HOWE CORRESPONDENCE OF UNIPOTENT CHARACTERS FOR A
FINITE SYMPLECTIC/EVEN-ORTHOGONAL DUAL PAIR

SHU-YEN PAN

ABSTRACT. In this paper we give a complete and explicit description of the Howe cor-
respondence of unipotent characters for a finite reductive dual pair of a symplectic group
and an even orthogonal group in terms of the Lusztig parametrization. That is, the con-
jecture by Aubert-Michel-Rouquier is confirmed.
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1. INTRODUCTION

1.1. Let a)ébp . denote the character of the Weil representation (c¢f. [Gér77]) of a finite
21

symplectic group Sp,,(q) with respect to a nontrivial additive character ¢ of a finite
field F, of characteristic p # 2. Let (G, G’) be one of the following three basic types of
reductive dual pairs in Sp,:

(1) two general linear groups (GL,,,GL,,);
(2) two unitary groups (U,,U,,);
(3) one symplectic group and one orthogonal group (Sp,,,O¢,)

2 / ¢
Sy S regarded as a character of G x G” and denoted by w(,

via the homomorphisms G x G’ — G - G’ — Sp,,/(q) where G,G’ denote the finite

where € =+ or —. Now w

groups of rational points of G, G’ respectively. Then wl . is decomposed as a sum of

G,G’
irreducible characters

/
GG — Z Moo P ® P
0€6(G), P'e6(G)
where each 7, , is a non-negative integer, and &(G) denotes the set of irreducible char-
acters of G (i.e., the set of the characters of irreducible representations of G). Then it
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establishes a relation

Oga ={(p.p)€E(G)x 8(G)|m, , #0}

between &(G) and &(G’) which is called the Howe correspondence (or ©-correspondence)
for the dual pair (G, G’). The main task is to describe the correspondence explicitly.

1.2. It is known that £(G) is partitioned as a disjoint union

sG)= |J &),
(s)c(Gr)°
of Lusztig series §(G), indexed by the conjugacy classes (s) of semisimple elements in the
connected component (G*)° of the dual group G* of G. Elements in &(G), are called
unipotent characters. Lusztig shows that there exists a bijection

L1 6(G), — &(Co. ()

where Cg.(s) is the centralizer in G* of s (¢f. [Lus77]). For a semisimple element s we
can define three groups G, G, G®? so that there is a natural bijection

E(Ci.(s)); = E(GO x GV x GP)y,
(¢f- [Pan19a] subsection 6.2). Then we have a (modified) Lusztig correspondence
Z,: 8(G), —» 8G9 x GV x G?),,

PP OPC:

where pl) € §(GY), for j = 0,1,2. Moreover, we have the corresponding decomposi-
tion s = 5@ x s() x 52,

Recall that a class function on G is called #niform if it is a linear combination of the
Deligne-Lusztig virtual characters Ry 4. For a class function f on G, let f* denote its
projection on the subspace of uniform class functions.

Now let (G,G’) be a dual pair and suppose that p € £(G),, p’ € 6(G’),, for some
s,s’. For simplicity in this subsection we assume that the orthogonal group is even for a
symplectic/orthogonal dual pair. Then one can show that

e both G,G'® are products of general linear groups or unitary groups;

e both G, G’ are classical groups of the same type;

e (G?,G"@) forms a reductive dual pair of either two general linear groups, two
unitary groups, or one symplectic group and one even orthogonal group.

It is known that unipotent characters are preserved in the Howe correspondence for the

dual pair (G?,G'?) (¢f. [AM93]). Then one can show that p ® o’ occurs in w?

GG (ie.,

m, #0) if and only if the following conditions are satisfied:
(1) 5© = 510, GO ~ G'© and o = 5O,
) GO~ G/ and () = 0,
3) p?® '@ occurs in WG .G 1

. ¢ . T
where wge) g denotes the unipotent part of w G 16 the following diagram
Occr ,
P - P

1.1 :l

id®ide0 ) )
_—
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commutes. Therefore we can reduce the Howe correspondence O, of general irre-
ducible characters to the correspondence O g of irreducible unipotent characters.

Remark 1.2. (1) If the pair (G, G’) consists of two general linear groups or two uni-
tary groups, then all the irreducible characters of G and G’ are uniform and so the
above commutative diagram can be read off from the result in [AMR96] théoréme
2.6 (¢f- [Pan19b] theorem 3.10).

2) If (G,G’) consists of a symplectic group and an orthogonal group, using the de-

composition of wh . in [Sri79] and [Pan21], the commutativity of the diagram

G,G
(under proper choices of Z, and Z,) is proved in [Pan19a)]. Unlike the cases of
general linear groups or unitary groups, most of the irreducible characters of sym-
plectic groups or orthogonal groups are not uniform. This is the main difference
and difficulty for studying the correspondence for symplectic/orthogonal dual

pairs.

1.3. So now we focus on the correspondences of irreducible unipotent characters for
symplectic/even-orthogonal dual pairs. First we review some results on the classification
of the irreducible unipotent characters by Lusztig in [Lus77], [Lus81] and [Lus82]. Let

Ao <A> _ <al,az,...,aml >
B by, by,.... b,

denote a reduced symbol, i.e., an ordered pair of two finite subsets A, B of non-negative
integers such that 0 ¢ AN B. Note that we always assume that 2, >a, > -- >4, and
by>b,>--->b,, . The rank and the defect of a symbol A (denoted by rk(A) and def(A)
respectively) are defined in (2.1). Let # denote the set of reduced symbols, and let 7, ,
denote the set of reduced symbols of rank 7 and defect d. Then we define the following
sets of symbols associated to G:

Fsp, S{AE S |tk(A)=n, def(A)=1 (mod 4)};
(1.3) For ={Ae S |k(A)=n, def(A)=0 (mod4)};

So. ={AeS | tk(A) =n, def(A)=2 (mod 4)}.

Then Lusztig gives a parametrization of the set of irreducible unipotent characters £(G),
by the set of symbols .#;. The irreducible character parametrized by a symbol A will be
denoted by p,.

For a symbol A = (Z“:Z """ ‘;’”1 ) We associate it a bi-partition
150750005

ma

(14) T(A) — |:ﬂl _(ml - 1),42_(7”1 _2>a "’ﬂml—l — l,dml i|
by —(my—1),by—(my—2),...,b,, —1,b,,
Let (G,G') = (Sp,,,, 0%,,) where € = + or —. For A € 7, A € F), we write T(A) = [i]

and Y(A) = [:/,] Then we define a relation g g, on S5 X S by
By, 0n, =M€ Sy X T | <Ay 1 < 4 def(N) = —def(A)+1};

1.5
4.3 Bsp, o-, = 1A, N)e Fsp, X Fo, | Ny, A1, def(A') =—def(A)—1}

where the relation A < u on partitions is given in (2.10). Moreover, we define

16 Dep05, = Py 01, = Bop 01, (T X Ty

2n’
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Then it is proved in [Pan21] that
1 G bl
(1.7) Vo=, > REeRG= X pded
(EE)e%6.0/ (AN)EBG o/

where RS and Rg,/ are the almost characters given in Subsection 3.3 and Subsection 3.2.

In this article, we can go a step further to remove the uniform projection and obtain an
explicit description in terms of Lusztig’s symbols of the Howe correspondence of unipo-
tent characters for a symplectic/even-orthogonal dual pair:

Theorem 1.8. Let (G,G’) =(Sp,,, 0%

) Where € =+ or —. Then

we,G,1 = Z PA® LN
(AN)EBG o

ie., (op,on) occurs in Og g, if and only if (A, ') € Bg -

Remark 1.9. In [AMRY6] théoréme 5.5, théoréme 3.10 and conjecture 3.11, Aubert,
Michel and Rouquier give an explicit description (in terms of partitions or bi-partitions)
of the correspondence of unipotent characters for a dual pair of either two general lin-
ear groups or two unitary groups, and they have a conjecture on the description of the
correspondence for a symplctic/even-orthogonal dual pair. A comparison between the
theorem above and their conjecture is in Subsection 3.5.

Combining the theorem and the commutativity between Howe correspondence and
Lusztig correspondence in (1.1), we obtain a complete description of the whole Howe
correspondence of irreducible characters for any finite reductive dual pair. Some applica-
tions of the description can be found in [Pan19a] and [Pan20].

1.4. The contents of the paper are organized as follows. In Section 2, we recall the defini-
tion and basic properties of symbols introduced by Lusztig. Then we discuss the relations
9.7 and B, ; which play the important roles in our main results. In Section 3, we recall
the Lusztig’s parametrization of irreducible unipotent characters of a symplectic group
or an even orthogonal group. Then we state our main theorems in Subsection 3.4. In
Section 4, we provide several properties of cells of a symplectic group or an even orthog-
onal group. These properties will be used in the proof of our main result: Theorem 1.8
in last two sections.

The author would like to thank the referee for careful reading and many helpful sug-
gestions.

2. SYMBOLS AND BI-PARTITIONS

In the first part of this section we recall the notion of “symbols” and “bi-partitions”
from [Lus77] §3.

2.1. Symbols. A symbol is an ordered pair
Ao <A> _ <a1,az,...,aml >
B by, by,.... b,
of two finite subsets A, B (possibly empty) of non-negative integers. We always assume

that elements in A, B are written respectively in strictly decreasing order, i.e., a; > a, >
+>a, and by >b,>--->b,, . A symbolis called degenerate if A= B, and it is called
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non-degenerate otherwise. The cardinality, size, rank and defect of a symbol A = (g) are

defined by
|Al=A]+1B],
size(A) = (|4}, |B]),
my m;y _1\2
rank(A) = Z“i +Z b, — \‘<w> J ,
1=1 1=1

def(A) = |A| —|B]

@.1)

where |X| denotes the cardinality of a finite set X. For a symbol A, let A* (resp. A,)
denote the first row (resp. second row) of A, i.e., A = (ﬁ) For a symbol A = (’;), we
define its transpose A* = (ﬁ). A symbol (‘;) is called reduced if 0 ¢ ANB. If both A*, A, are
the empty set, then A is denoted by (:) or just 0.

We define an equivalence relation on symbols generated by

<a1,a2,...,am1> <ﬂ1+1>ﬂz+1’~-->ﬂml+1,0>
by, by,...,b, by+1,b,+1,...,b, +1,0)
2 2

It is not difficult to see that ranks and defects are invariant on an equivalence class of
symbols. Moreover, each equivalence class contains a unique reduced symbol. In the
remaining part of this article, a symbol is always assumed to be reduced unless specified
otherwise.

A symbol A, is called a subsymbol of another symbol A,, denoted by A; C A,, if A} C
A and (A), C(A,),. If Ay CA,, we define the symbol substraction by

Ay NA, = < 2> >
For two symbols A, A,, we define their union and intersection by
ATUA; A NA;
A1UA2:< 1= >, AlﬂA2:< o >
2.2. Special symbols. A symbol
A1ydyy...rd
2.2 A m+1>
@2 <Zo1,b2,...,bm

of defect 1 is called special if ay > by > a, > b, >--->a, > b, >a,,,; similarly a
symbol

A1ydys...\d
2.3 Z=( e
@3) <bl,b2,...,bm>
of defect 0 is called special it a;, > by > a, > b, > --- > b
symbol Z, we define its subsymbol of “singles” Z; = Z ~ (gg;) The degree of a special
symbol Z is defined to be '

Z=1 .
deg(Z) = |Z|2 , if Z has defect 1;
1 if Z has defect 0.

2

_>a,, > b,. For aspecial

m

For a subsymbol M C Z;, we denote
(2.4) Ay =(Z~M)uM,
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i.e., Ay, is the symbol obtained from Z by switching the row position of entries in M and
keeping other entries unchanged. Note that Ay=Z and A, = Z".

Example 2.5. The symbol Z = (;;) is a special symbol of rank 8 and defect 0. Now
Z = (;) and so deg(Z) = 1. Then we have

MO O G 6

A | () (32 (%57) ()
If Z is a special symbol of rank 7 and defect 1, we define
S ={Ay | M C 2, |M|even} C %,

N
yZ,IZyZ

2.6)
P2 m %)1;

if Z is a special symbol of rank 7 and defect 0, we define
L = { Ay | M C Zy, |M] even} C S
2.7) S =Ny | M C Z,, |M]| odd} C #,_,
S0 =y N S
It is not difficult to see that

22deg(Z) it G=Sp,,;

5| = 22de8(2)=1 0 if G = O5,, and deg(Z) > 0;
20, if G=07, and deg(Z) =0;
0, if G=0;, and deg(Z)=0.
Moreover, we have
sp,, = L Zsz,,’
Z special, rk(Z)=n, def(Z)=1
O(
S = U S

Z special, rk(Z)=n, def(Z)=0

If the context is clear, ., will be just denoted by 7.
For Ay , Ay, € S, we define an addition

(2.8) Ay, +Ay, =Dy where N= (M UM,)~ (M;NM,).

Note that A+Z = Aand A+ A =Z for any A € . Both 5”25?2” and 5”20;” are closed
under the addition with identity element Ay = Z. This gives 5”25 P 5”20;" a vector space
structure over the field F, with two elements. On the other hand, if A, € YZO;” and
A, e 9’202_”, it is easy to check that A, + A, € YZOZ_"; moreover, if Aj,A, € .5’202_", then
A +A e A,

Example 2.9. (1) The symbol Z = <2i0) is a special symbol of rank 2, defect 1 and

degree 1. Now Z; = Z and there are 4 subsymbols M of Z; of an even number of
entries, namely (:), (f), (?), (2;0). The corresponding A, are <210), (120)’ (2(’)1), (2,?,0)'
Therefore,

7y = = {00 (D5}
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The addition table of ., is

1
21 21 -
0 ( 0 (2 1,0)
(o) | Gro)
2,1,0 2,1,0 —

(2) The symbol Z = Gé) is a special symbol of rank 4, defect 0 and degree 2. Now
Z; = Z and there are 16 subsymbols M of Z;. Half of them have an even number
of entries, and the other half have an odd number of entries. Then we see that

.
7y =AGeb GG o) 6 () G analh
7, =0T ok (o Gih (1) G20 (50 (o)

2.3. Bi-partitions. For a partition A = [, 4;,...,4,] with A, > 4, > --- > 4, >0,
define [A| = A+ A, + -+ A;,. For two partitions A =[A;,..., A, ], v = [,--. y; ], we
may assume that £ =/ by adding several 0’s if necessary, then we denote

(2.10) ASp B2 Z2p2h2 2 u 2 4.

Let 2)(n) denote the set of bi-partitions [;] of n, i.e., the set of ordered pair of two
partitions A, u such that |A| + |u| = n. It is easy to check that the mapping Y in (1.4)
induces a bijection

Py(n—(NEL)), i d is odd;
Py(n— (%)), if d is even.

2.4. Therelations B, , and 2, ;.. Let(G,G’) =(Sp,,, 05, ) where € = 4 or —. Recall
that a relation B i, between 7 and 7, and arelation D, o+ between ), ;and 7,
’ no 0 > g
are defined in (1.5) and (1.6). Let Z,Z’ be special symbols of ranks 7,7’ and defects 1,0
respectively. Define a relation %, ;, between #° and S, and a relation 2, ,, between

yz,l and .5”2,,0 by

By =B N (Ff % 5”29/)’

@.11)
92,20 = Dsp,, 01, WSz, X L710)-

It is not difficult to see that
(212) ‘%G,G’ = U %Z,Z/ and @G,G/ = U @Z’Z/
z,7 Z,7'

where the disjoint union UZ 18 taken over all special symbols Z,Z’ of ranks 7,7" and
defects 1,0 respectively.
The following three lemmas are from [Pan21] corollary 5.1, lemma 2.5, lemma 2.6:

Lemma 2.13. Let Z,Z’ be special symbols of ranks n,n" and defects 1,0 respectively. Then
B 7 £V if and only if 7, , # 0.

