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Abstract. We prove a priori interior curvature estimates for hypersurfaces of
prescribing scalar curvature equations in R3. The method is motivated by the
integral method of Warren and Yuan in [24]. The new observation here is that
we construct a “Lagrangian” graph which is a submanifold of bounded mean
curvature if the graph function of a hypersurface satisfies a scalar curvature
equation.

1. Introduction

We study the regularity thoery of a hypersurfaceMn ⊆ Rn+1 with positive scalar
curvature. In hypersurface geometry, the Gauss equation tells us

Rg = σ2(κ) :=
∑

1≤i1<i2≤n

λi1λi2

where κ(x) = (λ1(x), · · · , λn(x)) are principal curvatures of the hypersurface.
Suppose Mn is a C1 graph X = (x, u(x)) over x ∈ Br ⊆ Rn. In this setting, the

scalar curvature equation which we study is

(1.1) σ2(κ(x)) = f(X(x), ν(x)) > 0

where ν is a normal of the given hypergraph over a ball Br ⊂ Rn. This is a
second order elliptic PDE depending on graph function u. In dimension 2, it is
Monge-Ampere equation

(1.2) det(uij) = f(x, u,∇u).

Our study of the scalar curvature equation is motivated by isometric embedding
problems. A famous isometric embedding problem is Weyl problem. The prob-
lem of realizing, in three-dimensional Euclidean space, a regular metric of positive
curvature given on a sphere. The Weyl problem was finally solved by Nirenberg
[17] and Pogorelov [18] independently. Their solving the problem of Weyl by a
continuity method where obtaining C2 estimate to the scalar curvature equation is
important to the method.

Motivated by the Weyl problem, E. Heinz [11] derived a purely interior estimate
for the equation (1.2) in dimension two. If u satisfies the equation (1.2) in Br ⊆ R2

with positive f , then

(1.3) sup
B r

2

|D2u| ≤ C(|u|C1(Br), |f |C2(Br), inf
Br

f).

And this type of estimate turns out to be very useful when one study the isometric
embedding problem for surfaces with boundary or for non-compact surfaces. But
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Heinz’s interior C2 estimate is false when n ≥ 3 by Pogorelov [19] even for the
convex solutions to the equation detD2u = 1.

The second motivation is from the studying of fully nonlinear partial differential
equation theory itself. Caffarelli-Nirenberg-Spruck started to study σk−Hessian
operators and established existence of Dirichlet problem for σk equations in their
seminal work [2]. Here the σk−Hessian operators are k−th elementary symmetric
functions for 1 ≤ k ≤ n. The key to the existence of Dirichlet problem is by
establishing the following C2 estimates

sup
Ω̄

|D2u| ≤ C(|u|C1(Ω̄), f, φ, ∂Ω).

Although there are C2 estimates to σk−Hessian equations for boundary value prob-
lems, there are no interior C2 estimates to σk−Hessian equations in general. Be-
cause Pogorelov’s counter-examples were extended by J. Urbas in [23] to k ≥ 3.
The best we can expect is the Pogorelov type interior C2 estimates with homoge-
neous boundary data which were derived in [19, 5]. So the interior regularities for
solutions to the following σ2-Hessian equations

σ2(D
2u) = f(x, u,Du) > 0(1.4)

and prescribing scalar curvature equations

σ2(κ(x)) = f(X(x), ν(x)) > 0

are longstanding problems.
A major breakthrough was made by Warren-Yuan [24]. In R3, they obtained C2

interior estimate for the equation

(1.5) σ2(D
2u) = 1.

Recently in [15], McGonagle-Song-Yuan proved interior C2 estimate for convex
solutions of the above equation in any dimensions. Using a different argument,
Guan-Qiu [7] proved the same estimates for more general equations (1.4) and (1.1)
with certain convexity constraints. Moreover, we proved interior curvature estimate
for isometrically immersed hypersurfaces in Rn+1 with positive scalar curvature in
[7].

In this paper, we completely solve this problem for scalar equations in dimension
three.

Theorem 1. Suppose M is a smooth graph over B10 ⊂ R3 with positive scalar
curvature. It is a solution of equation (1.1). Then we have

(1.6) sup
x∈B 1

2

|κ(x)| ≤ C

where C depends only on ||M ||C1(B10) , ∥f∥C2(B10×S2) and ∥ 1
f ∥L∞(B10×S2) .

Analogously we proved the interior C2 estimates to sigma-2 equations (1.4) in a
recent paper [20].

Theorem 2. [20] Let u be a solution to (1.4) on B10 ⊂ R3 . Then we have

(1.7) sup
B 1

2

|D2u| ≤ C

where C depends only on ∥f∥C2(B10×R×R3), ∥ 1
f ∥L∞(B10×R×R3) and ||u||C1(B10).
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In order to introduce our idea, let us briefly review the ideas for attacking these
problems so far. In two dimensional case, Heinz used Uniformization theorem to
transform this interior estimate for Monge-Ampere equation into the regularity of
an elliptic system and univalent of this mapping, see also [10, 14] for more details.
Another interesting proof using only maximum principle was given by Chen-Han-
Ou in [4]. Our new quantity in [7] can also give a new proof of Heinz. The restriction
for this method is that we need some convexity conditions which are not the case
in the higher dimensions.

In R3, a key observation made in [24] is that the equation (1.5) is exactly a special
Lagrangian equation which stems from the special Lagrangian geometry [9]. And an
important property for the special Lagrangian equation is that a Lagrangian graph
(x,Du) ⊂ R3 × R3 is a minimal submanifold which has mean value inequality and
sobolev inequality. So Warren and Yuan proved interior C1 estimate for the special
Lagrangian submanifold which in turn proved interior C2 estimate for the special
Lagrangian equation. Our new observation is that the graph (X, ν), where X is a
position vector of a hypersurface satisfying the equation (1.4), can be viewed as a
submanifold in R4 × R4 with bounded mean curvature. Then applying a similar
argument of Michael-Simon [16], see also Hoffman-Spruck [12], we have a mean
value inequality in order to remove the convexity condition in [7]. Finally, we apply
a modified argument of Warren-Yuan in [24] to get the estimate.

At last, we remark that the arguments are higher co-dimensional analogous to the
original integral proof by Bombieri-De Giorgi-Miranda [1] for the gradient estimate
for co-dimension one minimal graph and by Ladyzhenskaya and Ural’Tseva [13] for
general prescribed mean curvature equations. Here we use a method similar to
Trudinger’s simplified proof in [21, 22], see also Chapter 16 of the book [6].

The higher dimensional cases for these equations are still open to us.

2. Preliminary Lemmas

We first introduce some definitions and notations.

Definition 3. For λ = (λ1, · · · , λn) ∈ Rn, the k- th elementary symmetric function
σk(λ) is defined as

σk(λ) :=
∑

1≤i1<i2···<ik≤n

λi1 · · ·λik .

We also define the linearized operator of σk to be

σii
k :=

∂σk(λ)

∂λi
.

These definitions can be extended to symmetric matrices where λ = (λ1, · · · , λn)
are the corresponding eigenvalues of the symmetric matrices.

