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Abstract. We study the method of finding conformal maps onto circle
domains by approximating with finitely connected subdomains. Every

domain D ⊂ Ĉ admits exhaustions, i.e., increasing sequences of finitely
connected subdomains Dj whose union is D. By Koebe’s theorem, each
Dj admits a conformal map fDj from Dj onto a circle domain fDj (Dj).
Assuming fDj → f , our goal is to find out if f(D) is also a circle domain.

We present a countably connected D with an exhaustion (Dj) so
that (fDj ) has a limit whose image is not a circle domain, and a domain
Ω with an exhaustion (Ωj) so that (fΩj ) has a limit whose image has
uncountably many non-point complementary components.

On the other hand, we prove that every exhaustion (Dj) of a count-
ably connected D admits a refinement so that the image of the cor-
responding limit map is a circle domain. Our result extends the He-
Schramm theorem on the uniformization of countably connected do-
mains and provides a new proof.

1. Introduction

1.1. Background. The long-standing Koebe conjecture [15] predicts that

every domain D ⊂ Ĉ admits a conformal map onto a circle domain, i.e.,
a domain whose set of complementary components consists of closed disks
and points. See [10] for an overview. Koebe himself proved this to be the
case for finitely connected domains, cf. [7, Theorem 5.1]. Koebe’s theorem
has been extended to cover finitely connected targets with varying boundary
shapes, the most general results being those by Brandt [5] and Harrington
[9]. See [20] for further information.

A major breakthrough was made by He and Schramm [10], who showed
that the Koebe conjecture holds for countably connected domains. Soon
after Schramm [19] introduced the transboundary extremal length (or trans-
boundary modulus), and applied it to give a simplified proof to the He-
Schramm theorem as well as a generalization to uncountably connected “co-
fat” domains. See also [11], [12], [13]. Recently, results related to the Koebe
conjecture have been established in [2], [14], [16], [18], [21], and [22].

The proofs by He-Schramm and Schramm apply approximation of a given
domain from outside by a decreasing sequence of finitely connected domains
together with Koebe’s theorem to construct a sequence of conformal maps
whose limit has circle domain image. In this paper, we study a modifica-
tion of this method where a given domain is approximated from inside by
exhaustions, i.e., increasing sequences of finitely connected subdomains.
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Our approach is motivated by the fact that exhaustions offer more flexi-
bility than approximations from outside. They can potentially be applied to
gain a better understanding of the Koebe conjecture and related problems.
The challenge is in finding exhaustions with the desired properties among
all the exhaustions of a given domain.

Theorems 1.1 and 1.2 below show that an arbitrary exhaustion does not
work in general; the image of the limit map is not always a circle domain.
However, our main result, Theorem 1.3, shows that any exhaustion of a
countably connected domain admits a refinement so that the image of the
corresponding limit map is a circle domain. We now describe our results in
detail.

1.2. Main results. An exhaustion Φ of a domain D ⊂ Ĉ is a sequence of
domains Dj ⊂ D, each bounded by finitely many disjoint Jordan curves in
D, such that

Dj ⊂ Dj+1 for all j = 1, 2, . . . and D = ∪jDj .

We fix disjoint points a0, a1, a2 ∈ D1. Then by Koebe’s theorem there
are unique conformal maps fj : Dj → D̃j onto circle domains D̃j ⊂ Ĉ so
that fj(ak) = ak for k = 0, 1, 2. Sequence (fj) has a subsequence converging
locally uniformly to a conformal f : D → f(D). We denote

FΦ = {f : D → f(D) : f is the limit of a subsequence of (fj)}.
If FΦ contains only one map f , i.e., if (fj) converges, we denote f = fΦ. The
use of this notation always contains the implicit assumption that fj → fΦ.

THEOREM 1.1. There is a countably connected domain D ⊂ Ĉ with

exhaustion Φ such that fΦ(D) is not a circle domain.

We denote the set of complementary components of domain G by C(G).
We say that p ∈ C(G) is non-trivial if diam(p) > 0.

THEOREM 1.2. There is a domain D ⊂ Ĉ with exhaustion Φ such that

C(fΦ(D)) contains uncountably many non-trivial elements.

Theorems 1.1 and 1.2 are in sharp contrast to [7, Theorem 2.1] on slit
domains, i.e., domains whose sets of complementary components consist of
vertical segments and points; if Φ is an exhaustion of D and if the targets
D̃j above are slit domains so that fj → f , then f(D) is always a slit domain.

In view of Theorems 1.1 and 1.2, in order to produce a limit map onto
a circle domain it is necessary to modify, or refine, a given exhaustion. Let
Φ = (Dj) and Φ′ = (D′

j) be exhaustions of D. We say that Φ is a refinement

of Φ′, if every p ∈ C(Dj) is an element of C(D′
j(p)) for some j(p) ⩾ j. Our

main result reads as follows.

THEOREM 1.3. Every exhaustion of a countably connected domain D ⊂
Ĉ has a refinement Φ such that fΦ(D) is a circle domain.

Since every domain admits an exhaustion, Theorem 1.3 gives a new proof
to the He-Schramm theorem. Our main tools are transfinite induction, which
was also used by He-Schramm and Schramm, and Schramm’s transboundary
modulus.
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2. Proof of Theorem 1.3

Let G ⊂ Ĉ be a domain and Ĝ = Ĉ/ ∼, where

x ∼ y if either x = y ∈ G or x, y ∈ p for some p ∈ C(G).

The corresponding quotient map is πG : Ĉ → Ĝ. Identifying each x ∈ G
and p ∈ C(G) with πG(x) and πG(p), respectively, we have

Ĝ = G ∪ C(G).

A homeomorphism f : G → G′ has a homeomorphic extension f̂ : Ĝ → Ĝ′.
Let Φ′ = (D′

j) be an exhaustion of a countably connected domain D. We

consider the following property: If q1 ∈ C(D′
j1
) and q2 ∈ C(D′

j2
), j1 ⩾ j2,

and if q1 ∩ q2 ̸= ∅, then
(1) either q1 = q2 or q1 lies in the interior of q2.

It is not difficult to see that any exhaustion Φ′′ of D has a refinement Φ′

satisfying (1). Since any refinement of Φ′ is also a refinement of Φ′′, we
conclude that it suffices to prove Theorem 1.3 for exhaustions satisfying (1).

We prove Theorem 1.3 using transfinite induction (cf. [6]) and the fol-
lowing result. In this paper, we allow closed disks to have zero diameter.
For instance, in the following proposition a disk q ∈ C(D) may be a point
component.

Proposition 2.1. Let D ⊂ Ĉ be a countably connected domain. Fix an

exhaustion Φ′ = (D′
j) of D satisfying (1), p ∈ C(D), and an open neighbor-

hood U of p in Ĉ such that U ∈ C(D′
n) for some index n. Moreover, suppose

every f ∈ FΦ′ satisfies

(2) f̂(q) is a disk for all q ∈ C(D) \ {p}, q ⊂ U.

Then Φ′ has a refinement Φp = (Dj(p)) such that

Dj(p) \ U = D′
j \ U for all j ∈ N and(3)

if Φ is any refinement of Φp, then ĝ(p) is a disk for all g ∈ FΦ.(4)

2.1. Transfinite induction. Suppose D ⊊ Ĉ is a countably connected do-
main. We lose no generality by assuming that the number of complementary
components of D is infinite. We denote E0 = D̂ \D. For any compact non-
empty E ⊂ E0, let

E∗ = {p ∈ E : p is not isolated in E}.
By the Baire category theorem, E∗ ⊊ E. We can now use transfinite induc-
tion to define a well ordered set of subsets Eα of E0 as follows: Given an
ordinal α > 0, we define

Eα =

{
(Eβ)

∗, if α = β + 1 is a successor ordinal,
∩β<αEβ, if α is a limit ordinal.

