SOBOLEV % ESTIMATE FOR 0 EQUATION ON STRICTLY
PSEUDOCONVEX DOMAINS WITH C? BOUNDARY
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ABSTRACT. We construct a solution operator for d equation that gains % derivative in the fractional
Sobolev space H*P on bounded strictly pseudoconvex domains in C* with C? boundary, for all
1<p<ooands>%.
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1. INTRODUCTION
The main result of the paper is the following:

Theorem 1.1. Let Q be a bounded strictly pseudoconvexr domain in C" with C? boundary, for
n > 2. Suppose ¢ is a O-closed (0,q) form in Q where ¢ > 1. If p € HSP(Q), for 1 < p < oo and
s> ]%, then there exists a (0,q—1) form u that solves the equation Ou = ¢, such that u € HS+%7P(Q).
Here H*P(Q) is the fractional Sobolev space on Q (see Definition 2.6).

We also prove an analogous result when ¢ is in Holder-Zygmund space A"(€2) which improves
an earlier result of Gong [Gonl9].

Theorem 1.2. Keep the assumptions of the above theorem. Suppose ¢ € A"(2), wherer > 0. Then

there exists a solution u for Ou = ¢ such that u € AT+%(Q). Here A"(Q) is the Holder-Zygmund
space on §Q.

A domain Q C C" with C? boundary is called strictly pseudoconvex if it admits a C? real-valued
defining function p whose Levi-form along b2 is positive definite in the complex tangent space, i.e.
there is a ¢ > 0 such that ) %(p)taﬁ > c|t|? for all t € C" satisfying dp(t) = 0.

It is well-known that on a bounded strictly pseudoconvex domain in C" with sufficiently smooth
boundary, there exist solutions u to the equation du = ¢ which gains 1/2 derivative up to boundary
if ¢ belongs to some suitable space. By restricting to C? boundary, our results establish the
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1/2 estimate for & equation with the minimum smoothness requirement in the context of above
definition.

In the category of the L? Sobolev space (denoted as H%?), one can obtain a solution in the form
N ¢ where N is the solution operator for the associated 0-Neumann boundary value problem,
and 9" is the adjoint of @ in the L? Hilbert space. When the boundary bQ is C*°, Kohn in his
famous work [[X0h63] showed that the solution & N is in Hs+%72(Q) if p € H%2(Q) for any s > 0.
See [CS01, Cor.4.4.2, Thm 5.2.6].

Later on Greiner and Stein [(:S77, p. 174], proved that for any (0,1) form ¢ € H*P(Q) where k

is a non-negative integer and 1 < p < oo, aN peH k+3p (Q). Their results were later extended by
Chang [Cha&9] to any (0, q) forms ¢ for 1 < ¢ < n. Similarly one can obtain a gain of % derivative
for the operator 9N in the Holder-Zygmund space A", for all r > 0. See [GS77, p. 174]. All of
these results require that b2 € C°.

Besides the 0-Neumann approach, one can also solve the 0 equation on strictly pseudoconvex
domains using integral formula with certain “holomorphic like” kernels. The solutions obtained
through this method are no longer L? canonical, but have the advantage that boundary no longer
needs to be C*°. In this direction, Henkin and Ramanov in [RHT71] first constructed a solution
which is in C%(ﬁ) if pis a (0,1) form in the class C°(Q) and bQ € C?. Later Siu [Siu74] and
Lieb-Range [LR30] found solutions that are in Ck“'%(ﬁ) for ¢ in C*(Q), if the boundary is C*+2
and k is a positive integer. The requirement on the smoothess of boundary is a result of using
integration by parts on certain boundary integral. It is also important to point out that in both
papers, the estimates for the solution operators rely on the fact that ¢ is 0 closed.

More recently, Gong [C:on19] used the integral formula method to construct a 0 solution operator

for any C? strictly pseudoconvex domains, and the solution w lies in ATtz (Q) if ¢ is any (0, ¢) form
(¢ > 1) in the class A"(Q2), for all > 1.

In our paper we give a variant of Gong’s solution operator which allows one to work on Sobolev
spaces when the boundary is C2. Furthermore our operator allows us to obtain % estimate when
the right-hand side is A"(Q2), for all » > 0, which improves the above result of Gong. See also
[Shi21] for estimates on a certain class of weighted Sobolev space.

Here is the outline of the paper: In Section 2 we review the definition and properties of the
function spaces we are using. To do estimates we need a characterization of the Sobolev space
by Littlewood-Paley theory. We also include some results on interpolation which will be used
extensively in our proofs. In Section 3 we recall Rychkov’s universal extension operator E,, on a
special Lipschitz domain w, whose boundary is the graph of a Lipschitz function. Section 4 contains
the most technical part of the paper. We show that the commutator [D, E,| = DE,, — E,D maps
H*P(w) into LP(w, A), where the weight A is some power of the distance-to-boundary function.
In Section 5 we prove various results on the embedding of weighted Sobolev spaces WP (Q,\) to
H*P(Q) spaces. Much of the results in this section are probably not new and the procedures are
quite routine, although we are unable to find references for the actual results. Section 6 and Section
7 contain the estimates for the homotopy operators which lead to the proof of Theorem 1.1 and
Theorem 1.2. The main novelty here is the introduction of a weight factor which seems necessary
to prove the relevant estimates. We mention that the commutator was first introduced by Peters
[Pet91] and have been used by Michel [Mic91], Michel-Shaw [MS99] among others.

Throughout the paper we assume that all the domains are in C" for n > 2. We denote the
set of non-negative integers by N, and the set of positive integers by Z*. For a set Q C RV we
denote Q¢ = RNM\Q. We will use the notation = < y to mean that z < Cy where C is a constant
independent of x,y, and x ~ y for “ <y and y < 2”. For the unit ball in RY we use BY.
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2. FUNCTION SPACES AND INTERPOLATION

In this section we review some basic facts about function spaces.

Definition 2.1. Let © C RY be an open set, and let k € N, 1 < p < co. We denote by W*P(()
the space of (complex-valued) functions f € LP(2) such that D f € LP(Q) for all || < k, with the
norm

Ul = 3 10l = 3 ( / Daf<x>\p)” WV(z), 1<p<o.

o] <k | <k

Let A be a positive continuous function on 2. We define the weighted Sobolev space Wf P(Q) as
the space of f in W;"?(Q) such that the following norm is finite:

loc

I lhweniam = 3 Il = 3 ( / ID“f(w)IpA(x)pdV(x)>p, 1 <p< oo

|| <k la|<k
If © is a domain in C" with complex variable z, we write instead A(z)PdV (z).

In our application we will take A(z) = dist(x, b§2)*® for some s € R.
We shall use .#(R¥) to denote the space of Schwartz functions, and .#/(RY) for the space of
tempered distributions.

Definition 2.2. A special Lipschitz domain is an open set w C R of the form w = {(2/,2x) :
xy > p(2')} with ||Vpllpe < 1. A bounded Lipschitz domain is a bounded open set © whose
boundary is locally the graph of some Lipschitz function. In other words, b2 = Uy: 1 Uy, where
for each 1 < v < M, there exists an invertible linear transformation ®, : R? — R¢ and a special
Lipschitz domain w, such that

U,NQ=U,No,(w,).

Definition 2.3 (Holder-Zygmund). Let U C R be an open subset. We define the Hlder-Zygmund
space A*(U) for s > 0 by the following:
e For0 < s < 1, A*(U) consists of all f € C°(U) such that | f1las@) := sup|f[+ sup Lf @)= 1wl
U

Tr— s
eyel lz—y|
00

o A'(U) consists of all f € C°(U) such that || f||s1 () :=sup|f[+  sup
U

ac,yGU;z;ryGU

|f (@) +f () —2f (554))
|z—y]

0.
e For s > 1, A*(U) consists of all f € AS"L(U) such that Vf € A*"1(U). We define

£ llas @y = I fllas—1 @) + S0y 15 Fllas—1 0.

Definition 2.4. Let s € R, 1 < p < co. We define H*P(RY) to be the fractional Sobolev space

consisting of all (complex-valued) tempered distributions f € ./(RN) such that (I — A)2f €
LP(RY), with norm

||f||HS»P(RN) = (I - A)%f”LP(RN)a
where (I — A)2 f is given by
(I = A)3f = ((1+47¢”)2 F(€)"-

Here for a Schwartz function g we set the Fourier transform g(§) = [pn g(x)e 2™ ¢dyx, and the
definition extends naturally to tempered distributions.
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Remark 2.5. The Sobolev space H*P(R") defined above is sometimes called the Bessel potential
space. There is another type of commonly-used fractional Sobolev spaces called Sobolev-Slobodeckij
spaces, which is also known as the Besov spaces %SP(RN ), see [DNPV12] for example. We will not
use this type of space in our paper with the exception of %5, ., which agrees with the Holder-
Zygmund space A?.

We also have the following definition for functions and distributions defined on open sets of R'V:

Definition 2.6. Let Q C RY be an open set.
(i) Define .#(Q) = {flo : f € ' (RV)}. o
(ii) For s € R and 1 < p < oo, define H*P(Q) = {f|a : f € H¥P(RY)} with norm

£l sp() = inf ||f||Hw(RN)~

flo=f
(iii) For s € R and 1 < p < oo, define H3"(Q2) to be the subspace of H*P(RY) which is the
completion of C2°(€2) under the norm || - || gy We will write (|9 gz () = |9/l g0 @)

if g € Hy"(Q).

Remark 2.7. In our paper, Hy?(2) is defined to be the closed subspace of H*P(R"), which is
different from some other literature. For example in [Tri06, Definition 1.95(ii)] Triebel defines the
space H5P((2) := C’go(Q)”'HHS’p(Q), which is a subspace of H*P ().

Nevertheless, when s > % —1 and Q is a bounded Lipschitz domain, we have H*P(Q2) = Hy? (),
in the sense that the natural map Hj"(Q2) — H*?(Q) induced by the restriction map [f — fla] :
HP(RN) — H*P(Q) is a bijection, see equation (2.3) below.

For f S Hg7p(Q), we write HfHHS,P(Q) = HfHHs,p(Q)

Remark 2.8. For 1 < p < oo and s € R, the Bessel-Sobolev space H*P(R) is in fact a special case
of the Triebel-Lizorkin space ﬁ;’Q(RN ) with equivalent norm. See [1ri83, Definition 2.3.1/2 and
Theorem 2.5.6(i)]. More precisely we have the following:

Proposition 2.9 (Littlewood-Paley Theorem). Let ¢g € .#(RN) be a Schwartz function whose
Fourier transform satisfies

supp ¢o C {I¢] < 2}, Q?o’{\agl} =1, 0<¢p<1.

