
4,0

� �4,3,2,1
5,0

�
,
� 5,0

4,3,2,1

� �5,3,2,1
4,0

�
,
� 4,0

5,3,2,1

� �5,3,2,0
4,1

�
,
� 4,1

5,3,2,0

� �4,3,2,0
5,1

�
,
� 5,1

4,3,2,0

�
Now the leftmost column are the four subsets of even number of pairs Ψ1 of Φ1,
and the topmost row are the four subsets of even number of pairs Ψ2 of Φ2. The

32 symbols in the table are all elements in S O−18
Z .

Lemma 4.39. Let Z be a special symbol of defect 0, Φ an arrangement of ZI, Ψ an admissible
subset of pairs, Ψ0 an set of consecutive pairs in ZI such that Ψ0 ≤ Ψ. Then

CΦ,Ψ = (CΦ,Ψ ∩S Ψ0
Z )+SZ ,Ψ0

:= {Λ1+Λ2 |Λ1 ∈ (CΦ,Ψ ∩S Ψ0
Z ), Λ2 ∈SZ ,Ψ0

}.
Proof. The proof is similar to that of Lemma 4.28. □

Lemma 4.40. Let Z be a special symbol of defect 0, and let Ψ0 be a set of consecutive pairs in
ZI. LetΛ1,Λ2 be two symbols inS Ψ0

Z such thatΛ1 6= Λ2,Λt
2. There exists an arrangementΦ of

ZI with subsetsΨ1,Ψ2 such thatΨ0 ≤ Ψi andΛi ,Λ
t
i ∈CΦ,Ψi

for i = 1,2, and CΦ,Ψ1
∩CΦ,Ψ2

= ;.
Proof. The proof of the lemma is similar to that of Lemma 4.31 except that we need to
apply Lemma 4.36 instead of Lemma 4.25. □

If Ψ0 = ;, then S G,Ψ0
Z =S G

Z and Lemma 4.40 is reduced to Lemma 4.36.

5. A SYSTEM OF LINEAR EQUATIONS

The purpose of this section is to prove Theorem 5.3. Two special cases are verified in
Subsection 5.2 and Subsection 5.3. The general case is proved in Subsection 5.4. In this
section, let (G,G′) = (Sp2n ,Oε

2n′ ) where ε = + or −, and let Z ,Z ′ be special symbols of
ranks n, n′ and defects 1,0 respectively. Let δ = deg(Z) and δ ′ = deg(Z ′).
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5.1. Decomposition with respect to special symbols. Recall thatVZ , VZ ′ are subspaces
spanned by {ρΛ | Λ ∈ SZ }, {ρΛ′ | Λ′ ∈ SZ ′ } respectively. Let ωZ ,Z ′ denote the orthogo-
nal projection ofωG,G′,1 over VZ ⊗VZ ′ . Then by Proposition 3.2 and Proposition 3.4 we
have

ωG,G′,1 =
∑
Z ,Z ′

ωZ ,Z ′ and ω]
G,G′,1 =
∑
Z ,Z ′

ω]
Z ,Z ′

where Z ,Z ′ run over all special symbols of rank n, n′ and defect 1,0 respectively. More-
over, becauseBG,G′ =

⋃
Z ,Z ′BZ ,Z ′ , we have∑

(Λ,Λ′)∈BG,G′
ρΛ⊗ρΛ′ =
∑
Z ,Z ′

∑
(Λ,Λ′)∈BZ ,Z′

ρΛ⊗ρΛ′ .

Now (1.7) implies that

(5.1) ω]
Z ,Z ′ =
∑

(Λ,Λ′)∈BZ ,Z′
ρ]Λ⊗ρ]Λ′ .

Then, for any uniform class function f ∈ V ]Z ⊗V ]Z ′ , we have

〈 f ,ωZ ,Z ′〉= 〈 f ,ω]
Z ,Z ′〉=


f ,
∑

(Λ,Λ′)∈BZ ,Z′
ρ]Λ⊗ρ]Λ′
·
=


f ,
∑

(Λ,Λ′)∈BZ ,Z′
ρΛ⊗ρΛ′
·

.(5.2)

Now the candidates of the uniform class functions are those construct from the cells
described in Section 4.2.

Theorem 5.3. Let (G,G′) = (Sp2n ,Oε
2n′ ) where ε = + or −1, and let Z ,Z ′ be special

symbols of rank n, n′ and defect 1,0 respectively. Then ρΛ⊗ρΛ′ or ρΛ⊗ρΛ′t occurs inωZ ,Z ′
if and only if (Λ,Λ′) or (Λ,Λ′t) occurs inBZ ,Z ′ .

For Theorem 5.3 there is nothing to prove ifBZ ,Z ′ = ;, so we assume thatBZ ,Z ′ 6= ;.
Then we have DZ ,Z ′ 6= ; by Lemma 2.13. Now we define

DZ ′ := {Λ ∈SZ ,1 | (Λ,Z ′) ∈DZ ,Z ′ };
DZ := {Λ′ ∈SZ ′,0 | (Z ,Λ′) ∈DZ ,Z ′ }.

It is proved in [Pan21] proposition 6.4 that there are subsets of consecutive pairs Ψ0,Ψ ′0
in ZI,Z ′I respectively such that DZ ′ = SZ ,Ψ0

and DZ = SZ ′,Ψ ′0
(cf. (4.1)). Then Ψ0,Ψ ′0 are

called the core of DZ ,Z ′ in ZI,Z ′I respectively.
Suppose thatDZ ,Z ′ 6= ;, and letΨ0,Ψ ′0 be the cores ofDZ ,Z ′ in ZI,Z ′I respectively. Define

B \
Z ,Z ′ =BZ ,Z ′ ∩ (S Ψ0

Z ×S Ψ
′
0

Z ′ ).

Then it is not difficult to check that

(5.4) BZ ,Z ′ = { (Λ1+Λ2,Λ′1+Λ′2) | (Λ1,Λ2) ∈B \
Z ,Z ′ , Λ2 ∈SZ ,Ψ0

, Λ′2 ∈SZ ′,Ψ ′0
}

(cf. [Pan21] (6.4) and (8.1)) andB \
Z ,Z ′ is an one-to-one subrelation ofBZ ,Z ′ . Then from

the proofs of [Pan21] proposition 7.17, we know that either deg(Z ′rΨ ′0) = deg(ZrΨ0)+1
or deg(Z ′rΨ ′0) = deg(Z rΨ0).

Example 5.5. Let (G,G′) = (Sp18,O+18), Z =
�5,3,1

3,1

� ∈SSp18
, and Z ′ =
�5,3,1

4,2,0

� ∈SO+18
. Then

ZI =
�5
−
�
, deg(Z) = 0, |SZ | = 1; Z ′I = Z ′, deg(Z ′) = 3, |S O+18

Z ′ | = 25. All the symbols in

S O+18
Z ′ are listed in Example 4.38. It is not difficult to check that

BZ ,Z ′ =DZ ,Z ′ =
¦
(Z ,Λ′) |Λ′ = �5,3,1

4,2,0

�
,
�5,3,0

4,2,1

�
,
�4,3,1

5,2,0

�
,
�4,3,0

5,2,1

�
,
�5,2,1

4,3,0

�
,
�5,2,0

4,3,1

�
,
�4,2,1

5,3,0

�
,
�4,2,0

5,3,1

�©
.
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Therefore,

DZ ′ = {Z}=SZ ,Ψ0
,

DZ =
��5,3,1

4,2,0

�
,
�5,3,0

4,2,1

�
,
�4,3,1

5,2,0

�
,
�4,3,0

5,2,1

�
,
�5,2,1

4,3,0

�
,
�5,2,0

4,3,1

�
,
�4,2,1

5,3,0

�
,
�4,2,0

5,3,1

�	
=SZ ′,Ψ ′0

,

i.e., Ψ0 = ; and Ψ ′0 =
��5

4

�
,
�3

2

�
,
�1

0

�	
. NowS Ψ0

Z = {Z}, S Ψ ′0Z ′ = {Z ′}, andB \
Z ,Z ′ = {(Z ,Z ′)}.

A non-empty relationBZ ,Z ′ (orDZ ,Z ′ ) is called one-to-one ifΨ0 = Ψ
′
0 = ;, which means

that DZ ′ = {Z} and DZ = {Z ′}. IfBZ ,Z ′ is one-to-one, then from above we know that
either deg(Z ′) = deg(Z) + 1 or deg(Z ′) = deg(Z). Then Theorem 5.3 will be proved in
Subsection 5.2 for the case thatBZ ,Z ′ is one-to-one and deg(Z ′) = deg(Z)+ 1; and it will
be proved in Subsection 5.3 for the case thatBZ ,Z ′ is one-to-one and deg(Z ′) = deg(Z).

5.2. Special case I. In this subsection, let (G,G′) = (Sp2n ,Oε
2n′ )where ε=+ or−, Z ,Z ′

special symbols of ranks n, n′ and defects 1,0 respectively, and we assume thatBZ ,Z ′ is
one-to-one and deg(Z ′) = deg(Z)+ 1, i.e., δ ′ = δ + 1. We write

(5.6) ZI =
�

a1,a2, . . . ,aδ+1

b1, b2, . . . , bδ

�
, Z ′I =
�

c1, c2, . . . , cδ ′
d1, d2, . . . , dδ ′

�
,

and define
θ : {a1, . . . ,aδ+1} ∪ {b1, . . . , bδ}→ {c1, . . . , cδ+1} ∪ {d1, . . . , dδ+1}

ai 7→ di

bi 7→ ci+1

(5.7)

for each i . Note that c1 is not in the image of θ. Then θ induces an injective map (still
denoted by θ)

θ : SZ →SZ ′

ΛM 7→
(
Λθ(M ), if ε=+;

Λ(c1−)∪θ(M ), if ε=−
(5.8)

where M ⊂ ZI with |M | even. Note that now |SZ |= 22δ , |SZ ′ |= 22δ+1 and

SZ ′ = {θ(Λ),θ(Λ)t |Λ ∈SZ }.
Lemma 5.9. Suppose thatBZ ,Z ′ is one-to-one and deg(Z ′) = deg(Z)+ 1. Then

BZ ,Z ′ = { (Λ,θ(Λ)) |Λ ∈SZ }.
Proof. This lemma is essentially [Pan21] lemma 6.15. Note that in [Pan21] lemma 6.15,
we assumed that both Z ,Z ′ are regular, i.e., we assumed that Z = ZI and Z ′ = Z ′I . How-
ever, this assumption is not necessary for the lemma. □

IfΦ=
��s1

t1

�
, . . . ,
�sδ

tδ

�
,
�sδ+1−
�	

is an arrangement of ZI (i.e., {s1, . . . , sδ+1} (resp. {t1, . . . , tδ})
is a permutation of {a1, . . . ,aδ+1} (resp. {b1, . . . , bδ})), then

θ(Φ) :=
n�θ(t1)
θ(s1)

�
, . . . ,
�θ(tδ )
θ(sδ )

�
,
� c1
θ(sδ+1)

�o
is an arrangement of Z ′I . If Ψ =

��si1
ti1

�
, . . . ,
�sik

tik

�	
is a subset of pairs of Φ, we define θ(Ψ) as

follows:

(1) if either ε=− and |ΦrΨ| is odd, or ε=+ and |ΦrΨ| is even, let

θ(Ψ) =
n�θ(ti1

)
θ(si1

)

�
, . . . ,
�θ(tik

)

θ(sik
)

�o
;
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(2) if either ε=− and |ΦrΨ| is even, or ε=+ and |ΦrΨ| is odd, let

θ(Ψ) =
n�θ(ti1

)
θ(si1

)

�
, . . . ,
�θ(tik

)

θ(sik
)

�
,
� c1
θ(sδ+1)

�o
.

Then θ(Ψ) is an admissible subset of pairs of θ(Φ), i.e., #(θ(Φ)r θ(Ψ)) is even if ε = +;
#(θ(Φ)rθ(Ψ)) is odd if ε=−.

Lemma 5.10. Suppose that BZ ,Z ′ is one-to-one and deg(Z ′) = deg(Z) + 1. Let Φ be an
arrangement of ZI, and Ψ be a subset of pairs of Φ. Then

Cθ(Φ),θ(Ψ) = {θ(Λ),θ(Λ)t |Λ ∈CΦ,Ψ }
where CΦ,Ψ is defined in (4.10).

