HOWE CORRESPONDENCE OF UNIPOTENT CHARACTERS FOR A FINITE SYMPLECTIC/EVEN-ORTHOGONAL DUAL PAIR

SHU-YEN PAN

Abstract

In this paper we give a complete and explicit description of the Howe correspondence of unipotent characters for a finite reductive dual pair of a symplectic group and an even orthogonal group in terms of the Lusztig parametrization. That is, the conjecture by Aubert-Michel-Rouquier is confirmed.

Contents

1. Introduction 1
2. Symbols and Bi-partitions 4
3. Finite Howe Correspondence of Unipotent Characters 8
4. Cells for a Symplectic Group or an Even Orthogonal Group 13
5. A System of Linear Equations 23
6. Symbol Correspondence and Parabolic Induction 35
References 45

1. Introduction

1.1. Let $\omega_{\mathrm{S}_{\mathrm{P}_{2 N}}}^{\psi}$ denote the character of the Weil representation ($c f$. [Gér77]) of a finite symplectic group $\mathrm{Sp}_{2 N}(q)$ with respect to a nontrivial additive character ψ of a finite field F_{q} of characteristic $p \neq 2$. Let $\left(\mathrm{G}, \mathrm{G}^{\prime}\right)$ be one of the following three basic types of reductive dual pairs in $\mathrm{Sp}_{2 N}$:
(1) two general linear groups $\left(\mathrm{GL}_{n}, \mathrm{GL}_{n^{\prime}}\right)$;
(2) two unitary groups $\left(\mathrm{U}_{n}, \mathrm{U}_{n^{\prime}}\right)$;
(3) one symplectic group and one orthogonal group $\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{n^{\prime}}^{\epsilon}\right)$
where $\epsilon=+$ or - . Now $\omega_{\mathrm{SP}_{2 N}}^{\psi}$ is regarded as a character of $G \times G^{\prime}$ and denoted by $\omega_{\mathrm{G}, \mathrm{G}^{\prime}}^{\psi}$ via the homomorphisms $G \times G^{\prime} \rightarrow G \cdot G^{\prime} \hookrightarrow \operatorname{Sp}_{2 N}(q)$ where G, G^{\prime} denote the finite groups of rational points of $\mathbf{G}, \mathbf{G}^{\prime}$ respectively. Then $\omega_{\mathbf{G}, \mathbf{G}^{\prime}}^{\psi}$ is decomposed as a sum of irreducible characters

$$
\omega_{\mathbf{G}, \mathbf{G}^{\prime}}^{\psi}=\sum_{\rho \in \mathscr{E}(G), \rho^{\prime} \in \mathscr{E}\left(G^{\prime}\right)} m_{\rho, \rho^{\prime}} \rho \otimes \rho^{\prime}
$$

where each $m_{\rho, \rho^{\prime}}$ is a non-negative integer, and $\mathscr{E}(G)$ denotes the set of irreducible characters of G (i.e., the set of the characters of irreducible representations of G). Then it

[^0]establishes a relation
$$
\Theta_{G, \mathbf{G}^{\prime}}=\left\{\left(\rho, \rho^{\prime}\right) \in \mathscr{E}(G) \times \mathscr{E}\left(G^{\prime}\right) \mid m_{\rho, \rho^{\prime}} \neq 0\right\}
$$
between $\mathscr{E}(G)$ and $\mathscr{E}\left(G^{\prime}\right)$ which is called the Howe correspondence (or Θ-correspondence) for the dual pair $\left(\mathbf{G}, \mathbf{G}^{\prime}\right)$. The main task is to describe the correspondence explicitly.
1.2. It is known that $\mathscr{E}(G)$ is partitioned as a disjoint union
$$
\mathscr{E}(G)=\bigcup_{(s) \subset\left(G^{*}\right) 0^{0}} \mathscr{E}(G)_{s}
$$
of Lusztig series $\mathscr{E}(G)_{s}$ indexed by the conjugacy classes (s) of semisimple elements in the connected component $\left(G^{*}\right)^{0}$ of the dual group G^{*} of G. Elements in $\mathscr{E}(G)_{1}$ are called unipotent characters. Lusztig shows that there exists a bijection
$$
\mathfrak{L}_{s}: \mathscr{E}(G)_{s} \longrightarrow \mathscr{E}\left(C_{G^{*}}(s)\right)_{1}
$$
where $C_{G^{*}}(s)$ is the centralizer in G^{*} of $s(c f .[$ Lus 77$])$. For a semisimple element s we can define three groups $G^{(0)}, G^{(1)}, G^{(2)}$ so that there is a natural bijection
$$
\mathscr{E}\left(C_{G^{*}}(s)\right)_{1} \simeq \mathscr{E}\left(G^{(0)} \times G^{(1)} \times G^{(2)}\right)_{1}
$$
(cf. [Pan19a] subsection 6.2). Then we have a (modified) Lusztig correspondence
\[

$$
\begin{aligned}
\Xi_{s}: \mathscr{E}(G)_{s} & \rightarrow \mathscr{E}\left(G^{(0)} \times G^{(1)} \times G^{(2)}\right)_{1}, \\
& \rho \mapsto \rho^{(0)} \otimes \rho^{(1)} \otimes \rho^{(2)}
\end{aligned}
$$
\]

where $\rho^{(j)} \in \mathscr{E}\left(G^{(j)}\right)_{1}$ for $j=0,1,2$. Moreover, we have the corresponding decomposition $s=s^{(0)} \times s^{(1)} \times s^{(2)}$.

Recall that a class function on G is called uniform if it is a linear combination of the Deligne-Lusztig virtual characters $R_{T, \theta}$. For a class function f on G, let f^{\sharp} denote its projection on the subspace of uniform class functions.

Now let $\left(\mathbf{G}, \mathbf{G}^{\prime}\right)$ be a dual pair and suppose that $p \in \mathscr{E}(G)_{s}, \rho^{\prime} \in \mathscr{E}\left(G^{\prime}\right)_{s^{\prime}}$ for some s, s^{\prime}. For simplicity in this subsection we assume that the orthogonal group is even for a symplectic/orthogonal dual pair. Then one can show that

- both $\mathbf{G}^{(0)}, \mathbf{G}^{(0)}$ are products of general linear groups or unitary groups;
- both $\mathbf{G}^{(1)}, \mathbf{G}^{(1)}$ are classical groups of the same type;
- $\left(\mathbf{G}^{(2)}, \mathbf{G}^{(2)}\right)$ forms a reductive dual pair of either two general linear groups, two unitary groups, or one symplectic group and one even orthogonal group.
It is known that unipotent characters are preserved in the Howe correspondence for the dual pair $\left(\mathbf{G}^{(2)}, \mathbf{G}^{(2)}\right)(c f .[A M 93])$. Then one can show that $\rho \otimes \rho^{\prime}$ occurs in $\omega_{G, G^{\prime}}^{\psi}$ (i.e., $m_{\rho, \rho^{\prime}} \neq 0$) if and only if the following conditions are satisfied:
(1) $s^{(0)}=s^{(0)}, \mathrm{G}^{(0)} \simeq \mathrm{G}^{(0)}$ and $\rho^{(0)}=\rho^{(0)}$;
(2) $\mathrm{G}^{(1)} \simeq \mathrm{G}^{\prime(1)}$ and $\rho^{(1)}=\rho^{\prime(1)}$;
(3) $\rho^{(2)} \otimes \rho^{\prime(2)}$ occurs in $\omega_{\left.\mathbf{G}^{2}\right), \mathbf{G}^{(2)}, 1}$
where $\omega_{\mathbf{G}^{(2)}, \mathbf{G}^{(2)}, 1}$ denotes the unipotent part of $\omega_{\mathbf{G}^{2}, \mathbf{G}^{(2)}}^{\psi}$, i.e, the following diagram

$$
\begin{align*}
& \begin{array}{rll}
\rho & \xrightarrow{\theta_{\mathrm{G}, \mathrm{G}^{\prime}}} & \rho^{\prime} \\
E_{s} & &
\end{array} \tag{1.1}\\
& \rho^{(0)} \otimes \rho^{(1)} \otimes \rho^{(2)} \xrightarrow{\mathrm{id} \otimes \mathrm{i} d \otimes \theta_{\mathrm{G}^{(2)}, \mathrm{G}^{(2)}}} \rho^{\prime(0)} \otimes \rho^{\prime(1)} \otimes \rho^{\prime(2)}
\end{align*}
$$

commutes. Therefore we can reduce the Howe correspondence $\Theta_{G, \mathrm{G}^{\prime}}$ of general irreducible characters to the correspondence $\Theta_{\mathrm{G}^{(2)}, \mathrm{G}^{(2)}}$ of irreducible unipotent characters.

Remark 1.2. (1) If the pair $\left(G, G^{\prime}\right)$ consists of two general linear groups or two unitary groups, then all the irreducible characters of G and G^{\prime} are uniform and so the above commutative diagram can be read off from the result in [AMR96] théorème 2.6 ($c f$. [Pan19b] theorem 3.10).
(2) If $\left(\mathrm{G}, \mathrm{G}^{\prime}\right)$ consists of a symplectic group and an orthogonal group, using the decomposition of $\omega_{\mathrm{G}, \mathrm{G}^{\prime}}^{\sharp}$ in [Sri79] and [Pan21], the commutativity of the diagram (under proper choices of Ξ_{s} and $\Xi_{s^{\prime}}$) is proved in [Pan19a]. Unlike the cases of general linear groups or unitary groups, most of the irreducible characters of symplectic groups or orthogonal groups are not uniform. This is the main difference and difficulty for studying the correspondence for symplectic/orthogonal dual pairs.
1.3. So now we focus on the correspondences of irreducible unipotent characters for symplectic/even-orthogonal dual pairs. First we review some results on the classification of the irreducible unipotent characters by Lusztig in [Lus77], [Lus81] and [Lus82]. Let

$$
\Lambda=\binom{A}{B}=\binom{a_{1}, a_{2}, \ldots, a_{m_{1}}}{b_{1}, b_{2}, \ldots, b_{m_{2}}}
$$

denote a reduced symbol, i.e., an ordered pair of two finite subsets A, B of non-negative integers such that $0 \notin A \cap B$. Note that we always assume that $a_{1}>a_{2}>\cdots>a_{m_{1}}$ and $b_{1}>b_{2}>\cdots>b_{m_{2}}$. The rank and the defect of a symbol Λ (denoted by $\operatorname{rk}(\Lambda)$ and $\operatorname{def}(\Lambda)$ respectively) are defined in (2.1). Let \mathscr{S} denote the set of reduced symbols, and let $\mathscr{S}_{n, d}$ denote the set of reduced symbols of rank n and defect d. Then we define the following sets of symbols associated to G:

$$
\begin{array}{ll}
\mathscr{S}_{\mathrm{SP}_{2 n}} & =\{\Lambda \in \mathscr{S} \mid \operatorname{rk}(\Lambda)=n, \operatorname{def}(\Lambda) \equiv 1 \\
\mathscr{S}_{\mathrm{O}_{2 n}}^{+} & (\bmod 4)\} ; \tag{1.3}\\
\mathscr{S}_{\mathrm{O}_{2 n}^{-}} & =\{\Lambda \in \mathscr{S} \mid \operatorname{rk}(\Lambda)=n, \operatorname{def}(\Lambda) \equiv 0 \\
(\bmod 4)\} ;
\end{array}
$$

Then Lusztig gives a parametrization of the set of irreducible unipotent characters $\mathscr{E}(G)_{1}$ by the set of symbols \mathscr{S}_{G}. The irreducible character parametrized by a symbol Λ will be denoted by ρ_{Λ}.

For a symbol $\Lambda=\binom{a_{1}, a_{2}, \ldots, a_{m_{1}}}{b_{1}, b_{2}, \ldots, b_{m_{2}}}$, we associate it a bi-partition

$$
\Upsilon(\Lambda)=\left[\begin{array}{l}
a_{1}-\left(m_{1}-1\right), a_{2}-\left(m_{1}-2\right), \ldots, a_{m_{1}-1}-1, a_{m_{1}} \tag{1.4}\\
b_{1}-\left(m_{2}-1\right), b_{2}-\left(m_{2}-2\right), \ldots, b_{m_{2}-1}-1, b_{m_{2}}
\end{array}\right]
$$

Let $\left(\mathbf{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{\epsilon}\right)$ where $\epsilon=+$ or - . For $\Lambda \in \mathscr{S}_{\mathrm{G}}, \Lambda^{\prime} \in \mathscr{S}_{\mathrm{G}^{\prime}}$, we write $\Upsilon(\Lambda)=\left[\begin{array}{l}\lambda \\ \mu\end{array}\right]$ and $\Upsilon\left(\Lambda^{\prime}\right)=\left[\begin{array}{l}\lambda^{\prime} \\ \mu^{\prime}\end{array}\right]$. Then we define a relation $\mathscr{B}_{\mathrm{G}, \mathrm{G}^{\prime}}$ on $\mathscr{S}_{\mathrm{G}} \times \mathscr{S}_{\mathrm{G}^{\prime}}$ by

$$
\begin{align*}
& \mathscr{B}_{\mathrm{SP}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{+}}=\left\{\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{S}_{\mathrm{S}_{2 n}} \times \mathscr{S}_{\mathrm{O}_{2 n^{\prime}}^{+}} \mid \mu \preccurlyeq \lambda^{\prime}, \mu^{\prime} \preccurlyeq \lambda, \operatorname{def}\left(\Lambda^{\prime}\right)=-\operatorname{def}(\Lambda)+1\right\} ; \\
& \mathscr{B}_{\mathrm{SP}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{-}}=\left\{\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{S}_{\mathrm{SP}_{2 n}} \times \mathscr{S}_{\mathrm{O}_{2 n^{\prime}}^{-}} \mid \lambda^{\prime} \preccurlyeq \mu, \lambda \preccurlyeq \mu^{\prime}, \operatorname{def}\left(\Lambda^{\prime}\right)=-\operatorname{def}(\Lambda)-1\right\} \tag{1.5}
\end{align*}
$$

where the relation $\lambda \preccurlyeq \mu$ on partitions is given in (2.10). Moreover, we define

$$
\begin{equation*}
\mathscr{D}_{\mathrm{SP}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{-}}=\mathscr{D}_{\mathrm{S}_{\mathrm{P}_{2 n},} \mathrm{O}_{2 n^{\prime}}^{+}}=\mathscr{B}_{\mathrm{SP}_{\mathrm{P}_{2 n},}, \mathrm{O}_{2 n^{\prime}}^{+}} \cap\left(\mathscr{S}_{n, 1} \times \mathscr{S}_{n^{\prime}, 0}\right) . \tag{1.6}
\end{equation*}
$$

Then it is proved in [Pan21] that

$$
\begin{equation*}
\omega_{\mathrm{G}, \mathrm{G}^{\prime}, 1}^{\sharp}=\frac{1}{2} \sum_{\left(\Sigma, \Sigma^{\prime}\right) \in \mathscr{T}_{\mathrm{G}, \mathrm{G}^{\prime}}} R_{\Sigma}^{\mathrm{G}} \otimes R_{\Sigma^{\prime}}^{\mathrm{G}^{\prime}}=\sum_{\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{\mathrm{G}, \mathrm{G}^{\prime}}} \rho_{\Lambda}^{\sharp} \otimes \rho_{\Lambda^{\prime}}^{\sharp} \tag{1.7}
\end{equation*}
$$

where R_{Σ}^{G} and $R_{\Sigma^{\prime}}^{\mathrm{G}^{\prime}}$ are the almost characters given in Subsection 3.3 and Subsection 3.2.
In this article, we can go a step further to remove the uniform projection and obtain an explicit description in terms of Lusztig's symbols of the Howe correspondence of unipotent characters for a symplectic/even-orthogonal dual pair:

Theorem 1.8. Let $\left(\mathbf{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{\epsilon}\right)$ where $\epsilon=+$ or - . Then

$$
\omega_{\mathrm{G}, \mathrm{G}^{\prime}, 1}=\sum_{\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{\mathrm{G}, \mathrm{G}^{\prime}}} \rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}
$$

i.e., $\left(\rho_{\Lambda}, \rho_{\Lambda^{\prime}}\right)$ occurs in $\Theta_{\mathrm{G}, \mathrm{G}^{\prime}}$ if and only if $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{\mathrm{G}, \mathrm{G}^{\prime}}$.

Remark 1.9. In [AMR96] théorème 5.5, théorème 3.10 and conjecture 3.11, Aubert, Michel and Rouquier give an explicit description (in terms of partitions or bi-partitions) of the correspondence of unipotent characters for a dual pair of either two general linear groups or two unitary groups, and they have a conjecture on the description of the correspondence for a symplctic/even-orthogonal dual pair. A comparison between the theorem above and their conjecture is in Subsection 3.5.

Combining the theorem and the commutativity between Howe correspondence and Lusztig correspondence in (1.1), we obtain a complete description of the whole Howe correspondence of irreducible characters for any finite reductive dual pair. Some applications of the description can be found in [Pan19a] and [Pan20].
1.4. The contents of the paper are organized as follows. In Section 2, we recall the definition and basic properties of symbols introduced by Lusztig. Then we discuss the relations $\mathscr{D}_{Z, Z^{\prime}}$ and $\mathscr{B}_{Z, Z^{\prime}}$ which play the important roles in our main results. In Section 3, we recall the Lusztig's parametrization of irreducible unipotent characters of a symplectic group or an even orthogonal group. Then we state our main theorems in Subsection 3.4. In Section 4, we provide several properties of cells of a symplectic group or an even orthogonal group. These properties will be used in the proof of our main result: Theorem 1.8 in last two sections.

The author would like to thank the referee for careful reading and many helpful suggestions.

2. Symbols and Bi-Partitions

In the first part of this section we recall the notion of "symbols" and "bi-partitions" from [Lus77] $\mathbb{\$} 3$.
2.1. Symbols. A symbol is an ordered pair

$$
\Lambda=\binom{A}{B}=\binom{a_{1}, a_{2}, \ldots, a_{m_{1}}}{b_{1}, b_{2}, \ldots, b_{m_{2}}}
$$

of two finite subsets A, B (possibly empty) of non-negative integers. We always assume that elements in A, B are written respectively in strictly decreasing order, i.e., $a_{1}>a_{2}>$ $\cdots>a_{m_{1}}$ and $b_{1}>b_{2}>\cdots>b_{m_{2}}$. A symbol is called degenerate if $A=B$, and it is called
non-degenerate otherwise. The cardinality, size, rank and defect of a symbol $\Lambda=\binom{A}{B}$ are defined by

$$
\begin{align*}
|\Lambda| & =|A|+|B| \\
\operatorname{size}(\Lambda) & =(|A|,|B|) \\
\operatorname{rank}(\Lambda) & =\sum_{i=1}^{m_{1}} a_{i}+\sum_{i=1}^{m_{2}} b_{i}-\left\lfloor\left(\frac{|A|+|B|-1}{2}\right)^{2}\right\rfloor \tag{2.1}\\
\operatorname{def}(\Lambda) & =|A|-|B|
\end{align*}
$$

where $|X|$ denotes the cardinality of a finite set X. For a symbol Λ, let Λ^{*} (resp. Λ_{*}) denote the first row (resp. second row) of Λ, i.e., $\Lambda=\binom{\Lambda^{*}}{\Lambda_{*}}$. For a symbol $\Lambda=\binom{A}{B}$, we define its transpose $\Lambda^{\mathrm{t}}=\binom{B}{A}$. A symbol $\binom{A}{B}$ is called reduced if $0 \notin A \cap B$. If both Λ^{*}, Λ_{*} are the empty set, then Λ is denoted by $\binom{-}{-}$ or just \emptyset.

We define an equivalence relation on symbols generated by

$$
\binom{a_{1}, a_{2}, \ldots, a_{m_{1}}}{b_{1}, b_{2}, \ldots, b_{m_{2}}} \sim\binom{a_{1}+1, a_{2}+1, \ldots, a_{m_{1}}+1,0}{b_{1}+1, b_{2}+1, \ldots, b_{m_{2}}+1,0} .
$$

It is not difficult to see that ranks and defects are invariant on an equivalence class of symbols. Moreover, each equivalence class contains a unique reduced symbol. In the remaining part of this article, a symbol is always assumed to be reduced unless specified otherwise.

A symbol Λ_{1} is called a subsymbol of another symbol Λ_{2}, denoted by $\Lambda_{1} \subset \Lambda_{2}$, if $\Lambda_{1}^{*} \subset$ Λ_{2}^{*} and $\left(\Lambda_{1}\right)_{*} \subset\left(\Lambda_{2}\right)_{*}$. If $\Lambda_{1} \subset \Lambda_{2}$, we define the symbol substraction by

$$
\Lambda_{2} \backslash \Lambda_{1}=\binom{\Lambda_{2}^{*} \backslash \Lambda_{1}^{*}}{\left(\Lambda_{2}\right)_{*} \backslash\left(\Lambda_{1}\right)_{*}}
$$

For two symbols Λ_{1}, Λ_{2}, we define their union and intersection by

$$
\Lambda_{1} \cup \Lambda_{2}=\binom{\Lambda_{1}^{*} \cup \Lambda_{2}^{*}}{\left(\Lambda_{1}\right)_{*} \cup\left(\Lambda_{2}\right)_{*}}, \quad \Lambda_{1} \cap \Lambda_{2}=\binom{\Lambda_{1}^{*} \cap \Lambda_{2}^{*}}{\left(\Lambda_{1}\right)_{*} \cap\left(\Lambda_{2}\right)_{*}}
$$

2.2. Special symbols. A symbol

$$
\begin{equation*}
Z=\binom{a_{1}, a_{2}, \ldots, a_{m+1}}{b_{1}, b_{2}, \ldots, b_{m}} \tag{2.2}
\end{equation*}
$$

of defect 1 is called special if $a_{1} \geq b_{1} \geq a_{2} \geq b_{2} \geq \cdots \geq a_{m} \geq b_{m} \geq a_{m+1}$; similarly a symbol

$$
\begin{equation*}
Z=\binom{a_{1}, a_{2}, \ldots, a_{m}}{b_{1}, b_{2}, \ldots, b_{m}} \tag{2.3}
\end{equation*}
$$

of defect 0 is called special if $a_{1} \geq b_{1} \geq a_{2} \geq b_{2} \geq \cdots \geq b_{m-1} \geq a_{m} \geq b_{m}$. For a special symbol Z, we define its subsymbol of "singles" $Z_{I}=Z \backslash\binom{Z^{*} * Z_{*}}{Z^{*} \cap Z_{*}}$. The degree of a special symbol Z is defined to be

$$
\operatorname{deg}(Z)= \begin{cases}\frac{\left|Z_{\mid}\right|-1}{2}, & \text { if } Z \text { has defect } 1 ; \\ \frac{Z_{1} \mid}{2}, & \text { if } Z \text { has defect } 0\end{cases}
$$

For a subsymbol $M \subset Z_{\mathrm{I}}$, we denote

$$
\begin{equation*}
\Lambda_{M}=(Z \backslash M) \cup M^{\mathrm{t}}, \tag{2.4}
\end{equation*}
$$

i.e., Λ_{M} is the symbol obtained from Z by switching the row position of entries in M and keeping other entries unchanged. Note that $\Lambda_{\emptyset}=Z$ and $\Lambda_{Z_{1}}=Z^{t}$.

Example 2.5. The symbol $Z=\binom{4,3}{3,2}$ is a special symbol of rank 8 and defect 0 . Now $Z_{I}=\binom{4}{2}$ and so $\operatorname{deg}(Z)=1$. Then we have

$M \left\lvert\,\binom{-}{-}\right.$	$\binom{4}{-}$	$\binom{-}{2}$	$\binom{4}{2}$
$\Lambda_{M} \left\lvert\,$$\binom{4,3}{3,2}$$\binom{3}{4,3,2}\right.$	$\binom{4,3,2}{3}$	$\binom{3,2}{4,3}$	

If Z is a special symbol of rank n and defect 1 , we define

$$
\begin{align*}
\mathscr{S}_{\mathrm{Z}}^{\mathrm{SP}_{2 n}} & =\left\{\Lambda_{M}\left|M \subset \mathrm{Z}_{\mathrm{I}},|M| \text { even }\right\} \subset \mathscr{S}_{\mathrm{S}_{2 n}}\right. \tag{2.6}\\
\mathscr{S}_{Z, 1} & =\mathscr{S}_{\mathrm{Z}}^{\mathrm{SP}_{2 n}} \cap \mathscr{S}_{n, 1}
\end{align*}
$$

if Z is a special symbol of rank n and defect 0 , we define

$$
\begin{align*}
\mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{2 n}^{+}} & =\left\{\Lambda_{M}\left|M \subset Z_{\mathrm{I}},|M| \text { even }\right\} \subset \mathscr{S}_{\mathrm{O}_{2 n}^{+}},\right. \\
\mathscr{S}_{Z}^{\mathrm{O}_{2 n}^{-}} & =\left\{\Lambda_{M}\left|M \subset Z_{\mathrm{I}},|M| \text { odd }\right\} \subset \mathscr{S}_{\mathrm{O}_{2 n}^{-}},\right. \tag{2.7}\\
\mathscr{S}_{Z, 0} & =\mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{2 n}^{+}} \cap \mathscr{S}_{n, 0} .
\end{align*}
$$

It is not difficult to see that

$$
\left|\mathscr{S}_{\mathrm{Z}}^{\mathrm{G}}\right|= \begin{cases}2^{2 \operatorname{deg}(Z)}, & \text { if } \mathrm{G}=\mathrm{Sp}_{2 n} \\ 2^{2 \operatorname{deg}(Z)-1}, & \text { if } \mathrm{G}=\mathrm{O}_{2 n}^{\epsilon} \text { and } \operatorname{deg}(Z)>0 \\ 1, & \text { if } \mathrm{G}=\mathrm{O}_{2 n}^{+} \text {and } \operatorname{deg}(Z)=0 \\ 0, & \text { if } \mathrm{G}=\mathrm{O}_{2 n}^{-} \text {and } \operatorname{deg}(Z)=0\end{cases}
$$

Moreover, we have

$$
\begin{aligned}
& \mathscr{S}_{\mathrm{S}_{2 n}}=\bigcup_{\mathrm{Z} \text { special, } \mathrm{rk}(Z)=n, \operatorname{def}(Z)=1} \mathscr{S}_{\mathrm{Z}}^{\mathrm{S}_{2 n}} \\
& \mathscr{S}_{\mathrm{O}_{2 n}}=\bigcup_{\mathrm{Z} \text { special, } \mathrm{rk}(Z)=n, \operatorname{def}(Z)=0} \mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{2 n}^{\epsilon}}
\end{aligned}
$$

If the context is clear, $\mathscr{S}_{Z}^{\mathrm{G}}$ will be just denoted by \mathscr{S}_{Z}.
For $\Lambda_{M_{1}}, \Lambda_{M_{2}} \in \mathscr{S}_{Z}$, we define an addition

$$
\begin{equation*}
\Lambda_{M_{1}}+\Lambda_{M_{2}}=\Lambda_{N} \quad \text { where } N=\left(M_{1} \cup M_{2}\right) \backslash\left(M_{1} \cap M_{2}\right) . \tag{2.8}
\end{equation*}
$$

Note that $\Lambda+Z=\Lambda$ and $\Lambda+\Lambda=Z$ for any $\Lambda \in \mathscr{S}_{Z}$. Both $\mathscr{S}_{Z}^{\mathrm{Sp}_{2 n}}$ and $\mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{2 n}^{+}}$are closed under the addition with identity element $\Lambda_{\emptyset}=Z$. This gives $\mathscr{S}_{Z}^{\mathrm{SP}_{2 n}}, \mathscr{S}_{Z}^{\mathrm{O}_{2 n}^{+}}$a vector space structure over the field F_{2} with two elements. On the other hand, if $\Lambda_{1} \in \mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{2 n}^{+}}$and $\Lambda_{2} \in \mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{2 n}^{-}}$, it is easy to check that $\Lambda_{1}+\Lambda_{2} \in \mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{2 n}^{-}}$; moreover, if $\Lambda_{1}, \Lambda_{2} \in \mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{2 n}^{-}}$, then $\Lambda_{1}+\Lambda_{2} \in \mathscr{S}_{Z}^{\mathrm{O}_{2 n}^{+}}$.
Example 2.9. (1) The symbol $Z=\binom{2,0}{1}$ is a special symbol of rank 2, defect 1 and degree 1 . Now $Z_{I}=Z$ and there are 4 subsymbols M of Z_{I} of an even number of entries, namely $\binom{-}{-},\binom{2}{1},\binom{0}{1},\binom{2,0}{-}$. The corresponding Λ_{M} are $\binom{2,0}{1},\binom{1,0}{2},\binom{2,1}{0},\binom{-}{2,1,0}$. Therefore,

$$
\mathscr{S}_{Z}=\mathscr{S}_{Z}^{\mathrm{SP}_{4}}=\left\{\binom{2,0}{1},\binom{1,0}{2},\binom{2,1}{0},\left(\begin{array}{c}
-1,1,0
\end{array}\right)\right\} .
$$

The addition table of \mathscr{S}_{Z} is

$+$	$\binom{2,0}{1}$	$\binom{1,0}{2}$	$\binom{2,1}{0}$	$\left(\begin{array}{l}-1,0\end{array}\right)$
$\binom{2,0}{1}$	$\binom{2,0}{1}$	$\binom{1,0}{2}$	$\binom{2,1}{0}$	(- ${ }^{-}$
$\binom{1,0}{2}$	$\binom{1,0}{2}$	$\binom{2,0}{1}$	$\left({ }^{-}\right.$)	$\binom{2,1}{0}$
$\binom{2,1}{0}$	$\binom{2,1}{0}$		(1,	$\binom{1,0}{2}$
$\left(\begin{array}{l}(2,1,0\end{array}\right)$	$\left({ }_{2,1,0}\right)$	$\left(\begin{array}{l}2,1 \\ -\end{array}\right.$	$\binom{1,0}{2}$	$\binom{2,0}{1}$

(2) The symbol $Z=\binom{3,1}{2,0}$ is a special symbol of rank 4, defect 0 and degree 2. Now $Z_{\mathrm{I}}=Z$ and there are 16 subsymbols M of Z_{I}. Half of them have an even number of entries, and the other half have an odd number of entries. Then we see that

$$
\begin{aligned}
& \mathscr{S}_{Z}^{\mathrm{O}_{8}^{+}}=\left\{\binom{3,1}{2,0},\binom{2,0}{3,1},\binom{3,0}{2,1},\binom{2,1}{3,0},\binom{1,0}{3,2},\binom{3,2}{1,0},\binom{3,2,1,0}{-},\binom{-}{3,2,1,0}\right\}, \\
& \mathscr{S}_{Z}^{\mathrm{O}_{8}^{-}}=\left\{\binom{3,2,1}{0},\binom{0}{3,2,1},\binom{3,1,0}{2},\binom{2}{3,1,0},\binom{3,2,0}{1},\binom{1}{3,2,0},\binom{2,1,0}{3},\binom{3}{2,1,0}\right\} .
\end{aligned}
$$

2.3. Bi-partitions. For a partition $\lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right]$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k} \geq 0$, define $|\lambda|=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}$. For two partitions $\lambda=\left[\lambda_{1}, \ldots, \lambda_{k}\right], \mu=\left[\mu_{1}, \ldots, \mu_{l}\right]$, we may assume that $k=l$ by adding several 0 's if necessary, then we denote

$$
\begin{equation*}
\lambda \preccurlyeq \mu \quad \text { if } \mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots \geq \mu_{k} \geq \lambda_{k} \tag{2.10}
\end{equation*}
$$

Let $\mathscr{P}_{2}(n)$ denote the set of bi-partitions $\left[\begin{array}{l}\lambda \\ \mu\end{array}\right]$ of n, i.e., the set of ordered pair of two partitions λ, μ such that $|\lambda|+|\mu|=n$. It is easy to check that the mapping Υ in (1.4) induces a bijection

$$
\Upsilon: \mathscr{S}_{n, d} \longrightarrow \begin{cases}\mathscr{P}_{2}\left(n-\left(\frac{d-1}{2}\right)\left(\frac{d+1}{2}\right)\right), & \text { if } d \text { is odd; } \\ \mathscr{P}_{2}\left(n-\left(\frac{d}{2}\right)^{2}\right), & \text { if } d \text { is even } .\end{cases}
$$

2.4. The relations $\mathscr{B}_{Z, Z^{\prime}}$ and $\mathscr{D}_{Z, Z^{\prime}}$. Let $\left(\mathrm{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{\epsilon}\right)$ where $\epsilon=+$ or - . Recall that a relation $\mathscr{B}_{\mathrm{G}, \mathrm{G}^{\prime}}$ between \mathscr{S}_{G} and $\mathscr{S}_{\mathrm{G}^{\prime}}$, and a relation $\mathscr{D}_{\mathrm{SP}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{+}}$between $\mathscr{S}_{n, 1}$ and $\mathscr{S}_{n^{\prime}, 0}$ are defined in (1.5) and (1.6). Let Z, Z^{\prime} be special symbols of ranks n, n^{\prime} and defects 1,0 respectively. Define a relation $\mathscr{B}_{Z, Z^{\prime}}$ between \mathscr{S}_{Z}^{G} and $\mathscr{S}_{Z^{\prime}}^{G^{\prime}}$, and a relation $\mathscr{D}_{Z, Z^{\prime}}$ between $\mathscr{S}_{Z, 1}$ and $\mathscr{S}_{Z^{\prime}, 0}$ by

$$
\begin{align*}
\mathscr{B}_{Z, Z^{\prime}} & =\mathscr{B}_{\mathrm{G}, \mathrm{G}^{\prime}} \cap\left(\mathscr{S}_{\mathrm{Z}}^{\mathrm{G}} \times \mathscr{S}_{\mathrm{Z}^{\prime}}^{\mathrm{G}^{\prime}}\right), \\
\mathscr{D}_{Z, Z^{\prime}} & =\mathscr{D}_{\mathrm{Sp}_{\mathrm{P}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{+}}} \cap\left(\mathscr{S}_{Z, 1} \times \mathscr{S}_{\mathrm{Z}^{\prime}, 0}\right) . \tag{2.11}
\end{align*}
$$

It is not difficult to see that

$$
\begin{equation*}
\mathscr{B}_{\mathbf{G}, \mathrm{G}^{\prime}}=\bigcup_{Z, Z^{\prime}} \mathscr{B}_{Z, Z^{\prime}} \quad \text { and } \quad \mathscr{D}_{\mathbf{G}, \mathrm{G}^{\prime}}=\bigcup_{Z, Z^{\prime}} \mathscr{D}_{Z, Z^{\prime}} \tag{2.12}
\end{equation*}
$$

where the disjoint union $\bigcup_{Z, Z^{\prime}}$, is taken over all special symbols Z, Z^{\prime} of ranks n, n^{\prime} and defects 1,0 respectively.

The following three lemmas are from [Pan21] corollary 5.1, lemma 2.5, lemma 2.6:
Lemma 2.13. Let Z, Z^{\prime} be special symbols of ranks n, n^{\prime} and defects 1,0 respectively. Then $\mathscr{B}_{Z, Z^{\prime}} \neq \emptyset$ if and only if $\mathscr{D}_{Z, Z^{\prime}} \neq \emptyset$.

Lemma 2.14. Let Z, Z^{\prime} be special symbols of size $(m+1, m),\left(m^{\prime}, m^{\prime}\right)$ respectively for some non-negative integers m, m^{\prime}. If $\mathscr{D}_{Z, Z^{\prime}} \neq \emptyset$, then either $m^{\prime}=m$ or $m^{\prime}=m+1$.

Lemma 2.15. Let $\left(\mathrm{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{\epsilon}\right)$ where $\epsilon=+$ or - Let $\mathrm{Z}, \mathrm{Z}^{\prime}$ be two special symbols of ranks n, n^{\prime} and sizes $(m+1, m),\left(m^{\prime}, m^{\prime}\right)$ respectively where $m^{\prime}=m, m+1$. Let

$$
\Lambda=\binom{a_{1}, a_{2}, \ldots, a_{m_{1}}}{b_{1}, b_{2}, \ldots, b_{m_{2}}} \in \mathscr{S}_{Z}^{\mathrm{G}}, \quad \Lambda^{\prime}=\binom{c_{1}, c_{2}, \ldots, c_{m_{1}^{\prime}}}{d_{1}, d_{2}, \ldots, d_{m_{2}^{\prime}}} \in \mathscr{S}_{Z^{\prime}}^{\mathrm{G}^{\prime}} .
$$

Then $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{Z, Z^{\prime}}$ if and only if one of the following conditions is satisfied:
$\begin{cases}m_{1}^{\prime}=m_{2}, a_{i}>d_{i}, d_{i} \geq a_{i+1}, c_{i} \geq b_{i}, b_{i}>c_{i+1} \text { for each } i, & \text { if } \epsilon=+, m^{\prime}=m ; \\ m_{1}^{\prime}=m_{2}+1, a_{i} \geq d_{i}, d_{i}>a_{i+1}, c_{i}>b_{i}, b_{i} \geq c_{i+1} \text { for each } i, & \text { if } \epsilon=+, m^{\prime}=m+1 ; \\ m_{1}^{\prime}=m_{2}-1, d_{i} \geq a_{i}, a_{i}>d_{i+1}, b_{i}>c_{i}, c_{i} \geq b_{i+1} \text { for each } i, & \text { if } \epsilon=-m^{\prime}=m ; \\ m_{1}^{\prime}=m_{2}, d_{i}>a_{i}, a_{i} \geq d_{i+1}, b_{i} \geq c_{i}, c_{i}>b_{i+1} \text { for each } i, & \text { if } \epsilon=-, m^{\prime}=m+1 .\end{cases}$
Example 2.16. Consider the dual pair $\left(\mathbf{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{4}, \mathrm{O}_{8}^{+}\right)$, and $Z=\binom{2,0}{1}, Z^{\prime}=\binom{3,1}{2,0}$. Now $\mathscr{S}_{Z}^{\mathrm{Sp}_{4}}$ and $\mathscr{S}_{Z^{\prime}}^{\mathrm{O}_{8}^{+}}$are given in Example 2.9. Then by Lemma 2.15, it is not difficult to see that $\mathscr{B}_{Z, Z^{\prime}}$ is given by

| $\mathscr{B}_{Z, Z^{\prime}}$ | $\binom{3,1}{2,0}$ | $\binom{2,0}{3,1}$ | $\binom{3,0}{2,1}$ | $\binom{2,1}{3,0}$ | $\binom{3,2}{1,0}$ | $\binom{1,0}{3,2}$ | $\binom{3,2,1,0}{-}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | $\binom{-}{3,2,0}$ |
| :---: |
| $\left(\begin{array}{c}2,0 \\ 1,0 \\ 1,0 \\ 2,1\end{array}\right.$ |
| \checkmark |

Here a check mark " \checkmark " in row $\Lambda \in \mathscr{S}_{Z}^{\mathrm{SP}_{4}}$ and column $\Lambda^{\prime} \in \mathscr{S}_{Z^{\prime}}^{\mathrm{O}_{8}^{+}}$means that $\left(\Lambda, \Lambda^{\prime}\right) \in$ $\mathscr{B}_{Z, Z^{\prime}}$. We also see that $\mathscr{D}_{Z, Z^{\prime}}=\mathscr{B}_{Z, Z^{\prime}} \backslash\left\{\left(\left(\begin{array}{c}-1,0\end{array}\right),\left({ }^{3,2,1,0}\right)\right)\right\}$. Note that $\left(Z, Z^{\prime}\right) \in \mathscr{D}_{Z, Z^{\prime}}$.