Lemma 2.14. Let Z,Z’ be special symbols of size (m + 1, m),(m’, m’) respectively for some
non-negative integers m,m’. If D, ,, #0, then either m' =m or m' =m+ 1.
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Lemma 2.15. Let (G,G') =(Sp,,,05,,) where e =+ or—. Let Z,Z be two special symbols
of ranks n,n’ and sizes (m + 1,m),(m’, m’) respectively where m" = m,m + 1. Let

AyyAryeeesd Ci5CryueeyC, 1 /
A:< 12%2> B m1>€5pZG, A/:< 152 m1>€yzc/;-
biby.osby, dydy....d,,

Then (A, N') € B 7, if and only if one of the following conditions is satisfied:

;. . o ;o
my=my, a;>d;, d;>a; ., ¢; > b, b;>c;,, foreachi, ife =+, m' =m;

2 0;,
my=my+1,a;>d;, d;>a, , ¢;>b;, b;>c;,, foreachi, ife=+m'=m+1;
my=my—1,d; >a;,a;>d; |, b;>c;, ¢; > b, foreachi, ife=— m'=m;
my=my, d;>a;, a;>d; , b;>c;, ¢;>b;, foreachi, fe=—m'=m+1.

Example 2.16. Consider the dual pair (G,G’) = (Sp,,O5 ), and Z = (210)’ VA Gé)

Now YZS P+ and yz(,); are given in Example 2.9. Then by Lemma 2.15, it is not difficult to

see that 3, ,, is given by

Brz | Go) () G Go) G2 G ) Gano)
2,0 \/

2 J

2,1 \/

(3)

2,1,0

N

Here a check mark “v” in row A € YZSP * and column A’ € 5”2?; means that (A,A') €
By 7. We also see that D, ,/ = B, ;1 {((2;’0), (3’2;1’0))}. Note that (Z,Z') € 9 ;..

3. FINITE HOWE CORRESPONDENCE OF UNIPOTENT CHARACTERS

In the first part of this section we review the parametrization of (irreducible) unipotent
characters of a symplectic group or an even orthogonal group by Lusztig in [Lus81] and
[Lus82]. A comparison of our main result and the conjecture in [AMR96] is in the final
subsection.

3.1. Deligne-Lusztig virtual characters. If G is connected, let Ry 5 = RS, denote the

Deligne-Lusztig virtual character of G with respect to a rational maximal torus T and an
irreducible character 8 € &(T) where T =T, If G = O¢, we define

O; _ O;(q9) pSO;,
RT,9 = Indso;(q)RT,e :

Let ¥(G) denote the space of class functions on G which is an inner product space
with an orthonormal basis &(G). Let ¥(G)! denote the subspace of ¥(G) spanned by all
Deligne-Lusztig virtual characters of G. For f € ¥(G), the orthogonal projection f* of
f over ¥(G)! is called the uniform projection of f, and f is called uniform if ft = f.

If G is connected, it is well-known that the regular character Regg, of G is uniform
(¢f. [Car85] corollary 7.5.6). Because Reg,. = Indgy (Reggy. ), we see that Reg, is also
uniform. Therefore, we have

G.1) p(1)= (e, Regg)a = (o', Regg ) = pH(1).
In particular, pf # 0 for any p € £(G).
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3.2. Unipotent characters of Sp,,(g). From [Lus77] theorem 8.2, there exists a bijec-
tive parametrization 55, — &(Sp,,); denoted by A — p,. It is know that there is a
one-to-one correspondence between the set #,(n) and the set &(W,,) for the Weyl group
W, of Sp,, (¢f- [GP0O] theorem 5.5.6). Then for a symbol ¥ € 7, |, we can associate a
uniform function Ry, on Sp,,,(¢) given by Ry =R, where R, = R? is defined in [Pan21]
subsection 3.2, and y € &(W,,) associated to Y(X) where T is the bijection 7, | — 2,(n)
given in (1.4).

For a special symbol Z of rank 7 and defect 1, let ¥, = ¥(G), denote the subspace
spanned by { o) | A € F; }. Itis known that { Ry, | © € & | } forms an orthonormal basis
for the uniform projection “I/Zﬂ of the space ¥,. The following proposition is modified
from [Lus81] theorem 5.8:

Proposition 3.2 (Lusztig). Let G = Sp,,, Z a special symbol of rank n and defect 1. For

Y €Sy, we bave
(_1>(Z,A)2—deg(2)’ lfA = yZ;
0, otherwise

(Ryspa)e = {

where (,): S, | x Sy — F, is given by (Ay, Ay) = NN M| (mod 2).

From the proposition we see that if p, € %, then

g1 CAENp .
IOA - 2deg(Z) ZGZ: ( 1) RZ’

71
and if ¥ € 7 |, then

1 SA
Rs =S D (=),
AeS)

Example 3.3. Let Z = (210), a special symbol of rank 2, degree 1 and defect 1. Now the
table of (—1)™M for X € Sy and A€ S is

() &) () G
Gyl o111
Ghl 11 =1 =1

(G T T

In the leftmost column are all ¥ € - | and in the topmost row are all A € 7. Therefore,
we have

Reey=3lee) teey Tees eyl

NI~ N =

Rey=3leenteen —ren=etw!

1
Reey=sleen—penteen—rio]
3.3. Unipotent characters of O (g). From [Lus77] theorem 8.2, we know that there
exists a bijective parametrization Fo. = E(05,(a)h by A — p,. It is also known that
P = PA - Sgh-
For a special symbol Z of rank 7 and defect 0, as in the symplectic case, let ¥, denote
the subspace spanned by { o, | A€ .7, }.



10 SHU-YEN PAN

e If Z is degenerate, i.e., deg(Z) = 0, then 3’202_" =0, <9’Zoz+” ={Z}and p, = R?",
ie, V(05 ), =v¥(0F )ﬂZ is one-dimensional.

e If Z is non-degenerate, i.e., deg(Z) > 1, then L € 7,  ifand only it X € 7, .. Tt is
known that R(Z)?” = eRgz” (¢f-[Pan21] subsection 3.4). Let .9_7270 denote a complete

. . 05 -
set of representatives of cosets {X, X'} in 7, then { %RZZ” | X e Sy, ) forms

an orthonormal basis for “I/Zﬂ.

The following proposition is a modification for O5, from [Lus82] theorem 3.15:

Proposition 3.4 (Lusztig). Let G = Of, where € = + or —, Z a non-degenerate special
symbol of rank n and defect 0. For any . € 7 ,, we have

(—1)PA) @)1 A e 7

0, otherwise

(RS’PA>G = {

where (,): Sy o x Sy = F, by (Ay, Ay) =M NN| (mod 2).

From the proposition we see that if o, € ., (with Z non-degenerate), then

g1 _ \(ZA) pG.
IOA_zdeg(Z) Z( YRy
PAS

and if ¥ € 7 ;, then
1
G _ _1)(ZA)
Ry = deg(Z)—1 Z( D5V ey
Aesy

3.4. Strategy of the proof of the main result. Let (G,G’) =(Sp,,,05 ) where e =+
or —. All the efforts in this article are to remove the uniform projection of both sides of
identity (1.7). The proof will be divided into two stages (Section 5 and Section 6):

e To recover the relation between wg g/ 1 and 354 4 P PA B PN from the uni-
form projection, we will use the technique learned from [KS05], pp.436-438.
That is, we reduce the problem into a system of linear equations. To write down
these equations, we need the theory of “cells” by Lusztig from [Lus81] theorem
5.6 and [Lus82] proposition 3.13. The variables of the linear system are the mul-
tiplicities of those p, ® o, occurring in wg g ;- The solutions must be non-
negative integers, that is the reason why we are almost able to solve the equa-
tions. This means that little information is lost after taking the uniform projec-
tion. Due to the disconnectedness of O, , irreducible characters p,,, o\ are not
distinguishable by Deligne-Lusztig virtual characters. So in the first stage we can
only conclude that p, ® o, or py ® pux occur in wg g if and only if (A, A’) or
(A, A") occur in Bg -

e Because the Howe correspondence and the parametrization A — p, are both
compatible with parabolic induction, the ambiguity in the first stage can be re-
moved once the correspondence of unipotent cuspidal characters is fixed. The
proof of the theorem is in Subsection 6.1 for def(A’) > 0, and in Subsection 6.3
for def(A’) =0.

3.5. The conjecture by Aubert-Michel-Rouquier. In Theorem 1.8, we describe the
Howe correspondence of unipotent characters in terms of Lusztig’s “symbols”; the con-
jecture in [AMR96] p.383 describes the correspondence in terms of “bi-partitions”. The

main difference between these two descriptions is that a bi-partition does not contain the
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information of the “defect” of a symbol which is controlled by the unipotent cuspidal
characters. Therefore, the description in [AMR96] p.383 needs to specify the correspon-
dence of unipotent cuspidal characters first. Now we want to make the comparison more
explicit.

In our convention, we always assume that the defect of a symbol for a symplectic group
(resp. split even orthogonal group, non-split even orthogonal group) is 1 (mod 4) (resp. 0
(mod 4), 2 (mod 4)). Our convention is different from the original one in [Lus77] p.134
where the defect of a symbol is always assumed to be non-negative. In particular, the
unique unipotent cuspidal character ¢, of Spy ;. ,1/(¢) by our convention is parametrized

by (i = pp, Where

(5.5) A {(Zk’zk__l """ 1’0), if k 1s even;
. k= _ e -
(2/6,2/671 ..... 1,0)’ if k is odd.

Note that def(A,) = (—1)*(2k + 1).

Example 3.6. Suppose that G =Spy; 4, 1)42,» L =5pyp(41) X T, where T, is t-copies of
GL,. The irreducible constituents p,, in RY(},) are parametrized by

Frripreirpren =LA | def(A) = (=1 2k +1), Y(A) € 2y(1)}.

For the cases that # =0,1,2 and t =0, 1,2 those A are given by the table:

t 1 2
k TW‘ ‘ S I A ) I 1 2] s
o 4| (3) | (1) (T’) | (3) G & G G
1 A | 2 1, o | 3 2 1, o 3 1, o | 3 2 1, 0 (4 32511 0) (4,2?1,0) (4,10) (3,20)
2 A | 43,2,1,0 | 53,2,1, o 5,4,3,2,1,0 | 6321, o 5 42,1, o> (6,4,312,1,()) (5,4,322,1,0) (6,5,4512,1,0)

For k > 1, let £, {1 be the unipotent cuspidal characters of OZkZ( ) where €, = (—1)*
such that (¢, ") and (§,, &} 1) occur in the Howe correspondence (cf. [AM93]). Then
we have (] = PN, and (' = Pa where

N (Zkfl’%:z """ 1’0), if k is even;
7 B - if k is odd
(2k—1,2k—2,...,1,o>’ I e 1s odd.

Note that def(A},) = (—1)*2k

Example 3.8. Suppose that G = O3, where ¢, = (—1)}, L=0%, x T, where T, is

t-copies of GL,. For k > 1, the irreducible constituents p, in each RG((/?),RS(ZA2 ) are
parametrized respectively by:

Frese(orpae = (M| def(A) = (=1) 2k, T(A) € (1)},
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For the cases that £ =0,1,2 and r =0, 1,2 those A are given by the table:

¢ ‘ ‘ 1 ‘ 2
ko™ 1 N 1 N v R )
0 Al O | (é) (?) | (é) (7o) () (> (21)
LA ( ) | o) ) | G Goe) G G @)
AL G ) G G
2 1 A|3“°|“” 4“”|5“° () (39 (19 ()
I A | | 4 3, 2 1, 0 4 2,1, 0 | 4 3, 2 1, 0 5,4,3,2,1,0) (5,3,;,1,0) (S,ZTl,O) (4,3?1,0)

Following the notation in [AMR96], let ng’gkn and @{k’(klﬂ be the mappings between
bi-partitions defined in [AMR96] p.383. (Note that {, is denoted by A, in [AMR96], etc.)
Moreover, let x;, x} and X, X* be the notations used in [AMR96] p.383. Then [AMR96]
conjecture 3.11 describes the correspondence in terms of bi-partitions “¢ K ¢” by

e the relation Oy, ¢u is given by K¢ — X*($) KX ¢; and
e the relation O, isgivenby R ¢ — X PR X*(¢).

Proposition 3.9. Keep the notations as above. If we apply the identification

61 [$m4, ifdein)
6.10) [A {¢®¢ AN

where [j] = Y(A), then the statement in Theorem 1.8 is equivalent to the statement in
[AMRO96] conjecture 3.11.

Proof. For k >0, we define

%zk,ggl:{(A’A’ e 2, o, | def(A)=(— 1)k(2/€+1)};

n,n'>0

k
B = {(A,A/)E U ‘@szn’O;iT] | def(A) =(—1) (2/e—|-1)}.
n,n'>0

Now we want to show that the description of Howe correspondence in terms of %, o
and ‘%Zk,f,jﬂ is equivalent to the description in terms of @Zklkﬂ and @(k’gklﬂ respectively
under the identification in (3.10).

For two symbols A, A’ we write [ZZ] Y(A) and | ¢,:| = T(A). First we consider the
correspondences ‘%Zklk“ and @(k)():l'

(1) Suppose that k is even. Then ¢, =+. Now (A,A') € %gk’glen if and only if
o def(A) =2k + 1 and def(A') =—2k
o Y<pand <

Now def(A) > 0 and def(A’) < 0, so by (3.10) we have the identifications [;’Z]

¢R ¢ and [ :| ¢'®¢’. Then it is not difficult to see that the condition ¢’ < ¢
and ¢ < gﬁ/ is equivalent to the condition ¢’ ® ¢’ = x;(¢) ® x;(¢) for some
i,j>0.
(2) Suppose that k is odd. Then ¢, =—. Now (A, A') € %(k,{kn if and only if
o def(A)=—2k—1and def(A') =2k



HOWE CORRESPONDENCE OF UNIPOTENT CHARACTERS 13

C F<dand <y
Now def(A) < 0 and def(A”) > 0, so we have [j] — ¢ K¢ and [i:] — 'R
Then the condition ¢’ X ¢ and ¢ < ¢’ is equivalent to the condition ¢’ X ¢’ =
x; ()R x;(¢p) for some 7,7 > 0.

Next we consider the correspondences ‘%Zk,5,§+1 and @QQH.

(3) Suppose that & is even. Then ¢, ,; =—. Now (A,A') € %(k)(kl+l if and only if
o def(A) =2k +1and def(A') =—2(k + 1)
e Fxpandpd
Now def(A) > 0 and def(A”) < 0, so we have [i] — ¢ X ¢ and [i:] — 'R P
Then the condition ¢’ X ¢ and ¢ X ¢’ is equivalent to the condition ¢’ K ¢’ =
x;(¢) R x;(¢) for some i, j > 0.
(4) Suppose that k is odd. Then ¢, =+. Now (A,A') € %QQ“ if and only if
o def(A)=—2k—1and def(A')=2(k +1)
o V< pandg<d
Now def(A) < 0 and def(A’) > 0, so we have [;’Z] — ¢ R ¢ and [i:] — 'R
Then the condition ¢/ <X ¢ and ¢ < ¢’ is equivalent to the condition ¢’ K ¢’ =
x; ()R x;(gé) for some 7,7 > 0.

Hence the proposition is proved. O

4. CELLS FOR A SYMPLECTIC GROUP OR AN EVEN ORTHOGONAL GROUP

In this section, we provide several technical lemmas which are needed in the next two
sections.

4.1. Consecutive pairs. Let G =Sp,, or Oj, where ¢ =+ or —, and let Z be a special
symbol of rank 7, Z; the subsymbol of singles of Z.

A pair (}) C Z; is called consecutive if there is no other entries in Z lying between s and
t 1.e., there is no entry x in Z such that s < x < r or t < x < 's. For a set of (disjoint)
consecutive pairs ¥, in Z;, we define:

yZ,\Ilo :{AM |M§\I’o}’

Sl =S = (N € S| M C LN,

“.1)

where M < W, means that M is a subset of pairs in ¥, and is regarded as a subsymbol of
Z,. U, =0, it is clear that & , = {Z} and #,° = #C. If M <Y, then |M*| = |M|
and hence def(A) = def(Z). Therefore #,, C . | if def(Z) = 1;and Sy C 77, if
def(Z) = 0. Suppose that § =deg(Z) and &, is the number of pairs in ¥,. Then it is not
difficult to see that

S
|yz,\po|:2 %

220=%)  ifdef(Z)=1;
(“4.2) |yq/0| _ 22681 if def(Z)=0,and & > Sos
zZ ), ifdef(Z)=0, & = 8, and € = +;
0, ifdef(Z)=0,8 =8, and e =—.

