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Abstract. Given a flat family X of Q-Gorenstein singularities over an
open subset U of SpecZ, our first main result says that if the total
space X is Q-Gorenstein and a mod-p fiber is F -pure for some p ∈ U ,
then the generic fiber is log canonical. We also show the analog of
this result for log terminal singularities, without assuming that X is Q-
Gorenstein, as a generalization of the result of Ma-Schwede. Our second
main result shows that two-dimensional, strongly F -regular singularities
are stable under equal characteristic deformations. Our results provide
an affirmative answer to the conjecture of Liedtke-Martin-Matsumoto
regarding the deformations of linearly reductive quotient singularities.

1. Introduction

F -singularities are singularities in positive characteristic defined via the
Frobenius morphism. The link between F -singularities and singularities in
the minimal model program has been studied intensively over the last 25
years. To explain this link, we establish some notation. Let (x ∈ X) be a
normal Q-Gorenstein singularity over C; that is, X is a normal Q-Gorenstein
affine variety SpecC[X1, . . . , Xr]/(f1, . . . , fs) over C, and x is a closed point
of X. We assume for simplicity that x corresponds to the maximal ideal
(X1, . . . , Xr) and that all the coefficients of fi are rational numbers. We
choose an integer n > 1 such that fi are polynomials over Z[1/n] and X :=
SpecZ[1/n][X1, . . . , Xr]/(f1, . . . , fs) is flat over U := SpecZ[1/n] ⊂ SpecZ.
Let Z be the closed subscheme of X defined by (X1, . . . , Xr) and xη (resp. xp)
be the unique point of the generic fiber Zη (resp. the fiber Zp over each closed
point (p) ∈ U) of the flat morphism Z ⊆ X → U . Then, (x ∈ X) is a flat
base change of the generic fiber (xη ∈ Xη), while the closed fiber (xp ∈ Xp) is
of characteristic p > 0. The link mentioned above is provided by comparing
the properties of (x ∈ X) with those of the closed fibers (xp ∈ Xp). In
this paper, pursuing this link, we study how mild the singularity (x ∈ X) is
when some closed fiber (xp ∈ Xp) is a mild F -singularity, such as an F -pure
or a strongly F -regular singularity.

Hara-Watanabe [11] proved that (x ∈ X) is a log terminal (resp. log
canonical) singularity if the closed fiber (xp ∈ Xp) is strongly F -regular
(resp. F -pure) for infinitely many closed points (p) ∈ U . Recently, using
perfectoid techniques, Ma-Schwede [25] developed a new theory of singular-
ities in mixed characteristic, where big Cohen-Macaulay (BCM) test ideals,
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a generalization of test ideals to the mixed characteristic case, play a cen-
tral role. As an application of this theory, under the assumption that the
total space X is Q-Gorenstein, they proved that (x ∈ X) is log terminal
if the closed fiber (xp ∈ Xp) is strongly F -regular for a single closed point
(p) ∈ U . In this paper, we generalize their result to the case where the total
space X is not necessarily Q-Gorenstein. This generalization is important
because Q-Gorensteinness does not generally lift from Cartier divisors as
Gorensteinness does. Perhaps more surprisingly, we also prove an analog of
their result for log canonical singularities. A simple form of our first main
result is stated (with renewed notation) as follows:

Theorem A (cf. Corollaries 3.10 and 4.3). Let (X ,D) → U ⊆ SpecZ be
a flat family of pairs, where X is a normal integral scheme and D is an
effective Q-Weil divisor on X . Let Z be an irreducible closed subscheme of
X , flat over U , such that the fiber of Z ⊆ X → U over each closed point
(p) ∈ U is a singleton {xp}, and let xη ∈ Xη be the generic point of Z.

(1) Suppose that the generic fiber (Xη,Dη) is log Q-Gorenstein at xη,
that is, KXη + Dη is Q-Cartier at xη. If the fiber (Xp,Dp) is log
Q-Gorenstein and strongly F -regular at xp for a single closed point
(p) ∈ U , then (Xη,Dη) is klt at xη.

(2) If the total space (X ,D) is log Q-Gorenstein at xp and the fiber
(Xp,Dp) is normal and (sharply) F -pure at xp for a single closed
point (p) ∈ U , then the generic fiber (Xη,Dη) is log canonical at xη.

This theorem is quite useful for verifying that a given singularity is log
terminal or log canonical because strong F -regularity and F -purity can be
(relatively) easily checked by a computer algebra system such as Macaulay
2, as opposed to constructing a resolution of singularities (see Remark 3.12).

We briefly explain the idea of the proof of Theorem A. First, we gener-
alize the notion of the BCM test ideal τB(R, aλ), which was defined in [25]
when a is a principal ideal, to the case of an arbitrary ideal a. Replacing
multiplier ideals by our BCM test ideals, one can use an argument similar
to that of Kawakita [18], which shows that log canonical singularities over
C deform to log canonical singularities if the total space is Q-Gorenstein, to
obtain assertion (2). Similarly, one can use an argument analogous to that
of Esnault-Viehweg [6], which proves that two-dimensional log terminal sin-
gularities over C deform to log terminal singularities, to obtain assertion
(1).

Theorem A concerns arithmetic deformations of F -singularities, and next,
we discuss geometric deformations of F -singularities. In general, log termi-
nal singularities over C are not stable under small deformations unless the
total space is Q-Gorenstein. A notable exception is the two-dimensional
case, which was described by [6] as mentioned above. In fact, their proof
tells us that higher-dimensional log terminal singularities over C are also sta-
ble under small deformations if the nearby fibers are Q-Gorenstein. Since
strongly F -regular singularities can be viewed as theoretical F -singularity
counterparts of log terminal singularities, it is natural to ask how strongly F -
regular singularities behave under equal characteristic deformations. Strong
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F -regularity does not deform in general (see [37]), but we prove that the
analog of the result of Esnault-Viehweg holds for strongly F -regular singu-
larities. A simple form of our second main result is stated as follows:

Theorem B (cf. Corollaries 4.9 and 4.11). Let (X ,D) → T be a proper
flat family of pairs, where X is a normal variety over a perfect field k of
characteristic p > 0, D is an effective Q-Weil divisor on X , and T is a
smooth curve over k.

(1) Suppose that the generic fiber (Xη,Dη) and some closed fiber (Xt0 ,
Dt0) are log Q-Gorenstein. If (Xt0 ,Dt0) is strongly F -regular, then
so is the geometric generic fiber (Xη,Dη).

(2) Suppose that a general closed fiber (Xt,Dt) and some closed fiber
(Xt0 ,Dt0) are log Q-Gorenstein. If k is an uncountable algebraically
closed field and (Xt0 ,Dt0) is strongly F -regular, then so is the general
closed fiber (Xt,Dt).

As a corollary, we see that two-dimensional strongly F -regular singulari-
ties are stable under equal characteristic deformations. The proof of Theo-
rem B is similar to that of Theorem A (1), but we use classical test ideals
instead of BCM test ideals.

Finally, Theorems A and B enable us to provide an affirmative answer to
a conjecture of Liedtke-Martin-Matsumoto [22, Conjecture 12.1 (1)], which
states that isolated linearly reductive quotient singularities deform to lin-
early reductive quotient singularities in arbitrary characteristic.
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Notation. Throughout this paper, all rings are assumed to be commutative
and have unit elements, and all schemes are assumed to be Noetherian and
separated.

2. Preliminaries

2.1. Singularities in the MMP. In this subsection, we recall the def-
inition and basic properties of singularities in the MMP (minimal model
program).

Throughout this subsection, we assume that X is an excellent normal
integral scheme with a dualizing complex ω•X . The canonical sheaf ωX
associated to ω•X is the coherent OX -module defined as the first nonzero
cohomology module of ω•X . It is well-known that the canonical sheaf ωX
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is compatible with localization ([40, Lemma 0A7G]), rank one ([40, Lemma
0AWX]) and satisfies the Serre’s second condition (S2) ([40, Lemma 0AWK],
see also [40, Section 0DW3] and [2, (1.10)]). A canonical divisor of X
associated to ω•X is any Weil divisor KX on X such that OX(KX) ∼= ωX . We
fix a canonical divisor KX of X associated to ω•X . Given a proper birational
morphism π : Y → X from a normal integral scheme Y , we always choose a
canonical divisor KY of Y that is associated to π!ω•X and whose pushforward
f∗KY agrees with KX .

Definition 2.1. A proper birational morphism f : Y → X between integral
schemes is said to be a resolution of singularities of X if Y is regular. When
∆ is a Q-Weil divisor on X and a, b ⊆ OX are nonzero coherent ideal
sheaves, a resolution f : Y → X is said to be a log resolution of (X,∆, a, b)
if aOY = OY (−F ) and bOY = OY (−G) are invertible and if the union of
the exceptional locus Exc(f) of f and the supports of F , G and the strict
transform f−1

∗ ∆ of ∆ is a simple normal crossing divisor.

First, we give the definition of singularities in the MMP that makes sense
in arbitrary characteristic.

Definition 2.2. Suppose that ∆ is an effective Q-Weil divisor on X such
that KX + ∆ is Q-Cartier, a ⊆ OX is a nonzero coherent ideal sheaf, and
λ > 0 is a real number.

(i) Given a proper birational morphism f : Y → X from a normal
integral scheme Y , we write

∆Y := f∗(KX + ∆)−KY .

When aOY = OY (−F ) is invertible, for each prime divisor E on Y ,
the discrepancy aE(X,∆, aλ) of the triple (X,∆, aλ) at E is defined
as

aE(X,∆, aλ) := − ordE(∆Y + λF ).

(ii) The triple (X,∆, aλ) is said to be log canonical (resp. klt) at a point
x ∈ X if aE(SpecOX,x,∆x, a

λ
x) > −1 (resp. > −1) for every proper

birational morphism f : Y → SpecOX,x from a normal integral
scheme Y with aOY invertible and for every prime divisor E on
Y , where ∆x is the flat pullback of ∆ by the canonical morphism
SpecOX,x → X and ax := aOX,x. We say that (X,∆, aλ) is log
canonical (resp. klt) if it is log canonical (resp. klt) for every x ∈ X.

(iii) ([24]) X is said to be pseudorational at a point x ∈ X if X is Cohen-
Macaulay and if for every projective birational morphism f : Y →
SpecOX,x from a normal integral scheme Y , the natural morphism
f∗ωY → ωX,x is an isomorphism.

Remark 2.3.

(i) ([23, Proposition 17.1]) IfX is pseudorational at x and dimOX,x = 2,
then X is Q-factorial at x.

(ii) (cf. [19, Corollary 11.14], [28]) Let ∆ be an effective Q-Weil divisor
on X such that KX + ∆ is Q-Cartier. If X is an excellent Q-scheme
and (X,∆) is klt at x, then X is pseudorational at x. We note
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that [19, Corollary 11.14] is formulated for varieties, but the same
statement regarding excellent Q-schemes can be obtained by using
[28, Theorems A and B] instead of the local vanishing theorem and
the Grauert-Riemenschneider vanishing theorem.

Remark 2.4. Let (X,∆, aλ) be as in Definition 2.2. Then the set of points
x ∈ X such that (X,∆, aλ) is log canonical (resp. klt) at x is closed under
generalization.

