INTERIOR CURVATURE ESTIMATES FOR HYPERSURFACES
OF PRESCRIBING SCALAR CURVATURE IN DIMENSION
THREE

GUOHUAN QIU

ABsTrRACT. We prove a priori interior curvature estimates for hypersurfaces of
prescribing scalar curvature equations in R3. The method is motivated by the
integral method of Warren and Yuan in [24]. The new observation here is that
we construct a “Lagrangian” graph which is a submanifold of bounded mean
curvature if the graph function of a hypersurface satisfies a scalar curvature
equation.

1. INTRODUCTION

We study the regularity thoery of a hypersurface M™ C R™*! with positive scalar
curvature. In hypersurface geometry, the Gauss equation tells us

Ry = 03(k) == Z Aiy iy

1<iy <iz<n

where x(z) = (A1(z),- - , A\, (x)) are principal curvatures of the hypersurface.
Suppose M™ is a C! graph X = (z,u(x)) over x € B, C R™. In this setting, the
scalar curvature equation which we study is

(1.1) oa(k(x)) = f(X(2),v(x)) >0

where v is a normal of the given hypergraph over a ball B, C R™. This is a
second order elliptic PDE depending on graph function w. In dimension 2, it is
Monge-Ampere equation

(1.2) det(usj) = f(x,u, Vu).

Our study of the scalar curvature equation is motivated by isometric embedding
problems. A famous isometric embedding problem is Weyl problem. The prob-
lem of realizing, in three-dimensional Euclidean space, a regular metric of positive
curvature given on a sphere. The Weyl problem was finally solved by Nirenberg
[17] and Pogorelov [18] independently. Their solving the problem of Weyl by a
continuity method where obtaining C? estimate to the scalar curvature equation is
important to the method.

Motivated by the Weyl problem, E. Heinz [11] derived a purely interior estimate
for the equation (1.2) in dimension two. If u satisfies the equation (1.2) in B, C R?
with positive f, then

(1.3) S};lP|D2u| < C(luler(s,), flozs,)- inf f).
And this type of estimate turns out to be very useful when one study the isometric

embedding problem for surfaces with boundary or for non-compact surfaces. But
1
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Heinz’s interior C? estimate is false when n > 3 by Pogorelov [19] even for the
convex solutions to the equation det D?u = 1.

The second motivation is from the studying of fully nonlinear partial differential
equation theory itself. Caffarelli-Nirenberg-Spruck started to study o,—Hessian
operators and established existence of Dirichlet problem for o equations in their
seminal work [2]. Here the o, —Hessian operators are k—th elementary symmetric
functions for 1 < k < n. The key to the existence of Dirichlet problem is by
establishing the following C? estimates

SI}p|D2U| < C(|U|Cl(§2)a f7 2 aQ)
Q

Although there are C? estimates to o}, —Hessian equations for boundary value prob-
lems, there are no interior C? estimates to o} —Hessian equations in general. Be-
cause Pogorelov’s counter-examples were extended by J. Urbas in [23] to & > 3.
The best we can expect is the Pogorelov type interior C? estimates with homoge-
neous boundary data which were derived in [19, 5]. So the interior regularities for
solutions to the following o-Hessian equations

(1.4) oo(D?*u) = f(x,u,Du) >0
and prescribing scalar curvature equations
oa(k(z)) = [f(X(z),v(x))>0

are longstanding problems.
A major breakthrough was made by Warren-Yuan [24]. In R, they obtained C?
interior estimate for the equation

(1.5) oa(D*u) = 1.

Recently in [15], McGonagle-Song-Yuan proved interior C? estimate for convex
solutions of the above equation in any dimensions. Using a different argument,
Guan-Qiu [7] proved the same estimates for more general equations (1.4) and (1.1)
with certain convexity constraints. Moreover, we proved interior curvature estimate
for isometrically immersed hypersurfaces in R®*! with positive scalar curvature in
[7].

In this paper, we completely solve this problem for scalar equations in dimension
three.

Theorem 1. Suppose M is a smooth graph over By C R® with positive scalar
curvature. It is a solution of equation (1.1). Then we have

(1.6) sup |k(z)| < C

xEB%
where C' depends only on [[M||c1(B,y) 5 |fllc2(Bioxs?) and H%HLoc(Bngz) .

Analogously we proved the interior C? estimates to sigma-2 equations (1.4) in a
recent paper [20].
Theorem 2. [20] Let u be a solution to (1.4) on Big C R . Then we have
(1.7) sup |D*u| < C

1
2

where C' depends only on || f||c2(B,, xrx®3) H%HLm(Bmeng) and |[ul|c1(B,y) -



INTERIOR CURVATURE ESTIMATES FOR HYPERSURFACES OF PRESCRIBING SCALAR CURVATURE IN DIMENSION ]

In order to introduce our idea, let us briefly review the ideas for attacking these
problems so far. In two dimensional case, Heinz used Uniformization theorem to
transform this interior estimate for Monge-Ampere equation into the regularity of
an elliptic system and univalent of this mapping, see also [10, 14] for more details.
Another interesting proof using only maximum principle was given by Chen-Han-
Ouin [4]. Our new quantity in [7] can also give a new proof of Heinz. The restriction
for this method is that we need some convexity conditions which are not the case
in the higher dimensions.