Note thatif A, € 5‘72\1’0 and A, € 7y, then A; + A, isin 8.
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Remark 4.3. Note that cS/’ZG’\IIO is always a subset of #F; and ; w, is a subset of S5 if
G =Sp,, or OF . However, , w, is a subset of yzofn evenif G=0;, .

Lemma 4.4. Let G = Sp,, or OF

2n’

in Z;. Then S5 g, F‘IS’G%—{Z}.

Z a special symbol of rank n, ¥, a set of consecutive pairs

— + GY,
Proof. Because now we assume that G = Sp,, or O , both &, ;, and 7, are subsets

of & Suppose that A, € 79,0 5"26’% for some M C Z;. From (4.1), we see that the
only possible M is the empty set, and so A}, = Z. O

Example 4.5. Let G = O, and let Z = Gé) Now Z; = Z, and {(é)}, {(;)}, {(;)}, and

{(;), (é)} are the possible nonempty set of consecutive pairs ¥, in Z;. Then we have

<% @ © o [6YE)
S | (ECD] (G0} (GDED) (CDEDCEN
PG G e (G
i (N IR N I (G YT

Let us give an example to see how to compute this table. If ¥, = {(é)} and € = —, then
the possible subsymbols M of Z; \ ¥, = (3) with odd number of entries are () and (3)
and so the possible A, are <3’§’1) and ( Hence Sﬂc% = {(3’2 1) (320)} Note that

32 o) 0
7w, does not depend on e.

Lemma 4.6. Let W, be a set of consecutive pairs in Z;. Suppose that A, | € F, % and

Az,A EYZ’% [][/OAHFAz_pA/]*Alz thenA A ﬂndAz—A/

Proof. I py 1y, = PN+A) then A, + A, =A]+A). Notethat A+ Z=Aand A+ A=7Z
for any A € .. Therefore we have

A HN =AM+ A+ AN+ A=A+ N+ AN+ A=A, + A

(1) Suppose that G =Sp,,, or O . Note that both & 4 and 5”26’% are closed under

addition and ;4 N YZG’% ={Z} by Lemma 4.4.
(2) Suppose that G = O),. Now 7, C S and is still closed under addition.

+ +
Moreover, A, + A € YZOZ”’\DO, and S 4 N 5”202”’% ={Z} by Lemma 4.4, again.

Therefore, for both (1) and (2), we conclude that A; + A =Z,ie, A, = A|+Z =A].
Similarly, we have A, = A, O

4.2. Cells. We first recall the notion of “cells” by Lusztig from [Lus81] and [Lus82].
Let Z be a special symbol with symbol of singles Z;, and let & = deg(Z). Then we have
|Z;| =28 + def(Z) from Subsection 2.2.

(1) If Z is of defect 1, then an arrangement of Z; is defined to be a partition ® of the
28 +1singles in Z; into & (disjoint) pairs and one isolated element such that each
pair contains one entry in the first row and one entry in the second row of Z;.

(2) It Z is of defect 0, then an arrangement of Z; is defined to be a partition @ of the
28 singles in Z; into & pairs such that each pair contains one entry in the first
row and one entry in the second row of Z;.
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A set ¥ of some pairs (possibly empty) in @ is called a subset of pairs of ® and is denoted
by ¥ < &. Note that if ¥ < ®, then ¥ does not contain the isolated element in the
arrangement ®. A subset of pairs ¥ of an arrangement ® of Z; can be regarded a subsymbol

of Z;, and as usual let U* (resp. ¥,) denote the set of entries in the first (resp. second) row
v,

Example 4.7. The symbol Z = (43?10) is a special symbol of rank 6 and defect 1, and

Z; = Z. The following are all possible arrangements of Z;:

2 ={600F  ={0600h  &={O60}
o, ={()L00F  &={0O0h  e={(

Each @, has 4 subsets of pairs, for example,

el )= 0O OH-

Each W is regarded as a subsymbol of Z;, and so we have
twjwse}={0.6).0).6}

For a subset of pairs ¥ of an arrangement ® of Z;, recall that the following uniform
class function on G is defined in [Lus81]:

(4.8) R£ = RQ(Z,‘P,\I/) — Z (_1)|(<I>\\I/)ﬂ\1//*|RAW
<o

where Ay, = (Z \¥')UT" is defined as in (2.4), and (¥ \ ) NP is understood to be the
set of entries (2 \ ¥)" U(®\¥),)NP". Note that def(Ay,) = def(Z), and R, , = R/?W is
given in Subsection 3.2 and Subsection 3.3.

Remark 4.9. Our notation is slightly different from that in [Lus81] and [Lus82]. More
precisely, the uniform class function R (; 4 y) in (4.8) is denoted by R(c(Z, 2,2 \ ¥)) in
[Lus81] and [Lus82].

For a subset of pairs ¥ of an arrangement ® of Z,
o if def(Z) =1, we define
(4.10) Couw={Ay €S| IMNV|=|(@~P)NT"| (mod2)forall ¥ <&};
e if def(Z) =0, we define
@11)  Cou={Ay|MCZ, MNY|=|(@~¥)NT"| (mod2)forall ¥ <&}
Such a set Gy is called a cell. From the definition it is not difficult to see that a symbol

A,y isin Gy if and only if the subsymbol M of Z; satisfies the following two conditions:

e M contains either none or two entries of each pair in ¥; and
e M contains exactly one entry of each pair in @ \ .

In particular, it is clear from the definition that if ¥ consists of all pairs in @, then we have

(4.12) Cop={Ay | M <®}.

Remark 4.13. (1) Suppose that Z is of rank 7 and defect 1 and A, € Gy, C 5’; P
for some ®,¥. The requirement that |M| is even (¢f. (2.6)) implies that M must
contain the isolated element in the arrangement @ if ® \ ¥ consists of an odd
number of pairs; and M does not contain the isolated element if  \ ¥ consists of
an even number of pairs.
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(2) Suppose that Z is of rank 7 and defect 0. We shall see in Lemma 4.32 that Cy , C

of . . : o .
S, if @ \ W consists of an even number of pairs; and Cy g C 7, if @\ ¥
consists of an odd number of pairs.

Example 4.14. Suppose that Z = (4;?10), 2={(*),(3)(})} and & = {({)}. There are four

possible M C Z; that satisfies the condition in (4.10), namely, (4’%0), (4’2), (g?) and (;), and

~ 1 0\ (321 3,2,0 . .
resulting A, are (4’3’2’0), <4’3,2’1>, ( 0 ) and ( i1 ) respectively, i.c.,

1 0\ 321y (320
Cou = {(4,3,2,o>’ (4,3,2,1)’< 40 ) ( 41 )}-

Lemma 4.15. Suppose that both Ay , Ay are in Cyy for some arrangement ® of Z; and
some U < ®. Then

M, NV | =|M,NT'| (mod 2)
for any ¥’ < ®.
Proof. Suppose that Ay, , Ay € Cyy. Then by (4.10) or (4.11) we have

M, NV |=|(@\T)NT*| = |M,NT'| (mod2)

for all subsets ¥’ of pairs of ®. O

Lemma 4.16. Let Z be a special symbol, ® an arrangement of Z;, U, a subset of consecutive
pairs, and A € 9’;". If A€ Cyy for some ¥ < ®, then ¥y < V.

Proof. Suppose that A=A, for some M C Z; N\, i.e., M Ny = . From the rule before
Remark 4.13, the assumption A € Gy implies that M contains exactly one entry from
each pair in ® \ . Therefore we must have ¥, < . O

4.3. Cells for a symplectic group. In thissubsection, let G =Sp,, , and let Z be a special
symbol of rank 7 and defect 1.

Lemma 4.17. Let Z be a special symbol of defect 1, ® a fixed arrangement of Z;, ¥,V subsets
of pairs of ®. Then
(i) |Copl = 2¢%;
(i) if U A, then Cgy N Cy e =0;
(i) % = Uy Cou-

Proof. Let z, denote the isolated element in @. Suppose that Ay, is an element of Cy ..
From the conditions before Remark 4.13, we can write M = M, UM, where M, consists
of exactly one element from each pair of ® \ ¥ and possibly z, so that |4, is even, and
M, consists of some pairs from U.

Let & = deg(Z). Suppose that ¥ consists of 8" pairs for some 8’ < 8. So we have 2%’
possible choices for M,. We have 28~ choices when we chose one element from each
pair in ® \ ¥ and we have two choices to choose z, or not. However, the requirement
that |M,| is even implies that the possible choices of M, is exactly 224", Thus the total
choices for M is 2% - 2°=%" = 2% and hence (i) is proved.

Suppose ¥ # W' and A, € Cyy N Cy y for some M C Z;. Without loss of generality,
we may assume that U & U, so there is a pair (}) € @ such that (;) € U and (}) ¢ ¥'. By
the two conditions before Remark 4.13, A, € Cy , implies that [M N (})| =0 or 2, and
Ay € Cyy implies that [M N (})] = 1. We get a contradiction and hence (ii) is proved.

We know that |.#,| = 22% from Subsection 2.2, and we have 2% choices of ¥ for a fixed
arrangement ®. Therefore (iii) follows from (i) and (i1) directly. O
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Proposition 4.18. Let G = Sp,,, Z a special symbol of rank n and defect 1, ® an arrange-
ment of Z; and ¥ < ®. Then
R o(Z,8,7) Z PA-

AeCyy

In particular, the class function 3 \cc, | pa is uniform.

Proof. Let Ay, be a symbol in Cy . From Proposition 3.2, we have

1 /
(o, Ra, ) = 2—3(—1)le\”

where 8 =deg(Z) and ¥ < ®. Then by (4.8) and (4.10), we have
ro Rz =5 SISy
2 ) =
This means p, occurs with multiplicity one in R (; 4 y) for each A € Cy . From [Lus81]
theorem 5.6 we know that R (7 4 ¢, is a sum of 2% distinct irreducible characters of G and

Cyy has also 2% elements. As all the p, are non-isomorphic, the result follows. O

Example 4.19. Let Z = (2io), a special symbol of rank 2 and defect 1. Now Z; = Z has
two possible arrangements @, namely {(f) ( )} and {( )s ( )} and each arrangement @
has two subsets of pairs ¥, namely the only pair in ® and the empty symbol (_) So we
have the following table:

d N\ | RQ(Z,‘I),\I/) ZAECM, PA
(OO O [Reny Ry eentee
(_) R(ziO) — R(léo) /O(Zol) + ,0(2 . o)

{OF O [Rent Ry eentee
(7) R(zio) — R(z(,;) /0(1 o) + P(z 1 O)

The equality between R (7 4.4y and 3¢, pa can easily be seen from the identities in
Example 3.3.

Remark 4.20. Note that in [Lus81] theorem 5.6, the cardinality g of the base field is as-
sumed to be large, however, according the comment by the end of [Lus82] the restriction
is removed by a result of Asai.

Remark 4.21. If U consists of all pairs in ®, then (& ¥)N¥"* = @ and (—1)IE>VW" 1 = 1
for any ¥’ < ®, and by (4.12) the identity in Proposition 4.18 becomes

ZRAW:Z/OA\IM'

<P V<P

Lemma 4.22. Suppose that Z is a special symbol of defect 1 with Z; = (Sltsztx‘”‘) where
S =deg(Z). Let ®,,%, be two arrangements of Z; given by

& = {1 ) 2= {E GG ()
Then for any ¥, < @ and any ¥, < @,, we have |Cy y NCy g | = 1.
Proof. Let ¥, <&; and ¥, < @,. Suppose that A, is in the intersection Cg o NCy g, for

some M C Z; with |M| even. From the two conditions before Remark 4.13, we have the
following inferences:
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(1) ifs; €M and
) ifs; ¢ M and
() ifs; €M and
4) ifs; ¢ M and
(5) if t; € M and
(6) if t; ¢ M and
(7) it t; € M and ("
8) if t; ¢ M and S"éf‘) £V,, thens; e M
fori =1,...,8. This means that for any fixed ¥;,¥,, the set M is uniquely determined
by the “initial condition” whether s; belongs to M or not. So now there are two possible
choices of M one of which contains s; and the other does not. Moreover, from (1)-(8)
above, it is easy to see that both possible choices of M are complement subsets to each
other in Zj, i.e., the two possible choices of M form a partition of Z;. Moreover, among

the two possible choices of M, there is only one whose cardinality is even, and hence the
lemma is proved. O

i) £ ¥y, then t; & M;
) £V, then t; € M;
’gl> <W,, thens; , € M;
5’?) <U,, thens;, & M;

5”“) £V, thens; & M;

§i> <, then t; € M;
il> <V, then t; € M;
)

Si

tl

S

o~

Lemma 4.23. Let Z be a special symbol of defect 1, and let ®,,, be the two arrangements
of Z; given in Lemma 4.22. For any given A € %, there exist ¥, < ®, and U, < @, such
that Cy ¢ NCy ¢ ={A}.

1 2>%2

Proof. Let A € #,, and let ®;,®, be the two arrangements given in Lemma 4.22. By (ii1)
of Lemma 4.17, there is a subset of pairs ¥; of ®; such that A € Cy  for i = 1,2, i.e,,
A€ Cy g NGy g - Then the lemma follows from Lemma 4.22 immediately. O

Example 4.24. Let Z = (6;%0). Then Z is a special symbol of defect 1 and degree 3, and

Z,=Z7Z.Now®, = {(g’),(;‘), (?), (E)} and &, = {(g), (g), (?), (f)} are two arrangements in
Lemma 4.22. We have the following table:

| O G) G)

0 6  G)  G) G

(—) < — > ( 6,5 ) (6,5,4,3) <6,5,4,3,2,1> ( 43 ) ( 2,1 ) (4,3,2,1) <6,5,2,1)
— 6,5,43,2,1,0 432,10 2,1,0 0 6,5,2,1,0 6,5,43,0 6,50 43,0
<6) (5,4,3,2,1,0) (6,4, ,z,1,o> <e,z,1,o> ( 6,0 > <5,2,1,o> (5,4,3,0) ( 50 ) <6,4,3,0>
5 6 5 54,3 54321 6,4, 62,1 6,4,32,1 52,1
(4) (3,2,1,0) (6,5,3,2,1,0 6,5,4,2,1,0 6,540 42,10 30 40 < 5,3,0)
3 6,54 4 3 32,1 6,5,3 6,5,4.2,1 6,5,3.2,1 42,1
(2) 0 ) (6,5,1,0) (6,5,4,3,1,0) (5,5,4,3,2,0) <4,3,1,o 30 (4,3,2,0) <6,5,2,0)
1 6,543, 432 1 6,5,2 6,5,43,1 6,5,1 3,1
(6,4) ( 54 ) ( b4 ) ( 63 ) (6,3,2,1) ( 53 ) (5,4,2,1) (5,3,2,1) <e,4,z,1)
53 6,3,2,1,0 53,2,1,0 5,4,2,1,0 54,0 6,4,2,1,0 63,0 6,4,0 53,0
(4,2) kW) 6532 6,5,4,2) (6,5,4,1 i) 3 41 < 5,3,1)
3,1 6,5,4,1,0 41,0 3,1,0 3,20 6,5,3,1,0 6,5,4,2,0 6,5,3,2,0 2,0
(6,2) 54,52 6,4,3,2 () 6 53 , < 4,3,1)
5,1 ,1,0 5,1,0 5,4,3,1,0 5,4,3,20 6,4,3,1,0 6,2,0 6,4,3,2,0 52,0
(6,4,2) (5,4,1,0) (6,4,1,0) (6,3,1,0) (6,3,2,0) (5,3,1,0) (5,4,2,0) (5,3,2,0) <6,4,2,0>
53,1 63,2 53,2 54,2 5,4,1 6,4,2 6,3,1 6,4,1 53,1

In the leftmost column are all 8 possible subset of pairs ¥; < ®,, and in the topmost row
are all 8 possible ¥, < ®,. The 8 symbols in the row indexed by ¥, are the elements in
C, u,» and the 8 symbols in the column indexed by W, are the elements in Cy y, . For
example if U, = (g), then

C _ {(5,4,3,2,1,0) (6,4,3,2,1,0) (6,2,1,0) ( 6,0 > (5,2,1,0) (5,4,3,0) ( 5,0 ) <6,4,3,0>}
3,0, — 6 ) 5 '\ 543 P\54321)\ 643 P\ 621 ) \64321)\521))"

From the table we can conclude that |Gy o NCy g | = 1forany ¥ <@ andany ¥, < @,.
Note that the 64 symbols in the above table are all the symbols in this #,. Here we give an
example to show how to compute this table following the rule in the proof of Lemma 4.22.
Suppose that ¥, = {(f)} and ¥, = {(;), (;)}, and suppose that Ay € Cy o NG 4 for
some M C Z; with | M| even.
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o If 6 € M, now (g) £ U, 505 & M by (3); now (g) <V, s04 & M by (6); now
G) £V, 503 €M by (4); now <§) <,,s02 €M by (5); now G) <V¥,soleM
by (1); now (é) £, 50 0& M by (7), then we obtain M = (g’f)

o If 6 ¢ M, now <§) £ ¥, s0 5 € M by (4); now <g) <,, so 4 € M by (5); now
(3) £ ¥, 50 3¢ M by 3); now (3) < W,, 50 2¢ M by (6); now (1) < ¥, 50 1 € M
by (2); now (é) £V,, 500 € M by (8), then we obtain M = (450).

