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1. Introduction

The main result of the paper is the following:

Theorem 1.1. Let Ω be a bounded strictly pseudoconvex domain in Cn with C2 boundary, for
n ≥ 2. Suppose ϕ is a ∂-closed (0, q) form in Ω where q ≥ 1. If ϕ ∈ Hs,p(Ω), for 1 < p < ∞ and

s > 1
p , then there exists a (0, q−1) form u that solves the equation ∂u = ϕ, such that u ∈ Hs+ 1

2
,p(Ω).

Here Hs,p(Ω) is the fractional Sobolev space on Ω (see Definition 2.6).

We also prove an analogous result when ϕ is in Hölder-Zygmund space Λr(Ω) which improves
an earlier result of Gong [Gon19].

Theorem 1.2. Keep the assumptions of the above theorem. Suppose ϕ ∈ Λr(Ω), where r > 0. Then

there exists a solution u for ∂u = ϕ such that u ∈ Λr+
1
2 (Ω). Here Λr(Ω) is the Hölder-Zygmund

space on Ω.

A domain Ω ⊂ Cn with C2 boundary is called strictly pseudoconvex if it admits a C2 real-valued
defining function ρ whose Levi-form along bΩ is positive definite in the complex tangent space, i.e.

there is a c > 0 such that
∑ ∂2ρ

∂zα∂zβ
(p)tαtβ ≥ c|t|2 for all t ∈ Cn satisfying ∂ρ(t) = 0.

It is well-known that on a bounded strictly pseudoconvex domain in Cn with sufficiently smooth
boundary, there exist solutions u to the equation ∂u = ϕ which gains 1/2 derivative up to boundary
if ϕ belongs to some suitable space. By restricting to C2 boundary, our results establish the

2020 Mathematics Subject Classification. 32A26(Primary), 32T15, 42B25, and 46E35 (Secondary).
Key words and phrases. Strongly pseudoconvex domains, homotopy formula, Sobolev estimates.

1



2

1/2 estimate for ∂ equation with the minimum smoothness requirement in the context of above
definition.

In the category of the L2 Sobolev space (denoted as Hs,2), one can obtain a solution in the form

∂
∗Nϕ where N is the solution operator for the associated ∂-Neumann boundary value problem,

and ∂
∗

is the adjoint of ∂ in the L2 Hilbert space. When the boundary bΩ is C∞, Kohn in his

famous work [Koh63] showed that the solution ∂
∗Nϕ is in Hs+ 1

2
,2(Ω) if ϕ ∈ Hs,2(Ω) for any s ≥ 0.

See [CS01, Cor.4.4.2, Thm 5.2.6].
Later on Greiner and Stein [GS77, p. 174], proved that for any (0, 1) form ϕ ∈ Hk,p(Ω) where k

is a non-negative integer and 1 < p <∞, ∂
∗Nϕ ∈ Hk+ 1

2
,p(Ω). Their results were later extended by

Chang [Cha89] to any (0, q) forms ϕ for 1 ≤ q ≤ n. Similarly one can obtain a gain of 1
2 derivative

for the operator ∂
∗N in the Hölder-Zygmund space Λr, for all r > 0. See [GS77, p. 174]. All of

these results require that bΩ ∈ C∞.
Besides the ∂-Neumann approach, one can also solve the ∂ equation on strictly pseudoconvex

domains using integral formula with certain “holomorphic like” kernels. The solutions obtained
through this method are no longer L2 canonical, but have the advantage that boundary no longer
needs to be C∞. In this direction, Henkin and Ramanov in [RH71] first constructed a solution

which is in C
1
2 (Ω) if ϕ is a (0, 1) form in the class C0(Ω) and bΩ ∈ C2. Later Siu [Siu74] and

Lieb-Range [LR80] found solutions that are in Ck+ 1
2 (Ω) for ϕ in Ck(Ω), if the boundary is Ck+2

and k is a positive integer. The requirement on the smoothess of boundary is a result of using
integration by parts on certain boundary integral. It is also important to point out that in both
papers, the estimates for the solution operators rely on the fact that ϕ is ∂ closed.

More recently, Gong [Gon19] used the integral formula method to construct a ∂ solution operator

for any C2 strictly pseudoconvex domains, and the solution u lies in Λr+
1
2 (Ω) if ϕ is any (0, q) form

(q ≥ 1) in the class Λr(Ω), for all r > 1.
In our paper we give a variant of Gong’s solution operator which allows one to work on Sobolev

spaces when the boundary is C2. Furthermore our operator allows us to obtain 1
2 estimate when

the right-hand side is Λr(Ω), for all r > 0, which improves the above result of Gong. See also
[Shi21] for estimates on a certain class of weighted Sobolev space.