3. Finite Howe Correspondence of Unipotent Characters

In the first part of this section we review the parametrization of (irreducible) unipotent characters of a symplectic group or an even orthogonal group by Lusztig in [Lus81] and [Lus82]. A comparison of our main result and the conjecture in [AMR96] is in the final subsection.
3.1. Deligne-Lusztig virtual characters. If G is connected, let $R_{\mathrm{T}, \theta}=R_{\mathrm{T}, \theta}^{\mathrm{G}}$ denote the Deligne-Lusztig virtual character of G with respect to a rational maximal torus \mathbf{T} and an irreducible character $\theta \in \mathscr{E}(T)$ where $T=\mathbf{T}^{F}$. If $\mathbf{G}=\mathrm{O}_{n}^{\epsilon}$, we define

$$
R_{\mathrm{T}, \theta}^{\mathrm{O}_{n}^{\epsilon}}=\operatorname{Ind}_{\mathrm{OO}_{n}^{\epsilon}(q)}^{\mathrm{O}_{n}^{\epsilon}(q)} R_{\mathrm{T}, \theta}^{\mathrm{SO}_{n}^{\epsilon}} .
$$

Let $\mathscr{V}(G)$ denote the space of class functions on G which is an inner product space with an orthonormal basis $\mathscr{E}(G)$. Let $\mathscr{V}(G)^{\sharp}$ denote the subspace of $\mathscr{V}(G)$ spanned by all Deligne-Lusztig virtual characters of G. For $f \in \mathscr{V}(G)$, the orthogonal projection f^{\sharp} of f over $\mathscr{V}(G)^{\sharp}$ is called the uniform projection of f, and f is called uniform if $f^{\sharp}=f$.

If G is connected, it is well-known that the regular character $\operatorname{Reg}_{\mathrm{G}}$ of G is uniform (cf. [Car85] corollary 7.5.6). Because $\mathrm{Reg}_{\mathrm{O}^{\epsilon}}=\mathrm{Ind}_{\mathrm{SO}^{\epsilon}}^{\mathrm{O}^{\epsilon}}\left(\mathrm{Reg}_{\mathrm{SO}^{\epsilon}}\right)$, we see that $\mathrm{Reg}_{\mathrm{O}^{\star}}$ is also uniform. Therefore, we have

$$
\begin{equation*}
\rho(1)=\left\langle\rho, \operatorname{Reg}_{\mathrm{G}}\right\rangle_{\mathrm{G}}=\left\langle\rho^{\sharp}, \operatorname{Reg}_{\mathrm{G}}\right\rangle_{\mathrm{G}}=\rho^{\sharp}(1) . \tag{3.1}
\end{equation*}
$$

In particular, $\rho^{\sharp} \neq 0$ for any $\rho \in \mathscr{E}(G)$.
3.2. Unipotent characters of $\mathrm{Sp}_{2 n}(q)$. From [Lus77] theorem 8.2, there exists a bijective parametrization $\mathscr{S}_{\mathrm{Sp}_{2 n}} \rightarrow \mathscr{E}\left(\mathrm{~S}_{2 n}\right)_{1}$ denoted by $\Lambda \mapsto \rho_{\Lambda}$. It is know that there is a one-to-one correspondence between the set $\mathscr{P}_{2}(n)$ and the set $\mathscr{E}\left(W_{n}\right)$ for the Weyl group W_{n} of $\mathrm{Sp}_{2 n}\left(c f .[\mathrm{GPOO}]\right.$ theorem 5.5.6). Then for a symbol $\Sigma \in \mathscr{S}_{n, 1}$, we can associate a uniform function R_{Σ} on $\mathrm{Sp}_{2 n}(q)$ given by $R_{\Sigma}=R_{\chi}$ where $R_{\chi}=R_{\chi}^{\mathrm{G}}$ is defined in [Pan21] subsection 3.2, and $\chi \in \mathscr{E}\left(W_{n}\right)$ associated to $\Upsilon(\Sigma)$ where Υ is the bijection $\mathscr{S}_{n, 1} \rightarrow \mathscr{P}_{2}(n)$ given in (1.4).

For a special symbol Z of rank n and defect 1 , let $\mathscr{V}_{Z}=\mathscr{V}(\mathbf{G})_{Z}$ denote the subspace spanned by $\left\{\rho_{\Lambda} \mid \Lambda \in \mathscr{S}_{Z}\right\}$. It is known that $\left\{R_{\Sigma} \mid \Sigma \in \mathscr{S}_{Z, 1}\right\}$ forms an orthonormal basis for the uniform projection \mathscr{V}_{Z}^{\sharp} of the space \mathscr{V}_{Z}. The following proposition is modified from [Lus81] theorem 5.8:

Proposition 3.2 (Lusztig). Let $\mathrm{G}=\mathrm{Sp}_{2 n}$, Z a special symbol of rank n and defect 1. For $\Sigma \in \mathscr{S}_{Z, 1}$, we have

$$
\left\langle R_{\Sigma}, \rho_{\Lambda}\right\rangle_{\mathrm{G}}= \begin{cases}(-1)^{\langle\Sigma, \Lambda\rangle} 2^{-\operatorname{deg}(Z)}, & \text { if } \Lambda \in \mathscr{S}_{Z} \\ 0, & \text { otherwise }\end{cases}
$$

where $\langle\rangle:, \mathscr{S}_{Z, 1} \times \mathscr{S}_{Z} \rightarrow \mathbf{F}_{2}$ is given by $\left\langle\Lambda_{N}, \Lambda_{M}\right\rangle=|N \cap M|(\bmod 2)$.
From the proposition we see that if $\rho_{\Lambda} \in \mathscr{S}_{Z}$, then

$$
\rho_{\Lambda}^{\sharp}=\frac{1}{2^{\operatorname{deg}(Z)}} \sum_{\Sigma \in \mathscr{S}_{Z, 1}}(-1)^{(\Sigma, \Lambda)} R_{\Sigma} ;
$$

and if $\Sigma \in \mathscr{S}_{Z, 1}$, then

$$
R_{\Sigma}=\frac{1}{2^{\operatorname{deg}(Z)}} \sum_{\Lambda \in \mathscr{S}_{Z}}(-1)^{\langle\Sigma, \Lambda\rangle} \rho_{\Lambda} .
$$

Example 3.3. Let $Z=\binom{2,0}{1}$, a special symbol of rank 2, degree 1 and defect 1 . Now the table of $(-1)^{\langle\Sigma, \Lambda\rangle}$ for $\Sigma \in \mathscr{S}_{Z, 1}$ and $\Lambda \in \mathscr{S}_{Z}$ is

	$\binom{2,0}{1}$	$\binom{2,1}{0}$	$\binom{1,0}{2}$	$\left(\begin{array}{l}-1,0\end{array}\right)$
$\left(\begin{array}{c}2,0 \\ 1 \\ 1\end{array}\right)$	1	1	1	1
$\binom{2,1}{0}$	1	1	-1	-1
$\binom{1,0}{2}$	1	-1	1	-1

In the leftmost column are all $\Sigma \in \mathscr{S}_{Z, 1}$ and in the topmost row are all $\Lambda \in \mathscr{S}_{Z}$. Therefore, we have

$$
\begin{aligned}
& \left.R_{\binom{2,0}{1}}=\frac{1}{2}\left[\rho_{\binom{2,0}{1}}+\rho_{\binom{2,1}{0}}+\rho_{\binom{1,0}{2}}+\rho_{\left(\begin{array}{c}
2,0,0
\end{array}\right.}\right)\right] \\
& \left.R_{\binom{2,1}{0}}=\frac{1}{2}\left[\rho_{\binom{2,0}{1}}+\rho_{\binom{2,1}{0}}-\rho_{\binom{1,0}{2}}-\rho_{\left(\begin{array}{c}
2,1,0
\end{array}\right.}\right)\right], \\
& \left.R_{\binom{1,0}{2}}=\frac{1}{2}\left[\rho_{\binom{2,0}{1}}-\rho_{\binom{2,1}{0}}+\rho_{\binom{1,0}{2}}-\rho_{(2,1,0}\right)\right] .
\end{aligned}
$$

3.3. Unipotent characters of $\mathrm{O}_{2 n}^{\epsilon}(q)$. From [Lus77] theorem 8.2, we know that there exists a bijective parametrization $\mathscr{S}_{\mathrm{O}_{2 n}^{\epsilon}} \rightarrow \mathscr{E}\left(\mathrm{O}_{2 n}^{\epsilon}(q)\right)_{1}$ by $\Lambda \mapsto \rho_{\Lambda}$. It is also known that $\rho_{\Lambda^{t}}=\rho_{\Lambda} \cdot$ sgn.

For a special symbol Z of rank n and defect 0 , as in the symplectic case, let \mathscr{V}_{Z} denote the subspace spanned by $\left\{\rho_{\Lambda} \mid \Lambda \in \mathscr{S}_{Z}\right\}$.

- If Z is degenerate, i.e., $\operatorname{deg}(Z)=0$, then $\mathscr{S}_{Z}^{\mathrm{O}_{2 n}^{-}}=\emptyset, \mathscr{S}_{Z}^{\mathrm{O}_{2 n}^{+}}=\{Z\}$ and $\rho_{Z}=R_{Z}^{\mathrm{O}_{2 n}^{+}}$, i.e., $\mathscr{V}\left(\mathrm{O}_{2 n}^{+}\right)_{Z}=\mathscr{V}\left(\mathrm{O}_{2 n}^{+}\right)_{Z}^{\sharp}$ is one-dimensional.
- If Z is non-degenerate, i.e., $\operatorname{deg}(Z) \geq 1$, then $\Sigma \in \mathscr{S}_{Z, 0}$ if and only if $\Sigma^{t} \in \mathscr{S}_{Z, 0}$. It is known that $R_{\Sigma t}^{\mathrm{O}_{2 n}^{\varepsilon}}=\epsilon R_{\Sigma}^{\mathrm{O}_{2 n}^{\varepsilon}}(c f$. . Pan 21$]$ subsection 3.4). Let $\overline{\mathscr{S}}_{z, 0}$ denote a complete set of representatives of cosets $\left\{\Sigma, \Sigma^{t}\right\}$ in $\mathscr{S}_{Z, 0}$, then $\left\{\left.\frac{1}{\sqrt{2}} R_{\Sigma}^{\mathrm{O}_{2 n}^{2}} \right\rvert\, \Sigma \in \overline{\mathscr{S}}_{Z, 0}\right\}$ forms an orthonormal basis for \mathscr{V}_{Z}^{\sharp}.
The following proposition is a modification for $\mathrm{O}_{2 n}^{\epsilon}$ from [Lus82] theorem 3.15:
Proposition 3.4 (Lusztig). Let $\mathrm{G}=\mathrm{O}_{2 n}^{\epsilon}$ where $\epsilon=+$ or,- Z a non-degenerate special symbol of rank n and defect 0 . For any $\Sigma \in \mathscr{S}_{Z, 0}$, we have

$$
\left\langle R_{\Sigma}^{\mathrm{G}}, \rho_{\Lambda}\right\rangle_{\mathrm{G}}= \begin{cases}(-1)^{(\Sigma, \Lambda\rangle} 2^{-(\operatorname{deg}(Z)-1)}, & \text { if } \Lambda \in \mathscr{S}_{Z} ; \\ 0, & \text { otherwise }\end{cases}
$$

where $\langle\rangle:, \mathscr{S}_{Z, 0} \times \mathscr{S}_{Z} \rightarrow \mathrm{~F}_{2}$ by $\left\langle\Lambda_{M}, \Lambda_{N}\right\rangle=|M \cap N|(\bmod 2)$.
From the proposition we see that if $\rho_{\Lambda} \in \mathscr{S}_{Z}$ (with Z non-degenerate), then

$$
\rho_{\Lambda}^{\sharp}=\frac{1}{2^{\operatorname{deg}(Z)}} \sum_{\Sigma \in \mathscr{\mathscr { F }}_{Z, 0}}(-1)^{(\Sigma, \Lambda\rangle} R_{\Sigma}^{\mathrm{G}} ;
$$

and if $\Sigma \in \mathscr{S}_{Z, 0}$, then

$$
R_{\Sigma}^{\mathrm{G}}=\frac{1}{2^{\operatorname{deg}(Z)-1}} \sum_{\Lambda \in \mathcal{S}_{Z}}(-1)^{(\Sigma, \Lambda)} \rho_{\Lambda} .
$$

3.4. Strategy of the proof of the main result. Let $\left(\mathbf{G}, \mathbf{G}^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{\epsilon}\right)$ where $\epsilon=+$ or - . All the efforts in this article are to remove the uniform projection of both sides of identity (1.7). The proof will be divided into two stages (Section 5 and Section 6):

- To recover the relation between $\omega_{G, G^{\prime}, 1}$ and $\sum_{\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{G}, G^{\prime}} \rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}$ from the uniform projection, we will use the technique learned from [KSO5], pp.436-438. That is, we reduce the problem into a system of linear equations. To write down these equations, we need the theory of "cells" by Lusztig from [Lus81] theorem 5.6 and [Lus82] proposition 3.13. The variables of the linear system are the multiplicities of those $\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}$ occurring in $\omega_{\mathbf{G}, \mathbf{G}^{\prime}, 1}$. The solutions must be nonnegative integers, that is the reason why we are almost able to solve the equations. This means that little information is lost after taking the uniform projection. Due to the disconnectedness of $\mathrm{O}_{2 n}^{\epsilon}$, irreducible characters $\rho_{\Lambda^{\prime}}, \rho_{\Lambda^{\prime}}$ are not distinguishable by Deligne-Lusztig virtual characters. So in the first stage we can only conclude that $\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}$ or $\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}$ occur in $\omega_{\mathbf{G}, \mathbf{G}^{\prime}, 1}$ if and only if $\left(\Lambda, \Lambda^{\prime}\right)$ or $\left(\Lambda, \Lambda^{\prime t}\right)$ occur in $\mathscr{B}_{\mathrm{G}, \mathrm{G}^{\prime}}$.
- Because the Howe correspondence and the parametrization $\Lambda \rightarrow \rho_{\Lambda}$ are both compatible with parabolic induction, the ambiguity in the first stage can be removed once the correspondence of unipotent cuspidal characters is fixed. The proof of the theorem is in Subsection 6.1 for $\operatorname{def}\left(\Lambda^{\prime}\right)>0$, and in Subsection 6.3 for $\operatorname{def}\left(\Lambda^{\prime}\right)=0$.
3.5. The conjecture by Aubert-Michel-Rouquier. In Theorem 1.8, we describe the Howe correspondence of unipotent characters in terms of Lusztig's "symbols"; the conjecture in [AMR96] p. 383 describes the correspondence in terms of "bi-partitions". The main difference between these two descriptions is that a bi-partition does not contain the
information of the "defect" of a symbol which is controlled by the unipotent cuspidal characters. Therefore, the description in [AMR96] p. 383 needs to specify the correspondence of unipotent cuspidal characters first. Now we want to make the comparison more explicit.

In our convention, we always assume that the defect of a symbol for a symplectic group (resp. split even orthogonal group, non-split even orthogonal group) is $1(\bmod 4)(r e s p .0$ $(\bmod 4), 2(\bmod 4))$. Our convention is different from the original one in [Lus77] p. 134 where the defect of a symbol is always assumed to be non-negative. In particular, the unique unipotent cuspidal character ζ_{k} of $\mathrm{Sp}_{2 k(k+1)}(q)$ by our convention is parametrized by $\zeta_{k}=\rho_{\Lambda_{k}}$ where

$$
\Lambda_{k}= \begin{cases}\binom{2 k, 2 k-1, \ldots, 1,0}{-}, & \text { if } k \text { is even; } \tag{3.5}\\ (2 k, 2 k-1, \ldots, 1,0), & \text { if } k \text { is odd }\end{cases}
$$

Note that $\operatorname{def}\left(\Lambda_{k}\right)=(-1)^{k}(2 k+1)$.
Example 3.6. Suppose that $\mathbf{G}=\mathrm{Sp}_{2 k(k+1)+2 t}, \mathbf{L}=\mathrm{Sp}_{2 k(k+1)} \times \mathrm{T}_{t}$ where T_{t} is t-copies of GL_{1}. The irreducible constituents ρ_{Λ} in $R_{\mathrm{L}}^{\mathrm{G}}\left(\zeta_{k}\right)$ are parametrized by

$$
\mathscr{S}_{k(k+1)+t,(-1)^{k}(2 k+1)}=\left\{\Lambda \mid \operatorname{def}(\Lambda)=(-1)^{k}(2 k+1), \Upsilon(\Lambda) \in \mathscr{P}_{2}(t)\right\} .
$$

For the cases that $k=0,1,2$ and $t=0,1,2$ those Λ are given by the table:

	t	0	1					
k	$\Upsilon(\Lambda)$	$\left[\begin{array}{l}- \\ -\end{array}\right]$	$\left[\begin{array}{c}1 \\ -\end{array}\right]$	$\left[\begin{array}{c}- \\ 1\end{array}\right]$	$\left[\begin{array}{c}2 \\ -\end{array}\right]$	$\left[\begin{array}{l}1,1 \\ -\end{array}\right]$	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$	$\left[\begin{array}{l}- \\ 2\end{array}\right]$

For $k \geq 1$, let $\zeta_{k}^{\mathrm{I}}, \zeta_{k}^{\mathrm{II}}$ be the unipotent cuspidal characters of $\mathrm{O}_{2 k^{2}}^{\epsilon_{k}}(q)$ where $\epsilon_{k}=(-1)^{k}$ such that $\left(\zeta_{k}, \zeta_{k}^{\mathrm{II}}\right)$ and $\left(\zeta_{k}, \zeta_{k+1}^{\mathrm{I}}\right)$ occur in the Howe correspondence (cf. [AM93]). Then we have $\zeta_{k}^{\mathrm{I}}=\rho_{\Lambda_{k}^{\prime}}$ and $\zeta_{k}^{\mathrm{II}}=\rho_{\Lambda_{k}^{\prime t}}$ where

$$
\Lambda_{k}^{\prime}=\left\{\begin{array}{cl}
(2 k-1,2 k-2, \ldots, 1,0 \tag{3.7}\\
- & \text { if } k \text { is even } \\
\left(\begin{array}{c}
2 k-1,2 k-2, \ldots, 1,0
\end{array}\right), & \text { if } k \text { is odd }
\end{array}\right.
$$

Note that $\operatorname{def}\left(\Lambda_{k}^{\prime}\right)=(-1)^{k} 2 k$.
Example 3.8. Suppose that $\mathbf{G}=\mathrm{O}_{2 k^{2}+2 t}^{\epsilon_{k}}$ where $\epsilon_{k}=(-1)^{k}, \mathbf{L}=\mathrm{O}_{2 k^{2}}^{\epsilon_{k}} \times \mathrm{T}_{t}$ where \mathbf{T}_{t} is t-copies of GL_{1}. For $k \geq 1$, the irreducible constituents ρ_{Λ} in each $R_{\mathrm{L}}^{\mathrm{G}}\left(\zeta_{k}^{\mathrm{I}}\right), R_{\mathrm{L}}^{\mathrm{G}}\left(\zeta_{k}^{\mathrm{II}}\right)$ are parametrized respectively by:

$$
\begin{aligned}
\mathscr{S}_{k^{2}+t,(-1)^{k} 2 k} & =\left\{\Lambda \mid \operatorname{def}(\Lambda)=(-1)^{k} 2 k, \Upsilon(\Lambda) \in \mathscr{P}_{2}(t)\right\}, \\
\mathscr{S}_{k^{2}+t,(-1)^{k+1} 2 k} & =\left\{\Lambda \mid \operatorname{def}(\Lambda)=(-1)^{k+1} 2 k, \Upsilon(\Lambda) \in \mathscr{P}_{2}(t)\right\} .
\end{aligned}
$$

For the cases that $k=0,1,2$ and $t=0,1,2$ those Λ are given by the table:

Following the notation in [AMR96], let $\Theta_{\zeta_{k}, \zeta_{k}^{\mathrm{II}}}$ and $\Theta_{\zeta_{k}, \zeta_{k+1}^{\mathrm{I}}}$ be the mappings between bi-partitions defined in [AMR96] p.383. (Note that ζ_{k} is denoted by λ_{k} in [AMR96], etc.) Moreover, let x_{i}, x_{i}^{*} and X, X^{*} be the notations used in [AMR96] p.383. Then [AMR96] conjecture 3.11 describes the correspondence in terms of bi-partitions " $\phi \boxtimes \psi$ " by

- the relation $\Theta_{\zeta_{k}, \zeta_{k}^{I I}}$ is given by $\phi \boxtimes \psi \mapsto X^{*}(\phi) \boxtimes X \psi$; and
- the relation $\Theta_{\zeta_{k}, \zeta_{k+1}^{\mathrm{I}}}$ is given by $\phi \boxtimes \psi \mapsto X \phi \boxtimes X^{*}(\psi)$.

Proposition 3.9. Keep the notations as above. If we apply the identification

$$
\left[\begin{array}{c}
\phi \tag{3.10}\\
\psi
\end{array}\right] \mapsto \begin{cases}\phi \boxtimes \psi, & \text { if } \operatorname{def}(\Lambda)>0 ; \\
\psi \boxtimes \phi, & \text { if } \operatorname{def}(\Lambda) \leq 0\end{cases}
$$

where $\left[\begin{array}{l}\phi \\ \psi\end{array}\right]=\Upsilon(\Lambda)$, then the statement in Theorem 1.8 is equivalent to the statement in [AMR96] conjecture 3.11.

Proof. For $k \geq 0$, we define

$$
\begin{gathered}
\mathscr{B}_{\zeta_{k}, \zeta_{k}^{\mathrm{I}}}=\left\{\left(\Lambda, \Lambda^{\prime}\right) \in \bigcup_{n, n^{\prime} \geq 0} \mathscr{B}_{\mathrm{SP}_{2 n}, \mathrm{O}, \mathrm{O}_{2 n^{\prime}}^{\epsilon_{k}}} \mid \operatorname{def}(\Lambda)=(-1)^{k}(2 k+1)\right\} ; \\
\mathscr{B}_{\zeta_{k}, \zeta_{k+1}^{\mathrm{I}}}=\left\{\left(\Lambda, \Lambda^{\prime}\right) \in \bigcup_{n, n^{\prime} \geq 0} \mathscr{B}_{\mathrm{SP}_{2 n}, \mathrm{O} \mathrm{O}_{2 n^{\prime}}^{\epsilon_{k+1}}} \mid \operatorname{def}(\Lambda)=(-1)^{k}(2 k+1)\right\} .
\end{gathered}
$$

Now we want to show that the description of Howe correspondence in terms of $\mathscr{B}_{\zeta_{k}}, \zeta_{k}^{\mathrm{II}}$ and $\mathscr{B}_{\zeta_{k}, \zeta_{k+1}^{\mathrm{I}}}$ is equivalent to the description in terms of $\Theta_{\zeta_{k}, \zeta_{k}^{\mathrm{II}}}$ and $\Theta_{\zeta_{k}, \zeta_{k+1}^{\mathrm{I}}}$ respectively under the identification in (3.10).

For two symbols $\Lambda, \Lambda^{\prime}$ we write $\left[\begin{array}{l}\phi \\ \psi\end{array}\right]=\Upsilon(\Lambda)$ and $\left[\begin{array}{l}\phi^{\prime} \\ \psi^{\prime}\end{array}\right]=\Upsilon\left(\Lambda^{\prime}\right)$. First we consider the correspondences $\mathscr{B}_{\zeta_{k}, \zeta_{k}^{I I}}$ and $\Theta_{\zeta_{k}, \zeta_{\zeta_{k}^{I}}}$.
(1) Suppose that k is even. Then $\epsilon_{k}=+$. Now $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{\zeta_{k}, \zeta_{\zeta_{k}^{I I}}}$ if and only if

- $\operatorname{def}(\Lambda)=2 k+1$ and $\operatorname{def}\left(\Lambda^{\prime}\right)=-2 k$
- $\psi^{\prime} \preccurlyeq \phi$ and $\psi \preccurlyeq \phi^{\prime}$

Now $\operatorname{def}(\Lambda)>0$ and $\operatorname{def}\left(\Lambda^{\prime}\right) \leq 0$, so by (3.10) we have the identifications $\left[\begin{array}{l}\phi \\ \psi\end{array}\right] \mapsto$ $\phi \boxtimes \psi$ and $\left[\begin{array}{c}\phi^{\prime} \\ \psi^{\prime}\end{array}\right] \mapsto \psi^{\prime} \boxtimes \phi^{\prime}$. Then it is not difficult to see that the condition $\psi^{\prime} \preccurlyeq \phi$ and $\psi \preccurlyeq \phi^{\prime}$ is equivalent to the condition $\psi^{\prime} \boxtimes \phi^{\prime}=x_{i}^{*}(\phi) \boxtimes x_{j}(\psi)$ for some $i, j \geq 0$.
(2) Suppose that k is odd. Then $\epsilon_{k}=-$. Now $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{\zeta_{k}}, \zeta_{k}^{\text {II }}$ if and only if

- $\operatorname{def}(\Lambda)=-2 k-1$ and $\operatorname{def}\left(\Lambda^{\prime}\right)=2 k$
- $\phi^{\prime} \preccurlyeq \psi$ and $\phi \preccurlyeq \psi^{\prime}$

Now $\operatorname{def}(\Lambda)<0$ and $\operatorname{def}\left(\Lambda^{\prime}\right)>0$, so we have $\left[\begin{array}{l}\phi \\ \psi\end{array}\right] \mapsto \psi \boxtimes \phi$ and $\left[\begin{array}{c}\phi^{\prime} \\ \psi^{\prime}\end{array}\right] \mapsto \phi^{\prime} \boxtimes \psi^{\prime}$.
Then the condition $\phi^{\prime} \preccurlyeq \psi$ and $\phi \preccurlyeq \psi^{\prime}$ is equivalent to the condition $\phi^{\prime} \boxtimes \psi^{\prime}=$ $x_{i}^{*}(\psi) \boxtimes x_{j}(\phi)$ for some $i, j \geq 0$.
Next we consider the correspondences $\mathscr{B}_{\zeta_{k}, \zeta_{k+1}^{1}}$ and $\Theta_{\zeta_{k}, \zeta_{k+1}^{1}}$.
(3) Suppose that k is even. Then $\epsilon_{k+1}=-$. Now $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{\zeta_{k}, \zeta_{k+1}^{1}}$ if and only if

- $\operatorname{def}(\Lambda)=2 k+1$ and $\operatorname{def}\left(\Lambda^{\prime}\right)=-2(k+1)$
- $\phi^{\prime} \preccurlyeq \psi$ and $\phi \preccurlyeq \psi^{\prime}$

Now $\operatorname{def}(\Lambda)>0$ and $\operatorname{def}\left(\Lambda^{\prime}\right) \leq 0$, so we have $\left[\begin{array}{l}\phi \\ \psi\end{array}\right] \mapsto \phi \boxtimes \psi$ and $\left[\begin{array}{c}\phi^{\prime} \\ \psi^{\prime}\end{array}\right] \mapsto \psi^{\prime} \boxtimes \phi^{\prime}$. Then the condition $\phi^{\prime} \preccurlyeq \psi$ and $\phi \preccurlyeq \psi^{\prime}$ is equivalent to the condition $\psi^{\prime} \boxtimes \phi^{\prime}=$ $x_{i}(\phi) \boxtimes x_{j}^{*}(\psi)$ for some $i, j \geq 0$.
(4) Suppose that k is odd. Then $\epsilon_{k+1}=+$. Now $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{\zeta_{k}, \zeta_{k+1}^{\mathrm{I}}}$ if and only if

- $\operatorname{def}(\Lambda)=-2 k-1$ and $\operatorname{def}\left(\Lambda^{\prime}\right)=2(k+1)$
- $\psi^{\prime} \preccurlyeq \phi$ and $\psi \preccurlyeq \phi^{\prime}$

Now $\operatorname{def}(\Lambda)<0$ and $\operatorname{def}\left(\Lambda^{\prime}\right)>0$, so we have $\left[\begin{array}{l}\phi \\ \psi\end{array}\right] \mapsto \psi \boxtimes \phi$ and $\left[\begin{array}{c}\phi^{\prime} \\ \psi^{\prime}\end{array}\right] \mapsto \phi^{\prime} \boxtimes \psi^{\prime}$. Then the condition $\psi^{\prime} \preccurlyeq \phi$ and $\psi \preccurlyeq \phi^{\prime}$ is equivalent to the condition $\phi^{\prime} \boxtimes \psi^{\prime}=$ $x_{i}(\psi) \boxtimes x_{j}^{*}(\phi)$ for some $i, j \geq 0$.
Hence the proposition is proved.

4. Cells for a Symplectic Group or an Even Orthogonal Group

In this section, we provide several technical lemmas which are needed in the next two sections.
4.1. Consecutive pairs. Let $G=S p_{2 n}$ or $\mathrm{O}_{2 n}^{\epsilon}$ where $\epsilon=+$ or - , and let Z be a special symbol of rank n, Z_{I} the subsymbol of singles of Z.

A pair $\binom{s}{t} \subset Z_{\mathrm{I}}$ is called consecutive if there is no other entries in Z lying between s and t i.e., there is no entry x in Z such that $s<x<t$ or $t<x<s$. For a set of (disjoint) consecutive pairs Ψ_{0} in Z_{I}, we define:

$$
\begin{align*}
\mathscr{S}_{Z, \Psi_{0}} & =\left\{\Lambda_{M} \mid M \leq \Psi_{0}\right\}, \\
\mathscr{S}_{Z}^{\Psi_{0}}=\mathscr{S}_{Z}^{\mathrm{G}, \Psi_{0}} & =\left\{\Lambda_{M} \in \mathscr{S}_{\mathrm{Z}}^{\mathrm{G}} \mid M \subset Z_{\mathrm{I}} \backslash \Psi_{0}\right\} \tag{4.1}
\end{align*}
$$

where $M \leq \Psi_{0}$ means that M is a subset of pairs in Ψ_{0} and is regarded as a subsymbol of Z_{I}. If $\Psi_{0}=\emptyset$, it is clear that $\mathscr{S}_{Z, \Psi_{0}}=\{Z\}$ and $\mathscr{S}_{Z}^{\Psi_{0}}=\mathscr{S}_{Z}^{\mathrm{G}}$. If $M \leq \Psi_{0}$, then $\left|M^{*}\right|=\left|M_{*}\right|$ and hence $\operatorname{def}\left(\Lambda_{M}\right)=\operatorname{def}(Z)$. Therefore $\mathscr{S}_{Z, \Psi_{0}} \subset \mathscr{S}_{Z, 1}$ if $\operatorname{def}(Z)=1$; and $\mathscr{S}_{Z, \Psi_{0}} \subset \mathscr{S}_{Z, 0}$ if $\operatorname{def}(Z)=0$. Suppose that $\delta=\operatorname{deg}(Z)$ and δ_{0} is the number of pairs in Ψ_{0}. Then it is not difficult to see that

$$
\begin{align*}
& \left|\mathscr{S}_{Z, \Psi_{0}}\right|=2^{\delta_{0}}, \\
& \left|\mathscr{S}_{Z}^{\Psi_{0}}\right|= \begin{cases}2^{2\left(\delta-\delta_{0}\right)}, & \text { if } \operatorname{def}(Z)=1 ; \\
2^{2\left(\delta-\delta_{0}\right)-1}, & \text { if } \operatorname{def}(Z)=0, \text { and } \delta>\delta_{0} ; \\
1, & \text { if } \operatorname{def}(Z)=0, \delta=\delta_{0}, \text { and } \epsilon=+; \\
0, & \text { if } \operatorname{def}(Z)=0, \delta=\delta_{0}, \text { and } \epsilon=-.\end{cases} \tag{4.2}
\end{align*}
$$

Note that if $\Lambda_{1} \in \mathscr{S}_{Z}^{\Psi_{0}}$ and $\Lambda_{2} \in \mathscr{S}_{Z, \Psi_{0}}$, then $\Lambda_{1}+\Lambda_{2}$ is in \mathscr{S}_{Z}^{G}.

Remark 4.3. Note that $\mathscr{S}_{\mathrm{Z}}^{\mathrm{G}, \Psi_{0}}$ is always a subset of $\mathscr{S}_{\mathrm{Z}}^{\mathrm{G}}$; and $\mathscr{S}_{Z, \Psi_{0}}$ is a subset of $\mathscr{S}_{\mathrm{Z}}^{\mathrm{G}}$ if $\mathrm{G}=\mathrm{Sp}_{2 n}$ or $\mathrm{O}_{2 n}^{+}$. However, $\mathscr{S}_{Z, \Psi_{0}}$ is a subset of $\mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{2 n}^{+}}$even if $\mathrm{G}=\mathrm{O}_{2 n}^{-}$.

Lemma 4.4. Let $\mathrm{G}=\mathrm{Sp}_{2 n}$ or $\mathrm{O}_{2 n}^{+}, \mathrm{Z}$ a special symbol of rank n, Ψ_{0} a set of consecutive pairs in Z_{I}. Then $\mathscr{S}_{Z, \Psi_{0}} \cap \mathscr{S}_{Z}^{\mathrm{G}, \Psi_{0}}=\{Z\}$.

Proof. Because now we assume that $\mathrm{G}=\mathrm{Sp}_{2 n}$ or $\mathrm{O}_{2 n}^{+}$, both $\mathscr{S}_{Z, \Psi_{0}}$ and $\mathscr{S}_{Z}^{\mathrm{G}, \Psi_{0}}$ are subsets of $\mathscr{S}_{Z}^{\mathrm{G}}$. Suppose that $\Lambda_{M} \in \mathscr{S}_{Z, \Psi_{0}} \cap \mathscr{S}_{Z}^{\mathrm{G}, \Psi_{0}}$ for some $M \subset Z_{\mathrm{I}}$. From (4.1), we see that the only possible M is the empty set, and so $\Lambda_{M}=Z$.
Example 4.5. Let $\mathrm{G}=\mathrm{O}_{8}^{\epsilon}$, and let $\mathrm{Z}=\binom{3,1}{2,0}$. Now $Z_{\mathrm{I}}=Z$, and $\left\{\binom{1}{0}\right\},\left\{\binom{1}{2}\right\},\left\{\binom{3}{2}\right\}$, and $\left\{\binom{3}{2},\binom{1}{0}\right\}$ are the possible nonempty set of consecutive pairs Ψ_{0} in Z_{I}. Then we have

Let us give an example to see how to compute this table. If $\Psi_{0}=\left\{\binom{1}{0}\right\}$ and $\epsilon=-$, then the possible subsymbols M of $Z_{\mathrm{I}} \backslash \Psi_{0}=\binom{3}{2}$ with odd number of entries are $\binom{-}{2}$ and $\binom{3}{-}$, and so the possible Λ_{M} are $\binom{3,2,1}{0}$ and $\binom{1}{3,2,0}$. Hence $\mathscr{S}_{Z}^{\mathbf{G}, \Psi_{0}}=\left\{\binom{3,2,1}{0},\binom{1}{3,2,0}\right\}$. Note that $\mathscr{S}_{Z, \Psi_{0}}$ does not depend on ϵ.

Lemma 4.6. Let Ψ_{0} be a set of consecutive pairs in Z_{I}. Suppose that $\Lambda_{1}, \Lambda_{1}^{\prime} \in \mathscr{S}_{\mathrm{Z}}^{\mathrm{G}, \Psi_{0}}$ and $\Lambda_{2}, \Lambda_{2}^{\prime} \in \mathscr{S}_{Z, \Psi_{0}}$. If $\rho_{\Lambda_{1}+\Lambda_{2}}=\rho_{\Lambda_{1}^{\prime}+\Lambda_{2}^{\prime}}$, then $\Lambda_{1}=\Lambda_{1}^{\prime}$ and $\Lambda_{2}=\Lambda_{2}^{\prime}$.