Now (?i), (450) are the only two subsymbols M of Z; satisfying the two conditions be-

fore (4.12) for both ¥, = {(?)} <o = {(g’),(;), (f),(i)} and ¥, = {(g),@)} <o, =
{(®),(5):(5)(5)}- However, we need |M| to be even to make A;; € ;. So we conclude

43,10 . . - .
that ( 5 )= A(?f) is the only symbol in this intersection Cy g NGy y -

Lemma 4.25. Let Z be a special symbol of defect 1, and let A, A, be two distinct symbols in
. There exists an arrangement @ of Z; with two subsets of pairs W,,V, such that A; € Cy g,
fori=1,2and Cgq NCyyq =0.

Proof. Suppose that Ay = Ay, and A, = A, for My, M, C Z;. Because M, # M, and both
|M,| and |M,| are even, it is clear that we can find a pair ¥ = (i) such that one of M, M,
contains exactly one of the two elements s, r and the other set contains either both s,
or none, i.e.,

(4.26) M, 0| # |M,NT| (mod2).

Let ® be any arrangement of Z; that contains ¥ as a subset of pairs. By (ii1) of Lemma 4.17,
we know that Ay € Cyy and Ay, € Cy g for some subsets of pairs U}, ¥, of @. Then
by Lemma 4.15 and (4.26) we see that ¥, # ¥,. Finally, by (ii) of Lemma 4.17, we know
that Gy y NCoy, =0 O
Example 4.27. Let Z = <6;4§210>, and keep the notation in Example 4.24. Let A, A’ be
distinct symbols in #,. Then A, A’ must be in different rows or different columns in the
table in Example 4.24. If A, A’ are in different rows, then we let ® = ®, and we see that
there are two different subsets of pairs W}, ¥] < ® such that A € Gy, A’ € Gy and
of course Cyy N Cyyr = 0. If A,A’ are in different columns, then we let ® = ®, and
; . / . .
we have two different columns Cq g, G gy containing A, A’ respectively, and with empty
intersection.

We need stronger versions of Lemma 4.23 and Lemma 4.25.

Lemma 4.28. Let Z be a special symbol of defect 1, ® an arrangement of Z;, ¥ a subset of
pairs in ®, U, a set of consecutive pairs in Z; such that ¥y < V. Then

\IID — \I}O
Couw=(Cou NS, )+ Fgu ={M+ 8 | A €(CoyNS,7), My€ Sy )
Proof. Let Ay, be an element in Cy g, for some M C Z;. Then M = M, UM, where M; =
MN(Zy\T) and M, = M N, And we have Ay = Ay + Ay, since My N M, = 0
(¢~ (2.8)). From the requirement of M before Remark 4.13, M needs to contain either

none or two entries from each pair in ¥y, we see that M, is a subset of pairs in ¥, i.e.,
M, < ¥, and hence Ay, € S . Now M, also satisties the condition in (4.10), and so

Ay, € Cyy. Moreover, My C Z; \ ¥, and |M| is even, so we have Ay, € YZ%. Then

Ay € CouN 5”2%. On the other hand, if A}, € Gy N yz% and Ay, € Sy for some
My, M,, then it is obvious that Ay + Ay =7y, € Co g O
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Example 4.29. Suppose that Z = (4;?10), o= {(4), (g), (?)} and Uy =¥ = {(?)} Then

T, =00 =G GO ) (k)

Now by Example 4.14, we see that

Ccp,q/ n. Z‘I}0 = {(Bfio>’ (4,3?2,1>}'
Now

32,0\ | [42,0\ _ /320 0 420\ _/ 0
Co) TG0 =00 (e320) T (50) = (an):
3,2,0 4,2,1\ __ /3,2,1 0 4,2,1\ __ 1

i)+ (55)=Cip)s (4320 T (52) = (4320

i.e., we do have Cy ¢ = (C N 5"2%) + S,

Lemma 4.30. Let Z be a special symbol of defect 1, and let U, be a set of consecutive pairs
in Z;. For any given A € 3’2%, there exist two arrangements 9,9, of Z; with subsets of pairs
U,, W, respectively such that Wy <V, for i = 1,2, and

cﬁ,p% N cﬁ,z’% = {A}

A i
where Co v, =Cou,NS;".

Proof. Because U, is a set of consecutive pairs in Z;, the symbol Z’ given by Z' =Z \ ¥,
is still a special symbol of the same defect and Z; = Z; \ ¥;. Because A € ., Yo we can

write A = A’ U (¢f. Subsection 2.1) for a unique A’ € .%,,. Write Z{ = (51’,32’,""331“) and
define

Lplyreens tcg\l

# = {0 (Do) and @ = {3}

2 8
By Lemma 4.23, we know that there exist sets of pairs W], ¥ of ®),®), respectively such
that
C@;,\p; n C@;,qg ={A'})
Now ¥, itself can be regarded as an arrangement of itself, so from (4.12) we have
Cyp, = {Ay €F IN <Y}

Now let &, =@ U, ¥, =¥ UV, for i = 1,2, so we have ¥, <¥; <&, for i =1,2.
From Lemma 4.28, we can see that

Co u ={MUA A € C@i,\pgs A eCyy }-

Therefore
Co,u,NCo, 4, = {NUA, A € Gy, b

and hence

Ca 5 NCi g, = Cou, N oy, N 7" = (N UTp} = {A}.

d

Lemma 4.31. Let Z be a special symbol of defect 1, and let Yy, be a set of consecutive pairs in

Zy. Let Ay, A, be two distinct symbols in 5”2%. There exists an arrangement ® of Z; with two
subsets of pairs U,V such that Uy < V; and A; € Cy g, for i = 1,2, and Cyq N Cy g, =0.
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Proof. Let Z’ be defined as in the proof of the previous lemma, i.e., Z' = Z\¥,. Then we
known that A; = AU, for Al € 7. Clearly, A, A} are distinct. Then by Lemma 4.25,
we know that there is an arrangement @ of Z’ with subsets of pairs ¥{,%) such that
Al € Cy g fori=1,2and Cp o N Cy g =0. Let®, =%/ U, ¥, = V! U\Il forz =1,2.
Then as in the proof of the previous lemma, we can see that
Cow, N Cow, = {A UM | A € Cyr gy N Cyp gy Ay ECy g } =1
(]

It is clear that if ¥y =}, then Lemma 4.30 and Lemma 4.31 are reduced to Lemma 4.23
and Lemma 4.25 respectively.

4.4. Cells for an even orthogonal group. In this subsection, let G = O, for ¢ =+ or
—, Z a special symbol of rank 7 and defect 0, ® an arrangement of Z;, and ¥ < .

Lemma 4.32. If ®\V consists of an even number of pairs, then Cq> v C Y ", on the other
hand, if ® \V consists of an odd number of pairs, then Cy g, C 5”2 ,

Proof. Suppose that Ay, € Cy g, for some M C Z;. Then from the condition before Re-
mark 4.13, we know that M contains exactly one element from each pair in ® \ ¥ and
contains either none or two elements in each pair in ¥. This implies that |#| is odd if
® ¥ consists of odd number of pairs; and [M] is even if & \ ¥ consists of even number

of pairs. Hence the lemma follows from the definition in (2.7). O
Example 4.33. Suppose that Z = (i;é), = {(i),(;),(é)}, and ¥ = {(2), (é)} Now Z is

a special symbol of rank 9 and defect 0, and Z; = Z. To construct a subsymbol M of Z;

such that A;; € Cy ¢, we need to choose one element from each pairin ¥ = and

()
choose a subset of pairs of ¥. Hence we have 8 possible subsets M, namely, (i), (3’1), (5’3),

o) \4
(55561)’ G)’ (2To>’ (4?2) (42 o) Hence
Cow = {(1320) (13910 (3200 (5320 (g (2™ (M) ())-

. . O
Note that @ \ ¥ consists of one pair, so Cyy, C 7, .

Lemma 4.34. Let Z be a special symbol of rank n and defect 0, ® a fixed arrangement of Z;,
and U,V subsets of pairs of ®. Suppose that deg(Z) > 1. Then
() A€ Cyy ifand only if A* € Cy g5
(i) |Cy 9] =275;
(iii) if WF# Y, then Cyy N Cy g0 =05

(iv) we have

yr= U Gaoad 2= | G
V<P, #P\V) even <P, #®\V) odd

where #(® V) means the number of pairs in ® 0.

Proof. Suppose that Ay, € Cy g for some M C Z;. Then it is easy to check that (Ay)" =
Ay - It is clear that M satisfies the condition that it consists of exactly one element
from each pair in @ \ ¥ and a subset of pairs of ¥ if and only if Z; \ M satisfies the same
condition. Hence (i) is proved.

Let 8 = deg(Z). From the conditions before Remark 4.13, we can write M = M, UM,
where M| consists of exactly one element from each pair of @\, and M, consists of some
pairs from W. Suppose that ¥ contains & pairs for some 8’ < 8. So we have 2%" possible
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choices for M, and 224" choices for M,. Thus the total choices for M is 25" . 20—%" = 2%
and hence (i1) is proved.

The proof of (iii) is similar to that of Lemma 4.17.

For any fixed arrangement @ of Z;, we have

o5 O,
S0 = Cog
v<o

by the same argument of the proof of Lemma 4.17. Then (iv) follows from Lemma 4.32
immediately. O

Let G = O5, where ¢ =+ or —, and let Z be a special symbol of rank 7 and defect 0.
A subset of pairs U of an arrangement ® of Z, is called admissible for ® if #(® \¥) is even
when ¢ = +; and #(® \ ) is odd when ¢ = —.

Proposition 4.35. Let G = Of,, Z a special symbol of rank n and defect 0, ® an arrange-
ment of Z; with an admissible subset of pairs V. Then
O(
Rzaw) Z PA-

AeCyy

Proof. If ¢ =+ and Z is of degree 0, i.e., Z is degenerate, then it is clear that ® = ¥ = (),
«(Z,8,9) = Cyy = {Z} and R(Z)+ = py. If ¢ = —and Z degenerate, then ¢(Z,®,¥) =
Cyy =0. So the proposition holds if Z is degenerate.

Now suppose that § = deg(Z) > 1. Let ng be a subset of Cy g such that Cg?lf
=201 by
(i1) of Lemma 4.34. By the argument in the proof of Proposition 4.18, we can show that
(5O R§g¢ \P))SOé = 1 for every A € Gy . Moreover, we know that R3") (Z 30)
of 23 ! distinct irreducible characters of SO“(q) by [Lus82] proposition 3.13. Thus we

have
SO s0°
R o(Z,3,0) Z PA

AECSO{

. . t SOE
contains exactly one element from each pair {A, A’} C Cy g Therefore |Gy

1S a sum

and then
o SO SO _
Rizaw) _IndSO‘R Con= 2, Indh03” = D7 (oater)= D pa
AeCYY AeCYY AeCyy

O

Lemma 4.36. Let Ay, A, be two symbols in S such that A, # Ay, A, There exists an
arrangement ® of Z; with admissible subsets of pairs V|, V, such that A;, A} € Cy y, fori =1,2

and Cy g N Cy g, =0.

Proof. Suppose that A; = Ay and A, = Ay, for M,,M, C Z;. The assumption that
A, # A,, A, means that M # M and M, # ( Z N\ M,). Then it is clear that we can find a
pair U= (i) in Z; such that one of M, M, contains exactly one of the two elements s, ¢
and the other set contains either both s, t or none, i.e.,

(4.37) M, M| |MyN Y| (mod 2).

Let ® be any arrangement of Z; that contains W as a subset of pairs. By (iv) of Lemma 4.34,
we know that Ay € Cyy and Ay, € Gy for some subsets of pairs U}, U, of @. Then
by Lemma 4.3 and (4.37) we see that ¥, # 0,. Finally, by (iii) of Lemma 4.34, we know
that Gy g NCoy, =0. O
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Example 4.38. Let Z = (i;é) Then Z is a special symbol of rank 9 and defect 0, and
Z=Z. Let® = {(i), (g), (é)}, %, = {(g), (i), (;)} be two arrangements of Z;.
(1) Suppose that € =+. Then we have the following table:

| (o) () (2 (320)

0 4 2 42,0
(5) (4,3,2,1,0) ( 5 ) 53,2,1,0) ( 4 ) (5,1,0) (4,3,2) (5,3,2) (4,1,0)
4 5 p\43210 4 P\53210 43,2)°\5,1,0 4,1,0/°\5,3.2
(3) 5,4,3) (2,1,0) 542,1,0) ( 3 (5,4,3,1,0) ( 2 ) (5,4,2) (3,1,0)
2 2,1,0/°\5,4,3 3 )\54,2,10 2 )\543,10 3,1,0/°\5,4,2
(1) 5.4 3,2,1) ( 0 ) 5,4,0) (3,2,1) (5,4,3,2,0) ( 1 (5,4,1) (3,2,0)
0 0 )\54321 3,2,1)°\5,4,0 1 P\54320 3,2,0/2\5,4,1
(5,3,1) (521) (4,3,0) (5,3,0) (4,2,1) (4,3,1) (5,2,0) (5,3,1) (5,3,1)
42,0 43,0)°\5.2,1 42,1)°\530 52,0/°\4,3,1 4,2,0/°\4,2,0

In the leftmost column are the four subsets of odd number of pairs ¥, of ®,

(so that #(®, \ ¥,) is even), and in the topmost row are the four subsets of odd

number of pairs ¥, of ®,. The row indexed by ¥; is the cell Gy y, and the column

indexed by W, is the cell Cy_y, , and we see that Cp y NCy ¢ = {A, A'} for some
2272 1*1 2

Ae 5”20?:‘. Note that the 32 symbols in the table are all elements in YZOT*.
(2) Suppose that ¢ = —. Then we have the following table:

(22) Go)

(—) (5,4321,0) ( - > (3,2,1 4 > (5,4,1 > ( 32 > <5,4,3,2) ( 1,0 )
- — P\s43210 5.4 2,10 3,2 41,0 1,0 5:4:3.2
<5 3) <5 2,1,o> ( 43 ) (4,2,1,0) < 53 > (5310> ( 42 ) <4310) ( )
42 43 P\5210 53 )2\4,2,1,0 42 3,1,0 52 4310
(3,1) (5,4,3,0)( 21 ) ( 30 )(5,4,2,1) (5420)( 5l ) (5431)( )
2,0 21 )\5430 54,2,1)°\ 3,0 3,1 42,0 2,0 5431
(5,1) (4,3,2,1) ( 50 ) (5,3,2,1) ( 40 ) (5320) ( 41 ) (432 ) ( )
4,0 50 )2\4,3,2,1 40 P\5321 41 5,3,2,0 5,1 4320

Now the leftmost column are the four subsets of even number of pairs ¥, of @,
and the topmost row are the four subsets of even number of pairs ¥, of ®,. The

32 symbols in the table are all elements in CS”ZOTS.

