MAPPING CLASS GROUPS ARE QUASICUBICAL

HARRY PETYT

ABSTRACT. It is proved that the mapping class group of any closed surface with finitely
many marked points is quasiisometric to a CAT(0) cube complex. We provide two
distinct proofs, one tailored to mapping class groups, and one applying to a larger class

of groups.
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1. INTRODUCTION

In the last few years, there has been a significant amount of work revolving around
analogies between mapping class groups and CAT(0) cube complexes. These analogies have
taken several forms of varying complexity, including the construction of counterparts of the
curve graph |[KK13, Hagl4, Gen20]|, the development of a cubical version of the Masur—
Minsky hierarchy [MMO00, BHS17b], and the detection of right-angled Artin subgroups of
mapping class groups [Kob12, CLM12, Run21].

The effect has been an effusion of new understanding in both settings. For mapping class
groups, this has included: confirmation of Farb’s quasiflat conjecture [BHS21, Bow19b],
semihyperbolicity [DMS23, HHP23|, decision problems for subgroups [Bril3, Kob12|, and
residual properties [DHS21, BHMS20]; and on the cubical side: versions of Ivanov’s theorem
[Iva97, Fio22|, characterisations of Morse geodesics [ABD21, IMZ23], control on purely lox-
odromic subgroups [KK14, KMT17|, and results on uniform exponential growth [ANS*24].

Although this viewpoint has been very successful, the two settings are certainly distinct.
Indeed, it is well known that (almost all) mapping class groups cannot act properly by
semisimple isometries on any complete CAT(0) space [KL96, Thm 4.2]; nor can they act
properly on (finite- or infinite-dimensional) CAT(0) cube complexes [Gen22, Thm 1.9].
In fact, it is unknown whether mapping class groups can act on CAT(0) cube complexes
without having a global fixed point, as such an action would imply that they do not
have property (T) [NR97|. In any case, the lack of proper actions means that any direct
correspondence between mapping class groups and CAT(0) cube complexes that is in some
sense “faithful” can only be of a purely geometric character.

The main goal of this article is to obtain the strongest direct correspondence one could
reasonably hope for. Specifically, we prove the following result.

Theorem A. For each closed, oriented surface S with finitely many marked points, there
exists a finite-dimensional CAT(0) cube complex Q) with a quasimedian quasiisometry
MCG(S) — Q.
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It is well established that the geometry of a CAT(0) cube complex is completely described
by its hyperplane combinatorics [Sag95, Sag97|, and this can equally be interpreted in terms
of its median structure [Che00, Rol98]. Mapping class groups have an analogous coarse
median structure |Bow13| (see Section 2), where the role of the median map is played by
the “centroid” construction of Behrstock—-Minsky [BM11]. The fact that the quasiisometry
in Theorem A is quasimedian means that, up to a bounded error, it respects these (coarse)
median structures, making the correspondence it provides considerably stronger than just
a quasiisometry. For instance, the quasimedian property can be used to prove that the
median-quasiconvex (also known as hierarchically quasiconvex) subsets of MCG(S) exactly
correspond to the convex subcomplexes of ); this is made precise in Corollary 5.3. This
has been used to show that the curve graph of S can be coarsely reconstructed from the
hyperplane combinatorics of Q) [PZS24, Prop. 7.16].

One immediate consequence of Theorem A is that mapping class groups admit proper
cobounded quasiactions on CAT(0) cube complexes, which provides an interesting contrast
with the situation for actions. Moreover, the quasiactions produced here are by “cubical
quasi-automorphisms”, not merely by self-quasiisometries. It also follows from Theorem A
that MCG(S) admits a bounded quasigeodesic bicombing, and so is weakly semihyperbolic
in the sense of [AB95].

A related result to Theorem A has recently been obtained by Hamenstéddt [Ham21],
who constructs a uniformly locally finite CAT(0) cube complex C' with a proper, coarsely
onto, Lipschitz map C' — MCG(S). Hamenstadt shows that the space of complete geodesic
laminations of S is homeomorphic to the reqular Roller boundary of C'. By work of Fernos—
Lécureux—Mathéus [FLM24], this in turn is homeomorphic to the boundary of a quasitree:
the contact graph of C' [Hagl4]. However, the map C — MCG(S) is not a quasiisometry,
and is not known to be quasimedian.

This article contains two proofs of Theorem A. The first uses more traditional mapping
class group machinery, whereas the second takes place in a setting that is considerably more
general than just mapping class groups: the setting of colourable hierarchically hyperbolic
groups (see Section 4.3). Whilst it should be noted that it is possible to construct hierar-
chically hyperbolic groups that are not colourable [Hag23|, all the key examples currently
known are colourable [BBF15, HMS24, Hug22, DDLS24, HRSS22|.

Theorem B. Let G be a colourable hierarchically hyperbolic group. There is a finite-
dimensional CAT(0) cube complex Q with a quasimedian quasiisometry G — Q.

As well as being a generalisation of Theorem A, this can be viewed as a “globalisation” of
powerful approximation results of Behrstock-Hagen—Sisto and Bowditch [BHS21, Bow1§|.
Namely, those authors show that, under conditions satisfied by all colourable hierarchically
hyperbolic groups, the median-quasiconvex hull of any finite subset is uniformly (in terms
of the number of points) quasimedian quasiisometric to some finite CAT(0) cube complex.
This finitary approximation is a key ingredient in both the resolution of Farb’s quasiflat
conjecture and the recent proofs of semihyperbolicity. In fact, as well as being global, The-
orem B implies a stronger finitary statement where there is no dependence on the number
of points; this is a consequence of the correspondence between median-quasiconvexity in
G and convexity in @ (Corollary 5.3).

A simple consequence of Theorem B is the recovery of a “stable cubulation” result of
Durham—Minsky—Sisto for groups [DMS23, Thm A], albeit with a less tight dimension
bound (and without the equivariance of [DMS23, Thm 4.1]). See Section 5 for more
discussion.

Outside the setting of groups, one can also use the tools of this paper (discussed at the
end of the introduction) together with [EMR17, Thm 4.3, Lem. 4.10] to prove the following.
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Theorem C. Teichmiiller space, with either one of the Teichmiiller metric or the Weil-
Petersson metric, admits a quasimedian quasiisometry to a finite-dimensional CAT(0) cube
complez.

An essential part of the proof of Theorem B is a criterion to determine when a hyperbolic
space is quasiisometric to a finite-dimensional CAT(0) cube complex. A result of Haglund—
Wise shows that every hyperbolic group is quasiisometric to a locally finite CAT(0) cube
complex [HW12], and the argument also applies to uniformly proper hyperbolic spaces.
Surprisingly, though, it seems that it the corresponding result for non-proper hyperbolic
spaces was not previously known. The following theorem remedies this. (Note that every
uniformly proper hyperbolic space has finite asymptotic dimension [Gro93, BS00].)

Theorem D. If X is a hyperbolic space, then X is quasiisometric to a finite-dimensional
CAT(0) cube complex if and only if X has finite asymptotic dimension.

It should be noted that the fact that the cube complexes in Theorem D are only finite-
dimensional, not locally finite as in the Haglund—Wise result for hyperbolic groups, is
necessary, as Theorem D applies to locally infinite trees, for instance. This raises a natural
question.

Question. Are mapping class groups quasimedian quasiisometric to uniformly locally fi-
nite CAT(0) cube complexes? What about colourable hierarchically hyperbolic groups?

One might hope to use the Alice’s diary construction of [BDS07|, which upgrades certain
quasiisometric embeddings of hyperbolic spaces in finite products of trees to quasiisometric
embeddings in finite products of binary trees. However, that construction relies in an
essential way on the assumption that the boundary of the hyperbolic space is doubling,
and unfortunately the doubling condition fails for the relevant spaces in this article.

The result that mapping class groups are quasiisometric to finite-dimensional CAT(0)
cube complexes (Theorem A) also has interesting implications from the cubical perspective.
Indeed, any CAT(0) cube complex that is quasiisometric to a mapping class group must
have some peculiar properties.

Theorem E. There exist finite-dimensional CAT(0) cube complexes that have discrete
quasiisometry group, are quasiisometric to finitely generated groups, and are not quasiiso-
metric to any CAT(0) cube complex admitting a proper cobounded group action.

Proof. Let @ be a CAT(0) cube complex quasiisometric to the mapping class group of
some surface S, as given by Theorem A. By quasiisometric rigidity of mapping class groups
[BKMM12, Thm 1.1|, the quasiisometry group of @ is isomorphic to MCG(S), which is
discrete. If a cube complex quasiisometric to (Q admitted a proper cobounded group action,
then MCG(S) would be virtually cubulated, contradicting [KL96]. O

To the best of my knowledge, these are the first examples of CAT(0) cube complexes
with these properties. We now discuss examples with subsets of these properties that
arising from settings other than mapping class groups.

For examples of CAT(0) cube complexes that are quasiisometric to groups but don’t
admit proper cobounded group actions, let I' < Sp(n, 1) be a uniform lattice. The group
" is hyperbolic, so is quasiisometric to a CAT(0) cube complex Qr by [HW12, Thm 1.8|
or Theorem D. It also has property (T) by work of Kazhdan (see [BHVO0S, §3.3]) and
Kostant [Kos75]. By Pansu’s rigidity theorem [Pan89), if Qr admitted a proper cobounded
group action, then I' would act with unbounded orbits on some CAT(0) cube complex,
contradicting [NR97, Thm BJ|. On the other hand, it can be seen that Qr does not have
discrete quasiisometry group. Indeed, Schwartz’s theorem [Sch95| implies that the quasi-
isometry group of I' is isomorphic to the commensurator of I'. By Corlette [Cor92] or
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Gromov—Schoen [GS92|, T' is arithmetic, so Margulis’ characterisation of arithmeticity
[Mar75, Thm 9| (also see |[Zim84, §6.2|) implies that the commensurator of I' is Hausdorff-
dense in Sp(n,1). Hence I' has indiscrete quasiisometry group.

