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Abstract. Let f be a cuspidal eigenform of weight two and level N , let p - N be a prime at which

f is congruent to an Eisenstein series and let Vf denote the p-adic Tate module of f . Beilinson

[Bei] constructed a class κf ∈ H1(Q, Vf (1)) arising from the cup product of two Siegel units and

proved a striking relationship with the first derivative L′(f, 0) at the near central point s = 0 of

the L-series of f , which led him to formulate his celebrated conjecture. In this note we prove two
congruence formulae relating the “motivic part” of L′(f, 0) (mod p) and L′′(f, 0) (mod p) with circular

units. The proofs make use of delicate Galois properties satisfied by various integral lattices within

Vf and exploits Perrin-Riou’s, Coleman’s and Kato’s work on the Euler systems of circular units and
Beilinson–Kato elements and, most crucially, the work of Sharifi [Sha], Fukaya–Kato [FK] and Ohta

[Oh1].
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1. Introduction

The aim of this paper is to show how the ideas underlying Sharifi’s conjecture [Sha] and the work
[FK] of Fukaya and Kato can be exploited to study congruences among motivic classes that naturally
arise from the Euler systems of Beilinson-Kato elements and circular units.

In order to set the stage, let θ : (Z/NZ)× → Q̄× be an even, primitive, Dirichlet character of
conductor N ≥ 4 and let f ∈ S2(N, θ) be a normalized cuspidal eigenform of level N , weight 2 and
nebentype θ.

Fix a prime p - 6Nϕ(N). Let Tf,X and Tf,Y denote the integral p-adic Galois representations given
as the f -isotypical quotient of H1

et(X̄,Zp(1)), resp.H1
et(Ȳ ,Zp(1)), for the closed, resp. open, modular

curve X, resp. Y , of level Γ1(N). Cf. §2 for the particular models of these curves we employ in this
article and precise definitions. We also denote by X̄ and Ȳ the corresponding curves over a fixed
algebraic closure of Q. Set as usual Vf = Tf,X ⊗Q = Tf,Y ⊗Q.

Beilinson [Bei] introduced a motivic element in the K-group K2(Y ) giving rise to a global Galois
cohomology class

(1) κf = κf (χ1, χ2) ∈ H1(Q, Tf,Y (ψ)(1))
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that was later the basis of Kato’s Euler system in [Ka]. This class depends on auxiliary data
(cf. loc. cit. and [BD2], [Han], [KLZ1, §9], [Sch] for several presentations of the subject in the liter-
ature). With our normalizations, κf depends on the choice of two auxiliary even Dirichlet characters
χ1, χ2 : (Z/NZ)× → Q̄× whose product of conductors N1 and N2 is N (see §3), and ψ = θ̄χ2. It is
straightforward to relate it to other equivalent conventions adopted in loc. cit.

The main motivation for Beilinson’s construction of κf was providing evidence for his celebrated
conjecture on values of L-functions of mixed motives, encompassing Dirichlet’s unit theorem and the
Birch and Swinnerton-Dyer conjecture for elliptic curves as instances of it. This conjecture was later
refined by Bloch-Kato in [BK], and in the case at hand predicts that

(2) ords=0L(f, ψ, s)
?
= dimH1

f (Q, Vf (ψ)(1)),

where the left-hand side is the L-series associated to f and the character ψ, and the right-hand side
denotes the space of crystalline classes in H1(Q, Vf (ψ)(1)). Since L(f, ψ, 0) vanishes (for innocent
reasons, due to the vanishing of a Γ-factor arising from analytic continuation), (2) suggests that
H1

f (Q, Vf (ψ)(1)) should contain non-trivial classes, and Beilinson proved in loc. cit. that κf is indeed
crystalline and non-trivial, provided L′(f, ψ, 0) 6= 0.

Let F be the finite extension of Q generated by the field of coefficients of f and the values of all
Dirichlet characters of conductor N ; let O be its ring of integers and p ⊂ O a prime ideal above p.

In this note we assume f is congruent to an Eisenstein series modulo p. Up to replacing f with a
twist of it, we may assume without loss of generality that

(3) f ≡ E2(θ, 1) mod pt

for some t ≥ 1, where E2(θ, 1) is the classical Eisenstein series recalled in (7) below. Note that
congruence (3) is equivalent to f∗ ≡ E2(1, θ̄), where f∗ = f ⊗ θ−1 is the dual form of f , and this
in turn implies that pt divides the generalized Bernoulli number B2,θ̄ (or equivalently the L-value

L(θ̄,−1)). We take t to be the largest power satisfying (3).
As is well-known, Tf,X and Tf,Y are finitely generated Op[GQ]-modules giving rise to the same

Galois representation Vf over Fp. However, the lattices Tf,X and Tf,Y are not isomorphic as GQ-
modules, and in general neither of them are necessarily free as Op-modules. Setting T̄ := T ⊗ O/pt
for any Op-module, congruence (3) does imply (cf. §2) that one always has surjective homomorphisms
of GQ-modules

(4) T̄f,Y
π̄1−→ O/pt(θ), T̄f,X

π̄2−→ O/pt(1).

The maps π̄1 and π̄2 in (4) are non-canonical, but we exploit the work of Ohta [Oh1], [Oh2], Sharifi
[Sha] and Fukaya-Kato [FK] to rigidify them in a canonical way, in the sense that both π̄1 and π̄2 only
depend on canonical periods naturally associated to f ; cf. (42) and (52).

Write κ̄f = κf (mod pt) and define

κ̄f,1 = π̄1∗(κ̄f ) ∈ H1(Q,O/pt(χ2)(1)).

Motivated by the above discussion of Beilinson’s conjecture, κ̄f,1 may be regarded as a motivic avatar
of the first derivative L′(f, ψ, 0) (mod pt). The first main result of this note, Theorem 1.1 below, is an
explicit formula for κ̄f,1 in terms of algebraic L-values and circular units, which in particular provides
a criterion for this class to vanish. In the parlance of [BD1], our Theorem 1.1 may be interpreted as a
Jochnowitz congruence

L′alg(f, ψ, 0) ≡ L′alg(θψ, 0) (mod pt)

between the “algebraic” or ”motivic parts” of the derivative at s = 0 of the Hasse–Weil L-function
L(f, ψ, s) and Dirichlet’s L-function L(θψ, s).

We further show that κf may be lifted to an element in H1(Q, Tf,X(ψ)(1)) if and only if the (mod pt)
class κ̄f,1 vanishes. When this happens, such a lift is unique and we thus continue to denote it κf by
slight abuse of notation; we may then define

κ̄f,2 = π̄2∗(κ̄f ) ∈ H1(Q,O/pt(ψ)(2)),

which we regard as the motivic counterpart of the second derivative L
′′
(f, ψ, 0) (mod pt).

The second main result of this note, Theorem 1.2 below, provides an explicit formula for κ̄f,2 as
the cup product of two circular units. We find it interesting that the circle of ideas appearing in [FK]
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and [Sha] can be applied to the computation of second derivatives, a type of result which appears to
be quite novel.

In order to state our results precisely, let

(5) Z[µN2
]×[χ̄2] = (Z[µN2

]× ⊗Op(χ2))Gal (Q(µN2
)/Q) ' Hom(Op(χ̄2),Z[µN2

]× ⊗Op)

denote the χ̄2-isotypic component of Z[µN2
]× ⊗Op on which Gal (Q(µN2

)/Q) acts through χ̄2, which
may be naturally identified with a Op-submodule of Z[µN2

]× ⊗Op of rank 1 when χ2 6= 1 (resp. rank
0 when χ2 = 1). Kummer theory gives rise to an injective homomorphism

Z[µN2
]×[χ̄2]→ Hom(GQ(µN2

),Op(1))[χ̄2]→ H1(Q,Op(χ2)(1)).

Fix a primitive N2-th root of unity ζN2 and define the circular unit

(6) cχ2
:=

N2−1∏
a=1

(1− ζaN2
)χ2(a) ∈ Z[µN2

]×[χ̄2].

Let

cχ2 ∈ H1(Q,Op(χ2)(1))

denote, with the same symbol by a slight abuse of notation, its image under the identification provided
by the Kummer map. Write c̄χ2 = cχ2 (mod pt) ∈ H1(Q,O/pt(χ2)(1)).

Our main theorems are conditional on the following two hypotheses, that we assume throughout
this article for simplicity, although some of them can be easily relaxed:

(H1) Non-trivial zeroes mod p:

θ(p)− 1, χ2(p)− 1, θχ̄1(p)− 1, χ1(p)− 1 6= 0 (mod p).

(H2) Letting ΣX and ΣY denote the torsion submodules of Tf,X and Tf,Y respectively, the GQp -
module O/pt(θ) does not show up as a quotient of ΣY /ΣX .

Note that (H1) implies that χ2 and in fact (χ2)|Qp is non-trivial, even mod p; in particular, cχ2
is

a non-trivial unit. Note that (H2) follows automatically if the localization of the Hecke algebra acting
on M2(Γ1(N)) at the Eisenstein ideal is Gorenstein, as this implies that Tf,Y is free as Op-module.
We wonder whether (H2) might be weaker and more tractable than asking the Hecke algebra to be
Gorenstein.

Define the algebraic L-value

Lalg(f∗, θχ̄1, 1) = L(f∗, θχ̄1, 1)/Ω+
f ∈ O

where Ω+
f is Shimura’s complex period associated to f∗, chosen in a specific way that we recall in §3.1.

Let also

g(ξ) =

M−1∑
a=1

ξ(a)ζaM

denote the Gauss sum attached to a Dirichlet character ξ of conductor M , where ζM is a primitive
M -th root of unity.