Proof. As above, let δ = deg(Z), and let sδ+1 be the isolated element in Φ. Suppose that
ΛM ∈ CΦ,Ψ for some M ⊂ ZI and θ(ΛM ) = ΛM ′ for some M ′ ⊂ Z ′I . From the rules before
Remark 4.13, we know that M contains exactly one element from each pair of ΦrΨ and
contains some subset of pairs in Ψ. Moreover, M contains the isolated element sδ+1 if and
only if |ΦrΨ| is odd. Then

(1) if ε=+ and |ΦrΨ| is even, then sδ+1 6∈M and M ′ = θ(M );
(2) if ε=+ and |ΦrΨ| is odd, then sδ+1 ∈M and M ′ = θ(M );
(3) if ε=− and |ΦrΨ| is even, then sδ+1 6∈M and M ′ =

�c1−
�∪θ(M );

(4) if ε=− and |ΦrΨ| is odd, then sδ+1 ∈M and M ′ =
�c1−
�∪θ(M ).

It is easy to see from the definition above that for each case above M ′ consists of exactly one
element from each pair in θ(Φ)rθ(Ψ) and a subset of pairs in θ(Ψ), i.e., ΛM ′ ∈Cθ(Φ),θ(Ψ).

From (i) of Lemma 4.34, we know that

θ(Λ) ∈Cθ(Φ),θ(Ψ) if and only if θ(Λ)t ∈Cθ(Φ),θ(Ψ).

So we have

(5.11) {θ(Λ),θ(Λ)t |Λ ∈CΦ,Ψ } ⊆Cθ(Φ),θ(Ψ).

Now |CΦ,Ψ | = 2δ by Lemma 4.17. Because Z ′ is of degree δ + 1, |Cθ(Φ),θ(Ψ)| = 2δ+1 by
Lemma 4.34. Hence both sets in (5.11) have the same cardinality 2δ+1, they must be the
same. □

Example 5.12. As in Example 2.16, let (G,G′) = (Sp4,O+8 ), and Z =
�2,0

1

�
, Z ′ =
�3,1

2,0

�
.

Now ZI = Z , Z ′I = Z ′, BZ ,Z ′ is one-to-one, deg(Z ′) = 2 = deg(Z) + 1, |SZ | = 4, and
|SZ ′ |= 8. Note that Z ′ = Z t∪�3−�, and in fact if (Λ,Λ′) ∈BZ ,Z ′ , thenΛ′ = θ(Λ) = Λt∪�3−�.
Now Φ =
��2

1

�
,
�0
−
�	

is an arrangement of ZI, and θ(Φ) =
��1

2

�
,
�3

0

�	
is an arrangement of

Z ′I . Let Ψ =
��2

1

�	
. Then by definition θ(Ψ) = θ(Φ), and it is easy to verify that

CΦ,Ψ =
��2,0

1

�
,
�1,0

2

�	
Cθ(Φ),θ(Ψ) =
��3,1

2,0

�
,
�3,2

1,0

�
,
�1,0

3,2

�
,
�2,0

3,1

�	
= {θ(Λ),θ(Λ)t |Λ ∈CΦ,Ψ }

Proposition 5.13. Let (G,G′) = (Sp2n ,Oε
2n′ ) where ε = + or −, and let Z ,Z ′ be spe-

cial symbols of ranks n, n′ and defects 1,0 respectively. Suppose thatBZ ,Z ′ is one-to-one and
deg(Z ′) = deg(Z)+ 1. Then

ωZ ,Z ′ =
∑
Λ∈SZ

ρΛ⊗ρ f (Λ)

where f (Λ) is either equal to θ(Λ) or θ(Λ)t (but not both).
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Proof. Because we assume thatBZ ,Z ′ is one-to-one and deg(Z ′) = deg(Z) + 1, we know
that

BZ ,Z ′ = { (Λ,θ(Λ)) |Λ ∈SZ }
by Lemma 5.9, and (5.1) becomes

(5.14) ω]
Z ,Z ′ =
∑
Λ∈SZ

ρ]Λ⊗ρ]θ(Λ).

For Λ,Λ′ ∈SZ , define

xΛ,Λ′ = 〈ρΛ⊗ρθ(Λ′)+ρΛ⊗ρθ(Λ′)t ,ωZ ,Z ′〉,
the sum of multiplicities of ρΛ⊗ρθ(Λ′) and ρΛ⊗ρθ(Λ′)t inωZ ,Z ′ . So we need to show that
xΛ,Λ′ = 1 if Λ= Λ′ and xΛ,Λ′ = 0 otherwise.

Now suppose that Φ,Φ′ are any two arrangements of ZI, and Ψ ≤ Φ,Ψ ′ ≤ Φ′. Then by
Proposition 4.18 and Proposition 4.35, the class function∑

Λ∈CΦ,Ψ

∑
Λ1∈Cθ(Φ′ ),θ(Ψ′ )

ρΛ⊗ρΛ1

on G×G′ is unform. Then by Lemma 5.10, we have∑
Λ∈CΦ,Ψ

∑
Λ1∈Cθ(Φ′ ),θ(Ψ′ )

ρΛ⊗ρΛ1
=
∑
Λ∈CΦ,Ψ

∑
Λ′∈CΦ′ ,Ψ′

(ρΛ⊗ρθ(Λ′)+ρΛ⊗ρθ(Λ′)t ).

Then by (5.14), equation (5.2) becomes∑
Λ∈CΦ,Ψ

∑
Λ′∈CΦ′ ,Ψ′

xΛ,Λ′ =
 ∑
Λ∈CΦ,Ψ

∑
Λ′∈CΦ′ ,Ψ′

(ρΛ⊗ρθ(Λ′)+ρΛ⊗ρθ(Λ′)t ),ωZ ,Z ′

·
=
 ∑
Λ∈CΦ,Ψ

∑
Λ′∈CΦ′ ,Ψ′

(ρΛ⊗ρθ(Λ′)+ρΛ⊗ρθ(Λ′)t ),ω]
Z ,Z ′

·
=
 ∑
Λ∈CΦ,Ψ

∑
Λ′∈CΦ′ ,Ψ′

(ρΛ⊗ρθ(Λ′)+ρΛ⊗ρθ(Λ′)t ),
∑
Λ′′∈SZ

ρ]Λ′′ ⊗ρ]θ(Λ′′)
·

=
 ∑
Λ∈CΦ,Ψ

∑
Λ′∈CΦ′ ,Ψ′

(ρΛ⊗ρθ(Λ′)+ρΛ⊗ρθ(Λ′)t ),
∑
Λ′′∈SZ

ρΛ′′ ⊗ρθ(Λ′′)
·

.

From the definition of θ we know that θ(Λ′′) 6= θ(Λ′)t for any Λ′′,Λ′ ∈SZ . For a symbol
Λ′′ ∈SZ to contribute a multiplicity in the above identity, we need Λ′′ = Λ and Λ′′ = Λ′
for some Λ ∈CΦ,Ψ and some Λ′ ∈CΦ′,Ψ ′ , i.e., Λ′′ must be in the intersection CΦ,Ψ ∩CΦ′,Ψ ′ .
Therefore, the above equation becomes

(5.15)
∑
Λ∈CΦ,Ψ

∑
Λ′∈CΦ′ ,Ψ′

xΛ,Λ′ = |CΦ,Ψ ∩CΦ′,Ψ ′ |

for any two arrangements Φ,Φ′ of ZI with any Ψ ≤ Φ and any Ψ ′ ≤ Φ′.
Suppose that Λ1,Λ2 are distinct symbols in SZ . Then by Lemma 4.25, there exists

an arrangement Φ with two subsets of pairs Ψ1,Ψ2 such that Λi ∈ CΦ,Ψi
for i = 1,2 and

CΦ,Ψ1
∩CΦ,Ψ2

= ;. Because each xΛ,Λ′ is a non-negative integer, from equation (5.15) we
conclude that xΛ1,Λ2

= 0 for any distinct Λ1,Λ2 ∈SZ .
For anyΛ ∈SZ , by Lemma 4.23, there exist two arrangementsΦ1,Φ2 of ZI with subsets

of pairs Ψ1,Ψ2 respectively such that CΦ1,Ψ1
∩CΦ2,Ψ2

= {Λ}. Because we know xΛ,Λ′ = 0 if
Λ 6= Λ′, equation (5.15) is reduced to xΛ,Λ = 1. Therefore, exactly one of ρΛ⊗ρθ(Λ),ρΛ⊗
ρθ(Λ)t occurs inωZ ,Z ′ .
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For Λ ∈ SZ , let f (Λ) be either θ(Λ) or θ(Λ)t such that ρΛ ⊗ ρ f (Λ) occurs in ωZ ,Z ′ .
Then we just show the characterωZ ,Z ′ defined by

ωZ ,Z ′ =
∑
Λ∈SZ

ρΛ⊗ρ f (Λ).

is a sub-character of ωZ ,Z ′ , i.e., ωZ ,Z ′ −ωZ ,Z ′ is a non-negative integral combination of
irreducible characters of G×G′. Note thatρθ(Λ) andρθ(Λ)t are different by a sign character
of Oε

2n′ (q), so they have the same degree. Therefore ωZ ,Z and
∑
Λ∈SZ

ρΛ ⊗ ρθ(Λ) have
the same degree. By (5.14) and (3.1), we see that ωZ ,Z ′ and ωZ ,Z ′ have the same degree.
ThereforeωZ ,Z ′ =ωZ ,Z ′ and the proposition is proved. □

5.3. Special case II. In this subsection, let (G,G′) = (Sp2n ,Oε
2n′ )where ε=+ or−, Z ,Z ′

special symbols of ranks n, n′ and defects 1,0 respectively, and we assume thatBZ ,Z ′ is
one-to-one and deg(Z ′) = deg(Z), i.e., δ ′ = δ. Write ZI,Z ′I as in (5.6), and define

θ : {c1, . . . , cδ} ∪ {d1, . . . , dδ}→ {a1, . . . ,aδ+1} ∪ {b1, . . . , bδ}
ci 7→ bi

di 7→ ai+1

(5.16)

for each i . Note that a1 is not in the image of θ. Then θ induces an injective map

θ : SZ ′ →SZ

ΛM ′ 7→
(
Λθ(M ′), if ε=+;

Λ(a1−)∪θ(M ′), if ε=−
(5.17)

where M ′ ⊂ Z ′I with |M ′| even if ε=+; and |M ′| odd if ε=−. Note that now |SZ |= 22δ ,
|SZ ′ |= 22δ−1, and

SZ = {θ(Λ′) |Λ′ ∈S O+
2n′

Z ′ ∪S
O−

2n′
Z ′ }.

Lemma 5.18. Suppose thatBZ ,Z ′ is one-to-one and deg(Z ′) = deg(Z). Then

BZ ,Z ′ = { (θ(Λ′),Λ′) |Λ′ ∈SZ ′ }.
Proof. The proof is similar to that of Lemma 5.9. □

If Φ′ =
n�s ′1

t ′1

�
, . . . ,
�s ′
δ′

t ′
δ′

�o
is an arrangement of Z ′I , then

(5.19) θ(Φ′) =
n�a1−
�
,
�θ(t ′1)
θ(s ′1)
�
, . . . ,
�θ(t ′

δ′ )
θ(s ′

δ′ )
�o

is an arrangement of ZI. If Ψ ′ =
��s ′i1

t ′i1

�
, . . . ,
�s ′ik

t ′ik

�	
is an admissible subset of pairs of Φ′, then

(5.20) θ(Ψ ′) =
n�θ(t ′i1 )
θ(s ′i1 )

�
, . . . ,
�θ(t ′ik )
θ(s ′ik )

�o
is a subset of pairs in θ(Φ′).

Lemma 5.21. Suppose thatBZ ,Z ′ is one-to-one and deg(Z ′) = deg(Z). Let Φ′ be an arrange-
ment of Z ′I , and let Ψ ′ be an admissible subset of pairs in Φ′. Then

Cθ(Φ′),θ(Ψ ′) = {θ(Λ) |Λ ∈CΦ′,Ψ ′ }.
Proof. Suppose that ΛM ′ ∈ CΦ′,Ψ ′ for some M ′ ⊂ Z ′I , and θ(ΛM ′ ) = ΛM for some M . We
know that M ′ = M ′1 ∪ M ′2 where M ′1 consists of exactly one element from each pair in
Φ′rΨ ′ and M ′2 ≤ Ψ ′.
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(1) First suppose that ε = +. Then |M ′| is even. From the above definition, we see
that M = θ(M ′). Hence M contains one element from each pair in θ(Φ′)rθ(Ψ ′)
and contains a subset of pairs in θ(Ψ ′), and |M | is even. Therefore θ(ΛM ′ ) is in
Cθ(Φ′),θ(Ψ ′).