For example, in R3

σ2(D
2u) := σ2(λ(D

2u)) = λ1λ2 + λ1λ3 + λ2λ3

or

σ2(D
2u) :=

(u11 + u22 + u33)
2 − u211 − u222 − u233 − u212 − u213 − u223

2
.

Definition 4. For 1 ≤ k ≤ n, we denote Γk by

Γk := {λ ∈ Rn : σ1(λ) > 0, · · · , σk(λ) > 0}.



INTERIOR CURVATURE ESTIMATES FOR HYPERSURFACES OF PRESCRIBING SCALAR CURVATURE IN DIMENSION THREE4

The following algebraic lemma is from Lemma 2.1 in [?].

Lemma 5. Suppose λ ∈ Γ2. Then there is a constant c > 0 depending only on n
such that for any i from 1 to n

(2.1) σii
2 (λ) ≥

cσ2(λ)

σ1(λ)
.

If λ1 ≥ · · · ≥ λn, then there exist c1 > 0 and c2 > 0 depending only on n such that

(2.2) σ11
2 (λ)λ1 ≥ c1σ2(λ)

and for any j ≥ 2

(2.3) σjj
2 (λ) ≥ c2σ1(λ).

Proof. For our purpose, we only give a proof in dimension 3. It is not hard to see
that (2.1) follows from (2.2) and (2.3).

First we claim that if λ ∈ Γ2, then there is

σ33
2 ≥ σ22

2 ≥ σ11
2 > 0.

From λ1 ≥ λ2 ≥ λ3, it is obvious that

σ33
2 ≥ σ22

2 ≥ σ11
2 .

In R3, we have

σ11
2 σ

22
2 = (λ2 + λ3)(λ1 + λ3) = λ23 + σ2 > 0

Combining σ11
2 + σ22

2 + σ33
2 = 2σ1 > 0, we obtain

σ33
2 ≥ σ22

2 ≥ σ11
2 > 0.

For (2.2), we consider two cases.
Case 1: −λ2λ3 ≥ 0. It is easy to see

(λ2 + λ3)λ1 = σ2 − λ2λ3 ≥ σ2.

Case 2: λ2λ3 ≥ 0. We have

λ2λ3 ≤ (λ2 + λ3)
2

4
.

Because of λ2 + λ3 > 0, we see that

λ2λ3 ≤ λ1(λ2 + λ3)

2
.

Then there is

σ2 = (λ2 + λ3)λ1 + λ2λ3 ≤ 3λ1(λ2 + λ3)

2

=
3

2
σ11
2 λ1.

So we have proved (2.2) for c1 = 2
3 .

For (2.3), we only need to show λ1+λ3 ≥ c2σ1. We also divide into the following
two cases.

Case 1: λ3 ≥ 0. This is obvious.
Case 2: λ3 < 0. From σ2 ≥ 0, we have

−λ23 ≥ −(λ2 + λ3)(λ1 + λ3)

≥ −(λ1 + λ3)
2.
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The above inequality implies

λ1 + 2λ3 ≥ 0.

Thus we prove the inequality (2.3) for c2 = 1
3 . □

For scalar curvature equation (1.1) with positive scalar curvature, we may assume
that M is admissible in the following definition without loss of generality.

Definition 6. A C2 hypersurface M is called admissible if at every point X ∈M
its principal curvature satisfies

κ ∈ Γ2.

Moreover, it follows from Lemma 5 that σij
2 :=

∂σ2(λ(hij))
∂hij

is positive definite when
λ(hij) ∈ Γ2.

So the curvature estimates can be reduced to the estimate of mean curvature H
due to the following fact

(2.4) max |λi| ≤ H = σ1(κ).

In the rest of this article, we will denote C to be universal constants under control
(depending only on ∥f∥C2 , ∥ 1

f ∥L∞ and ∥M∥C1) which may change line by line.
Suppose that a hypersurface M in Rn+1 can be written as a graph over Br ⊆ Rn.

At any point of x ∈ B1, the principal curvature κ = (λ1, λ2, · · · , λn) of the graph
M = (x, u(x)) satisfy a equation

(2.5) σ2(κ) = f(X, ν) > 0

where X is the position vector of M , and ν a normal vector on M .
Sometimes we may choose an orthonormal frame {e1, e2, · · · , en, ν} in Rn+1.

Denote ν be a normal on M such that H > 0. We collect the following fundamental
formulas of a hypersurface in Rn+1:

Xij = −hijν (Gauss formula)

νi = hijej (Weingarten formula)

hijk = hikj (Codazzi equation)

Rijkl = hikhjl − hilhjk (Gauss equation)

whereRijkl is the curvature tensor. We also have the following commutator formula:

hijkl − hijlk = himRmjkl + hmjRmikl.(2.6)

Combining Codazzi equation, Gauss equation and (2.6), we have

hiikk = hkkii +
∑
m

(himhmihkk − h2mkhii).(2.7)

Lemma 7. Suppose the scalar curvature of hypersurface M satisfies equation (2.5)
in Rn. In orthonormal coordinate, we have the following equations

(2.8) σkl
2 hkli = ∇f(ei)

and

σkl
2 hiikl +

∑
k ̸=l

hkkihlli −
∑
k ̸=l

hklihkli

−2f
∑
k

h2ki + (fσ1 − 3σ3)hii = ∇2f(ei, ei).(2.9)
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If f = f(X, ν), then there are estimates

(2.10) |∇f | ≤ C(1 +H)

and

(2.11) −C(1 +H)2 +
∑
k

hkijdνf(ek) ≤ ∇2f(ei, ej) ≤ C(1 +H)2 +
∑
k

hkijdνf(ek)

where C depends on ∥f∥C2 ,∥M∥C1 .

Proof. Taking first and second derivatives of the equation σ2(κ) = f , we get (2.8)
and

σkl
2 hklii +

∑
k ̸=l

hkkihlli −
∑
k ̸=l

hklihkli = ∇2f(ei, ei).

Using (2.7), we have

σkl
2 hklii = σkl

2 hiikl −
∑
m

σkl
2 (himhmihkl − hmkhmlhii).

Then we obtain (2.9) by the following elementary identities

(2.12) σkl
2 hkl = 2f

and

(2.13)
∑
m

σkl
2 hmkhml = σ1σ2 − 3σ3.

Through direct computations using (Gauss formula) and (Weingarten formula),
we have

∇f(ei) = dXf(ei) + hki dνf(ek)

and

∇2f(ei, ej) = d2Xf(ei, ej) + hkj d
2
X,νf(ei, ek)− hijdXf(ν) + hki d

2
ν,Xf(ek, ej)

+hki h
l
jd

2
νf(ek, el)− hki hkjdνf(ν) + hkijdνf(ek).(2.14)

Here, dX and d2X represent the first and second derivatives with respect to the
first argument of f , while dν and d2ν represent the first and second derivatives with
respect to the second argument of f , and d2ν,X represents the mixed derivative.