For j > 1, let ¢; be the Schwartz function whose Fourier transform is &5\0(2_75) — 50(2_0_1)5).
Then for s € R and 1 < p < oo, there exists a C = Cy, p s > 0 such that

(2.1) CflufHHs,,,(RN) < (/RN <222js|¢j *f(g;)P)?dx)p < C|fllgsr@ny, VI E S (RY),
j=0

provided that either term in the inequality is finite.

Following the notation from [1ri83, Section 2.3.1], we denote the middle term in (2.1) by
11| 75, ;g), Which is a Triebel-Lizorkin norm on RV,
P k)

By way of Definition 2.6, one can also define for an arbitrary open set 2 C RY the space
F5H( Q) ={fla: fec QSQ(RN)} equipped with the norm ||f||y;2(9) = f?gif ||f||y;2(RN) (see [Tri00,
Definition 1.95(i)]. It follows that H*P(Q) = .%5%(Q).

In the special case that s is a non-negative integer and 1 < p < oo, H*P becomes the familiar
Sobolev space WP,

Lemma 2.10. Let k€ N and 1 < p < co. Then
(i) H*P(RN) = WFP(RN) with equivalent norm.
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(ii) Let Q be a bounded Lipschitz domain in RN. Then WFP(Q) = H*P(Q) where the norms
are equivalent.

Proof. The proof of (i) can be found in [1ri83, Theorem 2.5.6(ii)].
For (ii), see [Tri06, Theorem 1.222(i)]. Notice that we have H®P(Q) = ﬁ;@(ﬁ) as discussed
above. O

Remark 2.11. As explained in the proof of [Tri06, Theorem 1.222(i)], the key to the proof of (ii) is
the use of an extension operator F : W*P(Q) — W*P(RN). In our paper we need to use a different
extension operator that have some nicer properties.

Proposition 2.12. Let Q C RY be a bounded Lipschitz domain. Suppose 1 < p < oo and s € R.

Then we have the following equalities of spaces, where the norms are equivalent.
(i) H*P(RN) = H=*# (RN, where p/ = -£1.
(ii) Fors> & —1, Ho"(Q) = {f € H*?(RY) : flge = 0}.

(iii) Hy"(Q) = H=*# (Q) and H=*¥ (Q) = Hy"(Q)', provided that s >  — 1.

Proof. For proof of (i) see 11195, Theorem 2.6.1(a)].
The proof of (ii) and (iii) are the combination of several results in [Tri02]. We now offer some
explanations. Recall in Remark 2.8 we can use H%P = 9;2 forse Rand 1 < p < oo.

In [Tri02, Section 3.2], Triebel defines H5P(Q) C H5P(RN) and H5P(Q) C H¥P(Q) as
(22) @)= {f € HPRY) supp f €O}, HP(Q) = {flao: [ € (@),

So {f € H*P(RY) : flge = 0} = H*2().

Clearly H*?(Q) (resp. H*P(Q2)) is a closed subspace of H*P(RY) (resp. H*P?(Q)), and we have
a surjective restriction map [f — fla] : H*P(Q) — H*P(Q). _

When s > % — 1, by [Tri02, Proposition 3.1] we have H*P(Q2) = H*P(f2) in the sense that the
restriction map f — fl|q is bijective.

Recall that by definition Hj*(Q) = Cg"(Q)H'”HS’I’(RN> is a closed subspace of H*P(RY). Also
observe that Hy"(Q) C H*P(Q2), since if f = limj_, f; and supp f; C ©, then supp f C Q. Thus
H() = TE@) 7.

By [Tri02, Theorem 3.5(i)], for s > 119 — 1, C°(Q) is dense in H*P(Q2). Hence by using the
identification HP(Q) = H*P(Q), we get for s > % -1,

(2.3) Hy? (@) = CR@) e = g e < fee o),

Using H5?(Q) = H*?(Q) we obtain H3P(Q) ={f € H*P(RY) : f|gc = 0}, which proves (ii).

By [11i02, Definition 3.3 and (43)], we have duality H=*? (Q) = H*P(Q) and H*P?(Q) =
H=*7 () when s > % — 1, where the norms are equivalent. Using the identification H*P(Q)) =
HP(Q), we get HyP(Q) = H=*7(Q) and H~P'(Q) = Hy?(Q)" for the given range of s, proving
(ii). O

We also need some interpolations results.

Definition 2.13. Let Xy, X; be two Banach spaces that belong to a larger ambient space. For
0 < 6 < 1. The complex interpolation space [Xo, X1]g is defined to be the space consisting of all
f(0) € Xo+ X1, where f: {z€ C:0<Rez <1} — X+ X is a continuous map that is analytic
in the interior, such that f(it) € X and f(1 +it) € X; for all ¢ € R. The norm is given by

l[ullix0,x110 = il}f{sup(llf(it)HXo A+ it)lx,) s w= f(0)}-
teR
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Proposition 2.14 (Complex interpolation theorem). Let Xo, X1,Yo,Y1 be Banach spaces that
belong to some larger ambient spaces. Suppose T : Xo + X1 — Yo + Y1 is a linear operator such
that for each i = 0,1, [|[Tully, < Collul|x, for all w € X;. Then T : [Xo, X1]o — [Y0, Yi]o is bounded
linear with ||Tul|jy, v;), < 0576016||U||[X0,X1]9 for all u € [Xo, X1]g.

See [1r195, Theorem 1.9.3(a) and Definition 1.2.2/2].
We also have the following facts:

Proposition 2.15. Let Q be an open set of RN. Let 1 < p < oo and sg,s1 € R. Denote
d(z) = dist(z,bQY) and set sp :=0s1 + (1 —8)sg for 0 < 6 < 1. Then the following hold:

(i) [LP(Q, %), LP(Q, 0%1)]p = LP(£2,6%).

(ii) [H*P(Q), H*1P(Q)]g = H*0P(Q), provided that Q is a bounded Lipschitz domain.

The proof of (i) can be found in [Tr195, Theorem 1.18.5]. The proof of (ii) can be found in [Tri06,
Corollary 1.111 (1.372)].

3. THE UNIVERSAL EXTENSION OPERATOR

In this section we recall the construction of the universal extension operator by Rychkov [Ryc99].
None of the results here is new, although we shall present the proof in a slightly different way from
that of Rychkov.

In the rest of the paper we shall denote by K the positive cone in R:

K={(2 zn): 2y > |2'|}.

Remark 3.1. In many literature, for example [Tri06, Section 1.11.4 (1.322) p. 63|, the defini-
tion for a special Lipschitz domain only requires p to be a Lipschitz function. In other words,
IVpll Loo(Rn-1;rn-1y 1S finite but can be arbitrary large. By taking invertible linear transformation
we can make Vp small in new coordinates.

Definition 3.2. A regular dyadic resolution is a sequence ¢ = (gbj);?io of Schwartz functions,
denoted by ¢ € ©, such that

o [po=1, [2%p(x)dx = 0 for all « € NV\{0}.

o ¢;(x) = 2M (2 ) — 2"V (277 12), for j > 1.

A generalized dyadic resolution is a sequence ¥ = (wj);?';o of Schwartz functions, denoted by

1 € &, such that

o [z%(z)dz =0 for all @ € NV,

o () =207y (277 1), for j > 1.

Here 19 can be an arbitrary Schwartz function.

Lemma 3.3 ([Ryc99, Theorem 4.1(a)]). There ezists a function g € #(R) such that suppg C
[1,00), [pg=1 and [ t*g(t)dt =0 for all k € Z*.

Proof. Define
G(z) = exp(—(z —1)5 — (z—1)78), z€ C\[L,00).

1 .1

Here we use (z — 1)% = |z — 1|55 2871 with 0 < arg(z — 1) < 2. It is easy to check that the
two branches G(t + i0) and G(t — i0) are both smooth functions which are flat at ¢ = 1.
For 0 <e < %, take an oriented loop I'; C C with

Io={t+i0:1+e<t<eBu{fele?:0<0<2n}
U{-t—i0:—e1<t<-1-c}U{l+ee™: 27 <0 <0}



By Cauchy’s theorem,

i o k . o s IRT L k
(3.1) - /0 H(G( -+ i0) — Gt - i0))de = T, /F e
(c)#0, k=1
o, k> 0.
Define
1 G(t+i0) — Gt — i0)
= R.
90 = G i » E€

Then g = 0 on (—o0,1). Also g vanishes to infinite order at both ¢ = co and ¢t = 1. In view of
(3.1), we have

/ g(t)dt =1, /tkg(t)dt:O, VkeZ'. O
0 0

Lemma 3.4 ([Ryc99, Proposition 2.1]). Recall - K = {zn < —|2|} and let ©,& be given in
Definition 3.2.

(i) There is a ¢ = (¢;)72) €D on RY such that supp ¢; C —K N {zy < =279} for all j € N.
(i1) For any ¢ = (¢;) satisfying (i), there is a ) = (wj);?io € & such that suppy; C —Kn{zy <
—277} for all j €N and f = Z;iowj x ¢ f for all f € ' (RN).

Definition 3.5. We call (¢,9) = (qu,Q/)j);?‘;O with above-mentioned properties a K-dyadic pair.

Proof of Lemma 3.4. Let g € .#(R) be as in Lemma 3.3 which is supported in [1,00). Take an
invertible linear transformation © = (01,...,0y) : RY — RN such that ©7!([1,00)"Y) C ~K N
{xn < —1}. Define

do(z1,...,2n) = Cog(b1(z)) - g(On(2)),
where Cp # 0 is the constant chosen so that [py¢o = 1, or ggo(()) = 1. Then ¢y € .Z(R"N)
satisfies supp ¢o € ©7([1,00)"). Moreover, ¢y satisfies [y 2%¢o(z)dz = 0 for all |a| > 0 since
[trg(t)dt =0 for all k € Z*.
Define ¢j(z) = 2NJ g (27 ) — 2N(j*1)¢0(2j*1x) for j > 1, so then supp ¢; C {zn < —277} N —K.

This proves (i).
To prove (ii), let

po = oo € L(RY), pj(x):=2"py(2x) — 2NU Ve (27 2), 5> 1.
Then supp pg C supp ¢g + supp ¢p € —K N {xy < —2} and therefore

supp pj € {ony < -2 270" N-K = {zy < —277} N -K.



So p < D satisfies suppp; € —K N {zy < —279} for all j > 0 and 5;(€) = ¢;(€)(do(277€) +
¢0( 5)) for j > 1. Therefore

[e.9]

[
I

pi(&)pk(E)

0

OO +2 Y 2l©)

0 k=j+1

.
S
I

.
I

pllqg

p;(€)(P;(€) +2 — 2p0(27%€))

.
Il
=)

0(£)(2 — po(€ +ZPJ )(2 = po(277€) — po(27U71g))

Il
=)

= [bo(&)]*(2 — po(¢ +Z¢J €)(Go(277€) + do(27U7V€)) (2 = po(277€) — (27U V).