(2) Next suppose that ε = −. Now |M ′| is odd, and we see that M =
�a1−
� ∪ θ(M ′)

from (5.17). Now again M consists one element from each pair in θ(Φ′)r θ(Ψ ′)
and contains a subset of pairs in θ(Ψ ′), and |M | is even. Therefore θ(ΛM ′ ) is in
Cθ(Φ′),θ(Ψ ′).

Now we conclude that {θ(Λ) | Λ ∈ CΦ′,Ψ ′ } ⊆ Cθ(Φ′),θ(Ψ ′). Since both sets have the same
cardinality 2δ , they must be equal. □

Corollary 5.22. Suppose that BZ ,Z ′ is one-to-one and deg(Z ′) = deg(Z). Let Φ′ be an
arrangement of Z ′I and θ given in (5.17). Then

θ(SZ ′ ) =
⋃

admissible Ψ ′≤Φ′
Cθ(Φ′),θ(Ψ ′)

Proof. From Lemma 4.34, we know that

SZ ′ =
⋃

admissible Ψ ′≤Φ′
CΦ′,Ψ ′ .

Then the corollary follows from Lemma 5.21 immediately. □

Proposition 5.23. Let (G,G′) = (Sp2n ,Oε
2n′ ) where ε = + or −, and let Z ,Z ′ be spe-

cial symbols of ranks n, n′ and defects 1,0 respectively. Suppose thatBZ ,Z ′ is one-to-one and
deg(Z ′) = deg(Z). Then

ωZ ,Z ′ =
∑
Λ′∈SZ′

ρθ(Λ′)⊗ρ f ′(Λ′)

where f ′(Λ′) is equal to either Λ′ or Λ′t (but not both).

Proof. The proof is similar to that of Proposition 5.13. Because we assume thatBZ ,Z ′ is
one-to-one and deg(Z ′) = deg(Z), we know that

BZ ,Z ′ = { (θ(Λ′),Λ′) |Λ′ ∈SZ ′ }
by Lemma 5.18, and (5.1) becomes

(5.24) ω]
Z ,Z ′ =
∑
Λ′∈SZ′

ρ]
θ(Λ′)⊗ρ]Λ′ .

For Λ ∈SZ and Λ′ ∈SZ ′ , define

xΛ,Λ′ = 〈ρΛ⊗ρΛ′ ,ωZ ,Z ′〉.
Then each xΛ,Λ′ is a non-negative integer. For an arrangementΦ of ZI with a subset of pairs
Ψ, and an arrangement Φ′ of Z ′I with an admissible subset of pairs Ψ ′, the class function∑

Λ∈CΦ,Ψ

∑
Λ′∈CΦ′ ,Ψ′

ρΛ⊗ρΛ′

on G×G′ is uniform by Proposition 4.18 and Proposition 4.35. Then, by (5.24), we have∑
Λ∈CΦ,Ψ

∑
Λ′∈CΦ′ ,Ψ′

xΛ,Λ′ =
 ∑
Λ∈CΦ,Ψ

∑
Λ′∈CΦ′ ,Ψ′

ρΛ⊗ρΛ′ ,ωZ ,Z ′

·
=
 ∑
Λ∈CΦ,Ψ

∑
Λ′∈CΦ′ ,Ψ′

ρΛ⊗ρΛ′ ,
∑
Λ′′∈SZ′

ρθ(Λ′′)⊗ρΛ′′
·

.



30 SHU-YEN PAN

For a symbol Λ′′ ∈SZ ′ to contribute a multiplicity, we need both

• Λ′′ = Λ′ for some Λ′ ∈CΦ′,Ψ ′ , i.e., θ(Λ′′) = θ(Λ′) for some θ(Λ′) ∈Cθ(Φ′),θ(Ψ ′), and
• θ(Λ′′) = Λ for some Λ ∈CΦ,Ψ ,

i.e., we need θ(Λ′′) to be in the intersection CΦ,Ψ ∩Cθ(Φ′),θ(Ψ ′) by Lemma 5.21. Therefore,

(5.25)
∑
Λ∈CΦ,Ψ

∑
Λ′∈CΦ′ ,Ψ′

xΛ,Λ′ = |CΦ,Ψ ∩Cθ(Φ′),θ(Ψ ′)|

for any arrangements Φ of ZI with any Ψ ≤ Φ, and any arrangement Φ′ of Z ′I with any
admissible Ψ ′ ≤ Φ′.

Now let Φ = θ(Φ′′) and Ψ = θ(Ψ ′′) for some arrangement Φ′′ of Z ′I with some admis-
sible Ψ ′′ ≤ Φ′′. Then by Lemma 5.21, (5.25) becomes

(5.26)
∑

Λ′′∈CΦ′′ ,Ψ′′

∑
Λ′∈CΦ′ ,Ψ′

xθ(Λ′′),Λ′ = |Cθ(Φ′′),θ(Ψ ′′) ∩Cθ(Φ′),θ(Ψ ′)|= |CΦ′′,Ψ ′′ ∩CΦ′,Ψ ′ |

for any two arrangements Φ′,Φ′′ of Z ′I and any admissible Ψ ′ ≤ Φ′, Ψ ′′ ≤ Φ′′. Suppose
that Λ′1,Λ′2 are symbols in SZ ′ such that Λ′1 6= Λ′2, (Λ′2)t. Then by Lemma 4.36, there
exists an arrangement Φ′ of Z ′I with two subsets of pairs Ψ ′1,Ψ ′2 such that Λ′i , (Λ′i )t ∈CΦ′,Ψ ′i
for i = 1,2 and CΦ′,Ψ ′1 ∩CΦ′,Ψ ′2 = ;. Because each xθ(Λ′′),Λ′ is a non-negative integer, from
equation (5.26) we conclude that xθ(Λ′1),Λ′2 = xθ(Λ′1),(Λ′2)t = 0.

Clearly there is an arrangement Φ′ of Z ′I such that θ(Φ′) in (5.19) is the arrangement Φ2
of ZI in Lemma 4.22. For any givenΛ′ ∈SZ ′ , by Lemma 4.23 there exist an arrangements
Φ1 of ZI with a subset of pairs Ψ1, and a subset of pairs Ψ2 of θ(Φ′) such that CΦ1,Ψ1

∩
Cθ(Φ′),Ψ2

= {θ(Λ′)}. Moreover, by Corollary 5.22 we know that Ψ2 = θ(Ψ
′) for some

admissible Ψ ′ ≤ Φ′, i.e.,

(5.27) {θ(Λ′)}=CΦ1,Ψ1
∩Cθ(Φ′),θ(Ψ ′).

Because we know xθ(Λ′1),Λ′2 = 0 for any Λ′1 6= Λ′2, (Λ′2)t, by (5.27), equation (5.25) is reduced
to

xθ(Λ′),Λ′ + xθ(Λ′),Λ′t = 1.

For Λ′ ∈ SZ ′ , let f ′(Λ′) be either Λ′ or Λ′t such that ρθ(Λ′) ⊗ ρ f ′(Λ′) occurs in ωZ ,Z ′ .
We just show that the character

∑
Λ′∈SZ′ ρθ(Λ′)⊗ρ f ′(Λ′) is a sub-character ofωZ ,Z ′ . By the

same argument in the last paragraph of proof of Proposition 5.13, we conclude that

ωZ ,Z ′ =
∑
Λ′∈SZ′

ρθ(Λ′)⊗ρ f ′(Λ′).

□

5.4. The general case. Now let (G,G′) = (Sp2n ,Oε
2n′ ) where ε = + or −, and let Z ,Z ′

be special symbols of ranks n, n′ and defects 1,0 respectively. Suppose that DZ ,Z ′ 6= ;,
and let Ψ0,Ψ ′0 denote the cores of DZ ,Z ′ in ZI,Z ′I respectively. Let Φ,Φ′ be arrangements
of ZI,Z ′I with subsets of pairs Ψ,Ψ ′ respectively such that Ψ0 ≤ Ψ ≤ Φ and Ψ ′0 ≤ Ψ ′ ≤ Φ′.
It is known that either deg(Z ′rΨ ′0) = deg(Z rΨ0)+ 1 or deg(Z ′rΨ ′0) = deg(Z rΨ0).

(1) Suppose that deg(Z ′ r Ψ ′0) = deg(Z r Ψ0) + 1. Let θ be given as in (5.7) (with
ZI replaced by ZI r Ψ0 and Z ′I replaced by Z ′I r Ψ ′0), and so we have a mapping

θ : S Ψ0
Z →S Ψ

′
0

Z ′ given as in (5.8). Now ΦrΨ0 is an arrangement of ZIrΨ0, and
θ(ΦrΨ0) is an arrangement of Z ′IrΨ ′0. Now ΨrΨ0 is a subset of pairs of ΦrΨ0,
and we define

(5.28) θ̄(Φ) = θ(ΦrΨ0)∪Ψ ′0, θ̄(Ψ) = θ(Ψ rΨ0)∪Ψ ′0.
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It is easy to see that θ̄(Φ) is an arrangement of Z ′I , θ̄(Ψ) is a subset of pairs of θ̄(Φ),
and Ψ ′0 ≤ θ̄(Ψ).

(2) Suppose that deg(Z ′ rΨ ′0) = deg(Z rΨ0). Let θ is given as in (5.16), and so we

have a mapping θ : S Ψ ′0Z ′ →S Ψ0
Z . Now Φ′rΨ ′0 is an arrangement of Z ′I rΨ ′0, and

θ(Φ′rΨ ′0) is an arrangement of ZIrΨ0 Then we define

(5.29) θ̄(Φ′) = θ(Φ′rΨ ′0)∪Ψ0, θ̄(Ψ ′) = θ(Ψ ′rΨ ′0)∪Ψ0.

Similarly, θ̄(Φ′) is an arrangement of ZI, θ̄(Ψ
′) is a subset of pairs of θ̄(Φ′), and

Ψ0 ≤ θ̄(Ψ ′).
Lemma 5.30. Keep the above setting.

(i) Suppose that deg(Z ′rΨ ′0) = deg(Z rΨ0) + 1. Let Φ be an arrangement of ZI, and
let Ψ be a subset of pairs in Φ. Then

Cθ̄(Φ),θ̄(Ψ) = {θ(Λ1)+Λ2,θ(Λ1)
t+Λ2 |Λ1 ∈CΦ,Ψ ∩S Ψ0

Z , Λ2 ∈SZ ′,Ψ ′0
}.

(ii) Suppose that deg(Z ′rΨ ′0) = deg(Z rΨ0). Let Φ′ be an arrangement of Z ′I , and let
Ψ ′ be an admissible subset of pairs in Φ′. Then

Cθ̄(Φ′),θ̄(Ψ ′) = {θ(Λ1)+Λ2 |Λ1 ∈CΦ′,Ψ ′ ∩S Ψ
′
0

Z ′ , Λ2 ∈SZ ,Ψ0
}.

Proof. First suppose that deg(Z ′rΨ ′0) = deg(Z rΨ0)+ 1. Now Ψ ′0 ≤ θ̄(Ψ)≤ θ̄(Φ), so by
Lemma 4.28, we have

Cθ̄(Φ),θ̄(Ψ) = {Λ′1+Λ2 |Λ′1 ∈Cθ(Φ),θ(Ψ) ∩S Ψ
′
0

Z ′ , Λ2 ∈SZ ′,Ψ ′0
}.

We know that the relation DZ ,Z ′ ∩ (S Ψ0
Z ×S Ψ

′
0

Z ′ ) is one-to-one, so by Lemma 5.10, we see
that

Cθ̄(Φ),θ̄(Ψ) ∩S Ψ
′
0

Z ′ = {θ(Λ1),θ(Λ1)
t |Λ1 ∈CΦ,Ψ ∩S Ψ0

Z }
and hence the lemma is proved.