Here is the outline of the paper: In Section 2 we review the definition and properties of the
function spaces we are using. To do estimates we need a characterization of the Sobolev space
by Littlewood-Paley theory. We also include some results on interpolation which will be used
extensively in our proofs. In Section 3 we recall Rychkov’s universal extension operator Eω on a
special Lipschitz domain ω, whose boundary is the graph of a Lipschitz function. Section 4 contains
the most technical part of the paper. We show that the commutator [D,Eω] = DEω −EωD maps
Hs,p(ω) into Lp(ω, λ), where the weight λ is some power of the distance-to-boundary function.
In Section 5 we prove various results on the embedding of weighted Sobolev spaces W k,p(Ω, λ) to
Hs,p(Ω) spaces. Much of the results in this section are probably not new and the procedures are
quite routine, although we are unable to find references for the actual results. Section 6 and Section
7 contain the estimates for the homotopy operators which lead to the proof of Theorem 1.1 and
Theorem 1.2. The main novelty here is the introduction of a weight factor which seems necessary
to prove the relevant estimates. We mention that the commutator was first introduced by Peters
[Pet91] and have been used by Michel [Mic91], Michel-Shaw [MS99] among others.

Throughout the paper we assume that all the domains are in Cn for n ≥ 2. We denote the
set of non-negative integers by N, and the set of positive integers by Z+. For a set Ω ⊂ RN we
denote Ωc = RN\Ω. We will use the notation x . y to mean that x ≤ Cy where C is a constant
independent of x, y, and x ≈ y for “x . y and y . x”. For the unit ball in RN we use BN .
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2. Function Spaces and Interpolation

In this section we review some basic facts about function spaces.

Definition 2.1. Let Ω ⊆ RN be an open set, and let k ∈ N, 1 ≤ p < ∞. We denote by W k,p(Ω)
the space of (complex-valued) functions f ∈ Lp(Ω) such that Dαf ∈ Lp(Ω) for all |α| ≤ k, with the
norm

‖f‖Wk,p(Ω) :=
∑
|α|≤k

‖Dαf‖Lp(Ω) =
∑
|α|≤k

(∫
Ω
|Dαf(x)|p

) 1
p

dV (x), 1 ≤ p <∞.

Let λ be a positive continuous function on Ω. We define the weighted Sobolev space W k,p
λ (Ω) as

the space of f in W k,p
loc (Ω) such that the following norm is finite:

‖f‖Wk,p(Ω;λ) :=
∑
|α|≤k

‖λDαf‖Lp(Ω) =
∑
|α|≤k

(∫
Ω
|Dαf(x)|pλ(x)p dV (x)

) 1
p

, 1 ≤ p <∞.

If Ω is a domain in Cn with complex variable z, we write instead λ(z)pdV (z).

In our application we will take λ(x) = dist(x, bΩ)s for some s ∈ R.
We shall use S (RN ) to denote the space of Schwartz functions, and S ′(RN ) for the space of

tempered distributions.

Definition 2.2. A special Lipschitz domain is an open set ω ⊂ RN of the form ω = {(x′, xN ) :
xN > ρ(x′)} with ‖∇ρ‖L∞ < 1. A bounded Lipschitz domain is a bounded open set Ω whose

boundary is locally the graph of some Lipschitz function. In other words, bΩ =
⋃M
ν=1 Uν , where

for each 1 ≤ ν ≤ M , there exists an invertible linear transformation Φν : Rd → Rd and a special
Lipschitz domain ων such that

Uν ∩ Ω = Uν ∩ Φν(ων).

Definition 2.3 (Hölder-Zygmund). Let U ⊆ RN be an open subset. We define the Hölder-Zygmund
space Λs(U) for s > 0 by the following:

• For 0 < s < 1, Λs(U) consists of all f ∈ C0(U) such that ‖f‖Λs(U) := sup
U
|f |+ sup

x,y∈U

|f(x)−f(y)|
|x−y|s <

∞.

• Λ1(U) consists of all f ∈ C0(U) such that ‖f‖Λ1(U) := sup
U
|f |+ sup

x,y∈U ;x+y
2
∈U

|f(x)+f(y)−2f(x+y
2

)|
|x−y| <

∞.
• For s > 1, Λs(U) consists of all f ∈ Λs−1(U) such that ∇f ∈ Λs−1(U). We define

‖f‖Λs(U) := ‖f‖Λs−1(U) +
∑N

j=1 ‖Djf‖Λs−1(U).

Definition 2.4. Let s ∈ R, 1 < p < ∞. We define Hs,p(RN ) to be the fractional Sobolev space

consisting of all (complex-valued) tempered distributions f ∈ S ′(RN ) such that (I − ∆)
s
2 f ∈

Lp(RN ), with norm

‖f‖Hs,p(RN ) := ‖(I −∆)
s
2 f‖Lp(RN ),

where (I −∆)
s
2 f is given by

(I −∆)
s
2 f = ((1 + 4π|ξ|2)

s
2 f̂(ξ))∨.