For examples with infinite, discrete quasiisometry group, let A < SO(n, 1) be a nonar-
ithmetic nonuniform lattice, which exists by [GP88|. The group A is hyperbolic relative to
virtually abelian subgroups, so by residual finiteness, A is virtually a colourable hierarchi-
cally hyperbolic group [BHS19, Thm 9.1], and hence is quasiisometric to a CAT(0) cube
complex Qa by Theorem B. By Margulis’ characterisation, A has finite index in its com-
mensurator, so the quasiisometry group of Q)5 is discrete by Schwartz’s theorem. Whether
A can virtually act properly coboundedly on a CAT(0) cube complex is unknown in gen-
eral, but Wise showed that A is virtually compact special, hence cocompactly cubulated,
when n = 3 [Wis21, Thm 17.14].

I thank one of the anonymous referees for informing me of the following family of CAT(0)
square complexes that have infinite, discrete quasiisometry group and are constructed
independently of Theorem B. Let T be a tree whose automorphism group acts freely and
cocompactly (for instance, the universal cover of the below graph). The CAT(0) square
complex T' x T also has free cocompact isometry group. Let A be the right-angled octagon
complex obtained from 7' x T" by performing a branched cover of order two at the centre
of each square, whose isometry group is also proper and cocompact. The complex A
is a Fuchsian building in the sense of [Bou00|, and hence a theorem of Xie shows that
the quasiisometry group of A is isomorphic to Aut A [Xie06, Thm 1.2|. Subdividing the
octagons of A yields a CAT(0) square complex with infinite, discrete quasiisometry group.

Outline of the proofs of Theorem A.

The starting points for the proofs of Theorem A presented in Sections 3 and 4 are con-
structions of Bestvina—Bromberg—Fujiwara [BBF21| and Buyalo—Dranishnikov—Schroeder
[BDSO07], respectively. The techniques involved are rather different: Section 3 is based
around closest-point projections to a family of quasigeodesics in curve graphs that were
carefully constructed in [BBF21|, whereas Section 4 is chiefly concerned with a construc-
tion for embedding the hyperbolic cone on a bounded metric space in a finite product of
trees [BDS07].

The main point that we use is that these both provide routes to quasiisometrically
embedding mapping class groups in finite products of trees. On its own this is not enough
to obtain a quasiisometry to a CAT(0) cube complex. Indeed, there is no reason why
an arbitrary subset of Euclidean space should admit a quasiisometry to a CAT(0) cube
complex, and even if a subset is abstractly quasiisometric to a CAT(0) cube complex, it
may not be possible to see this from the ambient cubical structure: consider the log-spiral
in R?, for instance. In general the relationship between CAT(0) cube complexes and finite
products of trees is surprisingly subtle—there are locally finite CAT(0) cube complexes
that cannot be isometrically embedded in any finite product of trees, even in dimensions
as low as five [CH13)|.

The key to resolving this issue is the quasimedian property. More precisely, given a
quasiisometric embedding of X in a finite product of trees, if one has the additional infor-
mation that it is quasimedian, then it turns out to be possible to obtain a quasiisometry
from X to a CAT(0) cube complex (see Proposition 2.7). Our principal strategy is therefore
to show that the embeddings we consider are quasimedian.

Proof A. Section 4 begins by applying the Bestvina-Bromberg—Fujiwara construction
as in [BBF15|. Namely, [BBF15] produces a finite colouring of the subsurfaces of S such
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that any two of the same colour overlap. In each colour, the curve graphs of the subsur-
faces of that colour can be assembled into a quasitree of metric spaces. This is a hyperbolic
graph that is built by taking the disjoint union of those curve graphs and adding edges
between certain pairs of them; roughly, a pair gets an edge when their subsurface pro-
jections to all other subsurfaces of that colour almost coincide. It was shown in [BBF15]
that MCG(S) quasiisometrically embeds in the product of these hyperbolic graphs, and
the embedding was shown to be quasimedian in [HP22]. This is not the end of the story,
because the hyperbolic graphs contain isometrically embedded curve graphs, and so are
not all quasitrees.

Nevertheless, Hume observes [Hum17| that these hyperbolic graphs can themselves be
quasiisometrically embedded in finite products of rooted trees by a construction of Buyalo
[Buy05b|. We strengthen this in Section 4 by using a variant construction from [BDS07] to
give an exact characterisation of which hyperbolic spaces admit quasimedian quasiisometric
embeddings in finite products of trees. This leads to Theorem D, and we observe that the
above hyperbolic graphs meet the necessary criteria.

Briefly, given a hyperbolic graph X, the trees forming the finite product are built from
a sequence of covers of the Gromov boundary of X. Each cover is by balls, with radii
decaying exponentially along the sequence of covers, and the sequence is coherent in the
sense that balls from different terms are either disjoint or nested. The levels of the rooted
trees correspond to different terms in the sequence. In order to show that the embedding
of X in the product of these trees is quasimedian, we use coherence of the sequence and
Lemma 2.10, a simplified criterion for a map of hyperbolic spaces to be quasimedian.

Proof B. The construction from [BBF21| that is used in the proof in Section 3 also
begins with a quasitree of metric spaces, but a more refined collection of metric spaces is
involved. More specifically, in [BBF21|, Bestvina—Bromberg—Fujiwara show how to “de-
compose” the curve graph C.S into finitely many orbits of quasigeodesics in such a way that
a quasitree of metric spaces can be built for each orbit. These quasitrees of quasigeodesics
are themselves quasitrees. By repeating this decomposition in each subsurface and using
the colouring from [BBF15], they are able to obtain a finite collection of quasitrees that is
sufficiently rich for a finite index subgroup H of MCG(S) to act properly on their product
[BBF21|. The representation of MCG(S) induced by this action of H corresponds to a
proper action of MCG(S) on a finite product of quasitrees.

Because we cannot possibly end up with an equivariant quasiisometry to a CAT(0) cube
complex, we can just work with the embedding of MCG(S) coming from approximating
it by its finite-index subgroup H and replacing the finitely many quasitrees by trees. The
goal of Section 3 is therefore to prove the quasimedian property for the orbit maps of H
on the quasitrees of quasigeodesics.

The strategy for this is to show that orbit maps send hierarchy paths in MCG(S) to
paths that project to unparametrised quasigeodesics in each quasitree factor. To see why
this is sufficient, note that there is a hierarchy-path triangle A in MCG(S) with all sides
passing through the coarse median m (Lemma 2.2). Moreover, the median in the product
of quasitrees is just the component-wise median. If the images of the edges of A project
to unparametrised quasigeodesics in a quasitree, then the Morse lemma implies that the
image of m is uniformly close to all three sides of a geodesic triangle therein, and hence to
the median in that quasitree. Knowing that this holds for every quasitree factor gives the
quasimedian property.
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2. PRELIMINARIES
2.1. HIERARCHY STRUCTURE AND NOTATION FOR MAPPING CLASS GROUPS

Let us start by reviewing some of the hierarchy structure of the mapping class group.
This viewpoint was originally developed by Masur-Minsky [MM99, MMO00|, and more
recently was axiomatised by Behrstock—Hagen—Sisto with their definition of the classes of
hierarchically hyperbolic spaces and groups [BHS17b, BHS19].

Let S = S, be the orientable surface of genus g with p marked points. If 3g + p < 4,
then S is said to be sporadic. The (extended) mapping class group of S, denoted MCG(S),
is the group of isotopy classes of (not necessarily orientation-preserving) homeomorphisms
of S. If S is sporadic, then MCG(S) is hyperbolic, so we restrict attention to the case
where S is not sporadic. It is a classical theorem of Dehn that MCG(S) is finitely generated
|Deh87] (in fact it is 2-generated if g = 3 [Mon21]| or p < 1 |Kor05|). Fix once and for all
a finite generating set for MCG(S), and let d be the corresponding word metric.

The curve graph of S, introduced by Harvey in [Har81] and denoted CS, is the graph
whose vertex set is the set of isotopy classes of essential simple closed curves on S, with an
edge joining two vertices if the corresponding classes have disjoint representatives. This
graph was shown to be unbounded and hyperbolic by Masur-Minsky [MM99], and since
then there have been several articles proving that the hyperbolicity constant is independent
of the surface [Aoul3, Bow14, CRS14, HPW15|. (This is also true for nonorientable surfaces
[Kun16].) By definition, MCG(S) acts on CS by graph automorphisms.

Now let U be an essential proper subsurface of S. For simplicity, let us assume that U
is not sporadic; see [MMOO| for how to proceed otherwise. Since U is also a surface, it has
a curve graph CU, and this appears as a subgraph of C.S, but has diameter at most 2 in C.S
because there is a curve in S that is disjoint from U. This means that CS does not see any
information that lives only in U. The idea of the Masur—Minsky hierarchy is to overcome
this by considering the curve graphs of all subsurfaces of S, rather than just CS.

Let & be the set of all isotopy classes of (possibly sporadic) connected, essential, non-
pants subsurfaces of S. (For technical reasons, disconnected subsurfaces need to be included
in the setting of hierarchical hyperbolicity, but for this article they can be ignored.) Given
two (isotopy classes of) subsurfaces U and V' in &, there are three ways that the geometries
of their curve graphs can interact, based on the configuration of the subsurfaces. They
can be disjoint; they can overlap, in which case we write UMV; or one can be entirely
contained in the other, and we write U = V if U is a subsurface of V.

If U = V, then there is an associated bounded set p‘(f < CV. In the case where U is
not sporadic, this is just the subgraph CU < CV. There is also a bounded set p‘(f c CV if
UAV; in this case it is the subgraph C(U n V).

More generally, given a simple closed curve ¢ in S that intersects a subsurface U, there
is a natural way to define a projection of the curve to CU. If U is not an annulus (see
[MMO0, §2.4] for the case where U is an annulus), then the image of ¢ is a collection of
curves obtained by intersecting ¢ with U and “closing up” any loose ends with subsegments
of the boundary of U. This collection forms a bounded diameter subset of CU. Now fix
a marking m of S (see [BKMM12| for background on markings). Every subsurface of S
meets m. We can use this marking to define, for any subsurface U € &, a map from
MCG(S) to CU as follows. Given a mapping class g, the subsurface U meets at least
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one curve that makes up gm. For each such curve, take the projection to CU, and define
7 (g) < CU to be the bounded set obtained by taking the union of these projections. We
call the (set-valued) map 7y : MCG(S) — CU a projection map. Projection maps are
coarsely Lipschitz, though we shall not use this fact directly.