We can now define 1 via its Fourler transform as
Yo(8) = 260 () — 50(5)3;
0(6) = (60(277€) + 60(2~ U7V (2~ po(277€) — (270 7VE), > 1.
Then Z;io (/ﬁ\jzzj = 1. Note that wj(f) = 1/11(2* (G=1¢) for j > 1, and therefore
wi(x) =280V (207 Ne), > 1
Also we have

i (x) = (2Nj¢0(2jx) i 2N(J'—1>¢0(2j—1:c)) * (250 — 9N po (29 — 2N(j_1)p0(2j_1x)> . >

Since supp ¢p and supp py are contained in —KN{zy < —1}, we have suppy); C —Kn{zy < —277}.
Also we get ¥1(£) = O(J¢]*°) from ¢o(&) = 1 + O(|€]|*°), which implies [ 2% (z)dz = 0 for all
with o] > 0. O

We can now define the universal extension operator, first for special Lipschitz domains, and then
for bounded Lipschitz domains.

Definition 3.6. Let (¢,1) be a K-dyadic pair, and let w be a special Lipschitz domain. The
universal extension operator E,, associated with (¢,1)) is defined by

(3.2) E.f = ij x 1)),

where 1., is the characteristic function on w.

Here by extension, we mean for any tempered distribution f € ./ (w), (Ef)|., = f as distributions
on w. Indeed since w + K = w, we have (¢ * (1,h))|, = h|, for h € LL (RY). Thus

(Buf)lo = (W% (Lu(dj* )l = > (x5 fllo=f
j=0 Jj=0

More generally for a bounded Lipschitz domain €2, and I/ an open set containing {2, we can use
partition of unity to define extension operator £ = £q for £ such that suppEp C U for all ¢:
Let {U,}M, be a finite open cover of €2, such that Uy CC Q, bQ C Ui\/lzl U, and U,],w:o U, CU.
Furthermore we may assume that for each v, there exists a special Lipschitz domain w, and an
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invertible affine linear transformation @, : RN — RY such that U, = @V(BN )and U, N D, (wy,) =
U, NQ.

Choose x, € C°(U,) such that xo + Zﬂ/le X2 = 1 in some neighborhood of €. For a function g
defined on QN U, let E, g := E,, (g0 ®,)0 ®,!

(3.3) Ef =xof + qu (X f)-

v=1

Proposition 3.7. Let w be a special Lipschitz domain, and E,, be given by (3.2). Then

(i) B, : H*P(w) — H>P(RYN) is a bounded operator for all s € R and 1 < p < oo.
(i) B, : A*(w) — AS(RYN) is a bounded operator for all s > 0.

In particular £ is a continuous map from C*®(w) to O (RY).

The reader can find the proof in [Ryc99, Theorem 4.1(b)]. By partition of unity we see that
E:HP(Q) — HSP(RY) and & : A5(Q2) — A(RY) are also bounded operators. In particular € is a
continuous map from C™(w) to C>®(RY).

There is also a useful “Littlewood-Paley type” characterization of H*P(w).

Proposition 3.8. Let w be a special Lipschitz domain and ¢ = (¢j)]°io be constructed as in
Lemma 3.4 (1).

(i) Forse R and 1 < p < oo, H*P(w) has equivalent norm

113 ) = H(iﬂ% <),
<

(ii) For s > 0, the Hélder-Zygmund space A*(w) has an equivalent norm

w)

1f 125 (wio) = sup 27%(|d; * | poc (w)-
jEN

The proof is in [Ryc99, Theorem 3.2], where the assumption is ¢ € C°(—K), but based on
[Ryc99, Theorem 4.1(b)] same proof works for ¢¢ € .77 (—K).
4. COMMUTATOR ESTIMATE

The main result of this section is the following commutator estimate on special Lipschitz domains.
We will write D for the gradient operator, and D = (DY) |a|=k-

Theorem 4.1. Let 1 < p < 0o and s € R, and let w be a special Lipschitz domain. Suppose
(¢,v) is a K-dyadic pair and let E,, be defined as in Definition 3.6. Then there exists a constant
C = Csp > 0 such that for 6(x) = dist(z, bw),

(4.1) 16'°[D, B fllo@e) < Cllflmswiy.  VF € S (RY).

Remark 4.2.

(i) By Proposition 3.8, the H*?(w) norm is equivalent to the 7, (w; ¢) norm. In fact we will
establish the following stronger estimate: for s ¢ R, 1 < p < oo

(4.2) 16" (D, Eu) flloe@ey < Copoll fll2s o wieys VS €' (RY),
where

17075ty = [[sup 27105 2 1], < H(Zz%sw “ f )5

=0

w 1f1.75 (e
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(i) When f € H%P(w) for s > 1, Theorem 4.1 follows from Proposition 5.6, which gives that
(4.3) 189l oy < Cllgllze-rageny, for any g € Hy™"P(@).

This is because [D, E,] = 0 in w, and therefore [D, E,|f € Hy "*(@°) by Proposition 2.12
(ii). Letting g = [D, E,|f in (4.3) we obtain (4.1).
(iii) When s > % and f € H*P(w), Theorem 4.1 implies that [D, E,|f € L _(RY). Indeed, since
[D, E,]f is supported in w€,
1D, Bl FllLr s~ 0,y <Ml (3 0,m 107105 Bl fll Lo (s~ 0,my)
<N6° Ml om0, 16" (D, Bl f1l Lo @e)

s—1)p’ | 1/7
5”5( Lp ||L/1}EBN(O,R))HfHHS’p(w)

for every R.

Note that (s — 1)p’ > (]% —1);5 =-1,50 56— is a locally integrable in RY, which
implies that the right-hand side is finite. When s < ]%, 6(z)~VP" is no longer integrable
near the boundary of w, and we can only interpret the commutator as a distribution.

Note that when p = oo and s > 0, we have sup 27%||¢; * fllpeow) = Hsup2j5]¢>j * waOO(w)’ or
jEN jEN

J
B oW §) = F5, oo(w; @) (also see [11183, Remark 2.3.4/3]). Thus by (4.2) and Proposition 3.8

(ii), we have the following estimate for the Holder-Zygmund space:
Corollary 4.3. Let s > 0 and let E,,w be as in Theorem 4.1. There is a C > 0 such that
(4.4) 16 %D, Eu) fll e @) < Cllfllasw)> | € A(w).

To prove Theorem 4.1 we need a sequence of lemmas.

Lemma 4.4. Let ¢,1) be two generalized dyadic resolutions. Then for any M > 0 and v € NV,
there is a C = Cy,ny > 0 such that

(4.5) / |DV¢; % by ()] dar < C2RnGRIYI=Mlj—klFmax(G=LA=LO)} = 5k >0 e Z.
|z|>2-1

Proof. By symmetry we can assume j < k. We first use the scaling properties of ¢ and ¢ to show
that the estimate can be reduced to the cases j = 0 and j = 1. When 1 < j < k, recall that
oj(z) = NGV (277 12) and oy, (x) = 2VE=Dep (28 12), so

b % i () = 2VGHE2) / G1(2 e — Py (25 Vy)dy

= N1 / o1(2 " e — gy 2V g)dy
=20 gy s (2 ).

Therefore taking substitution & = 212 we have

(4.6) / DY+ gp() | dw = 207000 [ DIk ja (@)]dE, 1< <k
|| >2 |Z|>20-1-1
Suppose (4.5) is true for j =1 < k. Since k > j, the right hand side of (4.6) is bounded by
260 =Dhgh=M (1= (k—j+1)[+max(1+(G—1-1),k—j+1+(—1-1),0)) _ cr9ilvl—M(lj—k|+max(k—1,0))

— ¢omin(G.k)[y[=M(|j—k|+max(j—1,k=1,0))

This proves the reduction.
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Next we consider the case for j € {0,1} and £ > 1. Write &k = 1 + m, for m > 0. Since
Jen 2%¢1(z) = 0 for any o € NV, we have

D76y * Y (@) = [ D6~y ) dy

= | D7¢;i(x —y)2N"y (2My) dy

RN
= Jox D7¢j(x —27"y)Pr(y) dy
DO+ g
:/RN Digj(x—27"y) — Y (—2my)°‘a!¢3(x) V1(y) dy,

lo|<M'—1

where M’ is some large number to be chosen. By Taylor’s theorem, the expression in parenthesis
is bounded in absolute value by

1 / !
—27myM sup )D”HM ﬁbj‘-
Mt B(z,2-my))

Since ¢g and ¢ are Schwartz, we have for j =0, 1

(L+]z)™, |z > 2t™|y|

for M’ > 0,7y e NV,
1, o] < 217y !

(4.7) sup DI ] <
B(z,27™|y|)

Therefore for j = 0 or 1 we have

/ D76 % 1 ()] da
| >2-

9—m M’ ,
Sy / [( / + / ) B sw [DAy, \zm(y)dy] dz
|22~ lyl<2m=tlz|  Jly|>2m ] " B2yl

Using polar coordinates and (4.7) we can bound the above expression by
! o0 !/ o0 !/ !
2—mM |:(1 +p)—M / T‘M T‘N_l(l +’I“)_2M —N dr
2 0

oo
+/ er(l—i-r)*ZM/*NrN*l dr} pN’1 dp
2

m—lp

o0
S 27 [ pN [(Hp)‘M + /
2-1 Qm—lp

o

(1+ ’I“)_M/_l dr} dp

o
Syar2” ™ /21 pN ! ((1 +p) M+ (14 2m‘1p)‘M') dp

o0
Somr2”™M . PN L+ p) M dp.
Taking M’ > 2M + N, then the above is bounded by C’%M,Q*T”M/ min{2!M'=N) 1} < Coy 27 2Mm
x min{2M, 1} < C,, pp2-MmAmax{m=1.0}) "which is what we need for the estimate.
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Finally, if j = k = 0, we use the fact that ¢g * 19 is Schwartz, and therefore

/| 521 | Do * o) () dx| < €278, 1< 0;

/ ID[do * th](x) dz| < C, 1> 0,
| >2-

which implies (4.5).
U

Corollary 4.5. Let (¢;)52, C (RN be a generalized dyadic decomposition. Then for any M > 0
and v € NV there is a C = Cy,m~ > 0 such that

(4.8) / | D%y (z)|dz < C2FI=Mmax(Ok=) =y e N | e Z.
jo|>2-1

Proof. Let ¢ = (¢;)32, be any regular dyadic resolution, so 1 = >322,¢; * ¥ and we have
f\w|22‘l D] < 37520 flw\22‘l |D(¢; * 1y)|. Taking sum over j € N on the right hand side of
(4.5) we get (4.8). O

We remark that Corollary 4.5 can also be proved independently without the use of Lemma 4.4.