The proof of (ii) is similar. □

Example 5.31. (1) Let (G,G′) = (Sp12,O+14), Z =
�4,2,0

3,1

�
, Z ′ =
�5,2,0

4,2,0

�
. Then ZI = Z ,

Z ′I =
�5

4

�
, |SZ |= 16, and |SZ ′ |= 2. It is not difficult to check that

BZ ,Z ′ =
�
(Λ,Z ′) |Λ= �4,2,0

3,1

�
,
�4,3,0

2,1

�
,
�4,2,1

3,0

�
,
�4,3,1

2,0

�	
;

DZ = {Z ′}=SZ ′,Ψ ′0
;

DZ ′ =
��4,2,0

3,1

�
,
�4,3,0

2,1

�
,
�4,2,1

3,0

�
,
�4,3,1

2,0

�	
=SZ ,Ψ0

,

i.e., Ψ0 =
��2

3

�
,
�0

1

�	
, Ψ ′0 = ;. Now Ψ0 is regarded as the subsymbol

�2,0
3,1

�
of ZI, so

ZIrΨ0 =
�4
−
�
, Z ′I rΨ ′0 =
�5

4

�
, and hence deg(Z ′rΨ ′0) = deg(ZrΨ0)+1= 1. Then

S Ψ0
Z = {Z} andS Ψ ′0Z ′ = {Z ′,Z ′t}, the mapping θ : S Ψ0

Z →S Ψ
′
0

Z ′ is just Z 7→ Z ′, and

so B \
Z ,Z ′ = {(Z ,Z ′)}. The only arrangement Φ of ZI containing Ψ0 is Ψ0 itself,

and so now Ψ0 = Ψ = Φ =
��2

3

�
,
�0

1

�	
. Now θ̄(Φ) =
��5

4

�	
and θ̄(Ψ) =
��5

4

�	
by

(5.28). We have

CΦ,Ψ =
��4,2,0

3,1

�
,
�4,3,0

2,1

�
,
�4,2,1

3,0

�
,
�4,3,1

2,0

�	
, CΦ,Ψ ∩S Ψ0

Z = {Z}
Cθ̄(Φ),θ̄(Ψ) = {Z ′,Z ′t},

and the conclusion in (i) of Lemma 5.30 is clearly verified.
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(2) Let (G,G′) = (Sp14,O+14), Z =
�5,2,0

3,1

�
, Z ′ =
�5,2,0

4,2,0

�
. Then ZI = Z , Z ′I =

�5
4

�
, |SZ | =

16, and |SZ ′ |= 2. It is not difficult to check that

BZ ,Z ′ =
�
(Λ,Z ′), (Λ,Z ′t) |Λ= �4,2,0

3,1

�
,
�4,3,0

2,1

�
,
�4,2,1

3,0

�
,
�4,3,1

2,0

�	
;

DZ = {Z ′,Z ′t}=SZ ′,Ψ ′0
;

DZ ′ =
��4,2,0

3,1

�
,
�4,3,0

2,1

�
,
�4,2,1

3,0

�
,
�4,3,1

2,0

�	
=SZ ,Ψ0

,

i.e., Ψ0 =
��2

3

�
,
�0

1

�	
, Ψ ′0 =
��5

4

�	
. Now ZI r Ψ0 =

�4
−
�
, Z ′I r Ψ ′0 = ;, and hence

deg(Z ′rΨ ′0) = deg(ZrΨ0) = 0. ThenS Ψ0
Z = {Z} andS Ψ ′0Z ′ = {Z ′}, the mapping

θ : S Ψ ′0Z ′ →S Ψ0
Z is just Z ′ 7→ Z , and soB \

Z ,Z ′ = {(Z ,Z ′)}. The only arrangement

Φ′ of Z ′I containing Ψ ′0 is Ψ ′0 itself, and so now Ψ ′0 = Ψ ′ = Φ′ =
��5

4

�	
. Now

θ̄(Φ′) = θ̄(Ψ ′) =
��2

3

�
,
�0

1

�	
by (5.29). We have

CΦ′,Ψ ′ = {Z ′,Z ′t}, CΦ′,Ψ ′ ∩S Ψ
′
0

Z ′ = {Z ′}
Cθ̄(Φ′),θ̄(Ψ ′) =
��4,2,0

3,1

�
,
�4,3,0

2,1

�
,
�4,2,1

3,0

�
,
�4,3,1

2,0

�	
,

and the conclusion in (ii) of Lemma 5.30 is verified.

Proof of Theorem 5.3. Let (G,G′) = (Sp2n ,Oε
2n′ ), and let Z ,Z ′ be special symbols of rank

n, n′, defects 1,0 respectively. Let Ψ0,Ψ ′0 be the cores in ZI,Z ′I of DZ ,Z ′ , and δ0,δ ′0 the
numbers of pairs in Ψ0,Ψ ′0 respectively. From (5.4), we have∑

(Λ,Λ′)∈BZ ,Z′
ρΛ⊗ρΛ′ =
∑

(Λ1,Λ′1)∈B \

Z ,Z′

∑
Λ2∈DZ′

∑
Λ′2∈DZ

ρΛ1+Λ2
⊗ρΛ′1+Λ′2 .

Note that DZ ′ = {ΛM |M ≤ Ψ0 } and DZ = {ΛN |N ≤ Ψ ′0 } by proposition 6.4 in [Pan21].
From the proofs of [Pan21] proposition 7.17, we know that either deg(Z ′rΨ ′0) = deg(Zr
Ψ0)+ 1 or deg(Z ′rΨ ′0) = deg(Z rΨ0).

(1) Suppose that deg(Z ′ rΨ ′0) = deg(Z rΨ0) + 1. Then from the discussion before

Lemma 5.30 and Lemma 5.9, we have a injective map θ : S Ψ0
Z →S Ψ

′
0

Z ′ , and

(5.32) B \
Z ,Z ′ = { (Λ,θ(Λ)) |Λ ∈S Ψ0

Z }.
For two arrangements Φ,Φ′ of ZI with a subset of pairs Ψ,Ψ ′ respectively such
that Ψ0 ≤ Ψ and Ψ0 ≤ Ψ ′, by Lemma 4.28 and Proposition 4.18 the class function∑

Λ∈CΦ,Ψ

ρΛ =
∑
Λ1∈C \

Φ,Ψ

∑
Λ2∈SZ ,Ψ0

ρΛ1+Λ2

on G is uniform where C \
Φ,Ψ = CΦ,Ψ ∩S Ψ0

Z , similarly by Lemma 5.30, the class
function ∑

Λ′∈Cθ̄(Φ′ ),θ̄(Ψ′ )

ρΛ′ =
∑

Λ′1∈C \

Φ′ ,Ψ′

∑
Λ′2∈SZ′ ,Ψ′0

ρθ(Λ′1)+Λ′2 +ρθ(Λ′1)t+Λ′2

on G′ is uniform where C \
Φ′,Ψ ′ =CΦ′,Ψ ′ ∩S Ψ0

Z .

For Λ1,Λ′1 ∈S Ψ0
Z , we define

xΛ1,Λ′1
=

1

2δ0+δ ′0

∑
Λ2∈SZ ,Ψ0

∑
Λ′2∈SZ′ ,Ψ′0

〈ρΛ1+Λ2
⊗ρθ(Λ′1)+Λ′2 +ρΛ1+Λ2

⊗ρθ(Λ′1)t+Λ′2 ,ωZ ,Z ′〉.
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Note that |SZ ,Ψ0
|= 2δ0 and |SZ ′,Ψ ′0

|= 2δ
′
0 by (4.2). Now by (5.2), (5.4) and (5.32),

we have∑
Λ1∈C \

Φ,Ψ

∑
Λ′1∈C \

Φ′ ,Ψ′

xΛ1,Λ′1

=
1

2δ0+δ ′0

® ∑
Λ1∈C \

Φ,Ψ

∑
Λ′1∈C \

Φ′ ,Ψ′

∑
Λ2∈SZ ,Ψ0

∑
Λ′2∈SZ′ ,Ψ′0

(ρΛ1+Λ2
⊗ρθ(Λ′1)+Λ′2 +ρΛ1+Λ2

⊗ρθ(Λ′1)t+Λ′2 ),

∑
Λ′′1∈S Ψ0

Z

∑
Λ′′2∈SZ ,Ψ0

∑
Λ′′′2 ∈SZ′ ,Ψ′0

ρΛ′′1+Λ′′2 ⊗ρθ(Λ′′1 )+Λ′′′2
¸

.

For a symbol Λ′′1 ∈ S Ψ0
Z to contribute a multiplicity in the above identity, by

Lemma 4.6, we need Λ′′1 = Λ1 and Λ′′1 = Λ′1 for some Λ1 ∈ C \
Φ,Ψ and some Λ′1 ∈

C \
Φ′,Ψ ′ , i.e., Λ′′1 must be in the intersection C \

Φ,Ψ ∩C \
Φ′,Ψ ′ . Then

(5.33)
∑
Λ1∈C \

Φ,Ψ

∑
Λ′1∈C \

Φ′ ,Ψ′

xΛ1,Λ′1
=
|C \
Φ,Ψ ∩C \

Φ′,Ψ ′ |
2δ0+δ ′0

∑
Λ2∈SZ ,Ψ0

∑
Λ′2∈SZ′ ,Ψ′0

1= |C \
Φ,Ψ ∩C \

Φ′,Ψ ′ |

for any arrangements Φ,Φ′ of ZI with subsets of pairs Ψ,Ψ ′ respectively such that
Ψ0 ≤ Ψ and Ψ0 ≤ Ψ ′. Note that as in the proof of Proposition 5.13, θ(Λ′′1 ) 6=
θ(Λ′1)t for any Λ′1,Λ′′1 ∈S Ψ0

Z .

Suppose that Λ1,Λ2 are distinct symbols in S Ψ0
Z . By Lemma 4.31, there exists

an arrangement Φ of ZI with two subsets of pairs Ψ1,Ψ2 such that Ψ0 ≤ Ψi , Λi ∈
CΦ,Ψi

for i = 1,2 and CΦ,Ψ1
∩CΦ,Ψ2

= ;. Then C \
Φ,Ψ1
∩C \

Φ,Ψ2
= ;. Because each

xΛ1,Λ′1
is a non-negative integer, from (5.33) we conclude that xΛ1,Λ2

= 0 for any

distinct Λ1,Λ2 ∈S Ψ0
Z .

Finally, for any Λ ∈S Ψ0
Z , by Lemma 4.30, there exist two arrangements Φ1,Φ2

of ZI with subsets of pairs Ψ1,Ψ2 respectively such that Ψ0 ≤ Ψi for i = 1,2 and

C \
Φ1,Ψ1
∩C \

Φ2,Ψ2
=CΦ1,Ψ1

∩CΦ2,Ψ2
∩S Ψ0

Z = {Λ}.
Because we know xΛ1,Λ2

= 0 ifΛ1 6= Λ2, equation (5.33) is now reduced to xΛ,Λ = 1.
Suppose that Λ ∈ SZ and Λ′ ∈ SZ ′ such that (Λ,Λ′) ∈ BZ ,Z ′ . We can write

Λ = Λ1 + Λ2 for Λ1 ∈ S Ψ0
Z and Λ2 ∈ SZ ,Ψ0

and similarly write Λ′ = Λ′1 + Λ′2
for Λ′1 ∈ S Ψ0

Z ′ and Λ′2 ∈ SZ ′,Ψ ′0
such that (Λ1,Λ′1) ∈ B \

Z ,Z ′ . Then we have shown
that either ρΛ1+Λ2

⊗ρΛ′1+Λ′2 or ρΛ1+Λ2
⊗ρΛ′t1+Λ′2 occurs in ωZ ,Z ′ . Note that Λ′t =

(Λ′1 + Λ′2)t = Λ′t1 + Λ′2 by [Pan21] lemma 2.1. Hence we conclude that either
ρΛ⊗ρΛ′ or ρΛ⊗ρΛ′t occurs inωZ ,Z ′ .

(2) Suppose that deg(Z ′ r Ψ ′0) = deg(Z r Ψ0). Then from the discussion before

Lemma 5.30 and Lemma 5.18, we have a injective map θ : S Ψ ′0Z ′ →S Ψ0
Z and

B \
Z ,Z ′ = { (θ(Λ′),Λ′) |Λ′ ∈S Ψ

′
0

Z ′ }.
For an arrangement Φ of ZI with a subset of pairs Ψ such that Ψ0 ≤ Ψ, and an
arrangement Φ′ of Z ′I with an admissible subset of pairs Ψ ′ such that Ψ ′0 ≤ Ψ ′, the
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class function∑
Λ∈CΦ,Ψ

∑
Λ′∈CΦ′ ,Ψ′

ρΛ⊗ρΛ′ =
∑
Λ1∈C \

Φ,Ψ

∑
Λ′1∈C \

Φ′ ,Ψ′

∑
Λ2∈SZ ,Ψ0

∑
Λ′2∈SZ′ ,Ψ′0

ρΛ1+Λ2
⊗ρΛ′1+Λ′2

on G×G′ is uniform by Proposition 4.18 and Proposition 4.35.
For Λ1 ∈S Ψ0

Z and Λ′1 ∈S Ψ
′
0

Z ′ , define

xΛ1,Λ′1
=

1

2δ0+δ ′0

∑
Λ2∈SZ ,Ψ0

∑
Λ′2∈SZ′ ,Ψ′0

〈ρΛ1+Λ2
⊗ρΛ′1+Λ′2 ,ωZ ,Z ′〉.