Mapping classes permute the subsurfaces of S, and every g € MCG(S) induces an
isometry g : CU — CgqU for each subsurface U. By construction, the bounded p-sets and
the projection maps satisfy gp¥ = pgg and gy (¢9') = meu(g99’).

The projection maps allow one to view curve graphs of subsurfaces of S as providing
coordinates for MCG(.S), by associating with g the tuple (717/(¢9))ves. There are restrictions
on the values these coordinates can take coming from the relations between subsurfaces.
For instance, Behrstock showed in [Beh06] that if U and V overlap then at most one of
dev (T (g), p¥y) and dey (mv (g), pY) is greater than some fixed constant that depends only
on S. This is known as the Behrstock inequality; an elementary proof can be found in
[Man13]. A similar statement holds when U & V (see |Beh06, Thm 4.4]), but there is no
such restriction when U and V are disjoint.

An important aspect of the hierarchy structure of the mapping class group is the fact
that any set of coordinates x = (xy)yes satisfying Behrstock’s inequalities is “realised”
by a point of MCG(S) [BKMM12, Thm 4.3]. That is, there is some g € MCG(S) such
that (77 (g))ves is uniformly close to x in the supremum metric. This is extremely useful,
because it allows one to construct points in MCG(S) by working only in curve graphs,
which are hyperbolic. For example, Behrstock—Minsky used this to construct what they
called a centroid for a triple of mapping classes [BM11]. The idea is as follows. For each
subsurface U, project the triple to CU and let uy be the coarse centre in that hyperbolic
space. This gives coordinates (uy)yes, and it turns out that they satisfy Behrstock’s
inequalities, so there is some mapping class p that realises the tuple (uy)yes. This point
p is declared to be the centroid of the triple.

The centroid construction motivated Bowditch to introduce coarse median spaces [Bow13],
which cover many classes of nonpositively curved spaces besides mapping class groups. For
this reason, the centroid is now more commonly called the coarse median. Coarse median
spaces will be reviewed in Section 2.2.

To summarise, MCG(S) has the following structure.

e Each subsurface U € G has an associated uniformly hyperbolic graph CU.

e There is a projection map ny : MCG(S) — CU that sends mapping classes to
uniformly bounded subsets of CU.

o If UAV or if U © V, then there is an associated subset pg c CV, and this subset
is uniformly bounded.

e There is equivariance of the form gp¥, = pgg and gry(g9') = meu(99’).

e (Behrstock inequality:) There is a uniform bound on min{dcy (77 (g), p; ), dev (mv (), p30)}
for UAV and g € MCG(S).

e The coarse median of g1, g2, g3 € MCG(S) is a mapping class 1(g1, g2, g3) with the
property that, for any U € &, the projection 7 (u(g1, g2, g3)) is uniformly close to
the coarse centre of 7y (g1), 7 (g2), and 7 (gs) in the hyperbolic graph CU.

Hierarchy constant.

The hierarchy structure of the mapping class group involves various constants that
depend only on the topological type of S, some of which have been mentioned above. Fix
a constant £ = E(S) > 1 that is at least as large as all of these. We think of E as actually
being part of the hierarchy structure; see [BHS19, Rem. 1.6] for a more explicit description
of how F is chosen.

Paths and product regions.
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There is a collection of natural paths in the mapping class group, called hierarchy paths,
that interact well with the hierarchy structure. These abstract the key properties of what
were originally called hierarchies in [MMOO|. For D > 1, a D—quasigeodesic is a (D, D)-
quasiisometrically embedded interval or line.

Definition 2.1 (Hierarchy path). For a constant D > 1, a D-hierarchy path is a D—
quasigeodesic v in MCG(S) such that for any subsurface U = S, the projection 7y is an
unparametrised D—quasigeodesic.

Masur—Minsky showed that every pair of mapping classes can be joined by a hierarchy
path [MMO00, Thm 4.6]. The following is a simple consequence of [RST23, Prop. 5.6].

Lemma 2.2. There is a constant Dy such that for any x1,x2,x3 € MCG(S), there are
D1 ~hierarchy paths B;; from x; to x; that pass through p(zq, x2,x3).

Given g, h € MCG(S), there are some restrictions on what the hierarchy paths from ¢ to
h can look like. In particular, they must “pass through” subsurfaces in a particular order;
see [CLM12, Prop. 3.6]. Since the projections of a D-hierarchy path are D—quasigeodesics,
this only makes sense for subsurfaces where g and h are far apart.

Definition 2.3 (Relevant subsurface, partial ordering). Given g, h € MCG(S) and a con-
stant R > 20, we say that a subsurface U is R-relevant for the pair (g, h) if dey (7 (g), 7y (h)) =
R. We write Relg(g, h) for the set of R-relevant subsurfaces, and give it a strict partial
order [BKMM12, Lem. 4.5] by setting U < V whenever UAV and dey (7v (9), p}) < 4.

Definition 2.4 (Standard product region). For a subsurface U of S, the standard product
region of U, denoted Py, is the set of all g € MCG(S) that satisfy dev (mv(g), pf}) < E for
every subsurface V € & with either VAU or U £ V.

2.2. COARSE MEDIANS

Coarse median spaces were introduced by Bowditch in [Bow13], and the class includes
many examples of interest, such as mapping class groups, hyperbolic spaces, Teichmiiller
space with either of the usual metrics, CAT(0) cube complexes, and hierarchically hyper-
bolic spaces [Bow13, NWZ19, Bow16, Bow20, BHS19|. These spaces exhibit a weak kind
of nonpositive curvature. Indeed, Bowditch gave a particularly elegant proof that they
satisfy a quadratic isoperimetric inequality [Bow13, Prop. 8.2].

Although we shall not use it directly, the definition of a coarse median space has been
included for completeness; see [Bow13, Bow19a|. Recall that the median of three vertices
in a finite-dimensional CAT(0) cube complex is the unique vertex lying on an ¢!-geodesic
between each pair.

Definition 2.5 (Coarse median space). A metric space (X,d) is a coarse median space if
there is a map p: X3 — X and a function h such that the following conditions hold.
e For any z,2',y,y, 2,2/ € X we have

d(u(z,y, 2), p(@',y',2')) < M(D)(1 +d(2,2') +d(y,y') +d(2,2)).

e For all n € N, if A ¢ X has cardinality at most n, then there is a finite CAT(0)
cube complex Q with maps f: A — Q and f: Q — X such that

- d (?N(U1>U27U3)a /‘(?(Ul)’?(lﬁ)v?(v?)))) < h(n) for all vy, vg,v3 € Q;
— d(a, ff(a)) < h(n) for all a € A.

More important for us will be the notion of a quasimedian map, which is the natural
morphism for the setting of coarse median spaces.
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Definition 2.6 (Quasimedian). Let (X, dx, ux) and (Y, dy, uy) be coarse median spaces.
A map ¢ : X — Y is quasimedian if there is a constant k£ such that

dy (pux (1,2, 23), py (P(x1), d(x2), ¢(23))) < k
holds for all z1,z9, 23 € X.

We say that a subset Y of a metric space X is coarsely connected if there is a constant r
such that for any y,y’ € Y there is a sequence y = yo, y1,--.,Yn = ¥y with d(y;—1,9;) <r
for all ¢+ < n. If we can take r = 1, then we say that Y is I-connected. The proofs of
our main results rely in an essential way on the following, which is based on an result due
independently to Bowditch [Bow18, §4| and Fioravanti [Fio24, Prop. 4.1].

Proposition 2.7 (|[HP22, Prop. 2.12]). Any coarsely connected coarse median space X that
admits a quasimedian quasiisometric embedding ® in a finite-dimensional CAT(0) cube
complezx Q is quasimedian quasiisometric to a finite-dimensional CAT(0) cube complex.

Proof. The finite-dimensionality of @ lets us perturb ® to map into the O-skeleton Q° < Q,
and the image is coarsely connected. Since ¢ is quasimedian, the median of any three points
of ®(X) lies uniformly close to ®(X). According to [HP22, Prop. 2.8], this shows that
®(X) is at bounded Hausdorff-distance from a 1-connected median subalgebra M < Q.
As mentioned in [Bowl8, §2|, 1-connected median subalgebras of Q° are isometrically
embedded, so ® is a quasiisometry from X to the CAT(0) subcomplex of @ whose 0—
skeleton is M, again relying on finite-dimensionality. g

Let us now state a few useful facts about coarse medians and hyperbolicity.

Proposition 2.8 ([INWZ19, Thm 4.2|). Coarse medians on hyperbolic spaces are unique
up to bounded error.

Lemma 2.9. If X and Y are hyperbolic spaces, then any map ¢ : X — Y that sends
geodesics to uniform unparametrised quasigeodesics is quasimedian. In particular, any
quastisometric embedding of hyperbolic spaces is quasimedian.

Proof. According to Proposition 2.8, there is no ambiguity in the median operations.
Let 1,229,235 € X, and for each pair (¢,7) let 7;; be a uniform quasigeodesic from z;
to x; that passes through the median m = px(z1,22,23). The image ¢v;; is a uni-
form unparametrised quasigeodesic, so lies at bounded Hausdorff-distance from a geo-
desic with the same endpoints by the Morse lemma. Thus ¢(m) is uniformly close to

py (¢(w1), ¢(2), d(23)). O

Let X and Y be metric spaces equipped with n—ary operations fx : X™ — X and
fy : Y™ —>Y. We say that amap ¢ : X — Y is a coarse morphism with respect to fx and
fy if there is a constant k such that ¢ fx (z1,...,zy,) is k—close to fy (¢(x1),...,¢(xy,)) for
every (z1,...,x,) € X"

Lemma 2.10. Let X and Y be hyperbolic spaces. If a coarsely Lipschitz map ¢ : X — Y
is a coarse morphism with respect to the binary operations ux(-,-,xo) : X?> — X and
py (5 d(x0)) : Y2 =Y for some g € X, then ¢ is quasimedian.

Proof. Let x1,z9 € X, and let v be a geodesic from z; to z3. Let ~; be a uniform
quasigeodesic from zy to x; that passes through m = px(z1,z2,x0). Let 7, < ~; be the
subsegment from m to z;. Then -y lies at bounded Hausdorff-distance from the uniform
quasigeodesic v} U 5.