In R?, a key observation made in [24] is that the equation (1.5) is exactly a special
Lagrangian equation which stems from the special Lagrangian geometry [9]. And an
important property for the special Lagrangian equation is that a Lagrangian graph
(x, Du) C R3 x R3 is a minimal submanifold which has mean value inequality and
sobolev inequality. So Warren and Yuan proved interior C'! estimate for the special
Lagrangian submanifold which in turn proved interior C? estimate for the special
Lagrangian equation. Our new observation is that the graph (X, ), where X is a
position vector of a hypersurface satisfying the equation (1.4), can be viewed as a
submanifold in R* x R* with bounded mean curvature. Then applying a similar
argument of Michael-Simon [16], see also Hoffman-Spruck [12], we have a mean
value inequality in order to remove the convexity condition in [7]. Finally, we apply
a modified argument of Warren-Yuan in [24] to get the estimate.

At last, we remark that the arguments are higher co-dimensional analogous to the
original integral proof by Bombieri-De Giorgi-Miranda [1] for the gradient estimate
for co-dimension one minimal graph and by Ladyzhenskaya and Ural’Tseva [13] for
general prescribed mean curvature equations. Here we use a method similar to
Trudinger’s simplified proof in [21, 22|, see also Chapter 16 of the book [6].

The higher dimensional cases for these equations are still open to us.

2. PRELIMINARY LEMMAS
We first introduce some definitions and notations.

Definition 3. For A = (A1,--- , A,,) € R™, the k- th elementary symmetric function
or(A) is defined as
oA = Y A A
1<i1<ig--<ip<n
We also define the linearized operator of o to be

i: 6ak ()\)
(2 — .
These definitions can be extended to symmetric matrices where A = (A1, , \,)

are the corresponding eigenvalues of the symmetric matrices.

For example, in R3
02(D2u) = 02(/\(D2u)) = A2+ A A3 + A3

or

2 9 2 2 2 2 2
(u11 + ug2 +usz)? — ufy — usy — U3y — Uiy — Uiy — U3y

oo(D*u) = 5

Definition 4. For 1 < k < n, we denote I';, by
I ={AeR":0:(N\) >0, ,01,(N\) > 0}.
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The following algebraic lemma is from Lemma 2.1 in [?].

Lemma 5. Suppose A € I's. Then there is a constant ¢ > 0 depending only on n
such that for any i from 1 ton

(2.1) oli(\) > Cf((;)).

If A\ > --- > Ay, then there exist ¢y > 0 and co > 0 depending only on n such that
(2.2) o3 (MM > croa(N)

and for any j > 2

(2.3) oI (\) > cao1 (V).

Proof. For our purpose, we only give a proof in dimension 3. It is not hard to see
that (2.1) follows from (2.2) and (2.3).
First we claim that if A € 'y, then there is

033 > 032 > 0'%1 > 0.
From \; > Ay > A3, it is obvious that
O’SS > 032 > 0%1.

In R3, we have

03'05? = Me+ M)A+ A3) =23 +02>0
Combining 03! + 032 + 033 = 207 > 0, we obtain
033 > 052 > 051 > 0.
For (2.2), we consider two cases.
Case 1: —A2A3 > 0. It is easy to see
(A2 +X3)A1 = 02— Aad3 > 0o
Case 2: AaA3 > 0. We have

Ao + A3)?
ohs %
Because of Ay + A3 > 0, we see that
A1\ A
A2Ag < 71( 22+ 3)-

Then there is
3A1 (A2 + A3)
2

3
50’%1)\1.

o2 = (A2 + A3) A1 + AaAs

IN

So we have proved (2.2) for ¢; = 2.

For (2.3), we only need to show A; + A3 > ca01. We also divide into the following
two cases.

Case 1: A3 > 0. This is obvious.

Case 2: A\3 < 0. From o5 > 0, we have
¥ —(A2 +A3) (A1 + A3)
2

>
> —(Ar+A3)%
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The above inequality implies
A1+2X3 > 0.
Thus we prove the inequality (2.3) for ¢; = 3. O
For scalar curvature equation (1.1) with positive scalar curvature, we may assume
that M is admissible in the following definition without loss of generality.

Definition 6. A C? hypersurface M is called admissible if at every point X € M
its principal curvature satisfies

Kk € Ds.
Moreover, it follows from Lemma 5 that oéj = W is positive definite when
ij

)\(h”) e s
So the curvature estimates can be reduced to the estimate of mean curvature H
due to the following fact
(2.4) max |\;| < H = o1(k).
In the rest of this article, we will denote C' to be universal constants under control
(depending only on || f]lc2, ||%|\Loo and || M||c1) which may change line by line.
Suppose that a hypersurface M in R™*! can be written as a graph over B, C R™.