Lemma 4.39. Let Z be a special symbol of defect O, ® an arrangement of Z;, U an admissible
subset of pairs, ¥y an set of consecutive pairs in Z; such that ¥y < V. Then

v, _ ¥y
Cow =(Cou NS, )+ S g = { A+ M | A E(CoyNF0), Ay€ Sy }
Proof. The proof is similar to that of Lemma 4.28. O

Lemma 4.40. Let Z be a special symbol of defect O, and let Yy, be a set of consecutive pairs in
Zy. Let Ay, A, be two symbols in 5‘72% suchthat A # My, Ns. There exists an arrangement ® of
Zy with subsets V,, W, such that ¥, < ; and A;, A} € Cy g, fori =1,2,and Cy g, NCy g =0.

Proof. The proof of the lemma is similar to that of Lemma 4.31 except that we need to
apply Lemma 4.36 instead of Lemma 4.25. O

If U, =0, then §”ZG’\D° = yZG and Lemma 4.40 is reduced to Lemma 4.36.

5. A SYSTEM OF LINEAR EQUATIONS

The purpose of this section is to prove Theorem 5.3. Two special cases are verified in
Subsection 5.2 and Subsection 5.3. The general case is proved in Subsection 5.4. In this
section, let (G,G’) = (Sp,,,O5,,) where ¢ =+ or —, and let Z, Z’ be special symbols of
ranks 7,7” and defects 1,0 respectlvely. Let 8 = deg( Z)and 8’ =deg(Z').
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5.1. Decomposition with respect to special symbols. Recall that ¥, ¥, are subspaces
spanned by {0, |[A€ S}, {on | A" € F } respectively. Let c; , denote the orthogo-
nal projection of wg g/ ; over ¥, ® ¥7,. Then by Proposition 3.2 and Proposition 3.4 we

WG = E wy 7 and co E coZZ,

z,7 z,7

have

where Z,Z' run over all special symbols of rank 7,7’ and defect 1,0 respectively. More-
over, because B g = UZ 51 By 71, we have

D Pa®pn=D. D pPa®pa-
(AN)EBG 2.2 (\NN)EB, 51

Now (1.7) implies that

5.1 wﬂz’z, = Z pi ® pi,.
(AN)EB,
Then, for any uniform class function f € ”i/ji ® ‘Vzﬂ,, we have
62 {frwzz)={f, “)ﬁz,z/> - <f’ > oh ®P§x’> - <f’ 2. A ®PA’>'
(ANYER, (AN)EB,

Now the candidates of the uniform class functions are those construct from the cells
described in Section 4.2.

Theorem 5.3. Let (G,G’) = (Sp,,,05,,) where ¢ = + or —1, and let Z,Z’ be special
symbols of rank n,n" and defect 1,0 respectively. Then py ® py 01 p ® ppr OCCHTS In Oy 7/
if and only if (A, \') or (A, A") occurs in B 4.

For Theorem 5.3 there is nothing to prove if 88, ;, =, so we assume that 8, ,, # 0.
Then we have 9, 5, # 0 by Lemma 2.13. Now we define

DZ’ = {A S yz,l | (A,Z/> S @Z,Z’ },
= {A/ € yz/,o | <Z,A/> S @Z)Zl }
It is proved in [Pan21] proposition 6.4 that there are subsets of consecutive pairs ¥,, ¥;
in Z;, Z] respectively such that D, = S5, and Dy = Sy (¢f (4.1)). Then ¥y, Y] are

called the core of 9, ,, in Zy, Z] respectively.
Suppose that 7, ,, # 0, and let ¥, ¥ be the cores of 7, 5, in Z;, Z{ respectively. Define
v v
B, =By (S xS0,
Then it is not difficult to check that

G4 By ={(\ + AN+ A [ (AL A,) € B

/
220 M €Sy, My ES Yy}

(¢f- [Pan21] (6.4) and (8.1)) and %; , 18 an one-to-one subrelation of %, ;.. Then from
the proofs of [Pan21] proposition 7.17, we know that either deg(Z’'\\¥;) = deg(Z~\¥)+1

or deg(Z' \ ) = deg(Z N\ I,).
Example 5.5. Let (G,G’)=(Sp,,0%), Z = (5 > 1) € H, sand Z' = (5 > 1) € Sor,- Then

42,0
Z = (i), deg(Z) =0, || =1, Z{ =Z',deg(Z') =3, |7, 18| = 2. All the symbols in
5”2(,)& are listed in Example 4.38. It is not difficult to check that

_ _ INT A — (53:1) (53,0\ (43,1 (43,0 (52,1\ (52,0\ (42,1\ (42,0
%Z,Z/ - @Z,Z' - {(Z’A )N = (4,2,o>’<4,2,1)’ (5,2,0)’ (5,2,1)’(4,3,0)’<4,3,1)’ (5,3,O>’ (5,3,1> } ’
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Therefore,
Dy ={Z}=%,,
Dy ={(330) (221 (520) G20 (G30) (B30 (5300 G50} = Tz

e, Uy =0 and ¥ = {(3),0),()}- Now %% = (2}, 7, = {Z'}, and B, = (2, Z')}.

A non-empty relation 9B, , (or 7, ;) is called one-to-one if Uy = W) = @, which means
that D,, = {Z} and D, = {Z'}. I B, ;, is one-to-one, then from above we know that
either deg(Z’) = deg(Z) + 1 or deg(Z’) = deg(Z). Then Theorem 5.3 will be proved in
Subsection 5.2 for the case that %, ,, is one-to-one and deg(Z’) = deg(Z) 4 1; and it will
be proved in Subsection 5.3 for the case that 98, ,, is one-to-one and deg(Z’) = deg(Z).

5.2. Special case I. In this subsection, let (G,G’) = (Sp,,,, 05,,) where ¢ =+ or—, Z, Z’

special symbols of ranks 7,7’ and defects 1,0 respectively, and we assume that %, ,, is
one-to-one and deg(Z') = deg(Z) + 1, i.e., 8’ = & + 1. We write

(56) ZI:<ﬂ15ﬂ2’-..,ﬂS+l> ZI/:<C1,C2,...,C3,>

b, b,,...,bs di,d,,....dg
and define
O:{ay,...,a5,1}UL{by,.... b5} = {cy,. es i} U{dy, . ds )
(5.7) a;, —d;
bi— iy

for each i. Note that ¢, is not in the image of &. Then & induces an injective map (still

denoted by 6)

9: 5”2 — yZI
(5.8) A Ag(M), if e=+;
M A, , fe=—
(1)u6)

where M C Z; with |M| even. Note that now || =229, |.#,,| = 22°*! and
Sy ={0(0),0(A) | A€}

Lemma 5.9. Suppose that B, ;, is one-to-one and deg(Z') = deg(Z) + 1. Then
By ={(A0N)|Ae S}

Proof. This lemma is essentially [Pan21] lemma 6.15. Note that in [Pan21] lemma 6.15,
we assumed that both Z,Z’ are regular, i.c., we assumed that Z = Z; and Z’' = Z|. How-

ever, this assumption is not necessary for the lemma. O
fo= {(2), e (ii),(s‘*_“)} isan arrangement of Z; (i.e., {s;,...,55,,} (resp. {£;,...,t5})

is a permutation of {a,,...,a5,} (resp. {b,..., bs})), then

0@ = {5 G o)}
is an arrangement of Z;. If W = {( ), . ,( )} is a subset of pairs of ®, we define §(¥) as

Siy Siy
t i,
follows:
(1) if either ¢ =—and |® \ | is odd, or € =+ and |® \ | is even, let

() o(t;,)
60 = {<9<s:>)’ (e

'k
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(2) if either ¢ = — and |® \ V| is even, or € =+ and |® \ V| is odd, let

[0 o) c
6(\1/) - {(9(;))’ e (9(5;: ))’ <‘9(531+1))}'

Then 6(¥) is an admissible subset of pairs of §(®), i.e., #0(P) \ O()) is even if € = +;
#O(®)\ O(P)) is odd if € =—.

Lemma 5.10. Suppose that B, ;. is one-to-one and deg(Z') = deg(Z) + 1. Let @ be an
arrangement of Z, and V be a subset of pairs of ®. Then

Co@),o00) =1 O(A),O(A) | A€ Cy g}
where Cy g, is defined in (4.10).

Proof. As above, let & =deg(Z), and let sz, be the isolated element in ®. Suppose that
Ay € Cyy for some M C Z; and 6(Ay) = Ay for some M’ C Z[. From the rules before
Remark 4.13, we know that M contains exactly one element from each pair of ® <\ ¥ and
contains some subset of pairs in ¥. Moreover, M contains the isolated element sy, ; if and
only if |2\ ¥| is odd. Then

(1) if e =+ and |® \ V| is even, then sy | & M and M’ = O(M);

() if e =+ and |® \ Y| is odd, then 55, € M and M" = O(M);

(3) if e=—and |® \ ¥|is even, then ss,, & M and M’ = (“)UO(M);

4) if e =—and |® \ U] is odd, then s5,, € M and M" = (“)UO(M).
It is easy to see from the definition above that for each case above M’ consists of exactly one
element from each pair in 6(®) \. 0(¥) and a subset of pairs in (), i.e., Ay € Cyg) g(w)-

From (i) of Lemma 4.34, we know that

So we have
(¢.11) {O(0),0(A) A€ Cy} € Cyiay g

Now |Cy.y| = 2° by Lemma 4.17. Because Z’ is of degree & + 1, |Coa),600)| = 20+ by
Lemma 4.34. Hence both sets in (5.11) have the same cardinality 2°+, they must be the
same. (]

Example 5.12. As in Example 2.16, let (G,G’) = (Sp,,Oj ), and Z = (210)’ YA (;é)
Now Z; = Z, Z] = Z', B, ;, is one-to-one, deg(Z’) = 2 = deg(Z) + 1, |#;| = 4, and
|#,/| =8. Notethat Z' = Z*U(*), and in fact if (A, ') € B, ., then A’ = O(A) = A'U(°).
Now & = {G),(E)} is an arrangement of Z;, and 6(®) = {(;),(g)} is an arrangement of

Z{ Let ¥ = {(f)} Then by definition 8(¥) = 0(®), and it is easy to verify that

Cow={(¥)(Y)}
Comom =1{(ob (10 (52) G1)} = 1OA), OA) [ A€ Gy }
Proposition 5.13. Let (G,G’) = (Sp,,,0,,) where ¢ = + or —, and let Z,Z’ be spe-

cial symbols of ranks n,n’ and defects 1,0 respectively. Suppose that B, ;, is one-to-one and
deg(Z')=deg(Z)+ 1. Then

Wz = D PA®P £(A)
Aey

where f(N) is either equal to O(A) or O(A)* (but not both).
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Proof. Because we assume that 9, ,, is one-to-one and deg(Z’) = deg(Z) + 1, we know
that

Bz ={(A00))|Ae S}
by Lemma 5.9, and (5.1) becomes
6.149) Oz = 2 PA® Py
AeS)
For A, A’ € &, define

Xpn = (oA ® Loy + oA ® Loy ©7,71)>

the sum of multiplicities of o) ® pg(y/) and p ® pg(yy in w7 7. So we need to show that
xpp =1if A=A’ and x, ,, =0 otherwise.

Now suppose that ®,%’ are any two arrangements of Z;, and ¥ < ®,9' < &'. Then by
Proposition 4.18 and Proposition 4.35, the class function

Z Z PA® P,

AeCy g A ECyq) gy

on G x G’ is unform. Then by Lemma 5.10, we have

D >0 A®pea= D D (pa®psny+ea®pony)-

AGC@W A1€C5(¢/)’5(q,/) AGC@‘I, AIGC(D/’\[,/
Then by (5.14), equation (5.2) becomes

Z Z xA,A’:< Z Z (PA®P9(A/)+PA®P9(A/)t)>@z,2/>

AECq,,\I, A'GCQ/’M AGC{,Y\I, A/GC@’\P/

:< > > (ea®psmytpea ®/06(A/)f)’whz,zl>

Ae C¢I>,\II Ne Cyr %

=< Z Z (oA ® Pgay T PA ® Loy )s Z PE\//®Pu9(A//)>

AGC{,’\I, A'GCq)/y\I,/ A”Gyz
= < Z Z (PA® Py +Pa ® Loy )s Z Y ®/06(A”)>‘
AECqy NECy g NES,

From the definition of 6 we know that 9(A”) # O(A’)" for any A”, A’ € #,. For a symbol
A" € &, to contribute a multiplicity in the above identity, we need A” = A and A” = A’
for some A € Cy y, and some A’ € Cy g, i.e., A” must be in the intersection Cg g N Cy g
Therefore, the above equation becomes
(5.15) Z Z Xan = |Cow N Co o

AeCyy NE€Cyr gy
for any two arrangements ®,%’ of Z; with any ¥ < ® and any ¥/ < &'

Suppose that A, A, are distinct symbols in %,. Then by Lemma 4.25, there exists
an arrangement ¢ with two subsets of pairs ¥}, ¥, such that A; € Cg g fori =1,2 and
Cow, NCoy, = 0. Because each x, 5, is a non-negative integer, from equation (5.15) we
conclude that x, , =0 for any distinct Aj, A, € 7.

Forany A € ,, by Lemma 4.23, there exist two arrangements ®,,®, of Z; with subsets
of pairs W, ¥, respectively such that G o NCy g = {A}. Because we know x, ,, =0if
A# N, equation (5.15) is reduced to x, 5 = 1. Therefore, exactly one of o) ® pgn), 02 ®
Pg(ay OCCUTS in wy ;.
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For A € 7, let f(A) be either O(A) or O(A)" such that py ® p (s, occurs in wy 7.
Then we just show the character @ ;, defined by

2= D PA®PsA)
Aes)
is a sub-character of w; ;, i.e., w; 7 — @, 7 1s a non-negative integral combination of
irreducible characters of Gx G'. Note that pg ) and pg s are different by asign character
of O5,,
the same degree. By (5.14) and (3.1), we see that w; ; and @ ;, have the same degree.
Therefore @, ; = e, ; and the proposition is proved. O

(¢), so they have the same degree. Therefore @ ; and 3,co pp ® pga) have

5.3. Special case IL. In this subsection, let (G,G’) =(Sp,,,O5,,) where ¢ = +or—, Z,Z’
special symbols of ranks 7, 7" and defects 1,0 respectively, and we assume that %, . is
one-to-one and deg(Z’) = deg(Z), i.e., 8" = 8. Write Z;, Z] as in (5.6), and define
O:{cp,...,cs}U{d,,....ds} = {ay,...,a5. 1} U{by,..., bs}
(5.16) c;— b
di—a;y,

for each 7. Note that 4, is not in the image of §. Then ¢ induces an injective map

H: yzz — yz
(5.17) A Agrrys if € =+
M Ay ny fe=—
(“)uom)

where M’ C Z] with |M'| even if € = +; and |M’| odd if ¢ = —. Note that now |7 =22,
|| =229-1, and
/ / O;—n/ Oz_ﬂ/
7y = (BN [N € 7 U ),
Lemma 5.18. Suppose that B, ;. is one-to-one and deg(Z") = deg(Z). Then
’%Z,Z’ = {(Q(A/),A/> | A/ S 3’2/ }

Proof. The proof is similar to that of Lemma 5.9. O

If ' = {(i{), ... ,(i:?/)} is an arrangement of Z/, then

1 8
an (0 6(ty,)
(5.19) 6(2") = {(_)’(eii;§>,--~’<e<§i,>>}

is an arrangement of Z;. If ¥/ = {C:l ), ... ,( 3 >} is an admissible subset of pairs of &', then

i i,

n_ [0E) ot} )
(5.20) o) = {(e@f))’”"(@ . )}
is a subset of pairs in 6(%’).