To see this, suppose that (X,∆, aλ) is log canonical (resp. klt) at x ∈ X
and take a point y ∈ X that is a generalization of x. Let f : Y → SpecOX,y
be a proper birational morphism from a normal integral scheme Y and E be
a prime divisor on Y . Since E defines a discrete valuation ordE : K(X)∗ →
Z, it follows from [20, Lemma 2.45] that there exist a proper birational
morphism g : Z → SpecOX,x from a normal integral scheme Z and a prime
divisor F on Z such that the valuation ordF : K(Z)∗ → Z coincides with
ordE . Then Zy := Z ×SpecOX,x SpecOX,y is a normal integral scheme, the
base change gy : Zy → SpecOX,y of g is a proper birational morphism, and
the pullback F ′ of F to Zy is a prime divisor such that ordF ′ = ordE . Take
a proper birational morphism h : W → SpecOX,y from a normal integral
scheme W that factors through both f and gy. The strict transform of E to
W coincides with that of F ′, leading to

aE(SpecOX,y,∆y, a
λ
y) = aF ′(SpecOX,y,∆y, a

λ
y)

= aF (SpecOX,x,∆x, a
λ
x) > −1 (resp. > −1).

Thus, (X,∆, aλ) is log canonical (resp. klt) at y.

Definition 2.5. Let (X,∆, aλ) be as in Definition 2.2. The multiplier ideal
sheaf J (X,∆, aλ) associated to (X,∆, aλ) is defined as

J (X,∆, aλ) :=
⋂

f :Y→X
f∗OY (−b∆Y + λF c),

where f : Y → X runs through all proper birational morphisms from
a normal integral scheme Y with aOY = OY (−F ) invertible and ∆Y :=
f∗(KX + ∆)−KY .

Remark 2.6. Let (X,∆, aλ) be as in Definition 2.2.

(i) For any point x ∈ X, we have J (X,∆, aλ)x ⊆ J (SpecOX,x,∆x, a
λ
x).

In particular, if J (X,∆, aλ)x = OX,x, then (X,∆, aλ) is klt at x.
(ii) If f : Y → X is a log resolution of (X,∆, a), then

J (X,∆, aλ) = f∗OY (−b∆Y + λF c).
In particular, if X is defined over a field of characteristic zero, or if
X is defined over a field of positive characteristic with dimX 6 3,
or if dimX 6 2, then the following statements hold:
(a) The converse of (i) is true.
(b) J (X,∆, aλ) is coherent.
(c) It is sufficient to check the condition in Definition 2.2 (ii) for

only one f , namely, for a log resolution of (X,∆, aλ).
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The following lemma is probably well known to experts, but we include
its proof for the reader’s convenience.

Lemma 2.7. Suppose that (R,m, κ)→ (R′,m′, κ′) is a flat local homomor-
phism of excellent local rings with dualizing complexes. Assume that we have
mR′ = m′ and that κ′ is separable over κ. Let f : X ′ := SpecR′ → X :=
SpecR be the induced morphism sending a point x′ ∈ X ′ to a point x ∈ X,
∆ be an effective Q-Weil divisor on X := SpecR such that KX + ∆ is
Q-Cartier at x, a ⊆ R be a nonzero ideal sheaf and λ > 0 be a real number.

(1) The flat pullback KX′ := f∗KX of KX by the induced morphism
f : X ′ := SpecR′ → X is a canonical divisor of X ′. In particular,
KX′ + ∆′ is Q-Cartier at x′, where ∆′ := f∗∆ is the flat pullback of
∆.

(2) If (X ′,∆′, (aOX′)λ) is log canonical (resp. klt) at x′, then so is
(X,∆, aλ) at x.

(3) If X is defined over a field of characteristic zero, then the converse
of (2) also holds.

Proof. (1) First, note by [40, Lemma 0AWD] that ω•X′ := f∗ω•X is a dualizing
complex on X ′. Since f∗OX(KX) ∼= OX′(f∗KX), we see that f∗KX is a
canonical divisor of X ′ associated to ω•X′ .

(2) Since the closed fiber Specκ′ of f is formally smooth over Specκ,
it follows from [27, Theorem 28.10] and [1] that f is a regular morphism;
that is, all fibers are geometrically regular. We set V := SpecOX,x and
V ′ := SpecOX′,x′ . Then, the induced morphism h : V ′ → V is regular,
ω•V := ω•X |V is a dualizing complex of V and ω•V ′ := ω•X′ |V ′ ∼= h∗ω•V is a
dualizing complex of V ′.

Let π : Y → V be a proper birational morphism from a normal integral
scheme Y , where aOY = OY (−F ) is invertible. We set Y ′ := V ′ ×V Y
and let π′ : Y ′ → V ′ and g : Y ′ → Y be the first and second projections,
respectively.

Claim. Y ′ is a normal integral scheme.

Proof. Let K be a function field of V and Y . First note that

Y ′ ×Y SpecK ∼= V ′ ×V SpecK

because π is birational. Since V ′ ×V SpecK is irreducible, Y ′ ×Y SpecK is
also irreducible. Considering that any generic point of Y ′ lies in the generic
fiber Y ′ ×Y SpecK of g, we see that Y ′ is irreducible. It then follows from
[27, p.184 Corollary] that Y ′ is a normal integral scheme. �

We fix a canonical divisor KY of Y associated to the dualizing complex
ω•Y := π!ω•V such that π∗KY = KV . We write ∆Y := π∗(KV + ∆|V )−KY ,
and we let F ′ := g∗F , ∆Y ′ := g∗∆Y and KY ′ := g∗KY be the flat pullbacks
of F , ∆Y and KY , respectively. Then, aOY ′ = OY ′(−F ′), and ∆Y ′ =
π′∗(K ′V +∆′)−KY ′ . Noting that KY ′ is a canonical divisor of Y ′ associated

to π′!(ω•V ′)
∼= g∗ω•Y (see [40, Lemma 0AA8]) such that π′∗KY ′ = KX′ , we

deduce that

− ordG(g∗(∆Y + λF )) = − ordG(∆Y ′ + λF ′) = aG(V ′,∆′|V ′ , (aOV ′)λ)
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for every prime divisor G on Y ′. Since g is regular, the flat pullback g∗E of
a prime divisor E on Y is a reduced divisor on Y ′ (see [27, p.184 Corollary]
again). Therefore, for any irreducible component E′ of g−1(E), we have

aE(V,∆|V , (aOV )λ) = − ordE(∆Y + λF ) = − ordE′(g
∗(∆Y + λF ))

= aE′(V
′,∆′|V ′ , (aOV ′)λ),

which proves (2).
(3) We choose a log resolution of (V,∆|V , aOV ) to be π in the proof of

(2). It then follows from [27, Theorem 23.7] that π′ is also a log resolution
of (V ′,∆′|V ′ , aOV ′). Therefore, the assertion is immediate from Remark
2.6. �

2.2. F -singularities. We briefly review the theory of F -singularities, par-
ticularly focusing on strongly F -regular and F -pure singularities and test
ideals.

Definition 2.8 ([11], [42], [32], [34]). Let x be a point of an F -finite normal
integral scheme X and ∆ be an effective Q-Weil divisor on X. Given an
integer e > 1, let

ϕ
(e)
∆ : OX → F e∗OX ↪→ F e∗OX(d(pe − 1)∆e)

be the composite of the e-th iterated Frobenius map OX → F e∗OX and the
pushforward of the natural inclusion OX ↪→ OX(d(pe − 1)∆e) by F e. Let
a1, . . . , a` ⊆ OX be nonzero coherent ideal sheaves and λ1, . . . , λ` > 0 be
real numbers.

(i) (X,∆, aλ1
1 · · · a

λ`
` ) is said to be sharply F -pure at x if there exist an in-

teger e > 1 and a nonzero element d ∈ a
dλ1(pe−1)e
1 · · · adλ`(p

e−1)e
` OX,x

such that the composite

OX,x
ϕ

(e)
∆,x−−−→ F e∗OX(d(pe − 1)∆e)x

×F e∗ d−−−→ F e∗OX(d(pe − 1)∆e)x

of the OX,x-linear map ϕ
(e)
∆,x induced by ϕ

(e)
∆ and the multiplication

map induced by F e∗ d splits as an OX,x-module homomorphism.

(ii) (X,∆, aλ1
1 · · · a

λ`
` ) is said to be strongly F -regular at x if for ev-

ery nonzero element c ∈ OX,x, there exist e > 1 and 0 6= d ∈
a
dλ1(pe−1)e
1 · · · adλ`(p

e−1)e
` OX,x such that the composite

OX,x
ϕ

(e)
∆,x−−−→ F e∗OX(d(pe − 1)∆e)x

×F e∗ (cd)−−−−−→ F e∗OX(d(pe − 1)∆e)x

of the OX,x-linear map ϕ
(e)
∆,x induced by ϕ

(e)
∆ and the multiplication

map induced by F e∗ (cd) splits as an OX,x-module homomorphism.

We say that (X,∆, aλ1
1 · · · a

λ`
` ) is sharply F -pure (resp. strongly F -regular)

if it is sharply F -pure (resp. strongly F -regular) at all points of X.

Remark 2.9. It is known by [34, Lemma 2.8] that if (X,∆, aλ1
1 · · · a

λ`
` ) is

sharply F -pure at x, then there exist infinitely many integers e > 1 satisfying
the condition in Definition 2.8 (i).
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Remark 2.10 ([10], [38, Theorem 3.1]). We have the following hierarchy of
F -finite normal singularity properties (see [10] for the definition of F -rational
singularities):

strongly F -regular =⇒ F -rational =⇒ pseudorational.

Definition 2.11 ([3, Definition-Proposition 3.3], cf. [13], [41]). Let (R,m)
be an F -finite normal local ring of characteristic p > 0 and ∆ be an ef-
fective Q-Weil divisor on X := SpecR. Let a1, . . . , a` ⊆ R be nonzero
ideals and λ1, . . . , λ` > 0 be real numbers. We fix a big sharp test element

d ∈ R for (X,∆, aλ1
1 · · · a

λ`
` ) (see [34, Definition 2.16] for the definition of big

sharp test elements). Then, the test ideal τ(X,∆, aλ1
1 · · · a

λ`
` ) for the triple

(X,∆, aλ1
1 · · · a

λ`
` ) is defined by

τ(X,∆, aλ1
1 · · · a

λ`
` ) =

∑
e>0

∑
ψ

ψ(F e∗ (da
dλ1(pe−1)e
1 · · · adλ`(p

e−1)e
` )),

where e runs through all nonnegative integers and ψ runs through all ele-
ments of HomR(F e∗R(d(pe − 1)∆e), R).

Remark 2.12. We do not define big sharp test elements in this paper, but
such elements always exist according to [34, Lemma 2.17]. It follows from
an argument analogous to the proof of the equivalence of (4) and (5) in
[3, Definition-Proposition 3.3] that if d′ is a big sharp test element for

(X,∆, aλ1
1 · · · a

λ`−1

`−1 ), then

τ(X,∆, aλ1
1 · · · a

λ`
` ) =

∑
e>0

∑
ψ

ψ(F e∗ (d′a
dλ1(pe−1)e
1 · · · adλ`−1(pe−1)e

`−1 a
dλ`pee
` )),

where ψ runs through all elements of HomR(F e∗R(d(pe−1)∆e), R). Similarly,
if c is a big sharp test element for (X,∆), then

τ(X,∆, aλ1
1 · · · a

λ`
` ) =

∑
e>0

∑
ψ

ψ(F e∗ (ca
dλ1pee
1 · · · adλ`p

ee
` )),

where ψ runs through all elements of HomR(F e∗R(d(pe − 1)∆e), R).

Test ideals for triples can be described as sums of test ideals for pairs.