It follows that each Eα is compact and Eα ⊊ Eβ if α > β and Eβ ̸= ∅.
There is an αL so that EαL is finite and non-empty, thus EαL+1 = ∅.

We now show how Theorem 1.3 follows from Proposition 2.1.
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Proposition 2.2. Let Φ(0) = (Dj(0)) be an exhaustion of D satisfying (1).

For every ordinal 0 ⩽ α ⩽ αL + 1 there is an exhaustion Φ(α) = (Dj(α)) of

D so that

(i) if 0 ⩽ β ⩽ α, then Φ(α) is a refinement of Φ(β), and

(ii) if Φ is any refinement of Φ(α), then

(5) f̂(q) is a disk for all f ∈ FΦ and q ∈ E0 \ Eα.

Suppose Φ(αL + 1) = (Dj) satisfies (5), and let (fjk) be a subsequence
of the corresponding (fj) converging to some f . Choosing Φ = (Djk) and
f = fΦ shows that Theorem 1.3 follows from Proposition 2.2.

Proof of Proposition 2.2 assuming Proposition 2.1. First, we enumerate the

elements p = p(k) ∈ C(D), and denote p(k) ≺ p(ℓ) if k < ℓ. This should not

be confused with the ordering of the sets Eα. Each p belongs to Eα \ Eα+1

for exactly one 0 ⩽ α ⩽ αL. Fix such an α. Then each p ∈ Eα\Eα+1 admits

an open neighborhood Up ⊂ Ĉ so that Up ∈ C(Dj(0)) for some j,

πD(Up) ∩ Eα+1 = ∅, and(6)

Up ∩ U q = ∅ if q ∈ Eα \ (Eα+1 ∪ {p}) or if q ∈ E0 \ Eα satisfies q ≺ p.(7)

We apply transfinite induction. The claims of the proposition clearly hold

for α = 0 with the given exhaustion Φ(0). We assume that the claims hold

for all β < α and verify them for α.

Let α = β + 1 be a successor ordinal. By the induction assumption,

(6) and (7), Condition (2) in Proposition 2.1 is satisfied with Φ′ = Φ(β),

p ∈ E0 \ Eβ, and U = Up. The proposition combined with our choice of Up

then gives a refinement Φ(α) = (Dj(α)) of Φ(β) = (Dj(β)) so that

(8) Dj(α) \
⋃

p∈Eβ\Eα

Up = Dj(β) \
⋃

p∈Eβ\Eα

Up

and so that (5) holds for all p ∈ Eβ \ Eα. Notice again that if Φ′ is a

refinement of Φ and if Φ′′ is a refinement of Φ′, then Φ′′ is a refinement of

Φ. The claims follow.

Now let α = ∩β<αβ be a limit ordinal. We define Φ(α) = (Dj(α)) as

follows: first, let

(9) Dj(α) \
( ⋃

p∈E0\Eα

Up

)
= Dj(0) \

( ⋃
p∈E0\Eα

Up

)
.

Fix p ∈ E0 \ Eα. Each q ∈ E0 belongs to some Eβ(q) \ Eβ(q)+1. With this

notation, we have β(p) < α.

By (7) there are only finitely many q ∈ Eβ(p) \ Eα such that

(10) Up ∩ U q ̸= ∅.



UNIFORMIZATION OF PLANAR DOMAINS BY EXHAUSTION 5

Moreover, since each such U q belongs to C(Dj(0)), (6) and (7) show that

(11) Up ⊂ Uq ⊂ Uq′

if both U q and U q′ satisfy (10) and β(q) ⩽ β(q′).

Among the elements q for which (10) holds, let q(p) be the one with the

maximal β(q). Then β(p) ⩽ β(q(p)) < α. We set

(12) Dj(α) ∩ Up = Dj(β(q(p))) ∩ Up, p ∈ E0 \ Eα.

Then (9) and (12) define Φ(α) = (Dj(α)). Furthermore, (8), (11), and the

induction assumption show that Φ(α) is a refinement of every Φ(β), β ⩽ α,

and that (5) holds. The proof is complete, modulo Proposition 2.1. □

2.2. Transboundary modulus. We will apply the following generalization
of conformal modulus, first introduced by Schramm [19]. In addition to its
importance in classical uniformization problems, this method has played a
central role in recent developments on the uniformization of fractal metric
spaces, cf. [1], [3], [4], [8], [17].

Let G ⊂ Ĉ be a domain. The transboundary modulus mod(Γ) of a family

Γ of paths in Ĝ is

mod(Γ) = inf
ρ∈X(Γ)

∫
G
ρ2 dA+

∑
p∈C(G)

ρ(p)2,

where X(Γ) consists of all Borel functions ρ : Ĝ → [0,∞] for which

1 ⩽
∫
γ
ρ ds+

∑
p∈C(G)∩|γ|

ρ(p) for all γ ∈ Γ.

Here
∫
γ ρ ds is the path integral of the restriction of γ to G. More precisely,

this restriction is a countable union of disjoint paths γj , each of which maps
onto a component of |γ| \ C(G), and we define∫

γ
ρ ds =

∑
j

∫
γj

ρ ds.

As noticed in [19], the transboundary modulus is a conformal invariant.

Lemma 2.3. Suppose f : G → G′ is conformal. Then for every path family

Γ and f̂(Γ) = {f̂ ◦ γ : γ ∈ Γ} we have

mod(f̂(Γ)) = mod(Γ).

The proof is a straightforward modification of the proof of the correspond-
ing result for conformal modulus.

We will prove Proposition 2.1 by applying the following estimate. Given
a domain G ⊂ Ĉ and disjoint sets A,B ⊂ Ĉ, we denote

Γ(A,B;G) = {paths in Ĝ joining πG(A) and πG(B)},
mod(A,B;G) = mod(Γ(A,B;G)).
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Proposition 2.4. Let D ⊂ Ĉ be a countably connected domain. Fix an ex-

haustion Φ′ = (D′
j) of D satisfying (1), p ∈ C(D), and an open neighborhood

U of p in Ĉ such that U ∈ C(D′
n) for some index n. Moreover, suppose every

q ∈ C(D) \ {p}, q ⊂ U , is a disk. Then Φ′ has a refinement Φp = (Dj(p))

satisfying

Dj(p) \ U = D′
j \ U for all j ∈ N

so that if Φ = (Dj) is any refinement of Φp, then

(13) lim
r→0

lim sup
j→∞

mod(S(z, r) \ pj , ∂U ;Dj) = 0

for every z ∈ p, where pj is the element of C(Dj) containing p.

Here and in what follows, if z ∈ C and r > 0 then B(z, r) is the open
euclidean disk with center z and radius r, circle S(z, r) is the boundary of
B(z, r), and B(z, r) = B(z, r) ∪ S(z, r). Also, in (13) S(∞, r) = S(0, 1/r).

We postpone the proof of Proposition 2.4 until Section 2.4. We next show
that Proposition 2.1 follows from Proposition 2.4.

2.3. From Proposition 2.4 to Proposition 2.1. Fix Φ′ = (D′
j), p, and U

as in Proposition 2.1. Replacing D with f(D) and Φ′ with (f(D′
j)) for some

f ∈ FΦ′ if necessary, we may assume that the assumptions of Proposition
2.4 are valid. It then suffices to show that (13) implies (4) in Proposition
2.1: if Φ is any refinement of Φp, then ĝ(p) is a disk for all g ∈ FΦ.

Fix a refinement Φ = (Dj) of Φp. As before, let fj : Dj → D̃j be the

associated conformal maps onto circle domains D̃j . Fix g ∈ FΦ. By passing
to a subsequence if necessary, we may assume that fj → g.

Taking another subsequence if necessary, we may assume that (f̂j(pj))
Hausdorff converges to a closed disk B, where pj is the element of C(Dj)
containing p (recall that B may have zero radius).