At any point of x € By, the principal curvature k = (A1, Aa, -+, A,) of the graph
M = (z,u(z)) satisfy a equation
(2.5) oa(k) = f(X,v) >0
where X is the position vector of M, and v a normal vector on M.
Sometimes we may choose an orthonormal frame {ej, ez, -+ ,e,,v} in R

Denote v be a normal on M such that H > 0. We collect the following fundamental
formulas of a hypersurface in R*+!:

Xi;j = —hyv  (Gauss formula)
vi = hije; (Weingarten formula)
hij = hit; (Codazzi equation)
Rijii = hihji —hahjr,  (Gauss equation)
where R,k is the curvature tensor. We also have the following commutator formula:
(2.6) hijrt — hijie = himBmjrr + hmj Rkt
Combining Codazzi equation, Gauss equation and (2.6), we have

(2.7) hikk = Tiki + Y (Bim himihk — By his).-

Lemma 7. Suppose the scalar curvature of hypersurface M satisfies equation (2.5)
in R™. In orthonormal coordinate, we have the following equations

(2.8) o5 b = V f(e:)
and
o5 hiins + Y kil = Y bt
P Py
(2.9) —2f > i+ (for = Bos)hii = V>f(ei e).
k
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If f = f(X,v), then there are estimates

(2.10) IV <C(+ H)
and

(2.11) —C(1+ H) +Zh dy, f(ex) < V2f(es e;) < C(1+ H) +Zh d,, f(er)

where C' depends on || f|c2,| M| cr-

Proof. Taking first and second derivatives of the equation o2(k) = f , we get (2.8)
and

o8 s + Z hirihu; — Z hiaihiii = V2 f (e, €5).

k£l k£l
Using (2.7), we have
o5 hiii = 05 hik — Zagl(himhmihkl = himihmihii).
m

Then we obtain (2.9) by the following elementary identities
(2.12) oklhy = 2f
and
(2.13) Zaglhmkhml = 0109 — 303.

Through direct computations using (Gauss formula) and (Weingarten formula),
we have

Vf(es) = dx fle:) + hid, f(ex)

and
V2 fleie;) = dxfleie;) +hidy , fleiex) — hijdx f(v) + hid x f(ex.e;)
(2.14) +hERSAL f(er, er) — hEhygdy f(v) + hisdy, f (ex).

Here, dx and d% represent the first and second derivatives with respect to the
first argument of f, while d,, and d2 represent the first and second derivatives with
respect to the second argument of f, and d?,) y represents the mixed derivative.

By (2.4), Codazzi equation and the above two identities, we get the estimates
(2.10) and (2.11). O

We recall some elementary facts about a hypersurface. Denote W = /1 + | Dul?.
The first fundamental form and the second fundamental form can be written in local
coordinate as gij = 0i; + u;u; and h;; = “” . The i inverse of the first fundamental

UU]

form is ¢ = 6;; — . The Weingarten curvature is h! = D; (5 )-

Definition 8. Newton transformation tensor is defined as

(T4} o= O3t bl i

The corresponding (2, 0)-tensor is defined as

[T]" = [Tilig™.
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From this definition one can easily show a divergence free identity

(2.15) S Dy =

Lemma 9. For any 1 < k < n, there is a family of elementary relations between
o opertators and Newton transformation tensors

(2.16) [T)] = owd] — [Tre-alih]
or
(2.17) [T4)] = ox! — [Tia}] bl

For k = n, we have
[Tn—l]ghé = Un(szj'

Moreover, the (2,0)-tensor of T} is symmetry such that

(2.18) [Tk = [T3.)*

Proof. We only prove the first one, because the second one is similar. From Defi-
nition 3, it is easy to check that

(2.19) ox(k) = k'aﬁ L
By the definition and (2.19), we obtain (2.16) as follows:
; 1
=

_ 7521 dkpil hlk(;J 1 Stz ik h] hiz ... ik
Ik

Kl ik T (= 1)) g2k T
= op0) — [Th_1|Fn].
By [T,.]] =0, we get
0=[Tu)] = ond] — [Tuoalihi.

For k = 1, the symmetry of the (2,0)-tensor of T} come from the symmetry of
h. Inductively, we assume the symmetry of (2,0)-tensor T} is true when k = m.
From (2.16), we have

[Tns1]? = [Tmialig” = omi16i9” — [T]PhigH
= Jm+1gij _ [Tm]pjh;.
On the other hand, by (2.17) we have
[Tl = [Twiallg" = omia6]g" — [Tl bl g"
— opag” — [Tl
= Jerlgji - [Tm}jph;-

From the symmetry of g and T,,, we have proved (2.18). O
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Lemma 10. Ifu satisfies the scalar equation (1.1) in R3, then the following integral
is bounded as below

/ (o1f —o3)dz < C
Br(z0)

where C depends only on || f|| L (B, (z0))-

Proof. Due to the scalar curvature equation (1.1), we can prove that fo, — o3 is
nonnegative. In fact, we denote G;; := fg;; + hih;;. Because f > 0 and linear
algebra, we know that the matrix [G;;] and its inverse [G*] are positive definite.