Lemma 5.21. Suppose that B, ;, is one-to-one and deg(Z') = deg(Z). Let &' be an arrange-
ment of Z{, and let V' be an admissible subset of pairs in ®'. Then

Cg(q,/)’g(\p/) = { 6(A> | AeC /! }
Proof. Suppose that Ay, € Cy g, for some M’ C Z{, and O(A,;) = Ay for some M. We

know that M’ = M| U M, where M consists of exactly one element from each pair in
'\ and M, < V.
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(1) First suppose that € = +. Then |M’| is even. From the above definition, we see
that M = O(M’). Hence M contains one element from each pair in (%) \ 6(¥’)
and contains a subset of pairs in §(¥’), and |M| is even. Therefore 6(A,,) is in

Cg((p/)ﬁ(\p/).

(2) Next suppose that ¢ = —. Now |M'| is odd, and we see that M = (‘2) uouM)
from (5.17). Now again M consists one element from each pair in §(®’) \ 6(¥’)
and contains a subset of pairs in §(¥’), and |M| is even. Therefore §(A,,) is in
CQ(CI)/),Q(\II/)'

Now we conclude that {O(A) | A € Cy g} € Cygy g(ar)- Since both sets have the same
cardinality 29, they must be equal. O

Corollary 5.22. Suppose that B, ;. is one-to-one and deg(Z’) = deg(Z). Let ' be an
arrangement of Z{ and 0 given in (5.17). Then

0= U Cawow
admissible U/ <@’
Proof. From Lemma 4.34, we know that
y 7= U C‘I)/,\I// .
admissible /<@’

Then the corollary follows from Lemma 5.21 immediately. O

Proposition 5.23. Let (G,G’) = (Sp,,,05,,) where ¢ = + or —, and let Z,Z’ be spe-

cial symbols of ranks n,n’ and defects 1,0 respectively. Suppose that B, ;. is one-to-one and
deg(Z')=deg(Z). Then

Wz = D Po) @ Prin)
A/eyzl

where f'(N') is equal to either A" or N (but not both).

Proof. The proof is similar to that of Proposition 5.13. Because we assume that 3, ,, is
one-to-one and deg(Z’) = deg(Z), we know that

By 7= {(ON),N) |\ € S}
by Lemma 5.18, and (5.1) becomes

(5.24) ‘*’ﬂz,Z/: Z /Og(A’)®/0ﬂA"

A/Gyz/
For A€ ¥, and A € F,,, define
Xpn = (o ® pus @7.71)-

Then each x, 5, is anon-negative integer. For an arrangement ® of Z; with a subset of pairs
W, and an arrangement @’ of Z/ with an admissible subset of pairs ¥, the class function

Z Z PA® PN

AGC(I,’\P A/GC‘I)/,\I,/
on G x G’ is uniform by Proposition 4.18 and Proposition 4.35. Then, by (5.24), we have

> xA,A’:<Z > /OA®/OA”C‘)Z,Z’>

AGC{,’\I, A'GCq)/’\I,/ A€C<I>,‘I/ AlEC@’,\If’

:< D D Pa®pan D, P@(A”)®/OA”>‘

AECyy NECy g NESy,
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For a symbol A” € ¥, to contribute a multiplicity, we need both
o A"=Aforsome A’ € Cy g, i.e., O(A”) = O(A) for some O(A') € Cygy gy, and
o O(AN")=Aforsome A € Cyy,

Le., we need (A”) to be in the intersection Cy i N Cyg) gy by Lemma 5.21. Therefore,

(5.25) Z Z o = 1Co0 N Coan, o)
AECQ,\I, A/EC(I,/’\I,/
for any arrangements ® of Z; with any ¥ < ®, and any arrangement ®’ of Z] with any
admissible ¥/ < &',
Now let ® = 0(®”) and ¥ = §(¥”) for some arrangement " of Z{ with some admis-
sible U < ®”. Then by Lemma 5.21, (5.25) becomes
(526) Z Z x@(A//>,A/ = |C§(q>//),9(\p//) N Cﬁ(cb/),&(\lﬂ)l = |C<I>//,‘I/” n C@/,\pll

N'e€Cypr gy NECyy g
for any two arrangements ®',®” of Z] and any admissible ¥ < &', ¥ < &”. Suppose
that A7, A, are symbols in %, such that A} # Aj,(A})". Then by Lemma 4.36, there
exists an arrangement &’ of Z{ with two subsets of pairs |, ¥; such that A’, (A)' € Cy g
fori=1,2and C, N Cy gy = 0. Because each xgy , is a non-negative integer, from
equation (5.26) we conclude that x, NN, = Xa g = O-

Clearly there is an arrangement @’ of Z such that §(®’) in (5.19) is the arrangement ®,
of Z; in Lemma 4.22. For any given A’ € #,,, by Lemma 4.23 there exist an arrangements
@, of Z; with a subset of pairs ¥}, and a subset of pairs ¥, of 6(®’) such that C g N
Cyan,u, = {0(A)}. Moreover, by Corollary 5.22 we know that ¥, = 6(¥’) for some
admissible ¥/ < @' 1.e.,

(5.27) {0(N)} = G, N Coar) g

Because we know x/) n, =0 for any A} # A), (A))", by (5.27), equation (5.25) is reduced
to
xg(A/),A/ =+ x@(A’),A" =1.

For A" € ,, let f'(A’) be either A" or A" such that pg(x) ® p sy Occurs in wy 7.
We just show that the character 3%y, Po(n) ® o) 18 a sub-character of w; ;.. By the
same argument in the last paragraph of proof of Proposition 5.13, we conclude that

wz2= D, P ®Priny
A’Eyz/
O

5.4. The general case. Now let (G,G’) = (Sp,,,O5 ) where ¢ =+ or —, and let Z,Z’
be special symbols of ranks 7,7’ and defects 1,0 respectively. Suppose that 2, ,, # 0,
and let Wy, ¥ denote the cores of 9, ,, in Z;, Z{ respectively. Let ®,®’ be arrangements
of Z;, Z] with subsets of pairs ¥, ¥’ respectively such that Uy < ¥ < ® and ¥; < V' < &',
It is known that either deg(Z’ \ ;) = deg(Z \ ¥,) + 1 or deg(Z' \ ¥)) = deg(Z \ 7).
(1) Suppose that deg(Z’ \ ¥)) = deg(Z \ ¥,) + 1. Let & be given as in (5.7) (with
Z; replaced by Z; \ ¥, and Z{ replaced by Z] \ %), and so we have a mapping
g: YZ% — y;‘; given as in (5.8). Now ® \ ¥, is an arrangement of Z; \ ¥, and
O(®\¥,) is an arrangement of Z{ \¥,. Now ¥\, is a subset of pairs of &\ ¥y,
and we define

(5.28) H(@)=0(@ YUY,  O¥)=0(TT,)U¥,,
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It is easy to see that §(®) is an arrangement of Z], (W) is a subset of pairs of 6(®),
and ¥ < O(L).

(2) Suppose that deg(Z’ \ W) = deg(Z \ ;). Let 8 is given as in (5.16), and so we
have a mapping 6: 3’2\1,/‘3 - 5”2%. Now @'\ ¥ is an arrangement of Z/ \ ¥, and
0(®’' ;) is an arrangement of Z; \ ¥, Then we define

(5.29) 6(@)=0(®' TW)UY,,  OW)=6(¥ W)U,

Similarly, 6(®') is an arrangement of Z;, O(¥') is a subset of pairs of §(®'), and
v, < 6.

Lemma 5.30. Keep the above setting.

(i) Suppose that deg(Z' V) = deg(Z ~¥,) + 1. Let ® be an arrangement of Z;, and
let ¥ be a subset of pairs in ®. Then

C; = {O(A) + 45, 0(A) + A, | A € Coy NS, Ay € Fyg ).

6(®),60%) —

(ii) Suppose that deg(Z' ~W}) = deg(Z \'W,). Let ®' be an arrangement of Z{, and let
U’ be an admissible subset of pairs in ®'. Then

Cé(@/),é(\p/) ={0N)+M, | A €Cyg N s

(s A, e yz,% }.

Proof. First suppose that deg(Z’ ~ ¥;) = deg(Z \ ¥,) + 1. Now ¥ < H(¥) < 6(®), so by
Lemma 4.28, we have
G

:{A’1+A2|A'1€C9 ®),0() Nk

700 A2 S yz’,\llé }

(2),60(%)

We know that the relation 2, ,, N (5";" X 5”2/(’) is one-to-one, so by Lemma 5.10, we see
that
M 7
Cé(q)),é(q;) n yz/o = {Q(Al)’ @(Al)t | Al € CtI),\IJ N yz ’ }
and hence the lemma is proved.

The proof of (ii) is similar. O
Example 5.31. (1) Let (G,G) = (Sp,,,0f,), Z = (%), 2/ = (335)- Then 7, =Z,

4,2,0

Z/ = (Z), |#| = 16, and || = 2. It is not difficult to check that

By ={WNZ) A= (D50, 050. (50 )
Dy ={Z'} = Sy

Dy ={(500 (200 (501 (5)} = 2
ie, U ={(3).(})}, ¥ =0. Now ¥, is regarded as the subsymbol (i?) of Z;, so
ZNTy=(Y), Z]\¥) = (Z), and hence deg(Z’' \ ) = deg(Z \¥y)+1=1. Then
% ={Z}and P {Z',Z"}, the mapping §: 5’2‘1}0 S isjust Z — Z’,and

sO 9}3; 5 =1{(Z,Z")}. The only arrangement @ of Z; containing ¥y, is ¥ itself,

and so now ¥ = ¥ = & = {(3),(})}. Now 6(®) = {(;)} and 6(¥) = {()} by
(5.28). We have
Caw = {(5). (50 (55 (55} Caw NS =12}

Cé@)ﬁ(\p) = {Z/s Z/t}>

and the conclusion in (i) of Lemma 5.30 is clearly verified.
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) Let (G,G)) = (Spy,, O, Z = (), 2/ = (335)- Then Z =Z, Z{ = (3), |#,| =

4,20
16, and || = 2. It is not difficult to check that

Bz = {22 A= (50, (50 (55 (5) s

D, = 17,2 = S

Dy ={(50) (000 (50 (56)) = Fas
e, ¥y = {(i),(?)}, U = {(i)} Now Z; \ ¥, = (_), Z{ \ W) = {, and hence
deg(Z' \¥;) = deg(Z \¥,) =0. Then 5”% ={Z}and 5”‘1}‘3 ={Z’}, the mapping
g: 5”% - Y% isjust Z' — Z, and so ‘%Z , ={(Z,Z")}. The only arrangement

@’ of Z; containing ¥; is ¥ itself, and so now ¥ = ¥ = &' = {( )} Now

(9(<I>) o(v ):{()()} by (5.29). We have

C‘P/,\I}/ = {Z/, Z/t}, C@',‘I" n yq/lé = {Z/}
42,0\ (430\ (H21) (43,1
Coandon =G0 G0 (55 (5o
and the conclusion in (ii) of Lemma 5.30 is verified.

Proof of Theorem 5.3. Let (G,G’) =(Sp,,,05,,), and let Z, Z’ be special symbols of rank
n,n', defects 1,0 respectively. Let Wy, ¥ be the cores in Z;,Z{ of 7, ;,, and 8,8 the
numbers of pairs in ¥y, ¥; respectively. From (5.4), we have

D A®pr= >, >, 2PA1+A2®PA;+A;-

(AN)ERB; 7/ (AlsAi)EQQ , AeDy NjeD,

Note that D, = {A, | M < ¥y} and D, = {Ay | N <Y} by proposition 6.4 in [Pan21].
From the proofs of [Pan21] proposition 7.17, we know that either deg(Z'~\¥;) = deg(Z ~
Uy)+ 1 or deg(Z' \¥;) = deg(Z \Ty).

(1) Suppose that deg(Z’ \ ¥) = deg(Z \ ¥,) + 1. Then from the discussion before
‘Ij/

Lemma 5.30 and Lemma 5.9, we have a injective map 6: 5’2% -5 and

(5.32) ={(A,0(A)|Ae ")

ZZ/

For two arrangements @, %’ of Z; with a subset of pairs ¥, ¥’ respectively such
that ¥y < ¥ and ¥, < V', by Lemma 4.28 and Proposition 4.18 the class function

Z Pr= Z Z PA+A,

AeCyy A ec; Y AZGYMO

on G is uniform where th>\1/ =CyyN YZ\P", similarly by Lemma 5.30, the class
function

> ePn= Z >, PO+, T PO 41,

NeChq gy A’eC - Nesy, )

on G is uniform where th)/ v = =Cp g N 5”2%
For A, A € .YZ °, we define

1
NN T 5rs Z Z (oa,+4, ® Lo )+, T PA, 41, ® POy 41 ©7,20)-
AES 7, My, 7/
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Note that |7 | = 2% and |}, 4| = 2% by (4.2). Now by (5.2), (5.4) and (5.32),

we have

DI IR W

AEC, A’lecg,,\y/

1
:230+35< 20 2 2 20 (Paa, ®Pamen + P, @ Loy

AleCh Allecqi/,\p/ A A’ZGYZ/’%

D0
INDINDI PA;’+A§®P@<A3’>+A;”>-

Wy A/ "
Allleyz 0 A2 GyZ’\I,O AZ 65/)2/’\1,6

For a symbol A] € S’Z\IIO to contribute a multiplicity in the above identity, by
Lemma 4.6, we need A7 = A; and A] = A’ for some A, € th)  and some Aj €

PR " . . ) p ;
C@,\Iﬂ’ Le., A{ must be in the intersection Cq)’\p N qu,q;/- Then

ICl,NC]

ol
(5.33) > >0 x@ﬁﬁ ST 1=ICG NGl

/
MEC, NEC, , &0y e g1

for any arrangements ®,®’ of Z; with subsets of pairs ¥, ¥’ respectively such that
Uy < ¥ and ¥, < ¥, Note that as in the proof of Proposition 5.13, O(A}) #

O(A)) for any A}, Al € yz%.

Suppose that A, A, are distinct symbols in 5”2%. By Lemma 4.31, there exists
an arrangement ® of Z; with two subsets of pairs ¥,, ¥, such that ¥, <V, A, €
Cou, for = 1,2 and Cow, NCoy, = (. Then ng‘lﬂ N Cg)% = (). Because each
X),,x, 1 2 non-negative integer, from (5.33) we conclude that x, , =0 for any
distinct A, A, € .

Finally, forany A € 5’;", by Lemma 4.30, there exist two arrangements ®,,®,
of Z; with subsets of pairs ¥, ¥, respectively such that ¥, <, for i = 1,2 and

\IJO —
cﬁw n cgw = Cy g, NCo, g, N " = {A}.

Because weknow x, , =0ifA, # A, equation (5.33) is now reduced to x, , = 1.
Suppose that A € #, and A’ € #, such that (A,A’) € B, ;.. We can write
A=A +A,for A € 5”2% and A, € 7y and similarly write A" = A} + A)
for A € Y;" and A € 77, g such that (A, A}) € 93;’2,. Then we have shown
that either p, 4\ ® PA+A, OF PA 1A, ® Parpp, OCCUIS in wy 5. Note that A" =
(A} + A)) = Af + A, by [Pan21] lemma 2.1. Hence we conclude that either
PA® Pp OF Pp ® Ppn OCCULS IN W7 7.
(2) Suppose that deg(Z’ \ ¥)) = deg(Z \ ¥,). Then from the discussion before

Lemma 5.30 and Lemma 5.18, we have a injective map 0: %, \{/‘; - 5”2\1}" and
\P/
B, ={(OW),N)|N €' ).

