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Abstract. We improve the homology stability range for the 3rd inte-
gral homology of symplectic groups over commutative local rings with
infinite residue field. As an application, we show that for local commu-
tative rings containing an infinite field of characteristic not 2 the symbol
map from Milnor-Witt K-theory to higher Grothendieck-Witt groups is
an isomorphism in degrees 2 and 3.
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1. Introduction

In this paper we improve homology stability ranges for the symplectic
groups over commutative local rings with infinite residue field and use this
to give explicit presentations of some algebraic K-groups.

Recall that for an integer n ≥ 0 and a commutative ring R, the symplectic
group Sp2n(R) is the group of R-linear automorphisms of R2n that preserve

the standard symplectic form 〈x, y〉 =
∑n−1

i=0 (x2i+1y2i+2−x2i+2y2i+1), x, y ∈
R2n. We consider Sp2n(R) as a subgroup of Sp2n+2(R) via the embedding

A 7→
(

1R2 0
0 A

)
. The following is part of Theorem 8.3 in the text. Unless

otherwise stated, all homology groups Hn(G) of a group G are taken with
integer coefficients.

Theorem 1.1. Let R be a local ring with infinite residue field. Then inclu-
sion of groups induces a surjection H3 Sp2(R) � H3 Sp4(R) and for k ≥ 2
isomorphisms H3 Sp2k(R) ∼= H3 Sp2k+2(R):

H3(Sp2(R)) � H3(Sp4(R))
∼=−→ H3(Sp6(R))

∼=−→ H3(Sp8(R))
∼=−→ · · ·

Theorem 1.1 is optimal in the sense that the first map H3 Sp2(R) �
H3 Sp4(R) is not injective, in general; see Remark 8.4. Theorem 1.1 answers
a question raised by Hutchinson and Wendt in [HW15, Remark 9.6]. An
important consequence of Theorem 1.1 is the following relative homology
stability result proved in Theorem 8.5.

Theorem 1.2. Let R be a local ring with infinite residue field. Then in-
clusion of groups induces isomorphisms of relative integral homology groups
for i ≤ 3

Hi(SL3(R),Sp2(R))
∼=→ Hi(SL4,Sp4)

∼=→ Hi(SL6,Sp6)
∼=→ · · ·

∼=→ Hi(SL(R),Sp(R)).

The importance of Theorem 1.2 lies in the fact that in degree 3, the left
group H3(SL3(R),Sp2(R)) was identified in [Sch17a] with the third Milnor-
Witt K-group KMW

3 (R) of R and the right group H3(SL(R),Sp(R)) is the
first non-vanishing homotopy group of the fibre from symplectic K-theory
to algebraic K-theory.

We generalise Theorem 1.1 to homology degree n ≥ 3 by showing the
following in Theorem 8.6 though the stability range here is probably not
optimal when n ≥ 4.

Theorem 1.3. Let R be a local ring with infinite residue field, and let n ≥ 3
be an integer. Then inclusion of groups induces a surjection Hn Sp2n−4(R) �
Hn Sp2n−2(R) and for k ≥ 0 isomorphisms Hn Sp2n+2k−2(R) ∼= Hn Sp2n+2k(R):

Hn(Sp2n−4(R)) � Hn(Sp2n−2(R))
∼=−→ Hn(Sp2n(R))

∼=−→ Hn(Sp2n+2(R))
∼=−→ · · ·

This improves on the homology stability ranges for infinite fields F due
to Essert [Ess13] who proves for n ≥ 0 the following surjection and isomor-
phisms

Hn(Sp2n(F )) � Hn(Sp2n+2(F ))
∼=−→ Hn(Sp2n+4(F ))

∼=−→ Hn(Sp2n+6(F ))
∼=−→ · · ·
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See [Ess13, Theorem 3.9] and [SW20, Theorem A] which improve on [Mir05].

As application of Theorems 1.1 and 1.2 we generalise some results of Asok-
Fasel [AF17] from fields to local rings replacing the use of A1-homotopy
theory with group homology computations.

We consider the KO-degree map [AF17]

(1.1) KMW
n (R)→ GW [n]

n (R)

from the Milnor-WittK-groups of Hopkins-Morel [Mor12], [Sch17a], [GSZ16]
to the higher Grothendieck-Witt-groups of [Kar73] in the form of [Sch17b].
The following is a combination of Theorems 10.5 and 10.8 in the text.

Theorem 1.4. Let R be a local ring containing an infinite field of character-
istic not 2. Then the KO-degree map (1.1) is an isomorphism for n = 2, 3.

The restriction to rings that contain an infinite field of characteristic not 2
in Theorem 1.4 comes from our use of [GSZ16]. This is probably unnecessary
in light of Theorems 9.1 and 9.2.

Finally, we obtain an interpretation of the indecomposable part of K3

in terms of orthogonal K-theory. Recall that when 1
2 ∈ R, the orthogo-

nal K-group KO3(R) is the higher Grothendieck-Witt group GW
[4]
3 (R) =

π3BO(R)+ where O(R) =
⋃
n≥0O2n(R) is the infinite orthogonal group of

R, that is, the union of the groups of R-linear automorphisms preserving the
standard hyperbolic quadratic form of rank 2n. The following is Corollary
10.10 in the text.

Theorem 1.5. Let R be a commutative local ring containing an infinite
field of characteristic not 2. Then

Kind
3 (R) ∼= KO3(R).

Using A1-homotopy theory, Theorems 1.4 and 1.5 were proven for infinite
fields of characteristic not 2 by Asok–Fasel in [AF17].

As is the case for most papers on homology stability of groups, we con-
struct a highly connected complex on which our groups act, and we analyse
the resulting spectral sequence. Our innovation is the use of the complex
of non-degenerate unimodular sequences, a subcomplex of the complex of
unimodular sequences used in [NS89] and [HT10], [Sch17a] to prove optimal
homology stability for general linear and special linear groups. This leads
to the introduction of odd rank symplectic groups Sp2n−1(R), and we prove
a homology stability result in Theorem 8.3 for the extended sequence of
groups

Sp−1(R) = Sp0(R) ⊂ Sp1(R) ⊂ Sp2(R) ⊂ · · · ⊂ Spn(R) ⊂ Spn+1(R) ⊂ . . .
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Finally, we use the localisation techniques introduced by the second author
in [Sch17a, §2] and [Sch21, Appendix D] to relate the homology of Sp2n+1(R)
to that of Sp2n(R) in Proposition 7.1.

For most of the paper, we fix a commutative local ring R with infinite
residue field and often suppress R from the notation. For instance, Spn, Uq,
Skew+

q will mean Spn(R), Uq(R), Skew+
q (R).

We would like to thank the referee for his/her careful reading of the
manuscript and for his/her useful suggestions.

2. The complex of non-degenerate unimodular sequences

Throughout this paper, ring means commutative ring. Let R be a ring.
Let R∗ denote the group of units of R under multiplication and GLn(R) the
group of all invertible n× n matrices with entries in R.

Let ψ2n = ψ2 ⊕ · · · ⊕ ψ2 be the standard hyperbolic symplectic form of
rank 2n

ψ2n =

 ψ2

ψ2

. . .
ψ2

 =
n⊕
1

ψ2, ψ2 =
(

0 1
−1 0

)
.

For a ring R, the symplectic group Sp2n(R) ⊂ GL2n(R), is the subgroup

Sp2n(R) = {A ∈ GL2n(R)| tAψ2nA = ψ2n}

of R-linear automorphisms preserving the form ψ2n where tA denotes the
transpose matrix of A. We will always consider Sp2n(R) as a subgroup of
Sp2n+2(R) via the embedding

(2.1) Sp2n(R) ⊂ Sp2n+2(R) : A 7→
(

1 0 0
0 1 0
0 0 A

)
.

For n ≥ 0, the symplectic group of rank 2n+ 1 is the subgroup

Sp2n+1(R) = {A ∈ Sp2n+2(R)| Ae1 = e1}

of Sp2n+2(R) fixing the first standard basis vector e1. This is the group of
matrices under multiplication

(2.2)
(

1 c tuψM
0 1 0
0 u M

)
where ψ = ψ2n, M ∈ Sp2n(R), u ∈ R2n, c ∈ R. We let Sp−1(R) = {1} be
the trivial group. The inclusions (2.1) refine to the sequence of inclusions of
groups
(2.3)
Sp−1(R) = Sp0(R) ⊂ Sp1(R) ⊂ Sp2(R) ⊂ · · · ⊂ Spn(R) ⊂ Spn+1(R) ⊂ . . .

where
(2.4)

Sp2n(R) ⊂ Sp2n+1(R) : M 7→
(

1 0 0
0 1 0
0 0 M

)
, Sp2n−1(R) ⊂ Sp2n(R) : M 7→M.
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We shall denote the inclusions Spr(R) ⊂ Sps(R) by εsr, or simply by ε if
source and target group are understood, r ≤ s. Small rank symplectic
groups are as follows

Sp−1(R) = Sp0(R) = {1}, Sp1(R) = {( 1 c
0 1 ) | c ∈ R} , Sp2(R) = SL2(R).

We will study homology stability for the sequence of groups (2.3).

A space over a ring R is a projective R-module of finite rank. A map of
spaces is a map of R-modules between spaces. A submodule M ⊂ V of a
space V is called subspace if it is a direct factor. A map of spaces V →W is
called split if its image is a subspace. An element x ∈ V is called unimodular
if it generates a subspace Rx ⊂ V .

A bilinear space V over a commutative ring R is a space over R equipped
with an R-bilinear form V ×V → R : (x, y) 7→ 〈x, y〉. It is called symplectic if
〈x, x〉 = 0 for all x ∈ V . Note that symplectic forms satisfy 〈x, y〉 = −〈y, x〉.
A symplectic space V is called non-degenerate or regular if the adjoint map
V → V ∗ = HomR(V,R) : x 7→ 〈x, 〉 is split with kernel of minimal possible
rank, i.e., if V has even rank then the kernel is required to be 0 (in which
case the adjoint map is an isomorphism), and if V has odd rank, then the
kernel is required to have rank 1.

From now on, let R be a commutative local ring. A basis v = (v1, ..., vq)
of a space V over R of rank q determines the dual basis v∨ = (v∨1 , ..., v

∨
q ) of

V ∗ by the property v∨i (vj) = δi,j . If V is equipped with a symplectic form
then the adjoint map V → V ∗ in the basis v and v∨ is the Gram matrix

Γ(v) = (〈vi, vj〉)qi,j=1

of v. In particular, the form is non-degenerate if and only if Γ(v) is split
with kernel of rank 0 for q even and of rank 1 for q odd. A symplectic
basis of a non-degenerate symplectic space V of rank 2n is an ordered basis
v1, v2, ...., v2n−1, v2n of V such that 〈v2r−1, v2r〉 = 1 and 〈vi, vj〉 = 0 for
r = 1, ..., n, 1 ≤ i < j ≤ 2n, (i, j) 6= (2r − 1, 2r). That is, a symplectic basis
is an ordered basis whose Gram matrix is ψ2n. Recall [MH73, Corollary 3.5]
that every non-degenerate symplectic space of even rank over a commutative
local ring has a symplectic basis.

Remark 2.1. Let v = (v1, ..., vq) be a basis of a symplectic space (V, 〈 , 〉)
of odd rank q. If (v1, ..., vq−1) generates a non-degenerate subspace W ⊂ V
then V is non-degenerate. This is because V = W ⊥ W⊥ as W is non-
degenerate, and the orthogonal complement W⊥ = {x ∈ V | 〈x, y〉 = 0 ∀y ∈
W} of W in V is W⊥ = Rx for some unimodular x ∈ V . Now, the Gram

matrix in the basis (v1, ..., vq−1, x) is
(

Γ(v1,...,vq−1) 0
0 0

)
which is split of rank

q − 1.

Lemma 2.2. Let R be a local ring and (R2n, 〈 , 〉) a non-degenerate sym-
plectic space. Let V ⊂ R2n be a non-degenerate subspace of rank 2r + 1.
Then
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(1) V ∩ V ⊥ = Rx for some unimodular x ∈ R2n.
(2) V contains a non-degenerate subspace of rank 2r.
(3) If V0 ⊂ V is a non-degenerate subspace of rank 2r, then V = V0 ⊥ Rx

with Rx = V ∩ V ⊥, x unimodular, and there is y ∈ R2n such that
y ∈ V ⊥0 and 〈x, y〉 = 1.

Proof. (1) The R-linear map ρ : V → V ∗ : v 7→ 〈v, 〉 has kernel
ker(ρ) = V ∩ V ⊥ which is a rank 1 subspace as V is non-degenerate
of odd rank.

(2) The form on V induces a unique non-degenerate form on V/(V ∩V ⊥)
such that the quotient map V → V/(V ∩ V ⊥) preserves forms. Any
V0 ⊂ V mapping isomorphically onto V/(V ∩V ⊥) is a non-degenerate
subspace of rank 2r.

(3) Any non-degenerate V0 ⊂ V of rank 2r induces a map V0 → V/(V ∩
V ⊥) preserving forms. Since V0 is non-degenerate and both have
the same rank, this map is an isometry, and V = V0 ⊥ (V ∩ V ⊥).
We have V ∩ V ⊥ = Rx for some unimodular x. Note that x ∈ V ⊥0 .
Since the symplectic form on R2n is non-degenerate its restriction to
V ⊥0 is non-degenerate, too. In particular, there is y ∈ V ⊥0 such that
〈x, y〉 = 1.

�

The following is well-known when the subspaces have even rank.

Corollary 2.3 (Witt’s Theorem). Let R be a local ring and (R2n, 〈 , 〉)
a non-degenerate symplectic space. Let V,W ⊂ R2n be non-degenerate sub-
spaces. If V and W have the same rank then there is an isometry V ∼= W .
Moreover, any isometry g0 : V ∼= W extends to an isometry g : R2n → R2n

such that g|V = g0.

Proof. If V and W have even rank, they and their orthogonals V ⊥ and
W⊥ all have symplectic basis. Hence there are isometries V ∼= W and
V ⊥ ∼= W⊥. Any isometry g0 : V ∼= W extends to an isometry g = g0 ⊥ g1

of R2n = V ⊥ V ⊥ = W ⊥W⊥ by choosing an isometry g1 : V ⊥ ∼= W⊥.
Now assume that V and W have odd rank 2r + 1. By Lemma 2.2(1),

we have V ∩ V ⊥ = Rx, W ∩W⊥ = Ry for some unimodular x, y ∈ R2n.
By Lemma 2.2(2), we can choose non-degenerate subspaces V0 ⊂ V and
W0 ⊂W of rank 2r. Note that the linear map sending a symplectic basis of
V0 to a symplectic basis of W0 and x to y is an isometry V ∼= W . Now, let
g0 : V ∼= W be any isometry. By Lemma 2.2(3), we can choose x′, y′ ∈ R2n

such that x′ ∈ V ⊥0 and y′ ∈ W⊥0 and such that 〈x, x′〉 = 〈y, y′〉 = 1. Then
the isometry g0 : V ∼= W extends to an isometry V ⊥ Rx′ ∼= W ⊥ Ry′

by sending x′ to y′. Since the latter two spaces are non-degenerate of even
rank, the last isometry extends to an isometry g of R2n. �

Let q ≥ 0 be an integer. A unimodular sequence of length q in R2n is a
sequence (v1, ..., vq) of q vectors v1, ..., vq in R2n such that each subsequence
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of length r ≤ min(q, 2n) generates a subspace of rank r. Unimodular se-
quences were used in [NS89] and [HT10], [Sch17a] to prove optimal homology
stability for general linear and special linear groups.