In our proof we use the following dyadic decomposition:
(4.9) Po={(, zn): 22 F<ay—pa) <22 %} Cw, keZ,
(4.10) Sy ={(2",zn) : 22k < gy — p(z) < —2_%_k} Cw’ kel
Up to sets of measure zero, we have disjoint unions w = | |, o, Pr and @° = | |;c5 Sk-

Lemma 4.6. Let 1 < p < oo. For any M there is a Cp; > 0 such that for every j,7 € N and
kK €7,
(4.11) [y (D - (& % e * (L, - (dgr % F))llio(s,) < C2F MUKV 6505 £l 1o -
Proof. Since D1,, = —D1ge as distributions on RY, the term 1, * (D1, - (¢; * thjr * (1p, (5% f)))
in (4.11) has two identical expressions:
(4.12)  Ajjir := Dby = (Lo * ¥y * (1p, (@50 * [)))) — ¥j * (Lo (D + ¥y * (1p, (@0 * [)))),
(4.13) Bjj i= =Dy x (Lue (@) * thjr * (1p, (050 * £)))) + ¢ % (Lue (D@ x ¢y * (15, (@5 % f))))-
First we show that the left-hand side of (4.11) is 0 if j <k —2 or j* <&’ —2. By (4.12) and the
fact that supp ¢;,suppv; C {zny < —277}, we see if j' < k' —2,
supp(@; * ¥y« (1p,, - (¢jr % f))) C supp ¢; + supp pyr + supp (1p, - (¢50 * f))

C {an —p(a)) < =277 — 217 427+

C {zn — pla) <0},
and similarly,

supp(Dej * ¢y * (1p, - (95 * [))) € {zn — p(z’) < 0}

Hence the left-hand side of (4.11) vanishes if 7/ < k' — 2. On the other hand, the expression in
(4.13) is supported in supp 1; +0° C {xn —p(z’) < —277}, which is disjoint from Sy, = {—2_k+% <

xy —p(2') < —Z_k_%} when j < k—1. Hence the left-hand side of (4.11) again vanishes. We shall
now assume that 7 >k —2 and j' > k' — 2.



We first estimate the left-hand side of (4.11) using (4.12). Write (4.12) as Ajjp = A]],k/
where

Al o= Db s (1,(¢5 % ¥y % (Lp, (50 [)))),
Ajj’k’ =1 * (1w (Dej * by * (1Pk/(¢j’ * f))))-
Denoting hjjip = ¢j % by * (1p, - (5 * f)), we have
1ALl (s = 1D * (Lo - Byl Logsy)-

For z € Sy and y € w, we have |z — y| > dist(Sg,w) > 27'7% and

Dy * (b (@) = / D — y)hyae () dy.

Njz—y|>2-1-k

Since 1; = 2NG=14)1(27-12) and v; and Dy are Schwartz functions, we have

13

2
— Ay

(4.14) / ‘qu}](:pﬂ dr = / 2j_1’D¢1(x)| dr SJM 2j—M(j—k)
|z|>2-1—k |z|>2i—2—F
(4.15) [ W@l = [ )] s 2 MO,
|z|>2-1—F |a|>2i-2F
Now supp(¢; * ;1) C {ay < —2_j} by Definition 3.5. Hence by Lemma 4.4 applied with [ = j, we
have
(4.16) 1D 5 % byl ey = D765 5 el (g m-sy S 27U,

Applying Young’s inequality and estimates (4.14), (4.16), we have
[ ||D¢j”L1({|z|>2*1*k} Ao | 2o ()
S 2TMIBgj 5y x (Ap, (65 % D)llzre)

< 9 =M H¢J * ¢J HLl RN)Hd)j/ * f||Lp(Pk/)
< 227 M= lg=MG=R) g, fllizecp,)-

Similarly by (4.15) and we can show that
1Al Lo (s S 03l 1 (e2-1-#) 1DS; % jill pr ey 657 * Fllwcp,)
< 2927 Mi=Tlg= MU= |1, fllizecp,)-
Next, we estimate the left-hand side of (4.11) using (4.13). Write (4.13) as Bjj =:
ij,k, where
B]lj’k’ = Dip] * <1wc<¢j * ’(/}]/ * <1Pk’(¢j/ * f)))),
Denoting h;-,k/ =1p, - (¢ * f) and applying Young’s inequality we get
(4.17) 1B llo(se) S 1Dy lld * e % Bl po(e) -

For z € @® and y € Py, we have |z — y| > dist(Py, @) > 2-'*. Hence for z € °,

D5 5y 5 Wy () = / (D6 % by) (& — )W () dy.

Pon{y:lz—y|>2-1-F}

_lej’k” +
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By Young’s inequality and Lemma 4.4,

”D'quj * ¢j’ * h;/k/HLp(wc) < </|

m|22717k’

| D7 * ¢j’|> 170 o vy

< PN=MU=T R || g s £l o)

Since || D; | g1y = 2971 Dy || 11 ®y) < C2771) we get (4.17) that
< 2j717M|jfj’|fM(j’fk’)H(pj, * fHLP(Pk/)-
In the same way we can show that By satisfies the same estimate
1Bkl nogsy) S 20 M= =M= ) g s £l Lo,
2
]Jlk/, Ajj/k/’
145 % (Do) - (95 % ¥y x (Lp,, - (5 * )l Le(sy)

< 2ij\j,j/|min{27M(jf ) 9—M(j'~K) } |0 f”Lp(Pk/

< 99— Mlj=j'lg—M max{j—Fk.j’ _k/}H%

1Bj 1l sy

Finally combining the estimates for A} Bjj,k/ and Bj e we get

v fllo(py)
< 9i=Mlj—j'lo=F1(i—k)+('~K) ]||¢], * fllLo(p,)
— kJ/
< 9i— % li—4'|+li—k|+1j’ K| 0 Fllzo(p)
~ k! )
where in the last step we use j > k—2 and j' > &/ — 2. Replacing M /2 by M we get the result. [
Lemma 4.7. Let M > 1. Then there is a Cpy > 0 such that
ZQ_M(‘a_bH'b_CD < Op2~M=Dla=el - for il a,c € Z.
beZ
Proof. By a substitution b = a — b we see that S peg 2~ MazblHlb=cl) — > tes 9= M(bl+la—c=bl g it

suffices to show that
Z 9—M(|b|+|a—b]) < C’MQ_(M_I)“IL

beZ
By symmetry we can assume a > 0 in the above inequality. It follows that
2a—1
Z 2—M(\b\+|a—b|) < Z M (|b|+|a—b]) _|_ Z 2— (b+(a—D)) + Z 2—M(b+(b a))
beZ b<0orb>2a b=1 b=a+1
2a—1
< CMZQ M |b|+a +22—Ma+ Z 2—Ma
beZ b=a+1
2a—1
oy (e 3]
beZ
S Cypla+ 1)2_M“.
Clearly a +1 < 2%, for a € Z*. Hence Y, 9~ M([pl+la—dl) < 9—(M~—1)lal O

We are now ready to prove the main result of the section.

Proof of Theorem /.1. As mentioned in Remark 4.2 (i), we will prove the following stronger esti-
mate

(4.2) 181D, Bl o) < Coall sup 2716l gy, € 7'(0),
J

for 1 < p < 0o, provided that the norm on the right hand side is finite.
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Let P, and S, be the dyadic strips defined in (4.9) and (4.10). Since § ~ 27% on S, we can
replace the function § by >, ., 2 ¥1g,. Also

[D,Eu]f = DE,f — E,Df

= Z% ) (65 % f) + 1w+ (¢ % Df)] Zwy (¢5 * D))
= Z¢j (¢J * f))
= }:z% )+ (@5 % Wy % (Lo - (50 % 1))

- Z 0y % ((DLo) - (65 %y = (Lp,, - (8 % )

7,3’ eENJK’ €7
Denoting the summand on the right-hand side by Aj;;/, we have by (4.11),

9d =M (|5 —=35"|+1i—k[+|7'—FK']) b

[ Ajjwllo(sy) S 7 x flle(py)-

Therefore

18", Bulfllzr(sy £ 277 ND, Bl o,

~

“1Dk M k —K'|)
S 2(5 ) Z 2] (l] —Jj |+|] |+|] H¢ ’ %k fHLp(Pk/)
j,j'ENKEZ

Write k = j' + (k—j') and j = j' + (j — j'). Then the above is bounded by

85D, Bl iy S 30 207V gl 1 g MM 145 KD g ],
§,j'ENK €Z

s=141)(lj—4'|+|k—3]) o= M (lj—k|+|i—3'|+15'—k|) 955’
< Z 9(Is=1+1)(l§ ="+ k=) o= M (|5 —k|+1i—3"[+|5" —F'|) 953 oy * Fllzo(p)
j.j' ENK/EZ
—(M—|s=1|=1)(|j—k|+|i—3'|+15' k) 955"
< Z 9~ (M—[s=1[=1)(|j—k|+]i—J"|+ ‘)2]”¢].,*f”Lp(Pk/)_
j.5' ENK/ EZ

Applying Lemma 4.7 to the sum over j and then again to the sum over j’, we get

16D, Bl fllzosy S > 27 MR =R D257 16 s f| o)

J'eNK'eZ

< o (Ml k‘SUP 27|60 * fllzocr,)
k'€Z

< Z 9—(M—|s=1|=3)[k— k/\H sup 95y’ o *f|HLP (Pu)-
k'€Z

Define sequences u, v, w by
uls] = 16", Bl liasyy, - oli] =27 ML ) o= [ sup 2in« fllince,)
€

Then we have shown that v < v * w. By Young’s inequality we get ||ulle < [|v]|p]|w]/e. Clearly
luller = ]\51*3[D,Ew]f|]Lp(wc and [[wlle = [|fll#s _(we) (see Remark 4.2 (i)). By choosing M
sufficiently large so that ||v||;1 < co we obtain the desired estimate (4.2). O
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5. HARDY-LITTLEWOOD LEMMA OF SOBOLEV TYPE

In the last section we estimated LP(€2, \) norm using H*P?(€2) norm, where the weight \ is some

power of the boundary distance function. To show that our solution for 9 is in H styp (€2), we also
need to bound the H*P(£2) norms by weighted Sobolev norms WP (2, \). We will call this kind of
estimates Hardy-Littlewood lemma of Sobolev type, after the classical version for Holder spaces.

Lemma 5.1. Let s > —% and 1 < p < oo. Then
(i) There is a Cs, > 0 such that for all v € I/Vli’f((), 2) such that v =0 near 2,

2 2
(5.1) /0 tPlo(t)|P dt < Cs, /0 tTOP ! ()P dt.

(ii) Let w = {xn > p(2’)} € RY be a bounded special Lipschitz domain. Suppose u € VVli’f(w)
and suppu C wNBYN. Then
16°ull 2o () < Ceplld* Dull o),

where d(x) = dist(x,bw) and C , > 0 is the constant that does not depend on u.