Since fj → g, we have B ⊂ ĝ(p). We will prove that in fact B = ĝ(p).
This implies (4).

Applying suitable Möbius transformations if necessary, we may assume
that U , fj(∂U) and f̂j(pj) are all subsets of B(0, 1). It is then understood
that all distances in the rest of the proof are euclidean (instead of spherical).

Towards contradiction, suppose that B ⊊ ĝ(p). Then

dist(w0, B) ⩾ 2δ for some w0 ∈ ∂ĝ(p) and δ > 0.

It follows that there are sequences (jk) and (zk) such that jk > k and
zk ∈ ∂pk ⊂ Djk for all k ∈ N, and

dist(fj(zk), f̂j(pj)) ⩾ δ for all j ⩾ jk.

By passing to another subsequence if necessary, we may assume that

zk → z ∈ p.

Fix k ∈ N and j ⩾ jk. We construct a suitable path family Γ(j, k) and
estimate its modulus to arrive at a contradiction. Let w ∈ C be the point
in f̂j(pj) closest to fj(zk), and denote

I = (w, fj(zk)), ℓ = the line containing segment I.
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Let Vj be the bounded component of C\fj(∂U), and denote the fj(zk)- and

w-components of V j ∩ (ℓ \ I) by P ′ and Q′, respectively. Moreover, let

P = f̂−1
j (πfj(Dj)(P

′)), Q = f̂−1
j (πfj(Dj)(Q

′)) ⊂ D̂j .

There are unique points a, b ∈ ∂U so that πDj (a) ∈ P and πDj (b) ∈ Q.
Let J1, J2 be the connected components of ∂U \ {a, b}, and let

Γ(j, k) = {paths joining πDj (J1) and πDj (J2) in πDj (U) \ (P ∪Q)}.

Then every γ ∈ Γ(j, k) passes through πj(B(z, |z − zk|)), so if we denote
rk = |z − zk| and choose k large enough so that S(z, rk) ⊂ U , we have

Γ(j, k) ⊂ Γ(S(z, rk) \ pj , ∂U ;Dj)

(observe that πDj (pj) ∈ Q). Thus,

mod(Γ(j, k)) ⩽ mod(S(z, rk) \ pj , ∂U ;Dj)

so by (13),

(14) lim
k→∞

lim sup
j→∞

mod(Γ(j, k)) = 0.

Lemma 2.5. We have

(15) mod(f̂jΓ(j, k)) ⩾ M > 0 for all k ∈ N and j ⩾ jk,

where f̂jΓ(j, k) = {f̂j ◦ γ : γ ∈ Γ(j, k)} and M does not depend on j or k.

Combining (14) with Lemmas 2.3 and 2.5 leads to a contradiction, so
once Lemma 2.5 has been proved we know that Proposition 2.1 follows from
Proposition 2.4.

Proof of Lemma 2.5. We consider the subfamily Γ of f̂jΓ(j, k) consisting of

projections of segments orthogonal to ℓ. More precisely, denote by T the

length of I, T = |w− fj(zk)|, and let η(s) = (1− s
T )w+ s

T fj(zk), 0 < s < T ,

be an arc-length parametrization of I. Notice that T ⩾ δ.

Fix 0 < s < T , and denote by ℓs the line orthogonal to ℓ passing through

η(s). Then there is a component Is of ℓs ∩ V j with endpoints m1 ∈ fj(J1)

and m2 ∈ fj(J2) (recall that Vj is the bounded component of C \ fj(∂U)).

Choose a parametrization γs of πDj (Is), and let

Γ = {γs : 0 < s < T}.

Then Γ ⊂ f̂jΓ(j, k), so it suffices to prove (15) with f̂jΓ(j, k) replaced by Γ.

Fix ρ ∈ X(Γ), and denote by Dj the family of disks τ ∈ f̂j(C(Dj)) satis-

fying τ ⊂ πDj (Vj). Then

1 ⩽
∫
Is

ρ ds+
∑

q∈Dj∩|γs|

ρ(q) for all 0 < s < T.
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Integrating from 0 to T and applying Fubini’s theorem and Hölder’s inequal-

ity yields

δ ⩽ T ⩽
∫
fj(U∩Dj)

ρ dA+
∑
τ∈Dj

diam(τ)ρ(τ)

⩽ |Vj |1/2
(∫

fj(U∩Dj)
ρ2 dA

)1/2
+
( ∑

τ∈Dj

diam(τ)2
)1/2( ∑

τ∈Dj

ρ(τ)2
)1/2

⩽
( 4

π
|Vj |

)1/2((∫
fj(U∩Dj)

ρ2 dA
)1/2

+
( ∑

τ∈Dj

ρ(τ)2
)1/2)

,

where the last inequality follows since the disks τ are disjoint subsets of Vj .

Recall that by our normalization Vj ⊂ B(0, 1) and therefore |Vj | ⩽ π for

all j. Combining with the estimate above and inequality

(a1/2 + b1/2)2 ⩽ 3(a+ b), a, b > 0,

leads to

(16)
δ2

12
⩽

∫
fj(U∩Dj)

ρ2 dA+
∑
τ∈Dj

ρ(τ)2.

Since (16) holds for all ρ ∈ X(Γ), we have mod(Γ) ⩾ δ2/12. □

2.4. Proof of Proposition 2.4. We use the following notation: ifG,V ⊂ Ĉ
are domains, then

C(G,V ) = {q ∈ C(G) : q ⊂ V }.

Lemma 2.6. Suppose D, Φ′, p and U are as in Proposition 2.4. Then Φ′

has a refinement Φp = (Dj(p)) so that Dj(p) \ U = D′
j \ U and

C(Dj(p), U) = Ĉe,j ∪ Ĉd,j ∪ {p̂j}

for all j ∈ N, where p̂j ⊃ p and p̂j /∈ Ĉe,j ∪ Ĉd,j,

(17)
∑

q̂(j)∈Ĉd,j

diam(q̂(j)) ⩽ 2−j−1,

and for every q̂(j) ∈ Ĉe,j there is q = B(x, t) ∈ C(D,U), t > 0, such that

(18) B(x, t) ⊂ q̂(j) ⊂ B(x, t+ s), s = min

{
t

100
,
dist(q̂(j), p)

100

}
.

Proof. We have C(D,U) = Ce ∪ Cd ∪ {p}, p /∈ Ce ∪ Cd, where Ce is a family

of disks with positive radius and Cd a family of point components. We

enumerate the elements of Cd:

Cd = {q1, q2, . . .}.

We define Φp = (Dj(p)) as follows: First, let Dj(p) \ U = D′
j \ U , j ∈ N.

To describe the sets Dj(p) ∩ U , assume that j = 1 or j ⩾ 2, and Dk(p) has

been defined for all k ⩽ j − 1.
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We denote by p̂j the element of C(D′
j , U) containing p. We lose no gen-

erality by assuming that p̂1 ⊂ U . Then C(Dj , U \ p̂j) is non-empty for all

j ⩾ 1.

Each q ∈ C(D,U) is contained in some q̂(j) such that

(i) p̂(j) = p̂j ,

(ii) q̂(j) ∈ C(D′
j′ , U \ p̂j) for some j′ ⩾ j,

(iii) if j ⩾ 2 then q̂(j) ⊂ q̂(j − 1) for some q̂(j − 1) ∈ C(Dj−1(p), U),

(iv) if q = qm ∈ Cd, then

diam(q̂m(j)) ⩽ 2−j−m−1,

(v) if q = B(x, t) ∈ Ce, then q̂(j) satisfies (18).

Denote Qj = {q̂(j) : q ∈ C(D,U)}. If q̂(j), q̂′(j) ∈ Qj , then either

q̂(j)∩q̂′(j) = ∅ or one is contained in the other. Thus we can defineDj(p)∩U
as the domain for which C(Dj(p), U) is the set of maximal elements in Qj .