From now on consider R2n equipped with the standard symplectic form
where the standard basis e1, ..., e2n has Gram matrix Γ(e1, ..., e2n) = ψ2n. A
unimodular sequence (v1, ..., vq) of length q in R2n is called non-degenerate
if any subsequence of length r ≤ min(q, 2n) is a basis of a non-degenerate
subspace of the symplectic space R2n. For an integer q ≥ 0, let

Uq(R
2n) = {v = (v1, ..., vq)| v non-degenerate unimodular in R2n}

be the set of non-degenerate unimodular sequences of length q in R2n. The
set U0(R2n) is the singleton set consisting of the empty sequence, and the
set Uq(R

0) is the singleton set with unique element the sequence (0, 0, ..., 0)
of length q. For a q-tuple v = (v1, ..., vq) of vectors vi ∈ R2n and an ordered
subset I = {i1 < . . . < ir} ⊂ {1, ..., q}, we write vI = (vi1 , . . . , vir). In view
of Remark 2.1, a sequence v = (v1, ..., vq) of vectors in R2n is in Uq(R

2n)
if and only if it is unimodular and for any subset I ⊂ {1, ..., q} of even
cardinality ≤ min(q, 2n), the Gram matrix Γ(vI) is invertible.

We define a chain complex (C∗(R
2n), d) where Cq(R

2n) = Z[Uq(R
2n)]

is the free abelian group generated by the set Uq(R
2n) and the Z-linear

differential is defined on the basis by

(2.5) dq(v1, ..., vq) =

q∑
i=1

(−1)i+1(v1, ..., v̂i, ..., vq).

Let v = (v1, ..., vq) ∈ Uq(R
2n). A vector x ∈ R2n is said to be in good

position with respect to v if (v, x) ∈ Uq+1(R2n).

Remark 2.4. Let (R,m) be a local ring. If k = R/m denotes the residue
field of R, then x is in good position with respect to v if and only if its
class x̄ ∈ k2n modulo m is in good position with respect to v̄ = (v̄1, ..., v̄q) ∈
Uq(k

2n) over k.

In this paper, a matrix A = (aij) ∈ Mq(R) is called skew symmetric if
aij = −aji and aii = 0 for all 1 ≤ i, j ≤ q. For q ≥ 0, let Skewq(R) ⊂Mq(R)
be the set of skew symmetric q × q-matrices with entries in R. For a skew
symmetric matrix A = (aij) ∈M2n(R), we denote by Pf(A) its Pfaffian. It
can be recursively defined by the formula

(2.6) Pf(A) =

2n−1∑
i=1

(−1)i+1ai,2n Pf(A
î,2n

)

where Aîj denotes the matrix A with both the i-th and j-th rows and

columns removed, and the Pfaffian of the unique 0 × 0 matrix is 1. For
instance,

Pf

(
0 a
−a 0

)
= a, Pf

(
0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

)
= af − be+ cd.
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The Pfaffian satisfies Pf(A)2 = det(A), Pf(tUAU) = det(U) Pf(A), Pf(cA) =
cn Pf(A) and Pf(ψ2n) = 1 for all A ∈ Skew2n(R) and c ∈ R.

Lemma 2.5. Let k be a field, q ≥ 0, n ≥ 1 integers, and let v = (v1, ..., vq) ∈
Uq(k

2n) be a non-degenerate unimodular sequence of length q in k2n equipped
with the standard symplectic form 〈 , 〉. Then there is a finite set of sub-
spaces V1, ..., Vs ⊂ k2n of rank < 2n such that every x ∈ k2n −

⋃s
j=1 Vj is in

good position with respect to v.

Proof. Let I ⊂ {1, ..., q} be a subset of cardinality < 2n. If I has even
cardinality, let VI ⊂ k2n be the subspace generated by vI . Then for any
x ∈ k2n \VI , the vectors vi, i ∈ I and x generate a non-degenerate subspace
of k2n, and dimVI < 2n. If I has odd cardinality, consider the k-linear map
k2n → k :

x 7→ Pf(Γ(vI , x)) = 〈u, x〉
where u =

∑
i∈I εi Pf(Γ(vI−{i}))vi and εi is 1 or −1; see (2.6). Let VI = u⊥

be the kernel of that map. Since each Pf(Γ(vI−{i})) is a unit (|I| being odd),

the vector u is unimodular and dim(u⊥) < 2n. Then for any x ∈ k2n \ VI ,
the vectors vi, i ∈ I and x generate a non-degenerate subspace of k2n, and
dimVI < 2n. Now any x ∈ k2n \

⋃
I⊂{1,...,q}, |I|<2n VI is in good position

with respect to v. �

Corollary 2.6. Let (R,m) be a local ring with infinite residue field. Then
the chain complex C∗(R

2n) is acyclic, that is, for all q ≥ 0, we have

Hq(C∗(R
2n)) = 0.

Proof. Let ξ =
∑r

i=1 nivi ∈ Cq(R
2n) be a cycle where ni ∈ Z and vi ∈

Uq(R
2n). Since R/m is infinite, there is x ∈ R2n which is in good position

with respect to all vi, i = 1, ..., r, by Lemma 2.5 and Remark 2.4. Then
(x, ξ) ∈ Cq+1 and d(x, ξ) = ξ − (x, dξ) = ξ, that is, ξ is a boundary. �

Let Skew+
q (R) ⊂ Skewq(R) be the subset of those skew symmetric matri-

ces A such that for all ∅ 6= I ⊂ {1, ..., q} of even cardinality, the submatrix
AI with columns and rows in I is invertible. For q = 0, ..., 2n+ 1, the map

Γ : Uq(R
2n)/ Sp2n(R)→ Skewq(R) : v = (v1, ..., vq) 7→ Γ(v) = (〈vi, vj〉)i,j

sending a non-degenerate unimodular sequence to its Gram matrix has image
in Skew+

q (R).

For integers q ≥ j ≥ 1, a sequence v of length q and A ∈ Skewq a skew-
symmetric matrix, denote by vĵ the sequence of length q−1 obtained from v

by removing the j-th entry, and denote by Aĵ ∈ Skewq−1 the skew-symmetric

matrix obtained from A by removing the j-th row and column.

Construction 2.7. For integers 0 ≤ i ≤ 2n+ 1 there are unique sections

Vi,2n : Skew+
i (R)→ Ui(R

2n)

of Γ such that
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(1) V0,2n is the empty sequence, and V1,0 = (0).

(2) Vi,2n(A) = Vi,2m(A) for i ≤ 2n ≤ 2m under the standard embedding
R2n ⊂ R2m : ei 7→ ei.

(3) Vi+1,2n(A)̂
i+1

= Vi,2n(A
î+1

), A ∈ Skew+
i+1(R), 0 ≤ i ≤ 2n.

(4) For A ∈ Skew+
2n+1(R) we have

V2n+1,2n(A) = (v1, ..., v2n, w2n+1), V2n+1,2n+2(A) = (v1, ..., v2n, v2n+1)

where (v1, ..., v2n) = V2n,2n(A
2̂n+1

), w2n+1 ∈ R2n is the unique ele-

ment such that 〈vi, w2n+1〉 = Ai,2n+1 for all 0 ≤ i ≤ 2n, and

v2n+1 = w2n+1 + e2n+1.

(5) For A ∈ Skew+
2n+2(R), write V2n+1,2n+2(A

2̂n+2
) = (v1, ..., v2n, v2n+1)

and V2n+1,2n(A
2̂n+1

) = (v1, ..., v2n, w2n+2). Then V2n+2,2n+2(A) =

(v1, ..., v2n+2) with

v2n+2 = w2n+2 + (A2n+1,2n+2 − 〈v2n+1, w2n+2〉) e2n+2.

From the recursive nature of the construction satisfying (1) - (5) it is clear
that the sections exist and are unique.

Lemma 2.8. For 0 ≤ q ≤ 2n+ 1 the following map is bijective

Γ : Uq(R
2n)/ Sp2n(R)→ Skew+

q (R).

Proof. Surjectivity for 0 ≤ q ≤ 2n + 1 follows from the existence of the
sections in Construction 2.7.

For injectivity, let v = (v1, ..., vq) and w = (w1, ..., wq) be in Uq(R
2n)

and assume that Γ(v) = Γ(w). First assume q ≤ 2n. Then v and w span
non-degenerate subspaces V and W of R2n. Since Γ(v) = Γ(w), the linear
map sending vi to wi is an isometry V ∼= W . By Witt’s theorem (Corollary
2.3), this isometry extends to an isometry of R2n. In particular, [v] = [w] ∈
Uq(R

2n)/ Sp2n(R).
Now assume q = 2n + 1. There is a unique g ∈ Sp2n(R) such that

(v1, ..., v2n) = g(w1, ..., w2n). So, we can assume (v1, ..., v2n) = (w1, ..., w2n).
Now the bijectivity of the map

(2.7) R2n ∼=−→ R2n : v 7→ (〈vi, v〉)2n
i=1.

shows that we also have v2n+1 = w2n+1. �

For i = 1, ..., q, we define the maps

Skew+
q (R)→ Skew+

q−1(R) : A 7→ A∧i

omitting the i-th row and column. We make the graded abelian group
Z[Skew+

∗ (R)] into a chain complex with the differentials

(2.8) dq : Z[Skew+
q (R)]→ Z[Skew+

q−1](R) : [A] 7→
q∑
i=1

(−1)i+1[A∧i ].

It is easy to check that dqdq+1 = 0.
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Lemma 2.9. Let R be a local ring with infinite residue field. Then the chain
complex (Z[Skew+

∗ (R)], d∗) is acyclic. That is, for all p ≥ 0 we have

Hp(Z[Skew+
∗ (R)]) = 0.

For A ∈ Skew+
q (R) and v ∈ Rq, denote by A ∗ v the matrix

A ∗ v =
(
A v
−tv 0

)
∈ Skewq+1(R).

Note that A ∗ v ∈ Skew+
q+1(R) if and only if for all I = {i1 < · · · < ir} ⊂

{1, ..., q} of odd cardinality r, the Pfaffian Pf(AI ∗ vI) of AI ∗ vI is a unit in
R, or equivalently non zero in the residue field k of R.

Proof of Lemma 2.9. Let ξ =
∑m

j=1 nj [Aj ] ∈ Z[Skew+
q (R)]. We need to

show that if ξ is a cycle then it is a boundary. Since Skew+
1 (R) = Skew+

0 (R)
is the singleton set, this is clear for q = 0, and we can assume q ≥ 1.

Let k be the residue field of R and let I = {i1 < · · · < ir} ⊂ {1, ..., q}
have odd cardinality. The recursive formula for the Pfaffian (2.6) shows that
the map kq → k :

v̄ 7→ Pf(AI ∗ v̄I) = (±Pf(AI−i1), ...,±Pf(AI−ir)) · v̄I
is k-linear. Since A ∈ Skew+

q (R), all entries ±Pf(AI−is) are units and the
k-linear map is non-zero. Thus, its kernel VA,I has codimension 1 in kq.

Since the residue field k of R is infinite, the set

kq \
⋃

j=1,...,m,I⊂{1,...,q}, |I| odd

VAj ,I

is non-empty. In particular, there is v ∈ Rq which is mapped into that
set under the map R → k. By the discussion above, Aj ∗ v ∈ Skew+

q+1(R)

for all j = 1, ...,m. Then ξ ∗ v =
∑m

j=1 nj [Aj ∗ v] ∈ Z[Skew+
q+1(R)] and

d(ξ ∗ v) = (−1)qξ + (dξ) ∗ v. In particular, if ξ is a cycle then it is a
boundary. �

Corollary 2.10. Let R be a local ring with infinite residue field. Then the
complex Z[U∗(R

2n)/ Sp2n(R)] is acyclic in degrees ≤ 2n, that is,

Hp(Z[U∗(R
2n)/Sp2n(R)]) = 0, 0 ≤ p ≤ 2n.

Proof. Combine Lemmas 2.8 and 2.9. �

3. The Homology spectral sequence and its E1-page

For a group G, let Z[G] denote its integral group ring. Most of our
computations are concerned with the homology [Bro94]

H∗(G;M) = Tor
Z[G]
∗ (Z,M) = H∗ (Z[EG]⊗GM)

of G with coefficient in a (bounded below) complex of left G-modules M .
Here Z[EG] is the complex of right G-modules which in degree n is the free
Z-module on the rightG-set EnG = Gn+1 and differential dn defined on basis
elements by dn(g0, ..., gn) =

∑n
i=0(−1)i(g0, ..., ĝi, .., gn). The complex Z[EG]
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is a resolution of the trivial G-module Z by the free right Z[G]-modules
Z[EnG] with basis BnG = Gn.

Example 3.1. If M = Z[U ] is the free group on a left G-set U , the low
degree homology groups Hi(G,Z[U ]), i = 0, 1, are the homology groups of
the complex

Z[G2 × U ]
d2−→ Z[G× U ]

d1−→ Z[U ]
d0−→ 0

where d2[g, h, u] = [h, u] − [gh, u] + [g, hu] and d1[g, u] = [u] − [gu], g, h ∈
G, u ∈ U . In particular, H0(G,Z[U ]) = Z[G\U ] and H1(G,Z[U ]) is the
group of elements

∑n
i=1mi[gi, ui] ∈ Z[G × U ] satisfying

∑n
i=1mi[giui] =∑n

i=1mi[ui] ∈ Z[U ] modulo the relation [gh, u] = [h, u] + [g, hu].

Example 3.2. Continuing the previous example, if U = ∗ is the one-element
set, then we have the isomorphism

H1(G,Z)
∼=−→ Gab :

n∑
i=1

mi[gi] 7→
n∏
i=1

gmi
i .

Consider the category C whose objects are the pairs (G,M), where G
is a group and M is a bounded below complex of left G-modules. The
arrows (G,M) → (G′,M ′) in C are pairs (α, f) where α : G → G′ is a
group homomorphism and f : M →M ′ is a chain map such that f(a · x) =
α(a) ·f(x) for a ∈ G and x ∈M . Composition in C is composition of the α’s
and f ’s. An arrow (α, f) : (G,M)→ (G′,M ′) defines a map on homology

(α, f)∗ : H∗(G;M)→ H∗(G
′;M ′)

induced by the chain map

Z[EG]⊗GM → Z[EG′]⊗G′M ′ : (a0, ..., an)⊗x 7→ (α(a0), ..., α(an))⊗ f(x).

Let (α0, f0), (α1, f1) : (G,M) → (G′,M ′) be two arrows in C. Assume for
simplicity that M and M ′ are G and G′-modules, respectively. If there is
an element h ∈ G′ such that α1(a) = hα0(a)h−1 and f1(x) = hf0(x) for all
a ∈ G and x ∈M , then the induced maps on homology agree:

(3.1) (α0, f0)∗ = (α1, f1)∗ : H∗(G;M)→ H∗(G
′;M ′).

For a complex M of left G-modules with Mi = 0 for i < 0, the stupid
filtration M≤0 ⊂M≤1 ⊂M≤2 ⊂ · · · ⊂M of M defined by

(3.2) (M≤r)i =

{
Mi i ≤ r
0 i > r

has quotients M≤q/M≤q−1 the G-module Mq placed in homological degree
q. This defines the spectral sequence

(3.3) E1
p,q = Hp(G;Mq)⇒ Hp+q(G;M)

with differential dr of bidegree (r−1,−r). The spectral sequence is functorial
for maps in C.
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Let us recall the chain complex (C∗(R
2n), d) of left Sp2n(R)-modules from

Section 2 and its truncation (3.2), the subcomplex C≤2n+1(R2n), which is
the free abelian group Cq(R

2n) = Z[Uq(R
2n)] on the set of non-degenerate

unimodular sequences of length q in R2n for 0 ≤ q ≤ 2n+ 1 and which is 0
otherwise. The differential was defined in (2.5).

Lemma 3.3. Let R be a local ring with infinite residue field. Then for all
integers n, r with 0 ≤ r ≤ 2n we have

Hr(Sp2n(R);C≤2n+1(R2n)) = 0.