Lemma 2.13. Let the notation be the same as that in Definition 2.11.
Then,

τ(X,∆, aλ1
1 · · · a

λ`
` ) =

∑
m1,...,m`>1

∑
fi∈a

dmiλie
i

τ(X,∆+
divX(f1)

m1
+· · ·+divX(f`)

m`
),

where the first summation is taken over all integers m1, . . . ,m` > 1 and the

second summation is taken over all nonzero elements fi ∈ a
dmiλie
i for each

i = 1, . . . , `.

Proof. τ ′(X,∆, aλ1
1 · · · a

λ`
` ) denotes the ideal on the right-hand side. We first

show that τ ′(X,∆, aλ1
1 · · · a

λ`
` ) is contained in τ(X,∆, aλ1

1 · · · a
λ`
` ). When mi
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is a positive integer and fi ∈ a
dmiλie
i for each i = 1, . . . , `,

τ(X,∆ +
divX(f1)

m1
+ · · ·+ divX(f`)

m`
) = τ(X,∆, (f1)1/m1 · · · (f`)1/m`)

⊆ τ(X,∆, a
dm1λ1e/m1

1 · · · adm`λ`e/m`` )

⊆ τ(X,∆, aλ1
1 · · · a

λ`
` ).

Thus, τ ′(X,∆, aλ1
1 · · · a

λ`
` ) ⊆ τ(X,∆, aλ1

1 · · · a
λ`
` ).

We next prove the reverse inclusion. Let c ∈ R be a big sharp test element
for (R,∆). Then, by Remark 2.12,

τ(X,∆, aλ1
1 · · · a

λ`
` ) =

∑
e>0

∑
ψ

ψ(F e∗ (ca
dλ1pee
1 · · · adλ`p

ee
` ))

=
∑
e>0

∑
gi∈a

dλipee
i

∑
ψ

ψ(F e∗ (cg1 · · · g`))

⊆
∑
e>0

∑
gi∈a

dλipee
i

τ(X,∆, g
1/pe

1 · · · g1/pe

` )

=
∑
e>0

∑
gi∈a

dλipee
i

τ(X,∆ +
divX(g1)

pe
+ · · ·+ divX(g`)

pe
),

where ψ ranges over all elements of HomR(F e∗R(d(pe − 1)∆e), R) and gi

ranges over all nonzero elements of a
dλipee
i for each i = 1, . . . , `. Therefore,

τ(X,∆, aλ1
1 · · · a

λ`
` ) ⊆ τ ′(X,∆, aλ1

1 · · · a
λ`
` ). �

2.3. Deformations. In this subsection, we recall some basic terminology
from the theory of deformations.

Definition 2.14. Let X be an algebraic scheme over a field k. Suppose
that T is a scheme and t ∈ T is a k-rational point. A deformation of X over
T with a reference point t is a pair (X , i) consisting of a scheme X that is

flat and of finite type over T and an isomorphism i : X
∼−−→ X ×T Specκ(t)

of k-schemes.

In the subsequent sections, we consider several problems regarding defor-
mations of singularities with the following setup.

Setting 2.15. Suppose that X is a normal integral scheme over a field k, T
is a regular integral scheme with a generic point η and t ∈ T is a k-rational
point. Let (X , i) be a deformation of X over T with a reference point t such
that X is an excellent normal integral scheme with a dualizing complex. Let
D be an effective Q-Weil divisor on X whose support does not contain the
closed fiber X. Let a ⊆ OX be a coherent ideal sheaf such that aOX is
nonzero and λ > 0 be a real number.

Remark 2.16. We use the notation in Setting 2.15.

(i) In Section 3, we mainly focus on the case where the following con-
dition holds.
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(A) The pair (X ,D) on the total space X is log Q-Gorenstein; that
is, KX +D is Q-Cartier.

Condition (A) implies the following two conditions:
(B) The pair (Xη,Dη) on the generic fiber Xη is log Q-Gorenstein.
(C) The pair (X,D|X) on the closed fiber X is log Q-Gorenstein.
We note that there is no relation between (B) and (C) (see [17,
Example 9.1.8] or Example 4.4 below for a counterexample to the
implication (C) ⇒ (B)). On the other hand, in Sections 4 and 5, we
discuss the case where conditions (B) and (C) are satisfied, although
condition (A) is not necessarily satisfied.

(ii) If k is an uncountable algebraically closed field, T is of finite type
over k, and a general closed fiber of X → T is normal, then condition
(B) is equivalent to the following condition:
(D) For a general closed point s ∈ T , the pair (Xs,Ds) on the fiber
Xs is log Q-Gorenstein.

Indeed, it is obvious that (B) implies (D). For the converse impli-
cation, we fix an integer m > 0 such that mD is an integral Weil
divisor. For every integer n > 0, we consider the coherent sheaf
Fn := OX (nm(KX + D)). Since Fn satisfies the (S2)-condition, so
does the restriction of Fn to the generic fiber. It then follows from
[5, (9.9.3)] that there exists a nonempty open subset Vn ⊆ T such
that for every point s ∈ Vn, the restriction Fn|Xs to the fiber Xs
satisfies the (S2)-condition. Therefore, for such an s, we have

Fn|Xs ∼= OXs(nm(KXs +Ds)).
In particular, if the OXs-module OXs(nm(KXs + Ds)) is invertible,
then so is Fn along Xs by Nakayama’s lemma. In other words, if
nm(KXs +Ds) is Cartier, then so is nm(KX +D) along Xs.

Since k is uncountable, we find a closed point s ∈
⋂
n Vn such that

(Xs,Ds) is log Q-Gorenstein. Now, we pick an integer l > 0 such
that lm(KXs +Ds) is Cartier. Considering that s ∈ Vl, we conclude
that lm(KX +D) is Cartier along Xs, which implies condition (B).

(iii) If k is perfect and X is proper over T , then it follows from [5, (12.2.4)]
that a general fiber of X → T is geometrically normal, and in par-
ticular, the third assumption in (ii) is satisfied.

Similarly, if k is perfect, then it follows from [5, (12.1.6)] that after
shrinking X around X, we may assume that X → T is a normal
morphism; that is, all fibers are geometrically normal.

3. Deformations with a Q-Gorenstein total space

In this section, we study arithmetic deformations of F -pure singularities
when the total space is Q-Gorenstein.

3.1. BCM test ideals. First, we recall the definition of BCM test ideals
for pairs introduced by Ma-Schwede [25].

Definition 3.1 ([25, Definition 6.2, Definition 6.9]). Let (R,m) be a d-
dimensional complete normal local ring of mixed characteristic (0, p), and
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fix an effective canonical divisor KX of X := SpecR. Let ∆ be an effective
Q-Weil divisor on X such that KX + ∆ is Q-Cartier. Then, there exist an
integer n > 1 and a nonzero element f ∈ R such that n(KX+∆) = divX(f).
We set

(0)B,KX+∆

Hd
m(R)

:=
⋃
B

ker

(
Hd

m(R)
×f1/n

−−−−→ Hd
m(B)

)
,

where B runs through all integral perfectoid big Cohen-Macaulay R+-alge-
bras. Then, the BCM test ideal for (X,∆) is defined as

τB(X,∆) := AnnωR (0)B,KX+∆

Hd
m(R)

⊆ R.

We generalize the definitions of the BCM test ideals and some of their
properties to the case of triples.

Definition 3.2. Let R be a complete normal local ring of mixed character-
istic (0, p) and ∆ be an effective Q-Weil divisor on X := SpecR such that
KX+∆ is Q-Cartier. Let a1, . . . , al ⊆ R be nonzero ideals and λ1, . . . , λ` > 0
be real numbers.

(i) We define the BCM test ideal for the triple (R,∆, aλ1
1 · · · a

λ`
` ) as

τB(X,∆, aλ1
1 · · · a

λ`
` ) :=

∑
mi

∑
fi

τB(X,∆ +
divX(f1)

m1
+ · · ·+ divX(f`)

m`
),

where the first summation is taken over all positive integers mi and

the second summation is taken over all nonzero elements fi ∈ a
dmiλie
i

for each i = 1, . . . , `.

(ii) We say that (X,∆, aλ1
1 · · · a

λ`
` ) is BCM-regular if we have

τB(X,∆, aλ1
1 · · · a

λ`
` ) = R.

Remark 3.3. Let the notation be the same as that in Definition 3.2. If
al = (r) is a principal ideal and λl is a rational number, then it follows from
[25, Lemma 6.11] that

τB(X,∆, aλ1
1 · · · a

λ`
` ) = τB(X,∆ + λl divX(r), aλ1

1 · · · a
λ`−1

`−1 ).

Lemma 3.4. Let the notation be the same as that in Definition 3.2. Then,
we have

τB(X,∆, aλ1
1 · · · a

λ`
` ) ⊆ J (X,∆, aλ1

1 · · · a
λl
` ).

Proof. Let π : Y → X be a proper birational morphism from a normal
integral scheme Y such that aiOY = OY (−Fi) is invertible for every i =

1, . . . , `. When mi is a positive integer and fi ∈ a
dmiλie
i for each i = 1, . . . , `,

it follows from [25, Theorem 6.21] that

τB(X,∆ +
1

m1
divX(f1) + · · ·+ 1

m`
divX(f`))

⊆π∗OY (dKY − π∗(KX + ∆ +
1

m1
divX(f1) + · · ·+ 1

m`
divX(f`))e)

⊆π∗OY (dKY − π∗(KX + ∆)− λ1F1 − · · · − λ`F`e).

Thus, τB(X,∆, aλ1
1 · · · a

λ`
` ) ⊆ J (X,∆, aλ1

1 · · · a
λl
` ). �
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Lemma 3.5. Let the notation be the same as that in Definition 3.2. Let
h1, . . . , hr ∈ R be a regular sequence such that S := R/(h1, . . . , hr) is an
F -finite normal local ring of characteristic p. In addition, we assume that
ai is not contained in the ideal (h1, . . . , hr) for all i and Z := SpecS is not
contained in the support of ∆. Then, we have

τ(Z,∆|Z , (a1S)λ1 · · · (a`S)λ`) ⊆ τB(X,∆, aλ1
1 · · · a

λ`
` )S.

Proof. If the Cartier index of KX + ∆ is not divisible by p, then the above
assertion follows from a combination of Lemma 2.13 and [25, Theorem 6.27].
Therefore, we assume that the Cartier index n of KX + ∆ is divisible by p.
We choose an effective Q-Weil divisor D on X that is linearly equivalent to
KX + ∆ and does not contain Z in its support. By [30, Proposition 2.14
(2)], we can take a sufficiently large integer s such that

τ(Z,∆|Z , (a1S)λ1 · · · (a`S)λ`) = τ(Z, (∆ + ∆′)|Z , (a1S)λ1 · · · (a`S)λ`),

where ∆′ := n−1
ns+1D. Since (ns + 1)(KX + ∆ + ∆′) ∼ n(s + 1)(KX + ∆),

the Cartier index of KX + ∆ + ∆′ is not divisible by p. It then follows from
Lemma 2.13 and [25, Theorem 6.27, Lemma 6.11] that

τ(Z,∆|Z , (a1S)λ1 · · · (a`S)λ`) = τ(Z, (∆ + ∆′)|Z , (a1S)λ1 · · · (a`S)λ`)

⊆ τB(X,∆ + ∆′, aλ1
1 · · · a

λ`
` )S

⊆ τB(X,∆, aλ1
1 · · · a

λ`
` )S.

�

3.2. Deformations of F -pure singularities. We start with two auxiliary
lemmas on log canonical and F -pure singularities.