Properties (i)–(iii) guarantee that {Dj(p)} is a refinement of {D′
j}. More-

over, every q̂(j) satisfies (iv) or (v). We define

Ĉd,j = {q̂(j) ∈ C(Dj(p), U) \ {p̂j} : q̂(j) satisfies (iv)},

Ĉe,j = {q̂(j) ∈ C(Dj(p), U) \ {p̂j} : q̂(j) satisfies (v)}.

□

We complete the proof of Proposition 2.4 by showing that any refinement
Φ = (Dj) of the Φp in Lemma 2.6 satisfies the remaining estimate (13), i.e.,

lim
r→0

lim sup
j→∞

mod(S(z, r) \ pj , ∂U ;Dj) = 0 for every z ∈ p.

Lemma 2.7. Every refinement Φ = (Dj) of Φp satisfies (13).

Proof. Fix z ∈ p and let v be the largest integer such that

B(z, ev) = B(z,R) ⊂ U.

It suffices to show that if j is large enough, then

(19) mod(S(z, r) \ pj , S(z,R);Dj) ⩽ ϵ(r) → 0 as r → 0,

where ϵ(r) does not depend on j. We will do this by first constructing a suit-

able sequence of disjoint annuli, and then applying them to find admissible

functions.

First, let v1 = v. Then, fix n ⩾ 1 and assume that vn < vn−1 < · · · < v1

have been defined. Denote Rk = evk and Ak = B(z,Rk) \ B(z,Rk/e), and

let vn+1 < vn be the largest integer such that

B(z,Rn+1) ∩B(x, t+ s) = ∅ for all q = B(x, t) ∈ C(D,U), q ∩An ̸= ∅,

where s is as in (18).
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Recall from Lemma 2.6 that

C(Dj(p), U) = Ĉe,j ∪ Ĉd,j ∪ {p̂j}.

We denote Ĉe,j = Ĉb,j ∪ Ĉs,j , where

Ĉb,j = {q̂(j) ∈ Ĉe,j : diam(q̂(j)) ⩾ dist(q̂(j), z)},

Ĉs,j = {q̂(j) ∈ Ĉe,j : diam(q̂(j)) < dist(q̂(j), z)}.

Moreover, let Cj = Cd,j ∪ Cb,j ∪ Cs,j , where

Cd,j = ∪m⩾j Ĉd,m, Cb,j = ∪m⩾j Ĉb,m, Cs,j = ∪m⩾j Ĉs,m.

Fix a refinement Φ = (Dj) of Φp, and u < v − 100. We denote r = eu.

Let j be large enough so that 2−j+1 < r/e, and pj the element of C(Dj , U)

containing p. Since Φ is a refinement of Φp, we have C(Dj , U \ pj) ⊂ Cj . In
particular,

C(Dj , U \ pj) = Dj ∪ Bj ∪ Sj , where Dj ⊂ Cd,j , Bj ⊂ Cb,j , Sj ⊂ Cs,j .

By Lemma 2.6 and the definition of the above sets, the following hold: First,

(20)
∑

q(j)∈Dj

diam(q(j)) ⩽ 2−j <
r

2e
.

Secondly, denoting Bj(n) = {q(j) ∈ Bj : q(j) ∩ An ̸= ∅}, we have Bj(n) ∩
Bj(n

′) = ∅ if n ̸= n′. Moreover, since every q(j) ∈ Bj(n) contains a disk

whose area is comparable to the area of An, the cardinality of Bj(n) has an

absolute bound;

(21) |Bj(n)| ⩽ 30 for all n ∈ N.

Finally, every q(j) ∈ Sj satisfies

(22) diam(q(j))2 ⩽ 2Area(q(j)).

Moreover, denoting Sj(n) = {q(j) ∈ Sj : q(j) ∩ An ̸= ∅}, we have Sj(n) ∩
Sj(n

′) = ∅ if n ̸= n′.

We construct an admissible function

(23) ρ ∈ X(Γ(S(z, r) \ pj , S(z,R);Dj))

as follows: let m be the largest integer such that vm+1 ⩾ u, and 1 ⩽ n ⩽ m.

Define ρn : D̂j → [0,∞],

ρn(w) =


1
m , w ∈ Bj(n),
2e diam(w)

mRn
w ∈ Sj(n),

2
m|w−z| , w ∈ An ∩Dj ,

and ρn(w) = 0 otherwise. We claim that

(24)
1

m
⩽

∫
γ
ρn ds+

∑
q∈Cj∩|γ|

ρn(q)
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for all γ ∈ Γ(S(z, r) \ pj , S(z,R);Dj). Fix such a γ, and denote

Ω1 = {Rn/e < T < Rn : T = |y − z| for some y ∈ |γ| ∩Dj},

Ω2 = {Rn/e < T < Rn : T = |y − z| for some y ∈ w, w ∈ |γ| ∩ Sj(n)},

Ω3 = {Rn/e < T < Rn : T = |y − z| for some y ∈ w, w ∈ |γ| ∩ Dj(n)}.

We may assume that γ does not intersect any w ∈ Bj(n), otherwise (24)

follows directly from the definition of ρn. We then have∫
Ω1

dT

T
+

∫
Ω2

dT

T
+

∫
Ω3

dT

T
⩾ 1,

which combined with (20) yields∫
Ω1

dT

T
+

∫
Ω2

dT

T
⩾

1

2
.

The definition of ρn in An ∩Dj yields∫
γ
ρn ds ⩾

2

m

∫
Ω1

dT

T
.

On the other hand, combining the definition of ρn in Sj(n) with inequality

e(β − α)

Rn
⩾ log β − logα,

e

Rn
⩽ α ⩽ β,

yields ∑
q∈Sj(n)∩|γ|

ρn(q) ⩾
2

m

∫
Ω2

dT

T
.

Combining the estimates yields (24). In particular, ρ =
∑m

n=1 ρn satisfies

(23), i.e., ρ is admissible for Γ(S(z, r) \ pj , S(z,R);Dj).

We prove (19) by estimating the energy

(25)

∫
Dj∩U

ρ2 dA+
∑
w∈Cj

ρ(w)2

from above. First, we have

(26)

∫
Dj∩U

ρ2 dA ⩽
4

m2

m∑
n=1

∫
Dj∩An

dA(w)

|w − z|2
⩽

8π

m
.

In order to estimate the sum in (25), we recall that each w ∈ Bj ∪ Sj

intersects at most one An. By (21),

(27)
∑
w∈Bj

ρ(w)2 ⩽
m∑

n=1

|Bj(n)|
m2

⩽
30

m
.

Finally, since every w ∈ Sj(n) is a subset of B(z, 2Rn), (22) yields∑
w∈Sj

ρ(w)2 ⩽
4e2

m2

m∑
n=1

∑
w∈Sj(n)

diam(w)2

R2
n

(28)

⩽
8e2

m2

m∑
n=1

Area(B(z, 2Rn))

R2
n

=
32πe2

m
.
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Combining (26), (27) and (28), we conclude∫
Dj∩U

ρ2 dA+
∑
w∈Cj

ρ(w)2 ⩽
1000

m
→ 0 as r → 0,

and (19) follows. The proof is complete. □

Remark 2.8. Schramm [19, Theorem 5.1] gives a simplified proof for the

Koebe conjecture for countably connected domains, i.e., for the He-Schramm

theorem. Although his proof uses transfinite induction, he explains in a

remark how the proof can be modified to avoid it. Using his method, it

is possible to modify the proof of Theorem 1.3 so that it no longer uses

transfinite induction.