The coarse morphism property of ¢ tells us that the +; get mapped to uniform un-
parametrised quasigeodesics, and moreover that ¢(m) is uniformly close to uy (¢(x1), ¢(x2), ¢(xo)).
In particular, the coarse intersection of ¢ry] with ¢4 is uniformly bounded. This shows that
¢Y] U ¢4 is a uniform unparametrised quasigeodesic. Since v lies at bounded Hausdorff-
distance from 7] U 74, this implies that ¢ is a uniform unparametrised quasigeodesic.
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We have shown that ¢ sends geodesics to uniform unparametrised quasigeodesics, so we
are done by Lemma 2.9. (|

2.3. THE BESTVINA-BROMBERG—FUJIWARA CONSTRUCTION

Another fruitful way of studying mapping class groups is via the projection complex tech-
niques introduced by Bestvina-Bromberg-Fujiwara [BBF15|. These allow one to assemble
the curve graphs of the subsurfaces of S together into a finite collection of hyperbolic
spaces in such a way that MCG(S) virtually acts on their product, with orbit maps being
quasiisometric embeddings. The construction is considerably more general than this, and
has many applications, for example [BB19a, EMR17, Dah18, Ball7, CM22|.

Following |[BBF15, §4|, let Y be a collection of geodesic metric spaces with specified
subsets my(X) < Y for any distinct X,Y € Y. Let dj(X,Z) denote the quantity
diam(7y (X) U my(Z)); in particular, if every my(X) is a singleton, as will be the case
for us in Section 3, then d¥-(X, Z) = dy (my (X), 7y (Z)). We say that (Y, {my}) satisfies
the projection axioms with constant £ if the following hold for any distinct XY, Z €Y.

(P0) diam(my (X)) < €.

(P1) If d7%(X,Y) > &, then d% (Y, Z) < &.

(P2) The set {W :dfy(X,Y) > ¢} is finite.

Moreover, if a group G acts on Y and each element g of G induces isometries g: Y — gY,
then we say that the projection axioms are satisfied G—equivariantly if gigz = g9, and
gy (X) = mgy (9X) hold for any distinct X,Y e Y.

As an example, let Y comprise the curve graphs associated to a collection of pairwise
overlapping subsurfaces of S, with my (X) = p{f . Then (P1) is the Behrstock inequality,
and (P2) follows from [MMO00, §6] or [BBF15, Lem. 5.3].

The quasitree of metric spaces.

Recall that a quasitree is a geodesic metric space that is quasiisometric to a tree. (We
could equivalently demand that it be (1,C)—quasiisometric to a tree [Ker23].)

Suppose that (Y, {my}) satisfies the projection axioms with constant £. In order for the
constructions to work, we need to perturb the distance functions dj-; see |[BBF15, §3.2]
for how to do this. (Actually, by [BBFS20, Thm 4.1], we could instead perturb the sets
7y (X), but perturbing the distance function will have less inertia.) The details will not be
important for us, only that the alteration was small: writing d%/ for the modified distance
function, there is a constant d, depending only on &, such that

(1) A (X,2) -6 < d}(X,2) < d}(X,2)

holds for any three distinct elements of Y.

The main thing is that this modified distance is what is used to construct the quasitree
of metric spaces. By the results of [BBF15|, there is a constant © depending only on &
such that all of what follows holds for any value of K > ©. To construct the quasitree of
metric spaces Cx Y, begin with the disjoint union | |y.y Y, then attach an edge of length
L from each point in 7y (X) to each point in 7x (Y) whenever d (72 (X),nz(Y)) < K for
every other Z € Y. The constant L is determined by K and &. If the projection axioms
are satisfied G—equivariantly, then the construction of CxY naturally gives an action of G
on Cx'Y by isometries.

What makes this construction so useful is the fact that if the spaces that make up Y are
uniformly hyperbolic then the quasitree of metric spaces CxY is also hyperbolic [BBF15,
Thm 4.17|, and if they are uniformly quasiisometric to trees then CxY is also a quasitree
[BBF15, Thm 4.14].

The quasitree of metric spaces comes with a “distance formula”. That is, the distance
between two points in CxY can coarsely be measured by considering the projections of
the points to the component metric spaces—this is similar to the situation for mapping
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class groups [MMO00, Thm 6.12]. For X,Y € Y and z € X, set 73 (z) = 2 if ¥ = X, and
b

7y (x) = my (X) otherwise. The quantity {a}, is equal to a if @ > b, and 0 otherwise.
Theorem 2.11 (Distance formula, [BBF15, Thm 4.13|). There is a constant K' > K such
that, for any X andY in Y, ifx € X andy €Y, then

> 2 @] < doviey) < 6K +4 Y f{dumh @, m))
ZeY

The way we shall use this is to say that if d¢, v (z,y) > 6K, then there is some Z € Y

that has d% (7% (x), 7% (y)) = K. We shall not directly use the lower bound, though we rely
on its use in [BBF21].

3. PROOF USING QUASITREES OF QUASIGEODESICS

In this section, we use the tools of [BBF21] to give our first proof of Theorem A. Let us
begin by describing some of the technical components of [BBF21, §4].

Firstly, given subsurfaces U and V of S that are equal or transverse, and given a quasi-
geodesic v in the curve graph CU, define a map p, : CV — v as follows. For x € CV, set
p(z) to be a closest point to = in v if V' = U, and a closest point to pg in v if UAV.
If we have a collection of quasigeodesics that is invariant under the action of a subgroup
H < MCG(S), then these projections can be chosen so that hp,(z) = pp,(hx) for every
heH.

By [BBF15, Prop. 5.8, the set & of subsurfaces admits a finite partition & = | |* | &,
such that if U,V € &;, then U and V overlap. Moreover, there is a finite-index subgroup
H of MCG(S) that preserves this colouring. The constructions of [BBF21, §4] provide
the following.

e A constant A and a finite collection of distinguished A—quasigeodesics A = {v1,...,Ym},
where 7; lies in the curve graph CU; of a subsurface U;. We may have U; = U;.

e A finite-index subgroup H < H°" with the property that the diameter of - (hi)
is uniformly bounded (in terms of E) whenever h € H stabilises U; but not ;.

e H acts on the MCG(S)-orbit of A, and the 7; form a transversal of the H-orbits.
Although the sets A; = H - {~;} are pairwise disjoint, the MCG(S)-orbits of some
of the ~; will coincide.

e A constant £ = £(F,\) such that each (A;, {pn, (h'vi)}) satisfies the projection
axioms H—equivariantly with constant &.

The last point allows the construction of a quasitree Cx A; with an isometric action of H,
as described in Section 2.3, and Bestvina—Bromberg—Fujiwara prove the following.

Theorem 3.1 (|[BBF21, §4.9|). For K sufficiently large in terms of E and X\, any orbit
map H — [ [/, CxA; is a quasiisometric embedding of H in a product of quasitrees.

In view of Proposition 2.7, our aim is to show that these orbit maps are quasimedian,
where the coarse median on H is inherited from MCG(S). We start by making a particular
choice of orbit map that simplifies a number of our arguments.

The choice of orbit.

We start by altering the choice of the axis «; inside its H—orbit, which allows for some
notational simplifications. Let h € Py, lie in the product region of U;, so that 1 € Pj-1y,.
Replacing v; by h™1v;, we may assume that 1 € Py,. By definition of Py, this ensures
that, for any g € H, we have

(2) dcv(wv(g),p%U") < E whenever VhgU;.

Moreover, we can choose ; inside its Staby (U;)-orbit to minimise d, (s, 7y, (1)).
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For each i, let v; : H — Cx A; be given by

TZJZ(h) = hp'YiTrUi(l) = ph%ﬂ-hUi(h)'

Then ¥ = (¢1,. .., %) defines an orbit map H — [[/~, Cx A;.
Compositions as in the definition of v); will arise frequently, so let us adopt the convention
of writing
pﬂ-;l, = ph’yiﬂ'hUi : H - h%
For example, ;(h) is the image of h under the composition of pﬂ'z with the inclusion

hv; — CxA;. This also illustrates the fact that h+; is naturally a subspace of both CU;
and Cg A;, although there is no sensible map between these two.

Overview of important constants.

The hierarchy constant E' and the quasigeodesic constant A are the “independent vari-
ables”. As described, these determine the projection-axiom constant . From these we
obtain v > 10F and X > X\ + £, which should also be thought of as small; their roles are
mostly technical. See Lemmas 3.3 and 3.4.

For the next “order of magnitude”, fix D > max{10v, D1, 0}, where D; is the constant
from Lemma 2.2 and © is as in Section 2.3. Using this, we shall define a larger number
D' = XN (D + 50X) in Lemma 3.4.

Larger still, fix K > 101D’ large enough for Theorem 3.1 to apply. Because K is used
to construct the quasitree of metric spaces Cx A;, it is perhaps more useful to think of
choosing K first, then choosing D depending on this so that D and D’ lie in a particular
interval between max{FE, A} and K, which is nonempty as long as K was chosen to be
sufficiently large.

With K now fixed, let us write 7; for the quasitree Cx A; from now on, both to simplify
notation and to avoid confusion with the curve graphs CU;.

Proof of Theorem A.
With this set-up established, we can now prove Theorem A. The following proposition
is the technical heart of the argument; we prove it in Section 3.1.

Proposition 3.2. There is a constant q such that if B is a D—hierarchy path in H, then
Wi B is an unparametrised q—quasigeodesic.

It is worth observing that this is not automatic from the fact that hierarchy paths are
quasigeodesics and ¥ is a quasiisometric embedding. For example, a log-spiral in the
Fuclidean plane is a quasigeodesic, but its projections to 1-dimensional subspaces are not.
We actually only need the weaker statement that ;3 is at a uniformly bounded Hausdorff-
distance from the geodesic between its endpoints, but Proposition 3.2 is perhaps the most
natural way to show this.

Here follows the proof of Theorem A, assuming Proposition 3.2.

Proof of Theorem A. It suffices to prove the result for the finite-index subgroup H <
MCG(S), so let us show that ¥ : H — [ [, 7; is quasimedian. Since the coarse median in
[ 1%, 7; is defined component-wise, this amounts to showing that each v; is quasimedian.