For an arrangement ® of Z; with a subset of pairs ¥ such that ¥, < ¥, and an
arrangement ' of Z{ with an admissible subset of pairs ¥’ such that ¥j < ¥, the
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class function

> > Aa®pn= Z Z 2 20 Pan®Puan,
AeCyy NECy A qu) o N eC i~ AES s A;eyzx%
on G x G’ is uniform by Proposition 4.18 and Proposition 4.35.
For A, € -5”2 and A € 5”2, , define
1
L by Z Z (oa+a, ® P+ @7, 70)-
Azeyz’% Ageyz,)%
Then
I LI YN YD S P
AEC], NeC, MECy, NeC], , M7 &1y
> > > Pory+1; B PNy >
% y;‘l’o NeSy g N €Sy ¥,
By the same argument in (1) and in the proof of Proposition 5.23 (in particular,
(5.25)) we conclude that
g
(5.34) > Z xn =1Cay N Cé@/),é(@ﬂ
A GC;»@ A1€C¢, v
for any arrangement ® of Z; with subset of pairs ¥ such that ¥, < ¥, and any
arrangement ®’ of Z{ with admissible subset of pairs ¥’ such that ¥ < ¥’
Now let ® = 0(®") and ¥ = 6(¥”) for some arrangement ®” of Z; with some
admissible subset of pairs ¥”. Then by Lemma 5.30, (5.34) becomes
Ch — b
(535) Z Z x(9 A”) A/ - | {)” \I/”) g(qy) \I/’ | | [ ﬂ C‘I)/ ‘I//|
NECL, 4 NEC), )

for any two arrangements ®',®” of Z] and any admissible subsets of pairs ¥/, %"
C : 7

containing W, respectively. Suppose A, A’ are symbols in #,,° such that A #

A, AS. Then by Lemma 4.40, there exists an arrangement @ of Z/ with two

subsets of pairs W[, ¥, containing ¥, such that A}, A" € Cy g for i = 1,2 and

Cow NCo ;= 0. Because each Xg(an, 1S @ non-negative integer, from equation

(5.35) we conclude that

o). = Xoapa = O

Clearly there is an arrangement ® of Z| such that 9_(<I>/ ) in (5.29) is the ar-

rangement ®, in Lemma 4.30. For any given A € YZ/O, then O(A)) € 5”% and
by Lemma 4.30, there exist an arrangement @, of Z; with a subset of pairs ¥,,
and a subset of pairs ¥, of (') given above such that ¥, < ¥,, ¥, < ¥,, and

) B . : .
Co 0, N C;.@/)y% = {6(A})}. Similar to the argument in the proof of Proposi-

tion 5.23, we see that ¥, = 19_(\11') for some admissible ¥’ such that ) < ¥’ <&’
Therefore we have

Ci,NCL  —{O(N))}.

9, ‘P1 0(3"),0(%")
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Because we know x, )y = 0forany A; # A, AS, (5.34) is now reduced to
Xgap,n, T Xoapae = 1.
By the same argument in the last paragraph of (1), we conclude that if (A,A’) €
B 7> then either py ® p), or p) ® )« Occurs in wy ;.
For two cases (1) and (2), and for each (A,A") € B, ,,, define X’ to be either A’ or A"
such that p, ® pg, occurs in @ 7. Therefore, 354 pe B, PA® P is a sub-character of

@y 7~ Then by the same argument in the last paragraph of the proof of Proposition 5.13,
we conclude that

wp= D, PA®Py
(AN)EB,

From the above proof, we conclude the following corollary:

Corollary 5.36. Let (G,G') = (Sp,,,05,,) where ¢ =+ or —, p, € 8(G),, pp € E(G'),
such that N # N". Then exactly one of (A, N'),(A, A") occurs in B g, if and only if exactly
one of Py ® pas» P ® pan 0ccurs in the correspondence.

6. SYMBOL CORRESPONDENCE AND PARABOLIC INDUCTION

The purpose of this section is to remove the ambiguity of Theorem 5.3, i.e., to provide
a proof of Theorem 1.8. The proof for the case def(A”) # 0 is in Subsection 6.1 (Proposi-
tion 6.4); and the proof for the case def(A’) = 0 is in Subsection 6.3 (Proposition 6.20).

6.1. Properties of the parametrization. For a symbol

Ayydy, ... d,,
6.1) A= e,
b, b,,..., b
we define 2} to be the set consisting of the followmg types of symbols:
o (o Lbl {ZHZ ..... “mYfori=1,...,m if a,_; > a; +1 (the condition is empty if
1=1);
an <1¢1,. 5 “ ZZHZ’" 77777 bm) forj=1,...,m,if b,_; > b, +1 (the condition is empty if
j =1

a+lay+1,..a,, +1,1y . .
(I <b+1b2+1 ..... b1+1o) ifa, 750’

(IV) (al+laz+1 ..... a,, +10) 1fbm2;£0.

bi+1,by 1,06, +1,1
Clearly, if A" € 1, then rank(A’) = rank(A) 4 1 and def(A”) = def(A).
We also define
Or={Nes|Aeqi}.
Therefore, if A € 2, then rank(A’) = rank(A)—1 and def(A") = def(A). It is not difficult
to see that £ consists of symbols of the following types:

Ay 18— 1,4, 5o, . .
@) (") i) fori=1,..,my—1ifa; >a, +1;

by,bysesb,,
< yby " —154 m1 ) lfﬂ > 1 and ((,zml, bm2> # (1, O)’
250 m
r ﬂpﬂz ,,,,, my f -:1,_”, _1fb b 1;
) <b1 fS bmz) orj my—110;>0;,+
<b ”1 “2 ’“ml ) if b > 1 and (ﬂ )7£ (0,1);
SRR ”‘Z 1 mz
, Lay=lyay, =1y
@) (o) 1f<aml,bm2>=<1,o> or (0,1).
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Example 6.2. Suppose that A = (4fél>. Then we have

Q= {5 (59, ) (3D G )b
G ={) (5 ()
Note that (3;) (42 O) (¢f- Subsection 2.1).

Recall that in Subsection 3.2 and Subsection 3.3, we have a parametrization % —
&(G); by A— p, for G=Sp,, or O5,,. The parametrization also satisfies the following
conditions:

e The unique unipotent cuspidal character {}, of Spy, . )(¢) is parametrized by
k= pa, where A is given in (3.5).

e For k > 1, the two unipotent cuspidal characters (kl, (k of O%,(q) where ¢, =

2
(—1)* are parametrized by {= PN, and (' = P where A}, 152g/€1ven in (3.7). For
k = 0, the trivial character 1o of Of(g) is also a unipotent cuspidal character
and is parametrized by the empty symbol ().

o lor = A() and Sglo; = P ()

e The following branching rule holds:

d PZ n+1) A ®1 Z IOA//,

A//€Q+

o7,
Indp,zl(" +1) IO ® 1 Z IOA///

A €Q+

6.3)

where P, (resp. P;,) is a parabolic subgroup of Sp,, . ;/(¢) (resp. Oz( 1) (¢)) with

Levi factor Sp,,(q) x GL,(q) (resp. OF ,(g) X GL (¢)). In particular, the defects
are preserved by parabolic induction.

Proposition 6.4. Let (G,G') = (Sp,,,05,,) where ¢ =+ or—, p) € 8(G),, pp, € E(G');.
Suppose that def(A") # 0. Then p) ® py, occurs in wg gy if and only if (\,N') € Bg g

Proof. 1f (A, \) € Bg > then from the definition in (1.5) we know that

—def(A)+1, ife=+;

6.5) def(A) = {—def(A)—l o

We also know that def(A") = —def(A’) # def(A’) since we assume that def(A") # 0. Now

suppose that o) ® o), occurs in g g ;-
(1) First suppose that both o,, 0, are cuspidal. Then we know that » = k(k + 1),

pPp Pr>PA P
and n" = k? or (k + 1)* for some non-negative integer .
(a) Suppose that # = k(k +1) and n’ = (k +1)? (and € = (—1)¥*!). Then we
know that §, ® ]| occurs in wg g/ ; from [AM93] theorem 5.2. Now {j, =
A {IJH =pPn, where Ak,A;eH are given in (3.5) and (3.7), and we have

N (%H) UA), ifkiseven;
k1= (Zk_ﬂ) UA, ifkisodd.
Hence def(A, ) =—def(Ay) + 1if € = +; and def(A/kH) —def(A;)—1if

€=—.
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(b) Suppose that 7 = k(k 4 1) and 7’ = k? (and € = (—1)*). Then we know
that {, ® ¢} occurs in wg g, from [AM93] theorem 5.2. Now {, = p, ,

1
4, = P and

= VAN (2_16), if & is even (hence € = +);
kT VAN (Z_k), if & is odd (hence € = —).

Hence def(A}) = —def(A;)+1if € = +; and def(A})) = —def(A;)—1if e = —.
(2) Next, suppose that A is not cuspidal and def(A) = 4d + 1 for some integer d. If
€ = +, we also assume that d # 0. This assumption implies that def(A") # 0.
Then p), lies in the parabolic induced character Ind,, pz” (,0 ® 1) where Py )
is the parabolic subgroup whose Levi factor is szk bt1) ( )x T and T is a split
torus of rank » —k(k + 1) and A, is given in (3.5) for some non-negative integer

k such that k(k +1) < n.
It is well-known that the theta correspondence is compatible with the par-
abolic induction (cf- [AMR%] théoréme 3.7), so now p,, lies in the parabolic

induced character Indoz" 9 (Pi i, ® 1) where P}, i

Levi factor is O5, ,(q ) x T, /e is equal to k& or k + 1 depending on ¢, 77 is a
split torus of rank »n’ — £, and A, is A}, or A}, given in (3.7). Now the de-
fects of Ay, A}, satisfy (6.5) by (1). Moreover, we know that def(A) = def(A;,) and
def(A") = def(A’,) from the remark before the proposition.

is the parabolic subgroup whose

Now we have shown that if o, ® p, occurs in wg g, and def(A’) # 0, then def(A") #
def(A") = —def(A) + ¢, and hence (A, A") & B .. Then by Theorem 5.3, we must have
(AN)E B

On the other hand, suppose that (A,A") € B ¢ and def(A’) # 0. Then by definition
of B we have (A, A") & B¢ . Then by the above argument, we see that oy ® o)«
does not occurs in wg g ;- Then by Theorem 5.3, we must have py ® p,, occurs in
wG)G/)l. D

Corollary 6.6. Let (G,G') = (Sp,,,0;,,), pa € 6(G)y, pp € E(G')y. Then p) ® py,
oceurs in wg gy if and only if (A, N') € Bg .
Proof. Let A’ € 5”07 Then def(A’) = 2 (mod 4) from (1.3), so def(A’) # 0. Hence the

corollary follows the previous proposition immediately. O

6.2. Branching rule and symbol correspondence. From now on we consider the case
which is not settled by Proposition 6.4, i.e., ¢ =+, def(A) = 1 and def(A’) = 0. Define

B = B, 01 -
nn'20

For a symbol A of defect 1 and a set 2’ of symbols of defect 0, we define two subsets of
' by

O,()={Ne|(AN)e BT},

O ={AN e | (AN )e Bt and (A,A) ¢ B}
Similarly, for a symbol A" of defect 0 and a set 2 of symbols of defect 1, we define

Op()={AeQ|(AN)eB™},

0L ={AcQ|(AA) e B and (A, N) & B).
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Example 6.7. Let A = (8 > 1) and A’ = (;;i) By Lemma 2.15, it is easy to check that
(A,A')e BT and

0 = {550k (5 (651): (620 (G5 () (552) (62) b

OM) = {(os) (5 (50) -

ORU) = {31 () (552}
Lemma 6.8. Suppose that (o), p:) occurs in the Howe correspondence, (AN) € B,
and ©}(Q} ) 0. Forany N' € QX; , if (oas par) occurs in the Howe correspondence, then
(AN e B+,
Proof. Suppose that A’ € QX,{ and (p,, pp/) occurs in the Howe correspondence. Then
we know by Theorem 5.3 that (A,A’) or (A,A") is in B*. But O}, (STr ) = 0 means that
thereisno A” € Q+ such that (A,A") € B* and (A,A") & B™*. Hence we have (AN)e
Bt O
Lemma 6.9. Suppose that (p, o) occurs in the Howe correspondence, (A, A') € B,

and @;‘\,(Qxl) =0. Forany A € QXI, if (o> por) occurs in the Howe correspondence, then
(A N)e B,

Proof. The proof is similar to that of Lemma 6.8. O
Lemma 6.10. Let A, A’ be symbols of defects 1,0 respectively such that (A,A") € B™*. Then
OAQI=1+104( Q)] and  [©,(Q0)] =1+ 04(2y,)].

Proof. We will only prove the first equality since the proof for the second one is similar.

: — (G125 m+l / C15C250 003! / / +
Write A = ( b ) AN = (dl,dz,...,dm) for some m, m’, and suppose that (A,A") € B*.

We know that m’ = m,m + 1 by Lemma 2.14. It is clear that the symbol

+1 CryeueyC,
N = 51 5Cp50005Chy
° < d,d,,....d ,
is in Q, and (A,A) € 7 by Lemma 2.15, i.e., Aj € ®A(QX/)- Now we want to prove
the lemma by constructing an injective map 0,,(Q;) — ©,(2},) given by A; — A such
that the only element in ©,(€2},) not in the image of the map is A{.

First suppose that m’ = m + 1. Now we consider the followmg possible types of
elements in 2 and 0} :

(1) Consider the following two symbols

A1:<d1’ odippd;i—1a, ;. m+1>, A’1:< €15 G505 Cmp >
bl,bz,...,bm di,....d;_,d;+1,d;,....d,
forsome i =1,...,m. If A, €0,/(Q}),i.e., A; €Q and (A, N) € BT, then we

have
a;—1>a;  (because A, is a symbol);

e d,_,>a; (because (A,A') € B+ by Lemma 2.15);

e a,—1>d. (because (A;,A') € B* by Lemma 2.15),
which imply

o d,_>d +1;

®a > dl +1,
i.e., A is a symbol and A} € ©,(2},). On the other hand, it is also not difficult
to see that A €0,(Q)) 1mphes A, €0,,(8)).



HOWE CORRESPONDENCE OF UNIPOTENT CHARACTERS 39

(2) Consider
sy, 1 — 1 C15CpyennsC
A = 1 P s P+ >, A/ :< 1262 s Cmtt >
! < byyby,... b, " \dyend,d, 1
If A, € ©,(Q), then we haved,, >a,,,, and 4, —1>d, , which implies
thatd,, >d,  +1landa, >d, +1,iec, A €0,(QF). One the other hand,

A} €0,(2)) also implies A, € ©,,(2}).
(3) Consider

A _< Apseesmyy > N _<C1""’Ci’ci+1+1’Ci+2""’cm+1>
1= > A=
byy...;b;_1,b;—1,b; ,....,b ddy,....d,

for some i = 1,...,m. By the similar argument in (1) or (2), we see that A, €
0,/(€;) if and only if A} € ©,(2})).

(4) Because now m’ =m+1,any A, € Q2 of type (II’) in Subsection 6.1 is not in
O,/(§2) by Lemma 2.14, moreover, any A} € 2}, of type (III) or (IV) in Subsec-
tion 6.1 is not in ©, ().

Hence the lemma is proved for the case that m' = m + 1.
Next suppose that m’ = m. Except for the situations similar to those considered above,
there is another possibility, i.e., the case that (a,,,,5,,) = (1,0) or (0,1). Let

a—1,...,a, —1
A= "1 7vtm .
! <b1—1,...,b _ —1>
Then we have A; € 2 and (A;,A") € B*. Note that now d,, >a,,,, and ¢,, > b, since
(AMN)e Bt Sod,, >1if(a,, ,b,,)=(1,0);c,, >1if (a m+1’bm) (o, )Let

1,..., 1,0 .
<C1+ Cp T >, lf(am+1:bm):(1’o>;

d+1,....d,+1,1
) b =01

a+1,...,c,+11
<d1 +1,...,d, +1,0

It is easy to check that A7 € f, and (A, A]) € 7. On the other hand, A} € ©,(€2},) also

implies that A; € ©,,(€}). Again, for m’ = m, we still have an injective mapping from

O, (€2)) to ©,(2},) given by A; — A with only one extra element A7 not in the image.

Hence the lemma is proved. O

N, =

Lemma 6.11. Let A, A be symbols of sizes (m + 1, m),(m’, m’) respectively, and suppose
that (A,N') € BT.

() If m' =m+1, then ©,(,) # 0.