We are going to verify that G = For—os" By the scalar curvature equation (1.1)

in R, we have
0F Gy = 0 (fgp; + hihij)
= foléj - fh; + 029" iy — [TZ];ch;C

= fO'l(SZi - 0'351-4.
This gives us G¥ = fgl &~ We know that [o5 ] is also a positive definite matrix.
So we have
(2.20) fo1 —o3>0.

Denote ¢ € C§°(B,41(70)) a non-negative function with |D¢| + |D?¢| < C. We
assume that ¢ =1 in B,.(20) and 0 < ¢ <1 in B,y1(x0).
Thus we have

/ for—o3dxr < / ®*(for — o3)dz.
By (z0) Brt1(zo0)

For the first part of the above integral, it has

., Du
| e < sl [ s
B,,+1(w0) 7+1(I0)

c/ = 705 <cC.
T+1330)

i

IN

(2.21)

Then we estimate the second term and using (2.15)

1 ; Uu;
- Fosdr = — | (121D (5 )da
/B7‘+1(1D) 3 Byry1(z0) zl: W

2 O Ta]] j—da
3 Br11(xo) Z W

%

Using (2.16), we continue our estimate

/MZMQ by da / Zm Uzdw—/ S OIT11E6 7 Di( ) da

Bri1 i.j

Due to the scalar curvature equation, we have the bound for the first term

/ Y dvitoss < C(Iflue),
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For the second term, we do integration by parts and use (2.15)

[ Sembempia = [ Smee i

i S

[ S0,

r4+1 i’j

< of din(hdr +Cllfll).

Bri1

We have used (2.4) and the scalar curvature equation (1.1) in the above inequal-
ity. The term [, - div(Z%)dz can be estimated the same as (2.21).
In conclusion, we have

/ fo1—o3dzx < C.
B, (zo)

The above constants C' are universal constants under control (depending only
on ||f|lre), which are different from line by line. O

3. AN IMPORTANT DIFFERENTIAL INEQUALITY

Let us consider the quantity of b(z) := logo;. In dimension three, we have a
very important differential inequality.

Lemma 11. For admissible solutions of the equations (1.1) in R3, we have

g 1 .. y
(3.1) o5 bi; > maéjbibj — C(fo1 —03) 4+ g“bid, f(ej)

where C' depends only on || f||cz, ||%|\Loo and ||ul|cr.

Remark. Our choice of b(x) is different from log /1 + A7 as in [24] or logu1; as in [8]
and [3]. We compute log oy in this paper, because it allows us to avoid discussions
of viscosity solutions and, at the same time, has sufficient and better concavity than
loguy;. We are uncertain whether the corresponding higher-dimensional inequali-
ties (3.1) hold or not. This is one of the challenges in generalizing our theorem to
higher dimensions.

Proof. 1t is similar as we did in Lemma 3 of [20]. For simplicity, we may choose an
orthonormal frame and assume that {h;;} is diagonal at a fixed point p. Thus we
have at p

S hiik 22 g

Uélbkbl = O'gl O’ pu
1 1

and

ki kl g -
ki S o8 i 05 >0 haik D5 i
9 bkl — ) .

g1 o7
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Using Lemma 7, we get

(3 iy — X hwkihus)
i kAL oy
01

(1 +€)as* (3 hi)?

2
07

+2f Zj,i h?l — (f0'1 — 30’3)0’1

01

vzf(eiaei)
+ Z —

A= O'glbkl - Edlglbkbl >

By (1.1) and (2.20), we have

1+0p)?
for—os = A/ + M+ A = C%.
Due to
2f Zj,i h?i > 0
g1 -
and
2 e 2 i,
o Ylened o CULAS | b, p(e)
3 g1 g1
1 y
> =C(|flle2, [M]lcr, IIFHLoc)(fol —03) +9"7bid, f(ej),
we have
(32 hii — X Pakihaii)
i kAl k£l
A >
01
(14 €)o5* (3 hiix)?
_ p

—C(for—03) + g7 bidy, f(e;).
We use (2.8) to substitute terms with h;; in A,

> J%ihiil - fi
6h2 2 h3 et 171
A > 123 + Zk;&l kll + Z kkl (z;é . )

(o1 o1 o 01 o

_ 2h113h223 4+ 2h112h332 + 2h921 h331
01
;k ohi ik ;

(1 + €)od* (3,45 hisk — T + k)’

_ =

—C(for — a3) + g "bid, f(e;).
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Due to symmetry, we only need to give the lower bound of the terms which
contain hso; and hiz;. We denote these terms by A; as below

2(03" + 05%)h3y; | 2(03" +03°)h33;  2(hoo + hsz) fi

A = -
1 0'1(751 + 0'10'%1 0'10'%1
+2(a§2 + 033 — 03 ) hao1 hazt
0'10'%1
(1+ (A2 = M)haar + Az — M)hazi + f1]?
- 2 11 :
0'10'2