Proof. For a group G and a bounded below complex of left G-modules M ,
the stupid filtration Z[EG]≤0 ⊂ Z[EG]≤1 ⊂ Z[EG]≤2 ⊂ ... of Z[EG] defined
by

(Z[EG]≤q)r =

{
Z[ErG], r ≤ q
0, r > q

induces a spectral sequence

E1
p,q = Hp(Z[EqG]⊗GM) = Z[BqG]⊗Hp(M)⇒ Hp+q(G;M)

where BqG = Gq. For G = Sp2n(R) and M = C≤2n+1(R2n), we have
E1
p,q = 0 for p ≤ 2n in view of Corollary 2.6. The spectral sequence then

implies that Hr(Sp2n(R);C≤2n+1(R2n)) = 0 for all r ∈ Z with r ≤ 2n. �

For G = Sp2n(R) and M = C≤2n+1(R2n), the spectral sequence (3.3) has
the form

(3.4) E1
p,q(2n)⇒ Hp+q(Sp2n(R), C≤2n+1(R2n))

where the differential dr is of bidegree (r − 1,−r) and

E1
p,q(2n) =

 Hp(Sp2n(R),Z[Uq(R
2n)]) q ≤ 2n+ 1

0 q > 2n+ 1.

The spectral sequence converges to 0 for p+q ≤ 2n in view of Lemma 3.3. We
need to determine explicitly the d1-differentials d1

p,q : E1
p,q(2n)→ E1

p,q−1(2n)
which, for q ≤ 2n+ 1, are the maps

d1
p,q = (1, d)∗ : Hp(Sp2n(R),Z[Uq(R

2n)])→ Hp(Sp2n(R),Z[Uq−1(R2n)])

where d : Z[Uq(R
2n)] → Z[Uq−1(R2n)] is the differential of the complex

C∗(R
2n). In order to do so, we recall Shapiro’s Lemma. Let G be a group

acting on a set S from the left. Shapiro’s Lemma gives an isomorphism⊕
(ix, x)∗ :

⊕
[x]∈G\S

H∗(Gx;Z)
∼=−→ H∗(G;Z[S])

of homology groups where the direct sum is over a set of representatives
x ∈ S of equivalences classes [x] ∈ G\S, the group Gx = {a ∈ G| ax = x} is
the stabiliser of G at x ∈ S, the homomorphism ix : Gx ⊂ G is the inclusion,
and x also denotes the homomorphism of abelian groups Z→ Z[S] : 1 7→ x.
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We will apply Shapiro’s Lemma to G = Sp2n(R) and S = Uq(R
2n). To

ease notation we will write St2n(v) for the stabiliser of Sp2n(R) at a sequence
v = (v1, ..., vq) of vectors vi in R2n. For the sections of Γ defined in Con-
struction 2.7 we have St2n(Vq,2n(A)) = St2n(e1, ..., eq) = Sp2n−q(R) for q =
0, ..., 2n since Vq,2n(A) = (v1, ..., vq) and (e1, ..., eq) span the same subspace
of R2n. Moreover, St2n(V2n+1,2n(A)) = St2n(e1, ..., e2n) = {1} = Sp−1(R) is
the trivial group.

Recall from Lemma 2.8 that the Gram matrix defines a bijection of sets

Γ : Sp2n(R)\Uq(R2n)
∼=−→ Skew+

q (R) : [v] 7→ Γ(v), 0 ≤ q ≤ 2n+ 1.

In the following we shall denote the inclusions Spr(R) ⊂ Sps(R) generi-
cally by ε for r ≤ s. By Shapiro’s lemma, the following map is an isomor-
phism
(3.5)

H∗(Sp2n−q;Z)⊗Z Z[Skew+
q ]

∼=−→ H∗(Sp2n;Z[Uq(R
2n)]), 0 ≤ q ≤ 2n+ 1

where α⊗A is sent to (ε, Vq,2n(A))∗(α).

Lemma 3.4. For 0 ≤ q ≤ 2n the following diagram is commutative
(3.6)

H∗(Sp2n−q−1;Z)⊗Z Z[Skew+
q+1]

(3.5)

∼=
//

ε∗⊗d
��

H∗(Sp2n;Z[Uq+1(R2n)])

(1,d)∗
��

H∗(Sp2n−q;Z)⊗Z Z[Skew+
q ]

(3.5)

∼=
// H∗(Sp2n;Z[Uq(R

2n)]).

Proof. Recall that d =
∑q+1

i=1 (−1)i+1di where di omits the i-th entry. Write
Vq for the section Vq,2n defined in Construction 2.7. We will show that for
all A ∈ Skew+

q+1(R) and all 1 ≤ i ≤ q + 1, the two maps

(ε, diVq+1(A))∗, (ε, Vq(diA))∗ : H∗(Sp2n−q−1;Z) −→ H∗(Sp2n;Z[Uq(R
2n)])

are equal. For A ∈ Skew+
q+1(R) we will construct B ∈ Sp2n(R) such that

B(diVq+1(A)) = Vq(diA) and BC = CB for all C ∈ Sp2n−q−1(R) ⊂ Sp2n(R).

The existence of such B implies (ε, diVq+1(A))∗ = (ε, Vq(diA))∗; see (3.1).
Assume q is odd. All entries of Vq(diA) and Vq+1(A), and hence of

diVq+1(A), are vectors in the non-degenerate subspace Rq+1 ⊂ R2n of even
rank q + 1. The unimodular sequences diVq+1(A) and Vq(diA) are basis
of non-degenerate subspaces W1 and W2 of Rq+1 of rank q. Since both
sequences have the same Gram matrix, the linear isomorphism W1

∼= W2

sending diVq+1(A) to Vq(diA) is an isometry. By Corollary 2.3 this isometry
extends to an isometry B : Rq+1 → Rq+1 which we extend to all of R2n by
the requirement Bei = ei for i = q + 2, ..., 2n. Then B ∈ Sp2n(R) satis-
fies B(diVq+1(A)) = Vq(diA) and commutes with any C ∈ Sp2n−q−1(R) ⊂
Sp2n(R).
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Assume q even. If q = 0 then dVq+1(A) = Vq(dA) is the empty sequence
and we are done. If q = 2n, then diVq+1(A) and Vq(diA) are both basis of
R2n. Since Γ(dVq+1(A)) = Γ(Vq(dA)), the linear isomorphism B : R2n →
R2n sending diVq+1(A) to Vq(diA) is an isometry which commutes with every
element of Sp−1(R) = {1}.

Assume q is even, 2 ≤ q ≤ 2n−2 and i = q+1. Then diVq+1(A) = Vq(diA)
and we can choose B to be the identity matrix.

Finally, assume q = 2r is even, 2 ≤ q ≤ 2n − 2 and 1 ≤ i ≤ q. Re-
call that A ∈ Skew+

2r+1. Writing Vq+1(A) = (v1, v2, ..., v2r+1), we have
diVq+1(A) = (v1, ..., v̂i..., v2r+1) where v2r+1 = w2r+1 + e2r+1 as in Con-
struction 2.7 (4) with v1, ..., v2r, w2r+1 ∈ R2r. Since e2r+1 is perpendicular
to R2r, the two sequences (v1, ..., v̂i..., v2r+1) and (v1, ..., v̂i..., w2r+1) have
the same (invertible) Gram matrix. In particular, the latter sequence de-
fines a basis of R2r. It follows that v+ = (v1, ..., v̂i..., v2r+1, e2r+1) is a basis
of R2r+1. Write Vq(diA) = (u1, .., u2r). By Construction 2.7, this is a ba-
sis of R2r. It follows that v+ and u+ = (u1, .., u2r, e2r+1) both define a
basis of R2r+1. Since Γ(v+) = (diA) ∗ 0 = Γ(u+), the linear endomor-
phism of R2r+1 that sends v+ to u+ is an isometry. By Corollary 2.3, this
isometry extends to an isometry of R2r+2 which we can extend to an isom-
etry B : R2n → R2n such that Bei = ei, i = 2r + 3, ..., 2n. Note that
B(diVq+1(A)) = Vq(diA) and Be2r+1 = e2r+1. Now, this B ∈ Sp2n(R) and
any C ∈ Sp2n−2r−1(R) ⊂ Sp2n(R) have matrix representations

B =


M 0 u 0
tv 1 b 0
0 0 1 0
0 0 0 12n−2r−2

 , C =


12r 0 0 0
0 1 c ty
0 0 1 0
0 0 x N

 ∈ Sp2n(R)

where M ∈ Sp2r(R), N ∈ Sp2n−2r−2(R), x, y ∈ R2n−2r−2, u, v ∈ R2r and
b, c ∈ R. Any two such matrices commute because(

M 0 u 0
tv 1 b 0
0 0 1 0
0 0 0 1

)( 1 0 0 0
0 1 c ty
0 0 1 0
0 0 x N

)
=

(M 0 u 0
tv 1 b+c ty
0 0 1 0
0 0 x N

)
=

( 1 0 0 0
0 1 c ty
0 0 1 0
0 0 x N

)(
M 0 u 0
tv 1 b 0
0 0 1 0
0 0 0 1

)
This finishes the proof. �

Corollary 3.5. For n ≥ 1 and p ≥ 0, the following differential is trivial:

0 = d1
p,2 : E1

p,2(R2n)→ E1
p,1(R2n).

Proof. By Lemma 3.4, this differential is the map

ε∗⊗d : H∗(Sp2n−2(R))⊗ZZ[Skew+
2 (R)] −→ H∗(Sp2n−1(R))⊗ZZ[Skew+

1 (R)]

But d : Z[Skew+
2 (R)]→ Z[Skew+

1 (R)] is the zero map. �

4. Triviality of drp,q for q even

The goal in this section is to show that the differentials drp,q of the spectral
sequence (3.4) vanish for r ≥ 2 and q < 2n even. Since d ◦ d = 0 in the
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complex C∗(R
2n), the diagram

0 //

��

Z[U2r+1(R2r)]

d
��

// 0

��
Z[U2r+1(R2n)]

d
// Z[U2r(R

2n)]
d
// Z[U2r−1(R2n)]

commutes and defines a map of complexes

ϕ : Z[U2r+1(R2r)][−2r]→ C≤2n+1(R2n)

of Sp2n−2r(R)-modules where Sp2n−2r(R) acts trivially on the source com-
plex Z[U2r+1(R2r)][−2r] and via its inclusion ε : Sp2n−2r(R) ⊂ Sp2n(R) on
the target complex. The pair

(ε, ϕ) : (Sp2n−2r(R),Z[U2r+1(R2r)][−2r]) −→ (Sp2n(R), C≤2n+1(R2n))

defines a map of associated group homology spectral sequences

(4.1) Esp,q(2n; r) −→ Esp,q(2n)

resulting from the stupid filtrations of the coefficient complexes; see (3.3).
By definition, we have

E1
p,q(2n; r) =

 0, q 6= 2r

Hp(Sp2n−2r,Z[U2r+1(R2r)]), q = 2r.

Proposition 4.1. For integers 0 ≤ r < n, s = 2, and all 0 ≤ p, the map
(4.1) is surjective in bidegree (p, 2r):

E2
p,2r(2n; r) � E2

p,2r(2n).

Proof. The map E1
p,2r(2n; r) → E1

p,2r(2n) is the diagonal arrow in the dia-
gram

Hp(Sp2n−2r)⊗ Z[U2r+1(R2r)]

++

1⊗d◦Γ // Hp(Sp2n−2r)⊗ Z[Skew+
2r]

(3.5)
��

Hp(Sp2n,Z[U2r(R
2n)])

sending α ⊗ v to (ε, dv)∗(α). This diagram commutes because div and
V2r,2n(Γdiv) are two basis of the subspace R2r ⊂ R2n that have the same
Gram matrix. In particular, the automorphism B : R2r → R2r sending div
to V2r,2n(Γdiv) is an isometry of R2r which we extend to B ∈ Sp2n(R) by
requiring Bei = ei for i = 2r + 1, ..., 2n. Since B commutes with every
element in Sp2n−2r(R) ⊂ Sp2n(R) the diagram commutes. It follows that
under the isomorphism (3.5), the map E1

p,2r(2n; r) → E1
p,2r(2n) is the first
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map in the complex

Hp(Sp2n−2r)⊗ Z[U2r+1]
1⊗d◦Γ // Hp(Sp2n−2r)⊗ Z[Skew+

2r]

ε∗⊗d
��

Hp(Sp2n−2r+1)⊗ Z[Skew+
2r−1].

In view of Lemma 3.4, the second map in that complex is d1
p,2r : E1

p,2r(2n)→
E1
p,2r−1(2n). Since ε∗ : Hp(Sp2n−2r) → Hp(Sp2n−2r+1) is (split) injective,

Lemmas 2.8 and 2.9 imply that this complex is exact. It follows that
E1
p,2r(2n; r) surjects onto the kernel of the right vertical map which surjects

onto E2
p,2r(2n). In particular, E2

p,2r(2n; r) surjects onto E2
p,2r(2n). �

Corollary 4.2. Let R be a local ring with infinite residue field. Then for
q < 2n even and s ≥ 2, the spectral sequence (3.4) satisfies dsp,q = 0.

Proof. The spectral sequence E(2n; r) has all differentials dsp,q = 0, by def-
inition. Thus, if Esp,q(2n; r) → Esp,q(2n) is surjective, then the differential

dsp,q of E(2n) vanishes and the map Es+1
p,q (2n; r)→ Es+1

p,q+2r(2n) is surjective.

Therefore, Proposition 4.1 implies that all differentials leaving Esp,q(2n) van-
ish for s ≥ 2 and q < 2n even. �

5. A formula for d2
0,2n+1

Our aim is to show that the differential

d2
0,2n+1 : E2

0,2n+1(2n)→ E2
1,2n−1(2n) = H1(Sp2n,Z[U2n−1])

in the spectral sequence (3.4) is surjective at least when 2n = 4. This will be
achieved in Proposition 6.21. In this section we will give an explicit formula
for this differential in Proposition 5.1. Note that E2

1,2n−1(2n) ⊂ E1
1,2n−1(2n)

since E1
1,2n(2n) = 0.

Recall from Lemma 2.9 the surjection

d : Z[Skew+
2n+2] � E2

0,2n+1(2n) = ker
(
Z[Skew+

2n+1]
d−→ Z[Skew+

2n]
)
.

For every matrix A ∈ Skew+
2n−1(R) we chose

v(A) = (v1, ..., v2n−1) ∈ U2n−1(R2n−1) ⊂ GL2n−1(R)

with Γ(v(A)) = A, det v(A) = 1 and vi ∈ Ri for i = 1, ..., 2n − 1 where
Ri is considered a subspace of R2n−1 via ej 7→ ej , j = 1, ..., i. This
is possible, for if we write the section V2n−1,2n−2(A) of Construction 2.7
as V2n−1,2n−2(A) = v′(A) = (v1, ..., v2n−2, v

′
2n−1) then Γ(v′(A)) = A and

v(A) = (v1, ..., v2n−2, v2n−1) has the required properties where v2n−1 =
v′2n−1 + det−1

R2n−2(v1, ..., v2n−2) · e2n−1.
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Using the identification H1 Sp1(R) ∼= Sp1(R) ∼= R : ( 1 x
0 1 ) 7→ x of Example

3.2, Shapiro’s Lemma yields the isomorphism

(5.1)
R [Skew+

2n−1(R)]
∼=−→ H1

(
Sp2n(R),Z[U2n−1(R2n)]

)
a · [A] 7→ [e2n−1,2n(a), v(A)]

where eij(a) denotes the standard elementary matrix with 1’s on the diag-
onal, a at the (i, j)-spot and zero elsewhere, i 6= j.

For A ∈ Skew+
2n+2(A) and subset I ⊂ {1, 2, ..., 2n + 2}, we denote by

A∧I the skew-symmetric matrix obtained from A by removing all rows and
columns in I. Now we can state the explicit formula for the differential
under consideration.

Proposition 5.1. Under the isomorphism (5.1), the composition

γ : Z[Skew+
2n+2(R)]

d
� E2

0,2n+1(2n)
d20,2n+1−→ E2

1,2n−1(2n) ⊂ E1
1,2n−1(2n) = R [Skew+

2n−1(R)]

sends a generator A ∈ Skew+
2n+2(R) to

γ(A) =
∑

1≤i<j<k≤2n+2

(−1)i+j+k
Pf(A)

Pf(A∧ij) Pf(A∧ik) Pf(A∧jk)
·
[
A
îjk

]
.