By (2.4), Codazzi equation and the above two identities, we get the estimates
(2.10) and (2.11). □

We recall some elementary facts about a hypersurface. DenoteW =
√

1 + |Du|2.
The first fundamental form and the second fundamental form can be written in local
coordinate as gij = δij + uiuj and hij =

uij

W . The inverse of the first fundamental
form is gij = δij − uiuj

W 2 . The Weingarten curvature is hji = Di(
uj

W ).

Definition 8. Newton transformation tensor is defined as

[Tk]
j
i :=

1

k!
δii1···ikjj1···jkh

i1
j1
· · ·hikjk .

The corresponding (2, 0)-tensor is defined as

[Tk]
ij := [Tk]

i
kg

kj .
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From this definition one can easily show a divergence free identity

(2.15)
∑
j

Dj [Tk]
j
i = 0.

Lemma 9. For any 1 ≤ k < n, there is a family of elementary relations between
σk opertators and Newton transformation tensors

[Tk]
j
i = σkδ

j
i − [Tk−1]

l
ih

j
l(2.16)

or

(2.17) [Tk]
j
i = σkδ

j
i − [Tk−1]

j
lh

l
i.

For k = n, we have

[Tn−1]
j
lh

l
i = σnδ

j
i .

Moreover, the (2, 0)-tensor of Tk is symmetry such that

(2.18) [Tk]
ij = [Tk]

ji.

Proof. We only prove the first one, because the second one is similar. From Defi-
nition 3, it is easy to check that

(2.19) σk(κ) =
1

k!
δi1···ikj1···jkh

i1
j1
· · ·hikjk .

By the definition and (2.19), we obtain (2.16) as follows:

[Tk]
j
i =

1

k!
δii1···ikjj1···jkh

i1
j1
· · ·hikjk

=
1

k!
δi1···ikj1···jkh

i1
j1
· · ·hikjkδ

j
i −

1

(k − 1)!
δii2···ikj1j2···jkh

j
j1
hi2j2 · · ·h

ik
jk

= σkδ
j
i − [Tk−1]

k
i h

j
k.

By [Tn]
j
i = 0, we get

0 = [Tn]
j
i = σnδ

j
i − [Tn−1]

k
i h

j
k.

For k = 1, the symmetry of the (2, 0)-tensor of T1 come from the symmetry of
h. Inductively, we assume the symmetry of (2, 0)-tensor Tk is true when k = m.
From (2.16), we have

[Tm+1]
ij = [Tm+1]

i
lg

lj = σm+1δ
i
lg

lj − [Tm]pl h
i
pg

lj

= σm+1g
ij − [Tm]pjhip.

On the other hand, by (2.17) we have

[Tm+1]
ji = [Tm+1]

j
l g

li = σm+1δ
j
l g

li − [Tm]jph
p
l g

li

= σm+1g
ji − [Tm]jph

pi

= σm+1g
ji − [Tm]jphip.

From the symmetry of g and Tm, we have proved (2.18). □
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Lemma 10. If u satisfies the scalar equation (1.1) in R3, then the following integral
is bounded as below ∫

Br(x0)

(σ1f − σ3)dx ≤ C

where C depends only on ∥f∥L∞(Br+1(x0)).

Proof. Due to the scalar curvature equation (1.1), we can prove that fσ1 − σ3 is
nonnegative. In fact, we denote Gij := fgij + hlihlj . Because f > 0 and linear
algebra, we know that the matrix [Gij ] and its inverse [Gij ] are positive definite.

We are going to verify that Gij =
σij
2

fσ1−σ3
. By the scalar curvature equation (1.1)

in R3, we have

σip
2 Gpj = σip

2 (fgpj + hkphkj)

= fσ1δ
i
j − fhij + σ2g

ikhkj − [T2]
i
kh

k
j

= fσ1δ
i
j − σ3δ

i
j .

This gives us Gij =
σij
2

fσ1−σ3
. We know that [σij

2 ] is also a positive definite matrix.
So we have

(2.20) fσ1 − σ3 > 0.

Denote ϕ ∈ C∞
0 (Br+1(x0)) a non-negative function with |Dϕ|+ |D2ϕ| ≤ C. We

assume that ϕ ≡ 1 in Br(x0) and 0 ≤ ϕ ≤ 1 in Br+1(x0).
Thus we have

∫
Br(x0)

fσ1 − σ3dx ≤
∫
Br+1(x0)

ϕ2(fσ1 − σ3)dx.

For the first part of the above integral, it has∫
Br+1(x0)

ϕ2fσ1 ≤ C(∥f∥L∞)

∫
Br+1(x0)

ϕ2div(
Du

W
)dx

= C

∫
Br+1(x0)

−
∑
i

(ϕ2)i
ui
W
dx ≤ C.(2.21)

Then we estimate the second term and using (2.15)

−
∫
Br+1(x0)

ϕ2σ3dx = −1

3

∫
Br+1(x0)

∑
i

ϕ2[T2]
j
iDj(

ui
W

)dx

=
2

3

∫
Br+1(x0)

∑
i

ϕ[T2]
j
iϕj

ui
W
dx.

Using (2.16), we continue our estimate∫
Br+1

∑
i

ϕ[T2]
j
iϕj

ui
W
dx =

∫
Br+1

∑
i

ϕϕi
ui
W
σ2dx−

∫
Br+1

∑
i,j

ϕ[T1]
k
i ϕj

ui
W
Dk(

uj
W

)dx.

Due to the scalar curvature equation, we have the bound for the first term∫
Br+1

∑
i

ϕϕi
ui
W
σ2dx ≤ C(∥f∥L∞).
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For the second term, we do integration by parts and use (2.15)

−
∫
Br+1

∑
i,j

ϕ[T1]
k
i ϕj

ui
W
Dk(

uj
W

)dx =

∫
Br+1

∑
i,j

[T1]
k
i (ϕϕj)k

ui
W

uj
W
dx

+

∫
Br+1

∑
i,j

[T1]
k
iDk(

ui
W

)ϕϕj
uj
W
dx

≤ C

∫
Br+1

div(
Du

W
)dx+ C(∥f∥L∞).

We have used (2.4) and the scalar curvature equation (1.1) in the above inequal-
ity. The term

∫
Br+1

div(Du
W )dx can be estimated the same as (2.21).

In conclusion, we have ∫
Br(x0)

fσ1 − σ3dx ≤ C.

The above constants C are universal constants under control (depending only
on ∥f∥L∞), which are different from line by line. □

3. An important differential inequality

Let us consider the quantity of b(x) := log σ1. In dimension three, we have a
very important differential inequality.

Lemma 11. For admissible solutions of the equations (1.1) in R3, we have

(3.1) σij
2 bij ≥

1

100
σij
2 bibj − C(fσ1 − σ3) + gijbidνf(ej)

where C depends only on ∥f∥C2 , ∥ 1
f ∥L∞ and ∥u∥C1 .

Remark. Our choice of b(x) is different from log
√
1 + λ21 as in [24] or log u11 as in [8]

and [3]. We compute log σ1 in this paper, because it allows us to avoid discussions
of viscosity solutions and, at the same time, has sufficient and better concavity than
log u11. We are uncertain whether the corresponding higher-dimensional inequali-
ties (3.1) hold or not. This is one of the challenges in generalizing our theorem to
higher dimensions.