Theorem 1.1. In H1(Qp,O/pt(χ2)(1)) we have

κ̄f,1 ≡
B2,θ̄χ2

2g(θ̄χ2)
· Lalg(f∗, θχ̄1, 1) · c̄χ2

(mod pt),

where B2,θ̄χ2
is the generalized Bernoulli number, defined in Section 2. This equality takes place globally

in H1(Q,O/pt(χ2)(1)) if p is χ̄2-regular as specified in (29).

Let us state now our second main result. As we describe in more detail in §3, Kato’s class is
constructed as

κf = πf∗(u ∪ v) ∈ H1(Q, Tf,Y (ψ)(1)),

namely the push-forward to the f -isotypic component of the cup product of two modular units

u = uχ1,χ2
and v = uθχ̄1χ̄2,1

whose logarithmic derivatives are respectively the classical Eisenstein series E2(χ1, χ2) and E2(θχ̄1χ̄2, 1)
given in (7).
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The unit uχ1,χ2
is determined by its logarithmic derivative only up to a multiplicative constant, and

therefore the first non-vanishing coefficient in the Laurent expansion of uχ1,χ2 at ∞, which we simply
denote uχ1,χ2(∞) as in [FK, §5], may be chosen arbitrarily. Since Gal (Q(µN )/Q) acts on E2(χ1, χ2)
via χ1 [St1, Theorem 1.3.1], it is natural to normalize uχ1,χ2

likewise, so that uχ1,χ2
(∞) may be any

power of the circular unit cχ1
. In the literature one finds different normalizations, typically either

uχ1,χ2
(∞) = 1 or cχ1

. In the statement below we have chosen to normalize the modular units above
so that

uχ1,χ2(∞) = cχ1 , uθχ̄1χ̄2,1(∞) = cθχ̄1χ̄2

but any other choice would be perfectly fine, upon replacing accordingly the two circular units appear-
ing in the cup product below.

Theorem 1.2. Assume that κ̄f,1 = 0. Let Lp(θ̄, s) denote the Kubota–Leopoldt p-adic L-function
attached to θ̄ and assume L′p(θ̄,−1) is a p-adic unit. The following equality holds in H1(Q,O/pt(ψ)(2)):

κ̄f,2 ≡
L′p(θ̄,−1)

1− p−1
· c̄χ1 ∪ c̄θχ̄1χ̄2

∪ logp(εcyc)
(mod pt).

Here εcyc is the cyclotomic character and 1/ ∪ logp(εcyc) denotes the inverse of the map

H1(Q,O/pt(ψ)(2))→ H2(Q,O/pt(ψ)(2)), κ 7→ κ ∪ logp(εcyc),

which is invertible under our assumptions.

In the above statement note that our running assumptions imply that Lp(θ̄,−1) ≡ 0 (mod pt)
and it is thus natural that the first derivative of the Kubota–Leopoldt p-adic L-function makes an
appearance.

Theorems 1.1 and 1.2 are proved in §3 and §4 respectively. We hope the methods introduced in this
note may help to extend Sharifi’s conjectures to other scenarios where the theory of Euler systems has
experienced exciting progress in recent years (cf. e.g. [Eu], [KLZ1], [LPSZ], [LSZ]).

Acknowledgements. We thank P. Wake for guiding us through the delicate subject of integral
lattices in Galois representations. We also thank G. Gras for pointing us to suitable references and
providing careful explanations of his work. We are also grateful to H. Darmon and R. Sharifi for their
comments. We would like to sincerely thank the anonymous referee for a very careful reading of the
manuscript, whose comments notably contributed to improve the exposition and correct inaccuracies
in earlier versions of the paper. This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agree-
ment No 682152). The first author has also received financial support through “la Caixa” Fellowship
Grant for Doctoral Studies (grant LCF/BQ/ES17/11600010) and from the Royal Society Newton In-
ternational Fellowship NIF\R1\202208. The second author is supported by Icrea through an Icrea
Academia Grant.

2. Eisenstein series, modular curves and lattices

The aim of this section is recalling well-known facts and setting notations concerning Eisenstein
series, models of modular curves and various integral lattices associated to them. We take the chance
to prove some elementary relationships among the latter, which are surely well-known to experts but
that we include because we failed to find precise references in the literature.

Fix algebraic closures Q̄, Q̄p of Q and Qp respectively, and embeddings of Q̄ into Q̄p and C. Fix a
field extension F/Q, and let O be its ring of integers. The choice of the embedding singles out a prime
ideal p of O lying above p, and we let Op denote the completion of O at p. We also fix throughout an
uniformizer $ of Op and an isomorphism Cp ' C.

Given a variety Y/Q, let YF = Y ×F denote the base change of Y to F and set Ȳ = YQ̄. We denote
by O the ring of integers of F . Fix an integer N ≥ 4 and let Y1(N) ⊂ X1(N) denote the canonical
models over Q of the (affine and projective, respectively) modular curves classifying pairs (A, i) where
A is a (generalized) elliptic curve and i : µN → A is an embedding of group schemes. It is important
to recall that this is not the model used by Fukaya and Kato, as they consider the one which classifies
pairs (A,P ), where A is a (generalized) elliptic curve and P is an N -torsion point of it. In any case,
the model of [FK] can be obtained from ours, as explained in [FK, §1.4.2].
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Let CN := X1(N) \ Y1(N) denote the finite scheme of cusps; among them one may distinguish the
cusp ∞ ∈ CN (Q) associated to Tate’s elliptic curve over Z((q)), which is rational over Q in this choice
of model (cf. e.g. [St1, §1.3], [St2]). (Again, note that in the model of [FK, §1.3.3], while the cusp 1 is
defined over Q, the cusp ∞ is only rational over Q(µN )+, the maximal totally real subfield of Q(µN ).)

Assume now that F contains the values of all Dirichlet characters of conductor dividing N and
continue denoting by O its ring of integers. Then a basis of Eis2(Γ1(N), F ) is indexed by triples
(χ1, χ2, r) where χ1 and χ2 are primitive Dirichlet characters of conductors N1 and N2 with N1·N2 | N ,
χ1(−1) = χ2(−1), and r is a positive integer with 1 < rN1N2 | N , provided by the Eisenstein series
(cf. e.g. [DS, Theorem 4.6.2], [St1, Def. 3.4.1]):

(7) E2(χ1, χ2, r) = a0 +

∞∑
n=1

(∑
d|n

χ1(n/d)χ2(d)d
)
qrn, a0 =

{
L(χ2,−1)

2 if χ1 = 1

0 if χ1 6= 1

unless χ1 = χ2 = 1, in which case E2(1, 1, r) =
∑∞
n=1

(∑
d|n d

)
qn − r

∑∞
n=1

(∑
d|n d

)
qrn.

When r = 1 we shall simply denote E2(χ1, χ2) := E2(χ1, χ2, 1).
When χ1 = 1, the constant term may also be recast as a generalized Bernoulli number: setting

B2(x) = x2 − x+ 1/6, define

B2,χ = N

N−1∑
a=1

χ(a) ·B2(a/N)

for any Dirichlet character χ of conductor N . One then has −2L(χ,−1) = B2,χ.
Define the group of modular units U(N) as the subgroup of rational functions of X1(N)Q(µN ) with

zeroes and poles concentrated at the cusps, that is to say

U(N) = O(Y1(N)Q(µN ))
×.

Similarly to (5), let U(N)[χ] denote the χ-isotypic component of U(N)⊗Op on which Gal (Q(µN )/Q)
acts through the character χ. In light of [St1, Theorem 1.3.1], there exists a modular unit uχ1,χ2

∈
U(N)[χ1] satisfying

(8) dlog(uχ1,χ2) = E2(χ1, χ2)
dq

q
and uχ1,χ2(∞) = cχ1 .

The q-expansion of the modular units uχ1,χ2 can be written down explicitly. Given a pair of integers
(a, b) between 0 and N − 1, not both equal to 0, define the Siegel unit

ua,b;N = qw
∏
n≥0

(
1− qn+a/NζbN

) ∏
n≥1

(
1− qn−a/Nζ−bN

)
,

where w = 1
12 −

a
N + a2

2N2 . Then the q-expansion of the modular unit uχ1,1 is given by

(9) uχ1,1 =
−1

2g(χ̄1)

N−1∑
b=1

χ̄1(b)⊗ u0,b;N ,

where here N stands for the conductor of χ1. Although we will not use them here in this note, similar
expressions can be given for uχ1,χ2

for arbitrary χ2 by averaging ua,b;N and choosing an appropriate
uniformizer.

Kummer theory induces a morphism

(10) δ : U(N)[χ]→ H1
et(Y1(N),Op(χ̄)(1)).

Let T ⊂ EndH1
et,c(Y 1(N),Op(1)) denote the Hecke algebra acting on the compactly-supported

cohomology of the open modular curve generated by the standard Hecke operators T` for every (good
or bad) prime ` and the diamond operators 〈d〉 for all d ∈ Z≥1 with (d,N) = 1. At primes ` | N we

may also denote T` by U`. As in [FK, §1.2.6], define also T∗ = 〈T ∗` , 〈d〉〉 ⊂ EndH1
et(Y 1(N),Op(1))

where T ∗` stand for the dual Hecke operators as defined in [Oh1, §3.4], [KLZ1, Def. 2.4.3].
Recall from the introduction the newform f ∈ S2(N, θ) satisfying f ≡ E2(θ, 1) mod pt. Let f(q) =∑
an(f)qn denote its q-expansion at the cusp ∞. Enlarge F so that it also contains the eigenvalues

{an(f)}n≥1. We make the following assumptions:

• p - Nϕ(N);



6 ÓSCAR RIVERO AND VICTOR ROTGER

• θ is a primitive and even character of conductor N ;
• θ(p) 6= 1 mod p.