Here for a Schwartz function g we set the Fourier transform ĝ(ξ) =
∫
RN g(x)e−2πix·ξdx, and the

definition extends naturally to tempered distributions.
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Remark 2.5. The Sobolev space Hs,p(RN ) defined above is sometimes called the Bessel potential
space. There is another type of commonly-used fractional Sobolev spaces called Sobolev-Slobodeckij
spaces, which is also known as the Besov spaces Bs

pp(RN ), see [DNPV12] for example. We will not
use this type of space in our paper with the exception of Bs

∞,∞, which agrees with the Hölder-
Zygmund space Λs.

We also have the following definition for functions and distributions defined on open sets of RN :

Definition 2.6. Let Ω ⊆ RN be an open set.

(i) Define S ′(Ω) = {f̃ |Ω : f̃ ∈ S ′(RN )}.
(ii) For s ∈ R and 1 < p <∞, define Hs,p(Ω) = {f̃ |Ω : f̃ ∈ Hs,p(RN )} with norm

‖f‖Hs,p(Ω) = inf
f̃ |Ω=f

‖f̃‖Hs,p(RN ).

(iii) For s ∈ R and 1 < p < ∞, define Hs,p
0 (Ω) to be the subspace of Hs,p(RN ) which is the

completion of C∞c (Ω) under the norm ‖ · ‖Hs,p(RN ). We will write ‖g‖Hs,p
0 (Ω) = ‖g‖Hs,p(RN )

if g ∈ Hs,p
0 (Ω).

Remark 2.7. In our paper, Hs,p
0 (Ω) is defined to be the closed subspace of Hs,p(RN ), which is

different from some other literature. For example in [Tri06, Definition 1.95(ii)] Triebel defines the

space H̊s,p(Ω) := C∞c (Ω)
‖·‖Hs,p(Ω)

, which is a subspace of Hs,p(Ω).

Nevertheless, when s > 1
p −1 and Ω is a bounded Lipschitz domain, we have H̊s,p(Ω) = Hs,p

0 (Ω),

in the sense that the natural map Hs,p
0 (Ω) → H̊s,p(Ω) induced by the restriction map [f̃ 7→ f̃ |Ω] :

Hs,p(RN )→ Hs,p(Ω) is a bijection, see equation (2.3) below.
For f ∈ Hs,p

0 (Ω), we write ‖f‖Hs,p
0 (Ω) = ‖f‖Hs,p(Ω).

Remark 2.8. For 1 < p <∞ and s ∈ R, the Bessel-Sobolev space Hs,p(RN ) is in fact a special case
of the Triebel-Lizorkin space F s

p2(RN ) with equivalent norm. See [Tri83, Definition 2.3.1/2 and

Theorem 2.5.6(i)]. More precisely we have the following:

Proposition 2.9 (Littlewood-Paley Theorem). Let φ0 ∈ S (RN ) be a Schwartz function whose
Fourier transform satisfies

supp φ̂0 ⊆ {|ξ| < 2}, φ̂0|{|ξ|≤1} ≡ 1, 0 ≤ φ̂0 ≤ 1.

For j ≥ 1, let φj be the Schwartz function whose Fourier transform is φ̂0(2−jξ) − φ̂0(2−(j−1)ξ).
Then for s ∈ R and 1 < p <∞, there exists a C = Cφ0,p,s > 0 such that

(2.1) C−1‖f‖Hs,p(RN ) ≤
(∫

RN

( ∞∑
j=0

22js|φj ∗ f(x)|2
) p

2
dx

) 1
p

≤ C‖f‖Hs,p(RN ), ∀f ∈ S ′(RN ),

provided that either term in the inequality is finite.

Following the notation from [Tri83, Section 2.3.1], we denote the middle term in (2.1) by
‖f‖F s

p2(RN ;φ), which is a Triebel-Lizorkin norm on RN .

By way of Definition 2.6, one can also define for an arbitrary open set Ω ⊆ RN the space
F s
p2(Ω) = {f̃ |Ω : f̃ ∈ F s

p2(RN )} equipped with the norm ‖f‖F s
p2(Ω) = inf

f̃ |Ω=f
‖f̃‖F s

p2(RN ) (see [Tri06,

Definition 1.95(i)]. It follows that Hs,p(Ω) = F s
p2(Ω).

In the special case that s is a non-negative integer and 1 < p < ∞, Hs,p becomes the familiar
Sobolev space W k,p.

Lemma 2.10. Let k ∈ N and 1 < p <∞. Then

(i) Hk,p(RN ) = W k,p(RN ) with equivalent norm.
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(ii) Let Ω be a bounded Lipschitz domain in RN . Then W k,p(Ω) = Hk,p(Ω) where the norms
are equivalent.