Lemma 3.6. Let (R,m) be a complete normal local ring and ∆ be an ef-
fective Q-Weil divisor on X := SpecR such that KX + ∆ is Q-Cartier. Let
a ⊆ R be a nonzero ideal and λ > 0 be a real number. If (X,∆, aλ) is not
log canonical, then there exist a descending chain of nonzero ideals of R

R = b0 ⊇ b1 ⊇ · · · ⊇ bn ⊇ · · ·
and a decreasing sequence of positive real numbers

1 = ε0 > ε1 > . . . > εn > . . .

with the following properties:

(i) For every integer n > 0, we have

J (X,∆, aλb1−εn
n ) ⊆ bn+1.

(ii) For every integer ` > 1, there exists an integer n(`) > 0 such that
bn(`) ⊆ m`.

Proof. Since (X,∆, aλ) is not log canonical, there exist a proper birational
morphism f : Y → X (where Y is normal) and a prime divisor E on Y such
that aOY = OY (−F ) is invertible and ordE(∆Y + λF ) > 1, where ∆Y :=
f∗(KX + ∆)−KY . We set ε0 := 1, εn := min{1, (ordE(∆Y + λF )− 1)/n}
for n > 1, and bn := f∗OY (−nE) for n > 0.
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We verify that the above {εn}n>0 and {bn}n>0 satisfy properties (i) and
(ii). Since

⋂
n>0 bn = (0), property (ii) follows from Chevalley’s theorem

(see, for example, [27, Exercise 8.7]). For (i), we first observe that

J (X,∆, aλb1−εn
n ) ⊆ f∗OY (−b∆Y + λF + (1− εn)nEc),

because bnOY ⊆ OY (−nE). We take any nonzero element r of the multiplier
ideal J (X,∆, aλb1−εn

n ). Then,

ordE r > ordE(b∆Y + λF + (1− εn)nEc)
= bordE(∆Y + λF ) + n− εnnc
> n+ 1.

Combining this with the inclusion r ∈ R, we have that r ∈ bn+1 as desired.
�

Lemma 3.7. Let (R,m) be an F -finite normal local ring of characteristic
p > 0 and ∆ be an effective Q-Weil divisor on X := SpecR. Let a ⊆ R be a
nonzero ideal and λ > 0 be a real number. If (X,∆, aλ) is sharply F -pure,
then there exists a nonzero ideal J ⊆ R such that

J ⊆ τ(X,∆, aλJ1−ε)

for every real number 0 < ε 6 1.

Proof. We fix any real number 0 < ε 6 1. Since (X,∆, aλ) is sharply

F -pure, there exist an integer e > 1, a nonzero element d ∈ adλ(pe−1)e

and an R-module homomorphism ψ : F e∗R(d(pe − 1)∆e) → R sending F e∗ d
to 1. By Remark 2.9, we may assume that e is sufficiently large so that
d(1− ε)pee 6 pe − 1.

Let c ∈ R be a big sharp test element for the triple (X,∆, aλ) (see Remark
2.12). We take J as the principal ideal of R generated by c. Then,

c = ψ(F e∗ (cp
e
d)) ∈ ψ(F e∗ (cadλ(pe−1)eJd(1−ε)p

ee)) ⊆ τ(X,∆, aλJ1−ε),

where the last containment follows from Remark 2.12. Thus, we have that
J = cR ⊆ τ(X,∆, aλJ1−ε). �

The following is the main result of this section.

Theorem 3.8. Let (R,m) be a complete normal local ring of mixed char-
acteristic (0, p) and ∆ be an effective Q-Weil divisor on X := SpecR such
that KX + ∆ is Q-Cartier. Suppose that h1, . . . , hr is a regular sequence in
R such that S := R/(h1, . . . , hr) is an F -finite normal local ring of charac-
teristic p and Z := SpecS is not contained in the support of ∆. Let λ > 0 be
a real number and a ⊆ R be an ideal not contained in the ideal (h1, . . . , hr).
If (Z,∆|Z , (aS)λ) is sharply F -pure, then (X,∆, aλ) is log canonical.

Proof. Assume on the contrary that (X,∆, aλ) is not log canonical. Let
{bn}n>0 and {εn}n>0 be as in Lemma 3.6. By Lemma 3.7, there exists a
nonzero ideal J ⊆ S such that J ⊆ τ(Z,∆|Z , (aS)λJ1−ε) for all 0 < ε 6 1.

We show by induction that J ⊆ bnS for every integer n > 0. The n = 0
case is trivial because b0 = R. Therefore, suppose that the inclusion holds
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for some n > 0. Then,

J ⊆ τ(Z,∆|Z , (aS)λJ1−εn) ⊆ τ(Z,∆|Z , (aS)λ(bnS)1−εn)

⊆ τB(X,∆, aλb1−εn
n )S

⊆ J (X,∆, aλb1−εn
n )S

⊆ bn+1S,

where the third containment follows from Lemma 3.5, the fourth contain-
ment follows from Lemma 3.4 and the fifth containment follows from Lemma
3.6 (i). Thus, we have that J ⊆ bnS for every n > 0.

Combining the above inclusion with Lemma 3.6 (ii), we see that

J ⊆
⋂
n>0

bnS ⊆
⋂
`>1

m`
S = (0),

which contradicts the fact that J is a nonzero ideal. �

An inversion of adjunction-type result also follows from a similar argu-
ment to that above. We would like to thank Linquan Ma for pointing out
this fact.

Theorem 3.9. Let (R,m) be a complete normal local ring of mixed char-
acteristic (0, p) and ∆ be an effective Q-Weil divisor on X := SpecR such
that KX + ∆ is Q-Cartier. Suppose that Z is a Q-Cartier prime divisor on
X that is F -finite with characteristic p and is not contained in the support
of ∆. Let a ⊆ OX be an ideal not contained in OX(−Z) and λ > 0 be a real
number. ZN denotes the normalization of Z, and diffZN (Z + ∆) denotes
the different of Z + ∆ on ZN (see [26, Subsection 2.1] for its definition).
If (ZN , diffZN (∆), (aOZN )λ) is sharply F -pure, then (X,∆ + Z, aλ) is log
canonical.

Proof. First, note that for any real numbers δ, µ > 0 and any ideal b ⊆ OX ,
we have the inclusion

τ(ZN , diffZN (Z + ∆), (aOZN )λ(bOZN )µ) ⊆ τB(X,∆ + (1− δ)Z, aλbµ)OZN .

Indeed, by Lemma 2.13, it is sufficient to show that for any effective Q-
Cartier divisor E on X having no common component with Z, we have

τ(ZN ,diffZN (Z + ∆ + E)) ⊆ τB(X,∆ + (1− δ)Z + E)OZN .

We take a big Cohen-Macaulay R+-algebra B, with an R+-algebra homo-
morphism B → C to a big Cohen-Macaulay S+-algebra C, such that

τB(X,∆ + (1− δ)Z + E) = τB(X,∆ + (1− δ)Z + E).

The assertion then follows from [25, Definition-Proposition 2.7] and [26,
Proposition 2.10 and Theorem 3.1].

Now, we assume to the contrary that (X,∆ +Z, aλ) is not log canonical.
Then, there exists a rational number δ > 0 such that (X,∆+(1−δ)Z, aλ) is
not log canonical. We apply Lemma 3.6 to the triple (X,∆+(1−δ)Z, aλ) to
obtain a descending chain {bn}n>0 of nonzero ideals of OX and a descending
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sequence {εn}n>0 of positive real numbers. We also apply Lemma 3.7 to
(ZN ,diffZN (∆), (aOZN )λ) to obtain a nonzero ideal J ⊆ OZN such that

J ⊆ τ(ZN , diffZN (Z + ∆), (aOZN )λJ1−ε)

for all 0 < ε 6 1. It then follows from an argument similar to the proof of
Theorem 3.8 that J ⊆ bnOZN for all integers n > 0, which contradicts the
fact that J is a nonzero ideal. �

Corollary 3.10. With the same notation as that in Setting 2.15, let x ∈ X
be a closed point and Z ⊆ X be an irreducible closed subset that dominates
T and contains x. Let y be the generic point of Z, which lies in the generic
fiber Xη. We further assume that the following three conditions hold:

(i) KX +D is Q-Cartier at x.
(ii) The generic fiber Xη has characteristic zero.
(iii) X is defined over an F -finite field k of characteristic p > 0, and the

triple (X,D|X , (aOX)λ) is sharply F -pure at x.

Then the triple (Xη,Dη, aλη) is log canonical at y.

Proof. R := ÔX ,x denotes the completion of the stalk OX ,x, and S := ÔX,x
denotes the completion of OX,x. Since T is regular and X is flat over T , the
kernel of the surjection OX ,x → OX,x is generated by a regular sequence,
and therefore, the same holds for the surjection R → S. Note that sharp
F -purity is preserved under completion. It then follows from Theorem 3.8
that (R, f∗∆, (aR)λ) is log canonical, where f∗∆ is the flat pullback of ∆
under the canonical morphism f : SpecR → X . By Lemma 2.7, the triple
(X ,D, aλ) is log canonical at x. Taking into account that y is a generalization
of x, we see from Remark 2.4 that (X ,D, aλ) is log canonical at y. �

Remark 3.11. Using the theory of jet schemes, Zhu [44, Corollary 4.2] proved
Corollary 3.10 for the case in which the total space X is the affine space AnZ
over Z.

Remark 3.12. Corollary 3.10 implies that one can use a method analogous
to [25, Algorithm 8.1] utilizing [4] to verify that a ring of finite type over Q
has log canonical singularities.

Corollary 3.13. With the same notation as that in Setting 2.15, assume
that the following four conditions hold:

(i) KX +D is Q-Cartier.
(ii) The generic fiber Xη has characteristic zero.
(iii) X is defined over an F -finite field k of characteristic p > 0, and the

triple (X,D|X , (aOX)λ) is sharply F -pure.
(iv) X is proper over T .

Then, (X ,D, aλ) is log canonical near Xη, and in particular, the triple

(Xη,Dη, aλη) is log canonical.

Proof. We take any point y ∈ Xη. Since the structure map X → T is a
closed map, there exists a point x ∈ X that is a specialization of y. It then
follows from Corollary 3.10 that (X ,D, aλ) is log canonical at y. �
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4. Deformations with a non-Q-Gorenstein total space

In this section, we study deformations of strongly F -regular/klt singular-
ities when the total space is not necessarily Q-Gorenstein.

Throughout this section, we say that (R,∆, aλ) is a triple if (R,m) is
an excellent normal local ring with a dualizing complex, ∆ is an effective
Q-Weil divisor on SpecR, a is a nonzero ideal of R, and λ > 0 is a real
number.

Proposition 4.1. Suppose that (R,∆, aλ) is a triple and A is an effective
Weil divisor on X := SpecR that is linearly equivalent to −KX such that
B := A − ∆ is also effective. We fix an integer m > 1 such that m∆ is
an integral Weil divisor, and we let b ⊆ R be a nonzero ideal contained in
OX(−mB). We further assume that one of the following three cases occurs.

(a) (R,m) is a complete local domain of mixed characteristic (0, p). In
this case, we set

I := τB(X,A, aλb1−1/m) ⊆ R.
(b) (R,m) is a F -finite local ring of characteristic p > 0. In this case,

we set
I := τ(X,A, aλb1−1/m) ⊆ R.

(c) (R,m) is a local ring of equal characteristic zero. In this case, we
set

I := J (X,A, aλb1−1/m) ⊆ R.
Then, the following statements hold.

(1) The ideal I is contained in OX(−mB).
(2) Let U ⊆ X be the locus where m(KX + ∆) is Cartier. If I|U =
OX(−mB)|U , then (U,∆|U , a|λU ) is klt in case (a) or (c) and is
strongly F -regular in case (b).