Then we use Cauchy-Schwarz inequality and Lemma 5 to get

(1+€)[(A2 — A)hao1 + (A3 — A1) hast + f1]?

o2oll =
102
(]. —+ 26)[()\2 — )\1)h221 + ()\3 - )\1)h331]2 (1 + 6)2 f12
2 11 —[I+e+ | =7
0705 € o703
Due to (2.10) and Lemma 5, we have
2 Cllfllers IM I, 15z )o?
- 2f111 2 - 2 11 ! 12_001'
0102 0102
Thus we have
(1492 = A)haor + (A3 = Mi)haar + f1]? S
0%051 -
14 2€)[(Aa — X\)h A3 — A )hss]? C
(3.2) ~(T42¢)[(A2 — M) 22211-&- (A3 — A)hasi]® o
oios €
Similarly, we have
2(ha21 + hss1) f1 S 2e201 (ha21 + h3s1)? fi
- o oil = - 11 - 2¢2511 452
102 01045 €05 01
2¢2(h hss1)?2  C
(3.3) > = ( 221141' 331)" Son.
03 €
Then we substitute (3.2) and (3.3) into A; to get
20%1 + 2052 9 20%1 + 205’3 9
Ay T‘;hzm + T‘%l 331
4\ 2€2(hgo1 + has1)?
+ 111 ha21h331 — a 22111 321)
0105 03
(14 26)[(A2 — Mi)hoor + (A — Mi)hgaa ]
ool
C
_6720-1.
We will show the Claim 12 and Claim 13 in the below. O
Claim 12. For any € < %, we have
20%1 + 20%2 2 20’%1 + 20’3‘3 2 4)\1 26(h221 + h331)2
T‘%1}1221 + T‘%lh%l + e hao1hszr > U—%l'
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Proof. This claim follows from the following elementary inequality
(03t + 032 —eo1) (03t + 032 —eo1) — (A — €01)?
= (1-e202+(1—eo1(Aa+ A3) + Aadz — (A — €01)?
= 3(1—e)f +(2—36)(A3 + Aoz + \2).

If we assume 2 — 3¢ > 0, then the above quantity is nonnegative. U

Claim 13. For any § < 20 , we have
203 + 2032, 203 + 2033 4\
———hyyy + ———h + hoo1h
o101t 221 oroll 331 11 2211331
> (1 +9)[(M2 — A)hoar + ()\3 — )\l)h331]
= 2 11 :
0193

Proof. We compute the coefficient in front of 222111

203" + 03301 — (1+0) (M —X2)? = (1=0)AT4+ (1 —=6)A2+4X\2+6f +20)\1 )
§ 1-26
= 1=+ 5A2) +ﬁ/\§+4/\§+6f.

Similarly, the coefficient in front of 2 111 is

(1= + 1 6>\3) 11__ 65/\§+4>\§+6f.
We also compute the coefficient of %
2X101 — (L4+0) (A1 —XA) (A1 —A3) = (1=)AT+(3+0)f —2(2+5)XaAs
= =D+ A o h)
741:356&)\3 + 3.
It is easy to see that for any small §
TR R+ 2 TP

and

65)* = (3f)%
We have proved that the coefficient matrix in front of h3,;, h35; and 2hao1 bz
is positive definite. So We complete the proof of this claim.

Then we choose € = 100, such that

1+ 2¢
1—c¢

146>

where ¢ is small constant in the Claim 13.
In all, we have proved that
3
D Ai—C(for —03) + g7bid, f(e))
i=1

—C(fo1 —03) + g7 dy f(e:)b;

A

v
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4. MEAN VALUE INEQUALITY.

In this section we prove a mean value type inequality. So we can transform
the pointwise estimate into the integral estimate which is easier to deal with. It
is unclear for higher dimensional scalar curvature equations. This is the second
difficulty to generalize our theorem in higher dimensions.

Theorem 14. Suppose u are admissible solutions of equations (1.1) on Big C R?,
then we have for any yo € Bo

(4.1) supb = b(yo) < C’/ b(x)(o1f — o3)dx
By Bi(yo)

where C' depends only on || f||c2, H%HL& and ||ul|c1.

Proof. Because the graph X* = (X,v) = (w1, 22,73, U, 1, 7, “WS,—%) where u

satisfies equation (1.1) can be viewed as a three dimensional smooth submanifold
i=4 i=4

in (R* x RY, f(X,v) > daz? + > dy?) . To illustrate the key observation, we first
i=1 i=1

consider the simplest case f = 1. Then we will give all the details for general cases.
We shall see it is a submanifold with bounded mean curvature when f = 1.
In fact, we have

XF = (Xi,v5) = (X5, hEXy)

K3

and
Gij =< XizvXjZ >RaxRe= Jij T thhky
k

We have proved in Lemma 10 that

ol
G =

0'170'3.