Proof. The proof of (i) can be found in [Tri83, Theorem 2.5.6(ii)].
For (ii), see [Tri06, Theorem 1.222(i)]. Notice that we have Hk,p(Ω) = F k

p2(Ω) as discussed
above. �

Remark 2.11. As explained in the proof of [Tri06, Theorem 1.222(i)], the key to the proof of (ii) is
the use of an extension operator E : W k,p(Ω)→W k,p(RN ). In our paper we need to use a different
extension operator that have some nicer properties.

Proposition 2.12. Let Ω ⊆ RN be a bounded Lipschitz domain. Suppose 1 < p < ∞ and s ∈ R.
Then we have the following equalities of spaces, where the norms are equivalent.

(i) Hs,p(RN ) = H−s,p
′
(RN )′, where p′ = p

p−1 .

(ii) For s > 1
p − 1, Hs,p

0 (Ω) = {f ∈ Hs,p(RN ) : f |Ωc = 0}.
(iii) Hs,p

0 (Ω) = H−s,p
′
(Ω)′ and H−s,p

′
(Ω) = Hs,p

0 (Ω)′, provided that s > 1
p − 1.

Proof. For proof of (i) see [Tri95, Theorem 2.6.1(a)].
The proof of (ii) and (iii) are the combination of several results in [Tri02]. We now offer some

explanations. Recall in Remark 2.8 we can use Hs,p = F s
p2 for s ∈ R and 1 < p <∞.

In [Tri02, Section 3.2], Triebel defines H̃s,p(Ω) ⊆ Hs,p(RN ) and H̃s,p(Ω) ⊆ Hs,p(Ω) as

(2.2) H̃s,p(Ω) := {f ∈ Hs,p(RN ) : supp f ⊆ Ω}, H̃s,p(Ω) := {f |Ω : f ∈ H̃s,p(Ω)}.

So {f ∈ Hs,p(RN ) : f |Ωc = 0} = H̃s,p(Ω).

Clearly H̃s,p(Ω) (resp. H̃s,p(Ω)) is a closed subspace of Hs,p(RN ) (resp. Hs,p(Ω)), and we have

a surjective restriction map [f 7→ f |Ω] : H̃s,p(Ω)→ H̃s,p(Ω).

When s > 1
p − 1, by [Tri02, Proposition 3.1] we have H̃s,p(Ω) = H̃s,p(Ω) in the sense that the

restriction map f 7→ f |Ω is bijective.

Recall that by definition Hs,p
0 (Ω) = C∞c (Ω)

‖·‖
Hs,p(RN ) is a closed subspace of Hs,p(RN ). Also

observe that Hs,p
0 (Ω) ⊆ H̃s,p(Ω), since if f = limj→∞ fj and supp fj ⊆ Ω, then supp f ⊆ Ω. Thus

Hs,p
0 (Ω) = C∞c (Ω)

‖·‖
H̃s,p(Ω) .

By [Tri02, Theorem 3.5(i)], for s > 1
p − 1, C∞c (Ω) is dense in H̃s,p(Ω). Hence by using the

identification H̃s,p(Ω) = H̃s,p(Ω), we get for s > 1
p − 1,

(2.3) Hs,p
0 (Ω) = C∞c (Ω)

‖·‖
H̃s,p(Ω) = C∞c (Ω)

‖·‖
H̃s,p(Ω) = H̃s,p(Ω).

Using H̃s,p(Ω) = H̃s,p(Ω) we obtain Hs,p
0 (Ω) = {f ∈ Hs,p(RN ) : f |Ωc = 0}, which proves (ii).

By [Tri02, Definition 3.3 and (43)], we have duality H−s,p
′
(Ω) = H̃s,p(Ω)′ and H̃s,p(Ω) =

H−s,p
′
(Ω)′ when s > 1

p − 1, where the norms are equivalent. Using the identification H̃s,p(Ω) =

Hs,p
0 (Ω), we get Hs,p

0 (Ω) = H−s,p
′
(Ω)′ and H−s,p

′
(Ω) = Hs,p

0 (Ω)′ for the given range of s, proving
(iii). �

We also need some interpolations results.

Definition 2.13. Let X0, X1 be two Banach spaces that belong to a larger ambient space. For
0 < θ < 1. The complex interpolation space [X0, X1]θ is defined to be the space consisting of all
f(θ) ∈ X0 +X1, where f : {z ∈ C : 0 ≤ Re z ≤ 1} → X0 +X1 is a continuous map that is analytic
in the interior, such that f(it) ∈ X0 and f(1 + it) ∈ X1 for all t ∈ R. The norm is given by

‖u‖[X0,X1]θ = inf
f
{sup
t∈R

(‖f(it)‖X0 + ‖f(1 + it)‖X1) : u = f(θ)}.
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Proposition 2.14 (Complex interpolation theorem). Let X0, X1, Y0, Y1 be Banach spaces that
belong to some larger ambient spaces. Suppose T : X0 + X1 → Y0 + Y1 is a linear operator such
that for each i = 0, 1, ‖Tu‖Yi ≤ C0‖u‖Xi for all u ∈ Xi. Then T : [X0, X1]θ → [Y0, Y1]θ is bounded

linear with ‖Tu‖[Y0,Y1]θ ≤ C
1−θ
0 Cθ1‖u‖[X0,X1]θ for all u ∈ [X0, X1]θ.