For this, take x1,z9, 23 € H and let m = u(z1, 22, x3). According to Lemma 2.2, there
are D-hierarchy paths j;, from x; to x) that pass through m. Applying 1; gives a triangle
in 7; whose vertices are 1;(z;) and whose edges are 1;5;, and 1;(m) lies on all three sides
of this triangle. Moreover, Proposition 3.2 tells us that the sides of this triangle are ¢
quasigeodesics. It now follows from hyperbolicity of 7; that 1;(m) is uniformly close to the
median of the ¢;(x;) in 7;. Since this holds for each 4, this shows that ¥ is quasimedian.

Combining this with Theorem 3.1, we have that the orbit map ¥ is a quasimedian
quasiisometric embedding of H in a finite product of quasitrees. Take any quasimedian
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quasiisometry from [ [~ 7; to a CAT(0) cube complex Y (such as the obvious quasiisom-
etry to a product of trees, which is quasimedian by Lemma 2.9), and compose this with
¥ to produce a quasimedian quasiisometric embedding H — Y. Applying Proposition 2.7
completes the proof. O

3.1. PROOF OF PROPOSITION 3.2

All that remains for this proof of Theorem A is to establish Proposition 3.2, which says
that the 1»; map D-hierarchy paths in MCG(.S) to uniform unparametrised quasigeodesics
in 7;. Recall that pri = pp,mhy, : H — hvy;, where «; is a quasigeodesic in CU;.

Let us start with an important observation that is a variant of the Behrstock inequality.

Lemma 3.3. There is a constant v = v(E,\) = 10E such that if h,h' € H satisfy
hU; = W'U;, but hry; # h'vy;, then for any z € H, at most one of the quantities

dh’Yi (pﬂ-z('z%ph’w (h/’)/z)) and dh”yi (Pﬂﬁ/(2)7phwi(h%‘))
is greater than v; moreover, dp, (ph,(h), proy; (h:)) < v.

Proof. The first statement follows from the proof of [BBF21, Prop. 3.1], because h7; and
h'~; are A-quasigeodesics and the bounded set 7, (2) is quasiconvex. For the “moreover”
statement, note that the fact that 4; was chosen to minimise deg, (7, (1), ;) implies that
the geodesic in ChU; from pmj (h) to pri,(h) lies in a neighbourhood of the union of the
geodesics from 7y, (h) to pr (k) and pr,(h). In particular, py., (p7),(R)) € prrny, (hy:) lies
close to prh,(h). O

The map ¥ : H — [ [, 7; is equivariant, so we can assume that the D-hierarchy path
B:{0,...,T} — H has 5(0) = 1. Write g = B(T).

Lemma 3.4. There are constants ' = A+ & and D' = XN (D + 50)), defined in terms of
A and E only, such that, for any h € H,

(3.4.1) the restriction pp.,|chy, is N —coarsely Lipschitz,

(3.4.2) pri B is an unparametrised D'-quasigeodesic from pri (1) to pmi (g).

Proof. By virtue of being a A—quasigeodesic, h+y; is quasiconvex in the E—hyperbolic space
ChU;, which provides \'. The existence of D’ is a consequence of this and the fact that,
by definition of 3 being a D-hierarchy path, 7y, 3 is an unparametrised D—quasigeodesic.
Since D and )\ depend only on A and E, so does D’. ]

For a constant ¢ > 100D’ and mapping classes z,y € H, we shall write

Rely(z,y) = {hvi € H-{v} : duy, (pmh(2), by (y)) >t}
As a consequence of (3.4.2), if hy; € Rel}j,p(1,9) then there exists a minimal aj, €
{0,...,T} such that dp, (p7} B(an),pm; (1)) = 2D, and similarly there is a maximal by,
with dp, (p7 B(br), pmri (9)) = 2D’. Note that a, must be strictly less than by, and also
that the restricted paths pr} 3 l[0,a5] and pri 3 (b, 7] are 10D'~—coarsely constant. Let us
write z, = B(an) € H and y, = B(by) € H. Furthermore, write 3, = S|4, 5,1 © H. See
Figure 1.

The ordering on Rel}{ (1, 9).
Recall that D > 10r = 100F > 100, where v is the constant coming from Lemma 3.3.
Because H preserves the colouring of &, we have that either hU; = h'U; or hU;hh'U;
for any h,h' € H. Because of (3.4.1), the lower bound on the value of D’ ensures that
hU; € Relipy(1,g) whenever hvy; € RelF{BOD,(l,g). Thus, if hvy; and h'v; are elements of
Relli (1, 9) with hU; # h'U;, then we may assume that hU; < h'U; in the ordering from
Definition 2.3, and we then set hy; < h'y;. Otherwise, hU; = h'U;, and then Lemma 3.3



MAPPING CLASS GROUPS ARE QUASICUBICAL 14

FI1GURE 1. Construction of x; and yp, illustrated with A = 1. They are the first
and last points of 8 that are not mapped into one of the circles by pri.

tells us (perhaps after swapping h and h') that pm} (g) is v—close to pp, (R'7;), and pri, (1)
is v—close to pp, (hy;). In this case, we write hy; < h'7;.

By construction, if hy; < h'7;, then we get an ordering of integers by, < aj. As noted
carlier, we also have that ap < by. Therefore, the set {an, b, : hy; € Rellj,p(1,9)} is
naturally an ordered subset of {0,...,T}.

Lemma 3.5. < is a total order on Reljj, (1, 9).

Proof. Tt suffices to check that hvy; < h'v;, h'v; < h”~; implies hvy; < h”; in the case where
hU; = WU; = h"U;, as the other cases follow from the fact that Reljo,(1,g) is totally
ordered. We do this by contradiction, referring to Figure 2.

If the implication does not hold, then pr} (g) is v—far from pp., (h"7;), so prh.(g) is v—
close to ppr, (hy;) by Lemma 3.3. It follows that pyr.,(hv;) is 20v—far from both pr}, (1)
and ppr., (h'7y;), the former by 100D’-relevance of h”v; and then the latter by the fact
that h'y; < h"y;. Applying Lemma 3.3 with z = 1 now shows that pr (1) is v—close to
Phvy, (R"7i). Just as when we considered h”7;, this tells us that pp., (R"~;) is 20v—far from
Phy, (h'7;), this time by 100D"-relevance of hvy; and the fact that hy; < h'~;.

Now let x € H be any point such that pri,(z) is v—far from both ps,(hy;) and
Pry; (R"7i). Then pr} (z) and pri, (x) are, respectively, v—close to pp, (h'7;) and ppry, (R'y:),
by Lemma 3.3. Comparing with the preceding paragraph, we find that pﬂz () is 10v—far
from pp., (R"7y;), and simultaneously prt,(x) is 10v-far from ppr., (hv;), which contradicts
Lemma 3.3. ([l

Recall that §; denotes the subpath [ ’[ambh]v and pwzﬁh is an unparametrised D'—
quasigeodesic. Moreover, pri (z) is D'-far from both pri (1) and prj (g) for all z € By
By definition, v;(z) = pri(z) for all z € H.

Lemma 3.6. If hy; € Rel]i ,/(1, g), then we have d7; (¢i(z), pm (2)) < 6K for any x € By,.
In particular, VB, < Nsx (hvi) < T; is an unparametrised (D' + 12K)—quasigeodesic.

Proof. By the distance formula for quasitrees of metric spaces, Theorem 2.11, if the lemma
does not hold then there is some h'7; such that

(3) dh"yi (ph"yi¢i(x)aph/"/z‘ (pﬂ'z(aj))) = K.
Clearly 2y, and hvy; cannot be equal, for then v;(z) = pr} ().

If hy; = h'v;, then we have dp., (pry,i(z), pi(z)) = K. In this case, 2U; and hU;
cannot differ, for then pp,, ¢ (x) = ph%(pflgz) is 2\ E-close to pr} (z) by inequality (2) and
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FIGURE 2. The contradiction obtained in the proof of Lemma 3.5.

(3.4.1). However, zU; = hU; gives a contradiction with the second statement of Lemma 3.3.
Thus h'v; # hy; and hy; # 2v;.

Claim 1: dp, (pmh (), Prey (W) < €+ v + 2N E.

Proof: If h'vy; = z~y; and h'U; = hU;, then the claim is given by Lemma 3.3. If h/~; = x;
but K'U; # hU;, then ppy, (W'vi) = pay, (pigz) is 2X' E-close to pri(z) by inequality (2)
and (3.4.1).

On the other hand, if h'y; # x7;, then since the set H - {;} satisfies (P0) with
constant &, we have dp, (Wpv, (hVi), Py (273)) = K — 26, It follows from (P1) that
dhy, (Phys (B'Yi)s Phry (273)) < & If 2U; = hU; then the second statement of Lemma 3.3
shows that dp., (pm} (), Py, (27:) < v, and we conclude by applying the triangle inequal-
ity. The alternative is that zU; # hU;, but then inequality (2) shows that pri(z) is

2\ E-close to P, (pﬁgz) = Phy, (27i), and we again apply the triangle inequality. O
As noted before the proof, pri(x) is D'far from both pri (1) and pri(g), so by the
choice of D', Claim 1 ensures that these are both %ffar from ppy, (A'7:).

Claim 2: Both pri,(1) and pré,(g) are %’fclose to Pary, (hvi)-
Proof: If hU; = h'U; then this is just Lemma 3.3. If hU; # h'U;, then both 7y, (1) and
mhy,(9) must be E-far from ng{?, by (3.4.1). The Behrstock inequality for the subsur-

faces hU; and h'U; then gives that both mpy, (1) and 7y, (g) are E—close to Pl But

hU;"
Phy, (i) = Pary, (pZ,({}z) by definition, so this is enough, again by (3.4.1). O
To conclude the proof, we show that prt,(z) is S—far from py, (h;). Together with

Claim 2, this will contradict (3.4.2)? showing that the proposed h'7; cannot exist.
We have h'~y; # hy;, and ppia, (p},(x)) is an element of pyr., (h;). Recall that pp., ()

has diameter at most £&. As a ‘Coznsequence of inequality (3), it thus suffices to put an upper
bound on dp.y, (P, ¢i(x), pry,(x)), for the triangle inequality gives
i (P, (i) o (2)) = dps, (P, (9704 (2)), Py (2) — €
= dprny, (P, (077, (@), Brin, i) — A (Prem, Vi (@), P (7)) — €
> K — 5 - dh”Yi (Ph/%%(ﬂf)mﬂz/ (m))
If W'U; = xU;, then this is just the second statement of Lemma 3.3. Otherwise, pp., i (x) =
Phiy (pff{}l) is D'~close to p},(z) by inequality (2) and (3.4.1). O
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Approximating ;0.