Note that in [FK] the authors do not assume that p - N , but we do need it here at several points in
the article.

Let I∗f = (T ∗` − a`(f)) ⊂ T∗ denote the ideal associated to the system of eigenvalues of f with
respect to the dual Hecke operators. Define the Op-modules

(11) Tf,X = H1
et(X1(N),Op(1))/I∗f , Tf,Y = H1

et(Y 1(N),Op(1))/I∗f .

Note that the two lattices Tf,X and Tf,Y may give rise to different Op[GQ]-modules in spite of the
fact that the associated rational Galois representations

Vf := Tf,X ⊗Op
Fp ' Tf,Y ⊗Op

Fp

are isomorphic.

Proposition 2.1. The natural inclusion X ↪→ Y induces by push-forward in cohomology a map
Tf,X → Tf,Y that sits in an exact sequence of Op[GQ]-modules

0→ Tf,X −→ Tf,Y
π1−→ O/pt(θ)→ 0.

Proof. Write for short H1(X) = H1
et(X̄1(N),Op(1)) and H1(Y ) = H1

et(Ȳ1(N),Op(1)). As shown for
instance in [St1, §1.8], there is a short exact sequence of the form

(12) 0 −→ H1(X) −→ H1(Y ) −→ Div0[CN ] −→ 0,

where Div0[CN ] is the free Op-module of degree 0 divisors supported on CN with coefficients in Op.
Since the map H1(X) ↪→ H1(Y ) induces an injection

H1(X)/(I∗f ·H1(Y ) ∩H1(X)) ↪→ H1(Y )/I∗f ·H1(Y ),

the exactness on the left follows once we show that

(13) I∗f ·H1(Y ) ∩H1(X) = I∗f ·H1(X).

The inclusion I∗fH
1(X) ⊂ I∗fH

1(Y ) ∩ H1(X) is clear. As for the opposite one, take an element

tα ∈ I∗fH1(Y ) ∩H1(X) with t ∈ I∗f and α ∈ H1(Y ). After inverting p, there is an isomorphism

H1(Y )[1/p] ' H1(X)[1/p]⊕Div0[CN ][1/p],

since (12) is split after tensoring with Qp by Manin-Drinfeld’s theorem. We may thus write α = β+γ,

where β ∈ H1(X)[1/p] and γ ∈ Div0[CN ][1/p]. Since tα ∈ H1(X), we have tγ = 0, and thus tα = tβ
in I∗f (H1(Y ) ∩H1(X)[1/p]).

Note that H1(Y ) ∩ H1(X)[1/p] = H1(X). Indeed, otherwise there would exist an element y ∈
H1(Y ) \H1(X) such that puy ∈ H1(X) for some u. This would imply that H1(Y )/H1(X) contains
non-trivial torsion, but this quotient is isomorphic to Div0[CN ], which is free. It thus follows that tα
lies in I∗fH

1(X), and this proves exactness on the left.

In order to conclude the proof of the proposition, let us now show that Tf,Y /Tf,X ' O/pt(θ). As
follows from the above, (12) induces an exact sequence

(14) 0 −→ Tf,X −→ Tf,Y −→ Div0[CN ]/I∗fDiv0[CN ] −→ 0.

The Hecke action on Div0[CN ] is Eisenstein, and the eigenvalues of T ∗` are χ1(`) + ` · χ2(`), where
(χ1, χ2) range through pairs of even Dirichlet characters, not both trivial and whose product of con-
ductors is a divisor N (as described e.g. in [St1, §1.3]).

Consider Div0[CN ]/pt := Div0[CN ]⊗Op
O/pt. Our running assumptions imply that E2(θ, 1) occurs

with multiplicity one in Div0[CN ]/pt, i.e., the system of eigenvalues attached to E2(θ, 1) appears in
Div0[CN ]/pt with multiplicity one. Indeed, otherwise there would exist a pair of Dirichlet characters
(ξ1, ξ2) as above such that E2(θ, 1) ≡ E2(ξ1, ξ2) (mod p). Proceeding as in [Oh3, Lemma 1.4.9] (since
our Eisenstein series is p-distinguished), this amounts to saying that θ̄ξ1 ≡ ξ2 ≡ 1 (mod pt), and here
this is only possible when (ξ1, ξ2) = (θ, 1) because p - ϕ(N).

Since f ≡ E2(θ, 1) (mod pt), it follows that Tf,Y /Tf,X ' O/pt as Op-modules. The action of GQ
on Tf,Y /Tf,X is given by the character θ by [St1, Theorem 1.3.1]. �
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Since f is ordinary at p, we may let αf ∈ O×p denote the unit root of the pth Hecke polynomial of

f . Let ψf : GQp −→ O×p denote the unramified character characterized by ψf (Frp) = αf .
It is well-known (cf. e.g. [DR, §1.5] and [FK, 1.7] for a twisted version that boils down to the one

below with our normalizations) that there are exact sequences of finitely generated Op[GQp ]-modules

0→ T sub
f,X → Tf,X → T quo

f,X → 0(15)

0→ T sub
f,Y → Tf,Y → T quo

f,Y → 0

such that

(i) T quo
f,X and T quo

f,Y are unramified as GQp -modules with

(16) V quo
f := T quo

f,X ⊗ Fp ' T quo
f,Y ⊗ Fp ' Fp(ψf ).

(ii) The map Tf,X → Tf,Y induces an isomorphism T sub
f,X = T sub

f,Y of free Op-modules of rank 1 on

which GQp acts through θψ−1
f εcyc.

In general T quo
f,X and T quo

f,Y are finitely generated Op-modules that are not necessarily free, and we
let ΣX and ΣY , respectively, denote their torsion submodules.

Given a Op-module T , set

T̄ = T ⊗O/pt.

For a GQ-module T , we let T± denote the submodule on which complex conjugation acts as ±1. As
shown by Sharifi in [Sha, Theorem 4.3] and by Fukaya-Kato in [FK, §6.3.1, §7.1.11], there is an exact
sequence of O/pt[GQ]-modules

(17) 0 −→ T̄+
f,X −→ T̄f,X −→ T̄−f,X −→ 0.

Note the switch of signs between (17) and [FK, §6.3.1, §7.1.11], which is due to the different Tate
twist adopted in the definition of Tf,X . As explained e.g. in [FKS, §2.5.5] there are isomorphisms of
O/pt[GQp ]-modules

(18) T̄+
f,X ' T̄

quo
f,X , T̄ sub

f,X ' T̄−f,X .

The first isomorphism is given by the composition of the inclusion in (17) with the projection map in
(15) mod pt; the second one is given by the analogous composition obtained by switching the roles of
(17) and (15). In particular T̄−f,X is free of rank 1 over O/pt.

As for the lattice associated to the open modular curve, let

(19) T quo
f,Y,◦ := T quo

f,Y /ΣY ' Op(ψf )

denote the free quotient. The latter isomorphism follows from (16).
Since f ≡ E2(θ, 1) mod pt, we have

(20) T quo
f,Y,◦ ⊗O/p

t ' O/pt(θ),

which amounts to the congruence

(21) ψf ≡ θ (mod pt)

as unramified characters of GQp .
Note that π1 factors through T quo

f,Y because the latter is the maximal unramifiedGQp -quotient of Tf,Y .

Assuming also hypothesis (H2) from the introduction, it follows that π1 factors further through the
natural projection Tf,Y −→ T quo

f,Y,◦ and may thus be written as the following composition of Op[GQp ]-
modules

(22) π1 : Tf,Y −→ T quo
f,Y,◦ −→ T̄ quo

f,Y,◦
∼−→ O/pt(θ).

While the first and second arrows are canonical projection maps, the latter isomorphism is non-
canonical and depends on the choice of a unit of O/pt.
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3. First congruence relation

Keep the notations and assumptions fixed in the introduction concerning the first congruence rela-
tion. Here we shall mainly work with the integral Galois representation associated to the eigenform
f ∈ S2(N, θ) with respect to the open modular curve, and hence throughout this section we abbreviate

Tf := Tf,Y .

We begin by recalling more precisely the definition of Kato classes. Choose auxiliary even Dirichlet
characters χ1, χ2 : (Z/NZ)× → Q̄× as in the introduction and set ξ1 = θχ̄1χ̄2, ξ2 = 1. By [Nek, (1.2)]

(see also [KLZ1, §9.2, 3.3]), together with the fact thatHj
et(V̄ ,Op) vanishes for any smooth affine variety

V of dimension d and any j > d, the Hochschild–Serre spectral sequence yields a homomorphism

(23) H2
et(Y1(N),Op(ψ)(2)) −→ H1(Q, H1

et(Y1(N),Op(ψ)(2))),

where recall we set ψ = θ̄χ2.
In view of (11) there is a GQ-equivariant projection

πf : H1
et(Y 1(N),Op(1))→ Tf ,

which in turn gives rise to a homomorphism

(24) πf∗ : H2
et(Y1(N),Op(ψ)(2)) −→ H1(Q, Tf (ψ)(1)).

It thus makes sense to define

κf := πf∗(δ(uχ1,χ2) ∪ δ(uξ1,ξ2)) ∈ H1(Q, Tf (ψ)(1)).

Note that f is ordinary at p because of (3). Label the roots of the pth Hecke polynomial of f as
αf , βf so that ordp(αf ) = 0 and ordp(βf ) = 1. Note that αfβf = θ(p)p.