Proof. The spectral sequence Ep,q(2n) of (3.4) is the spectral sequence

E2
p,q = Hq(Hp(C, d

h), dv)⇒ Hp+q(TotC)

associated with the double complex Cp,q = Z[Gp × Uq] where G = Sp2n(R)

and Uq = Uq(R
2n), q ≤ 2n+ 1. Horizontal and vertical differentials dh and

dv are induced by the differential in the Bar complex Z[G∗ × Uq] and the
complex Z[U∗], respectively. For a spectral sequence arising from a double
complex as above, the differential d2

p,q : E2
p,q → E2

p+1,q−2 is defined as follows.

An element [x] ∈ E2
p,q is represented by an element x ∈ Cp,q such that

dhx = 0 ∈ Cp−1,q and there is y ∈ Cp+1,q−1 such that dhy = dvx ∈ Cp,q−1.
Then d2

p,q[x] = [dvy] ∈ E2
p+1,q−2.

In our case, let A ∈ Skew+
2n+2(R). Then d(A) =

∑2n+2
i=1 (−1)i+1[A∧i ] ∈

E2
0,2n+1 is represented by

α =

2n+2∑
i=1

(−1)i+1[(ui)
∧
i ] ∈ Z[U2n+1(R2n)] ∈ C0,2n+1

where ui ∈ U2n+2(R2n) is such that Γ(ui)
∧
i = A∧i . To find such ui, use

Lemma 2.8 to find (ui)
∧
i ∈ U2n+1(R2n) and then Lemma 2.5 to extend it

to ui ∈ U2n+2(R2n). For 1 ≤ j ≤ 2n + 2, j 6= i, the unimodular sequences
(ui)

∧
ij ∈ U2n(R2n) ⊂ GL2n(R) are invertible matrices and we set

gji = (uj)
∧
ij ◦

(
(ui)

∧
ij

)−1
.
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Since Γ
(

(ui)
∧
ij

)
= A∧i,j = Γ(

(
uj)
∧
ij

)
, the change of basis matrix gji is an

isometry. In particular, gji ∈ Sp2n(R), and we set

β =
∑

1≤i<j≤2n+2

(−1)i+j+1 [gji, (ui)
∧
ij ] ∈ Z[Sp2n×U2n] = C1,2n.

Using the equality

dh [gji, (ui)
∧
ij ] = (ui)

∧
ij − gji · (ui)∧ij = (ui)

∧
ij − (uj)

∧
ij ,

we check that dh(β) = dv(α) ∈ C0,2n:

dh(β) =
∑

1≤i<j≤2n+2

(−1)i+j+1 (ui)
∧
ij +

∑
1≤i<j≤2n+2

(−1)i+j (uj)
∧
ij

=
2n+2∑
i=1

2n+2∑
j=i+1

(−1)i+j+1 dj−1

(
(ui)

∧
i

)
+

∑
1≤j<i≤2n+2

(−1)i+j (ui)
∧
ij

=

2n+2∑
i=1

2n+1∑
j=i

(−1)i+j dj
(
(ui)

∧
i

)
+

i−1∑
j=1

(−1)i+j dj
(
(ui)

∧
i

)

=

2n+1∑
j=1

(−1)j+1
2n+2∑
i=1

(−1)i+1 dj
(
(ui)

∧
i

)

= dv(α).
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Thus, we have

γ(A) = dv(β)

=

2n∑
k=1

∑
1≤i<j≤2n+2

(−1)i+j+k [gji, dk(ui)
∧
ij ]

=
∑

1≤k<i<j≤2n+2

(−1)i+j+k [gji, (ui)îjk]

−
∑

1≤i<k<j≤2n+2

(−1)i+j+k [gji, (ui)îjk]

+
∑

1≤i<j<k≤2n+2

(−1)i+j+k [gji, (ui)îjk]

=
∑

1≤i<j<k≤2n+2

(−1)i+j+k
(

[gkj , (uj)îjk]− [gki, (ui)îjk] + [gji, (ui)îjk]
)
.

Note that [gkj , (uj)îjk]− [gki, (ui)îjk] + [gji, (ui)îjk] is a cycle for the horizon-

tal differential and thus represents an element of H1(Sp2n, U2n−1). Using
the identity [gh, u] = [h, u] + [g, hu] in H1(G,U) together with (uj)îjk =

gji · (ui)îjk, this cycle is

[gkj , gji · (ui)îjk]− [gki, (ui)îjk] + [gji, (ui)îjk]

= [gkjgji, (ui)îjk]− [gji, (ui)îjk]− [gki, (ui)îjk] + [gji, (ui)îjk]

= [gkjgji, (ui)îjk]− [gki, (ui)îjk]

= [gikgkjgji, (ui)îjk]

where we also used [g, u] − [h, u] = [h−1g, u] if gu = hu, and gik = g−1
ki .

Hence,

γ(A) =
∑

1≤i<j<k≤2n+2

(−1)i+j+k [gikgkjgji, (ui)îjk].

The proposition now follows from Lemma 5.2 below. �

Lemma 5.2. Let A ∈ Skew+
2n+2(R) and 1 ≤ i < j < k ≤ 2n+ 2. Then the

element

[gikgkjgji, (ui)îjk] ∈ H1(Sp2n(R), U2n−1(R2n))
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is independent of the choice of ui, uj , uk ∈ U2n+2(R2n) as long as Γ(ur)
∧
r =

A∧r and grs = (ur)
∧
rs ◦ ((us)

∧
rs)
−1 for r, s ∈ {i, j, k}. Under the isomorphism

(5.1), we have

(5.2) [gikgkjgji, (ui)îjk] =
Pf(A)

Pf(A∧ij) Pf(A∧ik) Pf(A∧jk)
·
[
A
îjk

]
.

Proof. Let ũi, ũj , ũk ∈ U2n+2(R2n) be another set of unimodular sequences

with Γ(ũr)
∧
r = A∧r and set g̃rs = (ũr)

∧
rs ◦ ((ũs)

∧
rs)
−1 for r, s ∈ {i, j, k}. Since

Γ : Sp2n \U2n+1(R2n) ∼= Skew+
2n+1(R) is a bijection, there is hr ∈ Sp2n(R)

such that (ũr)
∧
r = hr(ur)

∧
r for r ∈ {i, j, k}. Then g̃rs = hr · grs · h−1

s and

[g̃ikg̃kj g̃ji, (ũi)îjk] = [hi(gikgkjgji)h
−1
i , hi(ui)îjk] = [gikgkjgji, (ui)îjk]

using [hgh−1, hu] = [g, u] ∈ H1(G,U) for all h, g ∈ G and u ∈ U with
gu = u. This proves independence of choices.

Next we want to reduce checking equation (5.2) for all indices i < j < k to
checking it just for (i, j, k) = (2n, 2n+ 1, 2n+ 2). To that end, if k < 2n+ 2,
let B ∈ Skew+

2n+2(R) be obtained from A by exchanging k-th row and
column with the k+ 1-st row and column, that is, let σ be the permutation
of {1, ...2n+2} that exchanges k and k+1 and fixes everything else, then the
entries of B satisfy Br,s = Aσ(r),σ(s). Note that A∧i,j,k = B∧i,j,k+1. Similarly,
let vi, vj , vk+1 be obtained from ui, uj , uk by exchanging the k-th and k+ 1-
st columns. That is, vr = (uσ(r)) ◦ σ where σ also denotes the 2n + 2 ×
2n+ 2 permutation matrix corresponding to the permutation σ above, r ∈
{i, j, k + 1}. Then Γ(vr)

∧
r = B∧r for r ∈ {i, j, k + 1}. The right hand side

of (5.2) doesn’t change if we replace A with B and i, j, k with i, j, k + 1
since Pf(A) = −Pf(B), Pf(A∧i,j) = −Pf(Bi,j), Pf(A∧i,k) = Pf(Bi,k+1) and

Pf(A∧j,k) = Pf(Bj,k+1). For the left hand side, write fr,s = (vr)
∧
r,s◦((vs)∧r,s)−1

where r, s ∈ {i, j, k + 1}. Then fr,s = gσ(r),σ(s) for r 6= s ∈ {i, j, k + 1}. In
particular,

[fi,k+1fk+1,jfji, (vi)îjk+1
] = [gikgkjgji, (ui)îjk],

and the left hand side has not changed. Similarly, if k = 2n+2 and j < 2n+1
one shows that both sides of (5.2) remain unchanged if we replace A with
the matrix B obtained from A by exchanging the j-the and j + 1st row and
column. Finally, if (j, k) = (2n + 1, 2n + 2) and i < 2n we can exchange
the i-th and i+ 1st row and column in A without changing the sides of the
equation (5.2).

Now we are reduced to checking equation (5.2) for (i, j, k) = (2n, 2n +
1, 2n+ 2). So, let (i, j, k) = (2n, 2n+ 1, 2n+ 2) and set I = {i, j, k}. Recall
that v(A∧I ) ∈ GL2n−1(R) is an upper triangular matrix of determinant 1
and thus of the form

v(A∧I ) =
(w w2n−1

0 det−1 w
0 0

)
∈M2n,2n−1(R)

when the columns are considered as lying in R2n. Note that w ∈ GL2n−2(R).
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For r ∈ I, construct ur ∈ U2n+2(R2n) as follows. Set (ur)
∧
I = v(A∧I ),

extend it first to (ur)
∧
r ∈ U2n+1(R2n) with Γ((ur)

∧
r ) = A∧r as in Construction

2.7 and then extend it to ur ∈ U2n+2(R2n) using Lemma 2.5 and Remark
2.4. Then grs fixes (ur)

∧
I = v(A∧I ) = (us)

∧
I . Since the columns of (ur)

∧
I =

v(A∧I ) generate R2n−1, the map grs fixes every vector in R2n−1. Therefore,
grs = e2n−1,2n(crs) ∈ Sp1(R) ⊂ Sp2n(R) for unique crs ∈ R and all r, s ∈ I.
Note that crs = −csr since grs = g−1

sr . Under the identification (5.1) we then
have

[gikgkjgji, (ui)
∧
I ] = (cik + ckj + cji) · [A∧I ].

Let r, s, t ∈ I be such that {r, s, t} = I, and let urs denote the s-th vector
in the unimodular sequence ur := ur and urq,s its q-th row entry. Then

urs =

(
ws
drs

Pf(A∧rt)

)
where drs ∈ R, and ws ∈ R2n−2 is the unique solution to

tw ◦ ψ ◦ ws = (Aq,s)1≤q≤2n−2

which expresses part of the equality Γ(ur)∧r = A∧r . The last entry of urs
follows from the identity

Pf(A∧rt) = det(ur)∧rt = ur2n,s · det v(A∧I ) = ur2n,s

since the matrix (ur)∧rt = (v(A∧I ), urs) is upper triangular and det v(A∧I ) = 1.
For s < t we have

(ur) ̂2n−1,r
=

(
w ws wt
0 drs drt
0 Pf(A∧rt) Pf(A∧rs)

)
,

and therefore,
(5.3)

Pf(A ̂2n−1,r
) = det(ur) ̂2n−1,r

= detw · (drs Pf(A∧rs)− drt Pf(A∧rt))

= Pf(A ̂2n−1,I
) · (drs Pf(A∧rs)− drt Pf(A∧rt)) , s < t.

For all r, s, t with {r, s, t} = I, the equation urt = grs(u
s
t ) yields

drt = dst + crs Pf(A∧rs).
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Therefore,

cik + ckj + cji

=
dij−dkj
Pf(A∧

ik
)

+
dki−d

j
i

Pf(A∧
jk

)
+

d
j
k
−dik

Pf(A∧ij)

=
dij Pf(A∧ij)−dik Pf(A∧ik)

Pf(A∧ij) Pf(A∧
ik

)
+

dki Pf(A∧ik)−dkj Pf(A∧jk)

Pf(A∧
ik

) Pf(A∧
jk

)
+

d
j
k
Pf(A∧jk)−d

j
i Pf(A∧ij)

Pf(A∧
jk

) Pf(A∧ij)

(5.3)
=

Pf(A ̂2n−1,i
)

Pf(A∧ij) Pf(A∧
ik

) Pf(A ̂2n−1,I
)

+
Pf(A ̂2n−1,k

)

Pf(A∧
ik

) Pf(A∧
jk

) Pf(A ̂2n−1,I
)
−

Pf(A ̂2n−1,j
)

Pf(A∧ij) Pf(A∧
jk

) Pf(A ̂2n−1,I
)

=
Pf(A ̂2n−1,i

) Pf(A∧j,k)−Pf(A ̂2n−1,j
) Pf(A∧i,k)+Pf(A ̂2n−1,k

) Pf(A∧i,j)

Pf(A∧ij) Pf(A∧
ik

) Pf(A∧
j,k

) Pf(A ̂2n−1,I
)

=
Pf(A) Pf(A ̂2n−1,I

)

Pf(A∧ij) Pf(A∧
ik

) Pf(A∧
j,k

) Pf(A ̂2n−1,I
)

where the last equation follows from [DW95, Theorem 1] (in the notation
of that paper, choose I1 = {1, 2, ..., 2n − 2, 2n, 2n + 1, 2n + 2} and I2 =
{1, 2, ..., 2n− 1}). �

6. Surjectivity of d2
0,5

The goal of this section is to show in Proposition 6.21 below that the map
γ : Z[Skew+

6 (R)] → R [Skew+
3 (R)] of Proposition 5.1 is surjective. Recall

that, unless stated otherwise, (R,m) is a local ring with infinite residue field
R/m.

Notation 6.1. A skew-symmetric matrix A = (aij) with entries in R will
be specified by giving its upper triangular part, the lower triangular part
being determined by the requirement aij = −aji. For instance,(

0 a b
0 c

0

)
=
(

0 a b
−a 0 c
−b −c 0

)
.

For a, b, c ∈ R∗, we set

[ a bc ] =
(

0 a b
0 c

0

)
and [a] = [ a aa ]

These are elements of Skew+
3 (R). For units a, b, c ∈ R∗ with a−1−b−1+c−1 ∈

R∗ and x ∈ R we write

x { a bc } =
x

(a−1 − b−1 + c−1)2

[
a−1 b−1

c−1

]
and for a ∈ R∗, x ∈ R we set

x {a} = x { a aa } = a2x [a−1]

considered as elements of R [Skew+
3 (R)]. Note that

x { a ac } = xc2
[
a−1 a−1

c−1

]
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for all a, c ∈ R∗. Finally, for ξ, ζ ∈ R [Skew+
3 (R)], we write

ξ ≡ ζ
to mean ξ = ζ in coker(γ) where γ : Z[Skew+

6 (R)] → R [Skew+
3 (R)] is

the map in Proposition 5.1 for n = 2. Our goal is to show ξ ≡ 0 for all
ξ ∈ R [Skew+

3 (R)].

Lemma 6.2. For all a, b, c, d, e ∈ R∗ we have in R [Skew+
3 (R)] the relation

(6.1)

0 ≡ a2

b2
(d2−c2)

e { a ab } − a2d2

c2e
{ a ac } − a2

c {
a a
e }+ b2d2

c2e
{ b bc }

+ b2

c { b be }+ b { d de } − b { c ce } .

Proof. The 6× 6 skew-symmetric matrix

A =


0 a a a a a

0 b b b b
0 c c c

0 d d
0 e

0


has Pfaffian Pf(A) = ace and is in Skew+

6 (R) if and only if all its entries
a, ..., e are units. We compute

(6.2)

γ(A) =
(

e
a2d2
− e

a2c2

)
[ a ab ]

− e
a2d2

[ a ac ]− c
a2e2

[ a ae ] + e
b2d2

[ b bc ]

+ c
b2e2

[ b be ] + 1
be2

[ d de ]− 1
be2

[ c ce ] .