For a large constant M > 100D, to be specified later, enumerate Rel}} (1, g) = {ha7;, havi,
with even subscripts, according to the total order of Lemma 3.5. For even j, we have cor-
responding integers ay,, by, € {0,...,T} and a subpath 35, = 6|[ahj i) Recall that zp,
and yp,; respectively denote 3(ap;) and (b, ); see Figure 1. For the remainder of the proof
of Proposition 3.2, we shall abbreviate aj, to a; and By, to 8; etc., omitting the h. Set
bp = 0 and a,,12 = T. For odd j, let a; = 5|[bj71’aj+1], so that we have a decomposition of
B as the concatenation aqfeqs ... BpQni1-

Lemma 3.7. Each v¥;a; is a quasigeodesic with constant independent of M.

Proof. Let a; be a geodesic in 7T; from ;(yj—1) to ¥;(xj4+1). It suffices to show that ¢;a;
fellow-travels &; with constant independent of M.

ey h’n’YZ}a

By [BBF15, Prop. 4.11], there is a constant ¢ = q1 (K, E, A) such that if hy; € Rel]j (1, 9)

satisfies hj_17; < h7; < hj117y; for some odd j, then
a; comes q;—close to Pp,¥;i(y;—1)-
We know from Lemma 3.6 that dfg(pwzjil(yj_ﬂ,%’(?Jj—l)) < 6K, and [BBF15, Cor. 4.10]

states that pj,, : 7; — h7; is coarsely Lipschitz. Because pw}éjil (yj—1) € hj—17s, this means
that there is a constant ga = ¢o(K, E, \) such that

d7; (0hy, (hj—1%)s Py ¥i(yj—1)) < qo.

The construction of x, dictates that prt(z) be 10D'~close to prt (1), which itself is
v—close to ppy, (hj—17;) because of how we defined the ordering on Rel{y, (1, g). That is,

d7; (Phr; (hj—17i), b7y (21)) < 10D + .
Also, Lemma 3.6 shows that

d7: (Yi(xn), pry(21)) < 6K.

Combining these inequalities, we find that &; comes (g1 + g2 + 10D’ + v 4+ 6K )—close
to 1;(xp). A similar argument proves that it comes just as close to v;(yn). Recall that
h~; is 100D'-relevant, and in particular that v;3, = wz‘aj‘[ah,bh] is a quasigeodesic, by
Lemma 3.6. The Morse lemma now tells us that ¢;a;|[4, 1, fellow-travels a subgeodesic of
&, with constant independent of M.

On the other hand, suppose that z,y € H have Rell{,p (z,y) = @. For any h € H
we have ppy,1i(x) € Py, (27:), and similarly with y in place of x, so in this case we must
have dp., (Pry,¥i(2), Pry,i(y)) < 100D" + 2 < K for all h € H. The distance formula
for quasitrees of metric spaces, Theorem 2.11, therefore shows that v;(x) and ;(y) are
6K + 0—close, where ¢ is the constant from inequality (1). Taking this together with the
conclusion of the previous paragraph completes the proof. ([l

We have shown that ;8 decomposes as a concatenation of quasigeodesics. We use a
local-to-global statement to conclude that ;3 is itself a quasigeodesic. The proof is due
to Hsu-Wise [HW15], but the exact statement appears as [HW16, Lem. 4.3|.

Lemma 3.8. For any constants k, \ and any function f, there is a constant Ly satisfying
the following. Suppose that P is a path in a k-hyperbolic space that decomposes as a
concatenation P = a1Psa3 ... Bnant1 of A—quasigeodesics. Suppose further that the sets

Najsr(Bj) 0 Bjra  and Nagir(B5) N ajar

all have diameter at most f(r). If every B; has length at least Lo, then P is a uniform
quasigeodesic.

We need one more lemma in order to be able to apply this result.
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Lemma 3.9. There is a function f, independent of M, such that the subsets

Ny (0iB) N Ne(iBj+2)  and o 0 No(1ifj+1)
of T; have diameters bounded by f(r) for all r.

Proof. [BBF15, Cor. 4.10] shows that if h'y; # h~;, then the closest-point projection of
h'~; to hy; inside 7T; is coarsely equal to pp-, (h'v;), which has diameter at most {. Thus
N (hvy;) n N.(h'7;) has diameter bounded in terms of r. Now recall from Lemma 3.6
that 1);8; is contained in the 6K -neighbourhood of hjv;. This is enough for the first
intersection, because [BBF15, Cor. 4.10] says that closest-point projection to hv; in 7; is
coarsely Lipschitz.

This also bounds the Hausdorff-distance between py,,_+,(hj—17i) and the closest-point
projection of ¥;(xj4+1) to hji1v; as follows. The latter of the two is a bounded distance
from pp;.,,%i(zj11), which itself is 6 K—close to pﬂ,iljﬂ(xjH) by Lemma 3.6, and this
point is 10D’—close to Ph; 17 (hj—17;) by construction of the ordering.

Moreover, pﬂzj_l (yj—1) is 6K —close to pp;_,,%i(y;j—1), again because of Lemma 3.6, and
this bounds the Hausdorfi-distance between pp; , ,~, (hj—17:) and the closest-point projection
of ¥;(yj—1) to hjt17i, by [BBF15, Cor. 4.10] as before.

According to Lemma 3.7, ¢;a; is a quasigeodesic from v;(y;—1) to ¢i(z;41), and we
have just seen that the closest-point projections to hjy17; of both of these endpoints are
at a bounded distance from pp,;_ ,~,(hj—17:). This shows that the closest-point projection
to hjy17; of the whole quasigeodesic v;a; is a coarse point. A similar argument works
for hj_17;. The bound for the second intersection follows because Lemma 3.6 shows that

VYifi+1 < Nok (hj+17i)- 0

Conclusion of the proof of Proposition 3.2.

In light of Lemmas 3.6, 3.7, and 3.9, the conditions of Lemma 3.8 are met (up to
parametrisation) by the path ¥;8 = (;a1) (i 52) . .. (Yicn+1), with all constants indepen-
dent of M. There is therefore a constant Lg, independent of M, such that if every ;0;
has length at least Ly then ;5 is an unparametrised quasigeodesic.

Since Ly and K are independent of M, we can now take M = Ly + 20K, so that
dpv, (pw}'lj(l), pﬂzj (9)) = Lo + 20K for each j. Since hj;v; is totally geodesically embedded
in 7; [BBF15, Lem. 4.2], the same inequality holds in 7;.

The length of v;3; is at least the distance between its endpoints v;(x;) and ;(y;),
which are 6 K—close to pﬂzj (x;) and pﬂzj (yj), respectively, by Lemma 3.6. In turn, these

are 10D’—close to pwzj(l) and pw}%j (9), respectively. Thus the length of 1;5; is at least
dr. (pwzj(l), pwzj (9)) —20D" — 12K > Lg. Hence ;3 is an unparametrised quasigeodesic,
with constant ¢ bounded in terms of the various constants of this section, all of which are
defined in terms of E and A only. This completes the proof of Proposition 3.2. U

Remark 3.10. Although the quasilines produced in [BBF21] in many ways behave simi-
larly to the domains of a hierarchically hyperbolic structure, they do not actually provide
one for MCG(S), because that would imply that MCG(S) were virtually abelian [PS23,
Cor. 4.2]. To get such a structure, one would have to include the cone-offs of curve graphs
by the axes.

4. PROOF USING HYPERBOLIC CONES

In this section, we use a construction of Buyalo-Dranishnikov—Schroeder [BDS07] to
prove Theorem D, which states that hyperbolic spaces with finite asymptotic dimension
are quasiisometric to CAT(0) cube complexes. We then apply this to show that colourable
hierarchically hyperbolic groups admit quasimedian quasiisometric embeddings in finite
products of CAT(0) cube complexes. In the case of mapping class groups, Hume [Hum17]
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used a related construction of Buyalo [Buy05b| to quasiisometrically embed MCG(S) in a
finite product of trees. However, taking care of medians allows us to apply Proposition 2.7
to obtain a quasiisometry to a CAT(0) cube complex, establishing Theorem B, which
implies Theorem A.

4.1. EMBEDDING HYPERBOLIC SPACES IN FINITE PRODUCTS OF TREES

Here we summarise the construction of an embedding of a hyperbolic space into a finite
product of (not necessarily locally finite) trees as described in [BDS07, §7-9]. Following
[BS00], we say that a hyperbolic space X is visual if for some basepoint xy € X there is a
constant D such that every z € X lies on a D—quasigeodesic ray emanating from xg.

Lemma 4.1. Every hyperbolic space X' admits a median isometric embedding in a visual
hyperbolic space X with asymptotic dimension asdim X = max{1, asdim X'}.

Proof. Given X', let X be the hyperbolic space obtained by attaching a ray r, = [0, ) to
each point z € X’'. Fix g € X’ © X. We see that X is visual by concatenating a geodesic
from z( to x with the geodesic ray r,. The upper bound on asymptotic dimension is given
by [BD08, Thm 25|, and the lower bound is given by [BD08, Prop. 23]. The inclusion map
X" — X is median and isometric. O

The hyperbolic cone.

We first construct the hyperbolic cone on a complete, bounded metric space. The exact
formulation we follow is one variant from a broader circle of ideas [Dra03, Buy05b, LS05].

Let Z be a complete, bounded metric space. For a point z € Z, write Bz(z,r) for the
open r—ball centred on z. For a subset Y < Z, we similarly write Bz (Y,r) = Uer Bz(y,r).
Recall that Y < Z is said to be r-separated if d(y,y’) = r for all y,3/ € Y, and YV is an
r-net if Bz(Y,r) = Z. Any maximal r—separated set is automatically an r—net.