Then∑
Λ1∈C \

Φ,Ψ

∑
Λ′1∈C \

Φ′ ,Ψ′

xΛ1,Λ′1
=

1

2δ0+δ ′0

® ∑
Λ1∈C \

Φ,Ψ

∑
Λ′1∈C \

Φ′ ,Ψ′

∑
Λ2∈SZ ,Ψ0

∑
Λ′2∈SZ′ ,Ψ′0

ρΛ1+Λ2
⊗ρΛ′1+Λ′2 ,

∑
Λ′′1∈S

Ψ′0
Z′

∑
Λ′′2∈SZ ,Ψ0

∑
Λ′′′2 ∈SZ′ ,Ψ′0

ρθ(Λ′′1 )+Λ′′2 ⊗ρΛ′′1+Λ′′′2
¸

.

By the same argument in (1) and in the proof of Proposition 5.23 (in particular,
(5.25)) we conclude that

(5.34)
∑
Λ1∈C \

Φ,Ψ

∑
Λ′1∈C \

Φ′ ,Ψ′

xΛ1,Λ′1
= |C \

Φ,Ψ ∩C \

θ̄(Φ′),θ̄(Ψ ′)
|

for any arrangement Φ of ZI with subset of pairs Ψ such that Ψ0 ≤ Ψ, and any
arrangement Φ′ of Z ′I with admissible subset of pairs Ψ ′ such that Ψ ′0 ≤ Ψ ′.

Now let Φ= θ̄(Φ′′) and Ψ = θ̄(Ψ ′′) for some arrangement Φ′′ of Z ′I with some
admissible subset of pairs Ψ ′′. Then by Lemma 5.30, (5.34) becomes

(5.35)
∑

Λ′′1∈C \

Φ′′ ,Ψ′′

∑
Λ′1∈C \

Φ′ ,Ψ′

xθ(Λ′′1 ),Λ′1 = |C
\

θ̄(Φ′′),θ̄(Ψ ′′)
∩C \

θ̄(Φ′),θ̄(Ψ ′)
|= |C \

Φ′′,Ψ ′′ ∩C \
Φ′,Ψ ′ |

for any two arrangements Φ′,Φ′′ of Z ′I and any admissible subsets of pairs Ψ ′,Ψ ′′

containing Ψ ′0 respectively. Suppose Λ′1,Λ′2 are symbols in S Ψ ′0Z ′ such that Λ′1 6=
Λ′2,Λ′t2 . Then by Lemma 4.40, there exists an arrangement Φ′ of Z ′I with two
subsets of pairs Ψ ′1,Ψ ′2 containing Ψ ′0 such that Λ′i ,Λ′ti ∈ CΦ′,Ψ ′i for i = 1,2 and
CΦ′,Ψ ′1 ∩CΦ′,Ψ ′2 = ;. Because each xθ(Λ′′),Λ′ is a non-negative integer, from equation
(5.35) we conclude that

xθ(Λ′1),Λ′2 = xθ(Λ′1),Λ′t2 = 0.

Clearly there is an arrangement Φ′ of Z ′I such that θ̄(Φ′) in (5.29) is the ar-

rangement Φ2 in Lemma 4.30. For any given Λ′1 ∈ S Ψ
′
0

Z ′ , then θ(Λ′1) ∈ S Ψ0
Z , and

by Lemma 4.30, there exist an arrangement Φ1 of ZI with a subset of pairs Ψ1,
and a subset of pairs Ψ2 of θ̄(Φ′) given above such that Ψ0 ≤ Ψ1, Ψ0 ≤ Ψ2, and
C \
Φ1,Ψ1
∩ C \

θ̄(Φ′),Ψ2

= {θ(Λ′1)}. Similar to the argument in the proof of Proposi-

tion 5.23, we see that Ψ2 = θ̄(Ψ
′) for some admissible Ψ ′ such that Ψ ′0 ≤ Ψ ′ ≤ Φ′.

Therefore we have

C \
Φ1,Ψ1
∩C \

θ̄(Φ′),θ̄(Ψ ′)
= {θ(Λ′1)}.
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Because we know xθ(Λ1),Λ2
= 0 for any Λ1 6= Λ2,Λt

2, (5.34) is now reduced to

xθ(Λ′1),Λ′1 + xθ(Λ′1),Λ′t1 = 1.

By the same argument in the last paragraph of (1), we conclude that if (Λ,Λ′) ∈
BZ ,Z ′ , then either ρΛ⊗ρΛ′ or ρΛ⊗ρΛ′t occurs inωZ ,Z ′ .

For two cases (1) and (2), and for each (Λ,Λ′) ∈BZ ,Z ′ , define eΛ′ to be either Λ′ or Λ′t
such that ρΛ⊗ρeΛ′ occurs inωZ ,Z ′ . Therefore,

∑
(Λ,Λ′)∈BZ ,Z′ ρΛ⊗ρeΛ′ is a sub-character of

ωZ ,Z ′ . Then by the same argument in the last paragraph of the proof of Proposition 5.13,
we conclude that

ωZ ,Z ′ =
∑

(Λ,Λ′)∈BZ ,Z′
ρΛ⊗ρeΛ′ .

□

From the above proof, we conclude the following corollary:

Corollary 5.36. Let (G,G′) = (Sp2n ,Oε
2n′ ) where ε=+ or −, ρΛ ∈ E (G)1, ρΛ′ ∈ E (G′)1

such that Λ′ 6= Λ′t. Then exactly one of (Λ,Λ′), (Λ,Λ′t) occurs inBG,G′ if and only if exactly
one of ρΛ⊗ρΛ′ ,ρΛ⊗ρΛ′t occurs in the correspondence.

6. SYMBOL CORRESPONDENCE AND PARABOLIC INDUCTION

The purpose of this section is to remove the ambiguity of Theorem 5.3, i.e., to provide
a proof of Theorem 1.8. The proof for the case def(Λ′) 6= 0 is in Subsection 6.1 (Proposi-
tion 6.4); and the proof for the case def(Λ′) = 0 is in Subsection 6.3 (Proposition 6.20).

6.1. Properties of the parametrization. For a symbol

(6.1) Λ=
�

a1,a2, . . . ,am1

b1, b2, . . . , bm2

�
∈S ,

we define Ω+Λ to be the set consisting of the following types of symbols:

(I)
�a1,...,ai−1,ai+1,ai+1,...,am1

b1,b2,...,bm2

�
for i = 1, . . . , m1 if ai−1 > ai + 1 (the condition is empty if

i = 1);
(II)
� a1,a2,...,am1

b1,...,b j−1,b j+1,b j+1,...,bm2

�
for j = 1, . . . , m2 if b j−1 > b j +1 (the condition is empty if

j = 1);
(III)
�a1+1,a2+1,...,am1

+1,1

b1+1,b2+1,...,bm2
+1,0

�
if am1
6= 0;

(IV)
�a1+1,a2+1,...,am1

+1,0

b1+1,b2+1,...,bm2
+1,1

�
if bm2
6= 0.

Clearly, if Λ′ ∈Ω+Λ , then rank(Λ′) = rank(Λ)+ 1 and def(Λ′) = def(Λ).
We also define

Ω−Λ = {Λ′ ∈S | Λ ∈Ω+Λ′ }.
Therefore, ifΛ′ ∈Ω−Λ , then rank(Λ′) = rank(Λ)−1 and def(Λ′) = def(Λ). It is not difficult
to see that Ω−Λ consists of symbols of the following types:

(I’)
�a1,...,ai−1,ai−1,ai+1,...,am1

b1,b2,...,bm

�
for i = 1, . . . , m1− 1 if ai > ai+1+ 1;�a1,...,am1−1,am1

−1

b1,b2,...,bm

�
if am1
≥ 1 and (am1

, bm2
) 6= (1,0);

(II’)
� a1,a2,...,am1

b1,...,b j−1,b j−1,b j+1,...,bm2

�
for j = 1, . . . , m2− 1 if b j > b j+1+ 1;� a1,a2,...,am1

b1,...,bm2−1,bm2
−1

�
if bm2
≥ 1 and (am1

, bm2
) 6= (0,1);

(III’)
�a1−1,a2−1,...,am1−1−1

b1−1,b2−1,...,bm2−1−1

�
if (am1

, bm2
) = (1,0) or (0,1).
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Example 6.2. Suppose that Λ=
�4,2,1

3,0

�
. Then we have

Ω+Λ =
��5,2,1

3,0

�
,
�4,3,1

3,0

�
,
�4,2,1

4,0

�
,
�4,2,1

3,1

�
,
�5,3,2,1

4,1,0

�	
,

Ω−Λ =
��3,2,1

3,0

�
,
�4,2,1

2,0

�
,
�3,1

2

�	
.

Note that
�3,1

2

�∼ �4,2,0
3,0

�
(cf. Subsection 2.1).

Recall that in Subsection 3.2 and Subsection 3.3, we have a parametrization SG →E (G)1 by Λ 7→ ρΛ for G= Sp2n or Oε
2n′ . The parametrization also satisfies the following

conditions:

• The unique unipotent cuspidal character ζk of Sp2k(k+1)(q) is parametrized by
ζk = ρΛk

where Λk is given in (3.5).
• For k ≥ 1, the two unipotent cuspidal characters ζ I

k ,ζ II
k of Oεk

2k2 (q) where εk =
(−1)k are parametrized by ζ I

k = ρΛ′k and ζ II
k = ρΛ′tk where Λ′k is given in (3.7). For

k = 0, the trivial character 1O+0
of O+0 (q) is also a unipotent cuspidal character

and is parametrized by the empty symbol
�−
−
�
.

• 1O+2
= ρ(10) and sgnO+2

= ρ(01).• The following branching rule holds:

Ind
Sp2(n+1)(q)
Pn

(ρΛ⊗ 1) =
∑
Λ′′∈Ω+Λ

ρΛ′′ ;

Ind
O+

2(n′+1)
(q)

P ′
n′

(ρΛ′ ⊗ 1) =
∑
Λ′′′∈Ω+

Λ′

ρΛ′′′
(6.3)

where Pn (resp. P ′n′ ) is a parabolic subgroup of Sp2(n+1)(q) (resp. O+2(n′+1)(q)) with
Levi factor Sp2n(q)×GL1(q) (resp. O+2n′ (q)×GL1(q)). In particular, the defects
are preserved by parabolic induction.

Proposition 6.4. Let (G,G′) = (Sp2n ,Oε
2n′ )where ε=+ or−, ρΛ ∈ E (G)1, ρΛ′ ∈ E (G′)1.

Suppose that def(Λ′) 6= 0. Then ρΛ⊗ρΛ′ occurs in ωG,G′,1 if and only if (Λ,Λ′) ∈BG,G′ .

Proof. If (Λ,Λ′) ∈BG,G′ , then from the definition in (1.5) we know that

(6.5) def(Λ′) =
(−def(Λ)+ 1, if ε=+;

−def(Λ)− 1, if ε=−.

We also know that def(Λ′t) =−def(Λ′) 6= def(Λ′) since we assume that def(Λ′) 6= 0. Now
suppose that ρΛ⊗ρΛ′ occurs inωG,G′,1.

(1) First suppose that both ρΛ,ρΛ′ are cuspidal. Then we know that n = k(k + 1),
and n′ = k2 or (k + 1)2 for some non-negative integer k.
(a) Suppose that n = k(k + 1) and n′ = (k + 1)2 (and ε = (−1)k+1). Then we

know that ζk⊗ζ I
k+1 occurs inωG,G′,1 from [AM93] theorem 5.2. Now ζk =

ρΛk
, ζ I

k+1 = ρΛ′k+1
where Λk ,Λ′k+1 are given in (3.5) and (3.7), and we have

Λ′k+1 =

(� −
2k+1

�∪Λt
k , if k is even;�2k+1

−
�∪Λt

k , if k is odd.