Remark 2.9. He and Schramm [12] and Schramm [19, Theorem 5.4] prove

the Koebe conjecture for almost circle domains, i.e., domains D for which

there is a closed and countable B ⊂ C(D) so that every p ∈ C(D) \ B is a

circle or a point. Slight modifications to the proof above show that Theorem

1.3 also holds for almost circle domains D.

3. Proof of Theorem 1.1

3.1. Construction of the domain. We will construct a countably con-
nected square domain D ⊂ Ĉ so that {0} ∈ C(D), and an exhaustion Φ of

D so that f̂Φ({0}) is non-trivial. The following result, which follows from
the modulus estimate in [19, Theorem 6.2], then shows that fΦ(D) cannot
be a circle domain.

Proposition 3.1. If f is a conformal map from domain D ⊂ Ĉ with the

above properties onto a circle domain, then f̂({0}) is a point-component.

The construction of D is flexible in terms of the shapes of the comple-
mentary components. In particular, there are circle domains D satisfying
the requirements of Theorem 1.1. We use squares in our construction for
convenience of presentation. We start with a sequence of disjoint squares

Qk = [ak −Rk, ak +Rk]× [−Rk, Rk], R1 = 1, Rk < ak,

where (ak)
∞
k=1, (Rk)

∞
k=1 are decreasing sequences converging to zero, so that

(29) Dk := dist(Qk, Qk+1) = ak − (ak+1 +Rk +Rk+1) = 2−kRk+1.

Each Qk, 1 ⩽ k ⩽ j, is surrounded by a sequence (Qk,j) of inflated squares

Qk,j = [ak − Tk,j , ak + Tk,j ]× [−Tk,j , Tk,j ], Tk,j = Rk + 2−j−1Dk.

We also denote

Q0,j = [−Tj , Tj ]× [−Tj , Tj ], Tj = aj+1 +Rj+1 +Dj/2.

Then

∪∞
k=j+1Qj ⊂ int(Q0,j), ∪j

k=1Qk,j ∩Q0,j = ∅ for every j ∈ N.
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Figure 1. Part of the complement of D

Next, for m ∈ N and 1 ⩽ ℓ ⩽ Mm (Mm will be chosen later), let

(30) qm,ℓ = [(ℓ− 1)(sm + dm), (ℓ− 1)sm + ℓdm]× [0, dm],

where dm, sm are positive numbers so that

(Mm − 1)sm +Mmdm = 1 and dm ⩾ sm.

In particular, dm ⩽ M−1
m . For a fixed m ∈ N, the sets qm,ℓ are evenly spaced

squares of sidelength dm inside the rectangle [0, 1]× [0, dm].
For each m ∈ N and 1 ⩽ k ⩽ m, let ϕk+1,m be the Möbius transformation

so that ϕk+1,m(∞) = ∞,

ϕk+1,m(0, 0) = (ak+1 + (1− sm)Tk+1,m−1,−Rk+1) and

ϕk+1,m(1, 0) = (ak+1 + (1− sm)Tk+1,m−1, Rk+1).

We denote

(31) tk,m = (ak − Tk,m−1)− (ak+1 + (1− 2sm)Tk+1,m−1) + dm,

and define

qek+1,m,ℓ = ϕk+1,m(qm,ℓ),

qwk,m,ℓ = ϕk+1,m(qm,ℓ) + (tk,m, 0), 1 ⩽ ℓ ⩽ Mm.

The squares qek+1,m,ℓ, q
w
k,m,ℓ lie “between” Qk+1 and Qk, and we can choose

Mm large enough so that

qem+1,m,ℓ ⊂ int(Q0,m),

qek+1,m,ℓ ⊂ int(Qk+1,m−1) \Qk+1,m for all 1 ⩽ k ⩽ m− 1,(32)

qwk,m,ℓ ⊂ int(Qk,m−1) \Qk,m for all 1 ⩽ k ⩽ m.(33)

We define D by

Ĉ \D = {0} ∪
( ∞⋃

k=1

Qk ∪
( ∞⋃

m=1

Mm⋃
ℓ=1

m⋃
k=1

(qek+1,m,ℓ ∪ qwk,m,ℓ)
))

.



14 KAI RAJALA

3.2. Construction of the exhaustion. We define exhaustion Φ0 = (Dj)
of D. First, every C(Dj) includes

Q0,j and Qk,j , 1 ⩽ k ⩽ j.

To describe the rest of the elements of C(Dj), we first define

qek+1,m,ℓ,j = (1 + ϵ(j))qek+1,m,ℓ 1 ⩽ k ⩽ j − 1,(34)

qwk,m,ℓ,j = (1 + ϵ(j))qwk,m,ℓ 1 ⩽ k ⩽ j(35)

for all k ⩽ m ⩽ j and 1 ⩽ ℓ ⩽ Mm, i.e., squares with same center and
(1 + ϵ(j)) times the sidelength of qek+1,m,ℓ and qwk,m,ℓ, respectively. Here

(ϵ(j)) is a strictly decreasing sequence converging to zero, and ϵ(1) is small
enough such that for any fixed j ∈ N we have

(i) none of the squares intersect each other, and
(ii) (32) holds for qek+1,m,ℓ,j and (33) holds for qwk,m,ℓ,j .

We let C(Dj) include all the squares in (34) and (35) for k ⩽ m ⩽ j− 1 and
1 ⩽ ℓ ⩽ Mm. Notice that the squares for which m = j are not included.

The remaining elements of C(Dj) will be components Uk,j,ℓ which “sur-
round” Qk,j and contain both qek,j,ℓ,j and qwk,j,ℓ,j . More precisely, fix 2 ⩽ k ⩽
j, and let Uk,j,ℓ, 1 ⩽ ℓ ⩽ Mj , be Jordan domains so that

(i) the sets Uk,j,ℓ are pairwise disjoint,

(ii) Uk,j,ℓ ⊂ int(Qk,j−1) \Qk,j ,

(iii) Uk,j,ℓ contains both qek,j,ℓ,j and qwk,j,ℓ,j ,

(iv) if (x, y) ∈ ∂Uk,j,ℓ has the largest x-coordinate among all points of
∂Uk,j,ℓ, then (x, y) ∈ qek,j,ℓ,j ,

(v) if (x, y) ∈ ∂Uk,j,ℓ has the smallest x-coordinate among all points of
∂Uk,j,ℓ, then (x, y) ∈ qwk,j,ℓ,j .

We conclude the definition of C(Dj) by including U1,j,ℓ := qw1,j,ℓ,j and

Uk,j,ℓ 2 ⩽ k ⩽ j, 1 ⩽ ℓ ⩽ Mj .

Then Dj is the set for which Ĉ \Dj = ∪{p ∈ C(Dj)}, and Φ0 = (Dj).

Proposition 3.2. There is δ > 0 such that

mod(Q0,j0 , Q1,j0 ;Dj) ⩾ δ for all j0 ∈ N and j ⩾ j0.

We postpone the proof of Proposition 3.2 and first show how it implies
Theorem 1.1. Choose any subsequence Φ = (Djn) of (Dj) so that (fjn)

converges to fΦ. By Proposition 3.1 it suffices to show that f̂Φ({0}) is
non-trivial. But this follows directly by combining Proposition 3.2 with
Proposition 4.2 below. Here the latter proposition can be applied with
E = Q1,1 since every j0 ⩾ 1 satisfies

mod(Q0,j0 , Q1,j0 ;Dj) ⩽ mod(Q0,j0 , Q1,1;Dj).

Thus, Theorem 1.1 follows once we have proved these propositions.
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Figure 2. Some of the sets Uk,j,ℓ

3.3. Proof of Proposition 3.2. Fix j0 and j ⩾ j0, and let Fj be the

projection of ∪Mj

ℓ=1qj,ℓ to the real axis, recall the definition in (30). We
construct a family of paths Γ parametrized by Fj , so that each γ ∈ Γ

connects πDj (Q1,j0) and πDj (Q0,j0) in D̂j . We then give a lower bound for
mod(Γ).