See Appendix A.1 for more details. The result follows by replacing a, ..., e
with their inverses a−1, ..., e−1. �

Lemma 6.3. For all a, c, d, e ∈ R∗ we have in R [Skew+
3 (R)] the relation

(6.3) d2−c2
e {a} ≡ a ({ c ce } − { d de }) .

Proof. Put a = b in Lemma 6.2. �

Lemma 6.4. The function R×R∗ → coker(γ) : (x, a) 7→ x {a} is linear in
both variables x and a (as long as the second variable only involves units),
that is,

(x+ y) {a} ≡ x {a}+ y {a} and x {a+ b} ≡ x {a}+ x {b}
for all a, b, a+ b ∈ R∗, x, y ∈ R.
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Proof. The first relation is actually an equality in R [Skew+
3 (R)]:

(x+ y) {a} = (x+ y)a2[a−1] = xa2 [a−1] + ya2 [a−1] = x {a}+ y {a}.
For the second relation, for fixed c, d, e ∈ R∗, the right hand side of (6.3)
is linear in a, hence the left hand side is, as long as it is defined. If x ∈ R
is a unit, choose c, d ∈ R∗ such that d2 − c2 ∈ R∗. This is possible since
for given c ∈ R∗, d only needs to avoid finitely many elements of R/m.
Setting e = (d2− c2)x−1 shows that the function R∗ → coker(γ) : a 7→ x{a}
is linear in a. It follows that for any two units x, y ∈ R, the expression
(x+ y) {a} = x {a}+ y {a} is linear in a. Since every element of R is a sum
of two units, we are done. �

We will extend the map in Lemma 6.4 to a Z-bilinear map defined on all
of R×R using the following.

Lemma 6.5. Let (R,m) be a local ring with infinite residue field, and let A
be an abelian group. Then any function f : R∗ → A satisfying f(a)+f(b) =
f(a+b) for all a, b, a+b ∈ R∗ extends to a unique Z-linear function R→ A.

Proof. If x ∈ m and a, b ∈ R∗ then f(x + a) − f(a) = f(x + b) − f(b). For
we can choose c ∈ R∗ such that a + c, b + c, a + b + c ∈ R∗ as c only needs
to avoid a finite number of elements of R/m. Then f(x+ a) + f(b) + f(c) =
f(x+a+c)+f(b) = f(x+a+b+c) = f(x+b)+f(a+c) = f(x+b)+f(a)+f(c).
Thus, we can set f(x) = f(a+ x)− f(a) for a ∈ R∗, and this expression is
independent of a ∈ R∗. This defines a function f : R → A which we need
to check is Z-linear. So, let x, y ∈ R. If x, y ∈ m then choose a, b ∈ R∗

such that a + b ∈ R∗. Then f(x + y) = f(x + y + a + b) − f(a + b) =
f(x+ a) + f(y + b)− f(a)− f(b) = f(x) + f(y). If x ∈ m and y ∈ R∗ then
f(x+ y) = f(x) + f(y), by definition of f(x). The rest is clear. �

Definition 6.6. We define the map R×R→ coker(γ) : (x, y) 7→ 〈x, y〉 by

〈x, y〉 =

 x{y} y ∈ R∗,

x {y + a} − x {a} y ∈ m, a ∈ R∗.

By Lemmas 6.4 and 6.5, this is well-defined (that is, independent of the
choice of a ∈ R∗), and the map is Z-linear in both variables x and y ∈ R.

Lemma 6.7. For c, e ∈ R∗, the expression

a2e−1 { a ac } + a2c−1 { a ae }
in coker(γ) is independent of a ∈ R∗.

Proof. The claim follows by setting c = d in Lemma 6.2 �

Lemma 6.8. For all c, d, f ∈ R∗ we have

f { c cd } ≡ d {f}+ f {d} − c2d−1{f}.

Proof. This is Lemma 6.3 with e = d replacing a with f . �
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Lemma 6.9. For all a, c, e ∈ R∗ we have in coker(γ)

0 ≡
〈
a2c−1 − c, a2e−1 − e

〉
+
〈
a2e−1 − e, a2c−1 − c

〉
.

Proof. We rewrite the expression in Lemma 6.7 using Lemma 6.8:

(6.4)

a2

e {
a a
c }+ a2

c {
a a
e }

≡ a2

e {c}+ c {a2e } −
a2

c {
a2

e }+ a2

c {e}+ e {a2c } −
a2

e {
a2

c }

= a2

e {c}+ a2

c {e}+
(
e− a2

e

)
{a2c }+

(
c− a2

c

)
{a2e }.

By Lemma 6.7, these expressions are independent of a. Setting a = e, the
last expression equals

e {c}+ c {e} − e2

c
{e}+

e2

c
{e}+ e {e

2

c
} − e {e

2

c
} = e {c}+ c {e}.

Taking the difference with (6.4) gives
(6.5)

0 ≡ −
(
e− a2

e

)
{c} −

(
c− a2

c

)
{e}+

(
e− a2

e

)
{a2c }+

(
c− a2

c

)
{a2e }

=
(
e− a2

e

) (
{a2c } − {c}

)
+
(
c− a2

c

) (
{a2e } − {e}

)
.

Rewriting the last expression in terms of 〈 , 〉 using Definition 6.6 and
bilinearity yields the lemma. �

Lemma 6.10. Let R be a local ring with infinite residue field. Then the set
of elements of the form 1

u1
+ 1

u2
+ 1

u3
generates R as an abelian group where

ui ∈ R∗ such that u1 + u2 + u3 = 0.

Proof. Let A ⊂ R be the abelian subgroup generated by elements of the form
1
u1

+ 1
u2

+ 1
u3

as in the lemma. We need to show A = R. We will show that

there is a triple (u1, u2, u3) such that u1+u2+u3 = 0 and w = 1
u1

+ 1
u2

+ 1
u3
∈

R∗ is a unit. Then tw ∈ A for all t ∈ R∗, in particular, R∗ ⊂ A which implies
R ⊂ A. We need to find u1, u2 ∈ R∗ such that u1 +u2,

1
u1

+ 1
u2
− 1

u1+u2
∈ R∗

that is, such that u1, u2, u1 + u2, u
2
1 + u1u2 + u2

2 ∈ R∗. This only needs to
be checked for F = R/m. For any given 0 6= u1 ∈ F there are only finitely
many u2 which do not satisfy this requirement. Since F is infinite, there is
u2 ∈ F such that u2, u1 + u2, u

2
1 + u1u2 + u2

2 6= 0. �

Lemma 6.11. Let R be a local ring with infinite residue field. Then for a ∈
R∗ the following map of abelian groups (defined on generators) is surjective

Z[R∗]→ R : c 7→ a2

c
− c.

Proof. The image contains the set of elements a2( 1
u1

+ 1
u2

+ 1
u3

) where ui ∈ R∗
and u1 + u2 + u3 = 0. By lemma 6.10, this set generates R as an abelian
group. �
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Lemma 6.12. Let R be a local ring with infinite residue field. Then the
Z-bilinear map R × R → coker(γ) : (x, y) 7→ 〈x, y〉 of Definition 6.6 is
anti-symmetric, that is, for all x, y ∈ R we have

〈x, y〉+ 〈y, x〉 ≡ 0.

In particular, for all a, b ∈ R∗ we have

a {b}+ b {a} ≡ 0.

Proof. This follows from Lemmas 6.11 and 6.9, and the bilinearity of 〈 , 〉.
�

Lemma 6.13. For all c, d, f ∈ R∗ we have

f { c cd } ≡ −c2d−1{f} ≡ f {c2d−1}.

Proof. Combine Lemmas 6.8 and 6.12. �

Lemma 6.14. For all a, b, c ∈ R∗ we have

(6.6) 0 ≡ a2
(
c2

b3
+ 1

c

)
{a2b } − b

2
(
c2

b3
+ 1

c

)
{b}.

Proof. We simplify expression (6.1) using Lemma 6.13, and we obtain

(6.7)
0 ≡ a2

b2
(d2−c2)

e {a2b } −
a2d2

c2e
{a2c } −

a2

c {
a2

e }+ b2d2

c2e
{ b2c }

+ b2

c {
b2

e }+ b {d2e } − b {
c2

e }.

Using anti-symmetry of the bilinear form 〈 , 〉 (Lemma 6.12) on the 3rd,
5th, 6th and 7th summand yields

(6.8)

0 ≡ a2

b2
(d2−c2)

e {a2b } −
a2d2

c2e
{a2c }+ a2

e {
a2

c }+ b2d2

c2e
{ b2c }

− b2

e {
b2

c } −
d2

e {b}+ c2

e {b}

= d2−c2
e

(
a2

b2
{a2b } −

a2

c2
{a2c }+ b2

c2
{ b2c } − {b}

)
.

For any c ∈ R∗ we can find d ∈ R∗ such that d2 − c2 ∈ R∗. Since e ∈ R∗ is
an arbitrary unit we conclude that

(6.9) 0 ≡ x
(
a2

b2
{a2b } −

a2

c2
{a2c }+ b2

c2
{ b2c } − {b}

)
.

for all a, b, c ∈ R∗ and x ∈ R. In particular for x = c2/b we obtain

(6.10) 0 ≡ a2c2

b3
{a2b } −

a2

b {
a2

c }+ b { b2c } −
c2

b {b}
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Using anti-symmetry on the 2nd and 3rd term (Lemma 6.12) we obtain

(6.11)
0 ≡ a2c2

b3
{a2b }+ a2

c {
a2

b } −
b2

c {b} −
c2

b {b}

= a2
(
c2

b3
+ 1

c

)
{a2b } − b

2
(
c2

b3
+ 1

c

)
{b}.

�

Lemma 6.15. Let R be a local ring with infinite residue field and b ∈ R∗
a unit. Then the following map of abelian groups (defined on generators) is
surjective

Z[R∗] � R : c 7→ c2

b3
+

1

c
.

Proof. Chose units u1, u2, u3 such that all non-empty partial sums are units
as well as

w =
1

u1 + u2 + u3
− 1

u1 + u2
− 1

u1 + u3
− 1

u2 + u3
+

1

u1
+

1

u2
+

1

u3
∈ R∗.

This is possible since we only need to find such u1, u2, u3 ∈ R/m and for any
u1, u2 ∈ R/m such that u1, u2, u1 + u2 6= 0 ∈ R/m there are only finitely
many u3 ∈ R/m such that u1 + u3 or u2 + u3, or u1 + u2 + u3 or w is zero
in R/m (for w to be zero in R/m, u3 has to be a solution of a non-zero
polynomial in R/m).

Now, let u1, u2, u3 ∈ R as above. The element

s = (u1 + u2 + u3)2 − (u1 + u2)2 − (u1 + u3)2 − (u2 + u3)2 + u2
1 + u2

2 + u2
3

of R is zero. Hence, t2sb−3 + t−1w = t−1w is in the image of the map for
any t ∈ R∗. Hence R∗ is in the image and so is R. �

Lemma 6.16. For all a ∈ R∗ and x, y ∈ R.

〈a2x, y〉 ≡ 〈x, a−2y〉.

Proof. Using Lemma 6.15, Lemma 6.14 implies

(6.12) a2x {a2b } ≡ b2x {b}

for all a, b ∈ R∗ and x ∈ R in view of Lemma 6.15. In particular, the left
hand side is independent of a (as the right hand side is) and thus equals its
value for a = 1. In other words (replacing b with b−1), we have

(6.13) a2x {a2b} ≡ x {b}.

Replacing b with a−2b yields a2x {b} ≡ x {a−2b} for all a, b ∈ R∗ and x ∈ R.
That is, the Lemma holds for y = b a unit. Since 〈 , 〉 is linear in the
second variable, we are done. �

Lemma 6.17. For all x ∈ R and a ∈ R∗, we have x [a] ≡ 0.
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Proof. As in the proof of Lemma 6.15, choose units u1, u2, u3 such that all
non-empty partial sums are units as well as

w =
1

(u1 + u2 + u3)2
− 1

(u1 + u2)2
− 1

(u1 + u3)2
− 1

(u2 + u3)2
+

1

u21
+

1

u22
+

1

u23
∈ R∗.

The element

s = (u1 + u2 + u3)2 − (u1 + u2)2 − (u1 + u3)2 − (u2 + u3)2 + u2
1 + u2

2 + u2
3

of R is zero. Therefore,

0 ≡ 〈sx, y〉 ≡ 〈x,wy〉

by bilinearity of 〈 , 〉 and Lemma 6.16. Since y ∈ R is arbitrary and w ∈ R∗,
we have 〈x, y〉 = 0 for all x, y ∈ R which translates into the statement of the
Lemma. �

Lemma 6.18. For all x ∈ R and a, b ∈ R∗, we have x [ a ab ] ≡ 0.

Proof. This is Lemma 6.17 together with Lemma 6.13. �

Lemma 6.19. For all x ∈ R and a, b, c ∈ R∗ such that a − b + c ∈ R∗, we
have x [ a bc ] ≡ 0.

Proof. The skew symmetric matrix

A =


0 d d d d d

0 d d d d
0 d d d

0 a b
0 c

0


has Pfaffian Pf(A) = d2(a − b + c) and is in Skew+

6 (R) if and only if
a, b, c, d, (a − b + c) ∈ R∗. Modulo terms that are ≡ 0 by Lemmas 6.18
and 6.17, we have

γ(A) ≡ 1
(a−b+c)2d [ a bc ] ;

see Appendix A.2. Since d is an arbitrary unit in R, we are done. �

Lemma 6.20. For all x ∈ R and a, b, c ∈ R∗, we have x [ a bc ] ≡ 0.

Proof. The 6× 6 skew symmetric matrix

A =


0 a b d d d

0 b e e e
0 f f f

0 a b
0 b

0


has Pfaffian Pf(A) = (af − be + bd)a and is in Skew+

6 (R) if and only if
Pf(A), a, b, d, e, f are units. Given a, b, d, f ∈ R∗ arbitrary, choose e such
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that a − d + e, b − e + f, af − be + bd ∈ R∗. This is possible since R/m is
infinite. Modulo terms that are ≡ 0 by Lemmas 6.18, 6.17 and 6.19, we have

0 ≡ γ(A) ≡ − a
b4

[
b d
f

]
;

see Appendix A.3. Since a ∈ R∗ is an arbitrary unit, we are done. �

Proposition 6.21. Let R be a local ring with infinite residue field. Then
the map γ : Z[Skew+

6 (R)] → R [Skew+
3 (R)] of Proposition 5.1 is surjective

for n = 2.

Proof. This is a reformulation of Lemma 6.20. �

7. Localising homology groups

The goal in this section is to show that if Sp2n+1(R) → Sp2n+2(R) is
a surjection (injection, isomorphism) in homology then so is Sp2n(R) →
Sp2n+2(R); see Proposition 7.1.

Recall that Sp2n+1(R) is the subgroup of Sp2n+2(R) of matrices

(7.1)
(

1 c tuψM
0 1 0
0 u M

)
where ψ = ψ2n, M ∈ Sp2n(R), u ∈ R2n, c ∈ R. We let the group R∗ of
units of R act from the left on Sp2n+2(R) by conjugation with the matrix
Tb ∈ Sp2n+2(R) for b ∈ R∗ where

Tb =
(
b 0 0
0 b−1 0
0 0 1n

)
and 1n denotes the n × n identity matrix. Note that Tb · A · T−1

b = A for

A ∈ Sp2n(R) and Tb ·A · T−1
b ∈ Sp2n+1(R) for A ∈ Sp2n+1(R) since

Tb ·
(

1 c tuψM
0 1 0
0 u M

)
· T−1

b =

(
1 b2c btuψM
0 1 0
0 bu M

)
.