Proof. If $\rho_{\Lambda_{1}+\Lambda_{2}}=\rho_{\Lambda_{1}^{\prime}+\Lambda_{2}^{\prime}}$, then $\Lambda_{1}+\Lambda_{2}=\Lambda_{1}^{\prime}+\Lambda_{2}^{\prime}$. Note that $\Lambda+Z=\Lambda$ and $\Lambda+\Lambda=Z$ for any $\Lambda \in \mathscr{S}_{Z}^{\mathrm{G}}$. Therefore we have

$$
\Lambda_{1}+\Lambda_{1}^{\prime}=\Lambda_{1}+\Lambda_{2}+\Lambda_{1}^{\prime}+\Lambda_{2}=\Lambda_{1}^{\prime}+\Lambda_{2}^{\prime}+\Lambda_{1}^{\prime}+\Lambda_{2}=\Lambda_{2}+\Lambda_{2}^{\prime}
$$

(1) Suppose that $\mathrm{G}=\mathrm{Sp}_{2 n}$ or $\mathrm{O}_{2 n}^{+}$. Note that both $\mathscr{S}_{Z, \Psi_{0}}$ and $\mathscr{S}_{\mathrm{Z}}^{\mathrm{G}, \Psi_{0}}$ are closed under addition and $\mathscr{S}_{Z, \Psi_{0}} \cap \mathscr{S}_{Z}^{\mathbf{G}, \Psi_{0}}=\{Z\}$ by Lemma 4.4.
(2) Suppose that $\mathrm{G}=\mathrm{O}_{2 n}^{-}$. Now $\mathscr{S}_{Z, \Psi_{0}} \subset \mathscr{S}_{\mathrm{O}_{2 n}^{+}}$and is still closed under addition. Moreover, $\Lambda_{1}+\Lambda_{1}^{\prime} \in \mathscr{S}_{Z}^{\mathrm{O}_{2 n}^{+}, \Psi_{0}}$, and $\mathscr{S}_{Z, \Psi_{0}} \cap \mathscr{S}_{Z}^{\mathrm{O}_{2 n}^{+}, \Psi_{0}}=\{Z\}$ by Lemma 4.4, again.
Therefore, for both (1) and (2), we conclude that $\Lambda_{1}+\Lambda_{1}^{\prime}=Z$, i.e., $\Lambda_{1}=\Lambda_{1}^{\prime}+Z=\Lambda_{1}^{\prime}$. Similarly, we have $\Lambda_{2}=\Lambda_{2}^{\prime}$.
4.2. Cells. We first recall the notion of "cells" by Lusztig from [Lus81] and [Lus82]. Let Z be a special symbol with symbol of singles Z_{I}, and let $\delta=\operatorname{deg}(Z)$. Then we have $\left|Z_{I}\right|=2 \delta+\operatorname{def}(Z)$ from Subsection 2.2.
(1) If Z is of defect 1 , then an arrangement of Z_{I} is defined to be a partition Φ of the $2 \delta+1$ singles in Z_{I} into δ (disjoint) pairs and one isolated element such that each pair contains one entry in the first row and one entry in the second row of Z_{I}.
(2) If Z is of defect 0 , then an arrangement of Z_{I} is defined to be a partition Φ of the 2δ singles in Z_{I} into δ pairs such that each pair contains one entry in the first row and one entry in the second row of Z_{I}.

A set Ψ of some pairs (possibly empty) in Φ is called a subset of pairs of Φ and is denoted by $\Psi \leq \Phi$. Note that if $\Psi \leq \Phi$, then Ψ does not contain the isolated element in the arrangement Φ. A subset of pairs Ψ of an arrangement Φ of Z_{I} can be regarded a subsymbol of Z_{I}, and as usual let $\Psi^{*}\left(\operatorname{resp} . \Psi_{*}\right)$ denote the set of entries in the first (resp. second) row in Ψ.

Example 4.7. The symbol $Z=\binom{4,2,0}{3,1}$ is a special symbol of rank 6 and defect 1 , and $Z_{I}=Z$. The following are all possible arrangements of Z_{I} :

$$
\begin{array}{lll}
\Phi_{1}=\left\{\binom{4}{3},\binom{2}{1},\binom{0}{-}\right\}, & \Phi_{2}=\left\{\binom{4}{1},\binom{2}{3},\binom{0}{-}\right\}, & \Phi_{3}=\left\{\binom{4}{-},\binom{2}{3},\binom{0}{1}\right\}, \\
\Phi_{4}=\left\{\binom{4}{-},\binom{2}{1},\binom{0}{3}\right\}, & \Phi_{5}=\left\{\binom{4}{3},\binom{2}{-},\binom{0}{1}\right\}, & \Phi_{6}=\left\{\binom{4}{1},\binom{2}{-},\binom{0}{3}\right\} .
\end{array}
$$

Each Φ_{i} has 4 subsets of pairs, for example,

$$
\left\{\Psi \mid \Psi \leq \Phi_{1}\right\}=\left\{\emptyset,\left\{\binom{4}{3}\right\},\left\{\binom{2}{1}\right\},\left\{\binom{4}{3},\binom{2}{1}\right\}\right\} .
$$

Each Ψ is regarded as a subsymbol of Z_{I}, and so we have

$$
\left\{\Psi \mid \Psi \leq \Phi_{1}\right\}=\left\{\emptyset,\binom{4}{3},\binom{2}{1},\binom{4,2}{3,1}\right\} .
$$

For a subset of pairs Ψ of an arrangement Φ of Z_{I}, recall that the following uniform class function on G is defined in [Lus81]:

$$
\begin{equation*}
R_{\underline{c}}=R_{\underline{c}(Z, \Phi, \Psi)}=\sum_{\Psi^{\prime} \leq \Phi}(-1)^{\left|(\Phi \backslash \Psi) \cap \Psi^{\prime *}\right|} R_{\Lambda_{\Psi^{\prime}}} \tag{4.8}
\end{equation*}
$$

where $\Lambda_{\Psi^{\prime}}=\left(Z \backslash \Psi^{\prime}\right) \cup \Psi^{\prime t}$ is defined as in (2.4), and $(\Phi \backslash \Psi) \cap \Psi^{* *}$ is understood to be the set of entries $\left((\Phi \backslash \Psi)^{*} \cup(\Phi \backslash \Psi)_{*}\right) \cap \Psi^{\prime *}$. Note that $\operatorname{def}\left(\Lambda_{\Psi^{\prime}}\right)=\operatorname{def}(Z)$, and $R_{\Lambda_{\Psi^{\prime}}}=R_{\Lambda_{\Psi^{\prime}}}^{\mathrm{G}}$ is given in Subsection 3.2 and Subsection 3.3.

Remark 4.9. Our notation is slightly different from that in [Lus81] and [Lus82]. More precisely, the uniform class function $R_{\underline{c}(Z, \Phi, \Psi)}$ in (4.8) is denoted by $R(\underline{c}(Z, \Phi, \Phi \backslash \Psi))$ in [Lus81] and [Lus82].

For a subset of pairs Ψ of an arrangement Φ of Z_{I},

- if $\operatorname{def}(Z)=1$, we define

$$
\begin{equation*}
C_{\Phi, \Psi}=\left\{\Lambda_{M} \in \mathscr{S}_{Z}| | M \cap \Psi^{\prime}|\equiv|(\Phi \backslash \Psi) \cap \Psi^{\prime *} \mid(\bmod 2) \text { for all } \Psi^{\prime} \leq \Phi\right\} ; \tag{4.10}
\end{equation*}
$$

- if $\operatorname{def}(Z)=0$, we define

$$
\begin{equation*}
C_{\Phi, \Psi}=\left\{\Lambda_{M}\left|M \subset Z_{\mathrm{I}},\left|M \cap \Psi^{\prime}\right| \equiv\right|(\Phi \backslash \Psi) \cap \Psi^{\prime *} \mid(\bmod 2) \text { for all } \Psi^{\prime} \leq \Phi\right\} . \tag{4.11}
\end{equation*}
$$

Such a set $C_{\Phi, \Psi}$ is called a cell. From the definition it is not difficult to see that a symbol Λ_{M} is in $C_{\Phi, \Psi}$ if and only if the subsymbol M of Z_{I} satisfies the following two conditions:

- M contains either none or two entries of each pair in Ψ; and
- M contains exactly one entry of each pair in $\Phi \backslash \Psi$.

In particular, it is clear from the definition that if Ψ consists of all pairs in Φ, then we have

$$
\begin{equation*}
C_{\Phi, \Psi}=\left\{\Lambda_{M} \mid M \leq \Phi\right\} . \tag{4.12}
\end{equation*}
$$

Remark 4.13. (1) Suppose that Z is of rank n and defect 1 and $\Lambda_{M} \in C_{\Phi, \Psi} \subset \mathscr{S}_{Z}^{\mathrm{SP}_{2 n}}$ for some Φ, Ψ. The requirement that $|M|$ is even (cf. (2.6)) implies that M must contain the isolated element in the arrangement Φ if $\Phi \backslash \Psi$ consists of an odd number of pairs; and M does not contain the isolated element if $\Phi \backslash \Psi$ consists of an even number of pairs.
(2) Suppose that Z is of rank n and defect 0 . We shall see in Lemma 4.32 that $C_{\Phi, \Psi} \subset$ $\mathscr{S}_{Z}^{\mathrm{O}_{2 n}^{+}}$if $\Phi \backslash \Psi$ consists of an even number of pairs; and $C_{\Phi, \Psi} \subset \mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{2 n}^{-}}$if $\Phi \backslash \Psi$ consists of an odd number of pairs.
Example 4.14. Suppose that $Z=\binom{4,2,0}{3,1}, \Phi=\left\{\binom{4}{-},\binom{2}{3},\binom{0}{1}\right\}$ and $\Psi=\left\{\binom{0}{1}\right\}$. There are four possible $M \subset Z_{\mathrm{I}}$ that satisfies the condition in (4.10), namely, $\binom{4,2,0}{1},\binom{4,2}{-},\binom{4,0}{3,1}$ and $\binom{4}{3}$, and resulting Λ_{M} are $\binom{1}{4,3,2,0},\binom{0}{4,3,2,1},\binom{3,2,1}{4,0}$ and $\binom{3,2,0}{4,1}$ respectively, i.e.,

$$
C_{\Phi, \Psi}=\left\{\binom{1}{4,3,2,0},\binom{0}{4,3,2,1},\binom{3,2,1}{4,0},\binom{3,2,0}{4,1}\right\} .
$$

Lemma 4.15. Suppose that both $\Lambda_{M_{1}}, \Lambda_{M_{2}}$ are in $C_{\Phi, \Psi}$ for some arrangement Φ of Z_{I} and some $\Psi \leq \Phi$. Then

$$
\left|M_{1} \cap \Psi^{\prime}\right| \equiv\left|M_{2} \cap \Psi^{\prime}\right|(\bmod 2)
$$

for any $\Psi^{\prime} \leq \Phi$.
Proof. Suppose that $\Lambda_{M_{1}}, \Lambda_{M_{2}} \in C_{\Phi, \Psi}$. Then by (4.10) or (4.11) we have

$$
\left|M_{1} \cap \Psi^{\prime}\right| \equiv\left|(\Phi \backslash \Psi) \cap \Psi^{\prime *}\right| \equiv\left|M_{2} \cap \Psi^{\prime}\right|(\bmod 2)
$$

for all subsets Ψ^{\prime} of pairs of Φ.
Lemma 4.16. Let Z be a special symbol, Φ an arrangement of Z_{I}, Ψ_{0} a subset of consecutive pairs, and $\Lambda \in \mathscr{S}_{Z}^{\Psi_{0}}$. If $\Lambda \in C_{\Phi, \Psi}$ for some $\Psi \leq \Phi$, then $\Psi_{0} \leq \Psi$.

Proof. Suppose that $\Lambda=\Lambda_{M}$ for some $M \subset Z_{I} \backslash \Psi_{0}$, i.e., $M \cap \Psi_{0}=\emptyset$. From the rule before Remark 4.13, the assumption $\Lambda \in C_{\Phi, \Psi}$ implies that M contains exactly one entry from each pair in $\Phi \backslash \Psi$. Therefore we must have $\Psi_{0} \leq \Psi$.
4.3. Cells for a symplectic group. In this subsection, let $G=S p_{2 n}$, and let Z be a special symbol of rank n and defect 1 .

Lemma 4.17. Let Z be a special symbol of defect $1, \Phi$ a fixed arrangement of $Z_{I}, \Psi, \Psi^{\prime}$ subsets of pairs of Φ. Then
(i) $\left|C_{\Phi, \Psi}\right|=2^{\operatorname{deg}(Z)}$;
(ii) if $\Psi \neq \Psi^{\prime}$, then $C_{\Phi, \Psi} \cap C_{\Phi, \Psi^{\prime}}=\emptyset$;
(iii) $\mathscr{S}_{Z}=\bigcup_{\Psi \leq \Phi} C_{\Phi, \Psi}$.

Proof. Let z_{0} denote the isolated element in Φ. Suppose that Λ_{M} is an element of $C_{\Phi, \Psi}$. From the conditions before Remark 4.13, we can write $M=M_{1} \cup M_{2}$ where M_{1} consists of exactly one element from each pair of $\Phi \backslash \Psi$ and possibly z_{0} so that $\left|M_{1}\right|$ is even, and M_{2} consists of some pairs from Ψ.

Let $\delta=\operatorname{deg}(Z)$. Suppose that Ψ consists of δ^{\prime} pairs for some $\delta^{\prime} \leq \delta$. So we have $2^{\delta^{\prime}}$ possible choices for M_{2}. We have $2^{\delta-\delta^{\prime}}$ choices when we chose one element from each pair in $\Phi \backslash \Psi$ and we have two choices to choose z_{0} or not. However, the requirement that $\left|M_{1}\right|$ is even implies that the possible choices of M_{1} is exactly $2^{\delta-\delta^{\prime}}$. Thus the total choices for M is $2^{\delta^{\prime}} \cdot 2^{\delta-\delta^{\prime}}=2^{\delta}$ and hence (i) is proved.

Suppose $\Psi \neq \Psi^{\prime}$ and $\Lambda_{M} \in C_{\Phi, \Psi} \cap C_{\Phi, \Psi^{\prime}}$ for some $M \subset Z_{\mathrm{I}}$. Without loss of generality, we may assume that $\Psi \nsubseteq \Psi^{\prime}$, so there is a pair $\binom{s}{t} \in \Phi$ such that $\binom{s}{t} \in \Psi$ and $\binom{s}{t} \notin \Psi^{\prime}$. By the two conditions before Remark 4.13, $\Lambda_{M} \in C_{\Phi, \Psi}$ implies that $\left|M \cap\binom{s}{t}\right|=0$ or 2, and $\Lambda_{M} \in C_{\Phi, \Psi^{\prime}}$ implies that $\left|M \cap\binom{s}{t}\right|=1$. We get a contradiction and hence (ii) is proved.

We know that $\left|\mathscr{S}_{Z}\right|=2^{2 \delta}$ from Subsection 2.2, and we have 2^{δ} choices of Ψ for a fixed arrangement Φ. Therefore (iii) follows from (i) and (ii) directly.

Proposition 4.18. Let $\mathrm{G}=\mathrm{Sp}_{2 n}, Z$ a special symbol of rank n and defect $1, \Phi$ an arrangement of Z_{I} and $\Psi \leq \Phi$. Then

$$
R_{\underline{c}(Z, \Phi, \Psi)}=\sum_{\Lambda \in C_{\Phi, \Psi}} \rho_{\Lambda} .
$$

In particular, the class function $\sum_{\Lambda \in C_{\Phi, \Psi}} \rho_{\Lambda}$ is uniform.
Proof. Let Λ_{M} be a symbol in $C_{\Phi, \Psi}$. From Proposition 3.2, we have

$$
\left\langle\rho_{\Lambda_{M}}, R_{\Lambda_{\Psi^{\prime}}}\right\rangle=\frac{1}{2^{\delta}}(-1)^{\left|M \cap \Psi^{\prime}\right|}
$$

where $\delta=\operatorname{deg}(Z)$ and $\Psi^{\prime} \leq \Phi$. Then by (4.8) and (4.10), we have

$$
\left\langle\rho_{\Lambda_{M}}, R_{\underline{c}(Z, \Phi, \Psi)}\right\rangle=\frac{1}{2^{\delta}} \sum_{\Psi^{\prime} \leq \Phi}(-1)^{\left|(\Phi \backslash \Psi) \cap \Psi^{\prime *}\right|}(-1)^{\left|M \cap \Psi^{\prime}\right|}=\frac{1}{2^{\delta}} \sum_{\Psi^{\prime} \leq \Phi} 1=1 .
$$

This means ρ_{Λ} occurs with multiplicity one in $R_{\underline{c}(Z, \Phi, \Psi)}$ for each $\Lambda \in C_{\Phi, \Psi}$. From [Lus81] theorem 5.6 we know that $R_{c(Z, \Phi, \Psi)}$ is a sum of 2^{δ} distinct irreducible characters of G and $C_{\Phi, \Psi}$ has also 2^{δ} elements. As all the ρ_{Λ} are non-isomorphic, the result follows.

Example 4.19. Let $Z=\binom{2,0}{1}$, a special symbol of rank 2 and defect 1 . Now $Z_{I}=Z$ has two possible arrangements Φ, namely $\left\{\binom{2}{1},\binom{0}{-}\right\}$ and $\left\{\binom{0}{1},\binom{2}{-}\right\}$; and each arrangement Φ has two subsets of pairs Ψ, namely the only pair in Φ and the empty symbol $\left(\begin{array}{l}- \\ -\end{array}\right.$. So we have the following table:

Φ	Ψ	$R_{\underline{c}(Z, \Phi, \Psi)}$	$\sum_{\Lambda \in C_{\Phi, \Psi}} \rho_{\Lambda}$
$\left\{\binom{2}{1},\binom{0}{-}\right\}$	$\binom{-}{-}$	$\begin{aligned} & R_{\binom{2,0}{1}}+R_{\binom{1,0}{2}} \\ & R_{\binom{2,0}{1}}-R_{\binom{1,0}{2}} \\ & \hline \end{aligned}$	$\begin{aligned} & \rho_{\binom{2,0}{1}}+\rho_{\binom{1,0}{2}} \\ & \left.\rho_{\binom{2,1}{0}}+\rho_{(2,1,0}\right) \end{aligned}$
$\{(1),(-)\}$	$\begin{aligned} & (1) \\ & \binom{(}{-} \end{aligned}$	$\begin{aligned} & R_{\binom{2,0}{1}}+R_{\binom{2,1}{0}} \\ & R_{\binom{2,0}{1}}-R_{\binom{2,1}{0}} \end{aligned}$	$\begin{aligned} & \rho_{\binom{2,0}{1}}+\rho_{\binom{2,1}{0}} \\ & \rho_{\binom{1,0}{2}}+\rho_{(2,1,0}\left(\begin{array}{l} 1,0 \end{array}\right) \end{aligned}$

The equality between $R_{\underline{c}(Z, \Phi, \Psi)}$ and $\sum_{\Lambda \in C_{\Phi, \Psi}} \rho_{\Lambda}$ can easily be seen from the identities in Example 3.3.

Remark 4.20. Note that in [Lus81] theorem 5.6, the cardinality q of the base field is assumed to be large, however, according the comment by the end of [Lus82] the restriction is removed by a result of Asai.

Remark 4.21. If Ψ consists of all pairs in Φ, then $(\Phi \backslash \Psi) \cap \Psi^{\prime *}=\emptyset$ and $(-1)^{\left|(\Phi \backslash \Psi) \cap \Psi^{* *}\right|}=1$ for any $\Psi^{\prime} \leq \Phi$, and by (4.12) the identity in Proposition 4.18 becomes

$$
\sum_{\Psi^{\prime} \leq \Phi} R_{\Lambda_{\Psi^{\prime}}}=\sum_{\Psi^{\prime} \leq \Phi} \rho_{\Lambda_{\Psi^{\prime}}}
$$

Lemma 4.22. Suppose that Z is a special symbol of defect 1 with $Z_{I}=\binom{s_{1}, s_{2}, \ldots, s_{\delta+1}}{t_{1}, t_{2}, \ldots, t_{\delta}}$ where $\delta=\operatorname{deg}(Z)$. Let Φ_{1}, Φ_{2} be two arrangements of Z_{I} given by

$$
\Phi_{1}=\left\{\binom{s_{1}}{t_{1}},\binom{s_{2}}{t_{2}}, \cdots,\binom{s_{\delta}}{t_{\delta}},\binom{s_{\delta+1}}{-}\right\}, \quad \Phi_{2}=\left\{\binom{s_{1}}{-},\binom{s_{2}}{t_{1}},\binom{s_{3}}{t_{2}}, \cdots,\binom{s_{\delta+1}}{t_{\delta}}\right\} .
$$

Then for any $\Psi_{1} \leq \Phi_{1}$ and any $\Psi_{2} \leq \Phi_{2}$, we have $\left|C_{\Phi_{1}, \Psi_{1}} \cap C_{\Phi_{2}, \Psi_{2}}\right|=1$.
Proof. Let $\Psi_{1} \leq \Phi_{1}$ and $\Psi_{2} \leq \Phi_{2}$. Suppose that Λ_{M} is in the intersection $C_{\Phi_{1}, \Psi_{1}} \cap C_{\Phi_{2}, \Psi_{2}}$ for some $M \subset Z_{\text {I }}$ with $|M|$ even. From the two conditions before Remark 4.13, we have the following inferences:
(1) if $s_{i} \in M$ and $\binom{s_{i}}{t_{i}} \leq \Psi_{1}$, then $t_{i} \in M$;
(2) if $s_{i} \notin M$ and $\binom{s_{i}}{t_{i}} \leq \Psi_{1}$, then $t_{i} \notin M$;
(3) if $s_{i} \in M$ and $\binom{s_{i}}{t_{i}} \not \leq \Psi_{1}$, then $t_{i} \notin M$;
(4) if $s_{i} \notin M$ and $\binom{s_{i}}{t_{i}} \not \leq \Psi_{1}$, then $t_{i} \in M$;
(5) if $t_{i} \in M$ and $\binom{s_{i+1}}{t_{i}} \leq \Psi_{2}$, then $s_{i+1} \in M$;
(6) if $t_{i} \notin M$ and $\binom{s_{i+1}}{t_{i}} \leq \Psi_{2}$, then $s_{i+1} \notin M$;
(7) if $t_{i} \in M$ and $\binom{s_{i+1}}{t_{i}} \not 又 \Psi_{2}$, then $s_{i+1} \notin M$;
(8) if $t_{i} \notin M$ and $\binom{s_{i+1}}{t_{i}} \not \leq \Psi_{2}$, then $s_{i+1} \in M$
for $i=1, \ldots, \delta$. This means that for any fixed Ψ_{1}, Ψ_{2}, the set M is uniquely determined by the "initial condition" whether s_{1} belongs to M or not. So now there are two possible choices of M one of which contains s_{1} and the other does not. Moreover, from (1)-(8) above, it is easy to see that both possible choices of M are complement subsets to each other in Z_{I}, i.e., the two possible choices of M form a partition of Z_{I}. Moreover, among the two possible choices of M, there is only one whose cardinality is even, and hence the lemma is proved.
Lemma 4.23. Let Z be a special symbol of defect 1 , and let Φ_{1}, Φ_{2} be the two arrangements of Z_{I} given in Lemma 4.22. For any given $\Lambda \in \mathscr{S}_{Z}$, there exist $\Psi_{1} \leq \Phi_{1}$ and $\Psi_{2} \leq \Phi_{2}$ such that $C_{\Phi_{1}, \Psi_{1}} \cap C_{\Phi_{2}, \Psi_{2}}=\{\Lambda\}$.
Proof. Let $\Lambda \in \mathscr{S}_{Z}$, and let Φ_{1}, Φ_{2} be the two arrangements given in Lemma 4.22. By (iii) of Lemma 4.17, there is a subset of pairs Ψ_{i} of Φ_{i} such that $\Lambda \in C_{\Phi_{i}, \Psi_{i}}$ for $i=1,2$, i.e., $\Lambda \in C_{\Phi_{1}, \Psi_{1}} \cap C_{\Phi_{2}, \Psi_{2}}$. Then the lemma follows from Lemma 4.22 immediately.
Example 4.24. Let $Z=\binom{6,4,2,0}{5,3,1}$. Then Z is a special symbol of defect 1 and degree 3 , and $Z_{I}=Z$. Now $\Phi_{1}=\left\{\binom{6}{5},\binom{4}{3},\binom{2}{1},\binom{0}{-}\right\}$ and $\Phi_{2}=\left\{\binom{4}{5},\binom{2}{3},\binom{0}{1},\binom{6}{-}\right\}$ are two arrangements in Lemma 4.22. We have the following table:

	$\binom{-}{-}$	$\binom{4}{5}$	$\binom{2}{3}$	$\binom{0}{1}$	$\binom{4,2}{5,3}$	$\binom{2,0}{3,1}$	$\binom{4,0}{5,1}$	$\binom{4,2,0}{5,3,1}$
$(-)$	$\binom{-}{6,5,4,3,2,1,0}$	$\binom{6,5}{4,3,2,1,0}$	$\binom{6,5,4,3}{2,1,0}$	$\binom{6,5,4,3,2,1}{0}$	$\binom{4,3}{6,5,2,1,0}$	$\binom{2,1}{6,5,4,3,0}$	$\binom{4,3,2,1}{6,5,0}$	$\binom{6,5,2,1}{4,3,0}$
$\binom{6}{5}$	$\binom{5,4,3,2,1,0}{6}$	$\binom{6,4,3,2,1,0}{5}$	$\binom{6,2,1,0}{5,4,3}$	$\binom{6,0}{5,4,3,2,1}$	$\binom{5,2,1,0}{6,4,3}$	$\binom{5,4,3,0}{6,2,1}$	$\binom{5,0}{6,4,3,2,1}$	$\binom{6,4,3,0}{5,2,1}$
$\binom{4}{3}$	$\binom{3,2,1,0}{6,5,4}$	$\binom{6,5,3,2,1,0}{4}$	$\binom{6,5,4,2,1,0}{3}$	$\binom{6,5,4,0}{3,2,1}$	$\binom{4,2,1,0}{6,5,3}$	$\binom{3,0}{6,5,4,2,1}$	$\binom{4,0}{6,5,3,2,1}$	$\binom{6,5,3,0}{4,2,1}$
$\binom{2}{1}$	$\binom{1,0}{6,5,4,3,2}$	$\binom{6,5,1,0}{4,3,2}$	$\binom{6,5,4,3,1,0}{2}$	$\binom{6,5,4,3,2,0}{1}$	$\binom{4,3,1,0}{6,5,2}$	$\binom{2,0}{6,5,4,3,1}$	$\binom{4,3,2,0}{6,5,1}$	$\binom{6,5,2,0}{4,3,1}$
$\binom{6,4}{5,3}$	$\binom{5,4}{6,3,2,1,0}$	$\binom{6,4}{5,3,2,1,0}$	$\binom{6,3}{5,4,2,1,0}$	$\binom{6,3,2,1}{5,4,0}$	$\binom{5,3}{6,4,2,1,0}$	$\binom{5,4,2,1}{6,3,0}$	$\binom{5,3,2,1}{6,4,0}$	$\binom{6,4,2,1}{5,3,0}$
$\binom{4,2}{3,1}$	$\binom{3,2}{6,5,4,1,0}$	$\binom{6,5,3,2}{4,1,0}$	$\binom{6,5,4,2}{3,1,0}$	$\binom{6,5,4,1}{3,2,0}$	$\binom{4,2}{6,5,3,1,0}$	$\binom{3,1}{6,5,4,2,0}$	$\binom{4,1}{6,5,3,2,0}$	$\binom{6,5,3,1}{4,2,0}$
$\binom{6,2}{5,1}$	$\binom{5,4,3,2}{6,1,0}$	$\binom{6,4,3,2}{5,1,0}$	$\binom{6,2}{5,4,3,1,0}$	$\binom{6,1}{5,4,3,2,0}$	$\binom{5,2}{6,4,3,1,0}$	$\binom{5,4,3,1}{6,2,0}$	$\binom{5,1}{6,4,3,2,0}$	$\binom{6,4,3,1}{5,2,0}$
$\binom{6,4,2}{5,3,1}$	$\binom{5,4,1,0}{6,3,2}$	$\binom{6,4,1,0}{5,3,2}$	$\binom{6,3,1,0}{5,4,2}$	$\binom{6,3,2,0}{5,4,1}$	$\binom{5,3,1,0}{6,4,2}$	$\binom{5,4,2,0}{6,3,1}$	$\binom{5,3,2,0}{6,4,1}$	$\binom{6,4,2,0}{5,3,1}$

In the leftmost column are all 8 possible subset of pairs $\Psi_{1} \leq \Phi_{1}$, and in the topmost row are all 8 possible $\Psi_{2} \leq \Phi_{2}$. The 8 symbols in the row indexed by Ψ_{1} are the elements in $C_{\Phi_{1}, \Psi_{1}}$, and the 8 symbols in the column indexed by Ψ_{2} are the elements in $C_{\Phi_{2}, \Psi_{2}}$. For example if $\Psi_{1}=\binom{6}{5}$, then

$$
C_{\Phi_{1}, \Psi_{1}}=\left\{\binom{5,4,3,2,1,0}{6},\binom{6,4,3,2,1,0}{5},\binom{6,2,1,0}{5,4,3},\binom{6,4,3,2,1}{5,4,3,1},\binom{5,2,1,0}{6,4,3},\binom{5,4,3,0}{6,2,1},\binom{5,4,0}{6,4,3,2,1},\binom{6,4,3,0}{5,2,1}\right\} .
$$

From the table we can conclude that $\left|C_{\Phi_{1}, \Psi_{1}} \cap C_{\Phi_{2}, \Psi_{2}}\right|=1$ for any $\Psi_{1} \leq \Phi_{1}$ and any $\Psi_{2} \leq \Phi_{2}$. Note that the 64 symbols in the above table are all the symbols in this \mathscr{S}_{Z}. Here we give an example to show how to compute this table following the rule in the proof of Lemma 4.22. Suppose that $\Psi_{1}=\left\{\binom{2}{1}\right\}$ and $\Psi_{2}=\left\{\binom{4}{5},\binom{2}{3}\right\}$, and suppose that $\Lambda_{M} \in C_{\Phi_{1}, \Psi_{1}} \cap C_{\Phi_{2}, \Psi_{2}}$ for some $M \subset Z_{\text {I }}$ with $|M|$ even.

- If $6 \in M$, now $\binom{6}{5} \not \leq \Psi_{1}$, so $5 \notin M$ by (3); now $\binom{4}{5} \leq \Psi_{2}$, so $4 \notin M$ by (6); now $\binom{4}{3} \not \leq \Psi_{1}$, so $3 \in M$ by (4); now $\binom{2}{3} \leq \Psi_{2}$, so $2 \in M$ by (5); now $\binom{2}{1} \leq \Psi_{1}$, so $1 \in M$ by (1); now $\binom{1}{0} \nsubseteq \Psi_{2}$, so $0 \notin M$ by (7), then we obtain $M=\binom{6,2}{3,1}$.
- If $6 \notin M$, now $\binom{6}{5} \not \leq \Psi_{1}$, so $5 \in M$ by (4); now $\binom{4}{5} \leq \Psi_{2}$, so $4 \in M$ by (5); now $\binom{4}{3} \not \leq \Psi_{1}$, so $3 \notin M$ by (3); now $\binom{2}{3} \leq \Psi_{2}$, so $2 \notin M$ by (6); now $\binom{2}{1} \leq \Psi_{1}$, so $1 \notin M$ by (2); now $\binom{1}{0} \nsubseteq \Psi_{2}$, so $0 \in M$ by (8), then we obtain $M=\binom{4,0}{5}$.
Now $\binom{6,2}{3,1},\binom{4,0}{5}$ are the only two subsymbols M of Z_{I} satisfying the two conditions before (4.12) for both $\Psi_{1}=\left\{\binom{2}{1}\right\} \leq \Phi_{1}=\left\{\binom{6}{5},\binom{4}{3},\binom{2}{1},\binom{0}{-}\right\}$ and $\Psi_{2}=\left\{\binom{4}{5},\binom{2}{3}\right\} \leq \Phi_{2}=$ $\left\{\binom{6}{-},\binom{4}{5},\binom{2}{3},\binom{0}{1}\right\}$. However, we need $|M|$ to be even to make $\Lambda_{M} \in \mathscr{S}_{Z}$. So we conclude that $\binom{4,3,1,0}{6,5,2}=\Lambda_{\binom{(6,2}{3,1}}$ is the only symbol in this intersection $C_{\Phi_{1}, \Psi_{1}} \cap C_{\Phi_{2}, \Psi_{2}}$.
Lemma 4.25. Let Z be a special symbol of defect 1 , and let Λ_{1}, Λ_{2} be two distinct symbols in \mathscr{S}_{Z}. There exists an arrangement Φ of Z_{I} with two subsets of pairs Ψ_{1}, Ψ_{2} such that $\Lambda_{i} \in C_{\Phi, \Psi_{i}}$ for $i=1,2$ and $C_{\Phi, \Psi_{1}} \cap C_{\Phi, \Psi_{2}}=\emptyset$.

Proof. Suppose that $\Lambda_{1}=\Lambda_{M_{1}}$ and $\Lambda_{2}=\Lambda_{M_{2}}$ for $M_{1}, M_{2} \subset Z_{\mathrm{I}}$. Because $M_{1} \neq M_{2}$ and both $\left|M_{1}\right|$ and $\left|M_{2}\right|$ are even, it is clear that we can find a pair $\Psi=\binom{s}{t}$ such that one of M_{1}, M_{2} contains exactly one of the two elements s, t and the other set contains either both s, t or none, i.e.,

$$
\begin{equation*}
\left|M_{1} \cap \Psi\right| \not \equiv\left|M_{2} \cap \Psi\right|(\bmod 2) \tag{4.26}
\end{equation*}
$$

Let Φ be any arrangement of Z_{I} that contains Ψ as a subset of pairs. By (iii) of Lemma 4.17, we know that $\Lambda_{M_{1}} \in C_{\Phi, \Psi_{1}}$ and $\Lambda_{M_{2}} \in C_{\Phi, \Psi_{2}}$ for some subsets of pairs Ψ_{1}, Ψ_{2} of Φ. Then by Lemma 4.15 and (4.26) we see that $\Psi_{1} \neq \Psi_{2}$. Finally, by (ii) of Lemma 4.17, we know that $C_{\Phi, \Psi_{1}} \cap C_{\Phi, \Psi_{2}}=\emptyset$.

Example 4.27. Let $Z=\binom{6,4,2,0}{5,3,1}$, and keep the notation in Example 4.24. Let $\Lambda, \Lambda^{\prime}$ be distinct symbols in \mathscr{S}_{Z}. Then $\Lambda, \Lambda^{\prime}$ must be in different rows or different columns in the table in Example 4.24. If $\Lambda, \Lambda^{\prime}$ are in different rows, then we let $\Phi=\Phi_{1}$ and we see that there are two different subsets of pairs $\Psi_{1}, \Psi_{1}^{\prime} \leq \Phi$ such that $\Lambda \in C_{\Phi, \Psi_{1}}, \Lambda^{\prime} \in C_{\Phi, \Psi_{1}^{\prime}}$ and of course $C_{\Phi, \Psi_{1}} \cap C_{\Phi, \Psi_{1}^{\prime}}=\emptyset$. If $\Lambda, \Lambda^{\prime}$ are in different columns, then we let $\Phi=\Phi_{2}$ and we have two different columns $C_{\Phi, \Psi_{2}}, C_{\Phi, \Psi_{2}^{\prime}}$ containing $\Lambda, \Lambda^{\prime}$ respectively, and with empty intersection.

We need stronger versions of Lemma 4.23 and Lemma 4.25.
Lemma 4.28. Let Z be a special symbol of defect $1, \Phi$ an arrangement of Z_{I}, Ψ a subset of pairs in Φ, Ψ_{0} a set of consecutive pairs in Z_{I} such that $\Psi_{0} \leq \Psi$. Then

$$
C_{\Phi, \Psi}=\left(C_{\Phi, \Psi} \cap \mathscr{S}_{Z}^{\Psi_{0}}\right)+\mathscr{S}_{Z, \Psi_{0}}:=\left\{\Lambda_{1}+\Lambda_{2} \mid \Lambda_{1} \in\left(C_{\Phi, \Psi} \cap \mathscr{S}_{Z}^{\Psi_{0}}\right), \Lambda_{2} \in \mathscr{S}_{Z, \Psi_{0}}\right\} .
$$

Proof. Let Λ_{M} be an element in $C_{\Phi, \Psi}$ for some $M \subset Z_{\mathrm{I}}$. Then $M=M_{1} \cup M_{2}$ where $M_{1}=$ $M \cap\left(Z_{I} \backslash \Psi_{0}\right)$ and $M_{2}=M \cap \Psi_{0}$. And we have $\Lambda_{M}=\Lambda_{M_{1}}+\Lambda_{M_{2}}$ since $M_{1} \cap M_{2}=\emptyset$ (cf. (2.8)). From the requirement of M before Remark 4.13, M needs to contain either none or two entries from each pair in Ψ_{0}, we see that M_{2} is a subset of pairs in Ψ_{0}, i.e., $M_{2} \leq \Psi_{0}$ and hence $\Lambda_{M_{2}} \in \mathscr{S}_{Z, \Psi_{0}}$. Now M_{1} also satisfies the condition in (4.10), and so $\Lambda_{M_{1}} \in C_{\Phi, \Psi}$. Moreover, $M_{1} \subset Z_{\mathrm{I}} \backslash \Psi_{0}$ and $\left|M_{1}\right|$ is even, so we have $\Lambda_{M_{1}} \in \mathscr{S}_{\mathrm{Z}}^{\Psi_{0}}$. Then $\Lambda_{M_{1}} \in C_{\Phi, \Psi} \cap \mathscr{S}_{Z}^{\Psi_{0}}$. On the other hand, if $\Lambda_{M_{3}} \in C_{\Phi, \Psi} \cap \mathscr{S}_{Z}^{\Psi_{0}}$ and $\Lambda_{M_{4}} \in \mathscr{S}_{Z, \Psi_{0}}$ for some M_{3}, M_{4}, then it is obvious that $\Lambda_{M_{3}}+\Lambda_{M_{4}}=\Lambda_{M_{3} \cup M_{4}} \in C_{\Phi, \Psi}$.