We are interested in describing p-adic L-functions from the point of view of rigid geometry, as
in [Eu, §2.1]. Let W denote the weight space defined as the formal spectrum of the Iwasawa algebra
Λ = Op[[Z×p ]]. The setWcl of classical points inW is given by characters of the form νs,ξ(z) = ξ(z)zs−1

where ξ is a Dirichlet character of p-power conductor, εcyc is the cyclotomic character, and s is an
integer; this forms a dense subset inW for the Zariski topology. LetW◦ further denote the set of those
points with ξ = 1; we shall often write s in place of νs = νs,1. Let W± ⊂ W denote the topological
closure of the set of points ξεs−1

cyc with (−1)s−1ξ(−1) = ±1. We have W = W+ t W− and we write

Λ = Λ+ ⊕ Λ− for the corresponding decomposition of the Iwasawa algebra.
Let χ be an even Dirichlet character and let Lp(f

∗, χ) denote the Mazur–Tate–Teitelbaum p-adic
L-function associated to (f∗, χ). As discussed in [FK, §4.5], Lp(f

∗, χ) depends on the choice of two
complex periods (Ω+

f ,Ω
−
f ), which in turn are determined by the choice of generators δ± of V ±f =

T±f,X ⊗Q as

(25) Ω±f =

∫
δ±
ωf ,

where ωf is the canonical differential attached to f . The p-adic L-function Lp(f
∗, χ) (cf. [Bel2]) is a

rigid-analytic function on W characterized by the following formula interpolating classical L-values:
let ξ : (Z/pnZ)× −→ Q̄× be a homomorphism which does not factor through (Z/pn−1Z)×. Then

(26) Lp(f
∗, χ)(ξεcyc) =

g(χ̄)(1− χ̄(p)βfp
−1)(1− θ̄χ(p)βfp

−1)L(f∗,χ,1)

Ω+
f

if ξ = 1

(θ/αf )ng(χ̄ξ̄)L(f∗,χξ,1)

Ω±f
with ± = ξ(−1) if n ≥ 1,

where g(·) stands for the Gauss sum of a character. The set of characters of the form ξεcyc as ξ ranges
through all Dirichlet characters of arbitrary p-power conductor is dense within W and hence Lp(f

∗, χ)
is uniquely determined by (26). More classically, one can also view Lp(f

∗, χ) as a one-variable p-adic
L-function by setting Lp(f

∗, χ, s) = Lp(f
∗, χ)(εscyc).

Similarly, for an even, primitive, and non-trivial Dirichlet character χ, we may define the Kubota–
Leopoldt p-adic L-function Lp(χ). It is a rigid analytic function on W characterized by the following
formula interpolating classical L-values (cf. [PR]):

(27) Lp(χ, j) := Lp(χ)(εjcyc) =

{
(1− pj−1χ̄(p)) 2Nj(j−1)!

(−2πi)jg(χ)L(χ, j) for j ≥ 2 even,

(1− p−jχ(p))L(χ, j) for j ≤ −1 odd.
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As usual we may regard as a one-variable function by setting Lp(χ, s) = Lp(χ)(εscyc).
Define the Euler-like factor

Ef = (1− θ̄χ2(p)αf )(1− θ̄χ2(p)βf )(1− χ̄1(p)βfp
−1)(1− θ̄χ1(p)βfp

−1).(28)

Define also the “p-adic L-value”

` = −g(θ̄χ1)−1g(θ̄χ2)−1 · (1− χ2(p)) · Lp(θ̄χ2,−1) · Lp(f∗, θχ̄1, 1).

Thanks to Proposition 2.1, we can define as in the introduction the class

κ̄f,1 := π1∗(κf ) = π̄1∗(κ̄f ) ∈ H1(Q,O/pt(χ2)(1)),

where π1 is as in (22).
In order to state more precisely the first congruence relation, we need to introduce some notation. Let

k = Q(µN2)+ = Q(ζN2 +ζ−1
N2

) denote the maximal totally real subfield of Q(µN2) and set dN2 = [k : Q].
Let Cl(k) denote its class group. As in (5) let Cl(k)[χ̄2] denote its χ̄2-eigencomponent. It follows from
the work of G. Gras [Gr, Théorème I2] that

(29) rankZ/pZ Cl(k)[χ̄2]⊗ Z/pZ ≤ rankZ/pZ Cl(k(µp))[χ2ω]⊗ Z/pZ,

where ω : (Z/pZ)× → Q̄× is the Teichmüller character. This inequality may be regarded as an instance
of Leopoldt’s Spiegelungssatz.

Remark 3.1. [Gr, Théorème I2] applies because Leopoldt’s conjecture is known for (k, p) by the work
of Brumer, primes in k above p are totally ramified in k(µp) and therefore the ω-component of the
Gal (k(µp)/k)-submodule of Cl(k(µp)) generated by ideals above p is trivial. [Gr, Théorème I2] thus
asserts that rankZ/pZ Cl(k(µp))[χ2ω]⊗Z/pZ is equal to the rank of the χ̄2-component of the p-torsion
of the Galois group Gal (Hp/k) of the maximal p-abelian extension of k unramified away from p, as
in fact (Gal (Hp/k)[χ̄2]⊗Z/pZ)∨ ' Cl(k(µp))[χ2ω]⊗Z/pZ. Hence (Gras) follows because the Hilbert
class field H/k is contained in Hp and Gal (H/k) = Cl(k).

Definition 3.2. We say that p is χ̄2-regular if (29) is an equality.

To place in context this condition, let Rp(k) denote the p-adic regulator of k. As explained in
e.g. [Gr2, Def. 2.3], one always has ordpRp(k) ≥ dN2

− 1. It is shown in loc. cit. that (29) is an equality
for all non-trivial even Dirichlet characters of conductor N2 if and only if ordpRp(k) = dN2 − 1. We
refer to [Gr2, §7.3] for conjectures predicting that such an equality is expected to hold for all primes
p away from a set of density 0.

For the following result, recall the circular unit cχ2
defined in the introduction, and also its reduction

modulo p, c̄χ2
.

Theorem 3.3. (First congruence relation) Assuming (H1)-(H2) we have

Ef · κ̄f,1 ≡ ` · c̄χ2
in H1(Qp,O/pt(χ2)(1)).

If p is χ̄2-regular, this equality takes place in H1(Q,O/pt(χ2)(1)).

Theorem 1.1 in the introduction readily follows from the above statement. Indeed, it follows from
(26) that

Lp(f
∗, θχ̄1, 1) = (1− θ̄χ1(p)βfp

−1)(1− χ̄1(p)βfp
−1) · g(θ̄χ1) · L(f∗, θχ̄1, 1)

Ω+
f

.

Since Lp(θ̄χ2,−1) = (1− θ̄χ2(p)p) ·L(θ̄χ2,−1) = (pθ̄χ2(p)− 1) · B2,θ̄χ2

2 , the Euler factors in the above
theorem cancel out in light of (H1) and the congruence (αf , βf ) ≡ (θ(p), p) (mod pt). Then, Theorem
1.1 follows.

The remainder of this section is devoted to the proof of Theorem 3.3.
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3.1. Mazur’s factorization formula. The aim of this section is to recall a mod p factorization
formula for Lp(f

∗, χ) in terms of two Kubota–Leopoldt p-adic L-functions. The first result in this
direction was proved by Mazur in [Maz], and further generalizations were provided by Stevens [St1]
and Greenberg–Vatsal [GV, Theorem 3.12]. As explained before, this formula actually depends on the
choice of periods Ω±f , and we make this choice by invoking the work of Sharifi [Sha] and Fukaya-Kato

[FK], which gives rise to a rather precise formula that turns out to be crucial for our purposes.
Note firstly that with the conventions adopted above, character ξεcyc lies in W+ if and only if ξ is

odd, and in that case the period appearing in (26) is Ω−f . The main result we aim to prove in this

section is concerned with the value of Lp(f
∗, χ, s) at s = 2 (and ξ = 1), which again lies in W+. For

this reason it will suffice to work with the restriction of Lp(f
∗, χ) to W+, and accordingly we only

need to choose the period Ω−f .

The work of Sharifi [Sha] and Fukaya-Kato [FK] allows us to take a canonical choice of Ω−f . Namely,

recall from (18) that T−f,X is a free Op-module of rank 1. Take any generator δ− of T−f,X such that δ−

(mod pt) is the basis of T̄−f,X specified in [FK, 6.3.18, 7.1.11, 8.2.4], which in turn builds on the work

of Sharifi [Sha, §4] and Ohta [Oh1], [Oh2]. Define Ω−f from δ− as in (25).

It is readily verified that this choice of Ω−f satisfies the defining properties imposed by Vatsal in

[Va]. Beware however that in loc. cit. these periods are only well-defined up to p-adic units and this is
not enough for our aims in this paper.

Recall the uniformizer $ fixed at the outset in §2. Let Cf∗ = ($r) ⊆ Op denote the congruence ideal
attached to f∗ as defined e.g. in [Oh3]. In Hida’s terminology, $r, is sometimes called a congruence
divisor.

With our canonical definition of Ω−f at hand, we can now define Ω+
f as in [Va2, Remark 2.7], namely

the one satisfying

(30) Ω+
f Ω−f =

4π2i

$r
〈f, f〉.

The above equation determines Ω+
f in terms of the remaining quantities, which are all canonical

except for the choice of $: see the discussion after (40) for more details on this.

Proposition 3.4. The following congruence relation holds for any even integer s:

(31) Lp(f
∗, χ, s) ≡ 2 · Lp(χ̄, 1− s) · Lp(θ̄χ, s− 1) (mod pt).

Proof. This follows from [FK, Proposition 8.2.4]. �

Recall we have set ψ = θ̄χ2. In particular, since the character ψ is even, it holds that

(32) Lp(f
∗, ψ, 2) = 2 · Lp(ψ̄,−1) · Lp(θ̄ψ, 1) ≡ −B2,ψ̄ · Lp(θ̄ψ, 1) (mod pt).