(3) Assume that m(KX + ∆) is Cartier. If (X,∆, aλ) is BCM-regular
(resp. strongly F -regular, klt) in case (a) (resp. (b), (c)), then b is
contained in I.

Proof. First, we consider case (a). For (1), since OX(−mB) is reflexive and
U is an open subset of X whose complement has codimension at least two,
it is sufficient to show that I|U ⊆ OU (−mB|U ). Noting that OU (−mB|U )
is invertible, we have

I|U ⊆ J (U,A|U , a|λUb|
1−1/m
U )

⊆ J (U,A|U , a|λUOU (−mB|U )1−1/m)

= J (U,A|U +
m− 1

m
(mB|U ), a|λU )

= J (U,∆|U +mB|U , a|λU )

= J (U,∆|U , a|λU )⊗OU OU (−mB|U ),

where the first inclusion follows from Lemma 3.4 and the last equality follows
from essentially the same argument as that in the proof of [21, Proposition
9.2.31]. Therefore, we have that I|U ⊆ OV (−mB|U ) as desired.
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If the equality I|U = OX(−mB)|U holds, then we see from the above
inclusions that J (U,∆|U , a|λU ) = OU , which proves (2).

For (3), we set q := bOX(mB) ⊆ R. Noting that mB is a principal divisor
by assumption, we have

I = τB(X,A, aλq1−1/mOX(−mB)1−1/m)

= τB(X,A+ (m− 1)B, aλq1−1/m)

= τB(X,∆, aλq1−1/m)OX(−mB),

where the second equality follows from Remark 3.3 and the third equality
follows from [25, Lemma 6.6]. On the other hand, by Definition 3.2 and [25,
Lemma 6.6],

τB(X,∆, aλq1−1/m) ⊇ τB(X,∆ + divX(f), aλ)

= fτB(X,∆, aλ)

= fR

for all nonzero elements f ∈ q, where the last equality follows from the
assumption that (X,∆, aλ) is BCM-regular. Therefore, I ⊇ qOX(−mB) =
b, which completes the proof of (3).

In case (b) (resp. (c)), the assertion follows from a similar argument by
replacing [25, Lemma 6.6] with [41, p.402 Basic Properties (ii)] (resp. [21,
Proposition 9.2.31]). �

The following theorem, the main result of this section, should be compared
with Theorem 3.8.

Theorem 4.2. Suppose that (R,∆, aλ) is a triple and that h is a nonzero
element in R such that S := R/(h) is normal. In addition, we assume that
Z := SpecS is not contained in the support of ∆, KZ + ∆|Z is Q-Cartier,
and a is not contained in the ideal (h). Let U ⊆ X be the locus where KX+∆
is Q-Cartier.

(1) Suppose that (R,m) is a complete local domain of mixed character-
istic (0, p) and S is an F -finite local domain of characteristic p > 0.
If (Z,∆|Z , (aS)λ) is strongly F -regular, then (U,∆|U , a|λU ) is klt.

(2) Suppose that (R,m) is an F -finite local domain of characteristic p >
0. If (Z,∆|Z , (aS)λ) is strongly F -regular, then so is (U,∆|U , a|λU ).

(3) (cf. [6]) Suppose that (R,m) is a local ring of equal characteristic
zero. If (Z,∆|Z , (aS)λ) is klt, then so is (U,∆|U , a|λU ).

Proof. (1) Since X is affine and Gorenstein at the generic point of Z, we
can take an effective Weil divisor A on X that is linearly equivalent to −KX

such that B := A−∆ is effective and SuppA does not contain Z. We take
an integer m > 1 such that m(KZ + ∆|Z) is Cartier. We set

I := τB(X,A, aλb1−1/m) ⊆ R,

J := τ(Z,A|Z , (aS)λ(bS)1−1/m) ⊆ S,

where we write b := OX(−mB) ⊆ R.
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Since A|Z is linearly equivalent to −KZ , B|Z = A|Z − ∆|Z and bS ⊆
OZ(−mB|Z), we apply Proposition 4.1 (3) with X = Z and Lemma 3.5 to
deduce that bS ⊆ J ⊆ IS. It follows from a combination of the inclusion
bS ⊆ IS and Proposition 4.1 (1) that

I ⊆ b ⊆ I + b ∩ (h).

By assumption, divX(h) = Z is a prime divisor on X, which is not an
irreducible component of B. Thus, b ∩ (h) = h(b :R (h)) = hb ⊆ mb, so
b = I + mb. By Nakayama’s lemma, we have that I = b, which implies
assertion (1) by Proposition 4.1 (2).

For (2), we set

I := τ(X,A, aλb1−1/m) ⊆ R,

J := τ(Z,A|Z , (aS)λ(bS)1−1/m) ⊆ S.

The proof then follows from an argument similar to that in the proof of (1)
by replacing Lemma 3.5 with [13, Theorem 6.10 (1)].

For (3), we set

I := J (X,A, aλb1−1/m) ⊆ R and

J := J (Z,A|Z , (aS)λ(bS)1−1/m) ⊆ S.

The proof then follows from an argument similar to that in the proof of
(1) by replacing Lemma 3.5 with [21, Theorem 9.5.13]. (We note that [21,
Theorem 9.5.13] is formulated for varieties, but the same statement regard-
ing excellent Q-schemes is obtained by using [28, Theorem A] instead of the
local vanishing theorem.) �

Corollary 4.3. With the same notation as that in Setting 2.15, let x ∈ X
be a closed point and Z ⊆ X be an irreducible closed subset that dominates
T and contains x. Let y be a generic point of Z, which lies in the generic
fiber Xη. We further assume that the following conditions are all satisfied.

(i) T is a Dedekind scheme; that is, dimT = 1.
(ii) One of the following holds.

(a) KX + D|X is Q-Cartier at x and KXη + Dη is Q-Cartier at y,
or

(b) dimOX,x 6 2.
(iii) One of the following cases occurs.

(a) OT,t is of mixed characteristic (0, p), the residue field κ(t) is F -

finite and of characteristic p, and (X,D|X , (aOX)λ) is strongly
F -regular at x.

(b) OT,t is F -finite and of positive characteristic p > 0 and the

triple (X,D|X , (aOX)λ) is strongly F -regular at x, or
(c) OT,t is of equal characteristic zero and (X,D|X , (aOX)λ) is klt

at x.

Then, (Xη,Dη, aλη) is klt at y in case (iii-a) or (iii-c) and is strongly F -regular
at y in case (iii-b).
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Proof. First, we assume that (ii-a) holds. For case (iii-a), let R := ÔX ,x
denote the completion of stalk OX ,x and S := ÔX,x denote the completion of
OX,x. Note that S is F -finite becauseOX,x is essentially of finite type over an
F -finite field κ(t). Since the morphism SpecR→ SpecOX ,x induced by the
completion OX ,x → R is surjective and y is a generalization of x, there exists
a point y′ ∈ SpecR such that f(y′) = y, where f : SpecR→ X is a canonical
morphism. When f∗D denotes the flat pullback of D by f , it follows from
Lemma 2.7 and the assumption (ii-a) that KSpecR + f∗D is Q-Cartier at y′.
Similarly, it also follows from Lemma 2.7 that KSpecS + (f∗D)|SpecS is Q-
Cartier because this Q-Weil divisor is the pullback of the Q-Cartier divisor
KX +D|X via the natural morphism SpecS → X. We see from the fact that
T is a Dedekind scheme and X is flat over T that the kernel of the surjection
R → S is a principal ideal. Since strong F -regularity is preserved under
completion, we apply Theorem 4.2 to deduce that (SpecR, f∗D, (aR)λ) is
klt at y′. Therefore, by Lemma 2.7 again, (X ,D, aλ) is klt at y. Cases (iii-b)
and (iii-c) follow similarly by replacing R with OX ,x and S with OX,x.

Next, we assume that (ii-b) holds. It suffices to show that condition (iii)
implies condition (ii-a). First we consider case (iii-a). The closed fiber X
is F -rational at x by Remark 2.10. Therefore, the log Q-Gorensteinness
of (X,D|X) is an immediate consequence of Remark 2.3 (ii). Additionally,
it follows from [25, Theorem 3.8] that X is pseudorational at x and, in
particular, at y because y is a generalization of x. Thus, Xη is pseudorational
at y, and by Remark 2.3 (ii) again, KXη +Dη is Q-Cartier at y. Case (iii-b)
follows similarly by replacing [25, Theorem 3.8] with [16, Theorem 4.2 (h)]
and Remark 2.10. Case (iii-c) follows similarly by replacing Remark 2.10
with Remark 2.3 (iii) and [25, Theorem 3.8] with [9]. �

In Corollary 4.3, the log Q-Gorenstein assumption regarding the generic
fiber is essential.

Example 4.4 ([37, Theorem 1.1], cf. [8, Remark 6.5]). We give an example
of

(X ,D, aλ,Z, T, x, y, t),
which satisfies all the assumptions of Corollary 4.3, except for the condition
that KXη + Dη is Q-Cartier at y, where (Xη,Dη, aλη) is not klt at y in the
sense of de Fernex-Hacon (cf. [7, Section 7]). The latter condition means
that there does not exist an effective Q-Weil divisor ∆ on Xη such that

KXη +Dη + ∆ is Q-Cartier at y and (Xη,Dη + ∆, aλη) is klt at y.
We fix integers m,n > 1 such that m −m/n > 2. Let I be the ideal of

a polynomial ring Z[A,B,C,D,E] generated by the size-two minors of the
following matrix: (

A2 + (3E)m B D
C A2 Bn −D

)
and we write R := Z[A,B,C,D,E]/I. We set

X := SpecR, D := 0, a := OX , λ := 1, T := SpecZ,
and let f : X → T be a canonical morphism and Z be the closed subscheme
of X defined by the ideal (A,B,C,D,E) ⊆ R. Then, all the fibers of f |Z :
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Z → T are singletons. We choose t ∈ T as the closed point corresponding
to the prime number 3, and we let x ∈ X be the unique element of the fiber
Zt over t and y ∈ X be the unique element of the generic fiber Zη.

First, we note that X := Xt = SpecR/(3) = SpecS ×F3 A1
F3

, where S
is the quotient ring of a polynomial ring F3[A,B,C,D] modulo the ideal
generated by the size-two minors of the following matrix:(

A2 B D
C A2 Bn −D

)
.

Since S is strongly F -regular and Q-Gorenstein by the proof of [37, Propo-
sition 4.3], so is X.

Next, we show that Xη is not klt at y in the sense of de Fernex-Hacon.
Assume to the contrary that there exists an effective Q-Weil divisor ∆ on
Xη such that KXη + ∆ is Q-Cartier and (Xη,∆) is klt at y. It then follows
from [41, Corollary 3.4] that for general prime numbers p, the fiber Xp of
f over the closed point (p) ∈ T is strongly F -regular at xp, where xp ∈ X
is the unique element of the fiber Zp over (p). However, by [37, Theorem
1.1], Xp is not strongly F -regular at xp if p > 3, which is a contradiction.
Therefore, Xη is not klt in the sense of de Fernex-Hacon, as desired.

To discuss the singularities of geometric generic fibers, we introduce the
notion of geometrically strongly F -regular triples.

Definition 4.5. Suppose that X is a scheme that is essentially of finite type
over an F -finite field k of characteristic p > 0, and ∆ is an effective Q-Weil
divisor on X. Let a ⊆ OX be a nonzero coherent ideal sheaf and λ > 0 be
a real number. Xl := X ×Spec k Spec l denotes the base change of X to the

perfect closure l := k1/p∞ of k, and ∆l (resp. al) denotes the flat pullback
of ∆ (resp. a) to Xl.