Proof. (i) By assumption v € VVlicl(Q 2) is locally absolutely continuous, hence v(¢) can be defined
point-wise.
Let € be a small positive number. Using integration by parts we have

2 . » §sp+1 2 ysptl —y
tPlo(t)|P dt = — + )P~ v (t) si t))dt
/5 lu(t)] sp+ 1 /5 sp IP\U( )P~ o' (t) sign(v(t))

2 tsp—‘rl » 1 ,
< v(®)|PV(E)] dt
< [ ogpletor )

< Coplit"® Vol

s+1
L7 (52) 12570 || 2o s.21)

‘ts—i-l

= 5p||tsv||Lp (16,2]) | v HLP([6,2])'

Here signx = f—‘ when z # 0 and signz = 0.

Note that the left-hand side of the above inequality is [[t*v|", (6.2 DPividing by llt5]|2 Lo( [6 2
(which is finite) from both sides and taking the limit as 6 — 0 we get (5 1).

(ii) By assumption u vanishes outside B, s

10%ul, ) S / / (= ) ) P i
ly'1<1 Jyn=p(y

1- p(y
/ / Py ¢+ ply )P dt dy.
ly'|<1 Jt

Set u(y',t) :=u(y',t + p(y")). Then u(y’,t) vanishes near t = 1 — p(y’). Since sup |p| < 1, for every
y' € RV~ we see that the map ¢ — u(y’,t + p(y/)) is supported in [0,1 — p(y’)) and vanishes near
1 —p(y'). Since 1 — p(y') < 2, by part (i) we have

1=p(y")
H(ssuHLp(w) §/ | 1/ t(sﬂ)p!Dtu(y',t—i—p(y’))\pdtdy'
y'|<

1
- / <1 / (yn — () TP IDyuy yn) P dyn dy
y'|<

S 116 Dl oo

This completes the proof. O
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The following result can be viewed as a weighted version of the Poincaré inequality.

Proposition 5.2. Let 1 < p < oo and k,l be non-negative integers with | < k. Let Q0 be a
bounded Lipschitz domain in RN and define §(x) to be the distance function to the boundary bQ2. If

u € VVIIZf(Q) and

> 15 D o) < o0,
IvI<k

then u € W'P(Q). Furthermore, there exists a constant C that does not depend on u such that
lulwin@) < C D 118 D7ul 1oy
lvI<k

Proof. For each 0 < i <[ < k and each |a| = i, we show that
(5.2) / Deupdviz) < S / 52 D DVl AV ().

Q Q

lvI<k
It suffices to show that for every non-negative integer j and 1 < p < oo, one has
(5.3) 1670l Lo (0) Sip 167 0l o) + 1167 Dol 1o
Indeed, setting v = D*u and using (5.3) (k — i) times we get
D%l o) S 10Dl o) + 10D DYu| 1p (o)

SR Z 1657 D | o
[v|<k—i

S 18 D Loy
IvI<k

It remains to prove (5.3). Take a finite open cover {U,}*, of Q such that Uy CC Q and
U]VV[:1 U, D 2. Let {x,} be a partition of unity such that x, € C*(U,), 0 < x, < 1, and
Z]Vw: o X» = 1 in some neighborhood of 2. We can assume that for each 1 < v < M there exists an
invertible affine linear transformation 1, : BY — U, where B is the unit ball in R, such that

U, BYNw,)=U,NQ, 1<v<M.

Here w, = {yn > pu(y')} are special Lipschitz domains. For y € BY Nw,, § o9, (y) = 6,(y) :=
yn — pu(y'), thus

M
1870 ]La0) S X087 ellzney + Y- e ellzoorea,)

r=1
M .
< lxovllze) + D 162106v) © Yulll 1o, ) -
v=1

Clearly [[xov|l o) < 167 x0v| ey < 167 0] p(0)- By Lemma 5.1 (ii), we have for 1 <v < M,
16510v) 0 Yulll Lo @~ ) S 1657 DI0GY) © Yol Lo 88w,
S ||5£+1D(XVU) o ¢VHLP(]BwaV)
SN D)l Lo, na)
S| pow,ne) + 167 D[ oo, 0
SN | Loy + 1677 D[ 1o -

Taking sum over 0 < v < M, this proves (5.3) and thus the proposition. O
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Lemma 5.3. Let Q be a bounded Lipschitz domain. Denote 6(x) = dist(x,082). Then for any
EeNand1l <p<oo thereis a C = Cip,a > 0 such that

167" Fllzeqy < CUFll o

Proof. We only need to prove the statement for special Lipschitz domain w = {(2/,zy) € RV :
xy > p(a’)} and for f € Hg’p(w) which is supported in BY, namely,

(5.4) 16 Fllzoe) < Ol ineys  VF € HEP(w), supp £ C BY.

For a bounded Lipschitz domain one can use partition of unity and the result for special Lipschitz
domains. We leave the reader to check the details.

The case k = 0 is trivial, so we assume k > 0. Since Hg’p(w) is the completion of C¢°(w) under
the norm H®P(RY) (see Definition 2.6 (iii)), it suffices to prove (5.4) for f € C>°(w) with uniform
bounds. Indeed, for a general f € H"P(w), take (f;)52, C C¢°(w) such that || f; — fHH(I)c,p(w) — 0,

so then (§ kf]) °, C LP(w) is a Cauchy sequence, and ”(S_kaLp(w) < CHfHHk,p(w) with the same
0

constant.
Since ||p[|coa < 1, we know that 26(z) < [z — p(2/)| < 26(x) for all z € R, so we can replace

6(z) by ey — p(a)].
Let g(t) € C2°(0,2). By Taylor’s theorem

t
g(t) = (k_ll)'/o g®(s)(t — s)F s, t>0.

Therefore

_ k)
e [ AL
_ (k)

(k:—l)!”/0 lg ()\t)|d)\HLP(R+)
1 2
< =g | 1900

1 2 (k) _1
_/ 19" Lpr ) A P dA

= B P o

Now for each ' € RN71, set g,/ (t) := f(2',t+ p(z')) so ggf) (t) =oFf(a',t+p(a))) = (8% f)(a' t+
p(z')), we see that supp g C [0,2) since supp f C BY. By Fubini theorem we have

p
[l =ttt st avie = [ a [Tctsat e g
—k /
— [ I Ol
SCk,p/RN HQ HLpR+)

=G [ ([ 105D+ ot a

= Chyp / |0 [ (@) Pda < Cpyp / |D¥f|P aV (x).

Thus we have |67 f|| o) S ID* fllzrw) < 1f lweww) = [1flwss @y uniformly for all f € C°(w).
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Note that by Lemma 2.10, H*?(RY) = W*P(RV) with equivalent norm, and by density of

C®(w) in Hg’p(w) (see Definition 2.6 (iii)) we conclude that [|67% f|| () < | f1l grt.p(movy for all

fe HPP(w). O

Proposition 5.4. Let Q C RN be a bounded Lipschitz domain. Denote 6(z) = dist(x, bQ). Then
for s >0 and 1 < p < oo, there is a C' = C(s,p, ) > 0 such that

(5.5) ull fr—sp() < Cll0°ull i), Vu € L,

loc

().

Remark 5.5. For the special case when p = 2, s > 0 is not a half integer, and (2 has smooth
boundary, the above result is proved in [CS01, Theorem C.4].

Proof. Note that the estimate is equivalent to showing the boundedness of the inclusion operator
L: LP(,6°%) — H *P(Q)

for s > 0 and 1 < p < co. We will argue by duality and interpolation.
Let p’ be the conjugate of p. By Proposition 5.3, for k € N,

kp'
HQHLP’(Q,&k) < Ck,p’HQHH[l)c,p’(Q)a Vg € Hy" (Q),

is a bounded operator. By Proposition 2.12 (iii), we have H %P (Q) = Hg’p/(Q)’. Using Hoélder’s
inequality, we have for every f € LP(Q, 6%),

£l —rr) = | sup (f,9)
geEH® (Q);IlgHHg,pf(mﬁl

, sup / | fgl
geLP (Q’(;fk) <C,w,/ Q

;||9HLP'(Q’5_1€)_

= s [strel
H‘S_kgHLp’(Q)SCk,p’ Q

k —k
< sup 10 fllLoyll0 9||Lp’(Q)
187591l 7 () <Ck,pr

< Crp 16" fllzr() = Crap |1 F | o(o60)-

Hence the inclusion ¢ : LP(Q, 6¥) < H=%P(Q) is bounded for k € N.
For general s > 0, take any integer k > s and denote § = s/k. By Proposition 2.15 we have

[LP(Q)a LP(Q> 5k)]9 = Lp(Qa 55)’

IN

and
[LP(9), H™"P(Q)]p = H™*P(Q).
Using interpolation we obtain the boundedness of inclusion ¢ : LP(2,6%) — H*P((2). O

We now use Proposition 5.4 to extend Lemma 5.3 to all s > 0.

Proposition 5.6. Let Q be a bounded Lipschitz domain. Denote 6(x) = dist(x,bQ2). Then for any
520 and 1 <p < oo there is a C = Cspa > 0 such that ||67° fl| o) < Cllf|lzsr@)-

Proof. Since the dual space of LP(2, %) is L? (2, 6°), we have

107 fllry = sup  [(f,9)].
geL? (2,5%),
9l 17 .56, <1



20

Since LP'(Q,8°) € H~*? (Q) by Proposition 5.4 and since Hi?(Q) = H~*" (Q)’ from Proposition
2.12 (iii), we have

1075 fllzr(a) < sup [ = [ aer )
geEH P (),
91l 5,57 () <€
which completes the proof. OJ

Remark 5.7. Proposition 5.6 holds for Holder-Zygmund space as well. Namely, for any s > 0, there
exists a C = Cs0 > 0 such that [|67°f|[z=() < C| fllaz)- Here Aj(£2) denotes the closure of

C(Q) in A*(Q).

As a consequence to Proposition 5.6, we can now prove a weighted estimate for the commutator
[D,&]. Recall that for a bounded Lipschitz domain €2, we define the extension operator £q by
formula (3.3),

(5.6) &fxm+zyy (v f).

where E,g := E,, (go®,) o ®,!, and w,,U,, ®, are given in the remark before (3.3).