Example 4.29. Suppose that $Z=\binom{4,2,0}{3,1}, \Phi=\left\{\binom{4}{-},\binom{2}{3},\binom{0}{1}\right\}$ and $\Psi_{0}=\Psi=\left\{\binom{0}{1}\right\}$. Then

$$
\mathscr{S}_{Z, \Psi_{0}}=\left\{\binom{4,2,0}{3,1},\binom{4,2,1}{3,0}\right\}, \quad \mathscr{S}_{Z}^{\Psi_{0}}=\left\{\binom{4,2,0}{3,1},\binom{4,3,0}{2,1},\binom{3,2,0}{4,1},\binom{0}{4,3,2,1}\right\}
$$

Now by Example 4.14, we see that

$$
C_{\Phi, \Psi} \cap \mathscr{S}_{Z}^{\Psi_{0}}=\left\{\binom{3,2,0}{4,1},\binom{0}{4,3,2,1}\right\} .
$$

Now

$$
\begin{array}{ll}
\binom{3,2,0}{4,1}+\binom{4,2,0}{3,1}=\binom{3,2,0}{4,0}, & \binom{0}{4,3,2,1}+\binom{4,2,0}{3,0}=\binom{0}{4,3,2,1}, \\
\binom{0,2,0}{4,1}+\binom{0,2,1}{3,0}=\binom{3,2,1}{4,0}, & \binom{0,2,2,1}{4,3}+\binom{1}{4,3,2,0},
\end{array}
$$

i.e., we do have $C_{\Phi, \Psi}=\left(C_{\Phi, \Psi} \cap \mathscr{S}_{Z}^{\Psi_{0}}\right)+\mathscr{S}_{Z, \Psi_{0}}$.

Lemma 4.30. Let Z be a special symbol of defect 1 , and let Ψ_{0} be a set of consecutive pairs in Z_{I}. For any given $\Lambda \in \mathscr{S}_{Z}^{\Psi_{0}}$, there exist two arrangements Φ_{1}, Φ_{2} of Z_{I} with subsets of pairs Ψ_{1}, Ψ_{2} respectively such that $\Psi_{0} \leq \Psi_{i}$ for $i=1,2$, and

$$
C_{\Phi_{1}, \Psi_{1}}^{\natural} \cap C_{\Phi_{2}, \Psi_{2}}^{\natural}=\{\Lambda\}
$$

where $C_{\Phi_{i}, \Psi_{i}}^{\natural}:=C_{\Phi_{i}, \Psi_{i}} \cap \mathscr{S}_{\mathrm{Z}}^{\Psi_{0}}$.
Proof. Because Ψ_{0} is a set of consecutive pairs in Z_{I}, the symbol Z^{\prime} given by $Z^{\prime}=Z \backslash \Psi_{0}$ is still a special symbol of the same defect and $Z_{I}^{\prime}=Z_{I} \backslash \Psi_{0}$. Because $\Lambda \in \mathscr{S}_{Z}^{\Psi_{0}}$, we can write $\Lambda=\Lambda^{\prime} \cup \Psi_{0}$ (cf. Subsection 2.1) for a unique $\Lambda^{\prime} \in \mathscr{S}_{Z^{\prime}}$. Write $Z_{I}^{\prime}=\binom{s_{1}^{\prime}, s_{2}, \ldots, s_{\delta_{1}+1}^{\prime}}{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{\delta_{1}}^{\prime}}$ and define

By Lemma 4.23, we know that there exist sets of pairs $\Psi_{1}^{\prime}, \Psi_{2}^{\prime}$ of $\Phi_{1}^{\prime}, \Phi_{2}^{\prime}$ respectively such that

$$
C_{\Phi_{1}^{\prime}, \Psi_{1}^{\prime}}^{\prime} \cap C_{\Phi_{2}^{\prime}, \Psi_{2}^{\prime}}=\left\{\Lambda^{\prime}\right\} .
$$

Now Ψ_{0} itself can be regarded as an arrangement of itself, so from (4.12) we have

$$
C_{\Psi_{0}, \Psi_{0}}=\left\{\Lambda_{N} \in \mathscr{S}_{\Psi_{0}} \mid N \leq \Psi_{0}\right\} .
$$

Now let $\Phi_{i}=\Phi_{i}^{\prime} \cup \Psi_{0}, \Psi_{i}=\Psi_{i}^{\prime} \cup \Psi_{0}$ for $i=1,2$, so we have $\Psi_{0} \leq \Psi_{i} \leq \Phi_{i}$ for $i=1,2$. From Lemma 4.28, we can see that

$$
C_{\Phi_{i}, \Psi_{i}}=\left\{\Lambda_{1} \cup \Lambda_{2} \mid \Lambda_{1} \in C_{\Phi_{i}^{\prime}, \Psi_{i}^{\prime}}, \Lambda_{2} \in C_{\Psi_{0}, \Psi_{0}}\right\}
$$

Therefore

$$
C_{\Phi_{1}, \Psi_{1}} \cap C_{\Phi_{2}, \Psi_{2}}=\left\{\Lambda^{\prime} \cup \Lambda_{2} \mid \Lambda_{2} \in C_{\Psi_{0}, \Psi_{0}}\right\},
$$

and hence

$$
C_{\Phi_{1}, \Psi_{1}}^{\natural} \cap C_{\Phi_{2}, \Psi_{2}}^{\natural}=C_{\Phi_{1}, \Psi_{1}} \cap C_{\Phi_{2}, \Psi_{2}} \cap \mathscr{S}_{Z}^{\Psi_{0}}=\left\{\Lambda^{\prime} \cup \Psi_{0}\right\}=\{\Lambda\} .
$$

Lemma 4.31. Let Z be a special symbol of defect 1 , and let Ψ_{0} be a set of consecutive pairs in Z_{I}. Let Λ_{1}, Λ_{2} be two distinct symbols in $\mathscr{S}_{Z}^{\Psi_{0}}$. There exists an arrangement Φ of Z_{I} with two subsets of pairs Ψ_{1}, Ψ_{2} such that $\Psi_{0} \leq \Psi_{i}$ and $\Lambda_{i} \in C_{\Phi, \Psi_{i}}$ for $i=1,2$, and $C_{\Phi, \Psi_{1}} \cap C_{\Phi, \Psi_{2}}=\emptyset$.

Proof. Let Z^{\prime} be defined as in the proof of the previous lemma, i.e., $Z^{\prime}=Z \backslash \Psi_{0}$. Then we known that $\Lambda_{i}=\Lambda_{i}^{\prime} \cup \Psi_{0}$ for $\Lambda_{i}^{\prime} \in \mathscr{S}_{Z^{\prime}}$. Clearly, $\Lambda_{1}^{\prime}, \Lambda_{2}^{\prime}$ are distinct. Then by Lemma 4.25, we know that there is an arrangement Φ^{\prime} of Z^{\prime} with subsets of pairs $\Psi_{1}^{\prime}, \Psi_{2}^{\prime}$ such that $\Lambda_{i}^{\prime} \in C_{\Phi^{\prime}, \Psi_{i}^{\prime}}$ for $i=1,2$ and $C_{\Phi^{\prime}, \Psi_{1}^{\prime}} \cap C_{\Phi^{\prime}, \Psi_{2}^{\prime}}=\emptyset$. Let $\Phi_{i}=\Phi_{i}^{\prime} \cup \Psi_{0}, \Psi_{i}=\Psi_{i}^{\prime} \cup \Psi_{0}$ for $i=1,2$. Then as in the proof of the previous lemma, we can see that

$$
C_{\Phi, \Psi_{1}} \cap C_{\Phi, \Psi_{2}}=\left\{\Lambda_{1} \cup \Lambda_{2} \mid \Lambda_{1} \in C_{\Phi_{1}^{\prime}, \Psi_{1}^{\prime}} \cap C_{\Phi_{2}^{\prime}, \Psi_{2}^{\prime}}, \Lambda_{2} \in C_{\Psi_{0}, \Psi_{0}}\right\}=\emptyset .
$$

It is clear that if $\Psi_{0}=\emptyset$, then Lemma 4.30 and Lemma 4.31 are reduced to Lemma 4.23 and Lemma 4.25 respectively.
4.4. Cells for an even orthogonal group. In this subsection, let $G=O_{2 n}^{\epsilon}$ for $\epsilon=+$ or ,$- Z$ a special symbol of rank n and defect $0, \Phi$ an arrangement of Z_{I}, and $\Psi \leq \Phi$.
Lemma 4.32. If $\Phi \backslash \Psi$ consists of an even number of pairs, then $C_{\Phi, \Psi} \subset \mathscr{S}_{Z}^{\mathrm{O}_{2 n}^{+}}$; on the other hand, if $\Phi \backslash \Psi$ consists of an odd number of pairs, then $C_{\Phi, \Psi} \subset \mathscr{S}_{Z}^{\mathrm{O}_{2 n}^{-}}$.
Proof. Suppose that $\Lambda_{M} \in C_{\Phi, \Psi}$ for some $M \subset Z_{\mathrm{I}}$. Then from the condition before Remark 4.13, we know that M contains exactly one element from each pair in $\Phi \backslash \Psi$ and contains either none or two elements in each pair in Ψ. This implies that $|M|$ is odd if $\Phi \backslash \Psi$ consists of odd number of pairs; and $|M|$ is even if $\Phi \backslash \Psi$ consists of even number of pairs. Hence the lemma follows from the definition in (2.7).

Example 4.33. Suppose that $Z=\binom{5,3,1}{4,2,0}, \Phi=\left\{\binom{5}{4},\binom{3}{2},\binom{1}{0}\right\}$, and $\Psi=\left\{\binom{5}{4},\binom{1}{0}\right\}$. Now Z is a special symbol of rank 9 and defect 0 , and $Z_{I}=Z$. To construct a subsymbol M of Z_{I} such that $\Lambda_{M} \in C_{\Phi, \Psi}$, we need to choose one element from each pair in $\Phi \backslash \Psi=\left\{\binom{3}{2}\right\}$ and choose a subset of pairs of Ψ. Hence we have 8 possible subsets M, namely, $\binom{3}{-},\binom{3,1}{0},\binom{5,3}{4}$, $\binom{5,3,1}{4,0},\binom{-}{2},\binom{1}{2,0},\binom{5}{4,2},\binom{5,1}{4,2,0}$. Hence

$$
C_{\Phi, \Psi}=\left\{\binom{5,1}{4,3,2,0},\binom{5,0}{4,3,2,1},\binom{4,1}{5,3,2,0},\binom{4,0}{5,3,2,1},\binom{5,3,2,1}{4,0},\binom{5,3,2,0}{4,1},\binom{4,3,2,1}{5,0},\binom{4,3,2,0}{5,1}\right\} .
$$

Note that $\Phi \backslash \Psi$ consists of one pair, so $C_{\Phi, \Psi} \subset \mathscr{S}_{Z}^{\mathrm{O}_{18}^{-}}$.
Lemma 4.34. Let Z be a special symbol of rank n and defect $0, \Phi$ a fixed arrangement of Z_{I}, and Ψ, Ψ^{\prime} subsets of pairs of Φ. Suppose that $\operatorname{deg}(Z) \geq 1$. Then
(i) $\Lambda \in C_{\Phi, \Psi}$ if and only if $\Lambda^{\mathrm{t}} \in C_{\Phi, \Psi}$;
(ii) $\left|C_{\Phi, \Psi}\right|=2^{\operatorname{deg}(Z)}$;
(iii) if $\Psi \neq \Psi^{\prime}$, then $C_{\Phi, \Psi} \cap C_{\Phi, \Psi^{\prime}}=\emptyset$;
(iv) we have

$$
\mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{2 n}^{+}}=\bigcup_{\Psi \leq \Phi, \#(\Phi \backslash \Psi) \text { even }} C_{\Phi, \Psi} \quad \text { and } \quad \mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{2 n}^{-}}=\bigcup_{\Psi \leq \Phi, \#(\Phi \backslash \Psi) \text { odd }} C_{\Phi, \Psi}
$$

where $\#(\Phi \backslash \Psi)$ means the number of pairs in $\Phi \backslash \Psi$.
Proof. Suppose that $\Lambda_{M} \in C_{\Phi, \Psi}$ for some $M \subset Z_{\mathrm{I}}$. Then it is easy to check that $\left(\Lambda_{M}\right)^{\mathrm{t}}=$ $\Lambda_{Z_{1} \backslash M}$. It is clear that M satisfies the condition that it consists of exactly one element from each pair in $\Phi \backslash \Psi$ and a subset of pairs of Ψ if and only if $Z_{I} \backslash M$ satisfies the same condition. Hence (i) is proved.

Let $\delta=\operatorname{deg}(Z)$. From the conditions before Remark 4.13, we can write $M=M_{1} \cup M_{2}$ where M_{1} consists of exactly one element from each pair of $\Phi \backslash \Psi$, and M_{2} consists of some pairs from Ψ. Suppose that Ψ contains δ^{\prime} pairs for some $\delta^{\prime} \leq \delta$. So we have $2^{\delta^{\prime}}$ possible
choices for M_{2} and $2^{\delta-\delta^{\prime}}$ choices for M_{1}. Thus the total choices for M is $2^{\delta^{\prime}} \cdot 2^{\delta-\delta^{\prime}}=2^{\delta}$ and hence (ii) is proved.

The proof of (iii) is similar to that of Lemma 4.17.
For any fixed arrangement Φ of Z_{I}, we have

$$
\mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{2 n}^{+}} \cup \mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{2 n}^{-}}=\bigcup_{\Psi \leq \Phi} C_{\Phi, \Psi}
$$

by the same argument of the proof of Lemma 4.17. Then (iv) follows from Lemma 4.32 immediately.

Let $\mathrm{G}=\mathrm{O}_{2 n}^{\epsilon}$ where $\epsilon=+$ or - , and let Z be a special symbol of rank n and defect 0 . A subset of pairs Ψ of an arrangement Φ of Z_{I} is called admissible for Φ if $\#(\Phi \backslash \Psi)$ is even when $\epsilon=+$; and $\#(\Phi \backslash \Psi)$ is odd when $\epsilon=-$.

Proposition 4.35. Let $\mathrm{G}=\mathrm{O}_{2 n}^{\epsilon}, \mathrm{Z}$ a special symbol of rank n and defect $0, \Phi$ an arrangement of Z_{I} with an admissible subset of pairs Ψ. Then

$$
R_{\underline{c}(Z, \Phi, \Psi)}^{\mathrm{O}^{\varsigma}}=\sum_{\Lambda \in C_{\Phi, \Psi}} \rho_{\Lambda} .
$$

Proof. If $\epsilon=+$ and Z is of degree 0 , i.e., Z is degenerate, then it is clear that $\Phi=\Psi=\emptyset$, $\underline{c}(Z, \Phi, \Psi)=C_{\Phi, \Psi}=\{Z\}$ and $R_{Z}^{\mathrm{O}^{+}}=\rho_{Z}$. If $\epsilon=-$ and Z degenerate, then $\underline{c}(Z, \Phi, \Psi)=$ $C_{\Phi, \Psi}=\emptyset$. So the proposition holds if Z is degenerate.

Now suppose that $\delta=\operatorname{deg}(Z) \geq 1$. Let $C_{\Phi, \Psi}^{S O^{〔}}$ be a subset of $C_{\Phi, \Psi}$ such that $C_{\Phi, \Psi}^{S O^{\epsilon}}$ contains exactly one element from each pair $\left\{\Lambda, \Lambda^{\dagger}\right\} \subset C_{\Phi, \Psi}$. Therefore $\left|C_{\Phi, \Psi}^{S O^{\epsilon}}\right|=2^{\delta-1}$ by (ii) of Lemma 4.34. By the argument in the proof of Proposition 4.18, we can show that $\left\langle\rho_{\Lambda}^{\mathrm{SO}^{\epsilon}}, R_{\underline{c}(Z, \Phi, \Psi)}^{\mathrm{SO}}\right\rangle_{\mathrm{SO}^{\epsilon}}=1$ for every $\Lambda \in C_{\Phi, \Psi}$. Moreover, we know that $R_{\underline{c}(Z, \Phi, \Psi)}^{\mathrm{SO}}{ }^{\epsilon}$ is a sum of $2^{\delta-1}$ distinct irreducible characters of $\mathrm{SO}^{\epsilon}(q)$ by [Lus82] proposition 3.13. Thus we have

$$
R_{\underline{c}(Z, \Phi, \Psi)}^{\mathrm{SO}^{\epsilon}}=\sum_{\Lambda \in C_{\Phi, \Psi}^{S O}} \rho_{\Lambda}^{\mathrm{SO}^{\top}}
$$

and then

$$
R_{\underline{c}(Z, \Phi, \Psi)}^{\mathrm{O}^{\epsilon}}=\operatorname{Ind}_{\mathrm{SO}^{\varsigma}}^{\mathrm{O}^{\varsigma}} R_{\underline{c}(Z, \Phi, \Psi)}^{\mathrm{SO}}=\sum_{\Lambda \in C_{\Phi, \Psi}^{\mathrm{SO}}} \mathrm{Ind}_{\mathrm{SO}^{\varsigma}}^{\mathrm{O}^{\varsigma}} \rho_{\Lambda}^{\mathrm{SO}^{\varsigma}}=\sum_{\Lambda \in C_{\Phi, \Psi}^{\text {SO }}}\left(\rho_{\Lambda}+\rho_{\Lambda^{\star}}\right)=\sum_{\Lambda \in C_{\Phi, \Psi}} \rho_{\Lambda} .
$$

Lemma 4.36. Let Λ_{1}, Λ_{2} be two symbols in $\mathscr{S}_{Z}^{\mathrm{G}}$ such that $\Lambda_{1} \neq \Lambda_{2}, \Lambda_{2}^{\mathrm{t}}$. There exists an arrangement Φ of Z_{I} with admissible subsets of pairs Ψ_{1}, Ψ_{2} such that $\Lambda_{i}, \Lambda_{i}^{t} \in C_{\Phi, \Psi_{i}}$ for $i=1,2$ and $C_{\Phi, \Psi_{1}} \cap C_{\Phi, \Psi_{2}}=\emptyset$.

Proof. Suppose that $\Lambda_{1}=\Lambda_{M_{1}}$ and $\Lambda_{2}=\Lambda_{M_{2}}$ for $M_{1}, M_{2} \subset Z_{\mathrm{I}}$. The assumption that $\Lambda_{1} \neq \Lambda_{2}, \Lambda_{2}^{\mathrm{t}}$ means that $M_{1} \neq M_{2}$ and $M_{1} \neq\left(Z_{\mathrm{I}} \backslash M_{2}\right)$. Then it is clear that we can find a pair $\Psi=\binom{s}{t}$ in Z_{I} such that one of M_{1}, M_{2} contains exactly one of the two elements s, t and the other set contains either both s, t or none, i.e.,

$$
\begin{equation*}
\left|M_{1} \cap \Psi\right| \not \equiv\left|M_{2} \cap \Psi\right|(\bmod 2) . \tag{4.37}
\end{equation*}
$$

Let Φ be any arrangement of Z_{I} that contains Ψ as a subset of pairs. By (iv) of Lemma 4.34, we know that $\Lambda_{M_{1}} \in C_{\Phi, \Psi_{1}}$ and $\Lambda_{M_{2}} \in C_{\Phi, \Psi_{2}}$ for some subsets of pairs Ψ_{1}, Ψ_{2} of Φ. Then by Lemma 4.3 and (4.37) we see that $\Psi_{1} \neq \Psi_{2}$. Finally, by (iii) of Lemma 4.34, we know that $C_{\Phi, \Psi_{1}} \cap C_{\Phi, \Psi_{2}}=\emptyset$.

Example 4.38. Let $Z=\binom{5,3,1}{4,2,0}$. Then Z is a special symbol of rank 9 and defect 0 , and $Z_{\mathrm{I}}=Z$. Let $\Phi_{1}=\left\{\binom{5}{4},\binom{3}{2},\binom{1}{0}\right\}, \Phi_{2}=\left\{\binom{5}{0},\binom{3}{4},\binom{1}{2}\right\}$ be two arrangements of Z_{I}.
(1) Suppose that $\epsilon=+$. Then we have the following table:

	$\binom{5}{0}$	$\binom{3}{4}$	$\binom{1}{2}$	$\binom{5,3,1}{4,2,0}$
$\binom{5}{4}$	$\binom{4,3,2,1,0}{5},\binom{5}{4,3,2,1,0}$	$\binom{5,3,2,1,0}{4},\binom{4}{5,3,2,1,0}$	$\binom{5,1,0}{4,3,2},\binom{4,3,2}{5,1,0}$	$\binom{5,3,2}{4,1,0},\binom{4,1,0}{5,3,2}$
$\binom{3}{2}$	$\binom{5,4,3}{2,1,0},\binom{2,1,0}{5,4,3}$	$\binom{5,4,2,1,0}{3},\binom{$ c, }{$5,4,2,1,0}$	$\left.\binom{5,4,3,1,0}{2}, \begin{array}{c}\text { c, } \\ 5,4,3,1,0\end{array}\right)$	$\binom{5,4,2}{3,1,0},\binom{3,1,0}{5,4,2}$
$\binom{1}{0}$	(5,4,3,2,1) , ${ }^{(5,4,3}$	(5,4,0 $),(3,2,1)$	(5,4,3,2,0 $),\left(\begin{array}{l}\text {, } \\ \text {, } \\ \text {, }\end{array}\right.$	$(5,4,1),\left(\begin{array}{l}3,2,0 \\ 5,4\end{array}\right.$
(0)	$0,15,4,3,2,1)$	$(3,2,1),\left(\begin{array}{l}\text { 5,4, }\end{array}\right.$	($1,3,(5,4,3,2,0)$	$(3,2,0),(5,4,1)$
$\binom{5,3,1}{4,2,0}$	$\binom{5,2,1}{4,3,0},\binom{4,3,0}{5,2,1}$	$\binom{5,3,0}{4,2,1},\binom{4,2,1}{5,3,0}$	$\binom{4,3,1}{5,2,0},\binom{5,2,0}{4,3,1}$	$\binom{5,3,1}{4,2,0},\binom{5,3,1}{4,2,0}$

In the leftmost column are the four subsets of odd number of pairs Ψ_{1} of Φ_{1} (so that $\#\left(\Phi_{1} \backslash \Psi_{1}\right)$ is even), and in the topmost row are the four subsets of odd number of pairs Ψ_{2} of Φ_{2}. The row indexed by Ψ_{1} is the cell $C_{\Phi_{1}, \Psi_{1}}$ and the column indexed by Ψ_{2} is the cell $C_{\Phi_{2}, \Psi_{2}}$, and we see that $C_{\Phi_{1}, \Psi_{1}} \cap C_{\Phi_{2}, \Psi}=\left\{\Lambda, \Lambda^{\mathrm{t}}\right\}$ for some $\Lambda \in \mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{18}^{+}}$. Note that the 32 symbols in the table are all elements in $\mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{18}^{+}}$.
(2) Suppose that $\epsilon=-$. Then we have the following table:

	$\left(\begin{array}{l}- \\ -\end{array}\right.$	$\binom{5,3}{4,0}$	$\binom{3,1}{4,2}$	$\binom{5,1}{2,0}$
$\left(\begin{array}{l}- \\ - \\ \hline\end{array}\right.$	$\binom{5,4,3,2,1,0}{-},\binom{-}{5,4,3,2,1,0}$	$\left.\binom{3,2,1,0}{5,4}, \begin{array}{c}5,4 \\ 3,2,1,0\end{array}\right)$	$\binom{5,4,1,0}{3,2},\binom{3,2}{5,4,1,0}$	$\binom{5,4,3,2}{1,0},\binom{1,0}{5,4,3,2}$
$\binom{5,3}{4,2}$	$\binom{5,2,1,0}{4,3},\binom{4,3}{5,2,1,0}$	$\binom{4,2,1,0}{5,3},\binom{5,3}{4,2,1,0}$	$\binom{5,3,1,0}{4,2},\binom{4,2}{5,3,1,0}$	$\binom{4,3,1,0}{5,2},\binom{5,2}{4,3,1,0}$
$(3,1)$	$(5,4,3,0),\left(\begin{array}{l}\text {, } \\ \text {, } \\ \text {, }\end{array}\right.$	(3,0) , $5,4,2,1)$	$(5,4,2,0),(3,1)$	$(5,4,3,1),\left(\begin{array}{c}\text { 2, }\end{array}\right.$
(2,0)	(2,1), $5,4,4,0)$	$(5,4,2,1), 3,0)$	($3,1,{ }^{5}$, $\left.5,4,2,0\right)$	(2,0 $),(5,4,3,1)$
$\binom{5,1}{4,0}$	$\binom{4,3,2,1}{5,0},\binom{5,0}{4,3,2,1}$	$\binom{5,3,2,1}{4,0},\binom{4,0}{5,3,2,1}$	$\binom{5,3,2,0}{4,1},\binom{4,1}{5,3,2,0}$	$\binom{4,3,2,0}{5,1},\binom{5,1}{4,3,2,0}$

Now the leftmost column are the four subsets of even number of pairs Ψ_{1} of Φ_{1}, and the topmost row are the four subsets of even number of pairs Ψ_{2} of Φ_{2}. The 32 symbols in the table are all elements in $\mathscr{S}_{\mathrm{Z}}^{\mathrm{O}_{18}^{-}}$.

Lemma 4.39. Let Z be a special symbol of defect $0, \Phi$ an arrangement of Z_{I}, Ψ an admissible subset of pairs, Ψ_{0} an set of consecutive pairs in Z_{I} such that $\Psi_{0} \leq \Psi$. Then

$$
C_{\Phi, \Psi}=\left(C_{\Phi, \Psi} \cap \mathscr{S}_{Z}^{\Psi_{0}}\right)+\mathscr{S}_{Z, \Psi_{0}}:=\left\{\Lambda_{1}+\Lambda_{2} \mid \Lambda_{1} \in\left(C_{\Phi, \Psi} \cap \mathscr{S}_{Z}^{\Psi_{0}}\right), \Lambda_{2} \in \mathscr{S}_{Z, \Psi_{0}}\right\} .
$$

Proof. The proof is similar to that of Lemma 4.28.
Lemma 4.40. Let Z be a special symbol of defect 0 , and let Ψ_{0} be a set of consecutive pairs in Z_{I}. Let Λ_{1}, Λ_{2} be two symbols in $\mathscr{S}_{Z}^{\Psi_{0}}$ such that $\Lambda_{1} \neq \Lambda_{2}, \Lambda_{2}^{\mathrm{t}}$. There exists an arrangement Φ of Z_{I} with subsets Ψ_{1}, Ψ_{2} such that $\Psi_{0} \leq \Psi_{i}$ and $\Lambda_{i}, \Lambda_{i}^{\mathrm{t}} \in C_{\Phi, \Psi_{i}}$ for $i=1,2$, and $C_{\Phi, \Psi_{1}} \cap C_{\Phi, \Psi_{2}}=\emptyset$.

Proof. The proof of the lemma is similar to that of Lemma 4.31 except that we need to apply Lemma 4.36 instead of Lemma 4.25.

If $\Psi_{0}=\emptyset$, then $\mathscr{S}_{Z}^{\mathrm{G}, \Psi_{0}}=\mathscr{S}_{\mathrm{Z}}^{\mathrm{G}}$ and Lemma 4.40 is reduced to Lemma 4.36.

5. A System of Linear Equations

The purpose of this section is to prove Theorem 5.3. Two special cases are verified in Subsection 5.2 and Subsection 5.3. The general case is proved in Subsection 5.4. In this section, let $\left(\mathbf{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{\epsilon}\right)$ where $\epsilon=+$ or - , and let Z, Z^{\prime} be special symbols of ranks n, n^{\prime} and defects 1,0 respectively. Let $\delta=\operatorname{deg}(Z)$ and $\delta^{\prime}=\operatorname{deg}\left(Z^{\prime}\right)$.
5.1. Decomposition with respect to special symbols. Recall that $\mathscr{V}_{Z}, \mathscr{V}_{Z^{\prime}}$ are subspaces spanned by $\left\{\rho_{\Lambda} \mid \Lambda \in \mathscr{S}_{Z}\right\}$, $\left\{\rho_{\Lambda^{\prime}} \mid \Lambda^{\prime} \in \mathscr{S}_{Z^{\prime}}\right\}$ respectively. Let $\omega_{Z, Z^{\prime}}$ denote the orthogonal projection of $\omega_{G, G^{\prime}, 1}$ over $\mathscr{V}_{Z} \otimes \mathscr{V}_{Z^{\prime}}$. Then by Proposition 3.2 and Proposition 3.4 we have

$$
\omega_{G, \mathbf{G}^{\prime}, 1}=\sum_{Z, Z^{\prime}} \omega_{Z, Z^{\prime}} \quad \text { and } \quad \omega_{G, \mathbf{G}^{\prime}, 1}^{\sharp}=\sum_{Z, Z^{\prime}} \omega_{Z, Z^{\prime}}^{\sharp}
$$

where Z, Z^{\prime} run over all special symbols of rank n, n^{\prime} and defect 1,0 respectively. Moreover, because $\mathscr{B}_{\mathrm{G}, \mathrm{G}^{\prime}}=\bigcup_{Z, Z^{\prime}} \mathscr{B}_{Z, Z^{\prime}}$, we have

$$
\sum_{\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{G, G^{\prime}}} \rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}=\sum_{Z, Z^{\prime}\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{Z, Z^{\prime}}} \rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}
$$

Now (1.7) implies that

$$
\begin{equation*}
\omega_{Z, Z^{\prime}}^{\sharp}=\sum_{\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{Z, Z^{\prime}}} \rho_{\Lambda}^{\sharp} \otimes \rho_{\Lambda^{\prime}}^{\#} . \tag{5.1}
\end{equation*}
$$

Then, for any uniform class function $f \in \mathscr{V}_{Z}^{\sharp} \otimes \mathscr{V}_{Z^{\prime}}^{\sharp}$, we have

$$
\begin{equation*}
\left\langle f, \omega_{Z, Z^{\prime}}\right\rangle=\left\langle f, \omega_{Z, Z^{\prime}}^{\sharp}\right\rangle=\left\langle f, \sum_{\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{Z, Z^{\prime}}} \rho_{\Lambda}^{\sharp} \otimes \rho_{\Lambda^{\prime}}^{\#}\right\rangle=\left\langle f, \sum_{\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{Z, Z^{\prime}}} \rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}\right\rangle . \tag{5.2}
\end{equation*}
$$

Now the candidates of the uniform class functions are those construct from the cells described in Section 4.2.

Theorem 5.3. Let $\left(\mathrm{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{\epsilon}\right)$ where $\epsilon=+$ or -1 , and let Z, Z^{\prime} be special symbols of rank n, n^{\prime} and defect 1,0 respectively. Then $\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}$ or $\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}$ occurs in $\omega_{Z, Z^{\prime}}$ if and only if $\left(\Lambda, \Lambda^{\prime}\right)$ or $\left(\Lambda, \Lambda^{\prime t}\right)$ occurs in $\mathscr{B}_{Z, Z^{\prime}}$.

For Theorem 5.3 there is nothing to prove if $\mathscr{B}_{Z, Z^{\prime}}=\emptyset$, so we assume that $\mathscr{B}_{Z, Z^{\prime}} \neq \emptyset$. Then we have $\mathscr{D}_{Z, Z^{\prime}} \neq \emptyset$ by Lemma 2.13. Now we define

$$
\begin{aligned}
D_{Z^{\prime}} & :=\left\{\Lambda \in \mathscr{S}_{Z, 1} \mid\left(\Lambda, Z^{\prime}\right) \in \mathscr{D}_{Z, Z^{\prime}}\right\} \\
D_{Z} & :=\left\{\Lambda^{\prime} \in \mathscr{S}_{Z^{\prime}, 0} \mid\left(Z, \Lambda^{\prime}\right) \in \mathscr{D}_{Z, Z^{\prime}}\right\} .
\end{aligned}
$$

It is proved in [Pan21] proposition 6.4 that there are subsets of consecutive pairs $\Psi_{0}, \Psi_{0}^{\prime}$ in Z_{I}, Z_{I}^{\prime} respectively such that $D_{Z^{\prime}}=\mathscr{S}_{Z, \Psi_{0}}$ and $D_{Z}=\mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}}\left(c f\right.$. (4.1)). Then $\Psi_{0}, \Psi_{0}^{\prime}$ are called the core of $\mathscr{D}_{Z, Z^{\prime}}$ in $Z_{\mathrm{I}}, Z_{\mathrm{I}}^{\prime}$ respectively.

Suppose that $\mathscr{D}_{Z, Z^{\prime}} \neq \emptyset$, and let $\Psi_{0}, \Psi_{0}^{\prime}$ be the cores of $\mathscr{D}_{Z, Z^{\prime}}$ in $Z_{\mathrm{I}}, Z_{\mathrm{I}}^{\prime}$ respectively. Define

$$
\mathscr{B}_{Z, Z^{\prime}}^{\natural}=\mathscr{B}_{Z, Z^{\prime}} \cap\left(\mathscr{S}_{Z}^{\Psi_{0}} \times \mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}}\right) .
$$

Then it is not difficult to check that

$$
\begin{equation*}
\mathscr{B}_{Z, Z^{\prime}}=\left\{\left(\Lambda_{1}+\Lambda_{2}, \Lambda_{1}^{\prime}+\Lambda_{2}^{\prime}\right) \mid\left(\Lambda_{1}, \Lambda_{2}\right) \in \mathscr{B}_{Z, Z^{\prime}}^{\natural}, \Lambda_{2} \in \mathscr{S}_{Z, \Psi_{0}}, \Lambda_{2}^{\prime} \in \mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}}\right\} \tag{5.4}
\end{equation*}
$$

(cf. [Pan21] (6.4) and (8.1)) and $\mathscr{B}_{Z, Z^{\prime}}^{\natural}$ is an one-to-one subrelation of $\mathscr{B}_{Z, Z^{\prime}}$. Then from the proofs of [Pan21] proposition 7.17, we know that either $\operatorname{deg}\left(Z^{\prime} \backslash \Psi_{0}^{\prime}\right)=\operatorname{deg}\left(Z \backslash \Psi_{0}\right)+1$ or $\operatorname{deg}\left(Z^{\prime} \backslash \Psi_{0}^{\prime}\right)=\operatorname{deg}\left(Z \backslash \Psi_{0}\right)$.