Hence def(Λ′k+1) = −def(Λk ) + 1 if ε = +; and def(Λ′k+1) = −def(Λk )− 1 if
ε=−.
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(b) Suppose that n = k(k + 1) and n′ = k2 (and ε = (−1)k ). Then we know
that ζk ⊗ ζ II

k occurs in ωG,G′,1 from [AM93] theorem 5.2. Now ζk = ρΛk
,

ζ II
k = ρΛ′tk , and

Λ′tk =
(
Λt

k r
�−

2k

�
, if k is even (hence ε=+);

Λt
k r
�2k
−
�
, if k is odd (hence ε=−).

Hence def(Λ′tk ) =−def(Λk )+1 if ε=+; and def(Λ′tk ) =−def(Λk )−1 if ε=−.
(2) Next, suppose that Λ is not cuspidal and def(Λ) = 4d + 1 for some integer d . If

ε = +, we also assume that d 6= 0. This assumption implies that def(Λ′) 6= 0.
Then ρΛ lies in the parabolic induced character IndSp2n (q)

Pk(k+1)
(ρΛk
⊗ 1) where Pk(k+1)

is the parabolic subgroup whose Levi factor is Sp2k(k+1)(q)× T and T is a split
torus of rank n− k(k + 1) and Λk is given in (3.5) for some non-negative integer
k such that k(k + 1)< n.

It is well-known that the theta correspondence is compatible with the par-
abolic induction (cf. [AMR96] théorème 3.7), so now ρΛ′ lies in the parabolic

induced character Ind
Oε

2n′ (q)
P ′

k′2
(ρΛ̄′

k′
⊗1)where P ′k ′2 is the parabolic subgroup whose

Levi factor is Oε
2k ′2 (q) × T ′, k ′ is equal to k or k + 1 depending on ε, T ′ is a

split torus of rank n′ − k ′2, and Λ̄′k ′ is Λ′k ′ or Λ′tk ′ given in (3.7). Now the de-
fects of Λk , Λ̄′k ′ satisfy (6.5) by (1). Moreover, we know that def(Λ) = def(Λk ) and
def(Λ′) = def(Λ̄′k ′ ) from the remark before the proposition.

Now we have shown that if ρΛ ⊗ ρΛ′ occurs in ωG,G′,1 and def(Λ′) 6= 0, then def(Λ′t) 6=
def(Λ′) =−def(Λ)+ ε, and hence (Λ,Λ′t) 6∈ BG,G′ . Then by Theorem 5.3, we must have
(Λ,Λ′) ∈BG,G′ .

On the other hand, suppose that (Λ,Λ′) ∈BG,G′ and def(Λ′) 6= 0. Then by definition
ofBG,G′ we have (Λ,Λ′t) 6∈ BG,G′ . Then by the above argument, we see that ρΛ ⊗ ρΛ′t
does not occurs in ωG,G′,1. Then by Theorem 5.3, we must have ρΛ ⊗ ρΛ′ occurs in
ωG,G′,1. □

Corollary 6.6. Let (G,G′) = (Sp2n ,O−2n′ ), ρΛ ∈ E (G)1, ρΛ′ ∈ E (G′)1. Then ρΛ ⊗ ρΛ′
occurs in ωG,G′,1 if and only if (Λ,Λ′) ∈BG,G′ .

Proof. Let Λ′ ∈ SO−
2n′

. Then def(Λ′) ≡ 2 (mod 4) from (1.3), so def(Λ′) 6= 0. Hence the

corollary follows the previous proposition immediately. □

6.2. Branching rule and symbol correspondence. From now on we consider the case
which is not settled by Proposition 6.4, i.e., ε=+, def(Λ) = 1 and def(Λ′) = 0. Define

B+ = ⋃
n,n′≥0

BSp2n ,O+
2n′

.

For a symbol Λ of defect 1 and a set Ω′ of symbols of defect 0, we define two subsets of
Ω′ by

ΘΛ(Ω
′) = {Λ′ ∈Ω′ | (Λ,Λ′) ∈B+ },

Θ∗Λ(Ω′) = {Λ′ ∈Ω′ | (Λ,Λ′t) ∈B+ and (Λ,Λ′) 6∈ B+ }.
Similarly, for a symbol Λ′ of defect 0 and a set Ω of symbols of defect 1, we define

ΘΛ′ (Ω) = {Λ ∈Ω | (Λ,Λ′) ∈B+ },
Θ∗Λ′ (Ω) = {Λ ∈Ω | (Λ,Λ′t) ∈B+ and (Λ,Λ′) 6∈ B+ }.
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Example 6.7. Let Λ =
�8,5,1

6,2

�
and Λ′ =
�7,4,1

8,5,1

�
. By Lemma 2.15, it is easy to check that

(Λ,Λ′) ∈B+ and

Ω+Λ′ =
��8,4,1

8,5,1

�
,
�7,5,1

8,5,1

�
,
�7,4,2

8,5,1

�
,
�8,5,2,1

9,6,2,0

�
,
�7,4,1

9,5,1

�
,
�7,4,1

8,6,1

�
,
�7,4,1

8,5,2

�
,
�8,5,2,0

9,6,2,1

�	
,

ΘΛ(Ω
+
Λ′ ) =
��8,4,1

8,5,1

�
,
�7,5,1

8,5,1

�
,
�7,4,2

8,5,1

�	
,

Θ∗Λ(Ω+Λ′ ) =
��7,4,1

9,5,1

�
,
�7,4,1

8,6,1

�
,
�7,4,1

8,5,2

�	
.

Lemma 6.8. Suppose that (ρΛ,ρΛ′1 ) occurs in the Howe correspondence, (Λ,Λ′1) ∈ B+,
and Θ∗Λ(Ω

+
Λ′1
) = ;. For any Λ′ ∈ Ω+

Λ′1
, if (ρΛ,ρΛ′ ) occurs in the Howe correspondence, then

(Λ,Λ′) ∈B+.

Proof. Suppose that Λ′ ∈ Ω+
Λ′1

and (ρΛ,ρΛ′ ) occurs in the Howe correspondence. Then

we know by Theorem 5.3 that (Λ,Λ′) or (Λ,Λ′t) is inB+. But Θ∗Λ(Ω
+
Λ′1
) = ; means that

there is no Λ′′ ∈Ω+
Λ′1

such that (Λ,Λ′′t) ∈B+ and (Λ,Λ′′) 6∈ B+. Hence we have (Λ,Λ′) ∈
B+. □

Lemma 6.9. Suppose that (ρΛ1
,ρΛ′ ) occurs in the Howe correspondence, (Λ1,Λ′) ∈ B+,

and Θ∗Λ′ (Ω
+
Λ1
) = ;. For any Λ ∈ Ω+Λ1

, if (ρΛ,ρΛ′ ) occurs in the Howe correspondence, then
(Λ,Λ′) ∈B+.

Proof. The proof is similar to that of Lemma 6.8. □

Lemma 6.10. Let Λ,Λ′ be symbols of defects 1,0 respectively such that (Λ,Λ′) ∈B+. Then

|ΘΛ(Ω+Λ′ )|= 1+ |ΘΛ′ (Ω−Λ )| and |ΘΛ′ (Ω+Λ )|= 1+ |ΘΛ(Ω−Λ′ )|.
Proof. We will only prove the first equality since the proof for the second one is similar.
Write Λ =
�a1,a2,...,am+1

b1,b2,...,bm

�
, Λ′ =
� c1,c2,...,cm′

d1,d2,...,dm′
�

for some m, m′, and suppose that (Λ,Λ′) ∈B+.

We know that m′ = m, m+ 1 by Lemma 2.14. It is clear that the symbol

Λ′′0 :=
�

c1+ 1, c2, . . . , cm′

d1, d2, . . . , dm′

�
is in Ω+Λ′ and (Λ,Λ′′0 ) ∈ B+ by Lemma 2.15, i.e., Λ′′0 ∈ ΘΛ(Ω+Λ′ ). Now we want to prove
the lemma by constructing an injective map ΘΛ′ (Ω

−
Λ )→ ΘΛ(Ω+Λ′ ) given by Λ1 7→ Λ′1 such

that the only element in ΘΛ(Ω
+
Λ′ ) not in the image of the map is Λ′′0 .

First suppose that m′ = m + 1. Now we consider the following possible types of
elements in Ω−Λ and Ω+Λ′ :

(1) Consider the following two symbols

Λ1 =
�

a1, . . . ,ai−1,ai − 1,ai+1, . . . ,am+1

b1, b2, . . . , bm

�
, Λ′1 =
�

c1, c2, . . . , cm+1

d1, . . . , di−1, di + 1, di+1, . . . , dm+1

�
for some i = 1, . . . , m. If Λ1 ∈ΘΛ′ (Ω−Λ ), i.e., Λ1 ∈Ω−Λ and (Λ1,Λ′) ∈B+, then we
have
• ai − 1> ai+1 (because Λ1 is a symbol);
• di−1 > ai (because (Λ,Λ′) ∈B+ by Lemma 2.15);
• ai − 1≥ di (because (Λ1,Λ′) ∈B+ by Lemma 2.15),

which imply
• di−1 > di + 1;
• ai ≥ di + 1,

i.e., Λ′1 is a symbol and Λ′1 ∈ ΘΛ(Ω+Λ′ ). On the other hand, it is also not difficult
to see that Λ′1 ∈ΘΛ(Ω+Λ′ ) implies Λ1 ∈ΘΛ′ (Ω−Λ ).
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(2) Consider

Λ1 =
�

a1, . . . ,am ,am+1− 1
b1, b2, . . . , bm

�
, Λ′1 =
�

c1, c2, . . . , cm+1

d1, . . . , dm , dm+1+ 1

�
.

If Λ1 ∈ ΘΛ′ (Ω−Λ ), then we have dm > am+1 and am+1 − 1 ≥ dm+1, which implies
that dm > dm+1+1 and am+1 ≥ dm+1+1, i.e., Λ′1 ∈ΘΛ(Ω+Λ′ ). One the other hand,
Λ′1 ∈ΘΛ(Ω+Λ′ ) also implies Λ1 ∈ΘΛ′ (Ω−Λ ).

(3) Consider

Λ1 =
�

a1, . . . ,am+1

b1, . . . , bi−1, bi − 1, bi+1, . . . , bm

�
, Λ′1 =
�

c1, . . . , ci , ci+1+ 1, ci+2, . . . , cm+1

d1, d2, . . . , dm+1

�
for some i = 1, . . . , m. By the similar argument in (1) or (2), we see that Λ1 ∈
ΘΛ′ (Ω

−
Λ ) if and only if Λ′1 ∈ΘΛ(Ω+Λ′ ).

(4) Because now m′ = m + 1, any Λ1 ∈ Ω−Λ of type (III’) in Subsection 6.1 is not in
ΘΛ′ (Ω

−
Λ ) by Lemma 2.14, moreover, any Λ′1 ∈ Ω+Λ′ of type (III) or (IV) in Subsec-

tion 6.1 is not in ΘΛ(Ω
+
Λ′ ).

Hence the lemma is proved for the case that m′ = m+ 1.
Next suppose that m′ = m. Except for the situations similar to those considered above,

there is another possibility, i.e., the case that (am+1, bm) = (1,0) or (0,1). Let

Λ1 =
�

a1− 1, . . . ,am − 1
b1− 1, . . . , bm−1− 1

�
.

Then we have Λ1 ∈Ω−Λ and (Λ1,Λ′) ∈B+. Note that now dm ≥ am+1 and cm ≥ bm since
(Λ,Λ′) ∈B+. So dm ≥ 1 if (am+1, bm) = (1,0); cm ≥ 1 if (am+1, bm) = (0,1). Let

Λ′1 =


�

c1+ 1, . . . , cm + 1,0
d1+ 1, . . . , dm + 1,1

�
, if (am+1, bm) = (1,0);�

c1+ 1, . . . , cm + 1,1
d1+ 1, . . . , dm + 1,0

�
, if (am+1, bm) = (0,1).

It is easy to check that Λ′1 ∈Ω+Λ′ and (Λ,Λ′1) ∈B+. On the other hand, Λ′1 ∈ΘΛ(Ω+Λ′ ) also
implies that Λ1 ∈ ΘΛ′ (Ω−Λ ). Again, for m′ = m, we still have an injective mapping from
ΘΛ′ (Ω

−
Λ ) to ΘΛ(Ω

+
Λ′ ) given by Λ1 7→ Λ′1 with only one extra element Λ′′0 not in the image.

Hence the lemma is proved. □

Lemma 6.11. Let Λ, Λ′ be symbols of sizes (m + 1, m), (m′, m′) respectively, and suppose
that (Λ,Λ′) ∈B+.

(i) If m′ = m+ 1, then ΘΛ(Ω
−
Λ′ ) 6= ;.