(i) We say that (X,∆, aλ) is geometrically strongly F -regular over k at
a point x ∈ X if (Xl,∆l, a

λ
l ) is strongly F -regular at the (unique)

point xl ∈ Xl lying over x.
(ii) We say that (X,∆, aλ) is geometrically strongly F -regular over k if

it is geometrically strongly F -regular at every point x ∈ X.

Using the theory of relative test ideals (see Appendix A), we establish
the following equivalent criteria for a triple to be geometrically strongly
F -regular.

Proposition 4.6. Suppose that X is a geometrically normal scheme that
is essentially of finite type over an F -finite field k of characteristic p > 0,
and ∆ is an effective Q-Weil divisor on X such that KX + ∆ is Q-Cartier
with an index not divisible by p. Let a ⊆ OX be a nonzero coherent ideal
sheaf and λ be a rational number. For a field extension k ⊆ l, Xl denotes
the fiber product X ×Spec k Spec l, and ∆l (resp. al) denotes the flat pullback
of ∆ (resp. a) to Xl. Given a point x ∈ X, the following conditions are
equivalent to each other.

(i) (X,∆, aλ) is geometrically strongly F -regular over k at x.
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(ii) For any perfect field l ⊇ k, (Xl,∆l, a
λ
l ) is strongly F -regular at every

point of Xl lying over x.
(iii) For any F -finite field l ⊇ k, (Xl,∆l, a

λ
l ) is strongly F -regular at

every point of Xl lying over x.
(iv) For a sufficiently divisible integer n > 1, (Xk1/pn ,∆k1/pn , aλk1/pn ) is

strongly F -regular at a (unique) point Xk1/pn lying over x.

Proof. Conditions (i), (ii), and (iv) are equivalent according to Theorem
A.14. Since the implication (iii)⇒(iv) is obvious, we show that (ii) implies
(iii).

Given an F -finite field l ⊇ k, let l′ be the perfect closure of l. By (ii),
(Xl′ ,∆l′ , a

λ
l′) is strongly F -regular at every point of Xl′ lying over x. Ap-

plying an argument similar to that in the proof of [15, Theorem 3.1] to
the faithfully flat morphism Xl′ → Xl, we see that (Xl,∆l, a

λ
l ) is strongly

F -regular at every point of Xl lying over x. �

Theorem 4.7. With the same notation as that in Setting 2.15, assume that
conditions (i), (ii), and (iii-b) in Corollary 4.3 hold. If the residue field
κ(t) is perfect, then (Xη,Dη, aλη) is geometrically strongly F -regular over the
function field κ(η) at y.

Proof. First, note that the fiber X is geometrically normal over κ(t) at x
because κ(t) is perfect. Shrinking X and T if necessary, we may assume
that X is affine and g : X → T is a normal morphism; that is, its fibers
are geometrically normal. We take an effective Q-Weil divisor A on X that
has no common component with X and is linearly equivalent to KX + D.
Replacing D by D+ εA with a sufficiently small ε > 0, we may assume that
the index of KXη +Dη is not divisible by p. Similarly, we may assume that
λ is a rational number.

We fix an integer n > 1 and set L := κ(η)1/pn . Let T ′ be the normalization
of T in L and X ′ := X ×T T ′ be the base change of X to T ′. We note that
T ′ is a Dedekind scheme and that X ′ is normal. Let η′ be the generic point
of T ′ and y′ ∈ X ′η′ ∼= Xη ×Specκ(η) SpecL be the unique point lying over

y ∈ Xη. By Proposition 4.6, it is sufficient to show that (X ′η′ ,D′η′ , a′λη′) is

strongly F -regular at y′, where a′ := aOX ′ and D′ := µ∗D is the pullback of
D by the finite flat morphism µ : X ′ → X .

We verify thatKX ′
η′

+D′η′ is Q-Cartier at y′. Let ωXη/κ(η) and ωX ′
η′/L

be the

relative canonical sheaves of Xη → Specκ(η) and X ′η′ → SpecL, respectively.

Since Specκ(η) and SpecL are Gorenstein, the relative canonical sheaves
are simply canonical sheaves according to [40, Lemma 0BZL]. Moreover, by
[40, Lemma 0BZV], we have an isomorphism µ∗ηωXη/κ(η)

∼= ωX ′
η′/L

, where

µη : X ′η′ → Xη is the morphism induced by µ. Considering that a canonical

divisor is unique up to adding a Cartier divisor ([14, V. Theorem 3.1]),
we conclude that KX ′

η′
− µ∗ηKXη is a Cartier divisor. Thus, KX ′

η′
+ D′η′ is

Q-Cartier at y′.
Finally, we show that (X ′η′ ,D′η′ , a′λη′) is strongly F -regular at y′. We take

a point t′ ∈ T ′ lying over t ∈ T and a point x′ ∈ X ′ := X ′t′ lying over
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x ∈ X = Xt. Since κ(t) is perfect and X ′ ∼= X ×Specκ(t) Specκ(t′), it follows

from Proposition 4.6 that (X ′,D′|X′ , (a′OX′)λ) is strongly F -regular at x′.
Moreover, KX′+D′|X′ is Q-Cartier at x′, and x′ ∈ X ′ is a specialization of y′.
It then follows from Corollary 4.3 that (X ′η′ ,D′η′ , a′λη′) is strongly F -regular

at y′, as desired. �

As a corollary of Corollary 4.3 and Theorem 4.7, we provide an affirma-
tive answer to a conjecture of Liedtke-Martin-Matsumoto [22] regarding the
deformations of isolated lrq singularities. An isolated lrq singularity over a
field k is the spectrum SpecR of a normal local k-algebra (R,m) such that

R̂ ∼= k[[x1, . . . , xd]]
G,

where R̂ is the m-adic completion of R and G is a finite linearly reductive
group scheme that acts on a formal power series ring k[[x1, . . . , Xd]] over
k, whose action fixes the closed point and is free away from it (see [22,
Definition 6.4]).

Corollary 4.8 ([22, Conjecture 12.1 (1)]). Let B be the spectrum of a DVR
with an algebraically closed residue field k and X → B be a flat morphism of
finite type with special and geometric generic fibers X0 and Xη, respectively.
Let x ∈ X0 and y ∈ Xη be points such that x ∈ X is a specialization of the
image u(y) ∈ X of y by the morphism u : Xη → X . If the special fiber X0

has an isolated lrq singularity at x, then so does the geometric generic fiber
Xη at y.

Proof. By [22, Lemma 12.5], the problem is reduced to showing that if B
is of mixed characteristic (0, p) (resp. characteristic p > 0) and X0 is two-
dimensional and strongly F -regular at x, then Xη is klt (resp. strongly
F -regular) at y. The mixed characteristic case follows from case (iii-a)
of Corollary 4.3 (ii-b), and therefore, we consider the case where B is of
characteristic p. Since strong F -regularity descends under faithfully flat
morphisms according to [15, Theorem 3.1 b)], by passing to the completion,
we may assume that B is the spectrum of a complete DVR. Then, B is
F -finite, and the above assertion follows from Theorem 4.7. �

Next, we study the behaviors of singularities in proper flat families.

Corollary 4.9. With the same notation as that in Setting 2.15, assume that
the following conditions are all satisfied.

(i) T is a Dedekind scheme; that is, dimT = 1.
(ii) One of the following holds.

(a) KX +D|X and KXη +Dη are Q-Cartier, or
(b) dimX 6 2.

(iii) One of the following cases occurs.
(a) OT,t is of mixed characteristic (0, p), the residue field κ(t) is F -

finite and of characteristic p, and (X,D|X , (aOX)λ) is strongly
F -regular.

(b) OT,t is F -finite and of positive characteristic p > 0, and the

triple (X,D|X , (aOX)λ) is strongly F -regular.
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(c) OT,t is of equal characteristic zero, and (X,D|X , (aOX)λ) is klt.
(iv) X is proper over T .

Then, (Xη,Dη, aλη) is klt in case (iii-a) or (iii-c) and is strongly F -regular in
case (iii-b). Moreover, in case (iii-b), if the residue field κ(t) is perfect, then
(Xη,Dη, aλη) is geometrically strongly F -regular over the function field κ(η).

Proof. We take any point y ∈ Xη. Since the structure map X → T is a
closed map, there exists a point x ∈ X that is a specialization of y. It then
follows from Corollary 4.3 that (X ,D, aλ) is klt (resp. strongly F -regular) at
y in case (a) or (c) (resp. case (b)). The assertion regarding geometrically
strong F -regularity follows from Theorem 4.7. �

Corollary 4.10. With the same notation as that in Setting 2.15, assume
that conditions (i), (ii), and (iv) in Corollary 4.9 hold. If T is of finite type
over SpecZ, then the following conditions are equivalent to each other:

(i) (Xp,Dp, aλp) is strongly F -regular for some closed point p ∈ T .

(ii) (Xp,Dp, aλp) is strongly F -regular for a general closed point p ∈ T .

(iii) (Xη,Dη, aλη) is klt.

Proof. It is obvious that (ii) implies (i). The implication (i)⇒(iii) is a conse-
quence of Corollary 4.9. The implication (iii)⇒(ii) follows from the fact that
the mod-p reduction of a klt singularity is strongly F -regular for a general
p (see [13] and [41]). �

Corollary 4.11. Let T be a smooth curve over a perfect field k of char-
acteristic p > 0 and (X ,D, aλ) → T be a proper flat family of triples over
T , where D is an effective Q-Weil divisor on a normal variety X over k,
a ⊆ OX is a nonzero coherent ideal sheaf, and λ > 0 is a real number.

(1) Suppose that k is an uncountable algebraically closed field. If some
closed fiber (Xt0 ,Dt0 , (aOXt0 )λ) is log Q-Gorenstein and strongly F -

regular and if a general closed fiber (Xt,Dt, (aOXt)λ) is log Q-Goren-
stein, then it is also strongly F -regular.

(2) If some closed fiber (Xt0 ,Dt0 , (aOXt0 )λ) is two-dimensional and

strongly F -regular, then so is a general fiber (Xt,Dt, (aOXt)λ).

Proof. (1) First, we note that the generic fiber (Xη,Dη, (aOXη)λ) is log Q-
Gorenstein by Remark 2.16. Since the closed fiber Xt0 is geometrically
normal over κ(t0) = k, by shrinking T if necessary, we may assume that all
fibers of X → T are geometrically normal. On the other hand, it follows
from Corollary 4.9 that (Xη,Dη, aλη) is geometrically strongly F -regular over
the function field κ(η). Since KX + D is Q-Cartier along Xη, there exists
a nonempty open subset V ⊆ T such that KX + D is Q-Cartier on XV :=
X ×T V . Applying Proposition 4.13 to XV , we see that the fiber (Xs,Ds, aλs )
over a general closed point s ∈ V is geometrically strongly F -regular over
κ(s). In particular, (Xs,Ds, aλs ) is strongly F -regular by Proposition 4.6.

(2) The proof is essentially the same as that of (1), but the log Q-
Gorensteinness of the generic fiber (Xη,Dη) follows from Corollary 4.3, and
therefore, the extra assumption regarding the base field k is unnecessary. �
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Remark 4.12. When D = 0, we do not need to assume the normality of
X in Corollaries 4.3, 4.9, and 4.11. In this case, since normality lifts from
Cartier divisors, by shrinking X and T in Corollary 4.3 (resp. by shrinking
T in Corollaries 4.9 and 4.11), we can reduce the problem to the case where
X is normal.

In the proof of Corollary 4.11, we use the following proposition, which
shows that the strong F -regularity of general fibers is deduced from that of
geometric generic fibers.