Proof. It is similar as we did in Lemma 3 of [20]. For simplicity, we may choose an
orthonormal frame and assume that {hij} is diagonal at a fixed point p. Thus we
have at p

σkl
2 bkbl = σkl

2

∑
i hiik
σ1

∑
j hjjl

σ1

and

σkl
2 bkl =

∑
i σ

kl
2 hiikl
σ1

−
σkl
2

∑
i hiik

∑
j hjjl

σ2
1

.
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Using Lemma 7, we get

A := σkl
2 bkl − ϵσkl

2 bkbl ≥

∑
i

(
∑
k ̸=l

h2kli −
∑
k ̸=l

hkkihlli)

σ1

−
(1 + ϵ)σkk

2 (
∑
i

hiik)
2

σ2
1

+
2f

∑
j,i h

2
ji − (fσ1 − 3σ3)σ1

σ1

+
∑
i

∇2f(ei, ei)

σ1
.

By (1.1) and (2.20), we have

fσ1 − σ3 =
√
(f + λ21)(f + λ22)(f + λ33) ≥ C

(1 + σ1)
2

σ1
.

Due to

2f
∑

j,i h
2
ji

σ1
≥ 0

and∑
i

∇2f(ei, ei)

σ1
≥ −C(1 + σ1)

2

σ1
+ gijbidνf(ej)

≥ −C(∥f∥C2 , ∥M∥C1 , ∥ 1
f
∥L∞)(fσ1 − σ3) + gijbidνf(ej),

we have

A ≥

∑
i

(
∑
k ̸=l

h2kli −
∑
k ̸=l

hkkihlli)

σ1

−
(1 + ϵ)σkk

2 (
∑
i

hiik)
2

σ2
1

−C(fσ1 − σ3) + gijbidνf(ej).

We use (2.8) to substitute terms with hiii in A,

A ≥ 6h2123
σ1

+
2
∑

k ̸=l h
2
kll

σ1
+

∑
k ̸=l

2hkkl
σ1

(

∑
i ̸=l

σii
2 hiil − fl

σll
2

)

−2h113h223 + 2h112h332 + 2h221h331
σ1

−
(1 + ϵ)σkk

2 (
∑

i̸=k hiik −
∑
i̸=k

σii
2 hiik

σkk
2

+ fk
σkk
2
)2

σ2
1

−C(fσ1 − σ3) + gijbidνf(ej).
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Due to symmetry, we only need to give the lower bound of the terms which
contain h221 and h331. We denote these terms by A1 as below

A1 :=
2(σ11

2 + σ22
2 )h2221

σ1σ11
2

+
2(σ11

2 + σ33
2 )h2331

σ1σ11
2

− 2(h221 + h331)f1
σ1σ11

2

+
2(σ22

2 + σ33
2 − σ11

2 )h221h331
σ1σ11

2

− (1 + ϵ)[(λ2 − λ1)h221 + (λ3 − λ1)h331 + f1]
2

σ2
1σ

11
2

.

Then we use Cauchy-Schwarz inequality and Lemma 5 to get

− (1 + ϵ)[(λ2 − λ1)h221 + (λ3 − λ1)h331 + f1]
2

σ2
1σ

11
2

≥

− (1 + 2ϵ)[(λ2 − λ1)h221 + (λ3 − λ1)h331]
2

σ2
1σ

11
2

− [1 + ϵ+
(1 + ϵ)2

ϵ
]
f21

σ2
1σ

11
2

.

Due to (2.10) and Lemma 5, we have

− f21
σ2
1σ

11
2

≥ −
C(∥f∥C1 , ∥M∥C1 , ∥ 1

f ∥L∞)σ2
1

σ2
1σ

11
2

≥ −Cσ1.

Thus we have

− (1 + ϵ)[(λ2 − λ1)h221 + (λ3 − λ1)h331 + f1]
2

σ2
1σ

11
2

≥

− (1 + 2ϵ)[(λ2 − λ1)h221 + (λ3 − λ1)h331]
2

σ2
1σ

11
2

− C

ϵ
σ1.(3.2)

Similarly, we have

−2(h221 + h331)f1
σ1σ11

2

≥ −2ϵ2σ1(h221 + h331)
2

σ1σ11
2

− f21
2ϵ2σ11

2 σ
2
1

≥ −2ϵ2(h221 + h331)
2

σ11
2

− C

ϵ2
σ1.(3.3)

Then we substitute (3.2) and (3.3) into A1 to get

A1 ≥ 2σ11
2 + 2σ22

2

σ1σ11
2

h2221 +
2σ11

2 + 2σ33
2

σ1σ11
2

h2331

+
4λ1
σ1σ11

2

h221h331 −
2ϵ2(h221 + h331)

2

σ11
2

− (1 + 2ϵ)[(λ2 − λ1)h221 + (λ3 − λ1)h331]
2

σ2
1σ

11
2

−C
ϵ2
σ1.

We will show the Claim 12 and Claim 13 in the below. □

Claim 12. For any ϵ ≤ 2
3 , we have

2σ11
2 + 2σ22

2

σ1σ11
2

h2221 +
2σ11

2 + 2σ33
2

σ1σ11
2

h2331 +
4λ1
σ1σ11

2

h221h331 ≥ 2ϵ(h221 + h331)
2

σ11
2

.



INTERIOR CURVATURE ESTIMATES FOR HYPERSURFACES OF PRESCRIBING SCALAR CURVATURE IN DIMENSION THREE12

Proof. This claim follows from the following elementary inequality

(σ11
2 + σ22

2 − ϵσ1)(σ
11
2 + σ33

2 − ϵσ1)− (λ1 − ϵσ1)
2

= (1− ϵ)2σ2
1 + (1− ϵ)σ1(λ2 + λ3) + λ2λ3 − (λ1 − ϵσ1)

2

= 3(1− ϵ)f + (2− 3ϵ)(λ22 + λ2λ3 + λ23).

If we assume 2− 3ϵ ≥ 0, then the above quantity is nonnegative. □

Claim 13. For any δ ≤ 1
20 , we have

2σ11
2 + 2σ22

2

σ1σ11
2

h2221 +
2σ11

2 + 2σ33
2

σ1σ11
2

h2331 +
4λ1
σ1σ11

2

h221h331

≥ (1 + δ)[(λ2 − λ1)h221 + (λ3 − λ1)h331]
2

σ2
1σ

11
2

.

Proof. We compute the coefficient in front of h2
221

σ2
1σ

11
2

2(σ11
2 + σ22

2 )σ1 − (1 + δ)(λ1 − λ2)
2 = (1− δ)λ21 + (1− δ)λ22 + 4λ23 + 6f + 2δλ1λ2

= (1− δ)(λ1 +
δ

1− δ
λ2)

2 +
1− 2δ

1− δ
λ22 + 4λ23 + 6f.

Similarly, the coefficient in front of h2
331

σ2
1σ

11
2

is

(1− δ)(λ1 +
δ

1− δ
λ3)

2 +
1− 2δ

1− δ
λ23 + 4λ22 + 6f.