(ii) If m′ = m and ΘΛ′ (Ω
−
Λ ) = ;, then m = 0 and Λ=

�0
−
�
.

Proof. Write Λ=
�a1,...,am+1

b1,...,bm

�
, Λ′ =
� c1,...,cm′

d1,...,dm′
�
. First suppose that m′ = m+ 1, and we define

Λ′1 =



�
c1− 1, . . . , cm − 1
d1− 1, . . . , dm − 1

�
, if (cm+1, dm+1) = (1,0) or (0,1);�

c1, . . . , cm , cm+1− 1
d1, . . . , dm+1

�
, if cm+1 ≥ 1 and (cm+1, dm+1) 6= (1,0);�

c1, . . . , cm+1

d1, . . . , dm , dm+1− 1

�
, if dm+1 ≥ 1 and (cm+1, dm+1) 6= (0,1).

It is easy to see that Λ′1 ∈ Ω−Λ′ . Moreover, the assumption that (Λ,Λ′) ∈B+ implies that
(Λ,Λ′1) ∈B+ by Lemma 2.15. Thus (i) is proved.
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Next suppose that m′ = m and m ≥ 1, and we define

Λ1 =



�
a1− 1, . . . ,am − 1

b1− 1, . . . , bm−1− 1

�
, if (am+1, bm) = (1,0) or (0,1);�

a1, . . . ,am ,am+1− 1
b1, . . . , bm

�
, if am+1 ≥ 1 and (am+1, bm) 6= (1,0);�

a1, . . . ,am+1

b1, . . . , bm−1, bm − 1

�
, if bm ≥ 1 and (am+1, bm) 6= (0,1).

It is easy to see that Λ1 ∈ Ω−Λ . Moreover, the assumption that (Λ,Λ′) ∈ B+ implies that
(Λ1,Λ′) ∈B+ by Lemma 2.15. Therefore we conclude that if m ≥ 1, then ΘΛ′ (Ω

−
Λ ) 6= ;.

Next suppose that m′ = m and m = 0, i.e., Λ =
�a1−
�

and Λ′ =
�−
−
�

for some a1 ≥ 0. If
a1 ≥ 1, then Λ1 =

�a1−1
−
� ∈ΘΛ′ (Ω−Λ ) and hence ΘΛ′ (Ω

−
Λ ) 6= ;. □

Example 6.12. Let Λ=
�a
−
�

and Λ′1 =
�c

d

�
be symbols of sizes (1,0) and (1,1) respectively

such that (Λ,Λ′1) ∈B+. So now we have a ≥ d by Lemma 2.15. Now by the definition
we have
�c+1

d

�
,
� c

d+1

� ∈Ω+
Λ′1

; moreover, we also have
�c+1,1

d+1,0

� ∈Ω+
Λ′1

if c 6= 0; and
�c+1,0

d+1,1

� ∈Ω+
Λ′1

if d 6= 0. Clearly, we have
�c+1

d

� ∈ ΘΛ(Ω+Λ′1 ). If Λ′ =
�c+1,1

d+1,0

�
or
�c+1,0

d+1,1

�
, then Λ′ is of size

(2,2) and hence (Λ,Λ′), (Λ,Λ′t) 6∈ B+ by Lemma 2.14.
Suppose that Θ∗Λ(Ω

+
Λ′1
) 6= ;. Then we must have Λ′′ :=

� c
d+1

� ∈ Θ∗Λ(Ω+Λ′1 ), i.e., (Λ,Λ′′t) ∈
B+ and (Λ,Λ′′) 6∈ B+, which imply a ≥ c and a = d . Let

Λ′2 =
(�d+1

c−1

�
, if c ≥ 1;�d

c

�
, if c = 0.

Clearly, Λ′′t ∈Ω+
Λ′2

and (Λ,Λ′2) ∈B+.

(1) If c ≥ 1, then ΘΛ(Ω
+
Λ′2
) =
��d+2

c−1

�
,
�d+1

c

�	
.

(2) If c = 0, then d ≥ 1 (since we always consider reduced symbols) and hence a =
d ≥ c + 1. Therefore ΘΛ(Ω

+
Λ′2
) =
��d+1

c

�
,
� d

c+1

�	
.

For both cases (1) and (2), we conclude that Θ∗Λ(Ω
+
Λ′2
) = ;.

Now we want to show that the above example is in fact a general phenomena:

Lemma 6.13. Let Λ,Λ′1 be symbols of sizes (m + 1, m), (m + 1, m + 1) respectively such
that (Λ,Λ′1) ∈ B+. Suppose that Λ′′ ∈ Θ∗Λ(Ω+Λ′1 ). Then there exists a symbol Λ′2 such that

Λ′′t ∈Ω+
Λ′2

, (Λ,Λ′2) ∈B+, and Θ∗Λ(Ω
+
Λ′2
) = ;.

Proof. Write Λ=
�a1,...,am+1

b1,...,bm

�
, Λ′1 =
� c1,...,cm+1

d1,...,dm+1

�
. Because now (Λ,Λ′1) ∈B+, by Lemma 2.15

we have
a1 ≥ d1 > a2 ≥ d2 > · · ·> am+1 ≥ dm+1,

c1 > b1 ≥ c2 > b2 ≥ · · · ≥ cm > bm ≥ cm+1.
(6.14)

Let Λ′′ ∈ Θ∗Λ(Ω+Λ′1 ), i.e, Λ′′ ∈ Ω+
Λ′1

, (Λ,Λ′′t) ∈B+, and (Λ,Λ′′) 6∈ B+. If Λ′′, as an element

of Ω+
Λ′1

, is of type (III) or (IV) in Subsection 6.2, then Λ′′,Λ′′t are of size (m+2, m+2) and

hence (Λ,Λ′′t) 6∈ B+ by Lemma 2.14. Therefore, Λ′′ must be of type (I) or (II):

(1) Suppose that

Λ′′ =
�

c1, . . . , ck−1, ck + 1, ck+1, . . . , cm+1

d1, . . . , dm+1

�
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for some k such that ck−1 > ck +1. If k = 1, then (Λ,Λ′1) ∈B+ implies (Λ,Λ′′) ∈
B+ and we get a contradiction. So we must have k ≥ 2. Because now (Λ,Λ′′) 6∈
B+ and (Λ,Λ′′t) ∈B+, we have
• bk−1 = ck• ai ≥ ci > ai+1 for i 6= k and ak ≥ ck + 1> ak+1; d j > b j ≥ d j+1 for each j .

Then dk−1 > ak ≥ ck + 1= bk−1+ 1≥ dk + 1 and hence

Λ′2 :=
�

d1, . . . , dk−2, dk−1− 1, dk , . . . , dm+1

c1, . . . , ck−1, ck + 1, ck+1, . . . , cm+1

�
is a symbol. It is easy to see that Λ′′t ∈Ω+

Λ′2
and (Λ,Λ′2) ∈B+. Moreover, for any

Λ′ =
�

c ′1, . . . , c ′m+1

d ′1, . . . , d ′m+1

�
∈Ω+

Λ′2
,

we have d ′k ≥ ck + 1. Because now bk−1 = ck < d ′k , we have (Λ,Λ′t) 6∈ B+.
Therefore Θ∗Λ(Ω

+
Λ′2
) = ;.

(2) Suppose that

Λ′′ =
�

c1, . . . , cm+1

d1, . . . , dl−1, dl + 1, dl+1, . . . , dm+1

�
for some l ≥ 2 such that dl−1 > dl +1. Because now (Λ,Λ′′) 6∈ B+ and (Λ,Λ′′t) ∈
B+, we have
• al = dl ;• ai ≥ ci > ai+1 for each i ; b j ≥ d j+1 > b j+1 for j 6= l−1 and bl−1 ≥ dl+1> bl .

Then cl−1 > bl−1 ≥ dl + 1= al + 1≥ cl + 1 and hence

Λ′2 :=
�

d1, . . . , dl−1, dl + 1, dl+1, . . . , dm+1

c1, . . . , cl−2, cl−1− 1, cl , . . . , cm+1

�
is a symbol. It is easy to see that Λ′′t ∈ Ω+

Λ′2
and (Λ,Λ′2) ∈B+. Moreover, by the

same argument in (1), we can see that Θ∗Λ(Ω
+
Λ′2
) = ;.

(3) Suppose that

Λ′′ =
�

c1, . . . , cm+1

d1+ 1, d2, . . . , dm+1

�
.

Then we have
• a1 = d1• ai ≥ ci > ai+1 and bi ≥ di+1 > bi+1 for each i , and d1+ 1> b1.

If m = 0, this is just Example 6.12. So now we assume that m ≥ 1. Note that
cm+1, dm+1 can not both be 0. We can define

Λ′2 =


�d1+1,d2,...,dm ,dm+1−1

c1,...,cm+1

�
, if dm+1 ≥ 1 and (cm+1, dm+1) 6= (0,1);�d1+1,d2,...,dm+1

c1,...,cm ,cm+1−1

�
, if cm+1 ≥ 1 and (cm+1, dm+1) 6= (1,0);�d1,d2−1...,dm−1

c1−1,...,cm−1

�
, if (cm+1, dm+1) = (1,0) or (0,1).

For above three possible situations, it is easy to see that Λ′′t ∈ Ω+
Λ′2

and (Λ,Λ′2) ∈
B+. By the similar argument in (1) we can see that Θ∗Λ(Ω

+
Λ′2
) = ;.

□
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Example 6.15. Let Λ=
�8,5,1

6,2

�
and Λ′1 =
�7,4,1

8,3,0

�
. Then (Λ,Λ′1) ∈B+,

ΘΛ(Ω
+
Λ′1
) =
��8,4,1

8,3,0

�
,
�7,5,1

8,3,0

�
,
�7,4,2

8,3,0

�
,
�7,4,1

8,4,0

�
,
�7,4,1

8,3,1

�	
and Θ∗Λ(Ω

+
Λ′1
) =
��7,4,1

9,3,0

�	
.

Now Λ′′ =
�7,4,1

9,3,0

� ∈ Θ∗Λ(Ω+Λ′1 ). So let Λ′2 =
�8,2

6,3

�
as given in (3) of the proof of the previous

lemma, and we have Λ′′t ∈Ω+
Λ′2

, (Λ,Λ′2) ∈B+,

ΘΛ(Ω
+
Λ′2
) =Ω+

Λ′2
=
��9,2

6,3

�
,
�8,3

6,3

�
,
�8,2

7,3

�
,
�8,2

6,4

�
,
�9.3,1

7,4,0

�
,
�9,3,0

7,4,1

�	
and Θ∗Λ(Ω

+
Λ′2
) = ;.

Lemma 6.16. Let Λ,Λ′1 be symbols of sizes (m+ 1, m), (m, m) respectively such that m ≥ 1
and (Λ,Λ′1) ∈ B+. Suppose that Λ′′ ∈ Θ∗Λ(Ω+Λ′1 ). Then there exists a symbol Λ′2 such that

Λ′′t ∈Ω+
Λ′2

, (Λ,Λ′2) ∈B+ and Θ∗Λ(Ω
+
Λ′2
) = ;.

Proof. Write Λ =
�a1,...,am+1

b1,...,bm

�
, Λ′1 =
� c1,...,cm

d1,...,dm

�
. Because now (Λ,Λ′1) ∈ B+, by Lemma 2.15

we have

a1 > d1 ≥ a2 > d2 ≥ · · · ≥ am > dm ≥ am+1,

c1 ≥ b1 > c2 ≥ b2 > · · ·> cm ≥ bm .
(6.17)

Let Λ′′ ∈Θ∗Λ(Ω+Λ′1 ).
(1) Suppose that

Λ′′ =
�

c1, . . . , ck−1, ck + 1, ck+1, . . . , cm

d1, . . . , dm

�
for some k such that ck−1 > ck + 1. The proof for this case is similar to (1) in the
proof of Lemma 6.13.

(2) Suppose that

Λ′′ =
�

c1, . . . , cm

d1, . . . , dl−1, dl + 1, dl+1, . . . , dm

�
for some l such that dl−1 > dl + 1. The proof for this case is similar to (2) in the
proof of Lemma 6.13.

(3) Suppose that

Λ′′ =
�

c1+ 1, . . . , cm + 1,1
d1+ 1, . . . , dm + 1,0

�
.

So we have cm ≥ 1. The assumptions (Λ,Λ′′) 6∈ B+ and (Λ,Λ′′t) ∈B+ imply that
• bm = 0;
• ai > ci ≥ ai+1 for each i ; and d j ≥ b j > d j+1 for j = 1, . . . , m− 1.