After rescaling Z, we assume that diam(Z) < 1. We define the hyperbolic cone on
Z, denoted Co Z, as follows. Fix any positive constant r < %. For each £ = 0, let
Vi be a maximal r*-separated subset of Z. We associate with each v € Vj, the ball
B(v) = Bz(v,2r*). Note that 1} is a singleton. We write o for the element of Vp; it has
B(o) = Z.

Let V = J,50 Vk. The vertex set of CoZ is V, and two vertices vy € Vi, and vy € V4,
are joined by an edge if either of the following holds.

e k1 = ky and the closed balls B(v;) and B(vs) intersect.

e k1 = ko — 1 and B(va) < B(vy).
The level ¢(v) of a vertex v € V' is the unique k such that v € Vi. We call r the parameter
of the cone.

Proposition 4.2 ([BP03, Prop. 2.1],[BDS07, Thm 7.1]). If Z is a complete and bounded
metric space, then CoZ is hyperbolic, and the hyperbolicity constant depends only on
diam Z and the parameter r. If X is a visual hyperbolic space, then there exists a quasi-
isometric embedding X — Co(0X).

Using [BS00, Prop. 5.6], it is straightforward to see that if X is visual then the embedding
X — Co(0X) is also coarsely onto, making it a quasiisometry. We shall not need this fact,
though. Also see [BS00, Thm 8.2|.

Embedding cones in products of trees.

Following [BDS07, §8,9], we now describe how to construct the product of trees. We
start by building a sequence of coloured open covers of our bounded metric space Z. Each
colour gives rise to a tree.

The notion of capacity dimension was introduced by Buyalo in [Buy05al, and the reader
is referred there for a definition. We say that a collection of subsets of Z is disjoint if no
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two of its members intersect. An n—colouring of a collection V of subsets of Z is a finite
decomposition V = | .o V¢, with |C| = n, such that each V¢ is disjoint. Note that the V*
need not form a partition.

Proposition 4.3 (|[Buy05b, Prop. 2.3|, [BDS07, Thm 8.2|). Let Z be a complete, bounded
metric space with capacity dimension n. There is a constant € € (0,1) such that for any
sufficiently small r € (0, %) there exists a sequence (U = \J.ec Uf) k=0 of (n + 1)-coloured
open covers of Z such that, for any hyperbolic cone on Z with parameter r, the following
are satisfied.

(C1) sup{diamy(U) : U € Uy} < r* for every k. Moreover, US = {Z} for all ce C.

(C2) For every v € Vi1 there exists U € Uy, such that B(v) c U.

(C3) For every ce C and for any distinct U € U7 and U’ € Uf, with k < k', we have that

By (U, er¥) is either disjoint from U or is a subset of it.

Our arguments will not make explicit use of (C2), though it is used to prove Proposi-
tion 4.4. Define U° = | |, (U x {k}). Formally, an element of U¢ is a pair (U, k), where
U € U, but we shall often abuse notation slightly by just writing U € U°. We call k the
level of U, and denote it by £(U), just as with elements of V. Let U = | | oU". See
Figure 3.

FIGURE 3. Schematic picture of one of the U°.

With Proposition 4.3 in hand, let us now fix a sufficiently small constant r < %, a
hyperbolic cone on Z with parameter r, and a sequence (U )x=>0 of coloured covers of Z as
above. To improve clarity, let us write U5 = {o.}. Of course, (C1) states that, as subspaces
of Z, we have o. = Z for all c.

Now, for each colour ¢ we build a rooted tree T,.. The vertex set of T, is U, and the
root is o.. We join vertices (U, k) and (U’, k") with k < k&’ by an edge if U’ < U as subsets
of Z and there is no (U", k") e U¢ with U' c U” and k < k" < K'.

OC
FIGURE 4. The part of T, corresponding to Figure 3.

We are ready to define a map f. : CoZ — T.. We set f.(0) = o.. For v € V} with
k > 0, we define f.(v) = U € U° to be the element of maximal level that has B(v) < U.
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This exists because o, = Z, and it is well defined by disjointness of each . Each point
xz € CoZ NV lies on some edge vv’, and we choose f.(x) € {fc(v), fe(v")} arbitrarily.

Proposition 4.4 (|[BDS07, Lem. 9.9, Thm 9.2|). Suppose that Z is a complete, bounded
metric space with capacity dimension n. The maps f|y : V — T. are 2-Lipschitz, and
(fe)eec : CoZ — [ec Te is a quasiisometric embedding of CoZ in a product of n + 1
trees.

4.2. THE EMBEDDING IS QUASIMEDIAN

We start with a couple of simple preliminary lemmas. With each U € U, we associate a
subset U < Vj, by setting U = {v e Vi, : B(v) n U # @}. For two vertices s and ¢ of a tree
T, we write [s,t] for the unique geodesic between them.

Lemma 4.5. Suppose that U € Uy, and that v € U. We have fe(w) € [oc, U] n Br,(U,2).

Proof. As noted in [BDS07, §9.3], the fact that B(v) has radius 2r*, which is greater than
sup{diamyz (W) : W € U;} for all j > k, implies that ¢(f.(v)) < k. Since B(v) intersects U,
property (C3) of U tells us that f.(v) € [oc, U].

If d7. (0., U) < 2 then we are done. Otherwise, let U’, U” be the vertices of [o., U] with
dr, (U,U") =1 and d7,.(U,U") = 2. We have a chain of subsets of Z as follows:

B(v) c Bz(U,4r%) < Bz (U’ 4r%)
< By (U, er*Y < By (U, er' W)y < U”.
By definition of f., we have that f.(v) € {U’,U"}. O
Lemma 4.6. For every U € U, the set U is nonempty and has diamcoz(ﬁ) < 2.

Proof. Nonemptiness is automatic because Vj, is an r¥net. Let v € U. There exists
v~ € Vj_1 such that dz(v™,v) < 7¥71. Now, if z € B(v') for some v’ € U, then

dz(z,v7) <dz(z,U) + diamg(U) + dz(U,v) + dz(v,v™)
< Ak 4ok poork 4Rl

which is less than 2r*~1 because r < 2. Thus B(v') < B(v™) for all v/ € U, so every v/ € U

~

is joined to v~ by an edge of Co Z. Thus diamc, z(U) < 2. 0
We can now establish that the map of Proposition 4.4 is quasimedian.

Proposition 4.7. Suppose that Z is a complete, bounded metric space with capacity di-
mension n. The map (fc)eec : CoZ — | [ e Te described in Section 4.1 is quasimedian.

Proof. We must show that each factor map f. is quasimedian, and it is enough to work with
the restriction f.|y of f. to the coarsely dense subset V' < Co Z. According to Lemma 2.10,
it suffices to show that f. is a coarse morphism for the binary operations pco z(+, -, 0) and
pr, (v, 0c). Let x1 and x9 be vertices of Co Z, and write k; = £(x;).

For any v € V;, and any j < k, the fact that Vj; is an rJ-net implies that there is some
v; € V; with dz(v,v;) < . For any z € B(v), we have

dz(z,v;) < dz(z,v) +dz(v,v;) < 2rF + 17 < 209

Hence B(v) < B(vj;). Applying this to 1 and z shows that we can fix geodesics v; =
(o = Tigy Tiys -+ Tiy, = z;), from o to x; inside CoZ, such that £(x;;) = j. We have
B(z;;) © B(zi;_,) for all 4, j.

Recall that for a vertex z € V, the image f.(z) is defined to be the element U € U€ of
maximal level such that B(x) < U. Let us write U; = fo(z;) and U;; = fe(wy;). If j1 < jo,
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then B(w;;,) < B(w,, ), so Ui, < Uy, , by property (C3) of U. Hence fc7; is a monotone
map to the unique geodesic [o., U;] in T..

The median pg, (U1, Uz, 0.) is the maximal-level element Uis € [o., Ui] N [oc, Usz]. In
other words, it is the element Uj2 € U¢ of maximal level such that B(z1) u B(xg) < Usa.
Let us write ko = £(Uj2).

Let 0 be a hyperbolicity constant for Co Z, which exists by Proposition 4.2. Fix a
geodesic 12 in Co Z from x1 to x2, and define

M = {x € Co Z : max{dco z(z,7),dco z(,72),dco z(x,712)} < + 2} c CoZ.

Because Co Z is d—hyperbolic, it is § + 2-hyperbolic. Thus uco z(z1,z2,0) € M, and the
diameter of M is bounded by some constant D = D(J). Note that M n~; # @.

Let y; be the unique element of M n~; of maximal level. Because Uy, contains B(x;), it
intersects B(mikm). Thus Tiy,, € ﬁ12, so Lemma, 4.6 tells us that dcoz(scl,c12 , CCka) <2 In
particular, Tig,, is 2—close to both v; and 7. It follows from maximality of y; that £(y;) >
(zi,,) = ki2. Since fe; is monotone in [oc, Us], it follows that fe(vi) € [fe(zi,). Uil.
On the other hand, Lemma 4.5 states that fc(%‘,m) € [oc, Ur2] n B, (U2, 2). Taking these
together, we see that

dr, (pr.(fe(yr), fe(y2), 0c), Ur2) < 2.

Because y1, y2, and m = uco z(r1, z2,0) all lie in M, the fact that f.|y is 2-Lipschitz

(Proposition 4.4) shows that d7,(fc(vi), fe(m)) < 2D. To sum up, we have

ch (NTc(fc(xl)afc(xQ)aoc), fc(ucoz(xl,xg,o)))
= dr.(Urz, fe(m))
dr, (. (fe(y1), fe(y2), 0c), fe(m)) + 2

Oc
ch (/“LTc(fc(m)v fC(m)7OC)7 fc(m)) +2+4+4D
2 1 4D,

NN

because pr, is 1-Lipschitz in each coordinate and ur, (a,a,b) = a. O

Theorem 4.8. If X is a hyperbolic space, then X is quasiisometric to a finite-dimensional
CAT(0) cube complez if and only if X has finite asymptotic dimension.

Proof. Suppose that X has finite asymptotic dimension and let Y be the visual hyper-
bolic space obtained by applying Lemma 4.1 to X. Proposition 4.2 shows that ¥ admits
a quasiisometric embedding in Co(dY’), and this map is automatically quasimedian by
Lemma 2.9.