Example 5.5. Let $\left(\mathrm{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{18}, \mathrm{O}_{18}^{+}\right), Z=\binom{5,3,1}{3,1} \in \mathscr{S}_{\mathrm{S}_{18}}$, and $Z^{\prime}=\binom{5,3,2,1}{4,2} \in \mathscr{S}_{\mathrm{O}_{18}^{+}}$. Then $Z_{\mathrm{I}}=\binom{5}{-}, \operatorname{deg}(Z)=0,\left|\mathscr{S}_{Z}\right|=1 ; Z_{\mathrm{I}}^{\prime}=Z^{\prime}, \operatorname{deg}\left(Z^{\prime}\right)=3,\left|\mathscr{S}_{Z^{\prime}}^{\mathrm{O}_{18}^{+}}\right|=2^{5}$. All the symbols in $\mathscr{S}_{Z^{\prime}}^{\mathrm{O}_{18}^{+}}$are listed in Example 4.38. It is not difficult to check that

$$
\mathscr{B}_{Z, Z^{\prime}}=\mathscr{D}_{Z, Z^{\prime}}=\left\{\left(Z, \Lambda^{\prime}\right) \left\lvert\, \Lambda^{\prime}=\binom{5,3,1}{4,2,0}\right.,\binom{5,3,0}{4,2,1},\binom{4,3,1}{5,2,0},\binom{4,3,0}{5,2,1},\binom{5,2,1}{4,3,0},\binom{5,2,0}{4,3,1},\binom{4,2,1}{5,3,0},\binom{4,2,0}{5,3,1}\right\} .
$$

Therefore,

$$
\begin{gathered}
D_{Z^{\prime}}=\{Z\}=\mathscr{S}_{Z, \Psi_{0},} \\
D_{Z}=\left\{\binom{5,3,1}{4,2,0},\binom{5,3,0}{4,2,1},\binom{4,3,1}{5,2,0},\binom{4,3,0}{5,2,1},\binom{5,2,1}{4,3,0},\binom{5,2,0}{4,3,1},\binom{4,2,2,1}{5,3,0},\binom{4,2,0}{5,3,1}\right\}=\mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}}, \\
\text { i.e., } \Psi_{0}=\emptyset \text { and } \Psi_{0}^{\prime}=\left\{\binom{5}{4},\binom{3}{2},\binom{1}{0}\right\} . \text { Now } \mathscr{S}_{Z}^{\Psi_{0}}=\{Z\}, \mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}}=\left\{Z^{\prime}\right\} \text {, and } \mathscr{B}_{Z, Z^{\prime}}^{\natural}=\left\{\left(Z, Z^{\prime}\right)\right\} .
\end{gathered}
$$

A non-empty relation $\mathscr{B}_{Z, Z^{\prime}}$ (or $\mathscr{D}_{Z, Z^{\prime}}$) is called one-to-one if $\Psi_{0}=\Psi_{0}^{\prime}=\emptyset$, which means that $D_{Z^{\prime}}=\{Z\}$ and $D_{Z}=\left\{Z^{\prime}\right\}$. If $\mathscr{B}_{Z, Z^{\prime}}$ is one-to-one, then from above we know that either $\operatorname{deg}\left(Z^{\prime}\right)=\operatorname{deg}(Z)+1$ or $\operatorname{deg}\left(Z^{\prime}\right)=\operatorname{deg}(Z)$. Then Theorem 5.3 will be proved in Subsection 5.2 for the case that $\mathscr{B}_{Z, Z^{\prime}}$ is one-to-one and $\operatorname{deg}\left(Z^{\prime}\right)=\operatorname{deg}(Z)+1$; and it will be proved in Subsection 5.3 for the case that $\mathscr{B}_{Z, Z^{\prime}}$ is one-to-one and $\operatorname{deg}\left(Z^{\prime}\right)=\operatorname{deg}(Z)$.
5.2. Special case I . In this subsection, let $\left(\mathbf{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{\epsilon}\right)$ where $\epsilon=+$ or $-, Z, Z^{\prime}$ special symbols of ranks n, n^{\prime} and defects 1,0 respectively, and we assume that $\mathscr{B}_{Z, Z^{\prime}}$ is one-to-one and $\operatorname{deg}\left(Z^{\prime}\right)=\operatorname{deg}(Z)+1$, i.e., $\delta^{\prime}=\delta+1$. We write

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{I}}=\binom{a_{1}, a_{2}, \ldots, a_{\delta+1}}{b_{1}, b_{2}, \ldots, b_{\delta}}, \quad \mathrm{Z}_{\mathrm{I}}^{\prime}=\binom{c_{1}, c_{2}, \ldots, c_{\delta^{\prime}}}{d_{1}, d_{2}, \ldots, d_{\delta^{\prime}}} \tag{5.6}
\end{equation*}
$$

and define

$$
\begin{align*}
\theta:\left\{a_{1}, \ldots, a_{\delta+1}\right\} \cup\left\{b_{1}, \ldots, b_{\delta}\right\} & \rightarrow\left\{c_{1}, \ldots, c_{\delta+1}\right\} \cup\left\{d_{1}, \ldots, d_{\delta+1}\right\} \\
a_{i} & \mapsto d_{i} \tag{5.7}\\
b_{i} & \mapsto c_{i+1}
\end{align*}
$$

for each i. Note that c_{1} is not in the image of θ. Then θ induces an injective map (still denoted by θ)

$$
\begin{align*}
& \theta: \mathscr{S}_{Z} \rightarrow \mathscr{S}_{Z^{\prime}} \\
& \Lambda_{M} \mapsto \begin{cases}\Lambda_{\theta(M)}, & \text { if } \epsilon=+; \\
\Lambda_{\left({ }_{-}^{q_{1}}\right) \cup \theta(M)}, & \text { if } \epsilon=-\end{cases} \tag{5.8}
\end{align*}
$$

where $M \subset Z_{I}$ with $|M|$ even. Note that now $\left|\mathscr{S}_{Z}\right|=2^{2 \delta},\left|\mathscr{S}_{Z^{\prime}}\right|=2^{2 \delta+1}$ and

$$
\mathscr{S}_{Z^{\prime}}=\left\{\theta(\Lambda), \theta(\Lambda)^{\mathrm{t}} \mid \Lambda \in \mathscr{S}_{Z}\right\}
$$

Lemma 5.9. Suppose that $\mathscr{B}_{Z, Z^{\prime}}$ is one-to-one and $\operatorname{deg}\left(Z^{\prime}\right)=\operatorname{deg}(Z)+1$. Then

$$
\mathscr{B}_{Z, Z^{\prime}}=\left\{(\Lambda, \theta(\Lambda)) \mid \Lambda \in \mathscr{S}_{Z}\right\}
$$

Proof. This lemma is essentially [Pan21] lemma 6.15. Note that in [Pan21] lemma 6.15, we assumed that both Z, Z^{\prime} are regular, i.e., we assumed that $Z=Z_{I}$ and $Z^{\prime}=Z_{I}^{\prime}$. However, this assumption is not necessary for the lemma.

If $\Phi=\left\{\binom{s_{1}}{t_{1}}, \ldots,\binom{s_{\delta}}{t_{\delta}},\binom{s_{\delta+1}}{-}\right\}$ is an arrangement of $Z_{\text {I }}$ (i.e., $\left\{s_{1}, \ldots, s_{\delta+1}\right\}\left(\right.$ resp. $\left.\left\{t_{1}, \ldots, t_{\delta}\right\}\right)$ is a permutation of $\left\{a_{1}, \ldots, a_{\delta+1}\right\}$ (resp. $\left.\left\{b_{1}, \ldots, b_{\delta}\right\}\right)$), then

$$
\theta(\Phi):=\left\{\binom{\theta\left(t_{1}\right)}{\theta\left(s_{1}\right)}, \ldots,\binom{\theta\left(t_{\delta}\right)}{\theta\left(s_{\delta}\right)},\binom{c_{1}}{\theta\left(s_{\delta+1}\right)}\right\}
$$

is an arrangement of Z_{I}^{\prime}. If $\Psi=\left\{\binom{s_{i_{1}}}{t_{i_{1}}}, \ldots,\binom{s_{i_{k}}}{t_{i_{k}}}\right\}$ is a subset of pairs of Φ, we define $\theta(\Psi)$ as follows:
(1) if either $\epsilon=-$ and $|\Phi \backslash \Psi|$ is odd, or $\epsilon=+$ and $|\Phi \backslash \Psi|$ is even, let

$$
\theta(\Psi)=\left\{\binom{\theta\left(t_{i_{1}}\right)}{\theta\left(s_{i_{1}}\right)}, \ldots,\binom{\theta\left(t_{i_{k^{\prime}}}\right)}{\theta\left(s_{i_{k}}\right)}\right\} ;
$$

(2) if either $\epsilon=-$ and $|\Phi \backslash \Psi|$ is even, or $\epsilon=+$ and $|\Phi \backslash \Psi|$ is odd, let

$$
\theta(\Psi)=\left\{\binom{\theta\left(t_{i_{1}}\right)}{\theta\left(s_{s_{1}}\right)}, \ldots,\binom{\theta\left(t_{i_{k}}\right)}{\theta\left(s_{i_{k}}\right)},\binom{c_{1}}{\theta\left(s_{\delta+1}\right)}\right\} .
$$

Then $\theta(\Psi)$ is an admissible subset of pairs of $\theta(\Phi)$, i.e., $\#(\theta(\Phi) \backslash \theta(\Psi))$ is even if $\epsilon=+$; $\#(\theta(\Phi) \backslash \theta(\Psi))$ is odd if $\epsilon=-$.

Lemma 5.10. Suppose that $\mathscr{B}_{Z, Z^{\prime}}$ is one-to-one and $\operatorname{deg}\left(Z^{\prime}\right)=\operatorname{deg}(Z)+1$. Let Φ be an arrangement of Z_{I}, and Ψ be a subset of pairs of Φ. Then

$$
C_{\theta(\Phi), \theta(\Psi)}=\left\{\theta(\Lambda), \theta(\Lambda)^{\mathrm{t}} \mid \Lambda \in C_{\Phi, \Psi}\right\}
$$

where $C_{\Phi, \Psi}$ is defined in (4.10).
Proof. As above, let $\delta=\operatorname{deg}(Z)$, and let $s_{\delta+1}$ be the isolated element in Φ. Suppose that $\Lambda_{M} \in C_{\Phi, \Psi}$ for some $M \subset Z_{\mathrm{I}}$ and $\theta\left(\Lambda_{M}\right)=\Lambda_{M^{\prime}}$ for some $M^{\prime} \subset Z_{\mathrm{I}}^{\prime}$. From the rules before Remark 4.13, we know that M contains exactly one element from each pair of $\Phi \backslash \Psi$ and contains some subset of pairs in Ψ. Moreover, M contains the isolated element $s_{\delta+1}$ if and only if $|\Phi \backslash \Psi|$ is odd. Then
(1) if $\epsilon=+$ and $|\Phi \backslash \Psi|$ is even, then $s_{\delta+1} \notin M$ and $M^{\prime}=\theta(M)$;
(2) if $\epsilon=+$ and $|\Phi \backslash \Psi|$ is odd, then $s_{\delta+1} \in M$ and $M^{\prime}=\theta(M)$;
(3) if $\epsilon=-$ and $|\Phi \backslash \Psi|$ is even, then $s_{\delta+1} \notin M$ and $M^{\prime}=\binom{c_{1}}{-} \cup \theta(M)$;
(4) if $\epsilon=-$ and $|\Phi \backslash \Psi|$ is odd, then $s_{\delta+1} \in M$ and $M^{\prime}=\binom{c_{1}}{-} \cup \theta(M)$.

It is easy to see from the definition above that for each case above M^{\prime} consists of exactly one element from each pair in $\theta(\Phi) \backslash \theta(\Psi)$ and a subset of pairs in $\theta(\Psi)$, i.e., $\Lambda_{M^{\prime}} \in C_{\theta(\Phi), \theta(\Psi)}$.

From (i) of Lemma 4.34, we know that

$$
\theta(\Lambda) \in C_{\theta(\Phi), \theta(\Psi)} \text { if and only if } \theta(\Lambda)^{\mathrm{t}} \in C_{\theta(\Phi), \theta(\Psi)} .
$$

So we have

$$
\begin{equation*}
\left\{\theta(\Lambda), \theta(\Lambda)^{\mathrm{t}} \mid \Lambda \in C_{\Phi, \Psi}\right\} \subseteq C_{\theta(\Phi), \theta(\Psi)} \tag{5.11}
\end{equation*}
$$

Now $\left|C_{\Phi, \Psi}\right|=2^{\delta}$ by Lemma 4.17. Because Z^{\prime} is of degree $\delta+1,\left|C_{\theta(\Phi), \theta(\Psi)}\right|=2^{\delta+1}$ by Lemma 4.34. Hence both sets in (5.11) have the same cardinality $2^{\delta+1}$, they must be the same.

Example 5.12. As in Example 2.16, let $\left(\mathbf{G}, \mathbf{G}^{\prime}\right)=\left(\mathrm{Sp}_{4}, \mathrm{O}_{8}^{+}\right)$, and $Z=\binom{2,0}{1}, Z^{\prime}=\binom{3,1}{2,0}$. Now $Z_{\mathrm{I}}=Z, Z_{\mathrm{I}}^{\prime}=Z^{\prime}, \mathscr{B}_{Z, Z^{\prime}}$ is one-to-one, $\operatorname{deg}\left(Z^{\prime}\right)=2=\operatorname{deg}(Z)+1,\left|\mathscr{S}_{Z}\right|=4$, and $\left|\mathscr{S}_{Z^{\prime}}\right|=8$. Note that $Z^{\prime}=Z^{t} \cup\binom{3}{-}$, and in fact if $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{Z, Z^{\prime}}$, then $\Lambda^{\prime}=\theta(\Lambda)=\Lambda^{\mathrm{t}} \cup\binom{3}{-}$. Now $\Phi=\left\{\binom{2}{1},\binom{0}{-}\right\}$ is an arrangement of Z_{I}, and $\theta(\Phi)=\left\{\binom{1}{2},\binom{3}{0}\right\}$ is an arrangement of $\mathrm{Z}_{\mathrm{I}}^{\prime}$. Let $\Psi=\left\{\binom{2}{1}\right\}$. Then by definition $\theta(\Psi)=\theta(\Phi)$, and it is easy to verify that

$$
\begin{aligned}
C_{\Phi, \Psi} & =\left\{\binom{2,0}{1},\binom{1,0}{2}\right\} \\
C_{\theta(\Phi), \theta(\Psi)} & =\left\{\binom{3,1}{2,0},\binom{(, 2,2}{1,0},\binom{1,0}{3,2},\binom{2,0}{3,1}\right\}=\left\{\theta(\Lambda), \theta(\Lambda)^{\mathrm{t}} \mid \Lambda \in C_{\Phi, \Psi}\right\}
\end{aligned}
$$

Proposition 5.13. Let $\left(\mathrm{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{\epsilon}\right)$ where $\epsilon=+$ or - , and let Z, Z^{\prime} be special symbols of ranks n, n^{\prime} and defects 1,0 respectively. Suppose that $\mathscr{B}_{Z, Z^{\prime}}$ is one-to-one and $\operatorname{deg}\left(Z^{\prime}\right)=\operatorname{deg}(Z)+1$. Then

$$
\omega_{Z, Z^{\prime}}=\sum_{\Lambda \in \mathscr{S}_{Z}} \rho_{\Lambda} \otimes \rho_{f(\Lambda)}
$$

where $f(\Lambda)$ is either equal to $\theta(\Lambda)$ or $\theta(\Lambda)^{t}$ (but not both).

Proof. Because we assume that $\mathscr{B}_{Z, Z^{\prime}}$ is one-to-one and $\operatorname{deg}\left(Z^{\prime}\right)=\operatorname{deg}(Z)+1$, we know that

$$
\mathscr{B}_{Z, Z^{\prime}}=\left\{(\Lambda, \theta(\Lambda)) \mid \Lambda \in \mathscr{S}_{Z}\right\}
$$

by Lemma 5.9, and (5.1) becomes

$$
\begin{equation*}
\omega_{Z, Z^{\prime}}^{\sharp}=\sum_{\Lambda \in \mathscr{S}_{Z}} \rho_{\Lambda}^{\sharp} \otimes \rho_{\theta(\Lambda)}^{\sharp} . \tag{5.14}
\end{equation*}
$$

For $\Lambda, \Lambda^{\prime} \in \mathscr{S}_{Z}$, define

$$
x_{\Lambda, \Lambda^{\prime}}=\left\langle\rho_{\Lambda} \otimes \rho_{\theta\left(\Lambda^{\prime}\right)}+\rho_{\Lambda} \otimes \rho_{\theta\left(\Lambda^{\prime}\right)}, \omega_{Z, Z^{\prime}}\right\rangle
$$

the sum of multiplicities of $\rho_{\Lambda} \otimes \rho_{\theta\left(\Lambda^{\prime}\right)}$ and $\rho_{\Lambda} \otimes \rho_{\theta\left(\Lambda^{\prime}\right) \text { t }}$ in $\omega_{Z, Z^{\prime}}$. So we need to show that $x_{\Lambda, \Lambda^{\prime}}=1$ if $\Lambda=\Lambda^{\prime}$ and $x_{\Lambda, \Lambda^{\prime}}=0$ otherwise.

Now suppose that Φ, Φ^{\prime} are any two arrangements of Z_{I}, and $\Psi \leq \Phi, \Psi^{\prime} \leq \Phi^{\prime}$. Then by Proposition 4.18 and Proposition 4.35, the class function

$$
\sum_{\Lambda \in C_{\Phi, \Psi}} \sum_{\Lambda_{1} \in C_{\theta\left(\Psi^{(}\right), \theta\left(\Psi^{\prime}\right)}} \rho_{\Lambda} \otimes \rho_{\Lambda_{1}}
$$

on $G \times G^{\prime}$ is unform. Then by Lemma 5.10, we have

$$
\sum_{\Lambda \in C_{\Phi, \Psi}} \sum_{\Lambda_{1} \in C_{\theta\left(\Phi^{\prime}\right), \theta\left(\Psi^{\prime}\right)}} \rho_{\Lambda} \otimes \rho_{\Lambda_{1}}=\sum_{\Lambda \in C_{\Phi, \Psi}} \sum_{\Lambda^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}}\left(\rho_{\Lambda} \otimes \rho_{\theta\left(\Lambda^{\prime}\right)}+\rho_{\Lambda} \otimes \rho_{\theta\left(\Lambda^{\prime}\right)}\right) .
$$

Then by (5.14), equation (5.2) becomes

$$
\begin{aligned}
\sum_{\Lambda \in C_{\Phi, \Psi}} \sum_{\Lambda^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}} x_{\Lambda, \Lambda^{\prime}} & =\left\langle\sum_{\Lambda \in C_{\Phi, \Psi}} \sum_{\Lambda^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}}\left(\rho_{\Lambda} \otimes \rho_{\theta\left(\Lambda^{\prime}\right)}+\rho_{\Lambda} \otimes \rho_{\theta\left(\Lambda^{\prime}\right) t}\right), \omega_{Z, Z^{\prime}}\right\rangle \\
& =\left\langle\sum_{\Lambda \in C_{\Phi, \Psi}} \sum_{\Lambda^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}}\left(\rho_{\Lambda} \otimes \rho_{\theta\left(\Lambda^{\prime}\right)}+\rho_{\Lambda} \otimes \rho_{\theta\left(\Lambda^{\prime}\right) t}\right), \omega_{Z, Z^{\prime}}^{\sharp}\right\rangle \\
& =\left\langle\sum_{\Lambda \in C_{\Phi, \Psi}} \sum_{\Lambda^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}}\left(\rho_{\Lambda} \otimes \rho_{\theta\left(\Lambda^{\prime}\right)}+\rho_{\Lambda} \otimes \rho_{\theta\left(\Lambda^{\prime}\right) t}\right), \sum_{\Lambda^{\prime \prime} \in \mathscr{S}_{Z}} \rho_{\Lambda^{\prime \prime}}^{\sharp} \otimes \rho_{\theta\left(\Lambda^{\prime \prime}\right)}^{\sharp}\right\rangle \\
& =\left\langle\sum_{\Lambda \in C_{\Phi, \Psi}} \sum_{\Lambda^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}}\left(\rho_{\Lambda} \otimes \rho_{\theta\left(\Lambda^{\prime}\right)}+\rho_{\Lambda} \otimes \rho_{\theta\left(\Lambda^{\prime}\right) t}\right), \sum_{\Lambda^{\prime \prime} \in \mathscr{S}_{Z}} \rho_{\Lambda^{\prime \prime}} \otimes \rho_{\theta\left(\Lambda^{\prime \prime}\right)}\right\rangle .
\end{aligned}
$$

From the definition of θ we know that $\theta\left(\Lambda^{\prime \prime}\right) \neq \theta\left(\Lambda^{\prime}\right)^{\text {t }}$ for any $\Lambda^{\prime \prime}, \Lambda^{\prime} \in \mathscr{S}_{Z}$. For a symbol $\Lambda^{\prime \prime} \in \mathscr{S}_{Z}$ to contribute a multiplicity in the above identity, we need $\Lambda^{\prime \prime}=\Lambda$ and $\Lambda^{\prime \prime}=\Lambda^{\prime}$ for some $\Lambda \in C_{\Phi, \Psi}$ and some $\Lambda^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}$, i.e., $\Lambda^{\prime \prime}$ must be in the intersection $C_{\Phi, \Psi} \cap C_{\Phi^{\prime}, \Psi^{\prime}}$. Therefore, the above equation becomes

$$
\begin{equation*}
\sum_{\Lambda \in C_{\Phi, \Psi}} \sum_{\Lambda^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}} x_{\Lambda, \Lambda^{\prime}}=\left|C_{\Phi, \Psi} \cap C_{\Phi^{\prime}, \Psi^{\prime}}\right| \tag{5.15}
\end{equation*}
$$

for any two arrangements Φ, Φ^{\prime} of Z_{I} with any $\Psi \leq \Phi$ and any $\Psi^{\prime} \leq \Phi^{\prime}$.
Suppose that Λ_{1}, Λ_{2} are distinct symbols in \mathscr{S}_{Z}. Then by Lemma 4.25, there exists an arrangement Φ with two subsets of pairs Ψ_{1}, Ψ_{2} such that $\Lambda_{i} \in C_{\Phi, \Psi_{i}}$ for $i=1,2$ and $C_{\Phi, \Psi_{1}} \cap C_{\Phi, \Psi_{2}}=\emptyset$. Because each $x_{\Lambda, \Lambda^{\prime}}$ is a non-negative integer, from equation (5.15) we conclude that $x_{\Lambda_{1}, \Lambda_{2}}=0$ for any distinct $\Lambda_{1}, \Lambda_{2} \in \mathscr{S}_{Z}$.

For any $\Lambda \in \mathscr{S}_{Z}$, by Lemma 4.23, there exist two arrangements Φ_{1}, Φ_{2} of Z_{I} with subsets of pairs Ψ_{1}, Ψ_{2} respectively such that $C_{\Phi_{1}, \Psi_{1}} \cap C_{\Phi_{2}, \Psi_{2}}=\{\Lambda\}$. Because we know $x_{\Lambda, \Lambda^{\prime}}=0$ if $\Lambda \neq \Lambda^{\prime}$, equation (5.15) is reduced to $x_{\Lambda, \Lambda}=1$. Therefore, exactly one of $\rho_{\Lambda} \otimes \rho_{\theta(\Lambda)}, \rho_{\Lambda} \otimes$ $\rho_{\theta(\Lambda)^{\text {t }}}$ occurs in $\omega_{Z, Z^{\prime}}$.

For $\Lambda \in \mathscr{S}_{Z}$, let $f(\Lambda)$ be either $\theta(\Lambda)$ or $\theta(\Lambda)^{t}$ such that $\rho_{\Lambda} \otimes \rho_{f(\Lambda)}$ occurs in $\omega_{Z, Z^{\prime}}$. Then we just show the character $\bar{\omega}_{Z, Z^{\prime}}$ defined by

$$
\bar{\omega}_{Z, Z^{\prime}}=\sum_{\Lambda \in \mathscr{S}_{Z}} \rho_{\Lambda} \otimes \rho_{f(\Lambda)}
$$

is a sub-character of $\omega_{Z, Z^{\prime}}$, i.e., $\omega_{Z, Z^{\prime}}-\bar{\omega}_{Z, Z^{\prime}}$ is a non-negative integral combination of irreducible characters of $G \times G^{\prime}$. Note that $\rho_{\theta(\Lambda)}$ and $\rho_{\theta(\Lambda)^{\text {t }}}$ are different by a sign character of $\mathrm{O}_{2 n^{\prime}}^{\epsilon}(q)$, so they have the same degree. Therefore $\bar{\omega}_{Z, Z}$ and $\sum_{\Lambda \in \mathscr{S}_{Z}} \rho_{\Lambda} \otimes \rho_{\theta(\Lambda)}$ have the same degree. By (5.14) and (3.1), we see that $\omega_{Z, Z^{\prime}}$ and $\bar{\omega}_{Z, Z^{\prime}}$ have the same degree. Therefore $\bar{\omega}_{Z, Z^{\prime}}=\omega_{Z, Z^{\prime}}$ and the proposition is proved.
5.3. Special case II. In this subsection, let $\left(G, G^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{\epsilon}\right)$ where $\epsilon=+$ or $-, Z, Z^{\prime}$ special symbols of ranks n, n^{\prime} and defects 1,0 respectively, and we assume that $\mathscr{B}_{Z, Z^{\prime}}$ is one-to-one and $\operatorname{deg}\left(Z^{\prime}\right)=\operatorname{deg}(Z)$, i.e., $\delta^{\prime}=\delta$. Write $Z_{\mathrm{I}}, Z_{\mathrm{I}}^{\prime}$ as in (5.6), and define

$$
\begin{align*}
\theta:\left\{c_{1}, \ldots, c_{\delta}\right\} \cup\left\{d_{1}, \ldots, d_{\delta}\right\} & \rightarrow\left\{a_{1}, \ldots, a_{\delta+1}\right\} \cup\left\{b_{1}, \ldots, b_{\delta}\right\} \\
c_{i} & \mapsto b_{i} \tag{5.16}\\
d_{i} & \mapsto a_{i+1}
\end{align*}
$$

for each i. Note that a_{1} is not in the image of θ. Then θ induces an injective map

$$
\begin{align*}
\theta: \mathscr{S}_{Z^{\prime}} & \rightarrow \mathscr{S}_{Z} \\
\Lambda_{M^{\prime}} & \mapsto \begin{cases}\Lambda_{\theta\left(M^{\prime}\right)}, & \text { if } \epsilon=+; \\
\Lambda_{\left(a_{1}\right) \cup \theta\left(M^{\prime}\right)}, & \text { if } \epsilon=-\end{cases} \tag{5.17}
\end{align*}
$$

where $M^{\prime} \subset Z_{\text {I }}^{\prime}$ with $\left|M^{\prime}\right|$ even if $\epsilon=+$; and $\left|M^{\prime}\right|$ odd if $\epsilon=-$. Note that now $\left|\mathscr{S}_{Z}\right|=2^{2 \delta}$, $\left|\mathscr{S}_{Z^{\prime}}\right|=2^{2 \delta-1}$, and

$$
\mathscr{S}_{Z}=\left\{\theta\left(\Lambda^{\prime}\right) \mid \Lambda^{\prime} \in \mathscr{S}_{Z^{\prime}}^{\mathrm{O}_{2 n^{\prime}}^{+}} \cup \mathscr{S}_{Z^{\prime}}^{\mathrm{O}_{2 n^{\prime}}^{-}}\right\}
$$

Lemma 5.18. Suppose that $\mathscr{B}_{Z, Z^{\prime}}$ is one-to-one and $\operatorname{deg}\left(Z^{\prime}\right)=\operatorname{deg}(Z)$. Then

$$
\mathscr{B}_{Z, Z^{\prime}}=\left\{\left(\theta\left(\Lambda^{\prime}\right), \Lambda^{\prime}\right) \mid \Lambda^{\prime} \in \mathscr{S}_{Z^{\prime}}\right\}
$$

Proof. The proof is similar to that of Lemma 5.9.

$$
\theta\left(\Phi^{\prime}\right)=\left\{\binom{a_{1}}{-},\binom{\theta\left(t_{1}^{\prime}\right)}{\theta\left(s_{1}^{\prime}\right)}, \ldots,\left(\begin{array}{c}
\theta\binom{\left(t_{\gamma^{\prime}}^{\prime}\right)}{\theta\left(s_{\delta^{\prime}}^{\prime}\right)} \tag{5.19}
\end{array}\right\}\right.
$$

is an arrangement of Z_{I}. If $\Psi^{\prime}=\left\{\binom{s_{i_{1}}^{\prime}}{t_{i_{1}}^{\prime}}, \ldots,\binom{s_{1}^{\prime}}{t_{i_{i}}^{\prime}}\right\}$ is an admissible subset of pairs of Φ^{\prime}, then

$$
\begin{equation*}
\theta\left(\Psi^{\prime}\right)=\left\{\binom{\theta\left(t_{i_{1}}^{\prime}\right)}{\theta\left(s_{i_{1}}^{\prime}\right)}, \ldots,\binom{\theta\left(t_{i_{k}}^{\prime}\right)}{\theta\left(s_{i_{k}}^{\prime}\right)}\right\} \tag{5.20}
\end{equation*}
$$

is a subset of pairs in $\theta\left(\Phi^{\prime}\right)$.
Lemma 5.21. Suppose that $\mathscr{B}_{Z, Z^{\prime}}$ is one-to-one and $\operatorname{deg}\left(Z^{\prime}\right)=\operatorname{deg}(Z)$. Let Φ^{\prime} be an arrangement of Z_{1}^{\prime}, and let Ψ^{\prime} be an admissible subset of pairs in Φ^{\prime}. Then

$$
C_{\theta\left(\Phi^{\prime}\right), \theta\left(\Psi^{\prime}\right)}=\left\{\theta(\Lambda) \mid \Lambda \in C_{\Phi^{\prime}, \Psi^{\prime}}\right\} .
$$

Proof. Suppose that $\Lambda_{M^{\prime}} \in C_{\Phi^{\prime}, \Psi^{\prime}}$ for some $M^{\prime} \subset Z_{\mathrm{I}}^{\prime}$, and $\theta\left(\Lambda_{M^{\prime}}\right)=\Lambda_{M}$ for some M. We know that $M^{\prime}=M_{1}^{\prime} \cup M_{2}^{\prime}$ where M_{1}^{\prime} consists of exactly one element from each pair in $\Phi^{\prime} \backslash \Psi^{\prime}$ and $M_{2}^{\prime} \leq \Psi^{\prime}$.
(1) First suppose that $\epsilon=+$. Then $\left|M^{\prime}\right|$ is even. From the above definition, we see that $M=\theta\left(M^{\prime}\right)$. Hence M contains one element from each pair in $\theta\left(\Phi^{\prime}\right) \backslash \theta\left(\Psi^{\prime}\right)$ and contains a subset of pairs in $\theta\left(\Psi^{\prime}\right)$, and $|M|$ is even. Therefore $\theta\left(\Lambda_{M^{\prime}}\right)$ is in $C_{\theta\left(\Phi^{\prime}\right), \theta\left(\Psi^{\prime}\right)}$.
(2) Next suppose that $\epsilon=-$. Now $\left|M^{\prime}\right|$ is odd, and we see that $M=\binom{a_{1}}{-} \cup \theta\left(M^{\prime}\right)$ from (5.17). Now again M consists one element from each pair in $\theta\left(\Phi^{\prime}\right) \backslash \theta\left(\Psi^{\prime}\right)$ and contains a subset of pairs in $\theta\left(\Psi^{\prime}\right)$, and $|M|$ is even. Therefore $\theta\left(\Lambda_{M^{\prime}}\right)$ is in $C_{\theta\left(\Phi^{\prime}\right), \theta\left(\Psi^{\prime}\right)}$.
Now we conclude that $\left\{\theta(\Lambda) \mid \Lambda \in C_{\Phi^{\prime}, \Psi^{\prime}}\right\} \subseteq C_{\theta\left(\Phi^{\prime}\right), \theta\left(\Psi^{\prime}\right) \text {. Since both sets have the same }}$ cardinality 2^{δ}, they must be equal.
Corollary 5.22. Suppose that $\mathscr{B}_{Z, Z^{\prime}}$ is one-to-one and $\operatorname{deg}\left(Z^{\prime}\right)=\operatorname{deg}(Z)$. Let Φ^{\prime} be an arrangement of $\mathrm{Z}_{\mathrm{I}}^{\prime}$ and θ given in (5.17). Then

$$
\theta\left(\mathscr{S}_{Z^{\prime}}\right)=\bigcup_{\text {admissible } \Psi^{\prime} \leq \Phi^{\prime}} C_{\theta\left(\Phi^{\prime}\right), \theta\left(\Psi^{\prime}\right)}
$$

Proof. From Lemma 4.34, we know that

$$
\mathscr{S}_{Z^{\prime}}=\bigcup_{\text {admissible }} C_{\Psi^{\prime} \leq \Phi^{\prime}} C_{\Phi^{\prime}, \Psi^{\prime}} .
$$

Then the corollary follows from Lemma 5.21 immediately.
Proposition 5.23. Let $\left(\mathrm{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{\epsilon}\right)$ where $\epsilon=+$ or - , and let $\mathrm{Z}, \mathrm{Z}^{\prime}$ be special symbols of ranks n, n^{\prime} and defects 1,0 respectively. Suppose that $\mathscr{B}_{Z, Z^{\prime}}$ is one-to-one and $\operatorname{deg}\left(Z^{\prime}\right)=\operatorname{deg}(Z)$. Then

$$
\omega_{Z, Z^{\prime}}=\sum_{\Lambda^{\prime} \in \mathscr{S}_{Z^{\prime}}} \rho_{\theta\left(\Lambda^{\prime}\right)} \otimes \rho_{f^{\prime}\left(\Lambda^{\prime}\right)}
$$

where $f^{\prime}\left(\Lambda^{\prime}\right)$ is equal to either Λ^{\prime} or $\Lambda^{\prime t}$ (but not both).
Proof. The proof is similar to that of Proposition 5.13. Because we assume that $\mathscr{B}_{Z, Z^{\prime}}$ is one-to-one and $\operatorname{deg}\left(Z^{\prime}\right)=\operatorname{deg}(Z)$, we know that

$$
\mathscr{B}_{Z, Z^{\prime}}=\left\{\left(\theta\left(\Lambda^{\prime}\right), \Lambda^{\prime}\right) \mid \Lambda^{\prime} \in \mathscr{S}_{Z^{\prime}}\right\}
$$

by Lemma 5.18, and (5.1) becomes

$$
\begin{equation*}
\omega_{Z, Z^{\prime}}^{\sharp}=\sum_{\Lambda^{\prime} \in \mathscr{S}_{Z^{\prime}}} \rho_{\theta\left(\Lambda^{\prime}\right)}^{\sharp} \otimes \rho_{\Lambda^{\prime}}^{\sharp} \tag{5.24}
\end{equation*}
$$

For $\Lambda \in \mathscr{S}_{Z}$ and $\Lambda^{\prime} \in \mathscr{S}_{Z^{\prime}}$, define

$$
x_{\Lambda, \Lambda^{\prime}}=\left\langle\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}, \omega_{Z, Z^{\prime}}\right\rangle
$$

Then each $x_{\Lambda, \Lambda^{\prime}}$ is a non-negative integer. For an arrangement Φ of Z_{I} with a subset of pairs Ψ, and an arrangement Φ^{\prime} of Z_{I}^{\prime} with an admissible subset of pairs Ψ^{\prime}, the class function

$$
\sum_{\Lambda \in C_{\Phi, \Psi}} \sum_{\Lambda^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}} \rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}
$$

on $G \times G^{\prime}$ is uniform by Proposition 4.18 and Proposition 4.35. Then, by (5.24), we have

$$
\begin{aligned}
\sum_{\Lambda \in C_{\Phi, \Psi},} \sum_{\Lambda^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}} x_{\Lambda, \Lambda^{\prime}} & =\left\langle\sum_{\Lambda \in C_{\Phi, \Psi}} \sum_{\Lambda^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}} \rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}, \omega_{Z, Z^{\prime}}\right\rangle \\
& =\left\langle\sum_{\Lambda \in C_{\Phi, \Psi}} \sum_{\Lambda^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}} \rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}, \sum_{\Lambda^{\prime \prime} \in \mathscr{S}_{Z^{\prime}}} \rho_{\theta\left(\Lambda^{\prime \prime}\right)} \otimes \rho_{\Lambda^{\prime \prime}}\right\rangle .
\end{aligned}
$$

For a symbol $\Lambda^{\prime \prime} \in \mathscr{S}_{Z^{\prime}}$ to contribute a multiplicity, we need both

- $\Lambda^{\prime \prime}=\Lambda^{\prime}$ for some $\Lambda^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}$, i.e., $\theta\left(\Lambda^{\prime \prime}\right)=\theta\left(\Lambda^{\prime}\right)$ for some $\theta\left(\Lambda^{\prime}\right) \in C_{\theta\left(\Phi^{\prime}\right), \theta\left(\Psi^{\prime}\right)}$, and
- $\theta\left(\Lambda^{\prime \prime}\right)=\Lambda$ for some $\Lambda \in C_{\Phi, \Psi}$,
i.e., we need $\theta\left(\Lambda^{\prime \prime}\right)$ to be in the intersection $C_{\Phi, \Psi} \cap C_{\theta\left(\Phi^{\prime}\right), \theta\left(\Psi^{\prime}\right)}$ by Lemma 5.21. Therefore,

$$
\begin{equation*}
\sum_{\Lambda \in C_{\Phi, \Psi}} \sum_{\Lambda^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}} x_{\Lambda, \Lambda^{\prime}}=\left|C_{\Phi, \Psi} \cap C_{\theta\left(\Phi^{\prime}\right), \theta\left(\Psi^{\prime}\right)}\right| \tag{5.25}
\end{equation*}
$$

for any arrangements Φ of Z_{I} with any $\Psi \leq \Phi$, and any arrangement Φ^{\prime} of Z_{I}^{\prime} with any admissible $\Psi^{\prime} \leq \Phi^{\prime}$.

Now let $\Phi=\theta\left(\Phi^{\prime \prime}\right)$ and $\Psi=\theta\left(\Psi^{\prime \prime}\right)$ for some arrangement $\Phi^{\prime \prime}$ of $Z_{\text {I }}^{\prime}$ with some admissible $\Psi^{\prime \prime} \leq \Phi^{\prime \prime}$. Then by Lemma 5.21, (5.25) becomes

$$
\begin{equation*}
\sum_{\Lambda^{\prime \prime} \in C_{\Phi^{\prime \prime}, \Psi^{\prime \prime}}} \sum_{\Lambda^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}} x_{\theta\left(\Lambda^{\prime \prime}\right), \Lambda^{\prime}}=\left|C_{\theta\left(\Phi^{\prime \prime}\right), \theta\left(\Psi^{\prime \prime}\right)} \cap C_{\theta\left(\Phi^{\prime}\right), \theta\left(\Psi^{\prime}\right)}\right|=\left|C_{\Phi^{\prime \prime}, \Psi^{\prime \prime}} \cap C_{\Phi^{\prime}, \Psi^{\prime}}\right| \tag{5.26}
\end{equation*}
$$

for any two arrangements $\Phi^{\prime}, \Phi^{\prime \prime}$ of Z_{I}^{\prime} and any admissible $\Psi^{\prime} \leq \Phi^{\prime}, \Psi^{\prime \prime} \leq \Phi^{\prime \prime}$. Suppose that $\Lambda_{1}^{\prime}, \Lambda_{2}^{\prime}$ are symbols in $\mathscr{S}_{Z^{\prime}}$ such that $\Lambda_{1}^{\prime} \neq \Lambda_{2}^{\prime},\left(\Lambda_{2}^{\prime}\right)^{\mathrm{t}}$. Then by Lemma 4.36 , there exists an arrangement Φ^{\prime} of Z_{I}^{\prime} with two subsets of pairs $\Psi_{1}^{\prime}, \Psi_{2}^{\prime}$ such that $\Lambda_{i}^{\prime},\left(\Lambda_{i}^{\prime}\right)^{\mathrm{t}} \in C_{\Phi^{\prime}, \Psi_{i}^{\prime}}$ for $i=1,2$ and $C_{\Phi^{\prime}, \Psi_{1}^{\prime}} \cap C_{\Phi^{\prime}, \Psi_{2}^{\prime}}=\emptyset$. Because each $x_{\theta\left(\Lambda^{\prime \prime}\right), \Lambda^{\prime}}$ is a non-negative integer, from equation (5.26) we conclude that $x_{\theta\left(\Lambda_{1}^{\prime}\right), \Lambda_{2}^{\prime}}=x_{\theta\left(\Lambda_{1}^{\prime}\right),\left(\Lambda_{2}^{\prime}\right)^{t}}=0$.