Proposition 4.13 (cf. [29, Corollary 4.21]). Suppose that V is an F -finite
regular integral scheme of characteristic p > 0, f : X → V is a flat morphism
of finite type from a normal integral scheme X, and ∆ is an effective Q-
Weil divisor on X such that KX + ∆ is Q-Cartier. Let a be a nonzero
coherent ideal sheaf, λ be a real number, and η ∈ V denote a generic point.
If the generic fiber (Xη,∆η, a

λ
η) is geometrically strongly F -regular over the

function field κ(η) of V , then (Xs,∆s, a
λ
s ) is geometrically strongly F -regular

over κ(s) for a general point s ∈ V .

Proof. Taking an affine open covering of X, we can assume that X is affine,
and then there exists an effective Q-Weil divisor D on X such that D ∼
KX + ∆. Since (Xη,∆η + εDη, a

λ
η) is geometrically strongly F -regular over

κ(η) for any sufficiently small ε > 0, by replacing ∆ by ∆ + εD, we may
assume that the index of KX + ∆ is not divisible by p. Similarly, we may
assume that λ is a rational number.

It follows from Theorem A.14 that, possibly after shrinking V , there ex-
ists an integer n such that (Xs,∆s, a

λ
s ) is geometrically strongly F -regular

over κ(s) for every point s ∈ V if and only if τ(XV n , h
∗∆, (aOXV n )λ) =

OXV n near h−1(Xs), where h : XV n = X ×V V n → X is the first pro-
jection. Let Z ⊆ XV n be the closed subscheme defined by the test ideal
τ(XV n , h

∗∆, (aOXV n )λ). By Chevalley’s theorem on constructible sets, (f ◦
h)(Z) ⊆ V is a constructible set. Since the complement V \ (f ◦ h)(Z) is a
constructible set containing the generic point η, it contains a dense open sub-
set U ⊆ V . By the definition of Z, we see that (Xs,∆s, a

λ
s ) is geometrically

strongly F -regular over κ(s) for every point s ∈ U . �

We close this section with an example showing that the global analog of
Corollary 4.9 does not hold.

Definition 4.14. Let X be a normal projective variety over a perfect field
k and ∆ be an effective Q-Weil divisor on X.

(1) The pair (X,∆) is said to be log Fano if (X,∆) is klt and −(KX+∆)
is ample. We say that X is of Fano type if there exists an effective
Weil divisor B on X such that (X,B) is a log Fano pair.

(2) ([12], [39]) Suppose that k is of characteristic p > 0. Then, X is said
to be globally F -regular if for every effective Weil divisor D on X,
there exists an integer e > 1 such that the composite

OX
ϕ

(e)
0−−→ F e∗OX → F e∗OX(D)
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splits as an OX -module homomorphism, where ϕ
(e)
0 is defined as in

Definition 2.8 and F e∗ ι is the pushforward of the natural inclusion
ι : OX → OX(D) by the e-th iterated Frobenius morphism F e :
X → X.

Proposition 4.15 (cf. [36, Proposition 5.4]). Let (X,∆) be a log Fano pair
over an algebraically closed field k of characteristic zero and H be an ample
Cartier divisor on X. Let S =

⊕
n>0H

0(X,OX(nH)) be the section ring of
X with respect to H and ∆S be the Q-Weil divisor on SpecS corresponding
to ∆. Then, (SpecS,∆S) is klt in the sense of de Fernex-Hacon.

Proof. We take a sufficiently small ε << 1 so that −(KX+∆)−εH is ample.
By Bertini, we can take ∆′ ∈ |− (KX +∆)−εH|Q so that (X,∆+∆′) is klt.
It then follows from an argument similar to the proof of [36, Proposition
5.4] that (SpecS,∆S + ∆′S) is klt, where ∆′S is the Q-Weil divisor on SpecS
corresponding to ∆′. In particular, (SpecS,∆S) is klt in the sense of de
Fernex-Hacon. �

Since globally F -regular varieties (resp. varieties of Fano type) can be
viewed as global analogs of strongly F -regular singularities (resp. klt singu-
larities) (see [36, Proposition 5.3, 5.4]), it is natural to ask whether globally
F -regular varieties deform to varieties of Fano type. In the following exam-
ple, we provide a negative answer to this question even if we assume that
the fibers are Q-Gorenstein.

Example 4.16. Let m,n, I,R, t and T be as in Example 4.4. First, we
observe that R is an N-graded Z-algebra with respect to the grading

degA = nm, degB = 2m, degC = 2mn, degD = 2mn, degE = 2n.

We show that the generic fiber Yη of a flat projective morphism Y :=
ProjR → T is not of Fano type, while Yη is Q-Gorenstein and the fiber Yt
over the closed point t ∈ T is Q-Gorenstein globally F -regular.

Since the graded ring R/(3) is strongly F -regular (see Example 4.4), every
Veronese subring of R/(3) is also strongly F -regular by [15, Theorem 3.1
(e)]. Noting that Yt = ProjR/(3), one can pick an ample invertible sheaf
L on Yt such that the section ring

⊕
`>0H

0(Yt, L⊗`) is isomorphic to a
Veronese subring of R/(3). Therefore, it follows from [36, Proposition 5.3]
that Yt is globally F -regular. Moreover, Yt is Q-Gorenstein by Remark 2.3
(ii) and Remark 2.10 because Yt has only strongly F -regular singularities
and dimYt = 2. As we have seen in the proof of Corollary 4.3, the generic
fiber Yη is also Q-Gorenstein.

We finally show that Yη is not of Fano type. Assume to the contrary that
Yη is of Fano type; then, so is Yη ×SpecQ SpecC. Since Yη ×SpecQ SpecC =
Proj(R ⊗Z C), by Proposition 4.15, there exists an integer u > 1 such that
the spectrum of the u-th Veronese subring of R⊗ZC is klt in the sense of de
Fernex-Hacon. It follows from an argument used in Example 4.4 that the
factor ring R(u)/(p) of the u-th Veronese subring R(u) of R modulo a general
prime p is strongly F -regular. We may assume that p is sufficiently large so
that p > 3, and u is not divisible by p. Then, the extension R(u)/(p) ⊆ R/(p)
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is étale in codimension one, and therefore, R/(p) is strongly F -regular by
[43, Theorem 2.7], which contradicts [37, Theorem 1.1]. Thus, Yη is not of
Fano type.

Appendix A. Relative test ideals for triples

In this appendix, we generalize the theory of relative test ideals, intro-
duced in [29] for pairs, to the case of triples. To obtain a stabilization result
(Proposition A.11) in this case, which is slightly more subtle than the case
involving pairs ([29, Lemma 4.2]), we use an argument similar to that in the
proof of [31, Proposition 3.8].

Let R be an integral domain of characteristic p > 0 and q = pe be a power
of p. We fix an algebraic closure Frac(R) of the fractional field Frac(R) of

R, and we let R1/q be the ring of the q-th roots of the elements in R; that
is,

R1/q = {x ∈ Frac(R) | xq ∈ R}.

Given an R-module M , the ring isomorphism R1/q ∼−→ R sending x to xq

induces an R1/q-module structure on M , which is denoted by M1/q. R1/q-
modules are considered R-modules via the natural inclusion R ↪→ R1/q.
When M1/q is regarded as an R-module in this way, it is simply the push-
forward F e∗M of M by the e-th iterated Frobenius morphism F e : SpecR→
SpecR.

Lemma A.1. Let M be a module over an integral domain R of characteristic
p > 0.

(1) For an invertible R-module L, we have an isomorphism

L⊗RM1/q ∼= (L⊗q ⊗RM)1/q

of R1/q-modules.
(2) For an ideal a ⊆ R, we have the equality

a ·M1/q = (a[q]M)1/q,

where a[q] ⊆ R is the ideal generated by the q-th powers of all ele-
ments of a.

Proof. Since (F e)∗L ∼= L⊗q as R-modules, it follows from the projection
formula that there exists an R-module isomorphism

f : L⊗RM1/q ∼−→ ((F e)∗L⊗RM)1/q ∼−→ (L⊗q ⊗RM)1/q.

It is straightforward to verify that f is an R1/q-module homomorphism,
which shows that (1) holds. Assertion (2) is obvious. �

Let N be an invertible R-module and γ : N1/q → R be an R-module

homomorphism. For each integer n > 0, we set N (n) := N
⊗ q

n−1
q−1 , and γn :

(N (n))1/qn → R denotes the R-module homomorphism defined inductively
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by the following composite:

γn : (N (n))1/qn ∼−−−−−−−−→ (((N (n−1))⊗q ⊗R N)1/q)1/qn−1

∼−−−−−−−−→ (N (n−1) ⊗R N1/q)1/qn−1

(id⊗γ)1/qn−1

−−−−−−−−→ (N (n−1))1/qn−1

γn−1

−−−−−−−−→ R.

From now on, by abuse of notation, the map (N (n))1/qn → (N (n−1))1/qn−1

is also denoted by γ.

Definition A.2. Suppose that R is an integral domain of characteristic
p > 0 and that γ : N1/q → R is an R-module homomorphism, where N is
an invertible R-module and q = pe is a power of p. Let I and a be nonzero
ideals of R and λ > 0 be a real number. The test ideal τ(X, γI, aλ) of
(X := SpecR, γ, aλ) with respect to I is then defined as

τ(X, γI, aλ) =
∑
i>0

γi((adq
iλeIN (i))1/qi) ⊆ R.

Example A.3. With the same notation as above, we suppose in addition
that R is an F -finite normal domain with a dualizing complex ω•R such that

F !ω•R
∼= ω•R, and there exists an effective Q-Weil divisor ∆ on X := SpecR

such that (q − 1)(KX + ∆) is Cartier and I ⊆ τ(X,∆). If N = OX((1 −
q)(KX + ∆)) and γ is obtained from the equivalence relation (?) in [3,
Paragraphs after Definition 2.4] (see also [33, Theorem 3.11]), then

τ(X, γI, aλ) = τ(X,∆, aλ).

Indeed, after localization, we may assume that R is local and that N =
R. Since γn is a generator of the free F enR-module HomR(F en∗ OX((qn −
1)∆), R) of rank one, the above assertion follows from Remark 2.12 and [35,
Proposition 4.6].

Let f : A → R be a ring homomorphism of integral domains of charac-
teristic p > 0. We write RA1/q := R ⊗A A1/q and note that the inclusion

R → R1/q and the natural morphism f1/q : A1/q → R1/q induce a natural
morphism RA1/q → R1/q.

R // RA1/q
// R1/q

A //

f

OO

A1/q

OO

f1/q

;;

Given an R1/q-module M , we view M as an RA1/q -module via this ring
homomorphism.

Setting A.4. Suppose that A is a Noetherian integral domain of charac-
teristic p > 0, R is an integral domain that is flat and essentially of finite
type over A, λ > 0 is a real number, and I, a ⊆ R are nonzero ideals. Let
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ϕ : L1/q → RA1/q be an RA1/q -module homomorphism, where L is an invert-
ible R-module and q = pe is a power of p. For each integer n > 0, we set

Bn := RA1/qn , L(n) := L
⊗ q

n−1
q−1 , X := SpecR, and V := SpecA.

For each integer n > 0, we define a Bn-homomorphism ϕ̃n : (L ⊗R
Bn−1)1/q → Bn by

ϕ̃n : (L⊗R Bn−1)1/q ∼= L1/q ⊗A1/q A1/qn ϕ⊗id−−−→ B1 ⊗A1/q A1/qn ∼= Bn.