Lemma 5.8. Let Q C RY be a bounded Lipschitz domain, and let £ be defined as above. Then for
1 < p < oo, we have

151D, EVf | poaey < CopllFllasmi),  Vf € H¥P(Q), s> 0;
||‘Sl S[Dvg]f”Loo(ﬁc) < CS,prHAS(Q)a Vfe AS(Q)> s>0
Proof. We have

M
[D,€]f =D |(xof) +quEu(xuf)] [XO Df)+ ZXV (xv(Df))

M

= (Dxo)f +Y_ D) Es(xo f) + Xu DBy (xu f) = o B (xo(DF))
v=1

M
= (DXO)f + Z D(XV)EV(XVf) + XV[D7 El/] (XVf) + XVEZ/D(XVf) - XVEV(XV(Df))

v=1
M M

= (Dxo)f + > xu[D EJ(xw f) + Y D) Ew(xo f) = Xu B (D(x0) f)
v=1 v=1

The first term above is identically 0 in Q°. For the last two terms, we note that g := D(xu)Ey(xuf)—
XvEu(D(xv)f) = 0 in . Moreover, by the estimate for £, we have ||g|| gs.p@ny < Cspll fll 5o (0)-

Hence g € Hy?(Q°) by Proposition 2.12 (ii). It now follows from Proposition 5.6 and Remark 5.7
that

167l oy < Collgll gy < CopllFlarengay 5> 0:
167°9ll oo @y < Csllgllps @y < CstHAs(ﬁ)a s> 0.
To finish the proof we will show that
(5.7) 18510, B0t F) Lo,y < Conllf lironays s € Rs
(5.8) 18=[D, B o)l ey < Conllflasieys s € R
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Indeed we have

[D, EJ)(xvf) = D(Ey(xvf)) — EV(D(xuf))
= D(Eu,[(xuf) 0 @] 0 @, 1) = B, [D(xuf) 0 D] 0 D,
= (VEu,[(xuf) 0 @]) 0 @1 - DO — By, [V((x0.f) 0 @) 0 @1 - DO
+ By, [V(0wf) o @) o @)1 - DO, — B, [D(x f) 0 @] 0 @
= [V, B, ) ((xuf) o @) 0 @, - DD
Note that in the last step above we used the fact that ®, is a linear transformation so that
By, [V((xuf) 0 )] 0 @1 DO = By, [V(xuf) 0 @] 0 @)1 - D(@y - @)
— B, (D) 0 ) 0 0L,

Applying Theorem 4.1 to the domain w,, we have for any s € R:

181D, B O ) 1o, iy SIET [0 B, )06 ) © @)l oo (0, iy
= [16"°[D, B, )((xo f) © ‘I)V)HLP(Bwag)
SO f) © @ull s,
Sl s

where we used that U, = ®,(BY) and ®,(B" Nw,) = U, N Q. This proves (5.7).
In a similar way, we obtain (5.8) from Corollary 4.3. The proof is now complete. O

Proposition 5.9. Let Q C RY be a bounded domain with C? boundary. Then for 1 < p < co and
0<r <2, there is a C = Cq,p > 0 such that

() | fllro@) < CU16 " fllzo) + 16" " Dfllo()) for 0 <r <1 and f € WHP(Q,57).
(i) || fll o) < C(116°~ ”fHLp + 6% " Dl Loy + [16° "D fllzo()) for 1 < v <2 and f €
W2,p(Q 52 r)

Proof. (i) Since bQ2 is C? and 0 < s < 1, we can apply Proposition A.1 (i) to get
| fllse) S N ls—1e(0) + 1D f | s-1.0(0)-
Now s — 1 < 0 so Proposition 5.4 applies, and we have

1f [ zrs=1o(0) S 16 fll ooy
IDf | rs-100) S 116" °Dfllzr()
Combining them we get || f||gsr(0) S H51_5f||Lp(Q) + ||51_stHLp(Q), which proves (i).
(ii) Since 1 < s < 2 we have s,s — 1 € [0,2]. So by Proposition A.1 (ii),
1f lrsm ) S I lms-20() + IDflla-20(0) + 1 D? fll sr—2.0(02)-
Since s — 2 < 0, we again apply (5.4) to get
D7 fll 200y S 16*7°D flliw), 5 =0,1,2.

Thus

I f ) S 6% fllro) + 162D fll o) + 162D fl| 1o
which proves (ii). O
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6. SOBOLEV ESTIMATES OF HOMOTOPY OPERATORS

In this section we derive the weighted estimates for the homotopy operator. Together with the
commutator estimate and Hardy-Littlewood lemma, this leads to the proof of Theorem 1.1. Unlike
in [Gonl9] and [Shi21], no integration by parts is used in our proof.

In what follows we let p be a C? defining function of 2 which is strictly plurisubharmonic in a
neighborhood of b2. We will adopt the following notation:

Q. ={ze€C":dist(2,Q) <e}, Q_.={z¢€Q:dist(z,00) > c}.

Proposition 6.1. Let Q be a bounded domain in C" with C? boundary. Suppose W (z,¢) € C1(x
(Q:\ Q_¢)) is a Leray mapping, that is, W is holomorphic in z € Q. and satisfies

D(2,0) =W(z,() - ((—2)#0, 2€9Q, €\

Let U be a bounded neighborhood of Q such that U C Q.. Suppose o is a (0, q)-form with1 < g <n
such that ¢ and d¢ are in C(Q). Then

Here H, is the operator defined by

(61) Moo= [ Ko anBe+ [ K8y A Bl
u Uu\Q
where E is any extension operator that maps C®(Q) into C°(C") with supp E¢ C U for all o,
and
_ — n—1
1 ((-z,d) (- ((-z,d¢) _ _
KOZ, = ; /\ 827 P 8Z:a+82’
=y e M\ TP s
1 {((—z,d
(6.2) K0’1(27C) — <C < C> A <VV7 dC>

@mi)m [C—=2* (W, (—2)

A Z [M] A |:8472<W6K>>:|j )

— |2 W.(¢ —
i+j=n72 |< Z’ < Y C z
We set K017_1 =0 and Kgil =0.

The reader can find the proof of Proposition 6.1 in [Gon19], where F is taken to be Stein extension
operator. Here we note that on any bounded strictly pseudoconvex domain Q with C? boundary,
there exists an ¢ > 0 such that W satisfies the assumptions in Proposition 6.1 on €. x (2. \ Q_.).
Furthermore, near every (* € b(), one can find a small neighborhood V of (* such that for all z € V,
there exists a coordinate map ¢, : V — R?? given by ¢, : ¢ > (s,t) = (51, 82,13,...,t2,), where
s1 = p(¢) (we have s; =~ §(C) for ¢ € V\ Q). Moreover for z € VN, ¢ € V\ Q, the function
O(z,() = W(z,Q) - (¢ — z) satisfies

(6.3) [®(2,0)| > ¢ (6(2) + 51+ [sa] +[t[) . 6(2) = dist(z,b9),

(6.4) @(2, Q) = el = CP, ¢ — 2] = els1+ [s2] + [2)),

for some constant ¢ depending on the domain. We call such ® a holomorphic support function.
The reader can refer to [Gonl19] for details.

From now on we shall fix an open set U such that @ CC U CC (), and we will use the extension
operator £ defined by formula (3.3) with supp Ep C U for all .
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Theorem 6.2. Let Q C C" be a bounded strictly pseudoconvexr domain with C? boundary. Given
1 < g <n, let Hy be defined as in (6.1), where the extension operator £ is given by formula (3.3).

1
Then for any 1 < p < oo and s > }%, Hy is a bounded linear operator H, : H(Sépq)(Q) — Hi&r;ﬁ)(ﬁ).

Remark 6.3. In fact, when ¢ = n, then any extension of ¢ is automatically 0 closed, so [0, E]¢ = 0
and

Hnp = / K[()),qfl NEp.
u

In this case for all s > 0 and 1 < p < oo, Hy, : Hfépn)(Q) — Hf(;r;fl)(ﬁ) where ) is any bounded

Lipschitz domain. See Proposition 6.6.
Theorem 6.2 allows us to prove a homotopy formula under much weaker regularity assumption.

Theorem 6.4 (Homotopy formula). Let Q C C" be a bounded strictly pseudoconver domain with
C? boundary. Given 1 < p < oo and 1 < q < n, suppose p € Hf(’)pq)(Q) satisfies Op € Hf(’)pq+1)(§2)
where s > %D. Let H, be defined by (6.1), where the extension operator E = Eq is given by formula

(3.3). Then the following homotopy formula holds in the sense of distributions:
(6.5) © = OHyp + Hyr10¢.
In particular for a O-closed @ which is in H; )P () for s > ]%, the equation OH,p = ¢ holds and

) (0,9)
s+3,
Hyp € H(07q2_’;)(9).

Proof. Formula (6.5) is proved in [Gon19] for Stein’s extension operator for ¢, d¢p € C1(Q). The
statement holds for smooth forms by Proposition 6.1, and we shall use approximation for the general
case. First we show that there exists a sequence . € C*°(£2) such that
Ve =9 ¢ in H*P(Q),
e =9 d¢ in H®P(Q).

The smoothing is done componentwise, and for simplicity we will continue to denote the coefficient
functions of ¢ by ¢. Take an open covering {U, } of Q such that
M
UoccQ, vcC|JU, U,nQ=Und,({zy>p(2)}), v=1,.. M.
v=1
Here ®,, 1 < v < M are some invertible affine linear transformations. Let x, be a partition of
unity associated with {U, }52, i.e. x, € C°(U,) and Zyzo Xy = 1.
Let B2" be the unit ball in C"* and B(0,r) be the ball centered at 0 with radius ». For each
1 <v < M, we can find an open cone K, and some ¢, such that (U, N Q)+ (K, N B(0,¢,)) C Q.
Take 19 € C°(B?") with 19 > 0 and Jonto = 1. For 1 < v < N, take ¥, € C®(—K,) with
1, > 0 and f(C" Y, = 1. Write ¢, (x) = E_Q”wy(g). For ¢ > 0 sufficiently small, we can define

(x09) * Yoe(2) = / (009 (= — eC() dVI(Q), = € U,

BN

(Xvp) * Ye(2) = / (xve)(z — Q) (€)dV(¢), ze€U,NQ, v=1,...,M.

-K
We now set g = 3,2 (xwp) * U5 € C(Q). Clearly |lpe — ¢l aop() — 0 since [[(xu4) * e —
Xv#ll msw(0) =90 for each 0 < v < M. Meanwhile,

M
5905 = Z @Z}i * (‘PEXV + XI/ESO) .
v=0
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By assumption, both ¢dx, and x,0¢ are in H¥P(Q), so ¢ * (gxynp + Xygnp) converges to x,0p +
Oxvp in H*P(Q) as e — 0. Taking the sum over v we see that [|0p: — 99| grer() — 0.
Now (6.5) holds for ¢ replaced with .. By Theorem 6.2,

[0H(pe — SD)HHS_%,p(Q) < [ Hqle — 90)||Hs+%,p(9)
< [lee = ellmsr (@),

and also
1196~ O gy < 182~ Dl
Then (6.5) follows by taking e — 0. B
Note that if p € H9P(Q) is O-closed, then the distribution dp(= 0) is in H*P(£2). Therefore

1
(6.5) holds for this ¢. In particular u = H,p € H(S(;r;_’z;

First we prove a lemma which will be useful later.