We also compute the coefficient of 2h221h331

σ2
1σ

11
2

2λ1σ1 − (1 + δ)(λ1 − λ2)(λ1 − λ3) = (1− δ)λ21 + (3 + δ)f − 2(2 + δ)λ2λ3

= (1− δ)(λ1 +
δ

1− δ
λ2)(λ1 +

δ

1− δ
λ3)

−4− 3δ

1− δ
λ2λ3 + 3f.

It is easy to see that for any small δ

[
1− 2δ

1− δ
λ22 + 4λ23][

1− 2δ

1− δ
λ23 + 4λ22] ≥ [−4− 3δ

1− δ
λ2λ3]

2

and

(6f)2 ≥ (3f)2.

We have proved that the coefficient matrix in front of h2221, h2331 and 2h221h331
is positive definite. So we complete the proof of this claim.

Then we choose ϵ = 1
100 , such that

1 + δ ≥ 1 + 2ϵ

1− ϵ

where δ is small constant in the Claim 13.
In all, we have proved that

A =

3∑
i=1

Ai − C(fσ1 − σ3) + gijbidνf(ej)

≥ −C(fσ1 − σ3) + gijdνf(ei)bj .

□
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4. Mean value inequality.

In this section we prove a mean value type inequality. So we can transform
the pointwise estimate into the integral estimate which is easier to deal with. It
is unclear for higher dimensional scalar curvature equations. This is the second
difficulty to generalize our theorem in higher dimensions.

Theorem 14. Suppose u are admissible solutions of equations (1.1) on B10 ⊂ R3,
then we have for any y0 ∈ B2

(4.1) sup
B1

b = b(y0) ≤ C

∫
B1(y0)

b(x)(σ1f − σ3)dx

where C depends only on ∥f∥C2 , ∥ 1
f ∥L∞ and ∥u∥C1 .

Proof. Because the graph XΣ = (X, ν) = (x1, x2, x3, u,
u1

W , u2

W , u3

W ,− 1
W ) where u

satisfies equation (1.1) can be viewed as a three dimensional smooth submanifold

in (R4 × R4, f(X, ν)
i=4∑
i=1

dx2i +
i=4∑
i=1

dy2i ) . To illustrate the key observation, we first

consider the simplest case f = 1. Then we will give all the details for general cases.
We shall see it is a submanifold with bounded mean curvature when f = 1.
In fact, we have

XΣ
i = (Xi, νi) = (Xi, h

k
iXk)

and
Gij =< XΣ

i , X
Σ
j >R4×R4= gij +

∑
k

hki hkj .

We have proved in Lemma 10 that

Gij =
σij
2

σ1 − σ3
.

Then we show that the mean curvature is bounded as follows:

|H1| = |< Gij(DjX
Σ
i − (Γk

ji)
ΣXΣ

k ), ν
Σ
1 >|

≤ |Gij(DjX
Σ
i − Γk

jiX
Σ
k )|+ |< Gij(Γk

jiX
Σ
k − (Γk

ji)
ΣXΣ

k ), ν
Σ
1 >|

≤ |Gij(DjX
Σ
i − Γk

jiX
Σ
k )|

where (Γk
ji)

Σ and Γk
ji are Christoffel symbols corresponding to Gij and gij and νΣ1

is any one of unit normals of XΣ. The second inequality is because of <XΣ
k , ν

Σ
1 >=

0.
So the mean curvature vector can be estimated as following

|H | ≤ 3|Gij(DjX
Σ
i − Γk

jiX
Σ
k )|

= 3| σij
2

σ1 − σ3
(−hijν, hkijXk − hki hkjν)|

≤ 3| (−2σ2ν,−(σ1 − 3σ3)ν)

σ1 − σ3
| ≤ C.
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In the derivation above, we have utilized Equation (2.8). Employing an argument
similar to that found in Lemma 3.2 and Theorem 3.4 in [16], where Michael-Simon’s
mean value inequalities are proven for subharmonic functions on bounded mean
curvature submanifolds, we arrive at the estimate (4.1) for the scalar curvature
equation when f = 1.

For f = f(X, ν), we give all the details of the proof of these mean value inequal-
ities. First we know from Lemma 11

σij
2 bij ≥ −C(fσ1 − σ3) + gijbidνf(ej).

Let χ be a non-negative and non-decreasing function in C1(R) with support in the
interval (0,∞). We set

ψ(r) :=

∫ ∞

r

tχ(ρ− t)dt

where 0 < ρ < 10, and r2 := f(X(x), ν(x))|X(x)−X(y0)|2 + 2− 2(ν(x), ν(y0)).
Let us denote

Bρ = {x ∈ B10(y0) : f(X(x), ν(x))|X(x)−X(y0)|2 + 2− 2(ν(x), ν(y0)) ≤ ρ2}.
We may assume that (X(y0), ν(y0)) = (0, E4). In order to simplify the notation,
we denote fi = ∇f(ei) and fij = ∇2f(ei, ej) in the following computations.

First, we have

(4.2) 2rri = fi|X|2 + 2(X, ei)f − 2hki (ek, E4)

and

2rirj + 2rrij = fij |X|2 + 2fi(X, ej) + 2fj(X, ei) + 2fδij

−2fhij(X, ν)− 2hkij(ek, E4) + 2hki hkj(ν,E4).(4.3)

Now we are going to compute the differential inequality of ψ,

σij
2 ψij = σij

2 (−rirχ(ρ− r))j

= −σij
2 rijrχ(ρ− r)− σij

2 rirjχ(ρ− r) + σij
2 rirjrχ

′(ρ− r).

From (4.2) and (4.3), we have

σij
2 ψij = −χ(ρ− r)σij

2 [
fij |X|2

2
+ 2fi(X, ej) + fδij − fhij(X, ν)]

+χ(ρ− r)σij
2 [hkij(ek, E4)− hki hkj(ν,E4)]

+σij
2 rirjrχ

′(ρ− r).

Then by (2.8), (2.12) and (2.13), we have

σij
2 ψij = −χ

2
|X|2σij

2 fij − 2χσij
2 fi(X, ej)− 3(fσ1 − σ3)χ+ 2χf2(X, ν)

+χgklfl(ek, E4) + χ(fσ1 − 3σ3)(1− (ν,E4))

+σij
2 rirjrχ

′.(4.4)

By (2.14), the first term on the right hand side of (4.4) is

−χ
2
|X|2σij

2 fij = −χ
2
|X|2[σij

2 d
2
Xf(ei, ej) + 2σij

2 h
k
j d

2
X,νf(ei, ek)

−σij
2 hijdXf(ν) + σij

2 h
k
i h

l
jd

2
νf(ek, el)

−σij
2 h

k
i hkjdνf(ν) + σij

2 h
k
ijdνf(ek)].
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Due to the equation (1.1) in R3, there is

(f + λ21)(f + λ22)(f + λ33) = (fσ1 − σ3)
2.

By (2.20), we have

fσ1 − σ3 =
√

(f + λ21)(f + λ22)(f + λ33).