Moreover, we define a Bn-homomorphism ϕn : (L(n))1/qn → Bn inductively
as follows:

ϕn : (L(n))1/qn ∼= (L⊗R (L(n−1))1/qn−1
)1/q (id⊗ϕn−1)1/q

−−−−−−−−→(L⊗R Bn−1)1/q

ϕ̃n−−−−−−−−→Bn.
For integers n > i > 0, let ai,n : Bi → Bn be the ring homomorphism

induced by the natural inclusion A1/qi ↪→ A1/qn .

Definition A.5 (cf. [29, Definition 4.3]). With the same notation as that in
Setting A.4, the n-th limiting relative test ideal τn(X/V, ϕI, aλ) of (X/V, ϕ,
aλ) with respect to I is defined as

τn(X/V, ϕI, aλ) :=
n∑
i=0

ϕi((adq
iλeIL(i))1/qi)Bn ⊆ Bn.

Lemma A.6. With the same notation as that in Setting A.4, we have

ϕ̃n+1((L⊗R τn(X/V, ϕI, aλ))1/q) + (adλ/qeI)Bn+1 = τn+1(X/V, ϕI, aλ/q).

Proof. Note that we have the following commutative diagram:

(L⊗R Bi)1/q
ϕ̃i+1 //

(id⊗ai,n)1/q

��

Bi+1

ai+1,n+1

��
(L⊗R Bn)1/q ϕ̃n+1 // Bn+1.

Therefore,

ϕ̃n+1((L⊗R ϕi((adq
iλeIL(i))1/qi)Bn)1/q)

= ϕ̃i+1((L⊗R ϕi((adq
iλeIL(i))1/qi))1/q)Bn+1

= ϕi+1((adq
iλeIL(i+1))1/qi+1

)Bn+1

= ϕi+1((adq
i+1(λ/q)eIL(i+1))1/qi+1

)Bn+1,

which implies the assertion. �

The notation µ(a) denotes the minimal number of generators for the ideal
a.

Lemma A.7. With the same notation as that in Setting A.4, we assume
that λ > µ(a)− 1. Then,

τn(X/V, ϕI, aλ)a = τn(X/V, ϕI, aλ+1).
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Proof. Since ai,n : Bi → Bn and ϕi are R-homomorphisms,

τn(X/V, ϕI, aλ)a =
n∑
i=0

ϕi(a(adq
iλeIL(i))1/qi)Bn

=
n∑
i=0

ϕi((a[qi]adq
iλeIL(i))1/qi)Bn

=
n∑
i=0

ϕi((aq
i+dqiλeIL(i))1/qi)Bn

= τn(X/V, ϕI, aλ+1),

where the third equality follows from [31, Lemma 2.11] because λ > µ(a)−
1. �

Proposition A.8. With the same notation as that in Setting A.4, we as-
sume that λ > µ(a)− 1 and that (q − 1)λ is an integer. If the equality

τn−1(X/V, ϕI, aλ)Bn = τn(X/V, ϕI, aλ)

holds for some integer n > 1, then

τm−1(X/V, ϕI, aλ)Bm = τm(X/V, ϕI, aλ)

holds for every integer m > n.

Proof. It is sufficient to check the equality when m = n+ 1. Since we have
τn−1(X/V, ϕI, aλ)Bn = τn(X/V, ϕI, aλ), the commutative diagram in the
proof of Lemma A.6 yields

ϕ̃n((L⊗R τn−1(X/V, ϕI, aλ)a(q−1)λ)1/q)Bn+1

= ϕ̃n+1((L⊗R (τn(X/V, ϕI, aλ)a(q−1)λ)1/q).

Combining this with Lemmas A.6 and A.7, we complete the proof. �

Setting A.9. With the same notation as that in Setting A.4, we suppose
that V ′ := SpecA′ → V is a morphism from a Noetherian integral affine
scheme such that X ′ := X ×V V ′ is integral. We set R′ := R ⊗A A′, L′ :=

L⊗RR′, I ′ := IR′, a′ := aR′, and B′n := R′⊗A′A′1/q
n

. Let ϕ′ : (L′)1/q → B′1
be the morphism induced by ϕ (see [29, Subsection 2.16] for details).

Lemma A.10 (cf. [29, Theorem 4.5]). With the same notation as that in
Setting A.9, we have

τn(X ′/V ′, ϕ′I ′, a′
λ
) = τn(X/V, ϕI, aλ)B′n.

Proof. The assertion follows from an argument similar to that in the proof
of [29, Theorem 4.5]. �

Proposition A.8, with the aid of Lemma A.10, yields the following stabi-
lization result. The strategy of this proof refers to [31, Proposition 3.8].

Proposition A.11 (cf. [29, Lemma 4.2]). With the same notation as that
in Setting A.4, we assume that λ > µ(a)− 1 and that (q− 1)λ is an integer.
There exist a dense open subset U ⊆ V and an integer n0 such that for any
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integer n > n0 and any morphism V ′ = SpecA′ → V as in Setting A.9t
whose image is contained in U , we have

τn−1(X ′/V ′, ϕ′I ′, a′
λ
)B′n = τn(X ′/V ′, ϕ′I ′, a′

λ
).

Proof. By an argument similar to that in the proof of [29, Proposition 3.3],
there exist a dense open subset U ⊆ V and an integer n0 such that

(τn0−1(X/V, ϕI, aλ)Bn)|U = τn0(X/V, ϕI, aλ)|U .

The assertion then follows from Lemma A.10 and Proposition A.8, �

With the same notation as that in Setting A.4, we assume that the mor-
phism X → V = SpecA is normal and that A is an F -finite regular integral
domain with a dualizing complex ω•A such that F !ω•A

∼= ω•A. We note that

in this case, Bm = RA1/qm = R ⊗A A1/qm is normal for every m according
to [27, p.184 Corollary].

We fix a canonical divisor KV of V = SpecA and write M := A((1 −
q)KV ). Let Ψ : M1/q → A be a generator of HomA(M1/q, A), which is a free
F e∗A-module of rank one. For each integer m > 1, we define the Bm-module

Nm := L ⊗A M1/qm and the Bm-module homomorphism γm : N
1/q
m → Bm

as the composite map

γm : N1/q
m
∼= L1/q ⊗A1/q M1/qm+1 ϕ⊗Ψ1/qm

−−−−−−→ B1 ⊗A1/q A1/qm ∼= Bm.

Given a scheme T of characteristic p > 0 and an integer n > 0, the n-th
iterated Frobenius morphism F : T → T induces a T -scheme structure on
T , which is denoted by Tn. In our setting, V em ∼= SpecA1/qm as V -schemes,
and XV em := X ×V V em ∼= SpecBm.

Lemma A.12. With the same notation as that above, we set

cm := τ(XV em , γm(IBm), (aBm)λ) ⊆ Bm.

Then,

ϕ̃m+1((L⊗R cm)1/q) + (adλ/qeI)Bm+1

= τ(XV e(m+1) , γm+1(IBm+1), (aBm+1)λ/q).

Proof. First, we note that for any integer n > 0,

N
(n+1)
m+1

∼= L⊗q
n ⊗R L(n) ⊗A (M1/qm)(n) ⊗A1/qm M1/qm+1

∼= L⊗q
n ⊗R N (n)

m ⊗A1/qm M1/qm+1
,

where (M1/qm)(n) := (M1/qm)
⊗
A1/qm

qn−1
q−1 . We define the B

1/qn+1

m -module

homomorphism fn : (N
(n+1)
m+1 )1/qn+1 → (L⊗R (N

(n)
m )1/qn)1/q as the composite

map

fn : (N
(n+1)
m+1 )1/qn+1 (id⊗id⊗Ψ1/qm )1/qn+1

−−−−−−−−−−−−−−→ (L⊗q
n ⊗R N (n)

m )1/qn+1

∼−−−−−−−−−−−−−−→ (L⊗R (N (n)
m )1/qn)1/q.
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Then, the following diagram commutes.

(N
(n+1)
m+1 )1/qn+1

γm+1

��

fn
// (L⊗R (N

(n)
m )1/qn)1/q

(id⊗γm)1/q

��

(N
(n)
m+1)1/qn

γm+1

��

fn−1

// (L⊗R (N
(n−1)
m )1/qn−1

)1/q

(id⊗γm)1/q

��
...

��

...

��
(Nm+1)1/q

γm+1

��

f0

// (L⊗R Bm)1/q

ϕ̃m+1tt
Bm+1

Since A is regular, the morphism Ψ is surjective, as is fn. Therefore,

ϕ̃m+1((L⊗R γnm((adq
nλeIN (n)

m )1/qn))1/q) = γn+1
m+1((adq

nλeIN
(n+1)
m+1 )1/qn+1

),

which proves the assertion. �

Proposition A.13 (cf. [29, Theorem 4.13]). With the same notation as
above, we assume further that there exists an integer l > 0 such that ql(q−1)λ
is an integer. Then, there exist a dense open subset U ⊆ V and an integer
n1 > 1 satisfying the following: for any integer m > n1 and any morphism
V ′ → V with an image in U , where V ′ = SpecA′ is an F -finite regular
integral affine scheme with a dualizing complex ω•V ′ such that F !ω•V ′

∼= ω•V ′
and X ′ := X ×V V ′ is an integral scheme, we have

τm(X ′/V ′, ϕ′I ′, a′
λ
) = τ(X ′V ′em , γ

′
m(I ′B′m), (a′B′m)λ).

Here, γ′m : (N ′m)1/q := (L′ ⊗A′ A′((1 − q)KV ′)
1/qm)1/q → B′m denotes the

B′m-module homomorphism induced by ϕ′ : (L′)1/q → B′1.

Proof. By Lemmas A.6 and A.12, the problem is reduced to the case where
(q − 1)λ is an integer and λ > µ(a) − 1. In this case, by taking U and
n0 as in Proposition A.11, we see that n1 := n0 satisfies the assertion by
an argument similar to that in the proof of Proposition A.8. The reader is
referred to the proof of [29, Theorem 4.13] for more details. �

Theorem A.14 (cf. [29, Corollary 4.15]). Suppose that V is an F -finite
regular integral scheme of characteristic p > 0, f : X → V is a normal
morphism that is essentially of finite type from a normal integral scheme X,
and ∆ is an effective Q-Weil divisor on X such that KX + ∆ is Q-Cartier
with an index that is not divisible by p. Let a ⊆ OX be a nonzero coherent
ideal sheaf and λ > 0 be a rational number. Then, there exist a dense open
subset U ⊆ V and an integer n2 > 1 such that for every positive multiple n
of n2 and every perfect point u : Spec k → U of U , one has

τ(XV n , h
∗∆, (aOXV n )λ)OXu = τ(Xu,∆|Xu , (aOXu)λ),
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where h∗∆ is the pullback of ∆ by the projection h : XV n := X×V V n → X.

Proof. After shrinking V if necessary, we may assume that ∆ does not con-
tain any fiber of f in its support and that V is affine with a dualizing
complex ω•V such that F !ω•V

∼= ω•V . Taking an affine open covering of X, we
may assume that X is also affine. We fix a relative canonical divisor KX/V

on X. Since V is Gorenstein, it follows from [40, Lemma 0BZL] that KX/V

is a canonical divisor of X, and in particular, by [14, V. Theorem 3.1], the
Q-Weil divisor KX/V + ∆ is Q-Cartier with an index that is not divisible
by p. We choose a power q of p such that (q − 1)(KX/V + ∆) is Cartier

and ql(q − 1)λ is an integer for some l > 1. The assertion then follows
from Proposition A.13, Lemma A.10, and Example A.3. The reader should
compare this proof with that of [29, Corollary 4.15]. �
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