Then we show that the mean curvature is bounded as follows:

Eal |< GI(D; X = (5)" X)), v1° >
|GV (D; X7 = T5XE)] + 1< GV(I5 X — (D5) X0, vy >

|GY(D; X = T3 X7)|

IN N

where (I‘?i)Z and I‘?i are Christoffel symbols corresponding to G;; and g;; and v{”

is any one of unit normals of X*. The second inequality is because of <X, vi >=
0.
So the mean curvature vector can be estimated as following

A < 3|GY(D; X7 - T5 X))
ol
= 3[—=2—(=hiv,hj; Xi, — hihi;v)|
01 — 03
< 3 (—209v,—(01 — 303)V) <c.

01 — 03
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In the derivation above, we have utilized Equation (2.8). Employing an argument
similar to that found in Lemma 3.2 and Theorem 3.4 in [16], where Michael-Simon’s
mean value inequalities are proven for subharmonic functions on bounded mean
curvature submanifolds, we arrive at the estimate (4.1) for the scalar curvature
equation when f = 1.

For f = f(X,v), we give all the details of the proof of these mean value inequal-
ities. First we know from Lemma 11

obij > —C(for—o03)+ g bidyf(e;).

Let x be a non-negative and non-decreasing function in C'(R) with support in the
interval (0, c0). We set

vy = [ eto- o
where 0 < p < 10, and 7% := f(X(z),v(2))| X (2) — X (y0)|> + 2 — 2(v(2), v(y0))-

Let us denote
B, = {z € Bio(yo) :  f(X(2),v(2))|X(x) — X(yo)]” +2 — 2(v(x), v(y0)) < p°}.
We may assume that (X (yo),v(yo)) = (0, E4). In order to simplify the notation,
we denote f; = Vf(e;) and fi; = V2f(e;, e;) in the following computations.
First, we have

(4.2) 2rry = fil X2 4+ 2(X, ;) f — 2h¥(ex, E4)
and
oriry +2rryy = fii| X+ 2£i(X, e5) + 2£5(X, e0) + 2f6i
(4.3) —2fhij(X,v) — 2h;(ex, Ex) + 2hi b (v, Ey).

Now we are going to compute the differential inequality of 1,
oy = oy (—rrx(p—1));
= —ariyrx(p—7)—oirirjx(p—7r)+ o5 riryrx'(p— 7).

From (4.2) and (4.3), we have
i i Jig| X _ _ y -
o5y = —x(p—r)oy [T +2fi(X, e;) + foij — fhij(X,v)]

+x(p = )0y [hf; (ex, Ea) — hfhyj (v, By)]

o rirrx (p — 7).
Then by (2.8), (2.12) and (2.13), we have

ij X ij ij
o5 iy = *§|X|202inj —2x03 fi(X,e;) — 3(fo1 — o3)x + 2xf* (X, v)
+x9" fi(ex, E1) + x(fo1 — 303)(1 — (v, Ey))
(4.4) —|—0;jrirjrx’.

By (2.14), the first term on the right hand side of (4.4) is
X ij X ij ij
*§|X|202]fij = *§|X|2[02Jd§(f(€u ej) + 202jh§d§(,yf(€i, ex)
0 hijdx f(v) + o iy f(ex, 1)

—0y Wi hyidy f(v) + o BEdy, f(ex)].
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Due to the equation (1.1) in R3, there is

(f+ME M +X5) = (for—o3)™.
By (2.20), we have

for—os = \J(F+ A+ ) + A

From the above identity, fo; — o3 has all the positive lower bounds which are
needed in the proof. For example, we get the following inequalities for any 1 < i #
J<3

(4.5) fri=o = Ol AN +1+01)
and
(46) f0'1—0'3 > |O'3|.

From (4.5) and (4.6) , we have
X ij 1
—gXPedfiy < Cllflce, Iz, luller)xr? (for — o).
We estimate similarly the second and fouth terms on the right hand side of (4.4)

—2x0y fi(X,ej) +2¢f*(X,v) < C(||f||clv||%HL°%||UH01)X?“(JC<71—03)-

It is obvious that
3

(4.7) > (e Ea)? = (1—(v,E0)(1+ (v, Ey)).

k=1
From the definition of r, we see

(4.8) (1= (v,Ey)) < g
and
(4.9) |(ex, Eq)] < 1.

From (4.8), (4.9), (4.5) and (4.6), we deal with the fifth and sixth terms of (4.4)

xg" filer, Ea) + x(for = 303)(1 = (v, Ex)) < C(||fllen, ||%HL°°= lullen)x(r +12)(for - o3).
In sum, we have

(4.10) 0¥y < —3x(for —o3) + Ox(r? +7)(for — a3) + of rirjrx.
We next claim that

(4.11) oy riry < (for —o3)[1+ C(|f e II%HLW, [[ullcr)r].