From the above identity, fσ1 − σ3 has all the positive lower bounds which are
needed in the proof. For example, we get the following inequalities for any 1 ≤ i ̸=
j ≤ 3

fσ1 − σ3 ≥ C(∥ 1
f
∥L∞)(|λiλj |+ 1 + σ1)(4.5)

and

fσ1 − σ3 ≥ |σ3|.(4.6)

From (4.5) and (4.6) , we have

−χ
2
|X|2σij

2 fij ≤ C(∥f∥C2 , ∥ 1
f
∥L∞ , ∥u∥C1)χr2(fσ1 − σ3).

We estimate similarly the second and fouth terms on the right hand side of (4.4)

−2χσij
2 fi(X, ej) +2χf2(X, ν) ≤ C(∥f∥C1 , ∥ 1

f
∥L∞ , ∥u∥C1)χr(fσ1 − σ3).

It is obvious that
3∑

k=1

(ek, E4)
2 = (1− (ν,E4))(1 + (ν,E4)).(4.7)

From the definition of r, we see

(1− (ν,E4)) ≤ r2

2
(4.8)

and

|(ek, E4)| ≤ r.(4.9)

From (4.8), (4.9), (4.5) and (4.6), we deal with the fifth and sixth terms of (4.4)

χgklfl(ek, E4) + χ(fσ1 − 3σ3)(1− (ν,E4)) ≤ C(∥f∥C1 , ∥ 1
f
∥L∞ , ∥u∥C1)χ(r + r2)(fσ1 − σ3).

In sum, we have

σij
2 ψij ≤ −3χ(fσ1 − σ3) + Cχ(r2 + r)(fσ1 − σ3) + σij

2 rirjrχ
′.(4.10)

We next claim that

(4.11) σij
2 rirj ≤ (fσ1 − σ3)[1 + C(∥f∥C1 , ∥ 1

f
∥L∞ , ∥u∥C1)r].

In fact, we may choose an orthonormal frame and assume that {hij} is diagonal
at the point in order to prove this claim. It is straightforward∑

i
σii
2 [fi|X|2+2f(X,ei)−2

∑
k hki(ek,E4)]

2

4r2

≤ C(∥f∥C1 , ∥ 1
f ∥L∞ , ∥u∥L∞)(fσ1 − σ3)r +

∑
i
σii
2 [f(X,ei)−hii(ei,E4)]

2

r2 .

Moreover, we have the following elementary properties

(fσ1 − σ3)δij − fσij
2 = σkl

2 hkihlj(4.12)
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and

fσii
2 h

2
ii(X, ei)

2 + 2fσii
2 (X, ei)(ei, E4)hii + fσii

2 (ei, E4)
2 ≥

fσii
2 [hii(X, ei) + (ei, E4)]

2.(4.13)

By (4.12), we estimate as below∑
i σ

ii
2 [f(X, ei)− hii(ei, E4)]

2

r2
≤

∑
i

σii
2 f

2(X, ei)
2 − 2σii

2 hiif(X, ei)(ei, E4) + σii
2 h

2
ii(ei, E4)

2

r2

≤
∑
i

(fσ1 − σ3)f(X, ei)
2 + (fσ1 − σ3)(ei, E4)

2

r2

−
∑
i

σii
2 h

2
iif(X, ei)

2 + 2σii
2 hiif(X, ei)(ei, E4) + fσii

2 (ei, E4)
2

r2
.

Then by (4.13), (4.7) and the definition of r, we obtain∑
i σ

ii
2 [f(X, ei)− hii(ei, E4)]

2

r2
≤

∑
i

(fσ1 − σ3)
f(X, ei)

2 + (ei, E4)
2

r2

≤ (fσ1 − σ3)
f |X|2 + [(1− (ν,E4))(1 + (ν,E4))]

r2

≤ (fσ1 − σ3).

So we have proved the claim (4.11).
We obtain from (4.11) and (4.10) that

σij
2 ψij ≤ (σ1f − σ3)[−3χ+ C(r2χ+ rχ) + (1 + Cr)rχ′].

Then we mutiply both sides by b and take integral on the domain B10∫
B10

bσij
2 ψijdM ≤ ρ4

d

dρ
(

∫
B10

bχ(ρ− r)

ρ3
(σ1f − σ3)dM)

+C

∫
B10

rbχ(ρ− r)(σ1f − σ3)dM

+C

∫
B10

br2χ′(σ1f − σ3)dM.(4.14)

By (3.1), we have

(4.15) −C
∫
B10

(σ1f − σ3)ψdM +

∫
B10

gijdνf(ei)bjψdM ≤
∫
B10

bσij
2 ψijdM.

Inserting (4.15) into (4.14), we get

− d

dρ
(

∫
B10

bχ(ρ− r)

ρ3
(σ1f − σ3)dM) ≤

C
∫
B10

rbχ(ρ− r)(σ1f − σ3)dM

ρ4

+
C
∫
B10

br2χ′(σ1f − σ3)dM

ρ4

+
C
∫
B10

(σ1f − σ3)ψdM

ρ4

−
∫
B10

gijdνf(ei)bjψdM

ρ4
.
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Because χ, χ′ and ψ are all supported in Bρ, we deal with right hand side of the
above inequality term by term. For the first term, we have

(4.16)

∫
B10

rbχ(ρ− r)(σ1f − σ3)dM

ρ4
≤

∫
B10

bχ(ρ− r)(σ1f − σ3)dM

ρ3
.

Then for the second term, we integral from δ to R to get∫ R

δ

∫
B10

br2χ′(σ1f − σ3)dM

ρ4
dρ ≤

∫ R

δ

∫
B10

bχ′(σ1f − σ3)dM

ρ2
dρ

≤
∫
B10

bχ(σ1f − σ3)dM

ρ2
|Rδ

+

∫ R

δ

2
∫
B10

bχ(σ1f − σ3)dM

ρ3
dρ.(4.17)

For the third term, we use the definition of ψ to estimate∫
B10

b(σ1f − σ3)ψdM

ρ4
≤

∫
B10

bχ(ρ− r)(σ1f − σ3)dM

ρ3
.(4.18)

For the last term, we do integration by parts

−
∫
B10

gijdνf(ei)bjψdM

ρ4
=

∫
B10

[gijdνf(ei)]jbψdM −
∫
B10

gijdνf(ei)rjbrχdM

ρ4
.

Then we use (4.2) and the definition of ψ to get

−
∫
B10

gijdνf(ei)bjψdM

ρ4
≤

C(∥f∥C1 , ∥ 1
f ∥L∞ , ∥u∥C1)

∫
B10

bσ1ψdM −
∫
B10

gijdνf(ei)rjbrχdM

ρ4

≤
C[

∫
B10

bσ1ψdM +
∫
B10

(σ1f − σ3)brχdM ]

ρ4

≤
C
∫
B10

bχ(ρ− r)(σ1f − σ3)dM

ρ3
.(4.19)

We combine (4.16), (4.17), (4.18) and (4.19) with integrating from δ to R:∫
B10

b(σ1f − σ3)χ(δ − r)

δ3
dM ≤ C

∫
B10

b(σ1f − σ3)χ(R− r)

R3
dM

+C

∫ R

δ

∫
B10

b(σ1f − σ3)χ(ρ− r)dM

ρ3
dρ.