By functoriality, this defines an R∗-action (hence a left Z[R∗]-module struc-
ture) on the homology groups Ht(Spq(R)) for q = 2n, 2n + 1, 2n + 2. The
action is trivial for Sp2n and Sp2n+2, the latter because Tb ∈ Sp2n+2(R), but
that action is non-trivial for Sp2n+1, in general. Let m be an integer such
that m > 2t. We choose units a1, ..., am ∈ R∗ such that for every non-empty
subset I ⊂ {1, ...,m} the partial sum aI =

∑
i∈I ai is a unit in R. This is

possible since R has infinite residue field. Let sm ∈ Z[R∗] be the element

sm = −
∑

∅6=I⊂{1,...,m}

(−1)|I|〈aI〉 ∈ Z[R∗]

first considered in [Sch17a, §2] where 〈u〉 ∈ Z[R∗] denotes the element of the
group ring corresponding to u ∈ R∗. Since R∗ acts trivially on Ht(Sp2n(R))
and Ht(Sp2n+2(R)), multiplication by sm on those groups is the identity
map [Sch17a, p. 7] in view of the equality

1 = −
∑

∅6=I⊂{1,...,m}

(−1)|I|.
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In particular, we have

Ht(Sp2n(R)) = s−1
m Ht(Sp2n(R)), Ht(Sp2n+2(R)) = s−1

m Ht(Sp2n+2(R)).

Proposition 7.1. Let m,n, t ≥ 0 be integers with m > 2t, and let R
be a local ring with infinite residue field. Then localisation of the maps
Ht(Sp2n(R)) → Ht(Sp2n+1(R)) → Ht(Sp2n+2(R)) at sm ∈ Z[R∗] induces a
commutative diagram of abelian groups

Ht(Sp2n(R)) //

∼=
��

Ht(Sp2n+1(R)) //

��

Ht(Sp2n+2(R))

∼=
��

s−1
m Ht(Sp2n(R)) ∼=

// s−1
m Ht(Sp2n+1(R)) // s−1

m Ht(Sp2n+2(R))

in which the outer two vertical arrows and the lower left horizontal arrow
are isomorphisms.

In particular, if the map Ht(Sp2n+1(R))→ Ht(Sp2n+2(R)) is a surjection
(injection, isomorphism) then so is Ht(Sp2n(R))→ Ht(Sp2n+2(R)).

Proof. We have already seen that the two outer vertical maps are iso-
morphisms. Also, a localisation of a surjection (injection, isomorphism)
is a surjection (injection, isomorphism). So, all we have to prove is that
the lower left horizontal map is an isomorphism. The inclusion of groups
ε : Sp2n(R)→ Sp2n+1(R) has a retraction

(7.2) ρ : Sp2n+1(R)→ Sp2n(R) :
(

1 c tuψM
0 1 0
0 u M

)
7→M.

This defines an exact sequence of groups

1→ G −→ Sp2n+1(R)
ρ−→ Sp2n(R)→ 1.

Since the map ρ is R∗-equivariant, the group R∗ acts on the exact sequence
and hence on the associated Hochschild-Serre spectral sequence

E2
p,q = Hp(Sp2n(R), Hq(G))⇒ Hp+q(Sp2n+1(R)).

We localise that spectral sequence at sm ∈ Z[R∗] to obtain the spectral
sequence

(7.3) s−1
m E2

p,q = Hp(Sp2n(R), s−1
m Hq(G))⇒ s−1

m Hp+q(Sp2n+1(R)).

Here we used that s−1
m Hp(Sp2n(R), Hq(G)) = Hp(Sp2n(R), s−1

m Hq(G)) since
R∗ acts trivially on Sp2n(R). There is a central extension of groups

1→ (R,+)→ G→ (R2n,+)→ 1

where the second map sends (
1 c tuψ
0 1 0
0 u 1

)
∈ G

to u ∈ R2n. This central extension is R∗-equivariant where b ∈ R∗ acts on
(R,+) via multiplication by b2 and on (R2n,+) via multiplication by b. We
have s−1

m H0(G) = Z since R∗ acts trivially on H0(G). By Proposition [Sch21,
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D.4], we have s−1
m Hq(G) = 0 for m > 2q > 0. In particular, the localised

Hochschild-Serre spectral sequence (7.3) degenerates at E2 for m > 2t ≥ 2q
to yield the isomorphism

ρ : s−1
m Ht(Sp2n+1R)

∼=−→ Ht(Sp2nR)

for t < m/2. Since ρ is a retract of ε, we are done. �

8. Homology stability

As always, R will be a local ring with infinite residue field. In this section
we will use the spectral sequence (3.4) with differentials dr of bidegree (r−
1,−r) to deduce our homology stability results from the Introduction. So
far, we have proved the following.

Properties of the spectral sequence (3.4).

(1) The abutment satisfies Hp+q(Sp2n,Z[U∗]| ∗≤2n+1) = 0 for p+ q ≤ 2n;
see Lemma 3.3. In particular, E∞p,q(2n) = 0 for p+ q ≤ 2n.

(2)

E1
p,q(2n) ∼= Hp(Sp2n−q)⊗ Z[Skew+

q ]

for 0 ≤ q ≤ 2n+ 1 and any p ∈ Z; see (3.5).
(3) Under the isomorphism of (2), the differential in E1(2n) is

d1
p,q = ε⊗ d : Hp(Sp2n−q)⊗ Z[Skew+

q ]→ Hp(Sp2n−q+1)⊗ Z[Skew+
q−1]

for 1 ≤ q ≤ 2n+1 where ε is the map induced by inclusion of groups
and d is the differential of the complex Z[Skew+

∗ ]; see Lemma 3.4.
(4) The complex (Z[Skew+

∗ ], d) is acyclic; see Lemma 2.9. In particular,
E2

0,q(2n) = 0 for 0 ≤ q ≤ 2n.

(5) For n ≥ 1 and p ≥ 0, the differential d1
p,2 : E1

p,2(R2n) → E1
p,1(R2n)

vanishes; see Corollary 3.5.
(6) For r ≥ 2 and even q < 2n, the differentials in Er(2n) satisfy drp,q =

0; see Corollary 4.2.
(7) For n = 2, the composition

E2
0,5(4)

d20,5−→ E2
1,3(4) ⊂ E1

1,3(4)

is surjective; see Proposition 6.21. In particular, d2
0,5 is surjective

and E2
1,3(4) = E1

1,3(4), that is, d1
1,3 = 0 in the spectral sequence

E(4).

H0 stability. As is true for any group, we have

H0(Spn(R)) = Z, n ≥ −1.

H1 stability. It is known that the groups Sp2n(R) are perfect (R has infinite
residue field), in particular, H1(Sp2n(R)) = 0 for n ≥ 0. The following
theorem reproves this fact and extends it to the groups Sp2n+1(R).
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Theorem 8.1. Let R be a local ring with infinite residue field. Then

H1 Spq(R) =

{
R, q = 1
0, q ≥ −1, q 6= 1.

Proof. The statement is clear for q = −1, 0, 1 since Sp−1(R) = Sp0(R) = 1
and Sp1(R) = R.

For q = 2n ≥ 2, the group E1
1,0(2n) = H1(Sp2n) has no outgoing differen-

tial and only one incoming differential d1
1,1 : H1(Sp2n−1) → H1(Sp2n) since

d2
0,2 = 0, by the Properties of the spectral sequence (3.4) item (6) above.

Since E∞1,0(2n) = 0, the map d1
1,1 : H1(Sp2n−1)→ H1(Sp2n) is surjective. By

Proposition 7.1, H1(Sp2n−2) → H1(Sp2n) is then also surjective for n ≥ 1.
Since 0 = H1(Sp0), we find that H1(Sp2n) = 0 for n ≥ 0.

For q = 2n ≥ 4, that is, n ≥ 2, we have E1
1,1(2n) = E2

1,1(2n) since

E1
1,0(2n) = H1(Sp2n) = 0. The d1-sequence E1

0,4(2n)→ E1
0,3(2n)→ E1

0,2(2n)

is exact, by item (4) above. Therefore, E2
0,3(2n) = 0 and d2

0,3 = 0. Hence,

H1(Sp2n−1) = E1
1,1(2n) = E2

1,1(2n) = E∞1,1 = 0, by item (1). �

H2 stability. Extending results of Matsumoto [Mat69], van der Kallen
[vdK77] shows isomorphisms

H2(Sp2(R))
∼=−→ H2(Sp4(R))

∼=−→ H2(Sp6(R))
∼=−→ H2(Sp8(R))

∼=−→ · · ·

for any local ring with infinite residue field R. The following theorem re-
proves this fact and extends it to the groups Sp2n+1(R).

Theorem 8.2. Let R be a local ring with infinite residue field. Then for q ≥
2 inclusion of groups induces an isomorphism H2(Spq(R)) ∼= H2(Spq+1(R)):

H2(Sp2(R))
∼=−→ H2(Sp3(R))

∼=−→ H2(Sp4(R))
∼=−→ H2(Sp5(R))

∼=−→ · · ·

Proof. For 2n ≥ 4, that is, n ≥ 2, the term E1
2,0(2n) = H2 Sp2n has no

outgoing differential and only one incoming differential d1 : E1
2,1(2n) →

E1
2,0(2n) since d2

1,2 = 0 (see Properties of the spectral sequence (3.4) item

(6)), and d3
0,3 = 0 (item (4)). The term E1

2,1(2n) = H2 Sp2n−1 has one

outgoing differential d1 : E1
2,1(2n) → E1

2,0(2n) and no incoming differential

because d1
2,2 = 0 (item (5)), d2

1,3 = 0 (E1
1,3 = H1(Sp2n−3)⊗Z[Skew+

3 ] = 0 for

n ≥ 3 and item (7) for n = 2) and d3
0,4 = 0 (because E2

0,4 = 0, by item (4)).

Since E∞2,0(2n) = E∞2,1(2n) = 0 the differential d1 : E1
2,1(2n) → E1

2,0(2n) is

an isomorphism, that is, H2(Sp2n−1) → H2(Sp2n) is an isomorphism. By
Proposition 7.1, H2(Sp2n−2) → H2(Sp2n) is then also an isomorphism for
n ≥ 2. �

H3 stability. The following theorem improves results of Essert [Ess13,
Theorem 3.9], Sprehn-Wahl [SW20, Theorem A] and answers a question of
Hutchinson-Wendt [HW15, Remark 9.6].
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Theorem 8.3. Let R be a local ring with infinite residue field. Then for q ≥
4 inclusion of groups induces an isomorphism H3(Spq(R)) ∼= H3(Spq+1(R))
and surjections H3(Sp2(R)) � H3(Sp4(R)) and H3(Sp3(R)) � H3(Sp4(R)):

H3(Sp2) // //
33 33H3(Sp3) // // H3(Sp4)

∼= // H3(Sp5)
∼= // H3(Sp6)

∼= // · · ·

Proof. For 2n ≥ 4, the term E1
3,0 = H3(Sp2n) has no outgoing differen-

tial and only one incoming differential d1
3,1 : H3(Sp2n−1) → H3(Sp2n) since

d2
2,2 = 0 (Properties of the spectral sequence (3.4) item (6)), d3

1,3 = 0

(E3
1,3(4) = 0, by item (7) for 2n = 4, and Theorem 8.1 for 2n > 4),

and d4
0,4 = 0 (item (4)). Since E∞3,0 = 0 (item (1)), the stabilisation

map d1
3,1 : H3(Sp2n−1) → H3(Sp2n) is surjective. By Proposition 7.1,

H3(Sp2n−2)→ H3(Sp2n) is then also surjective.
For 2n ≥ 6, that is, n ≥ 3, the term E1

3,1 = H3(Sp2n−1) has no outgoing

differential other than d1
3,1 and no incoming differential. Indeed, d2

2,3 = 0

as E2
2,3 = 0 in view of Theorem 8.2 and items (3) and (4). The differential

d3
1,4 = 0 because E1

1,4 = H1(Sp2n−4)⊗ Z[Skew+
4 ] = 0, by Theorem 8.1. The

differential d4
0,5 = 0 because E2

0,5 = 0, by item (4). Since E∞3,1 = 0 (item

(1)), the stabilisation map d1
3,1 : H3(Sp2n−1) → H3(Sp2n) is also injective,

hence an isomorphism. By Proposition 7.1, H3(Sp2n−2)→ H3(Sp2n) is then
also an isomorphism. �

Remark 8.4. The homology stability range in Theorem 8.3 is optimal, in
general. Indeed, let k be an infinite perfect field of characteristic not 2 which
is finitely generated over its prime field, then neither of the two surjective
maps

(8.1) H3(Sp2(k)) � H3(Sp4(k)), and H3(Sp3(k)) � H3(Sp4(k))

is injective. For the first map, this follows from [HW15, Theorem 7.4] since
that map factors through H3(B Sp2(k[∆•])) in view of the isomorphisms

H3(B Sp4(k)) ∼= H3(B Sp(k)) ∼= H3(B Sp(k[∆•]))

of Theorem 8.3 and homotopy invariance of symplectic K-theory for regular
rings containing 1/2. Then the second map cannot be injective either, by
Proposition 7.1.

An important consequence of Theorem 8.3 is the following relative ho-
mology stability result.

Theorem 8.5. Let R be a local ring with infinite residue field. Then inclu-
sion of groups induces an isomorphism of relative integral homology groups
for i ≤ 3

Hi(SL3(R), Sp2(R))
∼=−→ Hi(SL(R), Sp(R)) ∼=

 0 i ≤ 2

KMW
3 (R) i = 3.



34 HUSNEY PARVEZ SARWAR AND MARCO SCHLICHTING

Proof. For i ≤ 3 we have the following commutative diagram

Hi(Sp2) //

ξ0
����

Hi(SL3)

ξ1∼=
��

// Hi(SL3, Sp2)

ξ2
��

// Hi−1(Sp2)

ξ3∼=
��

// Hi−1(SL3)

ξ4∼=
��

Hi(Sp4) // Hi(SL4) // Hi(SL4, Sp4) // Hi−1(Sp4) // Hi−1(SL4)

where the rows are exact, the maps ξ1 and ξ4 are isomorphisms, by [Sch17a,
Theorem 5.37], the map ξ0 is surjective, and the map ξ3 is an isomorphism,
by Theorems 8.1, 8.2 and 8.3. By the Five Lemma, ξ2 is an isomorphism.
Similarly we have isomorphisms

Hi(SL4,Sp4)
∼=−→ Hi(SL6,Sp6)

∼=−→ · · ·
∼=−→ Hi(SL,Sp)

for i ≤ 3. The identification with Milnor-Witt K-theory or 0 follows from
[Sch17a, Theorem 5.37] using the identity Sp2(R) = SL2(R). �

Hn stability. The following result generalises Theorem 8.3. It is probably
not optimal for k ≥ 1 but it improves on [Ess13, Theorem 3.9], [SW20,
Theorem A] . In order to improve stability ranges further with the methods
of this paper one would need to study various non-zero differentials in more
detail which seems to be quite challenging.

Theorem 8.6. Let R be a local ring with infinite residue field, and let k ≥ 0
be an integer. Then for q ≥ 2k + 4 inclusion of groups induces an isomor-
phism Hk+3(Spq(R)) ∼= Hk+3(Spq+1(R)) and surjections
Hk+3(Sp2k+2(R)) � Hk+3(Sp2k+4(R)) and Hk+3(Sp2k+3(R)) � Hk+3(Sp2k+4(R)):

Hk+3(Sp2k+2)

�� '' ''
Hk+3(Sp2k+3)

// // Hk+3(Sp2k+4)
∼= // Hk+3(Sp2k+5)

∼= // Hk+3(Sp2k+6)
∼= // · · ·

Proof. We prove the theorem by induction on k, the case k = 0 is Theorem
8.3. Let n ≥ 1 be an integer and assume the theorem is true for k satisfying
0 ≤ k < n. We consider the Spectral sequence Erp,q(2n + 4) and show that
all incoming differentials at Ern+3,0(2n + 4) are zero for r ≥ 2. Indeed, the

incoming differential drn+4−r,r : Ern+4−r,r(2n + 4) → Ern+3,0(2n + 4) is zero

for r ≥ 2 as E2
n+4−r,r(2n+ 4) = 0. This is because it is the homology of the

complex

Hn+4−r(Sp2n+3−r)⊗ Z[Skew+
r+1]

ε⊗d−→ Hn+4−r(Sp2n+4−r)⊗ Z[Skew+
r ]

ε⊗d−→ Hn+4−r(Sp2n+5−r)⊗ Z[Skew+
r−1]

which is exact, by induction hypothesis and the Properties of the spectral
sequence (3.4) item (4). Since E∞n+3,0(2n + 4) = 0, by item (1), the sta-

bilisation map d1
n+3,1 : Hn+3(Sp2n+3) → Hn+3(Sp2n+4) must be surjective.
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By Proposition 7.1, the stabilisation map Hn+3(Sp2n+2) → Hn+3(Sp2n+4)
is then also surjective.