See [Tri95, Theorem 1.9.3(a) and Definition 1.2.2/2].
We also have the following facts:

Proposition 2.15. Let Ω be an open set of RN . Let 1 < p < ∞ and s0, s1 ∈ R. Denote
δ(x) := dist(x, bΩ) and set sθ := θs1 + (1− θ)s0 for 0 < θ < 1. Then the following hold:

(i) [Lp(Ω, δs0), Lp(Ω, δs1)]θ = Lp(Ω, δsθ).
(ii) [Hs0,p(Ω), Hs1,p(Ω)]θ = Hsθ,p(Ω), provided that Ω is a bounded Lipschitz domain.

The proof of (i) can be found in [Tri95, Theorem 1.18.5]. The proof of (ii) can be found in [Tri06,
Corollary 1.111 (1.372)].

3. The Universal Extension operator

In this section we recall the construction of the universal extension operator by Rychkov [Ryc99].
None of the results here is new, although we shall present the proof in a slightly different way from
that of Rychkov.

In the rest of the paper we shall denote by K the positive cone in RN :

K = {(x′, xN ) : xN > |x′|}.

Remark 3.1. In many literature, for example [Tri06, Section 1.11.4 (1.322) p. 63], the defini-
tion for a special Lipschitz domain only requires ρ to be a Lipschitz function. In other words,
‖∇ρ‖L∞(Rn−1;Rn−1) is finite but can be arbitrary large. By taking invertible linear transformation
we can make ∇ρ small in new coordinates.

Definition 3.2. A regular dyadic resolution is a sequence φ = (φj)
∞
j=0 of Schwartz functions,

denoted by φ ∈ D, such that

•
∫
φ0 = 1,

∫
xαφ0(x)dx = 0 for all α ∈ NN\{0}.

• φj(x) = 2njφ0(2jx)− 2n(j−1)φ0(2j−1x), for j ≥ 1.

A generalized dyadic resolution is a sequence ψ = (ψj)
∞
j=0 of Schwartz functions, denoted by

ψ ∈ G, such that

•
∫
xαψ1(x)dx = 0 for all α ∈ NN .

• ψj(x) = 2n(j−1)ψ1(2j−1x), for j ≥ 1.

Here ψ0 can be an arbitrary Schwartz function.

Lemma 3.3 ([Ryc99, Theorem 4.1(a)]). There exists a function g ∈ S (R) such that supp g ⊆
[1,∞),

∫
R g = 1 and

∫
R t

kg(t)dt = 0 for all k ∈ Z+.

Proof. Define

G(z) := exp(−(z − 1)
1
8 − (z − 1)−

1
8 ), z ∈ C\[1,∞).

Here we use (z − 1)
1
8 = |z − 1|

1
8 ei

1
8

arg(z−1) with 0 < arg(z − 1) < 2π. It is easy to check that the
two branches G(t+ i0) and G(t− i0) are both smooth functions which are flat at t = 1.

For 0 < ε < 1
2 , take an oriented loop Γε ⊆ C with

Γε = {t+ i0 : 1 + ε ≤ t ≤ ε−1} ∪ {ε−1eiθ : 0 ≤ θ ≤ 2π}

∪ {−t− i0 : −ε−1 ≤ t ≤ −1− ε} ∪ {1 + εe−iθ : −2π ≤ θ ≤ 0}.
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By Cauchy’s theorem,

1

2πi

∫ ∞
0

tk(G(t+ i0)−G(t− i0))dt = lim
ε→0+

1

2πi

∫
Γε

zkG(z)dz(3.1)

=

{
G(0) 6= 0, k = −1

0, k ≥ 0.

Define

g(t) :=
1

(2πi)G(0)

G(t+ i0)−G(t− i0)

t
, t ∈ R.

Then g ≡ 0 on (−∞, 1). Also g vanishes to infinite order at both t = ∞ and t = 1. In view of
(3.1), we have ∫ ∞

0
g(t) dt = 1,

∫ ∞
0

tkg(t)dt = 0, ∀ k ∈ Z+. �

Lemma 3.4 ([Ryc99, Proposition 2.1]). Recall −K = {xN < −|x′|} and let D,G be given in
Definition 3.2.