Fix τ ∈ Fj , and denote

zek+1(τ) = ϕk+1,j((τ, dj/2)), 1 ⩽ k ⩽ j − 1,

zwk (τ) = ϕk+1,j((τ, dj/2)) + (tk,j , 0), 1 ⩽ k ⩽ j,

where tk,j is the number in (31) and ϕk+1,j the Möbius transformation de-
fined before (31). Then

zek+1(τ) ∈ qek+1,j,ℓ,j ⊂ Uk+1,j,ℓ and zwk (τ) ∈ qwk,j,ℓ,j ⊂ Uk,j,ℓ,

where ℓ = ℓ(j, τ) is the index for which (τ, 0) ∈ qj,ℓ.
We denote

Uk,j,ℓ =: Uk(τ),

and let Ik(τ) be the horizontal line segment in C which connects Q1,j0 to
ze2(τ), z

w
k (τ) to zek+1(τ) if 2 ⩽ k ⩽ j − 1, and zwj (τ) to Q0,j . Then

J(τ) = (∪j
k=1Ik(τ)) ∪ (∪j

k=2Uk(τ))

is a continuum connecting Q1,j0 and Q0,j0 in C. Moreover, πDj (J(τ)) is a

rectifiable curve in D̂j , with arc-length parametrization γτ . We define

Γ = {γτ : τ ∈ Fj}.

We now estimate the modulus of Γ. Let ρ ∈ X(Γ) be an admissible
function and τ ∈ Fj . We denote by Aj all the sets in C(Dj) of the form

Uk,j,ℓ, and by Bj all the other squares in C(Dj) of the form (34) or (35).
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Then

1 ⩽
∫
γτ

ρ ds+
∑

q∈C(Dj)∩|γτ |

ρ(q)(36)

=

j∑
k=1

∫
Ik(τ)∩Dj

ρ ds+

j∑
k=1

ρ(Uk(τ)) +
∑

q∈Bj∩|γτ |

ρ(q).

Given 1 ⩽ k ⩽ j, let Ak be the smallest rectangle containing all the
segments Ik(τ) ∩Dj , τ ∈ Fj . Then by (29),

(37) Area(Ak) ⩽ 2DkRk+1 ⩽ 21−kR2
k+1.

To estimate the modulus, we integrate both sides of (36) over τ and apply
change of variables and Fubini’s theorem to get

ℓ(Fj) ⩽
j∑

k=1

(2Rk+1)
−1

∫
Ak∩Dj

ρ dA+

∫
Fj

j∑
k=1

ρ(Uk(τ)) dτ(38)

+

∫
Fj

∑
q∈Bj∩|γτ |

ρ(q) dτ = S1 + S2 + S3.

We apply Hölder’s inequality and (37) to estimate S1 as follows:

S1 ⩽
j∑

k=1

(2Rk+1)
−1Area(Ak)

1/2
(∫

Ak∩Dj

ρ2 dA
)1/2

(39)

⩽
( j∑

k=1

2−1−k
)1/2(∫

Dj

ρ2 dA
)1/2

⩽
(∫

Dj

ρ2 dA
)1/2

.

To estimate S2 and S3, we choose Mm so that

(40) Mm ⩾ m2m+1 for all m ∈ N.

We notice that the length of the set of parameters τ for which a given
Uk,j,ℓ ∈ Aj is Uk(τ) equals dj . We have djMj ⩽ 1 by construction. Thus,
Hölder’s inequality and (40) yield

S2 = dj

j∑
k=1

Mj∑
ℓ=1

ρ(Uk,j,ℓ) ⩽ dj(jMj)
1/2

( j∑
k=1

Mj∑
ℓ=1

ρ(Uk,j,ℓ,j)
2
)1/2

⩽
( ∑

U∈Aj

ρ(U)2
)1/2

.(41)

Next, we notice that the length of the set of parameters τ for which a
given q = qyk,m,ℓ,j ∈ Bj ∩ |γτ | is at most M−1

m . Here y = e or w. As before,

Hölder’s inequality yields

S3 ⩽
∑
q∈Bj

M−1
m ρ(q) ⩽

( ∑
q∈Bj

M−2
m

)1/2( ∑
q∈Bj

ρ(q)2
)1/2

.(42)
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Figure 3. First steps in the construction of D

We estimate the first sum from above by summing over all q ∈ Bj and
applying (40) to have

(43)
∑
q∈Bj

M−2
m ⩽ 2

j∑
m=1

m∑
k=1

Mm∑
ℓ=1

M−2
m = 2

j∑
m=1

mM−1
m ⩽

∞∑
m=1

2−m = 1.

We have ℓ(Fj) ⩾ 1
2 by construction. Combining with (38), (39), (41),

(42), and (43), yields

1

2
⩽

(∫
Dj

ρ2 dA
)1/2

+
( ∑

U∈Aj

ρ(U)2
)1/2

+
( ∑

q∈Bj

ρ(q)2
)1/2

⩽ 3
(∫

Dj

ρ2 dA+
∑

q∈C(Dj)

ρ(q)2
)1/2

.(44)

Since (44) holds for all ρ ∈ X(Γ), we conclude that

mod(Q0,j0 , Q1,j0 ;Dj) ⩾ mod(Γ) ⩾
1

36
.

The proof is complete.

4. Proof of Theorem 1.2

4.1. Construction of the domain. The set C(D) of complementary com-
ponents of D, which we now describe, consists of countably many segments
and a Cantor set. The size of the Cantor set is not relevant for our con-
struction. For instance, the construction can be carried out so that Ĉ \ D
has σ-finite length. Let W0 = {e}, Y0 = {(e, e)}, and for k = 1, 2, . . ., let

Wk = {w = w1w2w3 · · ·wk : wℓ ∈ {0, 1} for 1 ⩽ ℓ ⩽ k},
W∞ = {w̄ = w1w2w3 · · · : wℓ ∈ {0, 1} for ℓ = 1, 2, . . .}, and

Yk = {(w, v) : w ∈ Wk, v = v1v2v3 · · · vk, vℓ ∈ {0, 1, 2, 3} for 1 ⩽ ℓ ⩽ k}.

If w̄ = w1w2 · · · ∈ W∞ and k ∈ N, we denote w̄(k) = w1 · · ·wk.
Next, let (Rk) be a sequence of positive real numbers so that Rk+1 < Rk/2

for all k = 0, 1, 2, . . .. Moreover, given such a k let

(45) Qk = {Qw = [xw −Rk, xw +Rk]× [−Rk, Rk] : w ∈ Wk}
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be a family of disjoint, congruent closed squares in C with centers on the
real axis so that

if w ∈ Wk and a ∈ {0, 1}, then Qwa ⊂ int(Qw).

The intersection

(46) K =
∞⋂
k=0

( ⋃
w∈Wk

Qw

)
is a Cantor set on the real axis. It is the Cantor set part of C(D). Each
p = pw̄ ∈ K is uniquely determined by the w̄ ∈ W∞ that satisfies

{pw̄} = ∩∞
k=1Qw̄(k).

We now inductively define the segments in C(D). The definition involves
a sequence (ϵk) of positive real numbers converging rapidly to zero. We
initially require that ϵk < Rk−2/10. The segments are of the form

Im(w, v) = [am(w, v), bm(w, v)], m = 1, 2, 3,

where am(w, v), bm(w, v) ∈ C and (w, v) ∈ Yk for some k = 0, 1, 2, . . .. We
denote by π1 : C → R the projection to the real axis.