)andgu:go. O

Lemma 6.5. Letn>2, >0, a> —1, andlet0<5<%. Ifa<5—%, then

/1 /1 /1 5§23 dsy dsg dt < csaBty
o Jo Jo (0+s1+s2+t2)2HB(0+ 51+ s9+1)2n3 —

Proof. Partition the domain of integration into seven regions:

Ry:t>1t?> 6 s1,50. We have

1 $2n—3 t? 2 1 2a28 g4l
1< _ *d d dt < teTP dt < COY P T2,
- /\/g t4+28¢2n-3 /0 S1 as1 /0 52 < C/\/g <C 2

Ry :t >8>t s1,52. We have

ap V5 y2n—3 s b gl
IS(S /(S 152717—3dt (A 51d51> </0 d$2>§0(5 2,

R3:t>s1 > 08,12 s9. We have

Y V51 $2n-3 51 L
! S/ = (/ %—3‘#) (/ ds?) ds1 < C/ st 0 sy < oo B
7 5 0 t 0 s

Ry:t> sy > 0,12 s1. We have

1 V52 $2n—3 s2 1 1
I</ %@ / A" </ s‘f‘dsl> ds» <C/ s T2 gs, < cgo P,
5 S5 o t 0 5

Rs:6 >t,t%, s1,52. We have

1) é 6
I <§ 2P (n=3) </ {23 dt) (/ s d31> (/ d32> < ¢t
0 0 0

Rg : 51 > 6,t,t2, s5. We have

1 S‘f S1 o3 S1 1 8
IS/ </ tn— dt> (/ d32> dslgC/ s dsy.
5 s%’LBS%"_?’ 0 0 5

Ry :s9 > 6,t,t%, 51. We have

1 1 S92 o3 S9 1 8
IS/ (/ tn— dt> (/ sadsl> dSQSC/ 5977 dso.
5 SS’LBsgn_?’ 0 o 5
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Here the constants depend only on n, o and . For Rg and Ry, we have

1 C, a—p>-1,
/7w%wg C(1+|logd]), a—p=—1,
’ Cgo—Btt, a—f< -1,
which is bounded by C'§*~" +3 in all cases. g
We now write the homotopy operator H,p as
(6.6) Hep = Hop + Hyep,
where

My :—/L{Kg,qwgso, 2¥ —/ Kpg-1 A [0,E)p.
For the operator 7-[2, we can gain one derivative for any ¢ € H*P(Q), s > 0.

Proposition 6.6. Let 1 < p < oo and s > 0. Suppose v € Hfépq)(Q) with ¢ > 1. Then H° g 18 in
s+1,p
H(O7q_1)(2/{), and )
[Hyell astio@y S NEAN sy S el om0
Proof. The proof for integers s can be found in [Shi21, Proposition 3.2]. The general case follows
from interpolation (see Propositions 2.14 and 2.15). O

Proposition 6.7. Let Q C C" be a bounded strictly pseudoconvex domain with C? boundary, and
1<p<oo. Forq=>1,let 7-[1 be given by (6.6), where the extension operator E is defined by

formula (3.3). Suppose ¢ € H( )( ) for s > % and m is a positive integer such that m — s —% > 0.
Then there exists some constant C = C(Q,p) such that

16m=*=2 D™ MLl 1oy < Cligllrer(e)-

Proof. Note that in view of Remark 4.2 (iii), ngo is C'*° in the interior of Q2. To prove the statement
we will show that

787l m S
(6.7) 162 D" Hypll 1oy < C1I8 [0, €1l 1oy -

Then by Theorem 4.1 the right-hand side above is bounded by [|¢|| gs.r(). We now proceed with
the proof of (6.7), for which we will estimate

(6.8) /5 plm—s-3)

where in the definition of K&lq (see (6.2)) we set W to be a C! Leray map. Writing ®(z,() =
W (z,() - (¢ — z), the inner integral can be expanded to a linear combination of

B S O)n Ni(¢ - 2)
(69) ICf(Z) = z,{\ﬁf(C)P(Wl( 74)’ 7C) q)n—l(z,C)K — z‘Zl

Wy = (W,0.W,0%W), ko < m.

P

pr /M LK OABEHQ VO] aVee),

avi(¢), 1<1<n-—1.

Here f is a coefficient function of [0, £]e. P(w) denotes a polynomial in w and w, and N; denotes
a monomial of degree 1 in ( — z and ¢ — z. P may differ when recurs.

By the remark after Proposition 6.1, we can take a small neighborhood V of a fixed boundary
point ¢* € bQ). For z € V, let ¢, : V — C" be the coordinate transformation satisfying (6.3) and
(6.4). Using a partition of unity in ¢ space and replacing f by x f for a C* cut-off function y, we
may assume

supp, f € V\ Q.
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Similarly by a partition of unity in 2z space and replacing Kglq by XKg}q we may assume
supp, Koy(z,() C V.

Write Ny_o(z,¢) = ]YEECZT;). For z€ VNQand ¢ € V\ Q, we have

(6.10) OINLa1(¢ = 2)| S I¢— 2|7,

(6.11) 016~V (z, Q| S (@707 (z,¢)],
where we use the fact that W is holomorphic in z € U. Write
DIKf(z) = | _Am(z,0)f(C)dV(¢),
U\Q
where A,,(z,() is a sum of terms of the form

(612)  An(0) = qma

5 N _y(2,C), 1<1<n—1, m+p<m.

Setting 1% + 1% =1, we have

DT (2)] < / An(2 O A2, O [ F(O] AV (Q)

U\Q
= [ [HO76) 40n (O ] [IFQIBE)An(2. O] aV (0
U\Q

where 7 is a number to be specified. By Hélder’s inequality, we get

b
1%

(6.13) [DIKf(2)P < [/U\Q5(()"”’*”\Am(z7C)Hf(C)\pdV(C)

/ 5O Am(=,0) AV (Q)
U\Q

By (6.4), we have C'|¢ — z| > |®(z,()| > C|¢ — 2|2, In view of (6.10) and (6.11), it suffices to
estimate A,,(z,(¢) for l =n — 1, ug = m and py = 0. Thus from now on we can just assume

Wi,2,¢
WN (2n—3)-

Ap(2, Q) =
By estimate (6.3), we have for z € VN Q and ¢ € V' \ Q,
(6.14) @ (2, Q)| = e(8(2) + [s1] +[s2 + [t1),  |¢ — 2| = e(8(2) + [s1| + [s2] + []),

where (81, 527t) = (¢i(§)>¢g(<)7¢lz(<))v (Z)i(G) = p(()

By (6.14) and integrating in polar coordinates t = (t1,...,t2,_2) € R?"“2, we obtain

5(Q)"Am(z,¢)dV(C)

n\Q
(6.15) <0y / / / T3 dsy ds dt
5120 Js3=0 Ji=0 (8(2) + 51 + 59 + 12)2FM=D(§(2) + 51 4 53 + 1)*" 7
< Cod ()™ 005( yromd

where we apply Lemma 6.5 using o =7, 8 =m — 1 > 0 and by choosing

1 3
1 1 o, .3
(6.16) <n<p 5=M~ 5
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Note that the constant Cy depends only on the domain €2 and the defining function p. Hence by
(6.13), (6.15) and the Fubini theorem we get

/Q 5z DI ()P dV (2)

(6.17) < /Q 5(2)" ( /u \ﬁé(C)“‘p)’?\Am(z, C)I!f(C)IpdV(<)> v (z)
<[ st [ [ 51 An(z0) dV(z)} FOPaV(©),
Uu\Q 9)
where
(6.18) 7:p<m—s—;> + <n—m+g)£[:m—g—l—(l—s)p—i—n(p—l).

We now estimate the inner integral in the last line of (6.17). Recall that for each z € V, we
define C! coordinate transformation ¢, for ¢ € V:

¢:(O) = p(Q),  ¢2(Q) =Im(pc - (¢ —2)), ¢.(¢) = (Re(¢ — 2), Im(¢" — 2)).
Now for ( € V, we can similarly define a new coordinate 54 V> C"for ze V:
SL(z) = p(z), FU2) =Tmpc-(C—2), i) = (Re(¢' — ), Im(¢' — ).
Write (31, 82,7) = (1(2), 2(2), $i-(2)) where |L(2)| = |p(2)| ~ 8(2). By (6.14) we have for z € VNQ
and ( € V\ Q,
(6.19) [@(2, O > e(6(2) + ¢2(S) + [62(O)] + 62(O))
c(8(Q) +106()| + 162 (2)] + |6(2) )
c(6(C) + 131] + [82] + [E%),

Y

and

(6.20) ¢ = 2[ > e(|6(C) +151] + 52| + [£])
Writing in polar coordinates = (t1,...,t2,_2) € R?"72 we have
(6.21)

ottt 51 %3 d5, dsy di
() A (2, d[/z§C/ / / — ~81~ — .
/Q (=) 1 Am(z Ol 4V (z) 5120 J3=0 Ji=0 (0(C) + 31 + 52 +¢2)" 1 (0(C) + 81 + 52 +£)2" 73

To apply Lemma 6.5 we take @« = v and 8 = m — 1, and we need —1 < v < ,6’—% :m—%. In
view of (6.18), this is the same as

3
—1<m—§—|—(1—s)p+n(p—1) <m-—g,
which translates to

-1 m— 1 -1
(s—1)p _ 2 o< (s—=1)p
p—1 p—1 p—1
Note that this is always possible by our assumption on m. Indeed, by (6.16) and (6.22) we need to

choose

(s—Lp m—3 . 3 (s—1p] 1 1
6.23 -1 - _2 1.1
(6.23) max{ S T <n<minqm > 1 [ p+p’

(6.22) = (s—1)p.

By assumption s > % and m > s+ %, so the range of admissible 7 is non-empty.



28
Now applying Lemma 6.5 to (6.21) we obtain
(624 [ 3G An (e )1V (2) < Co@yrE D — caey
Q

where the constant depends on 2 only.
Putting (6.24) in (6.17) we get

3=

[ [ s rork e dV(z)] "s| [ a0 s or avie
Q U\Q

|80, gleOF av(c)
U\Q

B =

A

This proves (6.7) and thus the proposition. O
Next we extend the result of Proposition 6.7 to all lower order derivatives of u.