(i) There is a φ = (φj)
∞
j=0 ∈ D on RN such that suppφj ⊆ −K ∩ {xN < −2−j} for all j ∈ N.

(ii) For any φ = (φj) satisfying (i), there is a ψ = (ψj)
∞
j=0 ∈ G such that suppψj ⊆ −K∩{xN <

−2−j} for all j ∈ N and f =
∑∞

j=0 ψj ∗ φj ∗ f for all f ∈ S ′(RN ).

Definition 3.5. We call (φ, ψ) = (φj , ψj)
∞
j=0 with above-mentioned properties a K-dyadic pair.

Proof of Lemma 3.4. Let g ∈ S (R) be as in Lemma 3.3 which is supported in [1,∞). Take an
invertible linear transformation Θ = (θ1, . . . , θN ) : RN → RN such that Θ−1([1,∞)N ) ⊆ −K ∩
{xN < −1}. Define

φ0(x1, . . . , xN ) = C0 g(θ1(x)) · · · g(θN (x)),

where C0 6= 0 is the constant chosen so that
∫
RN φ0 = 1, or φ̂0(0) = 1. Then φ0 ∈ S (RN )

satisfies suppφ0 ⊆ Θ−1([1,∞)N ). Moreover, φ0 satisfies
∫
RN x

αφ0(x) dx = 0 for all |α| > 0 since∫
tkg(t)dt = 0 for all k ∈ Z+.

Define φj(x) = 2Njφ0(2jx)− 2N(j−1)φ0(2j−1x) for j ≥ 1, so then suppφj ⊆ {xN < −2−j} ∩−K.
This proves (i).

To prove (ii), let

ρ0 := φ0 ∗ φ0 ∈ S (RN ), ρj(x) := 2Njρ0(2jx)− 2N(j−1)ρ0(2j−1x), j ≥ 1.

Then supp ρ0 ⊆ suppφ0 + suppφ0 ⊆ −K ∩ {xN < −2} and therefore

supp ρj ⊆ {xN ≤ −2 · 2−(j−1)} ∩ −K = {xN < −2−j} ∩ −K.
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So ρ ∈ D satisfies supp ρj ⊆ −K ∩ {xN < −2−j} for all j ≥ 0 and ρ̂j(ξ) = φ̂j(ξ)(φ̂0(2−jξ) +

φ̂0(2−(j−1)ξ)) for j ≥ 1. Therefore

1 =

∞∑
j,k=0

ρ̂j(ξ)ρ̂k(ξ)

=

∞∑
j=0

ρ̂j(ξ)
(
ρ̂j(ξ) + 2

∞∑
k=j+1

ρ̂k(ξ)
)

=
∞∑
j=0

ρ̂j(ξ)
(
ρ̂j(ξ) + 2− 2ρ̂0(2−jξ)

)
= ρ̂0(ξ)(2− ρ̂0(ξ)) +

∞∑
j=1

ρ̂j(ξ)(2− ρ̂0(2−jξ)− ρ̂0(2−(j−1)ξ))

= [φ̂0(ξ)]2(2− ρ̂0(ξ)) +
∞∑
j=1

φ̂j(ξ)(φ̂0(2−jξ) + φ̂0(2−(j−1)ξ))(2− ρ̂0(2−jξ)− ρ̂0(2−(j−1)ξ)).

We can now define ψ via its Fourier transform as

ψ̂0(ξ) := 2φ̂0(ξ)− φ̂0(ξ)3;

ψ̂j(ξ) := (φ̂0(2−jξ) + φ̂0(2−(j−1)ξ))(2− ρ̂0(2−jξ)− ρ̂0(2−(j−1)ξ)), j ≥ 1.

Then
∑∞

j=0 φ̂jψ̂j = 1. Note that ψ̂j(ξ) = ψ̂1(2−(j−1)ξ) for j ≥ 1, and therefore

ψj(x) = 2N(j−1)ψ1(2j−1x), j ≥ 1.

Also we have

ψj(x) =
(

2Njφ0(2jx) + 2N(j−1)φ0(2j−1x)
)
∗
(

2δ0 − 2Njρ0(2jx)− 2N(j−1)ρ0(2j−1x)
)
, j ≥ 1.

Since suppφ0 and supp ρ0 are contained in −K∩{xN < −1}, we have suppψj ⊆ −K∩{xN < −2−j}.
Also we get ψ̂1(ξ) = O(|ξ|∞) from φ̂0(ξ) = 1 + O(|ξ|∞), which implies

∫
xαψ1(x)dx = 0 for all α

with |α| ≥ 0. �

We can now define the universal extension operator, first for special Lipschitz domains, and then
for bounded Lipschitz domains.