We first choose

(47) [a1, b1] = I1 = I1(e, e), [a2, b2] = I2 = I2(e, e), [a3, b3] = I3 = I3(e, e)

of length larger than ϵ1 in Qe \ (Q0 ∪Q1), so that

π1(a1) < π1(b1) < x0 −R1 < π1(b1) + ϵ2/10,

π1(a2)− ϵ2/10 < x0 +R1 < π1(a2),

π1(a2) < π1(b2) < x1 −R1 < π1(b2) + ϵ2/10,

π1(a3)− ϵ2/10 < x1 +R1 < π1(a3) < π1(b3).

We can also require the segments to be horizontal, but this is not necessary
and such a requirement cannot be made below when k ⩾ 1.

Next fix k ⩾ 1 and assume that Im(w′, v′) and ϵℓ are defined for (w′, v′) ∈
Yℓ, 0 ⩽ ℓ ⩽ k − 1, so that

(48) if B1 ∈ Bℓ1 and B2 ∈ Bℓ2 , B1 ̸= B2, then B1 ∩B2 = ∅.

Here

(49) Bℓ = {B(z, ϵℓ) : z endpoint of Im(w, v), (w, v) ∈ Yℓ, m = 1, 2, 3}.

Let

I1(w, v), I2(w, v), I3(w, v) ⊂ int(Qw)\(Qw0∪Qw1), (w, v) = (w′α, v′β) ∈ Yk,

be disjoint segments with the following properties: if we denote am(w, v) =
am and bm(w, v) = bm, then

π1(a1) < π1(b1) < xw0 −Rk+1 < π1(b1) + ϵk+1/10,

π1(a2)− ϵk+1/10 < xw0 +Rk+1 < π1(a2),

π1(a2) < π1(b2) < xw1 −Rk+1 < π1(b2) + ϵk+1/10,

π1(a3)− ϵk+1/10 < xw1 +Rk+1 < π1(a3) < π1(b3).
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ϵk−1

(ϵk−1ϵk)
1/2

ϵk

Figure 4. Positioning of the segments Im(w, v)

We also require that (See Figure 4) if we denote

rv = ϵk, Rv = (ϵk−1ϵk)
1/2 if β = 0 or 1,

rv = (ϵk−1ϵk)
1/2, Rv = ϵk−1 if β = 2 or 3,

(50)

then for each rv < r < Rv there are arcs

J1(r, w, v) ⊂ S(bm(w′, v′), r), m = α+ 1,

J3(r, w, v) ⊂ S(am(w′, v′), r), m = α+ 2,

whose relative interiors are disjoint and do not intersect any segment Im(w̃, ṽ),
(w̃, ṽ) ∈ Yℓ, 0 ⩽ ℓ ⩽ k, so that

(i) the endpoints of J1(r, w, v) lie in Iα+1(w
′, v′) and I1(w, v).

(ii) the endpoints of J3(r, w, v) lie in Iα+2(w
′, v′) and I3(w, v).

We are now ready to define D; it is the domain for which

C(D) = K ∪ {Im(w, v) : m = 1, 2, 3, (w, v) ∈ Yk, k = 0, 1, 2, . . .},
where K is the Cantor set in (46).

4.2. Construction of the exhaustion. We now construct an exhaustion
Φ0 = (Dj) of D. We fix k ∈ N and (w, v) ∈ Yk. First, let U(w, v) be a
Jordan domain so that if we denote I(w, v) = I1(w, v) ∪ I2(w, v) ∪ I3(w, v)
then

I(w, v) ⊂ U(w, v) ⊂ U(w, v) ⊂ int(Qw) \ (Qw0 ∪Qw1).

We also require that if B ∈ ∪ℓBℓ where Bℓ is the family of balls in (49), then
either U(w, v) ∩B = ∅ or I(w, v) ∩B ̸= ∅ and

(51) U(w, v) ∩B ⊂ Nk(I(w, v)) ∩B.

Here Nk(I(w, v)) is the set of those x ∈ C for which

(52) dist(x, I(w, v)) <
min{ϵk+1,dist(I(w, v),C \ (D ∪ I(w, v))}

100
.

Next, for m = 1, 2, 3 denote

Um(k + 1, w, v) = U(w, v)
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and let

Um(j, w, v), j = k + 2, k + 3, . . .

be Jordan domains so that

Um(k + 2, w, v) ∩ Um′(k + 2, w, v) = ∅ if m ̸= m′,

and, with Nj(Im(w, v)) defined as in (52),

Im(w, v) ⊂ Um(j, w, v) ⊂ Um(j, w, v) ⊂ Um(j − 1, w, v) ∩Nj(Im(w, v)).

We denote

Aj = {Um(j, w, v) : m = 1, 2, 3, (w, v) ∈ Yk, 0 ⩽ k ⩽ j − 1},
and define Dj by

C(Dj) = Qj ∪ Aj ,

where Qj is the family of squares in (45). Then Φ0 = (Dj) is an exhaustion
of D. Theorem 1.2 follows by combining the two propositions below and
choosing any Φ = (Djn) so that (fjn) converges.

Proposition 4.1. There is δ > 0 such that if p = pw̄ ∈ K, then

(53) mod(I1, Qw̄(j0);Dj) ⩾ δ for all j0 ∈ N and j > j0.

Here I1 is the segment in (47).

Recall that, given a domain D ⊂ Ĉ, p ∈ C(D), and an exhaustion Φ =
(Dj) of D, we denote by pℓ the component in C(Dℓ) containing p. With this
notation, Qw̄(j0) = pj0 in (53).

Proposition 4.2. Suppose D ⊂ Ĉ is a domain with exhaustion Φ = (Dj).

Fix p ∈ C(D) and a compact set E ⊂ Ĉ such that E ∩ p = ∅. If

(54) lim
ℓ→∞

lim inf
j→∞

mod(E, pℓ;Dj) > 0,

then f̂(p) is non-trivial for all f ∈ FΦ.

4.3. Proof of Proposition 4.1. Fix p = pw ∈ K, j0 ∈ N, and j > j0. Let
V0 = {e}, and for k = 1, 2, . . ., let

Vk = {v = v1v2 · · · vk : vℓ = {0, 1, 2, 3} for all 1 ⩽ ℓ ⩽ k},
so that Yk = Wk × Vk. We consider the family of continua

η(v, t) ⊂ D̂j , v ∈ Vj−1, 1/4 < t < 3/4,

defined as follows: if v = v1v2 . . . vj−1, let η(v, t) = Aj(v) ∪Bj(v, t), where

Aj(v) = ∪{Um(j, w, vk) ∈ Aj : m = 1, 2, 3, w ∈ Wk, 0 ⩽ k ⩽ j − 1}, and
Bj(v, t) = ∪{Jm(r[t, k], w, vk) : m = 1, 3, w ∈ Wk, 1 ⩽ k ⩽ j − 1}.

Here r[t, k] = Rt
vk
r1−t
vk

and Rvk , rvk are the radii in (50).

Each η(v, t) is a continuum joining U1(j, e, e) and U3(j, e, e) in D̂j . More-
over, each η(v, t) intersects Qw̄(j0). By (51), we have η(v, t) \Aj(v) ⊂ Dj . It
is important to notice that the continua η(v, t) do not intersect any of the
squares in Qj ⊂ C(Dj).
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Let γv,t be an arc-length parametrization of η(v, t), and

Γj = {γv,t : v ∈ Vj−1, 1/4 < t < 3/4}.

In view of the comments above, (53) follows if we can prove a lower bound
for modΓj independent of j. Fix ρ ∈ X(Γj);

1 ⩽
∑

q∈Aj(v)

ρ(q) +
∑

J∈Bj(v,t)

∫
J
ρ ds.

Integrating both sides over 1/4 < t < 3/4 and summing over v ∈ Vj−1 yields

4j−1

2
⩽

1

2

∑
v∈Vj−1

∑
q∈Aj(v)

ρ(q) +
∑

v∈Vj−1

∫ 3/4

1/4

∑
J∈Bj(v,t)

∫
J
ρ ds dt = S1 + S2.