Clearly there is an arrangement Φ^{\prime} of Z_{I}^{\prime} such that $\theta\left(\Phi^{\prime}\right)$ in (5.19) is the arrangement Φ_{2} of $Z_{\text {I }}$ in Lemma 4.22. For any given $\Lambda^{\prime} \in \mathscr{S}_{Z^{\prime}}$, by Lemma 4.23 there exist an arrangements Φ_{1} of $Z_{\text {I }}$ with a subset of pairs Ψ_{1}, and a subset of pairs Ψ_{2} of $\theta\left(\Phi^{\prime}\right)$ such that $C_{\Phi_{1}, \Psi_{1}} \cap$ $C_{\theta\left(\Phi^{\prime}\right), \Psi_{2}}=\left\{\theta\left(\Lambda^{\prime}\right)\right\}$. Moreover, by Corollary 5.22 we know that $\Psi_{2}=\theta\left(\Psi^{\prime}\right)$ for some admissible $\Psi^{\prime} \leq \Phi^{\prime}$, i.e.,

$$
\begin{equation*}
\left\{\theta\left(\Lambda^{\prime}\right)\right\}=C_{\Phi_{1}, \Psi_{1}} \cap C_{\theta\left(\Phi^{\prime}\right), \theta\left(\Psi^{\prime}\right)} \tag{5.27}
\end{equation*}
$$

Because we know $x_{\theta\left(\Lambda_{1}^{\prime}\right), \Lambda_{2}^{\prime}}=0$ for any $\Lambda_{1}^{\prime} \neq \Lambda_{2}^{\prime},\left(\Lambda_{2}^{\prime}\right)^{\mathrm{t}}$, by (5.27), equation (5.25) is reduced to

$$
x_{\theta\left(\Lambda^{\prime}\right), \Lambda^{\prime}}+x_{\theta\left(\Lambda^{\prime}\right), \Lambda^{\prime}}=1 .
$$

For $\Lambda^{\prime} \in \mathscr{S}_{Z^{\prime}}$, let $f^{\prime}\left(\Lambda^{\prime}\right)$ be either Λ^{\prime} or $\Lambda^{\prime t}$ such that $\rho_{\theta\left(\Lambda^{\prime}\right)} \otimes \rho_{f^{\prime}\left(\Lambda^{\prime}\right)}$ occurs in $\omega_{Z, Z^{\prime}}$. We just show that the character $\sum_{\Lambda^{\prime} \in \mathscr{S}_{Z^{\prime}}} \rho_{\theta\left(\Lambda^{\prime}\right)} \otimes \rho_{f^{\prime}\left(\Lambda^{\prime}\right)}$ is a sub-character of $\omega_{Z, Z^{\prime}}$. By the same argument in the last paragraph of proof of Proposition 5.13, we conclude that

$$
\omega_{Z, Z^{\prime}}=\sum_{\Lambda^{\prime} \in \mathscr{S}_{Z^{\prime}}} \rho_{\theta\left(\Lambda^{\prime}\right)} \otimes \rho_{f^{\prime}\left(\Lambda^{\prime}\right)}
$$

5.4. The general case. Now let $\left(\mathrm{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{\epsilon}\right)$ where $\epsilon=+$ or - , and let Z, Z^{\prime} be special symbols of ranks n, n^{\prime} and defects 1,0 respectively. Suppose that $\mathscr{D}_{Z, Z^{\prime}} \neq \emptyset$, and let $\Psi_{0}, \Psi_{0}^{\prime}$ denote the cores of $\mathscr{D}_{Z, Z^{\prime}}$ in $Z_{\mathrm{I}}, Z_{\mathrm{I}}^{\prime}$ respectively. Let Φ, Φ^{\prime} be arrangements of $Z_{\mathrm{I}}, Z_{\mathrm{I}}^{\prime}$ with subsets of pairs Ψ, Ψ^{\prime} respectively such that $\Psi_{0} \leq \Psi \leq \Phi$ and $\Psi_{0}^{\prime} \leq \Psi^{\prime} \leq \Phi^{\prime}$. It is known that either $\operatorname{deg}\left(Z^{\prime} \backslash \Psi_{0}^{\prime}\right)=\operatorname{deg}\left(Z \backslash \Psi_{0}\right)+1$ or $\operatorname{deg}\left(Z^{\prime} \backslash \Psi_{0}^{\prime}\right)=\operatorname{deg}\left(Z \backslash \Psi_{0}\right)$.
(1) Suppose that $\operatorname{deg}\left(Z^{\prime} \backslash \Psi_{0}^{\prime}\right)=\operatorname{deg}\left(Z \backslash \Psi_{0}\right)+1$. Let θ be given as in (5.7) (with Z_{I} replaced by $Z_{\mathrm{I}} \backslash \Psi_{0}$ and Z_{I}^{\prime} replaced by $Z_{\mathrm{I}}^{\prime} \backslash \Psi_{0}^{\prime}$), and so we have a mapping $\theta: \mathscr{S}_{Z}^{\Psi_{0}} \rightarrow \mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}}$ given as in (5.8). Now $\Phi \backslash \Psi_{0}$ is an arrangement of $Z_{I} \backslash \Psi_{0}$, and $\theta\left(\Phi \backslash \Psi_{0}\right)$ is an arrangement of $Z_{\mathrm{I}}^{\prime} \backslash \Psi_{0}^{\prime}$. Now $\Psi \backslash \Psi_{0}$ is a subset of pairs of $\Phi \backslash \Psi_{0}$, and we define

$$
\begin{equation*}
\bar{\theta}(\Phi)=\theta\left(\Phi \backslash \Psi_{0}\right) \cup \Psi_{0}^{\prime}, \quad \bar{\theta}(\Psi)=\theta\left(\Psi \backslash \Psi_{0}\right) \cup \Psi_{0}^{\prime} \tag{5.28}
\end{equation*}
$$

It is easy to see that $\bar{\theta}(\Phi)$ is an arrangement of $Z_{\mathrm{I}}^{\prime}, \bar{\theta}(\Psi)$ is a subset of pairs of $\bar{\theta}(\Phi)$, and $\Psi_{0}^{\prime} \leq \bar{\theta}(\Psi)$.
(2) Suppose that $\operatorname{deg}\left(Z^{\prime} \backslash \Psi_{0}^{\prime}\right)=\operatorname{deg}\left(Z \backslash \Psi_{0}\right)$. Let θ is given as in (5.16), and so we have a mapping $\theta: \mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}} \rightarrow \mathscr{S}_{Z}^{\Psi_{0}}$. Now $\Phi^{\prime} \backslash \Psi_{0}^{\prime}$ is an arrangement of $Z_{\mathrm{I}}^{\prime} \backslash \Psi_{0}^{\prime}$, and $\theta\left(\Phi^{\prime} \backslash \Psi_{0}^{\prime}\right)$ is an arrangement of $Z_{\mathrm{I}} \backslash \Psi_{0}$ Then we define

$$
\begin{equation*}
\bar{\theta}\left(\Phi^{\prime}\right)=\theta\left(\Phi^{\prime} \backslash \Psi_{0}^{\prime}\right) \cup \Psi_{0}, \quad \bar{\theta}\left(\Psi^{\prime}\right)=\theta\left(\Psi^{\prime} \backslash \Psi_{0}^{\prime}\right) \cup \Psi_{0} \tag{5.29}
\end{equation*}
$$

Similarly, $\bar{\theta}\left(\Phi^{\prime}\right)$ is an arrangement of $Z_{\mathrm{I}}, \bar{\theta}\left(\Psi^{\prime}\right)$ is a subset of pairs of $\bar{\theta}\left(\Phi^{\prime}\right)$, and $\Psi_{0} \leq \bar{\theta}\left(\Psi^{\prime}\right)$.

Lemma 5.30. Keep the above setting.
(i) Suppose that $\operatorname{deg}\left(Z^{\prime} \backslash \Psi_{0}^{\prime}\right)=\operatorname{deg}\left(Z \backslash \Psi_{0}\right)+1$. Let Φ be an arrangement of Z_{I}, and let Ψ be a subset of pairs in Φ. Then

$$
C_{\bar{\theta}(\Phi), \bar{\theta}(\Psi)}=\left\{\theta\left(\Lambda_{1}\right)+\Lambda_{2}, \theta\left(\Lambda_{1}\right)^{t}+\Lambda_{2} \mid \Lambda_{1} \in C_{\Phi, \Psi} \cap \mathscr{S}_{Z}^{\Psi_{0}}, \Lambda_{2} \in \mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}}\right\} .
$$

(ii) Suppose that $\operatorname{deg}\left(Z^{\prime} \backslash \Psi_{0}^{\prime}\right)=\operatorname{deg}\left(Z \backslash \Psi_{0}\right)$. Let Φ^{\prime} be an arrangement of Z_{I}^{\prime}, and let Ψ^{\prime} be an admissible subset of pairs in Φ^{\prime}. Then

$$
C_{\bar{\theta}\left(\Phi^{\prime}\right), \bar{\theta}\left(\Psi^{\prime}\right)}=\left\{\theta\left(\Lambda_{1}\right)+\Lambda_{2} \mid \Lambda_{1} \in C_{\Phi^{\prime}, \Psi^{\prime}} \cap \mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}}, \Lambda_{2} \in \mathscr{S}_{Z, \Psi_{0}}\right\} .
$$

Proof. First suppose that $\operatorname{deg}\left(Z^{\prime} \backslash \Psi_{0}^{\prime}\right)=\operatorname{deg}\left(Z \backslash \Psi_{0}\right)+1$. Now $\Psi_{0}^{\prime} \leq \bar{\theta}(\Psi) \leq \bar{\theta}(\Phi)$, so by Lemma 4.28, we have

$$
C_{\bar{\theta}(\Phi), \bar{\theta}(\Psi)}=\left\{\Lambda_{1}^{\prime}+\Lambda_{2} \mid \Lambda_{1}^{\prime} \in C_{\theta(\Phi), \theta(\Psi)} \cap \mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}}, \Lambda_{2} \in \mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}}\right\} .
$$

We know that the relation $\mathscr{D}_{Z, Z^{\prime}} \cap\left(\mathscr{S}_{Z}^{\Psi_{0}} \times \mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}}\right)$ is one-to-one, so by Lemma 5.10, we see that

$$
C_{\bar{\theta}(\Phi), \bar{\theta}(\Psi)} \cap \mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}}=\left\{\theta\left(\Lambda_{1}\right), \theta\left(\Lambda_{1}\right)^{\mathrm{t}} \mid \Lambda_{1} \in C_{\Phi, \Psi} \cap \mathscr{S}_{Z}^{\Psi_{0}}\right\}
$$

and hence the lemma is proved.
The proof of (ii) is similar.
Example 5.31. (1) Let $\left(G, G^{\prime}\right)=\left(\mathrm{Sp}_{12}, \mathrm{O}_{14}^{+}\right), Z=\binom{4,2,0}{3,1}, Z^{\prime}=\binom{5,2,0}{4,2,0}$. Then $Z_{\mathrm{I}}=Z$, $Z_{\mathrm{I}}^{\prime}=\binom{5}{4},\left|\mathscr{S}_{Z}\right|=16$, and $\left|\mathscr{S}_{Z^{\prime}}\right|=2$. It is not difficult to check that

$$
\begin{aligned}
\mathscr{B}_{Z, Z^{\prime}} & =\left\{\left(\Lambda, Z^{\prime}\right) \left\lvert\, \Lambda=\binom{4,2,0}{3,1}\right.,\binom{4,3,0}{2,0},\binom{4,2,1}{3,0},\binom{4,3,1}{2,0}\right\} ; \\
D_{Z} & =\left\{Z^{\prime}\right\}=\mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}} ; \\
D_{Z^{\prime}} & =\left\{\binom{4,2,0}{3,1},\binom{4,3,0}{2,1},\binom{4,2,1}{3,0},\binom{4,3,1}{2,0}\right\}=\mathscr{S}_{Z, \Psi_{0}},
\end{aligned}
$$

i.e., $\Psi_{0}=\left\{\binom{2}{3},\binom{0}{1}\right\}, \Psi_{0}^{\prime}=\emptyset$. Now Ψ_{0} is regarded as the subsymbol $\binom{2,0}{3,1}$ of Z_{I}, so $Z_{\mathrm{I}} \backslash \Psi_{0}=\binom{4}{-}, Z_{\mathrm{I}}^{\prime} \backslash \Psi_{0}^{\prime}=\binom{5}{4}$, and hence $\operatorname{deg}\left(Z^{\prime} \backslash \Psi_{0}^{\prime}\right)=\operatorname{deg}\left(Z \backslash \Psi_{0}\right)+1=1$. Then $\mathscr{S}_{Z}^{\Psi_{0}}=\{Z\}$ and $\mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}}=\left\{Z^{\prime}, Z^{\prime t}\right\}$, the mapping $\theta: \mathscr{S}_{Z}^{\Psi_{0}} \rightarrow \mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}}$ is just $Z \mapsto Z^{\prime}$, and so $\mathscr{B}_{Z, Z^{\prime}}^{\natural}=\left\{\left(Z, Z^{\prime}\right)\right\}$. The only arrangement Φ of Z_{I} containing Ψ_{0} is Ψ_{0} itself, and so now $\Psi_{0}=\Psi=\Phi=\left\{\binom{2}{3},\binom{0}{1}\right\}$. Now $\bar{\theta}(\Phi)=\left\{\binom{5}{4}\right\}$ and $\bar{\theta}(\Psi)=\left\{\binom{5}{4}\right\}$ by (5.28). We have

$$
\begin{aligned}
C_{\Phi, \Psi} & =\left\{\binom{4,2,0}{3,0},\binom{4,3,0}{2,1},\binom{4,2,1}{3,0},\binom{4,3,1}{2,0}\right\}, & C_{\Phi, \Psi} \cap \mathscr{S}_{Z}^{\Psi_{0}}=\{Z\} \\
C_{\bar{\theta}(\Phi), \bar{\theta}(\Psi)} & =\left\{Z^{\prime}, Z^{\prime t}\right\}, &
\end{aligned}
$$

and the conclusion in (i) of Lemma 5.30 is clearly verified.
(2) Let $\left(\mathbf{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{14}, \mathrm{O}_{14}^{+}\right), Z=\binom{5,2,0}{3,1}, Z^{\prime}=\binom{5,2,0}{4,2,0}$. Then $Z_{\mathrm{I}}=Z, Z_{\mathrm{I}}^{\prime}=\binom{5}{4},\left|\mathscr{S}_{Z}\right|=$ 16 , and $\left|\mathscr{S}_{Z^{\prime}}\right|=2$. It is not difficult to check that

$$
\begin{aligned}
& \mathscr{B}_{Z, Z^{\prime}}=\left\{\left(\Lambda, Z^{\prime}\right),\left(\Lambda, Z^{\prime t}\right) \left\lvert\, \Lambda=\binom{4,2,0}{3,1}\right.,\binom{4,3,0}{2,1},\binom{4,2,1}{3,0},\binom{4,3,1}{2,0}\right\} ; \\
& D_{Z}=\left\{Z^{\prime}, Z^{\prime t}\right\}=\mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}} ; \\
& D_{Z^{\prime}}=\left\{\binom{4,2,0}{3,1},\binom{4,3,0}{2,1},\binom{4,2,1}{3,0},\binom{4,3,1}{2,0}\right\}=\mathscr{S}_{Z, \Psi_{0}} \text {, }
\end{aligned}
$$

i.e., $\Psi_{0}=\left\{\binom{2}{3},\binom{0}{1}\right\}, \Psi_{0}^{\prime}=\left\{\binom{5}{4}\right\}$. Now $Z_{I} \backslash \Psi_{0}=\binom{4}{-}, Z_{\mathrm{I}}^{\prime} \backslash \Psi_{0}^{\prime}=\emptyset$, and hence $\operatorname{deg}\left(Z^{\prime} \backslash \Psi_{0}^{\prime}\right)=\operatorname{deg}\left(Z \backslash \Psi_{0}\right)=0$. Then $\mathscr{S}_{Z}^{\Psi_{0}}=\{Z\}$ and $\mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}}=\left\{Z^{\prime}\right\}$, the mapping $\theta: \mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}} \rightarrow \mathscr{S}_{Z}^{\Psi_{0}}$ is just $Z^{\prime} \mapsto Z$, and so $\mathscr{B}_{Z, Z^{\prime}}^{\natural}=\left\{\left(Z, Z^{\prime}\right)\right\}$. The only arrangement Φ^{\prime} of $Z_{\text {I }}^{\prime}$ containing Ψ_{0}^{\prime} is Ψ_{0}^{\prime} itself, and so now $\Psi_{0}^{\prime}=\Psi^{\prime}=\Phi^{\prime}=\left\{\binom{5}{4}\right\}$. Now $\bar{\theta}\left(\Phi^{\prime}\right)=\bar{\theta}\left(\Psi^{\prime}\right)=\left\{\binom{2}{3},\binom{0}{1}\right\}$ by (5.29). We have

$$
\begin{aligned}
C_{\Phi^{\prime}, \Psi^{\prime}} & =\left\{Z^{\prime}, Z^{\prime t}\right\}, & C_{\Phi^{\prime}, \Psi^{\prime}} \cap \mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}}=\left\{Z^{\prime}\right\} \\
C_{\bar{\theta}\left(\Phi^{\prime}\right), \bar{\theta}\left(\Psi^{\prime}\right)} & =\left\{\binom{4,2,0}{3,1},\binom{4,3,0}{2,1},\binom{4,2,1}{3,0},\binom{4,3,1}{2,0}\right\}, &
\end{aligned}
$$

and the conclusion in (ii) of Lemma 5.30 is verified.
Proof of Theorem 5.3. Let $\left(\mathrm{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{\epsilon}\right)$, and let Z, Z^{\prime} be special symbols of rank n, n^{\prime}, defects 1,0 respectively. Let $\Psi_{0}, \Psi_{0}^{\prime}$ be the cores in $Z_{\mathrm{I}}, Z_{\mathrm{I}}^{\prime}$ of $\mathscr{D}_{Z, Z^{\prime}}$, and $\delta_{0}, \delta_{0}^{\prime}$ the numbers of pairs in $\Psi_{0}, \Psi_{0}^{\prime}$ respectively. From (5.4), we have

$$
\sum_{\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{Z, Z^{\prime}}} \rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}=\sum_{\left(\Lambda_{1}, \Lambda_{1}^{\prime}\right) \in \mathscr{B}_{Z, Z^{\prime}}^{\natural}} \sum_{\Lambda_{2} \in D_{Z^{\prime}}} \sum_{\Lambda_{2}^{\prime} \in D_{Z}} \rho_{\Lambda_{1}+\Lambda_{2}} \otimes \rho_{\Lambda_{1}^{\prime}+\Lambda_{2}^{\prime}} .
$$

Note that $D_{Z^{\prime}}=\left\{\Lambda_{M} \mid M \leq \Psi_{0}\right\}$ and $D_{Z}=\left\{\Lambda_{N} \mid N \leq \Psi_{0}^{\prime}\right\}$ by proposition 6.4 in [Pan21]. From the proofs of [Pan21] proposition 7.17, we know that either $\operatorname{deg}\left(Z^{\prime} \backslash \Psi_{0}^{\prime}\right)=\operatorname{deg}(Z \backslash$ $\left.\Psi_{0}\right)+1 \operatorname{or} \operatorname{deg}\left(Z^{\prime} \backslash \Psi_{0}^{\prime}\right)=\operatorname{deg}\left(Z \backslash \Psi_{0}\right)$.
(1) Suppose that $\operatorname{deg}\left(Z^{\prime} \backslash \Psi_{0}^{\prime}\right)=\operatorname{deg}\left(Z \backslash \Psi_{0}\right)+1$. Then from the discussion before Lemma 5.30 and Lemma 5.9, we have a injective map $\theta: \mathscr{S}_{Z}^{\Psi_{0}} \rightarrow \mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}}$, and

$$
\begin{equation*}
\mathscr{B}_{Z, Z^{\prime}}^{\natural}=\left\{(\Lambda, \theta(\Lambda)) \mid \Lambda \in \mathscr{S}_{Z}^{\Psi_{0}}\right\} . \tag{5.32}
\end{equation*}
$$

For two arrangements Φ, Φ^{\prime} of Z_{I} with a subset of pairs Ψ, Ψ^{\prime} respectively such that $\Psi_{0} \leq \Psi$ and $\Psi_{0} \leq \Psi^{\prime}$, by Lemma 4.28 and Proposition 4.18 the class function

$$
\sum_{\Lambda \in C_{\Phi, \Psi}} \rho_{\Lambda}=\sum_{\Lambda_{1} \in C_{\Phi, \Psi}^{\natural}} \sum_{\Lambda_{2} \in \mathscr{T}_{Z, \mathbb{W}_{0}}} \rho_{\Lambda_{1}+\Lambda_{2}}
$$

on G is uniform where $C_{\Phi, \Psi}^{\natural}=C_{\Phi, \Psi} \cap \mathscr{S}_{Z}^{\Psi_{0}}$, similarly by Lemma 5.30 , the class function

$$
\sum_{\Lambda^{\prime} \in C_{\left.\bar{\theta} \Phi^{\prime},\right), \dot{\theta}\left(\Psi^{\prime}\right)}} \rho_{\Lambda^{\prime}}=\sum_{\Lambda_{1}^{\prime} \in C_{\Phi^{\prime}, \mathbb{W}^{\prime}}^{\natural}} \sum_{\Lambda_{2}^{\prime} \in S_{Z^{\prime}, \Psi_{0}^{\prime}}} \rho_{\theta\left(\Lambda_{1}^{\prime}\right)+\Lambda_{2}^{\prime}}+\rho_{\theta\left(\Lambda_{1}^{\prime}\right)^{\prime}+\Lambda_{2}^{\prime}}
$$

on G^{\prime} is uniform where $C_{\Phi^{\prime}, \Psi^{\prime}}^{\natural}=C_{\Phi^{\prime}, \Psi^{\prime}} \cap \mathscr{S}_{Z}^{\Psi_{0}}$.
For $\Lambda_{1}, \Lambda_{1}^{\prime} \in \mathscr{S}_{Z}^{\Psi_{0}}$, we define

$$
x_{\Lambda_{1}, \Lambda_{1}^{\prime}}=\frac{1}{2^{\delta_{0}+\delta_{0}^{\prime}}} \sum_{\Lambda_{2} \in \mathscr{S}_{Z, \Psi_{0}}} \sum_{2}^{\Lambda_{2}^{\prime} \in \mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}}}\left\langle\rho_{\Lambda_{1}+\Lambda_{2}} \otimes \rho_{\theta\left(\Lambda_{1}^{\prime}\right)+\Lambda_{2}^{\prime}}+\rho_{\Lambda_{1}+\Lambda_{2}} \otimes \rho_{\theta\left(\Lambda_{1}^{\prime}\right)^{t}+\Lambda_{2}^{\prime}}, \omega_{Z, Z^{\prime}}\right\rangle
$$

Note that $\left|\mathscr{S}_{Z, \Psi_{0}}\right|=2^{\delta_{0}}$ and $\left|\mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}}\right|=2^{\delta_{0}^{\prime}}$ by (4.2). Now by (5.2), (5.4) and (5.32), we have

$$
\begin{aligned}
& \sum_{\Lambda_{1} \in C_{\Phi, \Psi}^{\natural}} \sum_{\Lambda_{1}^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}^{\natural}} x_{\Lambda_{1}, \Lambda_{1}^{\prime}} \\
&= \frac{1}{2^{\delta_{0}+\delta_{0}^{\prime}}}\left\langle\sum_{\Lambda_{1} \in C_{\Phi, \Psi}^{\natural}} \sum_{\Lambda_{1}^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}^{\natural}} \sum_{\Lambda_{2} \in \mathscr{S}_{Z, \Psi_{0}}} \sum_{\Lambda_{2}^{\prime} \in \mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}}}\left(\rho_{\Lambda_{1}+\Lambda_{2}} \otimes \rho_{\theta\left(\Lambda_{1}^{\prime}\right)+\Lambda_{2}^{\prime}}+\rho_{\Lambda_{1}+\Lambda_{2}} \otimes \rho_{\theta\left(\Lambda_{1}^{\prime}\right)+\Lambda_{2}^{\prime}}\right),\right. \\
&\left.\sum_{\Lambda_{1}^{\prime \prime} \in \mathcal{S}_{Z}^{\Psi_{0}}} \sum_{\Lambda_{2}^{\prime \prime} \in \mathscr{S}_{Z, \mathbb{W}_{0}}} \sum_{\Lambda_{2}^{\prime \prime \prime} \in \mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}}} \rho_{\Lambda_{1}^{\prime \prime}+\Lambda_{2}^{\prime \prime}} \otimes \rho_{\theta\left(\Lambda_{1}^{\prime \prime}\right)+\Lambda_{2}^{\prime \prime \prime}}\right\rangle .
\end{aligned}
$$

For a symbol $\Lambda_{1}^{\prime \prime} \in \mathscr{S}_{Z}^{\Psi_{0}}$ to contribute a multiplicity in the above identity, by Lemma 4.6, we need $\Lambda_{1}^{\prime \prime}=\Lambda_{1}$ and $\Lambda_{1}^{\prime \prime}=\Lambda_{1}^{\prime}$ for some $\Lambda_{1} \in C_{\Phi, \Psi}^{\natural}$ and some $\Lambda_{1}^{\prime} \in$ $C_{\Phi^{\prime}, \Psi^{\prime}}^{\natural}$, i.e., $\Lambda_{1}^{\prime \prime}$ must be in the intersection $C_{\Phi, \Psi}^{\natural} \cap C_{\Phi^{\prime}, \Psi^{\prime}}^{\natural}$. Then

$$
\begin{equation*}
\sum_{\Lambda_{1} \in C_{\Phi, \Psi}^{\natural}} \sum_{\Lambda_{1}^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}^{\natural}} x_{\Lambda_{1}, \Lambda_{1}^{\prime}}=\frac{\left|C_{\Phi, \Psi}^{\natural} \cap C_{\Phi^{\prime}, \Psi^{\prime}}^{\natural}\right|}{2^{\delta_{0}+\delta_{0}^{\prime}}} \sum_{\Lambda_{2} \in \mathscr{S}_{Z, \Psi_{0}}} \sum_{\Lambda_{2}^{\prime} \in \mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}}} 1=\left|C_{\Phi, \Psi}^{\natural} \cap C_{\Phi^{\prime}, \Psi^{\prime}}^{\natural}\right| \tag{5.33}
\end{equation*}
$$

for any arrangements Φ, Φ^{\prime} of Z_{I} with subsets of pairs Ψ, Ψ^{\prime} respectively such that $\Psi_{0} \leq \Psi$ and $\Psi_{0} \leq \Psi^{\prime}$. Note that as in the proof of Proposition 5.13, $\theta\left(\Lambda_{1}^{\prime \prime}\right) \neq$ $\theta\left(\Lambda_{1}^{\prime}\right)^{t}$ for any $\Lambda_{1}^{\prime}, \Lambda_{1}^{\prime \prime} \in \mathscr{S}_{Z}^{\Psi_{0}}$.

Suppose that Λ_{1}, Λ_{2} are distinct symbols in $\mathscr{S}_{Z}^{\Psi_{0}}$. By Lemma 4.31, there exists an arrangement Φ of Z_{I} with two subsets of pairs Ψ_{1}, Ψ_{2} such that $\Psi_{0} \leq \Psi_{i}, \Lambda_{i} \in$ $C_{\Phi, \Psi_{i}}$ for $i=1,2$ and $C_{\Phi, \Psi_{1}} \cap C_{\Phi, \Psi_{2}}=\emptyset$. Then $C_{\Phi, \Psi_{1}}^{\natural} \cap C_{\Phi, \Psi_{2}}^{\natural}=\emptyset$. Because each $x_{\Lambda_{1}, \Lambda_{1}^{\prime}}$ is a non-negative integer, from (5.33) we conclude that $x_{\Lambda_{1}, \Lambda_{2}}=0$ for any distinct $\Lambda_{1}, \Lambda_{2} \in \mathscr{S}_{Z}^{\Psi_{0}}$.

Finally, for any $\Lambda \in \mathscr{S}_{Z}^{\Psi_{0}}$, by Lemma 4.30, there exist two arrangements Φ_{1}, Φ_{2} of $Z_{\text {I }}$ with subsets of pairs Ψ_{1}, Ψ_{2} respectively such that $\Psi_{0} \leq \Psi_{i}$ for $i=1,2$ and

$$
C_{\Phi_{1}, \Psi_{1}}^{\natural} \cap C_{\Phi_{2}, \Psi_{2}}^{\natural}=C_{\Phi_{1}, \Psi_{1}} \cap C_{\Phi_{2}, \Psi_{2}} \cap \mathscr{S}_{Z}^{\Psi_{0}}=\{\Lambda\} .
$$

Because we know $x_{\Lambda_{1}, \Lambda_{2}}=0$ if $\Lambda_{1} \neq \Lambda_{2}$, equation (5.33) is now reduced to $x_{\Lambda, \Lambda}=1$.
Suppose that $\Lambda \in \mathscr{S}_{Z}$ and $\Lambda^{\prime} \in \mathscr{S}_{Z^{\prime}}$ such that $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{Z, Z^{\prime}}$. We can write $\Lambda=\Lambda_{1}+\Lambda_{2}$ for $\Lambda_{1} \in \mathscr{S}_{Z}^{\Psi_{0}}$ and $\Lambda_{2} \in \mathscr{S}_{Z, \Psi_{0}}$ and similarly write $\Lambda^{\prime}=\Lambda_{1}^{\prime}+\Lambda_{2}^{\prime}$ for $\Lambda_{1}^{\prime} \in \mathscr{S}_{Z^{\prime}}^{\Psi_{0}}$ and $\Lambda_{2}^{\prime} \in \mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}}$ such that $\left(\Lambda_{1}, \Lambda_{1}^{\prime}\right) \in \mathscr{B}_{Z, Z^{\prime}}^{\natural}$. Then we have shown that either $\rho_{\Lambda_{1}+\Lambda_{2}} \otimes \rho_{\Lambda_{1}^{\prime}+\Lambda_{2}^{\prime}}$ or $\rho_{\Lambda_{1}+\Lambda_{2}} \otimes \rho_{\Lambda_{1}^{\prime t}+\Lambda_{2}^{\prime}}$ occurs in $\omega_{Z, Z^{\prime}}$. Note that $\Lambda^{\prime t}=$ $\left(\Lambda_{1}^{\prime}+\Lambda_{2}^{\prime}\right)^{\mathrm{t}}=\Lambda_{1}^{\prime t}+\Lambda_{2}^{\prime}$ by [Pan21] lemma 2.1. Hence we conclude that either $\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}$ or $\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime t}}$ occurs in $\omega_{Z, Z^{\prime}}$.
(2) Suppose that $\operatorname{deg}\left(Z^{\prime} \backslash \Psi_{0}^{\prime}\right)=\operatorname{deg}\left(Z \backslash \Psi_{0}\right)$. Then from the discussion before Lemma 5.30 and Lemma 5.18, we have a injective map $\theta: \mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}} \rightarrow \mathscr{S}_{Z}^{\Psi_{0}}$ and

$$
\mathscr{B}_{Z, Z^{\prime}}^{\natural}=\left\{\left(\theta\left(\Lambda^{\prime}\right), \Lambda^{\prime}\right) \mid \Lambda^{\prime} \in \mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}}\right\} .
$$

For an arrangement Φ of Z_{I} with a subset of pairs Ψ such that $\Psi_{0} \leq \Psi$, and an arrangement Φ^{\prime} of Z_{I}^{\prime} with an admissible subset of pairs Ψ^{\prime} such that $\Psi_{0}^{\prime} \leq \Psi^{\prime}$, the
class function

$$
\sum_{\Lambda \in C_{\Phi, \Psi}} \sum_{\Lambda^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}} \rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}=\sum_{\Lambda_{1} \in C_{\Phi, \Psi}^{\natural}} \sum_{\Lambda_{1}^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}^{\natural}} \sum_{\Lambda_{2} \in \mathscr{S}_{Z, \Psi_{0}}} \sum_{\Lambda_{2}^{\prime} \in \mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}}} \rho_{\Lambda_{1}+\Lambda_{2}} \otimes \rho_{\Lambda_{1}^{\prime}+\Lambda_{2}^{\prime}}
$$

on $G \times G^{\prime}$ is uniform by Proposition 4.18 and Proposition 4.35.
For $\Lambda_{1} \in \mathscr{S}_{Z}^{\Psi_{0}}$ and $\Lambda_{1}^{\prime} \in \mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}}$, define

$$
x_{\Lambda_{1}, \Lambda_{1}^{\prime}}=\frac{1}{2^{\delta_{0}+\delta_{0}^{\prime}}} \sum_{\Lambda_{2} \in \mathscr{S}_{Z, \psi_{0}}} \sum_{\Lambda_{2}^{\prime} \in \mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}}}\left\langle\rho_{\Lambda_{1}+\Lambda_{2}} \otimes \rho_{\Lambda_{1}^{\prime}+\Lambda_{2}^{\prime}}, \omega_{Z, Z^{\prime}}\right\rangle
$$

Then

$$
\begin{aligned}
& \sum_{\Lambda_{1} \in C_{\Phi, \Psi}^{\natural}} \sum_{\Lambda_{1}^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}^{\natural}} x_{\Lambda_{1}, \Lambda_{1}^{\prime}}=\frac{1}{2^{\delta_{0}+\delta_{0}^{\prime}}}\left\langle\sum_{\Lambda_{1} \in C_{\Phi, \Psi}^{\natural}} \sum_{\Lambda_{1}^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}^{\natural}} \sum_{\Lambda_{2} \in \mathscr{S}_{Z, \Psi_{0}}} \sum_{\Lambda_{2}^{\prime} \in \mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}}} \rho_{\Lambda_{1}+\Lambda_{2}} \otimes \rho_{\Lambda_{1}^{\prime}+\Lambda_{2}^{\prime}},\right. \\
& \sum_{\Lambda_{1}^{\prime \prime} \in \mathscr{S}_{Z^{\prime}}^{\Psi^{\prime}}} \\
&\left.\sum_{\Lambda_{2}^{\prime \prime} \in \mathscr{S}_{Z, \Psi_{0}}} \sum_{\Lambda_{2}^{\prime \prime \prime} \in \mathscr{S}_{Z^{\prime}, \Psi_{0}^{\prime}}} \rho_{\theta\left(\Lambda_{1}^{\prime \prime}\right)+\Lambda_{2}^{\prime \prime}} \otimes \rho_{\Lambda_{1}^{\prime \prime}+\Lambda_{2}^{\prime \prime \prime}}\right\rangle .
\end{aligned}
$$

By the same argument in (1) and in the proof of Proposition 5.23 (in particular, (5.25)) we conclude that

$$
\begin{equation*}
\sum_{\Lambda_{1} \in C_{\Phi, \Psi}^{\natural}} \sum_{\Lambda_{1}^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}^{\natural}} x_{\Lambda_{1}, \Lambda_{1}^{\prime}}=\left|C_{\Phi, \Psi}^{\natural} \cap C_{\bar{\theta}\left(\Phi^{\prime}\right), \bar{\theta}\left(\Psi^{\prime}\right)}^{\natural}\right| \tag{5.34}
\end{equation*}
$$

for any arrangement Φ of Z_{I} with subset of pairs Ψ such that $\Psi_{0} \leq \Psi$, and any arrangement Φ^{\prime} of Z_{I}^{\prime} with admissible subset of pairs Ψ^{\prime} such that $\Psi_{0}^{\prime} \leq \Psi^{\prime}$.