Because Λ is reduced and now bm = 0, we must have am+1 6= 0. Hence dm ≥
am+1 ≥ 1. Let

Λ′2 =
�

d1+ 1, . . . , dm−1+ 1, dm , 0
c1+ 1, . . . , cm + 1,1

�
.

It is easy to see that Λ′′t ∈Ω+
Λ′2

and (Λ,Λ′2) ∈B+. Moreover, for any

Λ′ =
�

c ′1, . . . , c ′m+1

d ′1, . . . , d ′m+1

�
∈Ω+

Λ′2
,

we have d ′m+1 ≥ 1. Because now bm = 0 < d ′m+1, we have (Λ,Λ′t) 6∈ B+. There-
fore Θ∗Λ(Ω

+
Λ′2
) = ;.
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(4) Suppose that

Λ′′ =
�

c1+ 1, . . . , cm + 1,0
d1+ 1, . . . , dm + 1,1

�
.

The proof is similar to (3) above.

□

Lemma 6.18. Let Λ1,Λ′ be symbols of sizes (m + 1, m), (m′, m′) respectively, and suppose
that (Λ1,Λ′) ∈ B+. Suppose that Λ′′ ∈ Θ∗Λ′ (Ω+Λ1

). Then there exists a symbol Λ2 such that
Λ′′ ∈Ω+Λ2

, (Λ2,Λ′) ∈B+, and Θ∗Λ′t (Ω
+
Λ2
) = ;.

Proof. We know that m′ = m, m+ 1. Then the proof is similar to those of Lemma 6.13
and Lemma 6.16. □

6.3. Branching rule and Howe correspondence. For ρ ∈ E (Sp2n(q)), let Ω+ρ denote

the set of irreducible constituents of the parabolic induced character Ind
Sp2(n+1)(q)
Pn

(ρ⊗ 1),
then, if n ≥ 1, we also define

Ω−ρ = {ρ1 ∈ E (Sp2(n−1)(q)) | ρ ∈Ω+ρ1
}

where Pn is a parabolic subgroup of Sp2(n+1)(q) whose Levi factor is Sp2n(q)×GL1(q).
The analogous definition also applies to ρ′ ∈ E (O+2n′ (q)).

For ρ ∈ E (Sp2n(q)) and a set of irreducible characters Ω′ ⊂E (O+2n′ (q)), we define

Θρ(Ω
′) = {ρ′ ∈Ω′ | (ρ,ρ′) occurs in the Howe correspondence}.

Similarly, for ρ′ ∈ E (O+2n′ (q)) and a set Ω⊂E (Sp2n(q)), we define

Θρ′ (Ω) = {ρ ∈Ω | (ρ,ρ′) occurs in the Howe correspondence}.
The following lemma is extracted from the proof of [AMR96] théorème 3.7:

Lemma 6.19. Let ρ ∈ E (Sp2n(q)) and ρ′ ∈ E (O+2n′ (q)) such that (ρ,ρ′) occurs in the Howe
correspondence. Then

|Θρ(Ω+ρ′ )|= 1+ |Θρ′ (Ω−ρ )| and |Θρ′ (Ω+ρ )|= 1+ |Θρ(Ω−ρ′ )|.
Proof. Suppose that ρ ∈ E (Sp2n(q)), ρ

′ ∈ E (O+2n′ (q)) and (ρ,ρ′) occurs in the Howe
correspondence. Note that the Howe correspondence for symplctic/orthogonal dual pair
is of multiplicity one (cf. [MVW87] p.97). By Frobenius reciprocity, we have

|Θρ(Ω+ρ′ )|=
D
ωSp2n ,O+

2(n′+1)
,ρ⊗R

O+
2(n′+1)

(q)

O+
2n′ (q)×GL1(q)

(ρ′⊗ 1)
E

=
D
(1⊗ ∗RO+

2(n′+1)
(q)

O+
2n′ (q)×GL1(q)

)(ωSp2n ,O+
2(n′+1)
),ρ⊗ρ′⊗ 1
E

.

Here R
O+

2(n′+1)
(q)

O+
2n′ (q)×GL1(q)

denotes the Lusztig induction, and now it is just the usual parabolic

induction. From [AMR96] p.382, we know that�
1⊗ ∗RO+

2(n′+1)
(q)

O+
2n′ (q)×GL1(q)

�
(ωSp2n ,O+

2(n′+1)
)

=ωSp2n ,O+
2n′
⊗ 1+R

Sp2n (q)×O+
2n′ (q)×GL1(q)

Sp2(n−1)(q)×O+
2n′ (q)×GL1(q)×GL1(q)

(ωSp2(n−1),O
+
2n′
⊗RGL1

)

where RGL1
denotes the character of the representation ofGL1(q)×GL1(q) onC(GL1(q)).

By our assumption, we have

〈ωSp2n ,O+
2n′
⊗ 1,ρ⊗ρ′⊗ 1〉= 1.



44 SHU-YEN PAN

Moreover, by Frobenius reciprocity again, we haveD
R

Sp2n (q)×O+
2n′ (q)×GL1(q)

Sp2(n−1)(q)×O+
2n′ (q)×GL1(q)×GL1(q)

(ωSp2(n−1),O
+
2n′
⊗RGL1

),ρ⊗ρ′⊗ 1
E

=
D
ωSp2(n−1),O

+
2n′

, ∗RSp2n (q)
Sp2(n−1)(q)

(ρ)⊗ρ′
E
= |Θρ′ (Ω−ρ )|.

Hence the first equality is proved. The proof of the second equality is similar. □

Proposition 6.20. Let (G,G′) = (Sp2n ,O+2n′ ), ρΛ ∈ E (G)1, ρΛ′ ∈ E (G′)1 for some symbols
Λ,Λ′ of defects 1,0 respectively. ThenρΛ⊗ρΛ′ occurs inωG,G′,1 if and only if (Λ,Λ′) ∈BG,G′ .

Proof. We are going to prove the proposition by induction on n+ n′. First we consider
the cases that n′ = 0. The Howe correspondence for the dual pair (Sp2n(q),O

+
0 (q)) is

given by 1Sp2n
⊗ 1O+0

and we know that 1Sp2n
= ρ(n−), 1O+0

= ρ(−−). It is clear that

BSp2n ,O+0
=
�
(
�n
−
�
,
�−
−
�
)
	
.

Hence the proposition holds for n′ = 0 (and any non-negative integer n). Next we con-
sider the cases that n = 0. The Howe correspondence for the dual pair (Sp0(q),O

+
2n′ (q))

is given by 1Sp0
⊗ 1O+

2n′
, and we know that 1Sp0

= ρ(0
−), 1O+

2n′
= ρ(n′0 )

. It is clear that

BSp0,O+
2n′
=
�
(
�0
−
�
,
�n′

0

�
)
	
.

Hence the proposition holds for n = 0 (and any non-negative integer n′).
Now suppose that (Λ,Λ′) ∈ BSp2n ,O+

2n′
and def(Λ′) = 0 for some positive n, n′, and

write Λ=
�a1,...,am+1

b1,...,bm

�
, Λ′ =
� c1,...,cm′

d1,...,dm′
�

for some nonnegative integers m, m′. It is known that

m′ = m, m+ 1 by Lemma 2.14.

(1) Suppose that m′ = m + 1. By Lemma 6.11, we know that ΘΛ(Ω
−
Λ′ ) 6= ;. Let

Λ′1 ∈ ΘΛ(Ω−Λ′ ), i.e., Λ′ ∈ Ω+
Λ′1

and (Λ,Λ′1) ∈ BSp2n ,O+
2(n′−1)

. Then, by induction

hypothesis, (ρΛ,ρΛ′1 ) occurs in the Howe correspondence and we have

(6.21) |ΘρΛ′1 (Ω
−
ρΛ
)|= |ΘΛ′1 (Ω−Λ )|.

Now by Lemma 6.19 and Lemma 6.10, we have the equality

(6.22) |ΘρΛ (Ω+ρΛ′1 )|= |ΘΛ(Ω
+
Λ′1
)|.

(a) Suppose that Λ′1 is of type (I’) or (II’) in Subsection 6.1. Then Λ′1 is of size
(m+ 1, m+ 1).

(i) First suppose that Θ∗Λ(Ω
+
Λ′1
) = ;. For any Λ′′ ∈ Ω+

Λ′1
, by Lemma 6.8, if

(ρΛ,ρΛ′′ ) occurs in the Howe correspondence, then we have (Λ,Λ′′) ∈
BSp2n ,O+

2n′
.

(ii) Next suppose thatΘ∗Λ(Ω
+
Λ′1
) 6= ;. For anyΛ′′′ ∈Θ∗Λ(Ω+Λ′1 ), we know that

(Λ,Λ′′′t) ∈ BSp2n ,O+
2n′

and (Λ,Λ′′′) 6∈ BSp2n ,O+
2n′

by the definition. By

Lemma 6.13, we can find Λ′2 ∈ SO+
2(n′−1)

such that Λ′′′t ∈ Ω+
Λ′2

, (Λ,Λ′2) ∈
BSp2n ,O+

2(n′−1)
and Θ∗Λ(Ω

+
Λ′2
) = ;. By (i), with Λ′1 replaced by Λ′2 and the

fact (Λ,Λ′′′) 6∈ BSp2n ,O+
2n′

, we see that (ρΛ,ρΛ′′′ ) does not occur in the

Howe correspondence. In short, we have shown that for any Λ′′′ ∈
Θ∗Λ(Ω

+
Λ′1
), (ρΛ,ρΛ′′′ ) does not occur in the Howe correspondence. So

now for anyΛ′′ ∈Ω+
Λ′1

, if (ρΛ,ρΛ′′ ) occurs in the Howe correspondence
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and (Λ,Λ′′) 6∈ BSp2n ,O+
2n′

, we must have (Λ,Λ′′t) ∈BSp2n ,O+
2n′

, i.e., Λ′′ ∈
Θ∗Λ(Ω

+
Λ′1
) and we get a contradiction. Therefore, for any Λ′′ ∈ Ω+

Λ′1
,

the occurrence of (ρΛ,ρΛ′′ ) in the Howe correspondence implies that
(Λ,Λ′′) ∈BSp2n ,O+

2n′
.

Hence for both (i) and (ii), by (6.22), the condition Λ′′ ∈ ΘΛ(Ω+Λ′1 ) also im-

plies that (ρΛ,ρΛ′′ ) occurs in the Howe correspondence. In particular, since
Λ′ ∈ Ω+

Λ′1
and (Λ,Λ′) ∈BSp2n ,O+

2n′
, we have that (ρΛ,ρΛ′ ) occurs in the Howe

correspondence.
(b) Suppose that Λ′1 is of type (III’) in Subsection 6.1. Then Λ′1 is of size (m, m).

(i) First suppose that Θ∗Λ(Ω
+
Λ′1
) = ;. The proof is exactly the same as in

(a.i).
(ii) Suppose that Θ∗Λ(Ω

+
Λ′1
) 6= ;. First suppose that m = 0. This means that

Λ =
�n
−
�

for some n ≥ 0, Λ′1 =
�−
−
�
, Λ′ =
�1

0

�
and Θ∗Λ(Ω

+
Λ′1
) =
��0

1

�	
. It

is well known that ρ(n−) = 1Sp2n
, ρ(10) = 1O+2

, (1Sp2n
,1O+2

) occurs in the

Howe correspondence, and (
�n
−
�
,
�1

0

�
) ∈ BSp2n ,O+2

, i.e., the proposition
is true for this case. Next suppose that m ≥ 1. Then the proof is
similar to that of (a.ii). The only difference is that we need to apply
Lemma 6.16 instead of Lemma 6.13.

(2) Suppose that m′ = m. Since the case that m = 0 is just the case that n′ = 0,
we assume that m ≥ 1. By Lemma 6.11, we know that ΘΛ′ (Ω

−
Λ ) 6= ;. Let Λ1 ∈

ΘΛ′ (Ω
−
Λ ), i.e., Λ ∈ Ω+Λ1

and (Λ1,Λ′) ∈ BSp2(n−1),O
+
2n

. Then (ρΛ1
,ρΛ′ ) occurs in the

Howe correspondence by induction hypothesis. The remaining proof is similar
to that of (1). Note that we need to apply Lemma 6.18 instead of Lemma 6.13 and
Lemma 6.16.

□

Proof of Theorem 1.8. The theorem is just the combination of Proposition 6.4 and Propo-
sition 6.20. □
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