3.2. Dieudonné modules and congruences among Ohta’s periods. Given a p-adic de Rham
representation V of GQp with coefficients in Fp, let DdR(V ) = (V ⊗Qp BdR)GQp denote its de Rham
Dieudonné module and let logBK (resp. exp∗BK) stand for the Bloch–Kato logarithm (resp. dual
exponential map) attached to V as defined in [BK], [Bel].

In this note we shall work with the Dieudonné modules associated to the following two basic types
of representations. Firstly, if χ : GQp −→ O×p is a finite order character and s is an integer, let Fp(χ)(s)
denote the 1-dimensional representation on which GQp acts via χεscyc. Then DdR(Fp(χ)(s)) is again

1-dimensional and a canonical generator of DdR(Fp(χ̄)(−s)) is given by tsg(χ)−1, where t is Fontaine’s
p-adic analogue of 2πi. Moreover, unravelling the definitions, there is s a perfect pairing

〈 , 〉 : DdR(Fp(χ)(s))×DdR(Fp(χ̄)(−s)) −→ Fp

which gives rise to the isomorphism

(33) DdR(Fp(χ)(s))→ Fp c 7→
〈
c,

ts

g(χ)

〉
.

If s ≥ 1 and χ 6= 1 when s = 1, Bloch-Kato’s logarithm gives rise to an isomorphism

(34) logBK : H1(Qp, Fp(χ)(s))→ DdR(Fp(χ)(s)).
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Secondly, the de Rham Dieudonné module DdR(Vf ) associated to the eigenform f is a Fp-filtered
vector space of dimension 2. As discussed in e.g. [KLZ1, §2.8], Poincaré duality yields a perfect pairing

〈 , 〉 : DdR(Vf (−1))×DdR(Vf∗)→ Fp

and (15) induces an exact sequence of Dieudonné modules

(35) 0→ DdR(V sub
f )→ DdR(Vf )→ DdR(V quo

f )→ 0,

where DdR(V sub
f ) and DdR(V quo

f ) have both dimension 1.

As discussed e.g. in [KLZ2, §2], the space DdR(Vf ) is endowed with a filtration, yielding a canonical
subspace Fil(DdR(Vf )) ⊂ DdR(Vf ). Faltings’ theorem associates to f a regular differential form ωf ∈
Fil(DdR(Vf )), which gives rise to an element in DdR(V quo

f ) via the rightmost map in (35) and in turn
induces a linear form

(36) ωf : DdR(V sub
f∗ (−1))→ Fp, η 7→ 〈η, ωf 〉

that we continue to denote with same symbol by a slight abuse of notation.
There is also a differential ηf , characterized by the property that it spans the line DdR(V sub

f (−1))
and is normalized so that

(37) 〈ηf , ωf∗〉 = 1.

Again, it induces a linear form

(38) ηf : DdR(V quo
f∗ )→ Fp, ω 7→ 〈ηf , ω〉

We turn now to the more delicate p-adic Hodge theory of integral Galois representations. Let T be
an unramified Op[Gal (Q̄p/Qp)]-module and set V = T ⊗ Fp. Let Ẑur

p denote the completion of the
ring of integers of the maximal unramified extension of Qp, and define as in e.g. [Oh2, Theorem 2.1.11]
the integral Dieudonné module

D(T ) := (T ⊗̂Zp Ẑur
p )Frp=1.

As shown in loc. cit. we have DdR(V ) = D(T )⊗ Fp.
As explained e.g. in [FK, Prop. 1.7.6], there is a functorial isomorphism of Op-modules (forgetting

the Galois structure) given by

(39) T
∼−→ D(T ).

This map is not canonical as it depends on a choice of root of unity; for T = Op(χ) we take it to be
given by the rule 1 7→ g(χ).

Recall from (19) the free Op-quotient

T quo
f,◦ ' Op(ψf );

note in particular that T quo
f,◦ is unramified.

Taking into account the characterization of the congruence ideal Cf∗ given in [KLZ1, Not. 7.1.1],
together with the construction of ηf∗ described in the proof of Prop. 10.1.1(2)] in loc. cit., we have

that the image of ηf∗|D(T quo
f ) is precisely C−1

f∗ . Hence, there is an isomorphism

ηf∗ : D(T quo
f,◦ ) −→ C−1

f∗ , ω 7→ 〈ηf∗ , ω〉.

Writing Cf = ($r) as in §3.1 and setting η̃f∗ := $r ·ηf∗ , the above map gives rise to an isomorphism
of Op-modules

(40) η̃f∗ : D(T quo
f,◦ ) −→ Op, ω 7→ 〈η̃f∗ , ω〉.

While the choice of uniformizer $ fixed at the outset is non-canonical, the ambiguity caused by this
choice in (40) is cancelled with the prescription of Ω+

f in (30).

The map π1 appearing in Proposition 2.1

π1 : Tf −→ O/pt(θ)
is only well-defined up to units in O/pt. We rigidify it by invoking diagram (22), which tells us that
π1 is fixed once we take a choice of an isomorphism of GQp -modules

(41) ῑ : T̄ quo
f,◦

∼−→ O/pt(θ).
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Fixing such a map amounts to choosing the class (mod pt) of an isomorphism of local modules ι :
T quo
f,◦ ' Op(ψf ). In light of the functoriality provided by (39) this determines and is determined by

the class (mod pt) of an isomorphism D(ι) : D(T quo
f,◦ ) ' D(Op(ψf )).

We choose ι as the single isomorphism making the following diagram commutative:

(42) D(T quo
f,◦ )

η̃f∗ //

D(ι)

��

Op

D(Op(ψf ))

·1/g(θ)

99

Indeed, since both η̃f∗ and ·1/g(θ) are isomorphisms, it follows that such a map D(ι) exists and is
unique, and this in turn pins down ι and ῑ in light of (39).

3.3. Coleman’s power series and the Kubota-Leopoldt p-adic L-function. Let εr : GQ →
(Z/prZ)× denote the cyclotomic character associated to the Galois extension Q(µpr )/Q and let

(43) εcyc = lim
←r≥0

εr : GQ → Λ× = Op[[Z×p ]]×

denote the Λ-adic cyclotomic character sending a Galois element σ to the group-like element [εcyc(σ)].
It interpolates the powers of the Zp-cyclotomic character, in the sense that for any classical point
νs,ξ ∈ Wcl as in §3, we have

(44) νs,ξ ◦ εcyc = ξ · εs−1
cyc .

The following result follows from the general theory of Perrin-Riou maps (see for instance [KLZ1,
§8]), considering the Λ-adic representation Op(χ)⊗ Λ(εcycεcyc). Below, recall from §3.2 Bloch-Kato’s
logarithm and dual exponential maps with values in Dieudonné modules and the pairings on the latter.

Proposition 3.5. There exists a morphism of Λ-modules, called the Perrin-Riou regulator,

Lχ : H1(Qp,Op(χ)⊗ Λ(εcycεcyc)) −→ Λ

satisfying that for all integers r, the specialization of Lχ at s ∈ W◦ is the homomorphism

Lχ,s : H1(Qp,Op(χ)(s)) −→ Op

given by

Lχ,s =
1− χ̄(p)p−s

1− χ(p)ps−1
·

{
(−1)s

(s−1)! · 〈logBK,
ts

g(χ) 〉 if s ≥ 1

(−s)! · 〈exp∗BK,
ts

g(χ) 〉 if s < 1,

As a piece of notation, and for any p-adic representation V , we write H1
f (Q, V ) for the finite Bloch–

Kato Selmer group, which is the subspace of H1(Q, V ) which consists on those classes which are
crystalline at p and unramified at ` 6= p.

The following result is a reformulation of Coleman and Perrin-Riou’s reciprocity law ([Co], [PR]),
with the normalizations used for instance in [Eu, §1.1].

Proposition 3.6. There exists a Λ-adic cohomology class

κχ,∞ ∈ H1(Q,Op(χ)⊗ Λ(εcycεcyc))

such that:

(a) Its image under restriction at p followed by the Perrin–Riou regulator gives the Kubota–Leopoldt
p-adic L-function:

Lχ(resp(κχ,∞)) = Lp(χ̄).

(b) The bottom layer κχ(1) := ν1(κχ,∞) lies in H1
f (Q,Op(χ)(1)) and satisfies

κχ(1) = (1− χ(p)) · cχ.
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3.4. Kato’s explicit reciprocity law.

Proposition 3.7. There exists a homomorphism of Λ-modules

L−f⊗ψ : H1(Qp, T quo
f,◦ ⊗ Λ(ψ)(εcycεcyc))→ Λ

satisfying the following interpolation property: for s ∈ W◦, the specialization of L−f⊗ψ at s is the
homomorphism

L−f⊗ψ,s : H1(Qp, T quo
f,◦ (ψ)(s)) −→ Op

given by

L−f⊗ψ,s =
1− θ̄ψ̄(p)βfp

−s−1

1− θψ(p)β−1
f ps

×

{
(−1)s

(s−1)! × 〈logBK, t
sη̃f∗⊗ψ̄〉 if s ≥ 1

(−s)!× 〈exp∗BK, t
sg(ψ)−1η̃f∗⊗ψ̄〉 if s < 1,

where logBK is the Bloch–Kato logarithm and exp∗BK is the dual exponential map.