Now let $\Phi=\bar{\theta}\left(\Phi^{\prime \prime}\right)$ and $\Psi=\bar{\theta}\left(\Psi^{\prime \prime}\right)$ for some arrangement $\Phi^{\prime \prime}$ of Z_{I}^{\prime} with some admissible subset of pairs $\Psi^{\prime \prime}$. Then by Lemma 5.30, (5.34) becomes

$$
\begin{equation*}
\sum_{\Lambda_{1}^{\prime \prime} \in C_{\Phi^{\prime \prime}, \Psi^{\prime \prime}}^{\natural}} \sum_{\Lambda_{1}^{\prime} \in C_{\Phi^{\prime}, \Psi^{\prime}}^{\natural}} x_{\theta\left(\Lambda_{1}^{\prime \prime}\right), \Lambda_{1}^{\prime}}=\left|C_{\bar{\theta}\left(\Phi^{\prime \prime}\right), \bar{\theta}\left(\Psi^{\prime \prime}\right)}^{\natural} \cap C_{\bar{\theta}\left(\Phi^{\prime}\right), \bar{\theta}\left(\Psi^{\prime}\right)}^{\natural}\right|=\left|C_{\Phi^{\prime \prime}, \Psi^{\prime \prime}}^{\natural} \cap C_{\Phi^{\prime}, \Psi^{\prime}}^{\natural}\right| \tag{5.35}
\end{equation*}
$$

for any two arrangements $\Phi^{\prime}, \Phi^{\prime \prime}$ of Z_{I}^{\prime} and any admissible subsets of pairs $\Psi^{\prime}, \Psi^{\prime \prime}$ containing Ψ_{0}^{\prime} respectively. Suppose $\Lambda_{1}^{\prime}, \Lambda_{2}^{\prime}$ are symbols in $\mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}}$ such that $\Lambda_{1}^{\prime} \neq$ $\Lambda_{2}^{\prime}, \Lambda_{2}^{\prime t}$. Then by Lemma 4.40, there exists an arrangement Φ^{\prime} of Z_{I}^{\prime} with two subsets of pairs $\Psi_{1}^{\prime}, \Psi_{2}^{\prime}$ containing Ψ_{0}^{\prime} such that $\Lambda_{i}^{\prime}, \Lambda_{i}^{\prime t} \in C_{\Phi^{\prime}, \Psi_{i}^{\prime}}$ for $i=1,2$ and $C_{\Phi^{\prime}, \Psi_{1}^{\prime}} \cap C_{\Phi^{\prime}, \Psi_{2}^{\prime}}=\emptyset$. Because each $x_{\theta\left(\Lambda^{\prime \prime}\right), \Lambda^{\prime}}$ is a non-negative integer, from equation (5.35) we conclude that

$$
x_{\theta\left(\Lambda_{1}^{\prime}\right), \Lambda_{2}^{\prime}}=x_{\theta\left(\Lambda_{1}^{\prime}\right), \Lambda_{2}^{t}}=0
$$

Clearly there is an arrangement Φ^{\prime} of Z_{I}^{\prime} such that $\bar{\theta}\left(\Phi^{\prime}\right)$ in (5.29) is the arrangement Φ_{2} in Lemma 4.30. For any given $\Lambda_{1}^{\prime} \in \mathscr{S}_{Z^{\prime}}^{\Psi_{0}^{\prime}}$, then $\theta\left(\Lambda_{1}^{\prime}\right) \in \mathscr{S}_{Z}^{\Psi_{0}}$, and by Lemma 4.30, there exist an arrangement Φ_{1} of Z_{I} with a subset of pairs Ψ_{1}, and a subset of pairs Ψ_{2} of $\bar{\theta}\left(\Phi^{\prime}\right)$ given above such that $\Psi_{0} \leq \Psi_{1}, \Psi_{0} \leq \Psi_{2}$, and $C_{\Phi_{1}, \Psi_{1}}^{\natural} \cap C_{\bar{\theta}\left(\Phi^{\prime}\right), \Psi_{2}}^{\natural}=\left\{\theta\left(\Lambda_{1}^{\prime}\right)\right\}$. Similar to the argument in the proof of Proposition 5.23, we see that $\Psi_{2}=\bar{\theta}\left(\Psi^{\prime}\right)$ for some admissible Ψ^{\prime} such that $\Psi_{0}^{\prime} \leq \Psi^{\prime} \leq \Phi^{\prime}$. Therefore we have

$$
C_{\Phi_{1}, \Psi_{1}}^{\natural} \cap C_{\bar{\theta}\left(\Phi^{\prime}\right), \bar{\theta}\left(\Psi^{\prime}\right)}^{\natural}=\left\{\theta\left(\Lambda_{1}^{\prime}\right)\right\} .
$$

Because we know $x_{\theta\left(\Lambda_{1}\right), \Lambda_{2}}=0$ for any $\Lambda_{1} \neq \Lambda_{2}, \Lambda_{2}^{\mathrm{t}}$, (5.34) is now reduced to

$$
x_{\theta\left(\Lambda_{1}^{\prime}\right), \Lambda_{1}^{\prime}}+x_{\theta\left(\Lambda_{1}^{\prime}\right), \Lambda_{1}^{\prime t}}=1 .
$$

By the same argument in the last paragraph of (1), we conclude that if $\left(\Lambda, \Lambda^{\prime}\right) \in$ $\mathscr{B}_{Z, Z^{\prime}}$, then either $\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}$ or $\rho_{\Lambda} \otimes \rho_{\Lambda^{t}}$ occurs in $\omega_{Z, Z^{\prime}}$.
For two cases (1) and (2), and for each $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{Z, Z^{\prime}}$, define $\widetilde{\Lambda}^{\prime}$ to be either Λ^{\prime} or $\Lambda^{\prime t}$ such that $\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}$ occurs in $\omega_{Z, Z^{\prime}}$. Therefore, $\sum_{\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{Z, Z^{\prime}}} \rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}$ is a sub-character of $\omega_{Z, Z^{\prime}}$. Then by the same argument in the last paragraph of the proof of Proposition 5.13, we conclude that

$$
\omega_{Z, Z^{\prime}}=\sum_{\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{Z, Z^{\prime}}} \rho_{\Lambda} \otimes \rho_{\tilde{\Lambda}^{\prime}}
$$

From the above proof, we conclude the following corollary:
Corollary 5.36. Let $\left(\mathbf{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{\epsilon}\right)$ where $\epsilon=+$ or $-, \rho_{\Lambda} \in \mathscr{E}(G)_{1}, \rho_{\Lambda^{\prime}} \in \mathscr{E}\left(G^{\prime}\right)_{1}$ such that $\Lambda^{\prime} \neq \Lambda^{\prime t}$. Then exactly one of $\left(\Lambda, \Lambda^{\prime}\right),\left(\Lambda, \Lambda^{\prime t}\right)$ occurs in $\mathscr{B}_{\mathrm{G}, \mathrm{G}^{\prime}}$ if and only if exactly one of $\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}, \rho_{\Lambda} \otimes \rho_{\Lambda^{\prime t}}$ occurs in the correspondence.

6. Symbol Correspondence and Parabolic Induction

The purpose of this section is to remove the ambiguity of Theorem 5.3, i.e., to provide a proof of Theorem 1.8. The proof for the case $\operatorname{def}\left(\Lambda^{\prime}\right) \neq 0$ is in Subsection 6.1 (Proposition 6.4); and the proof for the case $\operatorname{def}\left(\Lambda^{\prime}\right)=0$ is in Subsection 6.3 (Proposition 6.20).
6.1. Properties of the parametrization. For a symbol

$$
\begin{equation*}
\Lambda=\binom{a_{1}, a_{2}, \ldots, a_{m_{1}}}{b_{1}, b_{2}, \ldots, b_{m_{2}}} \in \mathscr{S} \tag{6.1}
\end{equation*}
$$

we define Ω_{Λ}^{+}to be the set consisting of the following types of symbols:
(I) $\binom{a_{1}, \ldots, a_{i-1}, a_{i}+1, a_{i+1}, \ldots, a_{m_{1}}}{b_{1}, b_{2}, \ldots, b_{m_{2}}}$ for $i=1, \ldots, m_{1}$ if $a_{i-1}>a_{i}+1$ (the condition is empty if $i=1$);
(II) $\left(\begin{array}{l}b_{1}, \ldots, b_{j-1}, b_{j},+1, b_{j+1}, \ldots, b_{m_{2}}\end{array}\right)$ for $j=1, \ldots, m_{2}$ if $b_{j-1}>b_{j}+1$ (the condition is empty if $j=1$);
(III) $\binom{a_{1}+1, a_{2}+1, \ldots, a_{m_{1}}+1,1}{b_{1}+1, b_{2}+1, \ldots, b_{m_{2}}+1,0}$ if $a_{m_{1}} \neq 0$;
(IV) $\binom{a_{1}+1, a_{2}+1, \ldots, a_{m_{1}}+1,0}{b_{1}+1, b_{2}+1, \ldots, b_{m_{2}}+1,1}$ if $b_{m_{2}} \neq 0$.

Clearly, if $\Lambda^{\prime} \in \Omega_{\Lambda^{+}}$, then $\operatorname{rank}\left(\Lambda^{\prime}\right)=\operatorname{rank}(\Lambda)+1$ and $\operatorname{def}\left(\Lambda^{\prime}\right)=\operatorname{def}(\Lambda)$.
We also define

$$
\Omega_{\Lambda}^{-}=\left\{\Lambda^{\prime} \in \mathscr{S} \mid \Lambda \in \Omega_{\Lambda^{\prime}}^{+}\right\} .
$$

Therefore, if $\Lambda^{\prime} \in \Omega_{\Lambda}^{-}$, then $\operatorname{rank}\left(\Lambda^{\prime}\right)=\operatorname{rank}(\Lambda)-1$ and $\operatorname{def}\left(\Lambda^{\prime}\right)=\operatorname{def}(\Lambda)$. It is not difficult to see that Ω_{Λ}^{-}consists of symbols of the following types:
(I') $\binom{a_{1}, \ldots, a_{i-1}, a_{i}-1, a_{i+1}, \ldots, a_{m_{1}}}{b_{1}, b_{2}, \ldots, b_{m}}$ for $i=1, \ldots, m_{1}-1$ if $a_{i}>a_{i+1}+1$;
$\binom{a_{1}, \ldots, a_{a_{1}},-a_{1}, a_{m_{1}}-1}{b_{1}, b_{2}, \ldots, b_{m}}$ if $a_{m_{1}} \geq 1$ and $\left(a_{m_{1}}, b_{m_{2}}\right) \neq(1,0)$;
(II') $\left(\begin{array}{c}\substack{1 \\ b_{1}, \ldots, b_{j-1}, b_{j}-1, b_{j+1}, \ldots, b_{m_{2}}}\end{array}\right)$ for $j=1, \ldots, m_{2}-1$ if $b_{j}>b_{j+1}+1$;
$\binom{a_{1}, a_{2}, \ldots, a_{m_{1}}}{b_{1}, \ldots, b_{m_{2}-1}, b_{m_{2}-1}}$ if $b_{m_{2}} \geq 1$ and $\left(a_{m_{1}}, b_{m_{2}}\right) \neq(0,1)$;
(III') $\binom{a_{1}-1, a_{2}-1, \ldots, a_{m_{1}-1}-1}{b_{1}-1, b_{2}-1, \ldots, b_{m_{2}-1}-1}$ if $\left(a_{m_{1}}, b_{m_{2}}\right)=(1,0)$ or $(0,1)$.

Example 6.2. Suppose that $\Lambda=\binom{4,2,1}{3,0}$. Then we have

$$
\begin{aligned}
& \Omega_{\Lambda}^{+}=\left\{\binom{5,2,1}{3,0},\binom{4,3,1}{3,0},\binom{4,2,1}{4,0},\binom{4,2,1}{3,1},\binom{5,3,2,1}{4,1,0}\right\}, \\
& \Omega_{\Lambda}^{-}=\left\{\binom{3,2,1}{3,0},\binom{4,2,1}{2,0},\binom{3,1}{2}\right\} .
\end{aligned}
$$

Note that $\binom{3,1}{2} \sim\binom{4,2,0}{3,0}$ (cf. Subsection 2.1).
Recall that in Subsection 3.2 and Subsection 3.3, we have a parametrization $\mathscr{S}_{\mathrm{G}} \rightarrow$ $\mathscr{E}(G)_{1}$ by $\Lambda \mapsto \rho_{\Lambda}$ for $\mathrm{G}=\mathrm{Sp}_{2 n}$ or $\mathrm{O}_{2 n^{\prime}}^{\epsilon}$. The parametrization also satisfies the following conditions:

- The unique unipotent cuspidal character ζ_{k} of $\mathrm{Sp}_{2 k(k+1)}(q)$ is parametrized by $\zeta_{k}=\rho_{\Lambda_{k}}$ where Λ_{k} is given in (3.5).
- For $k \geq 1$, the two unipotent cuspidal characters $\zeta_{k}^{\mathrm{I}}, \zeta_{k}^{\mathrm{II}}$ of $\mathrm{O}_{2 k^{2}}^{\epsilon_{k}}(q)$ where $\epsilon_{k}=$ $(-1)^{k}$ are parametrized by $\zeta_{k}^{\mathrm{I}}=\rho_{\Lambda_{k}^{\prime}}$ and $\zeta_{k}^{\mathrm{II}}=\rho_{\Lambda_{k}^{\prime t}}$ where Λ_{k}^{\prime} is given in (3.7). For $k=0$, the trivial character $1_{\mathrm{O}_{0}^{+}}$of $\mathrm{O}_{0}^{+}(q)$ is also a unipotent cuspidal character and is parametrized by the empty symbol $\binom{-}{-}$.
- $1_{\mathrm{O}_{2}^{+}}=\rho_{\binom{1}{0}}$ and $\operatorname{sgn}_{\mathrm{O}_{2}^{+}}=\rho_{\binom{0}{1}}^{0}$.
- The following branching rule holds:

$$
\begin{gather*}
\operatorname{Ind}_{P_{n}}^{\mathrm{S}_{2(n+1)}(q)}\left(\rho_{\Lambda} \otimes 1\right)=\sum_{\Lambda^{\prime \prime} \in \Omega_{\Lambda}^{+}} \rho_{\Lambda^{\prime \prime}} ; \\
\operatorname{Ind}_{P_{n^{\prime}}^{\prime}}^{\mathrm{O}_{2\left(n^{\prime}+1\right)}^{+}(q)}\left(\rho_{\Lambda^{\prime}} \otimes 1\right)=\sum_{\Lambda^{\prime \prime \prime} \in \Omega_{\Lambda^{\prime}}^{+}} \rho_{\Lambda^{\prime \prime \prime}} \tag{6.3}
\end{gather*}
$$

where $P_{n}\left(\operatorname{resp} . P_{n^{\prime}}^{\prime}\right)$ is a parabolic subgroup of $\mathrm{Sp}_{2(n+1)}(q)\left(\right.$ resp. $\left.\mathrm{O}_{2\left(n^{\prime}+1\right)}^{+}(q)\right)$ with Levi factor $\mathrm{Sp}_{2 n}(q) \times \mathrm{GL}_{1}(q)\left(\right.$ resp. $\left.\mathrm{O}_{2 n^{\prime}}^{+}(q) \times \mathrm{GL}_{1}(q)\right)$. In particular, the defects are preserved by parabolic induction.

Proposition 6.4. Let $\left(\mathbf{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{\epsilon}\right)$ where $\epsilon=+$ or $-, \rho_{\Lambda} \in \mathscr{E}(G)_{1}, \rho_{\Lambda^{\prime}} \in \mathscr{E}\left(G^{\prime}\right)_{1}$. Suppose that $\operatorname{def}\left(\Lambda^{\prime}\right) \neq 0$. Then $\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}$ occurs in $\omega_{\mathrm{G}, \mathrm{G}^{\prime}, 1}$ if and only if $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{\mathrm{G}, \mathrm{G}^{\prime}}$.

Proof. If $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{\mathrm{G}, \mathrm{G}^{\prime}}$, then from the definition in (1.5) we know that

$$
\operatorname{def}\left(\Lambda^{\prime}\right)= \begin{cases}-\operatorname{def}(\Lambda)+1, & \text { if } \epsilon=+; \tag{6.5}\\ -\operatorname{def}(\Lambda)-1, & \text { if } \epsilon=-\end{cases}
$$

We also know that $\operatorname{def}\left(\Lambda^{\prime t}\right)=-\operatorname{def}\left(\Lambda^{\prime}\right) \neq \operatorname{def}\left(\Lambda^{\prime}\right)$ since we assume that $\operatorname{def}\left(\Lambda^{\prime}\right) \neq 0$. Now suppose that $\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}$ occurs in $\omega_{\mathrm{G}, \mathrm{G}^{\prime}, 1}$.
(1) First suppose that both $\rho_{\Lambda}, \rho_{\Lambda^{\prime}}$ are cuspidal. Then we know that $n=k(k+1)$, and $n^{\prime}=k^{2}$ or $(k+1)^{2}$ for some non-negative integer k.
(a) Suppose that $n=k(k+1)$ and $n^{\prime}=(k+1)^{2}$ (and $\epsilon=(-1)^{k+1}$). Then we know that $\zeta_{k} \otimes \zeta_{k+1}^{\mathrm{I}}$ occurs in $\omega_{\mathrm{G}, \mathrm{G}^{\prime}, 1}$ from [AM93] theorem 5.2. Now $\zeta_{k}=$ $\rho_{\Lambda_{k}}, \zeta_{k+1}^{\mathrm{I}}=\rho_{\Lambda_{k+1}^{\prime}}$ where $\Lambda_{k}, \Lambda_{k+1}^{\prime}$ are given in (3.5) and (3.7), and we have

$$
\Lambda_{k+1}^{\prime}= \begin{cases}\binom{-}{2 k+1} \cup \Lambda_{k}^{\mathrm{t}}, & \text { if } k \text { is even; } \\ \binom{k+1}{-} \cup \Lambda_{k}^{\mathrm{t}}, & \text { if } k \text { is odd }\end{cases}
$$

Hence $\operatorname{def}\left(\Lambda_{k+1}^{\prime}\right)=-\operatorname{def}\left(\Lambda_{k}\right)+1$ if $\epsilon=+$; and $\operatorname{def}\left(\Lambda_{k+1}^{\prime}\right)=-\operatorname{def}\left(\Lambda_{k}\right)-1$ if $\epsilon=-$.
(b) Suppose that $n=k(k+1)$ and $n^{\prime}=k^{2}$ (and $\left.\epsilon=(-1)^{k}\right)$. Then we know that $\zeta_{k} \otimes \zeta_{k}^{\mathrm{II}}$ occurs in $\omega_{\mathrm{G}, \mathrm{G}^{\prime}, 1}$ from [AM93] theorem 5.2. Now $\zeta_{k}=\rho_{\Lambda_{k}}$, $\zeta_{k}^{\mathrm{II}}=\rho_{\Lambda_{k}^{t}}$, and

$$
\Lambda_{k}^{\mathrm{t}}= \begin{cases}\Lambda_{k}^{\mathrm{t}} \backslash\binom{-}{2 k}, & \text { if } k \text { is even (hence } \epsilon=+) \\ \Lambda_{k}^{\mathrm{t}} \backslash\binom{2 k}{-}, & \text { if } k \text { is odd (hence } \epsilon=-)\end{cases}
$$

Hence $\operatorname{def}\left(\Lambda_{k}^{\prime t}\right)=-\operatorname{def}\left(\Lambda_{k}\right)+1$ if $\epsilon=+$; and $\operatorname{def}\left(\Lambda_{k}^{\prime t}\right)=-\operatorname{def}\left(\Lambda_{k}\right)-1$ if $\epsilon=-$.
(2) Next, suppose that Λ is not cuspidal and $\operatorname{def}(\Lambda)=4 d+1$ for some integer d. If $\epsilon=+$, we also assume that $d \neq 0$. This assumption implies that $\operatorname{def}\left(\Lambda^{\prime}\right) \neq 0$. Then ρ_{Λ} lies in the parabolic induced character $\operatorname{Ind}_{P_{k(k+1)}}^{\mathrm{Sp}_{2 n}(q)}\left(\rho_{\Lambda_{k}} \otimes \mathbf{1}\right)$ where $P_{k(k+1)}$ is the parabolic subgroup whose Levi factor is $\operatorname{Sp}_{2 k(k+1)}(q) \times T$ and T is a split torus of rank $n-k(k+1)$ and Λ_{k} is given in (3.5) for some non-negative integer k such that $k(k+1)<n$.

It is well-known that the theta correspondence is compatible with the parabolic induction (cf. [AMR96] théorème 3.7), so now $\rho_{\Lambda^{\prime}}$ lies in the parabolic induced character $\operatorname{Ind}_{P_{k^{\prime 2}}^{\prime 2}}^{\mathrm{O}_{2 \prime^{\prime}}^{\prime}(q)}\left(\rho_{\bar{\Lambda}_{k^{\prime}}^{\prime}} \otimes 1\right)$ where $P_{k^{\prime 2}}^{\prime}$ is the parabolic subgroup whose Levi factor is $\mathrm{O}_{2 k^{2}}^{\epsilon}(q) \times T^{\prime}, k^{\prime}$ is equal to k or $k+1$ depending on ϵ, T^{\prime} is a split torus of rank $n^{\prime}-k^{\prime 2}$, and $\bar{\Lambda}_{k^{\prime}}^{\prime}$ is $\Lambda_{k^{\prime}}^{\prime}$ or $\Lambda_{k^{\prime}}^{\prime t}$ given in (3.7). Now the defects of $\Lambda_{k}, \bar{\Lambda}_{k^{\prime}}^{\prime}$ satisfy (6.5) by (1). Moreover, we know that $\operatorname{def}(\Lambda)=\operatorname{def}\left(\Lambda_{k}\right)$ and $\operatorname{def}\left(\Lambda^{\prime}\right)=\operatorname{def}\left(\bar{\Lambda}_{k^{\prime}}^{\prime}\right)$ from the remark before the proposition.
Now we have shown that if $\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}$ occurs in $\omega_{\mathrm{G}, \mathrm{G}^{\prime}, 1}$ and $\operatorname{def}\left(\Lambda^{\prime}\right) \neq 0$, then $\operatorname{def}\left(\Lambda^{\prime t}\right) \neq$ $\operatorname{def}\left(\Lambda^{\prime}\right)=-\operatorname{def}(\Lambda)+\epsilon$, and hence $\left(\Lambda, \Lambda^{\prime t}\right) \notin \mathscr{B}_{\mathrm{G}, \mathrm{G}^{\prime}}$. Then by Theorem 5.3, we must have $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{{\mathrm{G}, \mathrm{G}^{\prime}}}$

On the other hand, suppose that $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{\mathrm{G}, \mathrm{G}^{\prime}}$ and $\operatorname{def}\left(\Lambda^{\prime}\right) \neq 0$. Then by definition of $\mathscr{B}_{\mathbf{G}, \mathbf{G}^{\prime}}$ we have $\left(\Lambda, \Lambda^{\prime t}\right) \notin \mathscr{B}_{\mathbf{G}, \mathrm{G}^{\prime}}$. Then by the above argument, we see that $\rho_{\Lambda} \otimes \rho_{\Lambda^{t}}$ does not occurs in $\omega_{G, \mathbf{G}^{\prime}, 1}$. Then by Theorem 5.3, we must have $\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}$ occurs in $\omega_{\mathrm{G}, \mathrm{G}^{\prime}, 1}$.

Corollary 6.6. Let $\left(\mathbf{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{-}\right), \rho_{\Lambda} \in \mathscr{E}(G)_{1}, \rho_{\Lambda^{\prime}} \in \mathscr{E}\left(G^{\prime}\right)_{1}$. Then $\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}$ occurs in $\omega_{\mathrm{G}, \mathrm{G}^{\prime}, 1}$ if and only if $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{\mathrm{G}, \mathrm{G}^{\prime}}$.

Proof. Let $\Lambda^{\prime} \in \mathscr{S}_{\mathrm{O}_{2 n^{\prime}}^{-}}$. Then $\operatorname{def}\left(\Lambda^{\prime}\right) \equiv 2(\bmod 4)$ from (1.3), so $\operatorname{def}\left(\Lambda^{\prime}\right) \neq 0$. Hence the corollary follows the previous proposition immediately.
6.2. Branching rule and symbol correspondence. From now on we consider the case which is not settled by Proposition 6.4, i.e., $\epsilon=+, \operatorname{def}(\Lambda)=1$ and $\operatorname{def}\left(\Lambda^{\prime}\right)=0$. Define

$$
\mathscr{B}^{+}=\bigcup_{n, n^{\prime} \geq 0} \mathscr{B}_{\mathrm{SP}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{+}}
$$

For a symbol Λ of defect 1 and a set Ω^{\prime} of symbols of defect 0 , we define two subsets of Ω^{\prime} by

$$
\begin{aligned}
& \Theta_{\Lambda}\left(\Omega^{\prime}\right)=\left\{\Lambda^{\prime} \in \Omega^{\prime} \mid\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}^{+}\right\} \\
& \Theta_{\Lambda}^{*}\left(\Omega^{\prime}\right)=\left\{\Lambda^{\prime} \in \Omega^{\prime} \mid\left(\Lambda, \Lambda^{\prime t}\right) \in \mathscr{B}^{+} \text {and }\left(\Lambda, \Lambda^{\prime}\right) \notin \mathscr{B}^{+}\right\} .
\end{aligned}
$$

Similarly, for a symbol Λ^{\prime} of defect 0 and a set Ω of symbols of defect 1 , we define

$$
\begin{aligned}
& \Theta_{\Lambda^{\prime}}(\Omega)=\left\{\Lambda \in \Omega \mid\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}^{+}\right\} \\
& \Theta_{\Lambda^{\prime}}^{*}(\Omega)=\left\{\Lambda \in \Omega \mid\left(\Lambda, \Lambda^{\prime t}\right) \in \mathscr{B}^{+} \text {and }\left(\Lambda, \Lambda^{\prime}\right) \notin \mathscr{B}^{+}\right\} .
\end{aligned}
$$

Example 6.7. Let $\Lambda=\binom{8,5,1}{6,2}$ and $\Lambda^{\prime}=\binom{7,4,1}{8,5,1}$. By Lemma 2.15, it is easy to check that $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$and

$$
\begin{aligned}
\Omega_{\Lambda^{\prime}}^{+} & =\left\{\binom{8,4,1}{8,5,1},\binom{7,5,1}{8,5,1},\binom{7,4,2}{8,5,5},\binom{8,5,2,1}{9,6,2,0},\binom{7,4,1}{9,5,1},\binom{7,4,1}{8,6,1},\binom{7,4,1}{8,5,2},\binom{8,5,2,0,0}{9,6,2,1}\right\}, \\
\Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{+}\right) & =\left\{\binom{8,4,1}{8,5,1},\binom{7,5,1}{8,5,1},\binom{7,4,2}{8,5,1}\right\}, \\
\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda^{\prime}}^{+}\right) & =\left\{\binom{7,4,1}{9,5,1},\binom{7,4,1}{8,6,1},\binom{(7,4,1}{8,5,2}\right\} .
\end{aligned}
$$

Lemma 6.8. Suppose that $\left(\rho_{\Lambda}, \rho_{\Lambda_{1}^{\prime}}\right)$ occurs in the Howe correspondence, $\left(\Lambda, \Lambda_{1}^{\prime}\right) \in \mathscr{B}^{+}$, and $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)=\emptyset$. For any $\Lambda^{\prime} \in \Omega_{\Lambda_{1}^{\prime}}^{+}$, if $\left(\rho_{\Lambda}, \rho_{\Lambda^{\prime}}\right)$ occurs in the Howe correspondence, then $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$.

Proof. Suppose that $\Lambda^{\prime} \in \Omega_{\Lambda_{1}^{\prime}}^{+}$and $\left(\rho_{\Lambda}, \rho_{\Lambda^{\prime}}\right)$ occurs in the Howe correspondence. Then we know by Theorem 5.3 that $\left(\Lambda, \Lambda^{\prime}\right)$ or $\left(\Lambda, \Lambda^{\prime t}\right)$ is in \mathscr{B}^{+}. But $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)=\emptyset$ means that there is no $\Lambda^{\prime \prime} \in \Omega_{\Lambda_{1}^{\prime}}^{+}$such that $\left(\Lambda, \Lambda^{\prime \prime t}\right) \in \mathscr{B}^{+}$and $\left(\Lambda, \Lambda^{\prime \prime}\right) \notin \mathscr{B}^{+}$. Hence we have $\left(\Lambda, \Lambda^{\prime}\right) \in$ \mathscr{B}^{+}.

Lemma 6.9. Suppose that $\left(\rho_{\Lambda_{1}}, \rho_{\Lambda^{\prime}}\right)$ occurs in the Howe correspondence, $\left(\Lambda_{1}, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$, and $\Theta_{\Lambda^{\prime}}^{*}\left(\Omega_{\Lambda_{1}}^{+}\right)=\emptyset$. For any $\Lambda \in \Omega_{\Lambda_{1}}^{+}$, if $\left(\rho_{\Lambda}, \rho_{\Lambda^{\prime}}\right)$ occurs in the Howe correspondence, then $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$.

Proof. The proof is similar to that of Lemma 6.8.
Lemma 6.10. Let $\Lambda, \Lambda^{\prime}$ be symbols of defects 1,0 respectively such that $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$. Then

$$
\left|\Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{+}\right)\right|=1+\left|\Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{-}\right)\right| \quad \text { and } \quad\left|\Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{+}\right)\right|=1+\left|\Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{-}\right)\right| \text {. }
$$

Proof. We will only prove the first equality since the proof for the second one is similar. Write $\Lambda=\binom{a_{1}, a_{2}, \ldots, a_{m+1}}{b_{1}, b_{2}, \ldots, b_{m}}, \Lambda^{\prime}=\binom{c_{1}, c_{2}, \ldots, c_{m^{\prime}}}{d_{1}, d_{2}, \ldots, d_{m^{\prime}}}$ for some m, m^{\prime}, and suppose that $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$. We know that $m^{\prime}=m, m+1$ by Lemma 2.14. It is clear that the symbol

$$
\Lambda_{0}^{\prime \prime}:=\binom{c_{1}+1, c_{2}, \ldots, c_{m^{\prime}}}{d_{1}, d_{2}, \ldots, d_{m^{\prime}}}
$$

is in $\Omega_{\Lambda^{\prime}}^{+}$and $\left(\Lambda, \Lambda_{0}^{\prime \prime}\right) \in \mathscr{B}^{+}$by Lemma 2.15, i.e., $\Lambda_{0}^{\prime \prime} \in \Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{+}\right)$. Now we want to prove the lemma by constructing an injective map $\Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{-}\right) \rightarrow \Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{+}\right)$given by $\Lambda_{1} \mapsto \Lambda_{1}^{\prime}$ such that the only element in $\Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{+}\right)$not in the image of the map is $\Lambda_{0}^{\prime \prime}$.

First suppose that $m^{\prime}=m+1$. Now we consider the following possible types of elements in Ω_{Λ}^{-}and $\Omega_{\Lambda^{\prime}}^{+}$:
(1) Consider the following two symbols

$$
\Lambda_{1}=\binom{a_{1}, \ldots, a_{i-1}, a_{i}-1, a_{i+1}, \ldots, a_{m+1}}{b_{1}, b_{2}, \ldots, b_{m}}, \quad \Lambda_{1}^{\prime}=\binom{c_{1}, c_{2}, \ldots, c_{m+1}}{d_{1}, \ldots, d_{i-1}, d_{i}+1, d_{i+1}, \ldots, d_{m+1}}
$$

for some $i=1, \ldots, m$. If $\Lambda_{1} \in \Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{-}\right)$, i.e., $\Lambda_{1} \in \Omega_{\Lambda}^{-}$and $\left(\Lambda_{1}, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$, then we have

- $a_{i}-1>a_{i+1}$ (because Λ_{1} is a symbol);
- $d_{i-1}>a_{i}$ (because $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$by Lemma 2.15);
- $a_{i}-1 \geq d_{i}$ (because $\left(\Lambda_{1}, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$by Lemma 2.15),
which imply
- $d_{i-1}>d_{i}+1$;
- $a_{i} \geq d_{i}+1$,
i.e., Λ_{1}^{\prime} is a symbol and $\Lambda_{1}^{\prime} \in \Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{+}\right)$. On the other hand, it is also not difficult to see that $\Lambda_{1}^{\prime} \in \Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{+}\right)$implies $\Lambda_{1} \in \Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{-}\right)$.
(2) Consider

$$
\Lambda_{1}=\binom{a_{1}, \ldots, a_{m}, a_{m+1}-1}{b_{1}, b_{2}, \ldots, b_{m}}, \quad \Lambda_{1}^{\prime}=\binom{c_{1}, c_{2}, \ldots, c_{m+1}}{d_{1}, \ldots, d_{m}, d_{m+1}+1} .
$$

If $\Lambda_{1} \in \Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{-}\right)$, then we have $d_{m}>a_{m+1}$ and $a_{m+1}-1 \geq d_{m+1}$, which implies that $d_{m}>d_{m+1}+1$ and $a_{m+1} \geq d_{m+1}+1$, i.e., $\Lambda_{1}^{\prime} \in \Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{+}\right)$. One the other hand, $\Lambda_{1}^{\prime} \in \Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{+}\right)$also implies $\Lambda_{1} \in \Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{-}\right)$.
(3) Consider
$\Lambda_{1}=\binom{a_{1}, \ldots, a_{m+1}}{b_{1}, \ldots, b_{i-1}, b_{i}-1, b_{i+1}, \ldots, b_{m}}, \quad \Lambda_{1}^{\prime}=\binom{c_{1}, \ldots, c_{i}, c_{i+1}+1, c_{i+2}, \ldots, c_{m+1}}{d_{1}, d_{2}, \ldots, d_{m+1}}$
for some $i=1, \ldots, m$. By the similar argument in (1) or (2), we see that $\Lambda_{1} \in$ $\Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{-}\right)$if and only if $\Lambda_{1}^{\prime} \in \Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{+}\right)$.
(4) Because now $m^{\prime}=m+1$, any $\Lambda_{1} \in \Omega_{\Lambda}^{-}$of type (III') in Subsection 6.1 is not in $\Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{-}\right)$by Lemma 2.14, moreover, any $\Lambda_{1}^{\prime} \in \Omega_{\Lambda^{\prime}}^{+}$of type (III) or (IV) in Subsection 6.1 is not in $\Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{+}\right)$.
Hence the lemma is proved for the case that $m^{\prime}=m+1$.
Next suppose that $m^{\prime}=m$. Except for the situations similar to those considered above, there is another possibility, i.e., the case that $\left(a_{m+1}, b_{m}\right)=(1,0)$ or $(0,1)$. Let

$$
\Lambda_{1}=\binom{a_{1}-1, \ldots, a_{m}-1}{b_{1}-1, \ldots, b_{m-1}-1}
$$

Then we have $\Lambda_{1} \in \Omega_{\Lambda}^{-}$and $\left(\Lambda_{1}, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$. Note that now $d_{m} \geq a_{m+1}$ and $c_{m} \geq b_{m}$ since $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$. So $d_{m} \geq 1$ if $\left(a_{m+1}, b_{m}\right)=(1,0) ; c_{m} \geq 1$ if $\left(a_{m+1}, b_{m}\right)=(0,1)$. Let

$$
\Lambda_{1}^{\prime}= \begin{cases}\binom{c_{1}+1, \ldots, c_{m}+1,0}{d_{1}+1, \ldots, d_{m}+1,1}, & \text { if }\left(a_{m+1}, b_{m}\right)=(1,0) \\ \binom{c_{1}+1, \ldots, c_{m}+1,1}{d_{1}+1, \ldots, d_{m}+1,0}, & \text { if }\left(a_{m+1}, b_{m}\right)=(0,1)\end{cases}
$$

It is easy to check that $\Lambda_{1}^{\prime} \in \Omega_{\Lambda^{\prime}}^{+}$and $\left(\Lambda, \Lambda_{1}^{\prime}\right) \in \mathscr{B}^{+}$. On the other hand, $\Lambda_{1}^{\prime} \in \Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{+}\right)$also implies that $\Lambda_{1} \in \Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{-}\right)$. Again, for $m^{\prime}=m$, we still have an injective mapping from $\Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{-}\right)$to $\Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{+}\right)$given by $\Lambda_{1} \mapsto \Lambda_{1}^{\prime}$ with only one extra element $\Lambda_{0}^{\prime \prime}$ not in the image. Hence the lemma is proved.

Lemma 6.11. Let $\Lambda, \Lambda^{\prime}$ be symbols of sizes $(m+1, m),\left(m^{\prime}, m^{\prime}\right)$ respectively, and suppose that $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$.
(i) If $m^{\prime}=m+1$, then $\Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{-}\right) \neq \emptyset$.
(ii) If $m^{\prime}=m$ and $\Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{-}\right)=\emptyset$, then $m=0$ and $\Lambda=\binom{0}{-}$.

Proof. Write $\Lambda=\binom{a_{1}, \ldots, a_{m+1}}{b_{1}, \ldots, b_{m}}, \Lambda^{\prime}=\binom{c_{1}, \ldots, c_{m^{\prime}}}{d_{1}, \ldots, d_{m^{\prime}}}$. First suppose that $m^{\prime}=m+1$, and we define

$$
\Lambda_{1}^{\prime}= \begin{cases}\binom{c_{1}-1, \ldots, c_{m}-1}{d_{1}-1, \ldots, d_{m}-1}, & \text { if }\left(c_{m+1}, d_{m+1}\right)=(1,0) \text { or }(0,1) \\ \binom{c_{1}, \ldots, c_{m}, c_{m+1}-1}{d_{1}, \ldots, d_{m+1}}, & \text { if } c_{m+1} \geq 1 \text { and }\left(c_{m+1}, d_{m+1}\right) \neq(1,0) \\ \binom{c_{1}, \ldots, c_{m+1}}{d_{1}, \ldots, d_{m}, d_{m+1}-1}, & \text { if } d_{m+1} \geq 1 \text { and }\left(c_{m+1}, d_{m+1}\right) \neq(0,1)\end{cases}
$$

It is easy to see that $\Lambda_{1}^{\prime} \in \Omega_{\Lambda^{\prime}}^{-}$. Moreover, the assumption that $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$implies that $\left(\Lambda, \Lambda_{1}^{\prime}\right) \in \mathscr{B}^{+}$by Lemma 2.15. Thus (i) is proved.

Next suppose that $m^{\prime}=m$ and $m \geq 1$, and we define

$$
\Lambda_{1}=\left\{\begin{array}{cl}
\binom{a_{1}-1, \ldots, a_{m}-1}{b_{1}-1, \ldots, b_{m-1}-1}, & \text { if }\left(a_{m+1}, b_{m}\right)=(1,0) \text { or }(0,1) \\
\binom{a_{1}, \ldots, a_{m}, a_{m+1}-1}{b_{1}, \ldots, b_{m}}, & \text { if } a_{m+1} \geq 1 \text { and }\left(a_{m+1}, b_{m}\right) \neq(1,0) \\
\binom{a_{1}, \ldots, a_{m+1}}{b_{1}, \ldots, b_{m-1}, b_{m}-1}, & \text { if } b_{m} \geq 1 \text { and }\left(a_{m+1}, b_{m}\right) \neq(0,1)
\end{array}\right.
$$

It is easy to see that $\Lambda_{1} \in \Omega_{\Lambda}^{-}$. Moreover, the assumption that $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$implies that $\left(\Lambda_{1}, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$by Lemma 2.15. Therefore we conclude that if $m \geq 1$, then $\Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{-}\right) \neq \emptyset$. Next suppose that $m^{\prime}=m$ and $m=0$, i.e., $\Lambda=\binom{a_{1}}{-}$ and $\Lambda^{\prime}=\binom{-}{-}$ for some $a_{1} \geq 0$. If $a_{1} \geq 1$, then $\Lambda_{1}=\binom{a_{1}-1}{-} \in \Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{-}\right)$and hence $\Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{-}\right) \neq \emptyset$.