We estimate the sums S1, S2 from above. First, changing the order of
summation yields

2S1 =

j−2∑
k=0

4j−1−k
∑

(w,v′)∈Yk
m=1,2,3

ρ(Um(j, w, v′)) +
∑

(w,v)∈Yj−1

ρ(U(j, w, v)) =

j−1∑
k=0

S′
k.

Hölder’s inequality yields

S′
k ⩽ 4j−k−1(3 · 2k · 4k)1/2

( ∑
q∈C(Dj)

ρ(q)2
)1/2

⩽ 22j−k/2−1
( ∑

q∈C(Dj)

ρ(q)2
)1/2

for all 0 ⩽ k ⩽ j − 1. Thus, summing over k we have

S1 ⩽ 4j
j−1∑
k=0

2−k/2
( ∑

q∈C(Dj)

ρ(q)2
)1/2

⩽ 4j+1
( ∑

q∈C(Dj)

ρ(q)2
)1/2

.

We now estimate S2. First, we denote by Zℓ the set of centers z in the
definition of Bℓ in (49). Fubini’s theorem and (48) yield

(55) S2 ⩽
j−1∑
k=1

4j−k−1
∑
z∈Zk

∫ 3/4

1/4

∫
S(z,r[t,k])

ρ ds dt =

j−1∑
k=1

Tk.

We apply change of variables to the integral in (55) to conclude that

(56) Tk ⩽ 4j−k
(
log

ϵk−1

ϵk

)−1 ∑
z∈Zk

∫
B(z,ϵk−1)\B(z,ϵk)

ρ(x)

|x|
dA(x).

Applying Hölder’s inequality to the integral in (56) yields

Tk ⩽ (2π)1/24j−k
(
log

ϵk−1

ϵk

)−1/2 ∑
z∈Zk

(∫
B(z,ϵk−1)

ρ(x)2 dA(x)
)1/2

.

Since card(Zk) ⩽ 6 · 8k−1 ⩽ 8k for all 0 ⩽ k ⩽ j − 1, we moreover have

Tk ⩽ (2π)1/24j · 2−k/2
(
log

ϵk−1

ϵk

)−1/2(∫
Dj

ρ(x)2 dA(x)
)1/2

.
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Thus, if we require that ϵk ⩽ ϵk−1/e for all k, we have

S2 ⩽ (2π)1/24j
j−1∑
k=1

2−k/2
(∫

Dj

ρ(x)2 dA(x)
)1/2

⩽ 4j+2
(∫

Dj

ρ(x)2 dA(x)
)1/2

.

Combining the estimates yields

4j−2 ⩽ 4j+1
( ∑

q∈C(Dj)

ρ(q)2
)1/2

+ 4j+2
(∫

Dj

ρ(x)2 dA(x)
)1/2

⩽ 4j+3
(∫

Dj

ρ(x)2 dA(x) +
∑

q∈C(Dj)

ρ(q)2
)1/2

.

We conclude that mod(Γj) ⩾ 4−10. The proof is complete.

4.4. Proof of Proposition 4.2. By taking a subsequence of (Dj), we may

assume fj → f . Suppose towards contradiction that f̂(p) is a point compo-

nent. We lose no generality by assuming f̂(p) = {0}.

Lemma 4.3. Suppose f̂(p) = {0}. For every R > 0 there are r > 0 and

m ∈ N so that if j ⩾ m and if q ∈ C(Dj) satisfies f̂j(q) ∩ S(0, R) ̸= ∅, then
f̂j(q) ∩ S(0, r) = ∅.

Proof. Suppose towards contradiction that there is R > 0 and a sequence

(qnj ), qnj ∈ C(Dnj ), so that each f̂nj (qnj ) intersects both S(0, R) and

S(0, 2−j). By passing to a subsequence if necessary, we may assume nj = j.

For each j ∈ N, fix a point xj ∈ qj . Since Ĉ \ D is compact, (xj) has

a subsequence converging to x0 ∈ q0 for some q0 ∈ C(D). We may assume

that xj → x0. It follows that if k ∈ N and if q0(k) is the element of C(Dk)

containing q0, then

qj ⊂ q0(k) for all j ⩾ jk.

In particular, since f̂j(qj) intersects both S(0, R) and S(0, 2−j), so does

f̂j(q0(k)). We conclude that f̂(q0(k)) contains both the origin and a point

in S(0, R). But this holds for all k, so also f̂(q0) contains both the origin

and a point in S(0, R). This contradicts our assumption, that f̂(p) = {0}.
The proof is complete. □

We use Lemma 4.3 to construct a decreasing sequence (Rn) of positive
real numbers and an increasing sequence jn of indices as follows (compare to

the proof of Lemma 2.7): First, choose R1, j1 so that f̂j(E)∩B(0, 2R1) = ∅
for all j ⩾ j1. Here E is the compact set in the statement of the proposition.

Then, assuming that Rn, jn have been constructed, choose Rn+1 < Rn/2

and jn+1 ⩾ jn such that if q ∈ C(Dj), j ⩾ jn+1, and f̂j(q) ∩ S(0, Rn) ̸= ∅,
then f̂j(q) ∩ S(0, 2Rn+1) = ∅.

Given k ∈ N, let N be the largest number for which there is j′N ⩾ k so

that f̂j(pk) ⊂ B(0, RN ) for all j ⩾ j′N . We may assume that j′N = jN . Then

(57) mod(f̂j(E), f̂j(pk); fj(Dj)) ⩽ mod(S(0, 2R1), S(0, RN ); fj(Dj))
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for all j ⩾ jN (here the modulus on the left is over all paths connecting

f̂j(E) and f̂j(pk) in f̂j(Dj), a slight abuse of earlier terminology). Fix such
a j. We construct a test function ρ as follows: First, let 1 ⩽ n ⩽ N . We
denote A(R, r) = B(0, R) \B(0, r) and define

ρn(x) =


1

|x| log 2 , x ∈ Dj ∩A(2Rn, Rn)
diam(x)
Rn log 2 , x ∈ C(fj(Dj)), x ∩A(2Rn, Rn) ̸= ∅, diam(x) ⩽ dist(x, 0),

1, x ∈ C(fj(Dj)), x ∩A(2Rn, Rn) ̸= ∅, diam(x) > dist(x, 0),

and ρn(x) = 0 otherwise. As in the proof of Lemma 2.7, we have

ρ =
1

N

N∑
n=1

ρn ∈ X(S(0, 2R1), S(0, RN ); fj(Dj)) for all j ⩾ jN .

For each q ∈ C(Dj) there is at most one n such that ρn(q) ̸= 0. Moreover,
for every n there are at most 30 elements (disks) q ∈ C(fj(Dj)) such that
q ∩A(2Rn, Rn) ̸= ∅ and diam(q) > dist(q, 0). Thus we can estimate∫

fj(Dj)
ρ2n dA+

∑
q∈C(fj(Dj))

ρn(q)
2 ⩽

1

(log 2)2

∫
A(2Rn,Rn)

dA

|x|2

+
Area(B(0, 4Rn))

R2
n(log 2)

2
+ 30 ⩽

2π

log 2
+

16π

(log 2)2
+ 30 ⩽ 1000,

and, since we have chosen jk so that every q ∈ C(fj(Dj)) satisfies ρn(q) ̸= 0
for at most one n,

(58)

∫
fj(Dj)

ρ2 dA+
∑

q∈C(fj(Dj))

ρ(q)2 ⩽
1000N

N2
=

1000

N
.

Since N → ∞ as k → ∞, combining (58) with (57) yields

(59) lim
k→∞

lim inf
j→∞

mod(f̂j(E), f̂j(pk); fj(Dj)) = 0.

But (59) and the conformal invariance of the modulus contradict our as-
sumption (54). The proof is complete.
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