Then using GrÃ¶nwall’s inequality, we get∫
B10

b(σ1f − σ3)χ(δ − r)

δ3
dM ≤ C

∫
B10

b(σ1f − σ3)χ(R− r)

R3
dM.

Letting χ approximate the characteristic function of the interval (0,∞), in an
appropriate fashion, we obtain,

(4.20)

∫
Bδ

b(σ1f − σ3)dM

δ3
≤ C

∫
BR

b(σ1f − σ3)dM

R3
.

Because the graph (X, ν) where u satisfied equation (1.4) can be viewed as a three

dimensional smooth submanifold in (R4×R4, f(
4∑

i=1

dx2i )+
4∑

i=1

dy2i ) with volume form
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exactly (σ1f−σ3)dM . Moreover, for a sufficient small δ > 0, the geodesic ball with
radius δ of this submanifold is comparable with Bδ. Letting δ → 0, we finally get

b(y0) ≤ C

∫
BR

b(σ1f − σ3)dM

R3
≤ C

∫
BR(y0)

b(σ1f − σ3)dx

R3
.

□

5. Proof of the theorem 1

Proof. From Theorem 14, we have at the maximum point x0 of B̄2(0)

b(x0) ≤ C

∫
B2(x0)

ϕ2b(σ1f − σ3)dx(5.1)

where ϕ ∈ C∞
0 (B2), ϕ ≡ 1 in B1 and 0 ≤ ϕ ≤ 1 in B2.

We shall estimate the first part
∫
B2(x0)

ϕ2bσ1fdx in the above integral (5.1).
We do integration by parts∫

B2(x0)

ϕ2bσ1fdx ≤ C

∫
B2(x0)

ϕ2bσ1dx

≤ C(

∫
B2(x0)

bdx+

∫
B2(x0)

|Db|dx)

≤ C(∥u∥C1 , ∥f∥L∞)(1 +

∫
B2(x0)

|Db|dx).(5.2)

Then we use (2.1) to get∫
B2(x0)

|Db|dx ≤ C

∫
B2(x0)

√
σij
2 bibj

√
σ1dx.

By Holder inequality, we have∫
B2(x0)

|Db|dx ≤ (

∫
B2(x0)

σij
2 bibjdx)

1
2 (

∫
B2(x0)

σ1dx)
1
2

≤ C(∥u∥C1)

∫
B3(x0)

ϕ2σij
2 bibjdx(5.3)

where ϕ ∈ C∞
0 (B3), ϕ ≡ 1 in B2 and 0 ≤ ϕ ≤ 1 in B3.

We recall the inequality (3.1)

(5.4) σij
2 bij ≥

1

100
σij
2 bibj − C(σ1f − σ3) + gijdνf(ei)bj .

We have an integral version of this inequality∫
Br+1

−2ϕσij
2 ϕibjdM ≥ c0

∫
Br+1

ϕ2σij
2 bibjdM(5.5)

−C
∫
Br+1

(σ1f − σ3)ϕ
2dM

+

∫
Br+1

gijdνf(ei)bjϕ
2dM

for any r < 5 with all non-negative ϕ ∈ C∞
0 (Br+1).
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Then using (5.5) and Lemma 10, we see that

∫
B3(x0)

ϕ2σij
2 bibjdx ≤ C(∥u∥C1)

∫
B3(x0)

ϕ2σij
2 bibjdM

≤ C[−
∫
B3(x0)

ϕσij
2 ϕibjdM +

∫
B3(x0)

ϕ2(σ1f − σ3)dx

+

∫
B3(x0)

ϕ2|Db|dM ]

≤ C(∥u∥C1 , ∥f∥L∞)(

∫
B3(x0)

√
ϕ2σij

2 bibj

√
σkl
2 ϕkϕldx

+1 +

∫
B3(x0)

ϕ2
√
σij
2 bibj

√
σ1dx).

By Cauchy-Schwarz inequality, we have

∫
B3(x0)

ϕ2σij
2 bibjdx ≤ C(ϵ

∫
B3(x0)

ϕ2σij
2 bibjdx+

1

ϵ

∫
B3(x0)

σij
2 ϕiϕidx+

1

ϵ
)

≤ Cϵ

∫
B3(x0)

ϕ2σij
2 bibjdx+

C

ϵ
.

We choose ϵ small with Cϵ ≤ 1
2 such that

∫
B3(x0)

ϕ2σij
2 bibjdx ≤ C(∥f∥C2 , ∥ 1

f
∥L∞ , ∥u∥C1).(5.6)

So far we have obtained the estimate for the first part of (5.1) by combining
(5.2), (5.3), and (5.6). We have

(5.7)
∫
B2(x0)

ϕ2bfσ1dx ≤ C((∥f∥C2 , ∥ 1
f
∥L∞ , ∥u∥C1).

The second part is to estimate
∫
B2(x0)

−ϕ2bσ3dx. Thanks to the divergence free
property (2.15), we do integration by parts as follows

−
∫
B2(x0)

ϕ2bσ3dx = −1

3

∫
B2

∑
i

ϕ2b[T2]
j
iDj(

ui
W

)dx

=
1

3

∫
B2

∑
i

[T2]
j
i (ϕ

2)jb
ui
W︸ ︷︷ ︸

I

dx+
1

3

∫
B2

∑
i

[T2]
j
iϕ

2bj
ui
W︸ ︷︷ ︸

II

dx.(5.8)
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We estimate I by applying (2.16) and (2.15)

I =

∫
B2

∑
i

(σ2δ
j
i − [T1]

k
i h

j
k)(ϕ

2)jb
ui
W
dx

≤ C

∫
B2

bdx−
∫
B2

∑
i,j

[T1]
k
iDk(

uj
W

)(ϕ2)jb
ui
W
dx

≤ C(∥f∥L∞ , ∥u∥C1) +

∫
B2

∑
i,j

[T1]
k
i

uj
W

(ϕ2)jkb
ui
W
dx

+

∫
B2

∑
i,j

[T1]
k
i

uj
W

(ϕ2)jbk
ui
W
dx+ 2

∫
B2

∑
j

σ2
uj
W

(ϕ2)jbdx

≤ C + C

∫
B2

σ1bdx+

∫
B2

∑
i,j

[T1]
klbkgli

ui
W

uj
W

(ϕ2)jdx.(5.9)

The second term of (5.9) can be estimated by the same argument as before. We
only need to estimate the last term of (5.9). By Cauchy-Schwarz inequality and
(5.6), there is∫

B2

∑
i,j

[T1]
klbkgli

ui
W

(
uj
W

)(ϕ2)jdx ≤ 4

∫
B2

ϕ2[T1]
ijbibjdx

+4

∫
B2

∑
k,l

[T1]
ijgik

uk
W
gjl

ul
W

(
∑
p

upϕp
W

)2dx

≤ C(∥f∥C2 , ∥ 1
f
∥L∞ , ∥u∥C1).(5.10)

From (5.9) and (5.10) we obtain

(5.11) I =

∫
B2

∑
i

[T2]
j
i (ϕ

2)jb
ui
W
dx ≤ C(∥f∥C2 , ∥ 1

f
∥L∞ , ∥u∥C1).