As the boundary of a hyperbolic space, Y is complete and bounded [BS00, Prop. 6.2].
Moreover, asdimY < 1 + asdim X is finite, so [MS13, Prop. 3.6] shows that the capacity
dimension of @Y is finite. The conditions of Proposition 4.4 are therefore met by Z = 0Y,
so Co(0Y') admits a quasimedian quasiisometric embedding in a finite product of trees by
Propositions 4.4 and 4.7. Composing with the embeddings of X in Y and of Y in Co(2Y)
yields a quasimedian quasiisometric embedding of X in a finite product of trees, which is
a CAT(0) cube complex. We conclude from Proposition 2.7 that X is quasiisometric to a
finite-dimensional CAT(0) cube complex.

For the converse, suppose that X is quasiisometric to a finite-dimensional CAT(0) cube
complex. Since asymptotic dimension is preserved by quasiisometries [BD08, Prop. 22|,
the result follows from Wright’s theorem that the asymptotic dimension of a CAT(0) cube
complex is bounded above by its cubical dimension [Wril2]. u

Remark 4.9. The proof of Theorem 4.8 implies that, for hyperbolic spaces, the existence
of a quasiisometric embedding in a finite product of trees is enough to guarantee the
existence of a quasimedian quasiisometric embedding. It would be interesting to have a
constructive proof of this fact.
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4.3. ArpLICATION TO HHGS

We finish this section by applying Theorem 4.8 to colourable hierarchically hyperbolic
groups, of which mapping class groups are examples. The resulting Theorem 4.11 also
applies to Artin groups of extra large type [HMS24, Thm 6.15, Rem. 6.16] and extensions
of Veech groups [DDLS24, Thm 1.4|, amongst others.

Hierarchically hyperbolic groups (HHGs) are groups that display nonpositive curvature
similar to the hierarchy structure of mapping class groups that was described in Section 2.1.
The full definition is somewhat technical (see [BHS19, Def. 1.1], [PS23, p.4]), so let us just
summarise the facts that are relevant for us and not give a complete definition.

An HHG is a pair (G, &), where G is a group with a fixed finite generating set and &
is a set with a cofinite G—action. Moreover, the following hold (¢f. the list in Section 2.1).

e Fach W e & has an associated uniformly hyperbolic space CW.

e There are three ways for elements of & to be related. One of these relations is
called transversality, and denoted WAV, In this situation, there are uniformly
bounded subsets p‘(/v c CV and p% c CW.

e (7 is a coarse median space.

We say that an HHG (G, G) is colourable if there is a finite partition & = | |X ; &; such
that G acts by permutations on {&; : 1 < i < x} and any two elements of any one &; are
transverse. Note that G need not be virtually torsionfree [Hug22|. The important part
about the colouring for us is that it gives access to the following.

Proposition 4.10 (|[HP22, Lem. 3.4, Thm 3.1]). If (G, &) is a colourable HHG, then the
projection azioms are satisfied by (&;,{plY : W,V € &;}) for each i. We can therefore
build quasitrees of metric spaces CxS;. For K sufficiently large, there is a quasimedian
quasiisometric embedding G — [ [*; Cx&;.

With this in hand, we can now use Theorem 4.8 to prove Theorem B, of which Theorem A
is a special case.

Theorem 4.11. Let (G,S) be a colourable hierarchically hyperbolic group. There is a
finite-dimensional CAT(0) cube complex Q with a quasimedian quasiisometry G — Q.

Proof. Proposition 4.10 states that G admits a quasimedian quasiisometric embedding
G — [, Ck&; in a finite product of hyperbolic spaces. According to [BHS17a, Cor. 3.3],
there is a uniform bound on the asymptotic dimension of the CW for W € &, so [BBF15,
Thm 4.24] shows that each Cx®&; has finite asymptotic dimension. Theorem 4.8 now
provides finite-dimensional CAT(0) cube complexes @; such that CxS; is quasimedian
quasiisometric to ;. We therefore have a quasimedian quasiisometric embedding of G

X X
G- |[asi -]
1=1 =1

in a finite-dimensional CAT(0) cube complex. The result follows from Proposition 2.7. [

Remark 4.12. In the setting of mapping class groups, finiteness of the asymptotic di-
mensions of the curve graphs CW was first proved by Bell-Fujiwara [BF08], using work
of Bowditch [Bow08|. The bound was made explicit by Webb [Web15| and has since been
improved by Bestvina-Bromberg [BB19b].

5. MEDIAN-QUASICONVEXITY

Quasiconvexity is an important concept in the study of hyperbolic spaces, and there have
been various generalisations to larger classes of spaces, many of which coincide for mapping
class groups. Indeed, the infinite-index convexr cocompact subgroups of MCG(S) coincide
with the Morse subgroups [Kim19] and the stable subgroups [DT15|. These quasiconvexity
conditions are quite restrictive, and such subgroups are always hyperbolic. They can
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also be characterised as the infinite-index subgroups whose orbits in the curve graph are
quasiisometric embeddings [KL08, Ham05, DT15, ABD21]|.

A weaker version of quasiconvexity that is more appropriate for the coarse-median setting
is that of median-quasiconvexity, introduced by Bowditch [Bow18|. Recall that a subset Y
of a CAT(0) cube complex @ is convex if u(z,y1,y2) € Y whenever y1,y2 € Y.

Definition 5.1 (Median-quasiconvexity). A subset Y of a coarse median space (X, u) is
k—median-quasiconvex if pu(z,y1,y2) is k—close to Y whenever y1,y2 € Y.

In the setting of hierarchically hyperbolic groups, median-quasiconvexity is equivalent
to hierarchical quasiconvexity (see [BHS19, §5]) by work of Russell-Spriano—Tran, who also
show that the class of hierarchically quasiconvex subsets includes the other classes men-
tioned above [RST23, Prop. 5.11, Thm 6.3]. Other examples include multicurve stabilisers
in mapping class groups and graphical subgroups of graph products of HHGs.

Proposition 5.2. Let X be a coarse median space and let Q) be a finite-dimensional
CAT(0) cube complex. Suppose that there exists a quasimedian coarse surjection f : X —
Q. For any number k there is a number r such that if Y < X is k—median-quasiconvex,
then there is a convex subcomplex Y' < Q with dgaus(f(Y),Y') < r.

Conversely, if f: Q — X is a quasimedian coarse surjection, then there is a constant
ko such that f(Y') is ko-median-quasiconvex for any convex subcomplez Y’ of Q.

Proof. We may assume that f maps Y into the O-skeleton of Q. According to [HHP23,
Lem. 2.18], the convex hull Y/ = hull f(Y") can be obtained from f(Y) by taking medians at
most dim @ times. More precisely, if we set Yy = f(Y) and define Y11 = pg(Q°,Y;,Y;) for
i = 0, then Ygim g = Y. Using this, the first statement easily follows from the quasimedian
property and coarse surjectivity of f. The converse statement is obvious. O

The quasimedian property of ® established in Theorem 4.11 lets us apply Proposition 5.2
to colourable HHGs.

Corollary 5.3. Let G be a colourable HHG. The map ® gives a correspondence, in the
sense of Proposition 5.2, between median-quasiconvex (alias hierarchically quasiconvex)
subsets of G and convexr subcomplexes of Q.

In view of this, one can recover the colourable case of [HHP23, Thm 3.5|, and its conse-
quences for bounded packing, from the Helly property for convex subcomplexes of CAT(0)
cube complexes [Rol98, Thm 2.2]. In the more general setting it is deduced from work
of Chepoi-Dragan—Vaxés [CDV17, Thm 5.1| on the coarse Helly property for quasiconvex
subsets of hyperbolic graphs.

Corollary 5.4. Let Y be a collection of k—median-quasiconvex subsets of a colourable HHG
(G, ) that either is finite or contains a bounded element. For any number r there is a
corresponding number R such that if the subsets Y € Y are pairwise r—close, then there is
some g € G that is R—close to every Y € ).

In the setting of colourable HHGs, this generalises [AMST19, Prop 6.3|, the proof of
which relies in an essential way on the fact that stable subgroups are hyperbolic. An
important point about Corollary 5.4 is that the constant R is independent of the cardinality
of the collection Y.

In fact, for hyperbolic spaces of finite asymptotic dimension, the Chepoi-Dragan—Vaxés
result [CDV17, Thm 5.1] can itself be recovered from Theorem 4.8 and Proposition 5.2 in
exactly the same way.

Recovering [DMS23, Thm 1.4] for groups.
We conclude with a brief description of how to recover a result of Durham—Minsky—
Sisto about approximating finite subsets of colourable HHGs. Though the proof is simpler,
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the version obtained here gives less control on the dimension, and the equivariant version
stated as [DMS23, Thm 4.1| does not directly follow from the results of this article.

Let (G, S) be a colourable HHG, and let ¢ : G — @ be a quasimedian quasiisometry to
a finite-dimensional CAT(0) cube complex, as provided by Theorem 4.11, with quasiinverse
P : Q — G. Given a finite subset F = G, let Qr = hully)(F). Note that Qp is finite.
By Proposition 5.2 and [RST23, Prop. 5.11], the map ¢p = ¥|g, : Qr — Hp(F) is a
K—quasimedian (K, K)-quasiisometry, where Hy(F') is the #-hull from [BHS19, Def. 6.1],
and K is independent of F.

Corollary 5.5 (|[DMS23, Thm 1.4]). Suppose that Fy,F> < G have |Fi| = |Fa| = k and
dpaus(F1, F2) < 1. There is a constant K' = K'(k, K) and a CAT(0) cube complex Q" with
a K—quasimedian (K, K)—quasiisometric embedding ¢’ : Q' — G such that d(¢'n;, ;) < K,
where 1; : Qr, — Q' are hyperplane deletion maps that delete at most 2kK hyperplanes.

Proof. Because dpqus(¥(F1), ¥(F2)) < 2K, the convex hulls Qr and Qp, only differ by
at most 2kK hyperplanes. The cubical gate map Qr, — Qp, restricts to an isomorphism
of subcomplexes Q] — Q5. As an abstract cube complex, @} is dual to the hyperplanes
crossing both Qp, and Qp,, so we have 7, as desired. Observing that dgaus(Q], Q%) < 2K
and letting ¢' = @ |g, it is straightforward to check the coarse agreement of ¢'n; and
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