Proposition 6.8. Keeping the assumptions of Proposition 6.7, the following holds

kqs1
1Dl g gty < COPglineys 0<k<m

Proof. We need to estimate
/ §(z)P(m=s=3) ‘D’;/c f‘p v (2),
Q
where
Kf(z) = - Kgo(, O N0, Elp(Q)av(C),  f=1[0,€le.
As before we write
DECS) = [ A=A dv Q)
U\Q
and

P
P

(6.25) |D§/cf(z>|ps[ SO Ak (=, Ol £ dV ()

u\a

[ | 801z 01av(©)
U\Q
for some «a to be chosen. Now Ay is a sum of the form (see (6.12))

P
Ag(z,¢) = magz

By the same reasoning as before, it suffices to estimate the term for [ =n — 1, yu; = k, namely we
have

{Nl—Ql(C_Z)}a 1<i<n—1, pw+p <k

1
‘Ak(Z,C)‘ S |<I>k+1(z,§)\|§ _ z|2n73'

By a partition of unity in both z and ¢ space, we can assume that supp, Ax(z,{) € VN Q and
supp; f CV \ ©, where V is some small neighborhood of a fixed point (o € bS).
Now as |®(z, ()| < C|z — (|, we can assume that |®(z,()| < 1 for any z,( € V. Hence for k < m,
C
|7 (2, OII¢ — 22—

In view of (6.25), the rest of proof is identical to that of previous theorem. O

[Ak(z,Q)] <

z,(eV.

Together with the Hardy-Littlewood lemmas from Section 4, we can prove the gain of 1/2 deriv-
ative in Sobolev space for the operator 7—[31.
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Proposition 6.9. Let Q C C" be a bounded strictly pseudoconver domain with C? boundary.
For q > 1, let Hqp be given by (6.1), where the extension operator £ is given by (3.3). Suppose

s+l,
Y E H(0 )(Q) with s > +, then Hyp € H, qui)(Q).

Proof. We divide into cases.
Case 1: s = 2]“2—+1, keZt.

We have s+% € Z and also s > %. Take m to be any integer greater than s+ % By Propositions
6.8 and 5.2 we obtain

k% sDHWHQp <S> feme D" H ol oy S el more)
1<k

Since || Hgl| for s+ 3 a positive integer, the result follows.

Ws+2 p ”H SDHHs-O- p(Q)
Case 2: SE( 7>ands—|— € [0,1].
We apply Proposition 5.9 (i) and Proposition 6.8 for m =1 to get

_g—1 e L
IHa0l e oy < 18" Ml + 18" F DMl 1) < Cllpllencen

Case 3: s € (%,%) and s+ 1 € [1,2].
We apply Proposition 5.9 (ii) and Proposition 6.8 for m = 2 to get

el g1
”H ‘P”HH b (q) < CHH ‘PHLP + ||(52 s ZD%éSOHLP(Q) + H52 s 2D2/H;QOHLP(Q)
< Cllellgsr(a)
Finally the remaining cases can be done by interpolation. U

By combining Proposition 6.6 and Proposition 6.9 we obtain Theorem 6.2.

7. AT ESTIMATE FOR 7 > 0

Let r > 0 and let Q2 C C"™ be a bounded Lipschitz domain. We recall from Definition 2.3 that
A" (Q) is the space of Holder-Zygmund functions of order r up to the boundary.
We first recall the interpolation result of Holder-Zygmund spaces.

Proposition 7.1 (Complex interpolation of A"-spaces). Let rg,r1 > 0 and let  C C™ be a bounded
Lipschitz domain. For 0 <0 <1, let rg = (1 — 0)ro + 0r1. Then [A™(Q), A" ()]s = A" ().

The proof is a combination of [BL76, Theorem 6.4.5(6)] and [Tri06, Theorems 1.110 and 1.122].

In [Gonl9], Gong constructed a solution operator S, to du = ¢ which maps any (0,q) form

pe A (Q) toa (0,g—1) form in AT+%(Q) for all r > 1. We now extend this result to all r > 0.
First let us recall the classical Hardy-Littlewood lemma for Holder continuous functions.

Lemma 7.2. Let Q be a bounded Lipschitz domain in R and let §(x) denote the distance function
from x to the boundary of Q. If u is a C' function in Q and there exists an 0 < o < 1 and C > 0
such that

|Du(z)| < C6(x)™1T  for every x € Q,
then u € A*(Q).

The reader can refer to [CS01, p. 345] for a proof.

Theorem 7.3. Let Q@ C C" be a bounded strictly pseudoconvexr domain with C? boundary. Let
1 < g < n and let Hy be given by formula (6.1), where the extension operator E is deﬁned by

formula (3.3). Then for any r > 0, H, is a bounded linear operator H, : A7(“0 q)(Q) S AT Q).

(Oq 1)(
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Proof. For ¢ € A"(Q) with r > 1, see [Gon19], where the homotopy operator is defined by formula
(6.1) in the classical sense. We note that Gong used a different extension operator than ours, but
in the case r > 1 the proofs work the same since the only property of the extension operator used
in his proof is the fact [D, €] : A"(2) — A"1(Q) for r > 1, which obviously holds for our extension
operator as well by Proposition 3.7 (ii).

By interpolation we only need to prove for 0 < r < % In view of Lemma 7.2, it suffices to show
that

(g1
816185(2)1 (r+2) IDHp(2)| < Cllollar@)-

We have
5(2) )| DHLp(2)| = 6(2)2

D.Kgy(2,0) N[0, Elp(C) dV(C)‘ -

U\Q

Write A;(z,¢) = D.K{(2,¢) and f = [9,&]p. By Lemma 5.8, we get Hél_TfHLoo(U\ﬁ) < llellar @)
0

8(2)' =+ DHLp(2)| = 8(2)7 / A= QNFO1AV(©)

U\Q

=5(2)2r/ 6O ALz, OI8O (O] AV (€)
U\

<8(z)7 (/U\Q5(C)r1!A1(Z7C)|dV(C)> el ar )
< Cllellar @)

where in the last inequality we apply Lemma 6.5 for « = r — 1 and 8 = 0 (which is possible since
0<r<iand—1<a<p+3)toget

T’ 1,2n—3
t dsy dso dt
5(¢)" M A1(2,Q)1dV(¢) <C/ / / 5 51452 ST
U\ 5120 Js3=0 Ji=0 ( +51+82+t) (6(2) + s1 + 52 + )2

< CH(2)"
This completes the proof. ]

APPENDIX A. AN EQUIVALENT NORM PROPERTY

Proposition A.1. Let Q C RY be a bounded C2-domain and let 1 < p < 0.
(i) For 0 < s <2, H%P(Q) has equivalent norm

I f sy = 1f las—10@) + 1D fllas—100)-
(ii) For 1< s <2, HP(Q) has equivalent norm

£l zsw ) = | flas—20@) + 1D fllgs—20@) + | D? f| grs- 2.0(Q)-

Note that the above results are known for C*°-domain (see [1ri83, Theorem 3.3.5(ii)]), and we
shall adopt similar method here.
To prove Proposition A.1 we first need a lemma.

Lemma A.2. Let ® : RV — RN be a C?-diffeomorphism such that D® and D®~! both have
bounded C* norms. Then
(i) f — fD® defines a bounded linear map H5P(RN) — H*P(RN) for all 1 < p < oo and
-1 <s<1.
(ii) f — fo® defines a bounded linear map H*P(RN) — H*P(RN) for all 1 < p < co and
—1<s<2.
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See also [1ri92, Theorem 4.3.2] for (ii). Note that in the reference the result is only proved for
the range N(% — 1) < s < 2, which is not enough for us if % -1< —%.

Proof. Clearly the map [f — fD®] : W'P(RY) — WLP(RV) is bounded linear, and [f — fD®] :
WL (RN) — WP (RN) is also bounded linear.

Since the product operator is self-adjoint and H—1P(RY) = Whr' (RN (Proposition 2.12), the
map [f — fD®]: H-"P(RV) - H-LP(RV) is also bounded linear.

By using interpolation (Proposition 2.14 and Proposition 2.15) , we get [f — fD®] : H*P(RN) —
H*P(RN) for all —1 < s < 1. This finishes the proof of (i).

For (ii), clearly [f — f o ®] : W*P(RN) — WH5P(RYN) are bounded linear for k = 0,1,2 since
D®, D?>® are bounded. Since WP = H*P we have the boundedness for s = 0, 1, 2.

Using change of variables, the adjoint map of f — fo ® is § — |det D& |- (§o ®~'). Clearly
[§— go® 1 : W' (RN) — W (RN) is bounded linear. Since det D®~! is bounded C' and
non-vanishing everywhere, we have |det D®~!| € C1(RY). Therefore the map [§ ~ |det D®!| -
(Go® 1] : WL (RV) — W (RN) is bounded linear.

Since H-'2(RN) = W' (RN), taking the adjoint back we get the boundedness [f — f o

®) : H=P(RYN) — H~-LP(RY), which proves the case s = —1. Finally by interpolation, we get
[f = fo®]: H*P(RN) — H*P(RN) for all -1 < s < 2. O

Proof of Proposition A.1. Recall the definition || f||gs»q) = minﬂQ:f Hﬂ\Hs,p(RN). The “Z>”-part
follows from the equivalent norm in RY (see [Tri83, Theorem 2.3.8(ii)]) and the fact that if f €
H*P(RN) extends f € HP(Q) then D*f € H*~'P(RN) extends D*f. Also see the proof of [T1i83,
Theorem 3.3.5(ii)].

We now prove the “<”-part. It suffices to prove (i), since (ii) follows by applying (i) twice.

By [11i83, Theorem 3.3.5(ii)], the result holds on the half space RY = {zx > 0}, namely, for
every r € R and 1 < p < oo, the relation

(A1) 191l oy =rp 9l gr—10@yy + DGl 10 2)

holds for all g € Hr’p(Rf) supported in BV N @ Here BY is the unit ball in RY.
By partition of unity, we can find the following:

e Open sets (U,)M | such that bQ C Uyzl U,.

e Functions xg € C°(2), x, € CX(U,) for 1 < v < M such that ZM,O Xvlo =1.

e C%maps @, : RY — R for 1 < v < M such that ®,(BY) =U,, &,(BYNRY) =U,nQ
and D®,, D®, ! have bounded C*! norm.

Therefore by Lemma A.2 (ii),

M M
£ ey <D It ey S Ixoflasw@ny + D Ows) D[l o ()
v=0 v=1

By [1ri83, Theorem 2.3.8(ii)] we have
X0 Sl ezso @y = Ix0f | rs—10 @y + 1D (O0.S) | izs 10 (V)

< Ixofllgs-1o@ny + [1f Dxollzs-10@y) + X0 D f |l rs-10 @)
S I llas=re@) + 1D fllga-10(0)-
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For 1 <v < M, we apply Lemma A.2 with —1 <s—1<1,
106 1) © @ull sy S 1060) © @ull oy + D00 S) © B gecrngass

S f) e (I)VHHS—LP(IBNHRQ') + [(D(xvf)) o @) - D(I)V||HS—LP(R4]Y)
SOwf) o (I)VHHS*l»P(IBNmRﬁ) + (DO f) o (I)VHHS*LP(R%

S I flls-1e@) + 1DOG O ms-100) S [ fllaa-100) + 1D Fllg2-12(02)-

By taking sum over 0 < v < M we complete the proof. O
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