Proof. This follows from Coleman and Perrin-Riou’s theory of Λ-adic logarithm maps as extended
by Loeffler and Zerbes in [LZ]. This is recalled for instance in [KLZ1, §8,9]. More precisely, [KLZ1,
Theorem 8.2.3] and, more particularly, the second displayed equation in [KLZ1, p. 82] yield an injective
map

H1(Qp, T quo
f,◦ ⊗ Λ(ψ)(εcycεcyc)) −→ D(T quo

f )⊗ Λ,

since H0(Qp, T quo
f,◦ (ψ)(1)) = 0 because of the assumption that αfψ ≡ θψ(p) 6≡ 1 modulo p.

This map is characterized by the interpolation property formulated in [LZ, Appendix B]. Next we
apply the pairing of (40) and the result follows. �

Theorem 3.8. There exists a Λ-adic cohomology class

κf,∞ ∈ H1(Q, Tf ⊗ Λ−(ψ)(εcycεcyc))

such that:

(a) There is an explicit reciprocity law

L−f⊗ψ(resp(κf,∞)−) =
−Lp(f∗, θχ̄1, 1)

2g(θ̄χ1)g(θ̄χ2)
× Lp(f∗, ψ̄, 1 + s),

where resp stands for the map corresponding to localization at p and resp(κf,∞)− is the map
induced in cohomology from the projection map Tf → T quo

f,◦ of (15). (The s on the right-hand

side is a variable.)
(b) The bottom layer κf (1) lies in H1

f (Q, Tf (ψ)(1)) and satisfies

κf (1) = Ef · κf ,

where Ef is the Euler factor introduced in (28).

Proof. This is due to Kato [Ka] and has been reported in many other places in the literature. See [Och]
and, more specifically, [BD2, Theorems 4.4 and 5.1] combined with Besser’s results [Bes, Proposition
9.11 and Corollary 9.10] showing that the p-adic regulator can be recast as the composition of the
p-adic étale regulator followed by the Bloch–Kato logarithm. In particular, these results express the
left hand side as a Hida–Rankin p-adic L-function, that factors as the product of two Mazur–Kitagawa
p-adic L-functions.

Note however that the normalizations adopted in loc. cit. are slightly different from ours, thus af-
fecting the scaling factors. More precisely, in [BD2] the authors employ the functional ηf instead of
η̃f , but here this discrepancy is compensated by our choice of periods Ω+

f and Ω−f , which we have

normalized according to (30). Taking this into account, the theorem holds as stated. �

Recall our running assumption that f ≡ E2(θ, 1) (mod pt).

Corollary 3.9. The following equality holds in Λ−/ptΛ−:

L−f⊗ψ(resp κ
−
f,∞) ≡ −Lp(f

∗, θχ̄1, 1)

g(θ̄χ1)g(θ̄χ2)
Lp(θ̄χ2,−1) · Lθ(resp κχ2,∞) (mod pt).
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Proof. By Proposition 3.4,

Lp(f
∗, θχ̄2, 1 + s) ≡ 2 · Lp(θ̄χ2,−s) · Lp(χ̄2, s) (mod pt).

Applying now part (a) of Theorem 3.8 and Proposition 3.6 to the left and right hand sides respectively,
the result follows. �

3.5. Proof of Theorem 3.3. We now prove Theorem 3.3. Note that since (χ2)|GQp
is a non-trivial

unramified character, it follows from e.g. [Bel, §2.2, Ex. 2.16] (see also [BK, Ex. 3.9]) that

H1
f (Qp,Op(χ2)(1)) = H1(Qp,Op(χ2)(1)),

where H1
f stands for the subgroup of unramified classes in H1.

We have seen in Proposition 3.5 that there is a homomorphism

(45) Lχ2,1 : H1(Qp,Op(χ2)(1))→ Op.

Lemma 3.10. The map Lχ2,1 is an isomorphism.

Proof. According to Proposition 3.5, the map (45) is given by

Lχ2,1 =
χ̄2(p)p−1 − 1

1− χ2(p)
·
〈

logBK,
t

g(χ2)

〉
.

Given a place v of Q(µN ) above p, let Z[µN ]v denote the completion of Z[µN ] at v. Define the
module of local units Up(N) =

∏
v|p Z[µN ]×v , where v = v1, . . . , vr ranges over all places of Q(µN )

above p. Note that G = Gal (Q(µN )/Q) acts on Up(N) by permuting the places v, and hence it makes
sense to pick the eigen-component of Up(N) with respect to a character of G. In particular, we have

Up(N)[χ̄2] := (Up(N)⊗Op(χ2))G.

Kummer theory identifies H1(Qp,Op(χ2)(1)) with Up(N)[χ̄2], which is a Op-module of rank one. In
a similar way, let U1

p (N2) =
∏
v|p(Z[µN2

]+v )1, where (Z[µN2
]+v )1 stands for the set of local units in

Zp[µN2
]+v which are congruent to 1 modulo v. For our further use, let U+(N2) denote the closure of

the set of units of Z[µN2
]+ congruent to 1 modulo each place above p, diagonally embedded in U1

p (N2).
Since Q(µN )v is an unramified extension of Qp, the maximal ideal of Z[µN ]v is pZ[µN ]v and the

logarithm defines an isomorphism, as recalled for instance in [Con, §8]

(46) logv : Z[µN ]×v ⊗Op −→ pZ[µN ]v ⊗Op.

Note that
∏
v Z[µN ]v is naturally a G-module isomorphic to the regular representation and hence

(
∏
v Z[µN ]v)[χ̄2] is again a free module of rank 1 over Op. Define

logχ̄2
:=
∑
σ∈G

χ2(σ) logσ(v1) : Up(N)[χ̄2] −→ p
(∏

v

Z[µN ]v

)
[χ̄2].

A generator of the target of the previous map may be taken to be the Gauss sum g(χ2) diagonally
embedded in

∏
v Z[µN ]v and this yields an identification 1

g(χ2) (
∏
v Z[µN ]v)[χ̄2] = Op. Under these

identifications, Bloch-Kato’s logarithm may be recast classically as〈
logBK,

t

g(χ2)

〉
=

1

g(χ2)
logχ̄2

: H1(Qp,Op(χ2)(1)) = Up(N)[χ̄2] −→ Op,

and we already argued that this yields an isomorphism onto pOp.

Since ordp(
χ̄2(p)p−1−1

1−χ2(p) ) = −1, it follows that Lχ2,1 is an isomorphism onto Op, as claimed. �

Recall from Proposition 3.7 the map

L−f⊗ψ,1 : H1(Qp, T quo
f,◦ (ψ)(1)) → D(T quo

f,◦ (ψ)(1))
·tη̃f∗→ Op.

Recall the isomorphism T quo
f,◦ ⊗O/pt ' O/pt(χ2) of (41) fixed as in (42) above and use it to identify

the source of L−f⊗ψ,1 ⊗O/pt with H1(Qp,O/pt(χ2)(1)).

Lemma 3.11. As homomorphisms H1(Qp,O/pt(χ2)(1)) −→ O/pt we have the congruence

L−f⊗ψ,1 ≡ Lχ2,1 (mod pt).
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Proof. This follows by comparing the maps Lχ2,1 and L−f⊗ψ,1 described respectively in Proposition 3.5

and 3.7. Note firstly that the Euler factors involved in the latter agree modulo pt with those of the
former (recall that αfβf = θ(p)p).

Next, observe that in Proposition 3.5 the pairing takes place against tg(χ2)−1, while in Proposition
3.7 this pairing is with tη̃f∗⊗ψ̄. The lemma follows from the commutativity of the diagram (42). �

We are finally in position to provide the proof of Theorem 3.3: After specializing Corollary 3.9 at
s = 1 we obtain

L−f⊗ψ,1(resp κf (1)−) ≡ −Lp(f
∗, θχ̄1, 1)

g(θ̄χ1)g(θ̄χ2)
Lp(θ̄χ2,−1) · Lχ2,1(resp κχ2

(1)) (mod pt)

Recall that Proposition 3.6 and Theorem 3.8 assert that

κχ2(1) = (1− χ2(p)) · cχ2 , κf (1) = Ef · κf
and hence

EfL−f⊗ψ,1(resp κ
−
f ) ≡ −Lp(f

∗, θχ̄1, 1)

g(θ̄χ1)g(θ̄χ2)
Lp(θ̄χ2,−1)(1− χ2(p)) · Lχ2,1(resp cχ2

) (mod pt)

Recall we have set

` =
−Lp(f∗, θχ̄1, 1)

g(θ̄χ1)g(θ̄χ2)
· (1− χ2(p)) · Lp(θχ̄2,−1).

Using Lemma 3.11 together with Lemma 3.10, we deduce the equality of local classes

(47) Ef · resp κ
−
f ≡ ` · resp cχ2 (mod pt)

in H1(Qp,O/pt(χ2)(1)). Observe that resp(κf )− is the local class obtained in cohomology by push-
forward under the map induced by the projection T̄f → T̄ quo

f,◦ of (15), as already introduced in Theorem

3.8. This corresponds, modulo pt, to what we have called κ̄f,1. The first (local) part of Theorem 3.3
follows.

The next lemma is conditional on the χ̄2-regularity of p (cf. Definition 3.2), and is needed to derive
the second part of the theorem.

Lemma 3.12. Assuming p is χ̄2-regular, the global-to-local restriction map

H1
f (Q,Op(χ2)(1))→ H1(Qp,Op(χ2)(1))

is an isomorphism.