For m > n we consider the spectral sequence Erp,q(2m + 4) and show
that all incoming differentials at Ern+3,0(2m + 4) and Ern+3,1(2m + 4) are

zero for r ≥ 2 (their outgoing differentials are zero anyway). The incoming
differentials drn+4−r,r : Ern+4−r,r(2m+ 4)→ Ern+3,0(2m+ 4) and drn+4−r,r+1 :

Ern+4−r,r+1(2m+ 4)→ Ern+3,1(2m+ 4) are zero for r ≥ 2 as E2
n+4−r,r(2m+

4) = 0 and E2
n+4−r,r+1(2m + 4) = 0, by induction hypothesis and item (4).

Since E∞n+3,0(2m + 4) = E∞n+3,1(2m + 4) = 0, by item (1), the stabilisation

map d1
n+3,1 : Hn+3(Sp2m+3)→ Hn+3(Sp2m+4) must be an isomorphism. By

Proposition 7.1, the stabilisation map Hn+3(Sp2m+2) → Hn+3(Sp2m+4) is
then also an isomorphism. �

9. The Hurewicz map

Let R be a local ring with infinite residue field. We denote by KMW
n (R)

the n-th Milnor-Witt K-group of R [Sch17a, Definition 4.10]. This is the ev-
ident generalisation to local rings of the definition for fields given in [Mor12].
We recall the definition of symplectic K-theory Kn Sp(R) = πnB Sp(R)+ for
n ≥ 1 where Sp(R) =

⋃
n≥0 Sp2n(R) is the infinite symplectic group over

R and ”+” is Quillen’s plus construction with respect to the perfect (sub-)
group Sp(R).

Theorem 9.1. Let R be a local ring with infinite residue field. Then the
Hurewicz map induces an isomorphism

K2 Sp(R)
∼=−→ H2(Sp(R))

∼=←− H2(Sp2(R)) ∼= KMW
2 (R).

Proof. The first map is the Hurewicz isomorphism since π1B Sp(R)+ =
H1 Sp(R) = 0. The second isomorphism follows from homology stabil-
ity (Theorem 8.2). The last isomorphism is [Sch17a, Theorem 5.27] since
Sp2(R) = SL2(R). �

We denote by GW
[3]
3 (R) the 2-nd homotopy group of the homotopy fibre

of the forgetful map K Sp(R) → K(R) induced by the inclusion of groups

Sp(R) ⊂ SL(R). Thus, GW
[3]
3 (R) sits in an exact sequence

K3 Sp(R)→ K3(R)→ GW
[3]
3 (R)→ K2 Sp(R)→ K2(R)→ · · ·

The definition given here agrees with that in [Sch17b] when 1
2 ∈ R in view

of [Sch17b, Theorem 6.1].

Theorem 9.2. Let R be a local ring with infinite residue field. Then the
Hurewicz map induces an isomorphism

GW
[3]
3 (R)

∼=−→ H3(SL(R), Sp(R))
∼=−→ KMW

3 (R).
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Proof. By definition, we have GW
[3]
3 (R) ∼= π3(BSL+(R), B Sp+(R)). It

follows that π3(BSL+, B Sp+) ∼= H3(SL,Sp) ∼= KMW
3 (R), by the relative

Hurewicz theorem [GJ99, III Corollary 3.12] and Theorem 8.5, �

10. The KO-degree map

We write Z′ for the ring Z[1/2]. In this section, all rings are commuta-
tive with trivial involution and have 2 as a unit. Let R be such a ring. In

[Sch17b, Definition 9.1] we have defined abelian groups GW
[n]
i (R) as the

homotopy groups GW
[n]
i (R) = πiGW

[n](R), i, n ∈ Z, i ≥ 0, of a pointed

topological space GW [n](R) associated with the category of bounded chain
complexes of finitely generated projective R-modules equipped with the du-
ality P 7→ Hom(P,R[n]). For n = 0, the space GW [0](R) is the K-theory
space of non-degenerate symmetric bilinear forms over R, and for n = 2,
the space GW [2](R) is the K-theory space of non-degenerate symplectic

forms over R. In particular, the groups GW
[0]
0 (R) and GW

[2]
0 (R) are the

Grothendieck groups of non-degenerate symmetric and symplectic forms

over R. Using a different definition, the groups GW
[r]
m (R) have been in-

troduced by Karoubi [Kar73] under the name Hermitian K-theory where

GW [1](R) and GW [−1](R) are equivalent to Karoubi’s spaces −1U(R) and

1U(R).
There are natural, associative and unital cup product maps [Sch17b, §9.2]

∪ : GW [r]
m (R)⊗GW [s]

n (R)→ GW
[r+s]
m+n (R)

making
⊕

s,nGW
[s]
n (S) into a bi-graded

⊕
r,mGW

[r]
m (R)-algebra for any R-

algebra S. Moreover, there is a natural Bott long exact sequence [Sch17b,
Theorem 6.1]

· · · → GW [r]
m (R)

f−→ Km(R)
h−→ GW [r+1]

m (R)
η−→ GW r

m−1(R)
f−→ Km−1(R)→ · · ·

where f and h are forgetful and hyperbolic maps and η is cup product with

η ∈ GW [−1]
−1 (Z′) ∼= W (Z′) corresponding to the identity element in the Witt

ring W (Z′).

The Bott sequence [Sch17b, Theorem 6.1] in low degrees gives an exact
sequence

(10.1) GW
[0]
1 (R)

f−→ K1(R)
h−→ GW

[1]
1 (R)

η−→ GW
[0]
0 (R)

f−→ K0(R).

Assume that SK1(R) = 0, that is, the determinant map det : K1(R)→ R∗

is an isomorphism. Then the composition K1(R)
h→ GW

[1]
1 (R)

f→ K1(R) is
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multiplication by 2, and we have a map of exact sequences

(10.2) K1(R)
h //

1

��

GW
[1]
1 (R)

η // //

f

��

I(R)

��
K1(R)

2
// K1(R) // // k1(R)

where k1(R) = K1(R)/2, I(R) = ker(f : GW
[0]
0 (R)→ K0(R)) and the right

vertical map is the map on cokernels of the two left horizontal maps.

Lemma 10.1. Assume that SK1(R) = 0. Then the following map is an
isomorphism:

(10.3) (f, η) : GW
[1]
1 (R)

∼=−→ K1(R)×k1(R) I(R).

Proof. The map is surjective in view of the commutative diagram with exact

rows (10.2). For injectivity, let ξ ∈ GW
[1]
1 (R) such that η(ξ) = 0 and

f(ξ) = 0. Then there is a ∈ R∗ = K1(R) such that h(a) = ξ, by the exact
sequence (10.1). Then a2 = fh(a) = f(ξ) = 1 ∈ R∗, and a ∈ K1(R) is in

the image of the forgetful map GW
[0]
1 (R)→ K1(R), namely, it is the image

of the automorphism of the unit bilinear space 〈1〉 given by multiplication
with a. By exactness of (10.1), ξ = h(a) = 0. This proves the injectivity
claim. �

Let R be a commutative Z′-algebra, and R∗ its group of units. The
integral group ring Z[R∗] has Z-basis the elements 〈a〉, a ∈ R∗, and multi-
plication 〈a〉 · 〈b〉 = 〈ab〉. If we also denote by 〈a〉 the rank 1 bilinear space
R equipped with the form (x, y) 7→ axy, then the abelian group homomor-
phism

Z[R∗]→ GW 0
0 (R) : 〈a〉 7→ 〈a〉

is a ring homomorphism. This makes all groups GW
[r]
n (R) into R∗-modules.

The augmentation ideal I[R∗] is the kernel of the ring homomorphism
Z[R∗] → Z : 〈a〉 7→ 1. We write 〈〈a〉〉 for the element 1 − 〈a〉 considered in
Z[R∗], and we write [a] for the same element 1 − 〈a〉 considered in I[R∗].
Thus, the inclusion I[R∗] → Z[R∗] sends [a] to 〈〈a〉〉1. The augmentation
ideal has Z-basis [a], a ∈ R∗, a 6= 1.

The Bass Fundamental Theorem for Grothendieck-Witt groups [Sch17b,
Theorem 9.13] together with homotopy invariance [Sch17b, Theorem 9.8] for
regular rings gives a split short exact sequence

0→ GW
[1]
1 (Z′) −→ GW

[1]
1 (Z′[T, T−1])

δ−→ GW
[0]
0 (Z′) −→ 0.

The left map is split by the map ε evaluating at T = 1. As in [KSW16, Para-

graph before Lemma 6.9], we denote by [T ] ∈ GW [1]
1 (Z′[T, T−1]) the unique

element such that δ([T ]) = 1 ∈ GW
[0]
0 (Z′) and ε([T ]) = 0 ∈ GW

[1]
1 (Z′).

1In [Sch17a], we used the convention [a] = 〈a〉 − 1.
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For a ∈ R∗, denote by [a] ∈ GW
[1]
1 (R) the image of [T ] under the map

GW
[1]
1 (Z′[T, T−1]) → GW

[1]
1 (R) induced by Z′[T, T−1] → R : T 7→ a. Note

that [1] is 0 in GW
[1]
1 (R) since ε([T ]) = 1. We define the abelian group

homomorphism

ϕ : I[R∗] −→ GW
[1]
1 (R) : [a] 7→ [a].

Lemma 10.2. For any commutative Z′-algebra, the following diagram com-
mutes and is R∗-equivariant

I[R∗]
[a]7→[a] //

� _

��

GW
[1]
1 (R)

η
��

Z[R∗]
〈a〉7→〈a〉

// GW
[0]
0 (R)

Proof. For R = Z′[T, T−1] we have η([T ]) = 〈T 〉, by [KSW16, Lemma 6.9].
For general R and a ∈ R∗, let εa : Z′[T, T−1] → R be the Z′-algebra ho-
momorphism sending T to a. Then η([a]) = η([εa(T )]) = η(εa([T ])) =
εaη([T ]) = εa(〈T 〉) = 〈a〉, and the diagram commutes.

The map η is a GW
[0]
0 (R)-module map, in particular, it is R∗-equivariant.

The lower horizontal and the left vertical maps are R∗-equivariant by def-
inition. For the top horizontal map we only need to consider products
〈b〉 · [a] with a, b ∈ R∗. In other words, it suffices to show equivariance
for Z′[S, T, S−1, T−1], then use functoriality under the ring homomorphism
Z′[S, T, S−1, T−1]→ R : S 7→ a, T 7→ b. Recall that SK1(Z′[S, T, S−1, T−1]) =
0. In particular, we only need to check equivariance of the top map for rings
with trivial SK1. In this case, we can use the R∗-equivariant isomorphism
(10.3) and have to show that the composition

(ϕ1, ϕ2) : I[R∗] −→ GW
[1]
1 (R)

(f,η)−→ K1(R)×k1(R) I(R)

is equivariant. Now ϕ1([a]) = a ∈ K1(R) (as f([T ]) = T ∈ K1(Z′[T, T−1]))
and ϕ2([a]) = 1 − 〈a〉 (since the diagram commutes). In particular, ϕ2

is R∗-eqiuvariant. Since the R∗-action on Kn(R) is via the forgetful map
GW 0

0 (R)→ K0(R), that action is trivial, and we have ϕ1(〈b〉·[a]) = ϕ1([ba]−
[b]) = bab−1 = a = 〈b〉 · ϕ1([a]) ∈ K1(R). �

For a connected ring R, let SK0(R) be the kernel of the rank homomor-
phism K0(R)→ Z.

Lemma 10.3. Let R be a connected commutative ring with SKi(R) = 0 for
i = 0, 1. Then the right square of (10.2) is cartesian:

(10.4) GW
[1]
1 (R)

η // //

f
����

I(R)

����
K1(R) // // k1(R).
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The right vertical map I(R)→ k1(R) sends [a] to {a}. If R is local then the

vertical maps are surjections and the map I[R∗] → GW
[1]
1 (R) : [a] 7→ [a] is

also surjective.

Proof. The diagram is cartesian, by Lemma 10.1. The composition

I[R∗]→ GW
[1]
1 (R)

f→ K1(R)→ k1(R)

sends [a] to a ∈ k1(R) since f([T ]) = T ∈ K1(Z′[T, T−1]). Therefore, the
composition I[R∗]→ I(R)→ k1(R) is [a] 7→ [a] 7→ a.

If R is local then the map f is surjective because GW
[1]
1 (R)

f→ K1(R)
h→

GW
[2]
1 (R) is exact and GW

[2]
1 (R) = K1 Sp(R) ∼= H1(Sp(R)) = 0 for every

local ring. Then the right vertical map is also surjective. Finally, the map

I[R∗]→ GW
[1]
1 (R) is surjective since the composition with the isomorphism

(10.3) is surjective. This follows from the commutative diagram with exact
2nd row and outer vertical maps surjective:

0 // I[R2∗]

����

// I[R∗]

��

// // I[R∗/R2∗]

����

// 0

0 // 2K1(R) // K1(R)×k1(R) I(R) // I(R) // 0

�

Lemma 10.4 (Steinberg Relation). For any commutative ring R over Z′
and any a ∈ R∗ with 1− a ∈ R∗, we have

[a] ∪ [1− a] = 0 ∈ GW [2]
2 (R).

Proof. The proof given in [AF17, Proposition 4.1.10] goes through. In detail,
consider the ring S = R[T ]/(T 2 − a). Then T and 1− T are units in S, the
latter because the matrix in the R-basis 1, T of S has determinant 1−a ∈ R∗.
Consider the R-linear map i : S → R sending 1 to 1 and T to 0 (up to a
factor of 2, this is the trace used in [AF17]). It sends a symmetric bilinear
form (P, b) over S to the symmetric bilinear form i∗(P, b) = (P, i ◦ b) over R
and preserves non-degeneracy since the unit form 〈1〉 is sent to the diagonal
form 〈1〉 + 〈a〉. Therefore, i∗ defines a map of Grothendieck-Witt groups

GW
[r]
n (S) → GW

[r]
n (R) which is GW

[∗]
∗ (R)-linear. The Gram matrix of

i∗〈1−T 〉 with respect to the R-basis 1, T is
(

1 −a
−a a

)
which has determinant

a−a2 and contains the non-degenerate subspace 〈a〉 with basis T . Therefore,
the orthogonal subspace is 〈1− a〉 and we have i∗〈1− T 〉 = 〈a〉+ 〈1− a〉 ∈
GW 0

[0](R). It follows that i∗[1−T ] = [1−a] ∈ GW [1]
1 (R), first by considering

R = Z′[t, t−1, (1− t)−1] using Lemma 10.3, then using functoriality and the
map Z′[t, t−1, (1− t)−1]→ R : t 7→ a. By the Steinberg relation in K-theory,
we have 0 = {T}∪{1−T} = f([T ]∪[1−T ]) ∈ K2(S) using that the forgetful

map f : GW
[∗]
∗ (S)→ K∗(S) is a map of graded rings. Then

0 = hf([T ]∪[1−T ]) = 〈1,−1〉·[T ]∪[1−T ] = [T 2]∪[1−T ] = [a]∪[1−T ] ∈ GW [2]
2 (S)
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since 〈1,−1〉 · [T ] = [T 2] = [a] ∈ GW [1]
1 (S) (it suffices to check the equation

〈1,−1〉 · [T ] = [T 2] in GW
[1]
1 (Z′[T, T−1]) using Lemma 10.1). Applying the

transfer map i∗ and noting that it is GW ∗∗ (R)-linear, we obtain

0 = i∗([a] ∪ [1− T ]) = [a] ∪ i∗[1− T ] = [a] ∪ [1− a] ∈ GW [2]
2 (R).