In fact, we may choose an orthonormal frame and assume that {h;;} is diagonal
at the point in order to prove this claim. It is straightforward

T o' [fil X P42/ (X,ei) =2 3 hui(er,Ba)]”
7

472

S1f(X,ei)—hii(ei Ea)]?
< Clfller, 1F oo llull e ) (for = ag)r + 32, i el Bl
Moreover, we have the following elementary properties

(412) (fO'l — 0'3)(51']' — fdéj = O'glhkihlj
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and
folih2(X, e)? + 2foi (X, e;)(es, Ey)his + folil(e;, By)?> >
(4.13) fodhii (X, e;) + (ei, Ea)]?
By (4.12), we estimate as below
205 05 (X ei) = hiiles, BEa)? _ 3 o 2 (X, e)* — 205 hii (X, ) (ei, Ba) + 08’ hi(eq, Ea)?

72 L r2
7

< Z (for —a3) f(X, 61')2:2- (for —o3)(ei, By)?
o83 f(X, e)” + 205 hii f (X, €i) (ei, Ea) + foy (ei, Ea)?
r2 '

Then by (4.13), (4.7) and the definition of r, we obtain

> 08 [f(X, ei) — hii(es, Ea)]? S (fo1 — o3) f(X,ei)? + (e, Ea)?

72 < -
: — 2 V, Ly
< (for - o) AL 2N 0 B
< (for—o3).

So we have proved the claim (4.11).
We obtain from (4.11) and (4.10) that

U;j¢ij < (ouf — 03)[=3x + C(r’x +7rx) + (1 + Cr)ry].
Then we mutiply both sides by b and take integral on the domain B,

/ bopdM < p4i(/ w(olf—ag)dM)
B dp ' Jw,, P

+C rbx(p —r)(o1f — 03)dM
B1o

(4.14) +C br?x (o1 f — o3)dM.
B1o
By (3.1), we have

(415) -C (Ulf - Ug)de +/

g d, f(e;)bjpdM < / bos b dM.
5310 SB10

B1o
Inserting (4.15) into (4.14), we get

_ C rbx(p —r)(o1f — o3)dM
4 bX(P3 T)(O'lf—O'g)dM) < s, OX(p 4)( 1f —o3)
dp Je,, P P
Cf% b’f‘2xl(0'1f - Ud)dM
+ 10 7
p
qu;lo(glf — o3)¢YpdM
+ 4
7‘/\%10 g”duf(ei)bjde

pr
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Because x, x’ and 1 are all supported in B, we deal with right hand side of the
above inequality term by term. For the first term, we have

S, TOX(p = 7)(01 f — 05)dM < S, bx(p = 1) (o1 f = 03)dM.
pt - p?
Then for the second term, we integral from ¢ to R to get

(4.16)

R f‘Blo bT’QX/(O'lffo'g)de < R f‘Blo bX/(O'lffo'g)de
1 p < ; p
s p 5 p
< f‘Blo bX(Jlffdg)dM|R
= P 5
R 9 bx(o1f — o3)dM
(4.17) +/ S0 PX( 13f 2 dp.
s P
For the third term, we use the definition of ¥ to estimate
(418) f%w b(O'lf*O'g)de < f‘Blo bx(pfr)(alffag)dM
P = PE
For the last term, we do integration by parts
S,y 97 du fe3)bj0dM S, 197 du f(ed)]bvodM — [y 9" d, f(ei)r;brxdM
_ 10 _ 10 10
p pt '
Then we use (4.2) and the definition of 1 to get
J,, 97 du [ (€i)bjpdM Clllfller Ile=. lluller) [, borpdM = [y g dy f(ei)r;brxdM
p* - p*
C[f%m boypdM + f%m(alf — o3)brydM]
< e
wig) < Tzl Z o)l

3
We combine (4.16), (4.17), (4.18) and (4.19) with integrating from ¢ to R:
/ b(Ulf—Us)X(5—T)dM e, b(Ulf—Uz)X(R—T)dM
53 R3
B1o Bio
o /R f%m blo1f — og)x(p —r)dM
5 p

dp.

Then using GrA€nwall’s inequality, we get
/ b(Ulf—%)X((S—T)dMSC b(Ulf—U?))X(R—?“)dM.
03 R3
%10 %10
Letting x approximate the characteristic function of the interval (0,00), in an
appropriate fashion, we obtain,

f%é b(alf — Ug)dM < C’f%R b(O’lf — Ug)dM
53 - R3 ’

Because the graph (X, v) where u satisfied equation (1.4) can be viewed as a three
4

(4.20)

dimensional smooth submanifold in (R* xR*, f(

7

4
dz?)+ 3" dy?) with volume form
1 i=1
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exactly (o1 f—o3)dM. Moreover, for a sufficient small § > 0, the geodesic ball with
radius ¢ of this submanifold is comparable with B;s. Letting § — 0, we finally get

Cf,BR b(orf — o3)dM _ CIBR(yu) b(oyf —o3)dx

b(yo) < o8 B

5. PROOF OF THE THEOREM 1

Proof. From Theorem 14, we have at the maximum point x¢ of By (0)

(5.1) b(zg) < C/B( )gi)zb(alffog)d:r

where ¢ € C5°(Bz2), ¢ =11in By and 0 < ¢ < 1 in Bs.
We shall estimate the first part fB2(zo) ¢?bo fdz in the above integral (5.1).
We do integration by parts

/ d*borfdr < C $?bodx
Bz (o) Ba (o)
< C'(/ bd$+/ | Db|dx)
Ba(xo) Bz (o)
(5:2) < C(||“HC’1a||fHL°°)(1+/ | Db|d).