Proof. Recall from the proof of Lemma 3.10 the definition of the group Up(N2) of local units. Consider
the following commutative diagram, where vertical arrows are isomorphisms induced from Kummer
theory and the upper horizontal arrow stands for the map corresponding to localization at p:

H1
f (Q,Op(χ2)(1)) // H1(Qp,Op(χ2)(1))

Z[µN2
]×[χ̄2] //

OO

Up(N2)[χ̄2]

OO

The bottom horizontal arrow is injective because it is induced by the natural inclusion Z[µN2
]× ↪→

Up(N2), and so it follows by known cases (due to Brumer) of Leopoldt’s conjecture. Moreover, since
χ2 is even and nontrivial, both Z[µN2 ]×[χ̄2] and Up(N2)[χ̄2] are Op-modules of rank 1. The cokernel

Q[χ̄2] = Up(N2)[χ̄2]/Z[µN2
]×[χ̄2]

is thus a finite group.
In order to prove the lemma it thus suffices to show that Q[χ̄2] is trivial. Write k = Q(µN2)+ (resp.

Z[µN2
]+) for the maximal totally real subfield of Q(µN2

) (resp. its ring of integers), and note that
Q[χ̄2] = U1

p (N2)/U+(N2)[χ̄2].
According to [Neu, Chapter 4, Theorem 7.8], Q[χ̄2] ' Gal (Hp/H)[χ̄2], where Hp (resp. H) is the

maximal p-abelian extension of k unramified away from primes above p (resp. everywhere unrami-
fied). Here the χ̄2-eigencomponent on the Galois group is taken with respect to the natural action
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of Gal (k/Q) by conjugation on Gal (Hp/H). The lemma hence follows from the running hypothesis,
since (Gal (Hp/k)[χ̄2]⊗ Z/pZ)∨ ' Cl(k(µp))[χ2ω]⊗ Z/pZ. �

Assuming χ̄2-regularity, Lemma 3.12 allows us to upgrade (47) to an equality of global classes in
H1(Q,O/pt(χ2)(1)), namely

Ef · κf,1 ≡ ` · cχ2 (mod pt).

Theorem 3.3 follows.

4. Second congruence relation

As in the introduction, let θ : (Z/NZ)× → Q̄× be an even, primitive, Dirichlet character of conductor
N ≥ 4. Let f ∈ S2(N, θ) a normalized cuspidal eigenform of level N , weight 2 and nebentype θ. Fix
a prime p - 6Nϕ(N) and assume as in (3) that f ≡ E2(θ, 1) mod pt for some t ≥ 1. This implies that
Lp(θ̄,−1) ≡ 0 (mod pt).

We keep the notations introduced along the introduction, §2 and §3. In particular χ1, χ2 : (Z/NZ)× →
Q̄× are even Dirichlet characters of conductor N1 and N2 with N1 ·N2 = N , and ξ1 = θχ̄1χ̄2, ξ2 = 1,
ψ = θ̄χ2. Recall that the value of the modular unit uχ1,χ2 at ∞ is some power of the circular unit
cχ1

, and likewise for uξ1,ξ2 . For the sake of concreteness, in the statement below we normalize them
so that uχ1,χ2

(∞) = cχ1
and uξ1,ξ2(∞) = cξ1 although any other normalization would work.

Proposition 4.1. The Beilinson–Kato class κf ∈ H1(Q, Tf,Y (ψ)(1)) may be lifted to H1(Q, Tf,X(ψ)(1))
if and only if κ̄f,1 = 0.

Proof. Recall from Proposition 2.1 the short exact sequence of GQ-modules

(48) 0 −→ Tf,X −→ Tf,Y −→ O/pt(θ) −→ 0.

After taking a Tate twist, it gives rise to the long exact sequence in cohomology

(49) 0 −→ H1(Z[1/Np], Tf,X(ψ)(1)) −→ H1(Z[1/Np], Tf,Y (ψ)(1)) −→ H1(Z[1/Np],O/pt(θψ)(1))

The last map sends the class κf to κ̄f,1. Hence, the latter vanishes if and only if κf belongs to
H1(Z[1/Np], Tf,X(ψ)(1)). �

Assume for the remainder of this section that κ̄f,1 = 0 and hence κf ∈ H1(Q, Tf,Y (ψ)(1)) lifts to
a class in H1(Q, Tf,X(ψ)(1)), that by a slight abuse of notation we continue to denote with the same
symbol. As explained in the introduction, this allows us to define the global class

κ̄f,2 = π̄2∗(κ̄f ) ∈ H1(Q,O/pt(ψ)(2)).

Theorem 4.2. (Second congruence relation) Assume that L′p(θ̄,−1) 6≡ 0 (mod p). Then the following

equality holds in H1(Q,O/pt(ψ)(2)):

κ̄f,2 =
L′p(θ̄,−1)

1− p−1
· c̄χ1

∪ c̄ξ1
∪ logp(εcyc)

(mod pt).

Here, 1/ ∪ logp(εcyc) denotes the inverse of the map

H1(Q,O/pt(ψ)(2))→ H2(Q,O/pt(ψ)(2)), κ 7→ κ ∪ logp(εcyc),

which is invertible under our running assumptions.

The remainder of this section is devoted to the proof of this theorem.

4.1. Cohomology and Eisenstein quotients. For any r ≥ 0 and j ∈ Z let

Hr(j) = H1
et(X̄1(Npr),Op(ψ)(j))ord

denote the ordinary component of the étale cohomology group H1
et(X̄1(Npr),Op(j)) with respect to the

Hecke operator U∗p . This is naturally an Op[GQ]-module. As in §2, let hr be the subring of EndOp
(Hr)

spanned over Op by the diamond and Hecke operators T ∗n . As in [FK, §1.9.1], the Eisenstein ideal
I∗r = I∗Eis,r ⊂ hr is the Op-submodule of hr generated by U∗` − 1 and T ∗` − `〈`−1〉 − 1 for primes `

dividing (resp. not dividing) the level.
Passing to the projective limit we may define:

H(j) := lim
←r≥0

Hr(j), h = lim
←r≥0

hr, I∗ = lim
←r≥0

I∗r ⊂ h.
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We may simply denote the above modules Hr and H when the Galois action is understood or
irrelevant.

The ideal I∗ is a height one ideal contained in the maximal ideal M = (I∗, p); for any t ≥ 1 we shall
denote M(t) = (I∗, pt), so that M = M(1). The ideal I∗ is the intersection of a finite number of height
one prime ideals P ⊂M, each of which corresponds to a weight two eigenform that is congruent to an
Eisenstein series mod p, like the modular form f of the introduction.

Let ΛN := lim←Op[(Z/NprZ)×] denote the Iwasawa algebra of tame level N . Any Dirichlet char-
acter ξ : (Z/NZ)× → O×p may be extended by linearity to yield a homomorphism

ξ : ΛN −→ Op[(Z/NZ)×] −→ Op

that we continue to denote with the same symbol.
For any ΛN -module V let Vξ = V ⊗ΛN ,ξ Op stand for the associated ξ-isotypical component. Note

that ΛN = ⊕ΛN,ξ where ξ ranges over all characters of (Z/NZ)× and ΛN,ξ ' Λ = Op[[Z×p ]].
We begin by rephrasing the results of [FK, §9] on Sharifi’s conjecture in a convenient way for our

purposes.
Recall the cyclotomic character εr corresponding to Gal (Q(µpr )/Q) as in (43). There is a commu-

tative diagram of ΛN,θ̄-modules

(50) lim←r≥0
H2

et(X1(Npr),Op(2)(εrψ))ord
θ̄

//

��

H2
et(X1(N),Op(2)(ψ))ord

θ̄

��
H1(Q, Hθ̄(2)(εcyc)) // H1(Q, H1

et(X̄1(N),Op(2)(ψ))ord
θ̄

)

where the vertical arrows arise from the Hochschild–Serre spectral sequence in étale cohomology as in
the discussion before equation (23) and the horizontal arrows are specialization at r = 0.

The module H is endowed with an action of complex conjugation, yielding the decomposition
H = H+ ⊕ H−; in the sequel we shall employ a similar notation for any Op-module acted on by
complex conjugation. Proceeding as in [FK, Prop. 6.3.2], we see that the quotient

(51) (H/M(t))+
θ̄

is still endowed with a compatible action of GQ; in fact, GQ acts on this module through the character
ψ, as it follows from [FK, Remark 6.3.3].

Our running assumptions imply that the (mod pt) Galois representation T̄f,X(ψ)(1) = Tf,X(ψ)(1)⊗
O/pt arises as a quotient of the specialization at r = 0 of (H/M(t))(2)(εcyc). It follows from [FK,
(7.1.11)], together with [FK, (1.4.3)] for the translation between the models of X1(N) chosen here and
in loc. cit., that T̄f,X(ψ)(1) belongs to the θ̄-isotypical component of the latter.

Recall also from (15) that there is a short exact sequence for T̄f,X , which according to (17) and (18)
is compatible with the action of complex conjugation. In particular, in light of (21) we have

(T̄−f,X)(ψ)(1) = (T̄f,X(ψ)(1))+ ' O/pt(ψ)(2)

and this is naturally a quotient of (51). Henceforth we fix the canonical isomorphism provided by [FK,
6.3.18 and 7.1.11] in order to identify

(52) T̄f,X(ψ)(1)+ = O/pt(ψ)(2)

as O/pt[GQ]-modules.
Summing up there is a commutative diagram of GQ-modules, where the horizontal arrows arise from

specializing to r = 0, i.e. level N :
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(53) H1(Q, Hθ̄(2)(εcyc)) //

��

H1(Q, H1
et(X̄1(N),Op(ψ)(2))ord

θ̄
)

��
H1(Q, (H/M(t))+

θ̄
(2)(εcyc)) //

++

H1(Q, (H1
et(X̄1(N),Op(ψ)(2))ord/(I∗0 , p

t))+
θ̄

)

��
H1(Q, T̄f,X(ψ)(1)+) = H1(Q,O/pt(ψ)(2))

4.2. Fukaya–Kato maps. Define the module Q similarly as in [FK, §6.3.1], namely

Q := (H/I∗H)+
θ̄

(2)(εcyc).