�

For a commutative Z′-algebra denote by K̂MW
∗ (R) and KMW

∗ (R) the
graded Z[R∗] and GW 0

0 (R)-algebras

K̂MW
∗ (R) = TensZ[R∗] I[R∗]/[a][1−a], KMW

∗ (R) = TensGW 0
0 (R)GW

1
1 (R)/[a][1−a]

where the relations run over all a, 1 − a ∈ R∗. By Lemma 10.4, the maps

Z[R∗] → GW 0
0 (R) and I[R∗] → GW

[1]
1 (R) extend uniquely to homomor-

phisms of graded rings, called symbol map or KO-degree map,

(10.5) K̂MW
∗ (R) −→ KMW

∗ (R) −→
⊕
n≥0

GW [n]
n (R).

When R is local with infinite residue field, the first map is an isomorphism
in degrees ∗ ≥ 2 [Sch17a, Theorem 4.18].

In the following we will use the main result from [GSZ16] which states
that if R is a local ring containing an infinite field of characteristic not two,
then the following square is cartesian

(10.6) KMW
n (R)

ηn // //

f
����

In(R)

��
KM
n (R) // kMn (R)

where the right vertical map sends [a1] ∪ · · · ∪ [an] to {a1} ∪ · · · {an} and
induces an isomorphism In(R)/In+1(R) ∼= kM2 (R). In other words, the map
(10.7)

λ : KMW
n (R)

∼=−→ KM
n (R)×kn In(R) : [a1, ..., an] 7→ {a1, ..., an} , [a1] · · · [an]

is an isomorphism. In addition to the forgetful map

f : KMW
n (R)→ KM

n (R) : [a1] ∪ · · · ∪ [an] 7→ {a1} ∪ · · · {an}

we also have the hyperbolic map

h : KM
n (R)→ KMW

n (R) : {a1} ∪ · · · {an} 7→ 〈1,−1〉[a1] ∪ · · · ∪ [an]

and the map

η : KMW
n (R)→ KMW

n−1 (R) : [a1]∪ [a2]∪· · ·∪ [an] 7→ (1−〈a1〉) · [a2]∪· · ·∪ [an].

Under the isomorphism (10.7), forgetful, hyperbolic map and η areKn(R)×kn
In(R)→ Kn(R) : (x, y) 7→ x, Kn(R)→ Kn(R)×kn In(R) : x 7→ (2x, 0) and
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Kn(R)×kn In(R)→ Kn−1(R)×kn−1 I
n−1(R) : (x, y) 7→ (0, y). In particular,

for all integers n ≥ 1, the following sequence is exact

KM
n (R)

h−→ KMW
n (R)

η−→ KMW
n−1 (R)

f−→ KM
n−1(R)→ 0

as it corresponds under the isomorphism (10.7) to the exact sequence

KM
n

(2,0)−→ KM
n ×kn In

(0×1)−→ KM
n−1 ×kn−1 I

n−1 (1,0)−→ KM
n−1 → 0.

For the next theorem recall that GW
[2]
2 (R) = π2B Sp(R)+.

Theorem 10.5. Let R be a local commutative ring containing an infinite
field of characteristic char(k) 6= 2. Then the KO-degree map is an isomor-
phism in degree 2:

KMW
2 (R)

∼=−→ GW
[2]
2 (R).

Proof. The map in the theorem is injective because the following composi-
tion is injective

KMW
2 (R)→ GW

[2]
2 (R)

(f,η)−→ K2(R)×GW [1]
1 (R)

as that composition can be identified with the injective map(
1 0
0 0
0 i

)
: KM

2 (R)×k2 I2(R)→ K2(R)×K1(R)×k1 I(R)

where i : I2(R) ⊂ I(R) is the inclusion. The map in the theorem is surjective
since it is part of the following map of exact sequences

KM
2 (R)

∼=
��

h // KMW
2 (R)

��

η // KMW
1 (R)

∼=
��

f // KM
1 (R)

∼=
��

K2(R)
h // GW

[2]
2 (R)

η // GW
[1]
1 (R)

f // K1(R).

�

Consider the diagram (suppressing the local ring R in the notation)
(10.8)

KM
3

//

h
��

K3
//

h
��

(∗)

H3(SL)

��

H3(SL3)

��

∼=oo // KMW
3

1
��

KMW
3

//

η

��

GW
[3]
3

(∗)η
��

∼= // H3(SL, Sp)

��

H3(SL3, SL2)

��

∼=oo

(∗∗)

KMW
3

η

��
KMW

2 ∼=
//

f
����

GW
[2]
2

f

��
(∗)

∼=
// H2(Sp)

��

H2(SL2)

����

∼=
oo KMW

2

����
KM

2 ∼=
// K2 ∼=

// H2(SL) H2(SL3)∼=
oo

∼=
// KM

2
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where the horizontal arrows in the first column are the degree maps, in
the second column they are the Hurewicz maps (with second and third row
isomorphisms, by Theorems 9.1 and 9.2). In the third column, the arrows
in the wrong direction are the group homology stability isomorphisms of
Theorems 8.5 and 8.2 for the middle two and [Sch17a, Theorem 5.37] for
the top and bottom map.

Lemma 10.6. Diagram (10.8) commutes.

Proof. Diagrams (∗) commute in view of the compatibility of the Hurewicz
map with the long exact sequence of homotopy and homology groups for
pairs (which, for simplicial sets, is just functoriality of the long exact se-
quence of homotopy groups for pairs applied to the natural transformation
X → Z̃[X] = Z[X]/Zx0 : x 7→ x; see [GJ99, Section III.3]). The square (∗∗)
commutes, by [Sch17a, Lemma 5.40(2)]. The rest follows by functoriality
and the definition of the KO-degree map. �

Lemma 10.7. The composition ϕ : KM
3 → KMW

3 in the string of maps

KM
3 −→ K3 −→ H3(SL)

∼=←− H3(SL3) −→ KMW
3

that is the top row of diagram (10.8) is the hyperbolic map h : KM
3 → KMW

3 .

Proof. Under the isomorphism (10.7), the map h : KM
n (R) → KMW

n (R)
becomes (2, 0) : KM

n (R) ×kn In, and the map η : KMW
n (R) → KMW

n−1 (R)

becomes (0, i) where i : In ⊂ In−1 is the inclusion. By [NS89, Theorem
4.1(a)], the first factor KM

3 (R)→ KM
3 (R) of λϕ is multiplication by 2. The

second factor KM
3 (R)→ I3 of λϕ is zero since the following subdiagram of

(10.8) commutes

K3
//

h
��

H3(SL)

��

H3(SL3)

��

∼=oo // KMW
3

1
��

// I3

1
��

GW
[3]
3

η
��

∼= // H3(SL, Sp)

��

H3(SL3, SL2)

��

∼=oo KMW
3

η

��

// I3
� _

i

��
GW

[2]
2 ∼=

// H2(Sp) H2(SL2)∼=
oo KMW

2
// I2,

the composition of the left vertical maps is zero whereas the composition of
the right vertical maps is injective. �

Theorem 10.8. Let R be a local commutative ring containing an infinite
field of characteristic char(k) 6= 2. Then the KO-degree map is an isomor-
phism in degree 3:

KMW
3 (R)

∼=−→ GW
[3]
3 (R).
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Proof. We only need to show that the composition φ : KMW
3 → KMW

3 of
the second top row in diagram (10.8) is an isomorphism. By Lemma 10.7,
that map is part of the commutative diagram with exact rows

KM
3

h //

1
��

KMW
3

η //

φ
��

KMW
2

f // //

∼=
��

KM
2

∼=
��

KM
3

h // KMW
3

η // KMW
2

f // // KM
2 .

The map on the left horizontal kernels is the identity map. Hence, by the
Five Lemma, φ is an isomorphism. �

Lemma 10.9. Let R be a local ring with infinite residue field.

Then GW
[3]
2 (R) = 0.

Proof. By definition, we have GW
[3]
2 (R) = π2(BSL+(R), B Sp+(R)). By

the relative Hurewicz Theorem [GJ99, III Corollary 3.12] that group is
H2(SL(R), Sp(R)). By Theorem 8.5, this is H2(SL3(R), SL2(R)) which
is zero, by [Sch17a, Theorem 5.37]. �

We recall that Kind
3 (R) = coker(KM

3 (R)→ K3(R)).

Corollary 10.10. Let R be a local ring containing an infinite field of char-
acteristic not 2. Then Kind

3 (R) ∼= KO3(R).

Proof. Consider the commutative diagram

KMW
3 (R) // //

∼=
��

KM
3 (R)

��
GW

[3]
3 (R) // K3(R) // GW

[4]
3 (R) // GW

[3]
2 (R) = 0

in which the horizontal arrows in the square are the forgetful maps (in
particular the top map is surjective), the vertical maps are the KO and
K-theory degree maps, and the bottom row is the Bott exact sequence.

The group GW
[3]
2 (R) is zero, by Lemma 10.9, and the left vertical map is

an isomorphism, by Theorem 10.8. By [Sch17b, Remark 5.9 and Corollary

A.2], we have GW
[4]
3 (R) = KO3(R), and the result follows. �

Appendix A. The Pfaffian of some matrices

For space reasons, we will write [a, b, c] for the skew-symmetric matrix

[a, b, c] =

 0 a b
−a 0 c
−b −c 0

 .
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A.1. The skew-symmetric matrix of Lemma 6.2. The 6 × 6 skew-
symmetric matrix

A =


0 a a a a a
−a 0 b b b b
−a −b 0 c c c
−a −b −c 0 d d
−a −b −c −d 0 e
−a −b −c −d −e 0


has Pfaffian

Pf(A) = ace,

and for 1 ≤ i < j < k ≤ 6, the values of (−1)i+j+k Pf(A)
Pf(A∧ij) Pf(A∧ik) Pf(A∧jk)

and[
A
îjk

]
are as follows.

(i, j, k) (−1)i+j+k
Pf(A)

Pf(A∧ij) Pf(A∧ik) Pf(A∧jk)

[
A
îjk

]

(1, 2, 3) 1/(be2) [d, d, e]

(1, 2, 4) (−1)/(be2) [c, c, e]

(1, 3, 4) c/(b2e2) [b, b, e]

(2, 3, 4) (−c)/(a2e2) [a, a, e]

(1, 2, 5) 1/(bd2) [c, c, d]

(1, 3, 5) (−c)/(b2d2) [b, b, d]

(2, 3, 5) c/(a2d2) [a, a, d]

(1, 4, 5) 1/(b2d) [b, b, c]

(2, 4, 5) (−1)/(a2d) [a, a, c]

(3, 4, 5) 1/(a2d) [a, a, b]

(1, 2, 6) (−1)/(bd2) [c, c, d]

(1, 3, 6) c/(b2d2) [b, b, d]

(2, 3, 6) (−c)/(a2d2) [a, a, d]

(1, 4, 6) (−1)/(b2d) [b, b, c]

(2, 4, 6) 1/(a2d) [a, a, c]

(3, 4, 6) (−1)/(a2d) [a, a, b]

(1, 5, 6) e/(b2d2) [b, b, c]

(2, 5, 6) (−e)/(a2d2) [a, a, c]

(3, 5, 6) e/(a2d2) [a, a, b]

(4, 5, 6) (−e)/(a2c2) [a, a, b]
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A.2. The skew-symmetric matrix of Lemma 6.19. The 6 × 6 skew-
symmetric matrix

A =


0 d d d d d
−d 0 d d d d
−d −d 0 d d d
−d −d −d 0 a b
−d −d −d −a 0 c
−d −d −d −b −c 0


has Pfaffian

Pf(A) = (a− b+ c)d2,

and for 1 ≤ i < j < k ≤ 6, the values of (−1)i+j+k Pf(A)
Pf(A∧ij) Pf(A∧ik) Pf(A∧jk)

and[
A
îjk

]
are as follows.

(i, j, k) (−1)i+j+k
Pf(A)

Pf(A∧ij) Pf(A∧ik) Pf(A∧jk)

[
A
îjk

]

(1, 2, 3) 1/d(a− b+ c)2 [a, b, c]

(1, 2, 4) (−1)/(c2d) [d, d, c]

(1, 3, 4) 1/(c2d) [d, d, c]

(2, 3, 4) (−1)/(c2d) [d, d, c]

(1, 2, 5) 1/(b2d) [d, d, b]

(1, 3, 5) (−1)/(b2d) [d, d, b]

(2, 3, 5) 1/(b2d) [d, d, b]

(1, 4, 5) (a− b+ c)/(bcd2) [d, d, d]

(2, 4, 5) (−a+ b− c)/(bcd2) [d, d, d]

(3, 4, 5) (a− b+ c)/(bcd2) [d, d, d]

(1, 2, 6) (−1)/(a2d) [d, d, a]

(1, 3, 6) 1/(a2d) [d, d, a]

(2, 3, 6) (−1)/(a2d) [d, d, a]

(1, 4, 6) (−a+ b− c)/(acd2) [d, d, d]

(2, 4, 6) (a− b+ c)/(acd2) [d, d, d]

(3, 4, 6) (−a+ b− c)/(acd2) [d, d, d]

(1, 5, 6) (a− b+ c)/(abd2) [d, d, d]

(2, 5, 6) (−a+ b− c)/(abd2) [d, d, d]

(3, 5, 6) (a− b+ c)/(abd2) [d, d, d]

(4, 5, 6) (−a+ b− c)/d4 [d, d, d]
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A.3. The skew-symmetric matrix of Lemma 6.20. The 6 × 6 skew-
symmetric matrix

A =


0 a b d d d
−a 0 b e e e
−b −b 0 f f f
−d −e −f 0 a b
−d −e −f −a 0 b
−d −e −f −b −b 0


has Pfaffian

Pf(A) = a(bd− be+ af),

and for 1 ≤ i < j < k ≤ 6, the values of (−1)i+j+k Pf(A)
Pf(A∧ij) Pf(A∧ik) Pf(A∧jk)

and[
A
îjk

]
are as follows.

(i, j, k) (−1)i+j+k
Pf(A)

Pf(A∧ij) Pf(A∧ik) Pf(A∧jk)

[
A
îjk

]
(1, 2, 3) (bd− be+ af)/(a2def) [a, b, b]

(1, 2, 4) (−bd+ be− af)/(b4f) [f, f, b]

(1, 3, 4) (bd− be+ af)/(ab3e) [e, e, b]

(2, 3, 4) (−bd+ be− af)/(ab3d) [d, d, b]

(1, 2, 5) (bd− be+ af)/(b4f) [f, f, b]

(1, 3, 5) (−bd+ be− af)/(ab3e) [e, e, b]

(2, 3, 5) (bd− be+ af)/(ab3d) [d, d, b]

(1, 4, 5) a/b4 [b, e, f ]

(2, 4, 5) (−a)/b4 [b, d, f ]

(3, 4, 5) 1/(ab2) [a, d, e]

(1, 2, 6) (−bd+ be− af)/(a2b2f) [f, f, a]

(1, 3, 6) (bd− be+ af)/(a3be) [e, e, a]

(2, 3, 6) (−bd+ be− af)/(a3bd) [d, d, a]

(1, 4, 6) (−1)/b3 [b, e, f ]

(2, 4, 6) 1/b3 [b, d, f ]

(3, 4, 6) (−1)/(a2b) [a, d, e]

(1, 5, 6) 1/b3 [b, e, f ]

(2, 5, 6) (−1)/b3 [b, d, f ]

(3, 5, 6) 1/(a2b) [a, d, e]

(4, 5, 6) (−a)/(bd− be+ af)2 [a, b, b]
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