(i) If m' =m and ©,,(Q)) =0, then m =0 and A = (E)

Proof. Write A= (" ’"“) A= (35", First suppose that 72’ = m + 1, and we define
1 m’

.....

q—1,...,c,,—1 .
<a’i—1 ,d 1>’ if (¢,p415d,,41) = (1,0) or (0, 1);

m—

,...,,“., —1 .
All = <C1 d o ;m+1 >’ lf Cm+1 = =1 and( m+1’dm+1) 7£ (1’O>’
1 »Y¥m+1
. K oL ’;’"“ . ifd,, >1and (¢, d, ) #(0,1)
m+1

It is easy to see that A’1 € Q. Moreover, the assumption that (A,A’) € #* implies that
(A,A}) € B by Lemma 2.15. Thus (i) is proved.
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Next suppose that 7’ = m and m > 1, and we define

a—1,...,a,—1 )
<b11—1,,,, b 1>’ if (4,,11,8,,) = (1,0) or (0,1);

»Im—1""
A= <41’“-"‘m’“m+1—1>, ifa,  >1and(a,,,,b,)#(1,0)
by,...,b,
Alsennrd,, )
<b1> .},bm—lagyi_l)’ lfbmZland(am""l’b”l)#(o’l)‘

It is easy to see that A; € Q. Moreover, the assumption that (A,A") € 987 implies that
(A, ') € B by Lemma 2.15. Therefore we conclude that if m > 1, then ©,,(2) # 0.
Next suppose that m’ = m and m =0, i.e.,, A = (“1) and A = (:) for some a; > 0. If
a;>1,then A; = (“1:1) €0,,(2;) and hence ©,,(2) # 0. O

Example 6.12. Let A= (i) and A} = (2) be symbols of sizes (1,0) and (1, 1) respectively
such that (A,A]) € B7. So now we have a > d by Lemma 2.15. Now by the definition
we have (6;1),< ¢ ) € QT ; moreover, we also have (C'H’l) € QX, if ¢ #0; and (CH’O) € QX,

d+1 A ; d+1,0 d+1,1
if d # 0. Clearly, we have (}') € ©,(},). If A = (517) or (§119), then A’ is of size
4 : :

(2,2) and hence (A, A’) A NY) & BT by Lemma 2.14.
Suppose that ©; (},) # 0. Then we must have A” := () € ©; (2], ) e, (LAY e
Bt and (A, N") & %Jr ‘which implya >canda=d. Let
A = <iir11)’ ifc>1;
2 (f), if c=0.

Clearly, A"t € Q+ and (A,A) € B*.
1) Ifc>1, then O, (€ ) {(d+2) (d‘H)}.

c—1 c
() fc=0,thend > 1 (smce we always consider reduced symbols) and hence 2 =

d > ¢+ 1. Therefore ©,(2,) = {(d+1) ( d )}

¢ )2 \c+l1

For both cases (1) and (2), we conclude that @X(QX, )=0.

Now we want to show that the above example is in fact a general phenomena:

Lemma 6.13. Let A, A} be symbols of sizes (m + 1,m),(m + 1,m + 1) respectively such
that (A, A\}) € B*. Suppose that A" € Oy (2},). Then there exists a symbol N such that

A" e Qj{,, (A N)) € BT, and @Z(QX;) =0

Proof. Write A= ( """ ’"“) A= (7). Because now (A, A7) € A%, by Lemma 2.15
~~~~~ D@t

we have

aqzd>a>d)>>a,,, >dm+1’

oa>b>e,>b,>->c,>b,>c,,

Let A" € @;‘\(QJr ), .e, A € QX,, (A, A"y e BT, and (A, A) ¢ BT, If A", as an element
of QX, , is of type (III) or (IV) in Subsecnon 6.2, then A”, A" are of size (m +2,m+2) and
hence (A,A"") & B by Lemma 2.14. Therefore, A” must be of type (I) or (II):

(1) Suppose that

(6.14)

A = <C1""’C/e—1’ck + I’C/e+1""’cm+1>
di,....d,
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for some k such that ¢,_; > ¢, + 1. If k =1, then (A, A}) € B implies (A, A") €
B+ and we get a contradiction. So we must have £ > 2. Because now (A,A”) ¢

*and (A,A"") € B, we have

* b =¢

o a;>c;>a; fori#kanda, > +1>a,,; d]» > b]- Zd]qu for each ;.
Thend, >a,>c,+1=0b, ,+1>d, +1and hence

A <d1,...,dk_2,dk_1 — 1,d,€,...,dm+l>
2=

CpsernsCh1sCp 1,000 150045Cpy

is a symbol. It is easy to see that A" €}, and (A, A)) € B*. Moreover, for any
2
/
A= <C1’ ’Cm+1>€Q+
d,....d

m+1

we have d/é > ¢, + 1. Because now b, | = ¢, < d we have (A,A") & BT,
Therefore ©3(2},) =0.
2

Suppose that

A”:< Cpoeeor Gt >
dis....d;_,d; + 1’dl+1""’dm+1

for some [ > 2 such that d;_; > d; + 1. Because now (A,A”) ¢ B+ and (A,A"") €
BT, we have

° al:dl;
® a;>¢;>a; foreachisb;>d, > b, forj#I—land b >d/+1> b,

Thenc¢; > b;_>d;+1=a,+1>c;+1and hence
= <dl,...,d1_1,d1 + 1,d1+1,...,dm+1>
Clseens €l i1 —1,¢750005C, 04
is a symbol. It is easy to see that A”* € Q+, and (A, A)) € BF. Moreover, by the

same argument in (1), we can see that @*( +)=0.
2

A = < CpoeeorCrpyg >
di+1,dy,....d,

Suppose that

Then we have

* ay=d

® a;>c;>a; and b; >d; > b; foreachi,andd, +1> b,.
If m =0, this is just Example 6.12. So now we assume that 7 > 1. Note that
Cppi1s @,y 1 can not both be 0. We can define

m—+1°
(all+1dc2 ----- sy i1 >, ifd, ,>1and(c,, ,d,. )7 0,1)
1re+5Cm1
/_ d+1,d,,...d,, : .
Ay = (;f,;,crjm;l_*{), if €1 2 1and (¢,,41,d,,41) 7 (1,0);
dy—1.d, —1 ~
( 161721’.“’67”71 >’ 1f (Cm+1’dm+1) (1 O) or (O 1)

For above three possible situations, it is easy to see that A”t € QF and (A,A) €
p Yy A 2

AB7T. By the similar argument in (1) we can see that @R(QX,Z) =0.
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Example 6.15. Let A= (8(’551) and A} = (g;é) Then (A,A)) € BT,

ON) ={(550) a0k (30 (Gioh (551)} and - O ={(T30)}-
Now A" = (7735) € ©O4(2},). So let A, = (2) as given in (3) of the proof of the previous

9,3,0 A,
lemma, and we have A"t € QX, (A A) e BT
9.2\ 83\ (8.2\ (82\ (93,1 (9,30 . _

GA(QX'Z) = QX; ={(3)(63) G (63)- Giso) Gian)} - and QA(QX’Z) =0.
Lemma 6.16. Let A, A, be symbols of sizes (m + 1, m),(m, m) respectively such that m > 1
and (A, A}) € B*. Suppose that N" € O (). Then there exists a symbol N, such that
N'te QX;, (A, A) € BT and @;(QX;) =0.

Proof. Write A = (“pn+1), A = (%) Because now (A,A}) € B, by Lemma 2.15

by 1=,
we have
6.17) ay>d>a,>dy>--->a,>d, >a,,,,
’ ag=2b>¢>2by>-->c,>0b,.
" * -+
Let A" € O(12}, )

(1) Suppose that

A — ClsersCh15C T 1,6 15045Cppy
d,,....d

for some k such that ¢,_; > ¢, + 1. The proof for this case is similar to (1) in the

m

proof of Lemma 6.13.
(2) Suppose that

A”:< ClseensCy >
dyy..di_,dy+1,d,4,....d,

for some [ such that d;_; > d; + 1. The proof for this case is similar to (2) in the
proof of Lemma 6.13.
(3) Suppose that
A,,:<cl+1,...,cm+1,1>.
di+1,....,d,+1,0
So we have c,, > 1. The assumptions (A,A”) & B* and (A, A"*) € B imply that
e b,=0;
® a;>c;>a;, foreachi;andd; > b, >d, forj=1,...,m—1
Because A is reduced and now b,, = 0, we must have 4,, ; # 0. Hence d,, >

a,,. =1 Let

A= d+1,....d, +1.4d,,0 '
2 o +1,...,¢,+1,1

It is easy to see that A" € 2F, and (A, A})) € B*. Moreover, for any

A
/ /
A= ClserosCrppy cat
- d’ d’ A}’
127 " m+1

we have d .| > 1. Because now b,, =0<d, , we have (A,A") & B*. There-

fore ©} (2}, ) =0.
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(4) Suppose that
A= <c1 +1,...,c, + 1,o>'
d+1,....d,+1,1
The proof is similar to (3) above.
O

Lemma 6.18. Let A, A’ be symbols of sizes (m + 1,m),(m’, m") respectively, and suppose
that (N,N') € B*. Suppose that A" € @X,(QXI ). Then there exists a symbol A, such that

N €, (A, N) € B, and O},( ) = 1.

Proof. We know that m’ = m,m + 1. Then the proof is similar to those of Lemma 6.13
and Lemma 6.16. O

6.3. Branching rule and Howe correspondence. For p € &(Sp,,(¢)), let 2] denote

. . . . SPanis
the set of irreducible constituents of the parabolic induced character Indppz(“ )(q)(,o ®1),

then, if # > 1, we also define

@ ={p1 €ESpy,—1)(@) | pE Q;Fl }
where P, is a parabolic subgroup of Sp,,,  1(¢) whose Levi factor is Sp,,(¢) x GL;(g).

The analogous definition also applies to p’ € £(O} ().
For p € &(Sp,,(q)) and a set of irreducible characters ' C &(OF

2n'

(q)), we define
O,(0)={p €V |(p,p") occurs in the Howe correspondence }.
Similarly, for o" € (07 (¢)) and a set 2 C &(Sp,,(q)), we define

j— / 1
O,()={p | (p,p) occurs in the Howe correspondence }.

The following lemma is extracted from the proof of [AMRY96] théoreme 3.7:

Lemma 6.19. Let o € &(Sp,,(q)) and o’ € (O} (q)) such that (p, o) occurs in the Howe
correspondence. Then

] — — Y — —
0, =140, and [0,(2)| =1+]0,(2;)].

Proof. Suppose that p € &(Sp,,(9)), p' € 6(03 (¢)) and (p, ") occurs in the Howe
correspondence. Note that the Howe correspondence for symplectic/orthogonal dual pair

is of multiplicity one (¢f. [MVW87] p.97). By Frobenius reciprocity, we have

OINC)
+\| — 2(n"+1) /
(2l = <°°5Pw02<n/+l>’p ®Ros xcr g ® 1>>

= (10" R e, ) re@del)
- OF (9)xGLy(q)\ P20}, PP O P @ 1)

o . (@
Here R >
0] ,(4)xGLy(q)

induction. From [AMR96] p.382, we know that

denotes the Lusztig induction, and now it is just the usual parabolic

(1 & R )( )
OF (q)xGLy(q) )\ 3205,

stn(q)XO;n/ (9)xGL4(q)

= -+ ® 1 + w + ® R
$P2,:0,, SPz(nq)(q)XO;”/(q>XGL1(‘])XGL1(‘1)( SPan—1)O; GL, )

where Rg; denotes the character of the representation of GL{(g)xGL,(¢) on C(GL(g)).
By our assumption, we have

<°‘)Sp2n’02+,,/ ®Lp®p ®1)=1.
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Moreover, by Frobenius reciprocity again, we have

8p2,(9)xO} ,(q)xGL(q) / >
< Spa 1060 (g)XGL(g)xGL () PSpss 0%, B Rar ) p B 0 ®1

_ + P ,,(q) I\ _ _
N <Q)Sp2(”71),o;'n/’ RSp;nfl)(q)(’o )®p > o |@P’<QP )l
Hence the first equality is proved. The proof of the second equality is similar. O

Proposition 6.20. Let (G,G’)=(Sp,,,03 ), oo € E(G)y, pu € E(G'), for some symbols
A, N of defects 1,0 respectively. Then p®p,, occurs in ewg g if and only if (A, N') € B -

Proof. We are going to prove the proposition by induction on 7 + n’. First we consider
the cases that »/ = 0. The Howe correspondence for the dual pair (Sp,,(¢),07(q)) is
given by I, ® 1+ and we know that 15, = Py los = Py It is clear that

B 0= (VO

Hence the proposition holds for »” = 0 (and any non-negative integer 7). Next we con-
sider the cases that » = 0. The Howe correspondence for the dual pair (Spy(¢), 03, (¢))
is given by 15, ® 15+ ,and we know that 15, = Py 1o+ = PeLy: It is clear that

2n! - 20! 0

Bsp0z, ={((O) ()}

Hence the proposition holds for » =0 (and any non-negative integer 7’).
Now suppose that (A,A") € B, o+ and def(A") = 0 for some positive 7,7’, and
n>~" 9!

write A = (“}9 """ ﬂZ“), N= (;1;’”’ ) for some nonnegative integers m, m’. It is known that
13eees /

1229%m m

m' =m,m+1by Lemma 2.14.

(1) Suppose that m’ = m + 1. By Lemma 6.11, we know that ©,(€2,) # 0. Let
Al € 0,(), ie, A € QXQ and (A,A}) € Bg, o+ . Then, by induction

2(n’—1)
hypothesis occurs in the Howe correspondence and we have
yp s (oasp;) p

6.21) 8, (05, = 04,
Now by Lemma 6.19 and Lemma 6.10, we have the equality
62 6,92, )= 0,25
(a) Suppose that A} is of type (I') or (I’) in Subsection 6.1. Then A is of size
(m+1,m+1).
(i) First suppose that ©(Q},) = 0. For any A” € Q7,, by Lemma 6.8, if

, o) occurs in the Howe correspondence, then we have (A,A”) €
Pr>PA P
%SPZW ’O;n/ :
(i) Next suppose that QZ(QX;> #0. Forany A" € @Z(QX/I )» we know that
(AA") € Bs, o and (A, A”) & B, o+ by the definition. By
7> 2! 7> 2!
Lemma 6.13, we can find A} € S+ such that A" € QX, (A A) e
2n’—1) 2
Bsp, o+, and 0,(QF,) = 0. By (i), with A] replaced by A} and the
72 2(n! 1) 2
fact (A,A") & B, o+ , we see that (o), 0,) does not occur in the
n? Z”/

Howe correspondence. In short, we have shown that for any A" €
0,(2F)), (op>opm) does not occur in the Howe correspondence. So
1

now for any A” € 7, , if (o, p») occurs in the Howe correspondence
1
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and (A,A") & ‘%szn@;/’ we must have (A,A") € ‘%szn’ojn/’ re, N e

@z(QX,l) and we get a contradiction. Therefore, for any A” € QX,,
the occurrence of (o, o5/) in the Howe correspondence implies that
(AN e Bsp,, 0%,

Hence for both (i) and (ii), by (6.22), the condition A” € G)A(QX,1 ) also im-

plies that (p,, p~) occurs in the Howe correspondence. In particular, since
N e}, and (A A) € %SPMO;/ , we have that (o,, p,/) occurs in the Howe
correspéndence.
(b) Suppose that A is of type (II’) in Subsection 6.1. Then A is of size (1, m).
(i) First suppose that ©;(Q},) = 0. The proof is exactly the same as in
@) |
(i) Suppose that ©} () # 0. First suppose that 7 = 0. This means that
A= (_) for some n Z 0,A] = (:), N = ( > and ©} Q+ {( )} It
is well known that Py = Is, Py = 1o, (lspm, 10;) occurs in the

Howe correspondence, and ((f), (é)) € %SPZWO;, i.e., the proposition
is true for this case. Next suppose that m > 1. Then the proof is
similar to that of (a.ii). The only difference is that we need to apply
Lemma 6.16 instead of Lemma 6.13.
Suppose that m’ = m. Since the case that 7 = 0 is just the case that n’ = 0,
we assume that 7 > 1. By Lemma 6.11, we know that ©,,(Q2) # 0. Let A; €
0,(2)), ie, A e Q+ and (A,\) € ‘%sz(n_woz*n' Then (pAmoA,) occurs in the
Howe correspondence by induction hypothesis. The remaining proof is similar
to that of (1). Note that we need to apply Lemma 6.18 instead of Lemma 6.13 and
Lemma 6.16.

O

Proof of Theorem 1.8. The theorem is just the combination of Proposition 6.4 and Propo-

sition 6.
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