Bz (ajo)

Then we use (2.1) to get

/ |Dbldz < C o bibj\/ardz.
Bg (:EQ) B2 (ZEQ)

By Holder inequality, we have

/ |Dbldz < (/ agjbibjdx)%(/ ordz)?
By (x0) Bz (o) Ba(zo)
(5.3 < Clluller) [ dofibbs

3(Zo

where ¢ € C§°(B3), ¢ =11in By and 0 < ¢ < 1 in Bs.
We recall the inequality (3.1)

g 1 . -
(54) Oéjbij > mo’;jbibj — C(O’1f — 0'3) + gljdyf(ei)bj-
We have an integral version of this inequality
(5.5) / —200% ¢ibjdM > ¢ / *oS bib;dM
BT+1 Br+1

—C/ (o1f — 03)¢*dM

By

+/ gd, f(e)byd*dM
B,y1

for any r < 5 with all non-negative ¢ € C§°(By41).
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Then using (5.5) and Lemma 10, we see that

/ ¢ bibjdr < C(H“HCI)/ $*0% bib;dM
B3 (xo) 3(xo)

< C[f/ ¢a§j¢ibde+/ $*(o1f — 03)dx

B3 (zo) Bs(zo)
+/ $?| Db|d M)
B3 (z0)
< Cllullen If1a)( | R
Bg )

+1+/ *\) o bibj\/o1dx).
Bs(zo)

By Cauchy-Schwarz inequality, we have

IN

- . 1 - 1
/ qZ/)QO';jbibjdl‘ 0(6/ ¢205Jbibjd$ + */ G§j¢i¢id$ + *)
B3 (o) B3 (zo) € JBs(wo) €

IN

L C
C’e/ ¢*05 bibjdr + —.
Bs (o) €
We choose € small with Ce < % such that
ij 1
(5.6) / ¢*o5' bibjdr < C(||flle2, | llLes, [uller).
B3 (o) f

So far we have obtained the estimate for the first part of (5.1) by combining
(5.2), (5.3), and (5.6). We have

(5.7) /Bz(wo) ¢*bfordz < C((Ifllc2, H%”L"ov l[uller)-

The second part is to estimate [ Ba (o) —¢?bosdz. Thanks to the divergence free
property (2.15), we do integration by parts as follows

- ’ S 27,1 D (L
/Bg(m0)¢ bosdz = 3 /32 Z;‘ﬁ b[TQ]iD](W)dl‘
(5.8) = 1/ Z[T]ajwz)‘b&dﬂl/ ST 6%, d
. 3 Bs - 214 J W 3 B, - 2] JW .

I 11
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We estimate I by applying (2.16) and (2.15)

I - /B Z(azéf—[T1]§hi)(¢2)jb%dx

i

< O b= > IMED(E)(67) bt da
B> ij
u
< Ol Iuller) + /ZTH” b da
21]
/ZT1 )jbr—= dm+2/ Zf’?* ), bda:
By i, By
U; Ui
5.9 < C+C bd Tbllj dx.
69 < oref m x+/32;1 s 1 (67,

The second term of (5.9) can be estimated by the same argument as before. We
only need to estimate the last term of (5.9). By Cauchy-Schwarz inequality and

, there is
/ZTl bkglz ')(¢2)jd$ < ¢*[T1]" bib;dx
By 7
Uy Up D
4 T i pYPp 2d
+ /32; 1] nggng(Z o)
1
(5.10) < C(Hf”cza||?||L°°7||u||C1)~

From (5.9) and (5.10) we obtain
1
Ga)  I= [ SR )by < O o [l Jullen).
52 i
Now we deal with IT by using (2.17)

m< [ D oad] — [THAEG, e

%

(1l / Dde— [ ST i,
B>

%

(5.12)

IN

As before, the first term of (5.12) is already estimated by (5.3) and (5.6). We
compute the second term of (5.12)

—/ Z[Tl}jkhkigi)ij%dx < 2 ¢2[T1]Jbbda:
B2

7

2 (T3]
+ /);; Z 1 sz jlW¢ dx

2 ki

< 2 ¢ [Ty)7°b;bida

uu; |Dul?
+2/ o9 th ¢2dm—2/ o3 ———pdx.
B Z J By W2

22]
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By Lemma 10, we have

9 2
[ wlt st < [ (o - o) D < OOl
B, Bz

e W2
And by (5.6), we get the estimate
_ jg2p Ui 1
613) 1= [ S e < Clfllen 1 o Do)

%

With the estimate (5.11) and (5.13) for I and IT , we get
1
(.14 [ —boade < Cllfllcn, 15 e o).
B1 (o) f

Finally, combining (5.7) and (5.14), we obatin the estimate

1
log o1 (z0) < C([Ifllc2, ||?||L°°, [ullcr).

O
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