Example 6.12. Let $\Lambda=\binom{a}{-}$ and $\Lambda_{1}^{\prime}=\binom{c}{d}$ be symbols of sizes $(1,0)$ and $(1,1)$ respectively such that $\left(\Lambda, \Lambda_{1}^{\prime}\right) \in \mathscr{B}^{+}$. So now we have $a \geq d$ by Lemma 2.15. Now by the definition we have $\binom{c+1}{d},\binom{c}{d+1} \in \Omega_{\Lambda_{1}^{\prime}}^{+}$; moreover, we also have $\binom{c+1,1}{d+1,0} \in \Omega_{\Lambda_{1}^{\prime}}^{+}$if $c \neq 0$; and $\binom{c+1,0}{d+1,1} \in \Omega_{\Lambda_{1}^{\prime}}^{+}$ if $d \neq 0$. Clearly, we have $\binom{c+1}{d} \in \Theta_{\Lambda}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)$. If $\Lambda^{\prime}=\binom{c+1,1}{d+1,0}$ or $\binom{c+1,0}{d+1,1}$, then Λ^{\prime} is of size $(2,2)$ and hence $\left(\Lambda, \Lambda^{\prime}\right),\left(\Lambda, \Lambda^{\prime t}\right) \notin \mathscr{B}^{+}$by Lemma 2.14.

Suppose that $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right) \neq \emptyset$. Then we must have $\Lambda^{\prime \prime}:=\binom{c}{d+1} \in \Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)$, i.e., $\left(\Lambda, \Lambda^{\prime \prime t}\right) \in$ \mathscr{B}^{+}and $\left(\Lambda, \Lambda^{\prime \prime}\right) \notin \mathscr{B}^{+}$, which imply $a \geq c$ and $a=d$. Let

$$
\Lambda_{2}^{\prime}= \begin{cases}\binom{d+1}{c-1}, & \text { if } c \geq 1 \\ \binom{d}{c}, & \text { if } c=0\end{cases}
$$

Clearly, $\Lambda^{\prime / t} \in \Omega_{\Lambda_{2}^{\prime}}^{+}$and $\left(\Lambda, \Lambda_{2}^{\prime}\right) \in \mathscr{B}^{+}$.
(1) If $c \geq 1$, then $\Theta_{\Lambda}\left(\Omega_{\Lambda_{2}^{\prime}}^{+}\right)=\left\{\binom{d+2}{c-1},\binom{d+1}{c}\right\}$.
(2) If $c=0$, then $d \geq 1$ (since we always consider reduced symbols) and hence $a=$ $d \geq c+1$. Therefore $\left.\Theta_{\Lambda}\left(\Omega_{\Lambda_{2}^{\prime}}^{+}\right)=\left\{\binom{d+1}{c}, \begin{array}{c}d \\ c+1\end{array}\right)\right\}$.
For both cases (1) and (2), we conclude that $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{2}^{\prime}}^{+}\right)=\emptyset$.
Now we want to show that the above example is in fact a general phenomena:
Lemma 6.13. Let $\Lambda, \Lambda_{1}^{\prime}$ be symbols of sizes $(m+1, m),(m+1, m+1)$ respectively such that $\left(\Lambda, \Lambda_{1}^{\prime}\right) \in \mathscr{B}^{+}$. Suppose that $\Lambda^{\prime \prime} \in \Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)$. Then there exists a symbol Λ_{2}^{\prime} such that $\Lambda^{\prime \prime t} \in \Omega_{\Lambda_{2}^{\prime}}^{+},\left(\Lambda, \Lambda_{2}^{\prime}\right) \in \mathscr{B}^{+}$, and $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{2}^{\prime}}^{+}\right)=\emptyset$.
Proof. Write $\Lambda=\binom{a_{1}, \ldots, a_{m+1}}{b_{1}, \ldots, b_{m}}, \Lambda_{1}^{\prime}=\binom{c_{1}, \ldots, c_{m+1}}{d_{1}, \ldots, d_{m+1}}$. Because now $\left(\Lambda, \Lambda_{1}^{\prime}\right) \in \mathscr{B}^{+}$, by Lemma 2.15 we have

$$
\begin{align*}
& a_{1} \geq d_{1}>a_{2} \geq d_{2}>\cdots>a_{m+1} \geq d_{m+1} \\
& c_{1}>b_{1} \geq c_{2}>b_{2} \geq \cdots \geq c_{m}>b_{m} \geq c_{m+1} \tag{6.14}
\end{align*}
$$

Let $\Lambda^{\prime \prime} \in \Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)$, i.e, $\Lambda^{\prime \prime} \in \Omega_{\Lambda_{1}^{\prime}}^{+},\left(\Lambda, \Lambda^{\prime \prime t}\right) \in \mathscr{B}^{+}$, and $\left(\Lambda, \Lambda^{\prime \prime}\right) \notin \mathscr{B}^{+}$. If $\Lambda^{\prime \prime}$, as an element of $\Omega_{\Lambda_{1}^{\prime}}^{+}$, is of type (III) or (IV) in Subsection 6.2, then $\Lambda^{\prime \prime}, \Lambda^{\prime \prime t}$ are of size $(m+2, m+2)$ and hence $\left(\Lambda, \Lambda^{\prime / t}\right) \notin \mathscr{B}^{+}$by Lemma 2.14. Therefore, $\Lambda^{\prime \prime}$ must be of type (I) or (II):
(1) Suppose that

$$
\Lambda^{\prime \prime}=\binom{c_{1}, \ldots, c_{k-1}, c_{k}+1, c_{k+1}, \ldots, c_{m+1}}{d_{1}, \ldots, d_{m+1}}
$$

for some k such that $c_{k-1}>c_{k}+1$. If $k=1$, then $\left(\Lambda, \Lambda_{1}^{\prime}\right) \in \mathscr{B}^{+} \operatorname{implies}\left(\Lambda, \Lambda^{\prime \prime}\right) \in$ \mathscr{B}^{+}and we get a contradiction. So we must have $k \geq 2$. Because now $\left(\Lambda, \Lambda^{\prime \prime}\right) \notin$ \mathscr{B}^{+}and $\left(\Lambda, \Lambda^{\prime \prime t}\right) \in \mathscr{B}^{+}$, we have

- $b_{k-1}=c_{k}$
- $a_{i} \geq c_{i}>a_{i+1}$ for $i \neq k$ and $a_{k} \geq c_{k}+1>a_{k+1} ; d_{j}>b_{j} \geq d_{j+1}$ for each j.

Then $d_{k-1}>a_{k} \geq c_{k}+1=b_{k-1}+1 \geq d_{k}+1$ and hence

$$
\Lambda_{2}^{\prime}:=\binom{d_{1}, \ldots, d_{k-2}, d_{k-1}-1, d_{k}, \ldots, d_{m+1}}{c_{1}, \ldots, c_{k-1}, c_{k}+1, c_{k+1}, \ldots, c_{m+1}}
$$

is a symbol. It is easy to see that $\Lambda^{\prime \prime t} \in \Omega_{\Lambda_{2}^{\prime}}^{+}$and $\left(\Lambda, \Lambda_{2}^{\prime}\right) \in \mathscr{B}^{+}$. Moreover, for any

$$
\Lambda^{\prime}=\binom{c_{1}^{\prime}, \ldots, c_{m+1}^{\prime}}{d_{1}^{\prime}, \ldots, d_{m+1}^{\prime}} \in \Omega_{\Lambda_{2}^{\prime}}^{+},
$$

we have $d_{k}^{\prime} \geq c_{k}+1$. Because now $b_{k-1}=c_{k}<d_{k}^{\prime}$, we have $\left(\Lambda, \Lambda^{\prime t}\right) \notin \mathscr{B}^{+}$. Therefore $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{2}^{\prime}}^{+}\right)=\emptyset$.
(2) Suppose that

$$
\Lambda^{\prime \prime}=\binom{c_{1}, \ldots, c_{m+1}}{d_{1}, \ldots, d_{l-1}, d_{l}+1, d_{l+1}, \ldots, d_{m+1}}
$$

for some $l \geq 2$ such that $d_{l-1}>d_{l}+1$. Because now $\left(\Lambda, \Lambda^{\prime \prime}\right) \notin \mathscr{B}^{+}$and $\left(\Lambda, \Lambda^{\prime \prime t}\right) \in$ \mathscr{B}^{+}, we have

- $a_{l}=d_{l}$;
- $a_{i} \geq c_{i}>a_{i+1}$ for each $i ; b_{j} \geq d_{j+1}>b_{j+1}$ for $j \neq l-1$ and $b_{l-1} \geq d_{l}+1>b_{l}$. Then $c_{l-1}>b_{l-1} \geq d_{l}+1=a_{l}+1 \geq c_{l}+1$ and hence

$$
\Lambda_{2}^{\prime}:=\binom{d_{1}, \ldots, d_{l-1}, d_{l}+1, d_{l+1}, \ldots, d_{m+1}}{c_{1}, \ldots, c_{l-2}, c_{l-1}-1, c_{l}, \ldots, c_{m+1}}
$$

is a symbol. It is easy to see that $\Lambda^{\prime / t} \in \Omega_{\Lambda_{2}^{\prime}}^{+}$and $\left(\Lambda, \Lambda_{2}^{\prime}\right) \in \mathscr{B}^{+}$. Moreover, by the same argument in (1), we can see that $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{2}^{\prime}}^{+}\right)=\emptyset$.
(3) Suppose that

$$
\Lambda^{\prime \prime}=\binom{c_{1}, \ldots, c_{m+1}}{d_{1}+1, d_{2}, \ldots, d_{m+1}}
$$

Then we have

- $a_{1}=d_{1}$
- $a_{i} \geq c_{i}>a_{i+1}$ and $b_{i} \geq d_{i+1}>b_{i+1}$ for each i, and $d_{1}+1>b_{1}$.

If $m=0$, this is just Example 6.12. So now we assume that $m \geq 1$. Note that c_{m+1}, d_{m+1} can not both be 0 . We can define

For above three possible situations, it is easy to see that $\Lambda^{\prime / t} \in \Omega_{\Lambda_{2}^{\prime}}^{+}$and $\left(\Lambda, \Lambda_{2}^{\prime}\right) \in$ \mathscr{B}^{+}. By the similar argument in (1) we can see that $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{2}^{\prime}}^{+}\right)=\emptyset$.

Example 6.15. Let $\Lambda=\binom{8,5,1}{6,2}$ and $\Lambda_{1}^{\prime}=\binom{7,4,1}{8,3,0}$. Then $\left(\Lambda, \Lambda_{1}^{\prime}\right) \in \mathscr{B}^{+}$,

$$
\left.\Theta_{\Lambda}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)=\left\{\binom{8,4,1}{8,3,0},\binom{7,5,1}{8,3,0},\binom{7,4,2}{8,3,0},\binom{7,4,1}{8,4,0},\binom{7,7,1,1}{8,3,1}\right\} \quad \text { and } \quad \Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)=\left\{\begin{array}{l}
7,4,1 \\
9,3,0
\end{array}\right)\right\} .
$$

Now $\Lambda^{\prime \prime}=\binom{7,4,1}{9,3,0} \in \Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)$. So let $\Lambda_{2}^{\prime}=\binom{8,2}{6,3}$ as given in (3) of the proof of the previous lemma, and we have $\Lambda^{\prime / t} \in \Omega_{\Lambda_{2}^{\prime}}^{+},\left(\Lambda, \Lambda_{2}^{\prime}\right) \in \mathscr{B}^{+}$,

$$
\Theta_{\Lambda}\left(\Omega_{\Lambda_{2}^{\prime}}^{+}\right)=\Omega_{\Lambda_{2}^{\prime}}^{+}=\left\{\binom{9,2}{6,3},\binom{8,3}{6,3},\binom{8,2}{7,3},\binom{8,2}{6,4},\binom{9.3,4,1}{7,4,0},\binom{9,3,0}{7,4,1}\right\} \quad \text { and } \quad \Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{2}^{\prime}}^{+}\right)=\emptyset .
$$

Lemma 6.16. Let $\Lambda, \Lambda_{1}^{\prime}$ be symbols of sizes $(m+1, m),(m, m)$ respectively such that $m \geq 1$ and $\left(\Lambda, \Lambda_{1}^{\prime}\right) \in \mathscr{B}^{+}$. Suppose that $\Lambda^{\prime \prime} \in \Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)$. Then there exists a symbol Λ_{2}^{\prime} such that $\Lambda^{\prime \prime t} \in \Omega_{\Lambda_{2}^{\prime}}^{+}\left(\Lambda, \Lambda_{2}^{\prime}\right) \in \mathscr{B}^{+}$and $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{2}^{\prime}}^{+}\right)=\emptyset$.
Proof. Write $\Lambda=\binom{a_{1}, \ldots, a_{m+1}}{b_{1}, \ldots, b_{m}}, \Lambda_{1}^{\prime}=\binom{c_{1}, \ldots, c_{m}}{d_{1}, \ldots, d_{m}}$. Because now $\left(\Lambda, \Lambda_{1}^{\prime}\right) \in \mathscr{B}^{+}$, by Lemma 2.15 we have

$$
\begin{align*}
& a_{1}>d_{1} \geq a_{2}>d_{2} \geq \cdots \geq a_{m}>d_{m} \geq a_{m+1} \\
& c_{1} \geq b_{1}>c_{2} \geq b_{2}>\cdots>c_{m} \geq b_{m} \tag{6.17}
\end{align*}
$$

Let $\Lambda^{\prime \prime} \in \Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)$.
(1) Suppose that

$$
\Lambda^{\prime \prime}=\binom{c_{1}, \ldots, c_{k-1}, c_{k}+1, c_{k+1}, \ldots, c_{m}}{d_{1}, \ldots, d_{m}}
$$

for some k such that $c_{k-1}>c_{k}+1$. The proof for this case is similar to (1) in the proof of Lemma 6.13.
(2) Suppose that

$$
\Lambda^{\prime \prime}=\binom{c_{1}, \ldots, c_{m}}{d_{1}, \ldots, d_{l-1}, d_{l}+1, d_{l+1}, \ldots, d_{m}}
$$

for some l such that $d_{l-1}>d_{l}+1$. The proof for this case is similar to (2) in the proof of Lemma 6.13.
(3) Suppose that

$$
\Lambda^{\prime \prime}=\binom{c_{1}+1, \ldots, c_{m}+1,1}{d_{1}+1, \ldots, d_{m}+1,0}
$$

So we have $c_{m} \geq 1$. The assumptions $\left(\Lambda, \Lambda^{\prime \prime}\right) \notin \mathscr{B}^{+}$and $\left(\Lambda, \Lambda^{\prime \prime t}\right) \in \mathscr{B}^{+}$imply that

- $b_{m}=0$;
- $a_{i}>c_{i} \geq a_{i+1}$ for each i; and $d_{j} \geq b_{j}>d_{j+1}$ for $j=1, \ldots, m-1$.

Because Λ is reduced and now $b_{m}=0$, we must have $a_{m+1} \neq 0$. Hence $d_{m} \geq$ $a_{m+1} \geq 1$. Let

$$
\Lambda_{2}^{\prime}=\binom{d_{1}+1, \ldots, d_{m-1}+1, d_{m}, 0}{c_{1}+1, \ldots, c_{m}+1,1}
$$

It is easy to see that $\Lambda^{\prime \prime t} \in \Omega_{\Lambda_{2}^{\prime}}^{+}$and $\left(\Lambda, \Lambda_{2}^{\prime}\right) \in \mathscr{B}^{+}$. Moreover, for any

$$
\Lambda^{\prime}=\binom{c_{1}^{\prime}, \ldots, c_{m+1}^{\prime}}{d_{1}^{\prime}, \ldots, d_{m+1}^{\prime}} \in \Omega_{\Lambda_{2}^{\prime}}^{+}
$$

we have $d_{m+1}^{\prime} \geq 1$. Because now $b_{m}=0<d_{m+1}^{\prime}$, we have $\left(\Lambda, \Lambda^{\prime t}\right) \notin \mathscr{B}^{+}$. Therefore $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{2}^{\prime}}^{+}\right)=\emptyset$.
(4) Suppose that

$$
\Lambda^{\prime \prime}=\binom{c_{1}+1, \ldots, c_{m}+1,0}{d_{1}+1, \ldots, d_{m}+1,1} .
$$

The proof is similar to (3) above.

Lemma 6.18. Let $\Lambda_{1}, \Lambda^{\prime}$ be symbols of sizes $(m+1, m),\left(m^{\prime}, m^{\prime}\right)$ respectively, and suppose that $\left(\Lambda_{1}, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$. Suppose that $\Lambda^{\prime \prime} \in \Theta_{\Lambda^{\prime}}^{*}\left(\Omega_{\Lambda_{1}}^{+}\right)$. Then there exists a symbol Λ_{2} such that $\Lambda^{\prime \prime} \in \Omega_{\Lambda_{2}}^{+},\left(\Lambda_{2}, \Lambda^{\prime}\right) \in \mathscr{B}^{+}$, and $\Theta_{\Lambda^{\prime}}^{*}\left(\Omega_{\Lambda_{2}}^{+}\right)=\emptyset$.

Proof. We know that $m^{\prime}=m, m+1$. Then the proof is similar to those of Lemma 6.13 and Lemma 6.16.
6.3. Branching rule and Howe correspondence. For $\rho \in \mathscr{E}\left(\operatorname{Sp}_{2 n}(q)\right)$, let Ω_{ρ}^{+}denote the set of irreducible constituents of the parabolic induced character $\operatorname{Ind}_{P_{n}}^{\mathrm{S}_{2(n+1)}(q)}(\rho \otimes 1)$, then, if $n \geq 1$, we also define

$$
\Omega_{\rho}^{-}=\left\{\rho_{1} \in \mathscr{E}\left(\operatorname{Sp}_{2(n-1)}(q)\right) \mid \rho \in \Omega_{\rho_{1}}^{+}\right\}
$$

where P_{n} is a parabolic subgroup of $\mathrm{Sp}_{2(n+1)}(q)$ whose Levi factor is $\mathrm{Sp}_{2 n}(q) \times \mathrm{GL}_{1}(q)$. The analogous definition also applies to $\rho^{\prime} \in \mathscr{E}\left(\mathrm{O}_{2 n^{\prime}}^{+}(q)\right)$.

For $\rho \in \mathscr{E}\left(\operatorname{Sp}_{2 n}(q)\right)$ and a set of irreducible characters $\Omega^{\prime} \subset \mathscr{E}\left(\mathrm{O}_{2 n^{\prime}}^{+}(q)\right)$, we define

$$
\Theta_{\rho}\left(\Omega^{\prime}\right)=\left\{\rho^{\prime} \in \Omega^{\prime} \mid\left(\rho, \rho^{\prime}\right) \text { occurs in the Howe correspondence }\right\} .
$$

Similarly, for $\rho^{\prime} \in \mathscr{E}\left(\mathrm{O}_{2 n^{\prime}}^{+}(q)\right)$ and a set $\Omega \subset \mathscr{E}\left(\mathrm{Sp}_{2 n}(q)\right)$, we define

$$
\Theta_{\rho^{\prime}}(\Omega)=\left\{\rho \in \Omega \mid\left(\rho, \rho^{\prime}\right) \text { occurs in the Howe correspondence }\right\} .
$$

The following lemma is extracted from the proof of [AMR96] théorème 3.7:
Lemma 6.19. Let $\rho \in \mathscr{E}\left(\operatorname{Sp}_{2 n}(q)\right)$ and $\rho^{\prime} \in \mathscr{E}\left(\mathrm{O}_{2 n^{\prime}}^{+}(q)\right)$ such that $\left(\rho, \rho^{\prime}\right)$ occurs in the Howe correspondence. Then

$$
\left|\Theta_{\rho}\left(\Omega_{\rho^{\prime}}^{+}\right)\right|=1+\left|\Theta_{\rho^{\prime}}\left(\Omega_{\rho}^{-}\right)\right| \quad \text { and } \quad\left|\Theta_{\rho^{\prime}}\left(\Omega_{\rho}^{+}\right)\right|=1+\left|\Theta_{\rho}\left(\Omega_{\rho^{\prime}}^{-}\right)\right| \text {. }
$$

Proof. Suppose that $\rho \in \mathscr{E}\left(\operatorname{Sp}_{2 n}(q)\right), \rho^{\prime} \in \mathscr{E}\left(\mathrm{O}_{2 n^{\prime}}^{+}(q)\right)$ and $\left(\rho, \rho^{\prime}\right)$ occurs in the Howe correspondence. Note that the Howe correspondence for symplctic/orthogonal dual pair is of multiplicity one (cf. [MVW87] p.97). By Frobenius reciprocity, we have

$$
\begin{aligned}
\left|\Theta_{\rho}\left(\Omega_{\rho^{\prime}}^{+}\right)\right| & =\left\langle\omega_{\mathrm{SP}_{2 n}, \mathrm{O}_{2\left(n^{\prime}+1\right)^{\prime}}^{+}}, \rho \otimes R_{\mathrm{O}_{2 n^{\prime}}^{+(}(q) \times \mathrm{GL}_{1}(q)}^{\mathrm{O}_{2(\underline{\prime}}^{+}}\left(\rho^{\prime} \otimes 1\right)\right\rangle \\
& =\left\langle\left(1 \otimes * R_{\mathrm{O}_{2 n^{\prime}}^{\left.+n^{\prime}+1\right)} \times \mathrm{GL}_{1}(q)}^{+}\right)\left(\omega_{\mathrm{SP}_{2 n}, \mathrm{O}_{2\left(n^{\prime}+1\right)}^{+}}^{+}\right), \rho \otimes \rho^{\prime} \otimes 1\right\rangle .
\end{aligned}
$$

 induction. From [AMR96] p.382, we know that

$$
\begin{aligned}
& \left(1 \otimes * R_{\mathrm{O}_{2 n^{\prime}}^{+}(q) \times \mathrm{GL}_{1}(q)}^{+\mathrm{O}_{\left.2()^{\prime}\right)}^{+}(q)}\right)\left(\omega_{\mathrm{SP}_{2 n}, \mathrm{O}_{2\left(n^{\prime}+1\right)}^{+}}\right) \\
& \quad=\omega_{\mathrm{SP}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{+}}^{+} \otimes 1+R_{\mathrm{SP}_{\mathrm{P}_{2(n-1)}(q) \times \mathrm{O}_{2 n^{\prime}}}^{+}(q) \times \mathrm{GL}_{1}(q) \times \mathrm{GL}_{1}(q)}\left(\omega_{\mathrm{Sp}_{2(n-1)}, \mathrm{O}_{2 n^{\prime}}^{+}}^{+} \otimes R_{\mathrm{GL}_{1}}\right)
\end{aligned}
$$

where $R_{\mathrm{GL}_{1}}$ denotes the character of the representation of $\mathrm{GL}_{1}(q) \times \mathrm{GL}_{1}(q)$ on $\mathbb{C}\left(\mathrm{GL}_{1}(q)\right)$. By our assumption, we have

$$
\left\langle\omega_{\mathrm{S}_{\mathrm{p}_{2 n}}, \mathrm{O}_{2 n^{\prime}}^{+}} \otimes 1, \rho \otimes \rho^{\prime} \otimes 1\right\rangle=1
$$

Moreover, by Frobenius reciprocity again, we have

$$
\begin{aligned}
&\left\langle R_{\mathrm{SP}_{2(n-1)}(q) \times \mathrm{O}_{2 n^{\prime}}^{+}(q) \times \mathrm{GL}_{1}(q) \times \mathrm{GL}_{1}(q)}^{\mathrm{SP}_{2 n}(q) \times \mathrm{O}_{2 n^{\prime}}^{+}(q) \times \mathrm{GL}_{1}(q)}\left(\omega_{\mathrm{SP}_{2(n-1)}, \mathrm{O}_{2 n^{\prime}}^{+}} \otimes R_{\mathrm{GL}_{1}}\right), \rho \otimes \rho^{\prime} \otimes 1\right\rangle \\
&=\left\langle\omega_{\mathrm{SP}_{2(n-1)}, \mathrm{O}_{2 n^{\prime}}^{+}}^{+},{ }^{*} R_{\mathrm{SP}_{2(n-1)}(q)}^{\mathrm{SP}_{2 n}(q)}(\rho) \otimes \rho^{\prime}\right\rangle=\left|\Theta_{\rho^{\prime}}\left(\Omega_{\rho}^{-}\right)\right| .
\end{aligned}
$$

Hence the first equality is proved. The proof of the second equality is similar.
Proposition 6.20. Let $\left(\mathbf{G}, \mathrm{G}^{\prime}\right)=\left(\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{+}\right), \rho_{\Lambda} \in \mathscr{E}(G)_{1}, \rho_{\Lambda^{\prime}} \in \mathscr{E}\left(G^{\prime}\right)_{1}$ for some symbols $\Lambda, \Lambda^{\prime}$ of defects 1,0 respectively. Then $\rho_{\Lambda} \otimes \rho_{\Lambda^{\prime}}$ occurs in $\omega_{\mathrm{G}, \mathrm{G}^{\prime}, 1}$ if and only if $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{\mathrm{G}, \mathrm{G}^{\prime}}$.

Proof. We are going to prove the proposition by induction on $n+n^{\prime}$. First we consider the cases that $n^{\prime}=0$. The Howe correspondence for the dual pair $\left(\mathrm{Sp}_{2 n}(q), \mathrm{O}_{0}^{+}(q)\right)$ is given by $1_{\mathrm{Sp}_{\mathrm{P}_{2}}} \otimes 1_{\mathrm{O}_{0}^{+}}$and we know that $1_{\mathrm{Sp}_{2 n}}=\rho_{\binom{n}{-}}, 1_{\mathrm{O}_{0}^{+}}=\rho_{(-)}^{-}$. It is clear that

$$
\mathscr{B}_{\mathrm{SP}_{2 n}, \mathrm{O}_{0}^{+}}=\left\{\left(\binom{n}{-},\binom{-}{-}\right)\right\} .
$$

Hence the proposition holds for $n^{\prime}=0$ (and any non-negative integer n). Next we consider the cases that $n=0$. The Howe correspondence for the dual pair $\left(\mathrm{Sp}_{0}(q), \mathrm{O}_{2 n^{\prime}}^{+}(q)\right)$ is given by $\mathbf{1}_{\mathrm{SP}_{0}} \otimes \mathbf{1}_{\mathrm{O}_{2 n^{\prime}}^{+}}$, and we know that $\mathbf{1}_{\mathrm{SP}_{\mathrm{P}_{0}}}=\rho_{\binom{0}{-}}, \mathbf{1}_{\mathrm{O}_{2 n^{\prime}}^{+}}=\rho_{\binom{n_{0}^{\prime}}{0}}$. It is clear that

$$
\mathscr{B}_{\mathrm{SP}_{0}, \mathrm{O}_{2 n^{\prime}}^{+}}=\left\{\left(\binom{0}{-},\binom{n^{\prime}}{0}\right)\right\} .
$$

Hence the proposition holds for $n=0$ (and any non-negative integer n^{\prime}).
Now suppose that $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{+}}$and $\operatorname{def}\left(\Lambda^{\prime}\right)=0$ for some positive n, n^{\prime}, and write $\Lambda=\binom{a_{1}, \ldots, a_{m+1}}{b_{1}, \ldots, b_{m}}, \Lambda^{\prime}=\binom{c_{1}, \ldots, c_{m^{\prime}}}{d_{1}, \ldots, d_{m^{\prime}}}$ for some nonnegative integers m, m^{\prime}. It is known that $m^{\prime}=m, m+1$ by Lemma 2.14.
(1) Suppose that $m^{\prime}=m+1$. By Lemma 6.11, we know that $\Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{-}\right) \neq \emptyset$. Let $\Lambda_{1}^{\prime} \in \Theta_{\Lambda}\left(\Omega_{\Lambda^{\prime}}^{-}\right)$, i.e., $\Lambda^{\prime} \in \Omega_{\Lambda_{1}^{\prime}}^{+}$and $\left(\Lambda, \Lambda_{1}^{\prime}\right) \in \mathscr{B}_{\mathrm{Sp}_{2 n}, \mathrm{O}_{2\left(n^{\prime}-1\right)}^{+}}$. Then, by induction hypothesis, $\left(\rho_{\Lambda}, \rho_{\Lambda_{1}^{\prime}}\right)$ occurs in the Howe correspondence and we have

$$
\begin{equation*}
\left|\Theta_{\rho_{\Lambda_{1}^{\prime}}}\left(\Omega_{\rho_{\Lambda}}^{-}\right)\right|=\left|\Theta_{\Lambda_{1}^{\prime}}\left(\Omega_{\Lambda}^{-}\right)\right| . \tag{6.21}
\end{equation*}
$$

Now by Lemma 6.19 and Lemma 6.10, we have the equality

$$
\begin{equation*}
\left|\Theta_{\rho_{\Lambda}}\left(\Omega_{\rho_{\Lambda_{1}^{\prime}}^{\prime}}^{+}\right)\right|=\left|\Theta_{\Lambda}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)\right| . \tag{6.22}
\end{equation*}
$$

(a) Suppose that Λ_{1}^{\prime} is of type (I^{\prime}) or (II') in Subsection 6.1. Then Λ_{1}^{\prime} is of size $(m+1, m+1)$.
(i) First suppose that $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)=\emptyset$. For any $\Lambda^{\prime \prime} \in \Omega_{\Lambda_{1}^{\prime}}^{+}$, by Lemma 6.8, if $\left(\rho_{\Lambda}, \rho_{\Lambda^{\prime \prime}}\right)$ occurs in the Howe correspondence, then we have $\left(\Lambda, \Lambda^{\prime \prime}\right) \in$ $\mathscr{B}_{\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{+}}$.
(ii) Next suppose that $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right) \neq \emptyset$. For any $\Lambda^{\prime \prime \prime} \in \Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)$, we know that $\left(\Lambda, \Lambda^{\prime \prime \prime t}\right) \in \mathscr{B}_{\mathrm{SP}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{+}}$and $\left(\Lambda, \Lambda^{\prime \prime \prime}\right) \notin \mathscr{B}_{\mathrm{SP}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{+}}$by the definition. By Lemma 6.13, we can find $\Lambda_{2}^{\prime} \in \mathscr{S}_{\mathrm{O}_{2\left(n^{\prime}-1\right)}^{+}}$such that $\Lambda^{\prime \prime \prime \mathrm{t}} \in \Omega_{\Lambda_{2}^{\prime}}^{+},\left(\Lambda, \Lambda_{2}^{\prime}\right) \in$ $\mathscr{B}_{\mathrm{Sp}_{2 n}, \mathrm{O}_{2\left(n^{\prime}-1\right)}^{+}}$and $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{2}^{\prime}}^{+}\right)=\emptyset$. By (i), with Λ_{1}^{\prime} replaced by Λ_{2}^{\prime} and the fact $\left(\Lambda, \Lambda^{\prime \prime \prime}\right) \notin \mathscr{B}_{\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{+}}$, we see that $\left(\rho_{\Lambda}, \rho_{\Lambda^{\prime \prime \prime}}\right)$ does not occur in the Howe correspondence. In short, we have shown that for any $\Lambda^{\prime \prime \prime} \in$ $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right),\left(\rho_{\Lambda}, \rho_{\Lambda^{\prime \prime \prime}}\right)$ does not occur in the Howe correspondence. So now for any $\Lambda^{\prime \prime} \in \Omega_{\Lambda_{1}^{\prime}}^{+}$, if $\left(\rho_{\Lambda}, \rho_{\Lambda^{\prime \prime}}\right)$ occurs in the Howe correspondence
and $\left(\Lambda, \Lambda^{\prime \prime}\right) \notin \mathscr{B}_{\mathrm{SP}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{+}}$, we must have $\left(\Lambda, \Lambda^{\prime \prime \mathrm{t}}\right) \in \mathscr{B}_{\mathrm{SP}_{2 n},}, \mathrm{O}_{2 n^{\prime}}^{+}$, i.e., $\Lambda^{\prime \prime} \in$ $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)$and we get a contradiction. Therefore, for any $\Lambda^{\prime \prime} \in \Omega_{\Lambda_{1}^{\prime}}^{+}$, the occurrence of $\left(\rho_{\Lambda}, \rho_{\Lambda^{\prime \prime}}\right)$ in the Howe correspondence implies that $\left(\Lambda, \Lambda^{\prime \prime}\right) \in \mathscr{B}_{\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n}+}$.
Hence for both (i) and (ii), by (6.22), the condition $\Lambda^{\prime \prime} \in \Theta_{\Lambda}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)$also implies that $\left(\rho_{\Lambda}, \rho_{\Lambda^{\prime \prime}}\right)$ occurs in the Howe correspondence. In particular, since $\Lambda^{\prime} \in \Omega_{\Lambda_{1}^{\prime}}^{+}$and $\left(\Lambda, \Lambda^{\prime}\right) \in \mathscr{B}_{\mathrm{Sp}_{2 n}, \mathrm{O}_{2 n^{\prime}}^{+}}$, we have that $\left(\rho_{\Lambda}, \rho_{\Lambda^{\prime}}\right)$ occurs in the Howe correspondence.
(b) Suppose that Λ_{1}^{\prime} is of type (III') in Subsection 6.1. Then Λ_{1}^{\prime} is of size (m, m).
(i) First suppose that $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)=\emptyset$. The proof is exactly the same as in (a.i).
(ii) Suppose that $\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right) \neq \emptyset$. First suppose that $m=0$. This means that $\Lambda=\binom{n}{-}$ for some $n \geq 0, \Lambda_{1}^{\prime}=\binom{-}{-}, \Lambda^{\prime}=\binom{1}{0}$ and $\left.\Theta_{\Lambda}^{*}\left(\Omega_{\Lambda_{1}^{\prime}}^{+}\right)=\left\{\begin{array}{l}0 \\ 1\end{array}\right)\right\}$. It is well known that $\rho_{(\underset{-}{n})}=1_{\mathrm{SP}_{2 n}}, \rho_{\binom{1}{0}}=1_{\mathrm{O}_{2}^{+}},\left(1_{\mathrm{Sp}_{2 n}}, 1_{\mathrm{O}_{2}^{+}}\right)$occurs in the Howe correspondence, and $\left.\binom{n}{-},\binom{1}{0}\right) \in \mathscr{B}_{\mathrm{Sp}_{2 n}, \mathrm{O}_{2}^{+}}$, i.e., the proposition is true for this case. Next suppose that $m \geq 1$. Then the proof is similar to that of (a.ii). The only difference is that we need to apply Lemma 6.16 instead of Lemma 6.13.
(2) Suppose that $m^{\prime}=m$. Since the case that $m=0$ is just the case that $n^{\prime}=0$, we assume that $m \geq 1$. By Lemma 6.11, we know that $\Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{-}\right) \neq \emptyset$. Let $\Lambda_{1} \in$ $\Theta_{\Lambda^{\prime}}\left(\Omega_{\Lambda}^{-}\right)$, i.e., $\Lambda \in \Omega_{\Lambda_{1}}^{+}$and $\left(\Lambda_{1}, \Lambda^{\prime}\right) \in \mathscr{B}_{\mathrm{Sp}_{2(n-1)}, \mathrm{O}_{2 n}^{+}}$. Then $\left(\rho_{\Lambda_{1}}, \rho_{\Lambda^{\prime}}\right)$ occurs in the Howe correspondence by induction hypothesis. The remaining proof is similar to that of (1). Note that we need to apply Lemma 6.18 instead of Lemma 6.13 and Lemma 6.16.

Proof of Theorem 1.8. The theorem is just the combination of Proposition 6.4 and Proposition 6.20.

References

[AM93] J. Adams and A. Moy, Unipotent representations and reductive dual pairs over finite fields, Trans. Amer. Math. Soc. 340 (1993), 309-321.
[AMR96] A.-M. Aubert, J. Michel, and R. Rouquier, Correspondance de Howe pour les groupes réductifs sur les corps finis, Duke Math. J. 83 (1996), 353-397.
[Car85] R. Carter, Finite groups of Lie type, conjugacy classes and complex characters, John Wiley \& Sons, England, 1985.
[Gér77] P. Gérardin, Weil representations associated to finite fields, J. Algebra 46 (1977), 54-101.
[GP00] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwabori-Hecke algebras, Oxford University Press, New York, 2000.
[KSO5] A. Kable and N. Sanat, The exterior and symmetric square of the reflection representation of $A_{n}(q)$ and $D_{n}(q)$, J. Algebra 288 (2005), 409-444.
[Lus77] G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), 125-175.
[Lus81] , Unipotent characters of the symplectic and odd orthogonal groups over a finite field, Invent. Math. 64 (1981), 263-296.
[Lus82] , Unipotent characters of the even orthogonal groups over a finite field, Trans. Amer. Math. Soc. 272 (1982), 733-751.
[MVW87] C. Mœglin, M.-F. Vignéras, and J.-L. Waldspurger, Correspondances de Howe sur un corps p-adiques, Lecture Notes in Math., vol. 1291, Springer-Verlag, Berlin-Heidelberg-New York, 1987.
[Pan19a] S.-Y. Pan, Lusztig correspondence and Howe correspondence for finite reductive dual pairs, arXiv:1906.01158 (2019).
[Pan19b] , Supercuspidal representations and preservation principle of theta correspondence, J. Reine Angew. Math. 750 (2019), 1-52.
[Pan20] _, On theta and eta correspondences for finite symplectic/orthogonal dual pairs, arXiv:2006.06241 (2020).
[Pan21] , Uniform projection of the Weil character, Adv. Math. 381 (2021), 107624, 80 pp .
[Sri79] B. Srinivasan, Weil representations of finite classical groups, Invent. Math. 51 (1979), 143-153.
Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan
Email address: sypan@math.nthu.edu.tw

[^0]: Date: July 14, 2022.
 2020 Mathematics Subject Classification. Primary: 20C33.
 Key words and phrases. Howe correspondence, unipotent character, Lusztig series, reductive dual pair.
 This work is partially supported by Taiwan MOST-grant 107-2115-M-007-010-MY2.