Now we deal with II by using (2.17)

II ≤
∫
B2

∑
i

(σ2δ
j
i − [T1]

j
kh

k
i )ϕ

2bj
ui
W
dx

≤ C(∥f∥L∞)

∫
B2

|Db|dx−
∫
B2

∑
i

[T1]
jkhkiϕ

2bj
ui
W
dx.(5.12)

As before, the first term of (5.12) is already estimated by (5.3) and (5.6). We
compute the second term of (5.12)

−
∫
B2

∑
i

[T1]
jkhkiϕ

2bj
ui
W
dx ≤ 2

∫
B2

ϕ2[T1]
jibjbidx

+2

∫
B2

∑
k,l

[T1]
ijhik

uk
W
hjl

ul
W
ϕ2dx

≤ 2

∫
B2

ϕ2[T1]
jibjbidx

+2

∫
B2

∑
i,j

σ2
uiuj
W 2

hijϕ
2dx− 2

∫
B2

σ3
|Du|2

W 2
ϕ2dx.
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By Lemma 10, we have

−
∫
B2

σ3
|Du|2

W 2
ϕ2dx ≤

∫
B2

(fσ1 − σ3)
|Du|2

W 2
ϕ2dx ≤ C(∥f∥L∞).

And by (5.6), we get the estimate

(5.13) II =

∫
B2

∑
i

[T2]
j
iϕ

2bj
ui
W
dx ≤ C(∥f∥C2 , ∥ 1

f
∥L∞ , ∥u∥C1).

With the estimate (5.11) and (5.13) for I and II , we get

(5.14)
∫
B1(x0)

−bσ3dx ≤ C(∥f∥C2 , ∥ 1
f
∥L∞ , ∥u∥C1).

Finally, combining (5.7) and (5.14), we obatin the estimate

log σ1(x0) ≤ C(∥f∥C2 , ∥ 1
f
∥L∞ , ∥u∥C1).

□

Acknowledgement. This work was done when the author did postdoc research at
McGill University. He would like to express gratitude to Professor Pengfei Guan for
supports and many helpful discussions. The author is partially supported by CAS
Project for Young Scientists in Basic Research, Grant No.YSBR-031 and grants
from the Research Grants Council of the Hong Kong Special Administrative region,
China [Project No: CUHK 14300819, CUHK 14304120].

References

[1] E. Bombieri, E. De Giorgi, and M. Miranda. Una maggiorazione a priori relativa alle ipersu-
perfici minimali non parametriche. Archive for Rational Mechanics and Analysis, 32(4):255–
267, 1969.

[2] L. Caffarelli, L. Nirenberg, and J. Spruck. The dirichlet problem for nonlinear second or-
der elliptic equations, iii: Functions of the eigenvalues of the hessian. Acta Mathematica,
155(1):261–301, 1985.

[3] C.Q. Chen. Optimal concavity of some hessian operators and the prescribed σ2 curvature
measure problem. Science China Mathematics, pages 1–13, 2013.

[4] C.Q. Chen, F. Han, and Q.Z. Ou. The interior c2 estimate for the monge-ampere equation
in dimension n= 2. Analysis & PDE, 9(6):1419–1432, 2016.

[5] K.S. Chou and X.J. Wang. A variational theory of the hessian equation. Communications on
Pure and Applied Mathematics, 54(9):1029–1064, 2001.

[6] D. Gilbarg and N.S. Trudinger. Elliptic partial differential equations of second order. springer,
2015.

[7] P.F. Guan and G.H. Qiu. Interior c2 regularity of convex solutions to prescribing scalar
curvature equations. Duke Mathematical Journal, 168(9):1641–1663, 2019.

[8] P.F. Guan, C.Y. Ren, and Z.Z. Wang. Global c 2-estimates for convex solutions of curvature
equations. Communications on Pure and Applied Mathematics, 8(68):1287–1325, 2015.

[9] R. Harvey and H.B. Lawson. Calibrated geometries. Acta Mathematica, 148(1):47–157, 1982.
[10] E. Heinz. On certain nonlinear elliptic differential equations and univalent mappings. Journal

d’Analyse Mathematique, 5(1):197–272, 1956.
[11] E. Heinz. On elliptic monge-ampere equations and weyl’s embedding problem. Journal

d’Analyse Mathematique, 7(1):1–52, 1959.
[12] D. Hoffman and J. Spruck. Sobolev and isoperimetric inequalities for riemannian submani-

folds. Communications on Pure and Applied Mathematics, 27(6):715–727, 1974.
[13] O.A. Ladyzhenskaya and N.N. Ural’Tseva. Local estimates for gradients of solutions of non-

uniformly elliptic and parabolic equations. Communications on Pure and Applied Mathemat-
ics, 23(4):677–703, 1970.



INTERIOR CURVATURE ESTIMATES FOR HYPERSURFACES OF PRESCRIBING SCALAR CURVATURE IN DIMENSION THREE22

[14] S.Y. Lu. On weyl’s embedding problem in riemannian manifolds. International Mathematics
Research Notices, 2016.

[15] M. McGonagle, C. Song, and Y. Yuan. Hessian estimates for convex solutions to quadratic
hessian equation. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 2018.

[16] J.H. Michael and L.M. Simon. Sobolev and mean-value inequalities on generalized submani-
folds of rn. Communications on Pure and Applied Mathematics, 26(3):361–379, 1973.

[17] L. Nirenberg. The weyl and minkowski problems in differential geometry in the large. Com-
munications on pure and applied mathematics, 6(3):337–394, 1953.

[18] A.V. Pogorelov. Extrinsic geometry of convex surfaces, volume 35 of translations of mathe-
matical monographs. American Mathematical Society, Providence, RI, 1973.

[19] A.V. Pogorelov. The multidimensional minkowski problem. Winston, Washington, 410, 1978.
[20] G.H. Qiu. Interior hessian estimates for sigma-2 equations in dimension three. arXiv preprint

arXiv:1711.00948, 2017.
[21] N.S. Trudinger. A new proof of the interior gradient bound for the minimal surface equation

in n dimensions. Proceedings of the National Academy of Sciences, 69(4):821–823, 1972.
[22] N.S. Trudinger. Gradient estimates and mean curvature. Mathematische Zeitschrift,

131(2):165–175, 1973.
[23] J. Urbas. On the existence of nonclassical solutions for two classes of fully nonlinear elliptic

equations. Indiana University Mathematics Journal, pages 355–382, 1990.
[24] M. Warren and Y. Yuan. Hessian estimates for the sigma-2 equationin dimension 3. Commu-

nications on Pure and Applied Mathematics, 62(3):305–321, 2009.

INSTITUTE OF MATHEMATICS, ACADEMY OF MATHEMATICS AND SYS-
TEMS SCIENCE, CHINESE ACADEMY OF SCIENCES, BEIJING, 100190, CHINA.

Email address: qiugh@amss.ac.cn