Definition 3.6. Let (φ, ψ) be a K-dyadic pair, and let ω be a special Lipschitz domain. The
universal extension operator Eω associated with (φ, ψ) is defined by

(3.2) Eωf :=

∞∑
j=0

ψj ∗ (1ω · (φj ∗ f)),

where 1ω is the characteristic function on ω.

Here by extension, we mean for any tempered distribution f ∈ S ′(ω), (Ef)|ω = f as distributions
on ω. Indeed since ω + K = ω, we have (ψj ∗ (1ωh))|ω = h|ω for h ∈ L1

loc(RN ). Thus

(Eωf)|ω =

∞∑
j=0

(ψj ∗ (1ω(φj ∗ f)))|ω =

∞∑
j=0

(ψj ∗ φj ∗ f)|ω = f.

More generally for a bounded Lipschitz domain Ω, and U an open set containing Ω, we can use
partition of unity to define extension operator E = EΩ for Ω such that supp Eϕ ⊂ U for all ϕ:
Let {Uν}Mν=0 be a finite open cover of Ω, such that U0 ⊂⊂ Ω, bΩ ⊆

⋃M
ν=1 Uν and

⋃M
ν=0 Uν ⊆ U .

Furthermore we may assume that for each ν, there exists a special Lipschitz domain ων and an
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invertible affine linear transformation Φν : RN → RN , such that Uν = Φν(BN ) and Uν ∩ Φν(ων) =
Uν ∩ Ω.

Choose χν ∈ C∞c (Uν) such that χ0 +
∑M

ν=1 χ
2
ν ≡ 1 in some neighborhood of Ω. For a function g

defined on Ω ∩ Uν , let Eνg := Eων (g ◦ Φν) ◦ Φ−1
ν .

(3.3) Ef := χ0f +

M∑
ν=1

χνEν(χνf).

Proposition 3.7. Let ω be a special Lipschitz domain, and Eω be given by (3.2). Then

(i) Eω : Hs,p(ω)→ Hs,p(RN ) is a bounded operator for all s ∈ R and 1 < p <∞.
(ii) Eω : Λs(ω)→ Λs(RN ) is a bounded operator for all s > 0.

In particular E is a continuous map from C∞(ω) to C∞(RN ).

The reader can find the proof in [Ryc99, Theorem 4.1(b)]. By partition of unity we see that
E : Hs,p(Ω)→ Hs,p(RN ) and E : Λs(Ω)→ Λs(RN ) are also bounded operators. In particular E is a
continuous map from C∞(ω) to C∞(RN ).

There is also a useful “Littlewood-Paley type” characterization of Hs,p(ω).

Proposition 3.8. Let ω be a special Lipschitz domain and φ = (φj)
∞
j=0 be constructed as in

Lemma 3.4 (i).

(i) For s ∈ R and 1 < p <∞, Hs,p(ω) has equivalent norm

‖f‖F s
p2(ω;φ) :=

∥∥∥( ∞∑
j=0

22js|φj ∗ f |2
) 1

2
∥∥∥
Lp(ω)

.

(ii) For s > 0, the Hölder-Zygmund space Λs(ω) has an equivalent norm

‖f‖Bs
∞∞(ω;φ) := sup

j∈N
2js‖φj ∗ f‖L∞(ω).

The proof is in [Ryc99, Theorem 3.2], where the assumption is φ0 ∈ C∞c (−K), but based on
[Ryc99, Theorem 4.1(b)] same proof works for φ0 ∈ S (−K).

4. Commutator Estimate

The main result of this section is the following commutator estimate on special Lipschitz domains.
We will write D for the gradient operator, and Dk = (Dα)|α|=k.

Theorem 4.1. Let 1 < p < ∞ and s ∈ R, and let ω be a special Lipschitz domain. Suppose
(φ, ψ) is a K-dyadic pair and let Eω be defined as in Definition 3.6. Then there exists a constant
C = Cs,p > 0 such that for δ(x) = dist(x, bω),

(4.1) ‖δ1−s[D,Eω]f‖Lp(ωc) ≤ C‖f‖Hs,p(ω), ∀f ∈ S ′(RN ).

Remark 4.2.

(i) By Proposition 3.8, the Hs,p(ω) norm is equivalent to the F s
p,2(ω;φ) norm. In fact we will

establish the following stronger estimate: for s ∈ R, 1 ≤ p ≤ ∞,

(4.2) ‖δ1−s[D,Eω]f‖Lp(ωc) ≤ Cs,p,φ‖f‖F s
p,∞(ω;φ), ∀f ∈ S ′(RN ),

where

‖f‖F s
p,∞(ω;φ) :=

∥∥∥ sup
j∈N

2js|φj ∗ f |
∥∥∥
Lp(ω)

≤
∥∥∥( ∞∑

j=0

22js|φj ∗ f |2
) 1

2
∥∥∥
Lp(ω)

= ‖f‖F s
p,2(ω;φ).
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(ii) When f ∈ Hs,p(ω) for s > 1, Theorem 4.1 follows from Proposition 5.6, which gives that

(4.3) ‖δ1−sg‖Lp(ωc) ≤ C‖g‖Hs−1,p(RN ), for any g ∈ Hs−1,p
0 (ωc).