Recall from (27) in §3 the Kubota–Leopoldt p-adic L-function Lp(θ̄, s − 1) ∈ ΛN,θ attached to the
Dirichlet character θ̄. This is what is denoted −1ξ in ΛN,θ in [FK, 6.1.6], taking into account the
normalizations adopted in [FK, 4.1.1] versus ours.

Proposition 4.3. There are isomorphisms of Galois modules

(54) Q '−→ ΛN,θ/(Lp(θ̄, s− 1))(2)(εcycψ) ' (h/I∗h)θ̄(2)(εcycψ).

Proof. Since we already remarked that the Galois action on (H/I∗H)+
θ̄

is given by ψ, the first identi-

fication amounts to the equality (H/I∗H)+
θ̄

= ΛN,θ(ψ)/(Lp(θ̄, s− 1)), which follows from [FK, §6.3.8

– 6.3.18]. Note once again that the results of loc. cit. are stated for a different choice of model for
the modular curve, and our formulation is translated from loc. cit. by means of the isomorphism vN
described in [FK, 1.4.5(1)]. This map, whose precise definition is given in [FK, 1.4.2], preserves the
actions of Hecke operators, dual Hecke operators and diamond operators, but changes the action of
GQ by an appropriate twist introduced in [FK, 1.2.9].

The second isomorphism is a consequence of the proof of the Iwasawa main conjecture by Mazur
and Wiles (see also [FK, §6.1.7]). �

Recall that Hi(Z[1/Np], V ) ⊂ Hi(Q, V ) stands for the set of classes which are unramified at primes
dividing Np. Shapiro’s lemma gives an isomorphism

lim
←
H2(Z[1/Np, ζNpr ],Op(ψ)(2)) ' H2(Z[1/Np],ΛN (εcycψ)(2)).

As a piece of notation, and following the definition of [FK, §5.2.6], set

S = lim
←
H2(Z[1/Np, ζNpr ],Op(ψ)(2))+ ' H2(Z[1/Np],ΛN (εcycψ)(2))+.

In [FK, §9.1] Fukaya and Kato established the existence of isomorphisms

FK1 : H1(Z[1/Np],Q) ' Sθ̄, FK2 : Sθ̄ ' H2(Z[1/Np],Q)

arising from the long exact sequence in cohomology induced by the short exact sequence

0→ ΛN,θ(εcycψ)(2)
·Lp(θ̄,s−1)−−−−−−−→ ΛN,θ(εcycψ)(2)→ Q→ 0.

stemming from (54).
In particular, the map we have denoted as FK2 is just the +-component of the homomorphism

(55) H2(Z[1/Np],ΛN,θ(εcycψ)(2)) −→ H2(Z[1/Np],ΛN,θ/(Lp(θ̄, s− 1))(εcycψ)(2))

induced by (a twist of) the natural projection ΛN,θ −→ ΛN,θ/Lp(θ̄, s− 1). For an explicit description
of FK1, see [FK, §9.1].

The main result of §9.2 of loc. cit. asserts that the map

(56) ev∞ : H2
et(X1(Np∞),Op(εcycψ)(2))θ̄ −→ Sθ̄

induced by evaluation at the cusp ∞ factors through the Eisenstein quotient, as stated below.
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Proposition 4.4 (Fukaya–Kato). The map ev∞ of (56) agrees with the composition

H2
et(X1(Np∞),Op(εcycψ)(2))θ̄ → H1(Z[1/Np], Hθ̄(εcyc)(2))→ H1(Z[1/Np],Q) ' Sθ̄

where:

• the first map is the composition of

H2(X1(Np∞),Op(εcycψ)(2))θ̄ → H2(X1(Np∞),Op(εcycψ)(2))ord
θ̄

and the left vertical arrow in (50), both restricted to the subspace of classes unramified at the
primes dividing Np;
• the second map is induced by the projection Hθ̄(εcyc)(2)→ Q;
• the last isomorphism is FK1.

In [FK, §9.3] Fukaya and Kato further introduced two distinguished morphisms

a, b : H1(Z[1/Np],Q)→ H2(Z[1/Np],Q)(57)

a = FK2 ◦FK1,

b = ∪ (1− p−1) logp(εcyc)

where εcyc ∈ H1(Q,O×p ) stands for the cyclotomic character. Note that (1− p−1) logp takes values in
Zp and hence b is indeed well-defined. Under these conditions, they show the following.

Proposition 4.5 (Fukaya–Kato). Let L′p(θ̄) ∈ ΛN,θ denote the derivative of Lp(θ̄, s− 1). Then

(58) b = L′p(θ̄) · a.

Proof. This is proved in [FK, Proposition 9.3.1]. �

Corollary 4.6. The map

H1(Z[1/Np],O/pt(ψ)(2)) −→ H2(Z[1/Np],O/pt(ψ)(2)), κ 7→ κ ∪ (1− p−1) logp(εcyc)

is invertible.

Proof. Observe that FK1 and FK2 are Λ-adic isomorphisms, as it has been proved in [FK, §9.1].
Hence, once we consider the specialization map at the trivial character, we still have isomorphisms of
Op-modules. The same must be true for their composition multiplied by the p-adic unit L′p(θ̄,−1), and
according to Proposition 4.5 and the definitions provided in [FK, §4.1.3], this is precisely the above
map. �

After applying the Fukaya–Kato map FK1 to the bottom row of diagram (53), restricting to the
subspace of unramified classes at primes dividing Np, we reach the commutative diagram
(59)

H1(Z[1/Np], (H/M(t))+
θ̄

(εcyc)(2)) //

F̄K1

��

H1(Z[1/Np], T̄f,X(ψ)(1)+) = H1(Z[1/Np],O/pt(ψ)(2))

F̄K1(r=0)

��
H2(Z[1/Np],ΛN,θ/p

t(εcycψ)(2)) // H2(Z[1/Np],O/pt(ψ)(2)),

where the left most vertical map is F̄K1 = FK1 (mod pt). As in (53), the horizontal arrows are
specialization at r = 0, and the right-most vertical arrow is accordingly the specialization of F̄K1 at
r = 0.

We may further apply now Fukaya–Kato’s map F̄K2 = FK2 (mod pt) to the above diagram and
obtain the following one:

(60) H2(Z[1/Np],ΛN,θ/p
t(εcycψ)(2)) //

F̄K2

��

H2(Z[1/Np],O/pt(ψ)(2))

||
��

H2(Z[1/Np], (H/M(t))+
θ̄

(εcyc)(2)) // H2(Z[1/Np],O/pt(ψ)(2))

Again the horizontal maps are specialization in level N at r = 0 and the right-most vertical map
is the specialization of F̄K2 at r = 0. In view of (55) the latter may be identified with the identity
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map: according to the definitions provided in [FK, §6.1.6, 4.1.3] and with our current conventions, the
specialization of Lp(θ̄) at r = 0 is

Lp(θ̄,−1) = (1− θ̄(p)p) · L(θ̄,−1) = −(1− θ̄(p)p) · B2(θ̄)

2
,

which vanishes (mod pt) in light of our assumptions.

4.3. Proof of Theorem 4.2. We can finally prove Theorem 4.2. With a slight abuse of notation, we
identify global units with their image in cohomology under the Kummer map.

Note that the image of the Kato class under the composition of maps described in Proposition 4.4
is FK1(κ̄f,2). Then, we have

(61) FK1(κ̄f,2) = ev∞(uχ1,χ2
∪ uξ1,ξ2) = c̄χ1

∪ c̄ξ1 (mod pt),

where the circular units involved in the cup product are those resulting from the evaluation at infinity
of the modular units uχ1,χ2 and uξ1,ξ2 , respectively. In particular, the last equality directly follows
from the construction of the map corresponding to evaluation at infinity. Recall we are assuming that
ξ1 = θχ̄1χ̄2, and it was proved in Theorem 3.8 that κf is unramified everywhere.

Next, we apply FK2 to both sides of (61). Proposition 4.5 together with the commutativity of (60)
allow us to establish that

κ̄f,2 ∪ (1− p−1) logp(εcyc) = L′p(θ̄,−1) · (c̄χ1 ∪ c̄ξ1).

Theorem 4.2 finally follows from Corollary 4.6.
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[PR] B. Perrin-Riou. La fonction L p-adique de Kubota–Leopoldt, Arithmetic geometry (Tempe, AZ, 1993), 65–93,
Contemp. Math. 174, Amer. Math. Soc., Providence, RI, 1994.

[RiRo1] O. Rivero and V. Rotger. Derived Beilinson–Flach elements and the arithmetic of the adjoint of a modular

form, to appear in J. Eur. Math. Soc 23 (2021), no. 7, 2299–2335.
[Sch] A. Scholl, An Introduction to Kato’s Euler Systems, Galois Representations in Arithmetic Algebraic Geometry,

Cambridge University Press (2010).

[Sha] R. Sharifi. A reciprocity map and the two-variable p-adic L-function, Annals of Mathematics 171 (2011), no. 1,
251–300.

[St1] G. Stevens. Arithmetic on Modular Curves, Progress in Mathematics, vol. 20. Birkhauser Boston (1982).

[St2] G. Stevens. The cuspidal group and special values of L-functions, Trans. Amer. Math. Soc, 291 (1985), no. 2,
519–550.

[Va] V. Vatsal. Canonical periods and congruence formulas, Duke Math. J., 98 no. 2 (1999), 397–419.
[Va2] V. Vatsal. Special values of anticyclotomic L-functions, Duke Math. J., 116 no. 2 (2003), 219–261.

O. R.: Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK

Email address: Oscar.Rivero-Salgado@warwick.ac.uk
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