This is because [D,Eω] ≡ 0 in ω, and therefore [D,Eω]f ∈ Hs−1,p
0 (ωc) by Proposition 2.12

(ii). Letting g = [D,Eω]f in (4.3) we obtain (4.1).
(iii) When s > 1

p and f ∈ Hs,p(ω), Theorem 4.1 implies that [D,Eω]f ∈ L1
loc(RN ). Indeed, since

[D,Eω]f is supported in ωc,

‖[D,Eω]f‖L1(BN (0,R)) ≤‖δs−1‖Lp′ (BN (0,R))‖δ
1−s[D,Eω]f‖Lp(BN (0,R))

≤‖δs−1‖Lp(BN (0,R))‖δ1−s[D,Eω]f‖Lp(ωc)

.‖δ(s−1)p′‖1/p
′

L1(BN (0,R))
‖f‖Hs,p(ω)

for every R.
Note that (s − 1)p′ > (1

p − 1) p
p−1 = −1, so δ(s−1)p′ is a locally integrable in RN , which

implies that the right-hand side is finite. When s ≤ 1
p , δ(x)(s−1)p′ is no longer integrable

near the boundary of ω, and we can only interpret the commutator as a distribution.

Note that when p = ∞ and s > 0, we have sup
j∈N

2js‖φj ∗ f‖L∞(ω) =
∥∥ sup
j∈N

2js|φj ∗ f |
∥∥
L∞(ω)

, or

Bs
∞,∞(ω;φ) = F s

∞,∞(ω;φ) (also see [Tri83, Remark 2.3.4/3]). Thus by (4.2) and Proposition 3.8
(ii), we have the following estimate for the Hölder-Zygmund space:

Corollary 4.3. Let s > 0 and let Eω, ω be as in Theorem 4.1. There is a C > 0 such that

(4.4) ‖δ1−s[D,Eω]f‖L∞(ωc) ≤ C‖f‖Λs(ω), f ∈ Λs(ω).

To prove Theorem 4.1 we need a sequence of lemmas.

Lemma 4.4. Let φ, ψ be two generalized dyadic resolutions. Then for any M > 0 and γ ∈ NN ,
there is a C = CM,N,γ > 0 such that

(4.5)

∫
|x|≥2−l

|Dγφj ∗ ψk(x)| dx ≤ C2min(j,k)|γ|−M{|j−k|+max(j−l,k−l,0)}, j, k ≥ 0, l ∈ Z.

Proof. By symmetry we can assume j ≤ k. We first use the scaling properties of φ and ψ to show
that the estimate can be reduced to the cases j = 0 and j = 1. When 1 < j ≤ k, recall that
φj(x) = 2N(j−1)φ1(2j−1x) and ψk(x) = 2N(k−1)ψ1(2k−1x), so

φj ∗ ψk(x) = 2N(j+k−2)

∫
φ1(2j−1x− 2j−1y)ψ1(2k−1y)dy

= 2N(k−1)

∫
φ1(2j−1x− ỹ)ψ1(2k−j ỹ)dỹ

= 2N(j−1)φ1 ∗ ψk−j+1(2j−1x).

Therefore taking substitution x̃ = 2j−1x we have∫
|x|≥2−l

|Dγφj ∗ ψk(x)| dx = 2(j−1)|γ|
∫
|x̃|≥2j−1−l

|Dγφ1 ∗ ψk−j+1(x̃)|dx̃, 1 ≤ j ≤ k.(4.6)

Suppose (4.5) is true for j = 1 ≤ k. Since k ≥ j, the right hand side of (4.6) is bounded by

C2(j−1)|γ|2|γ|−M(|1−(k−j+1)|+max(1+(j−1−l),k−j+1+(j−1−l),0)) = C2j|γ|−M(|j−k|+max(k−l,0))

= C2min(j,k)|γ|−M(|j−k|+max(j−l,k−l,0)).

This proves the reduction.
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Next we consider the case for j ∈ {0, 1} and k ≥ 1. Write k = 1 + m, for m ≥ 0. Since∫
RN x

αψ1(x) = 0 for any α ∈ NN , we have

Dγφj ∗ ψm+1(x) =

∫
RN

Dγφj(x− y)ψm+1(y) dy

=

∫
RN

Dγφj(x− y)2Nmψ1(2my) dy

=

∫
RN

Dγφj(x− 2−my)ψ1(y) dy

=

∫
RN

Dγφj(x− 2−my)−
∑

|α|≤M ′−1

(−2−my)α
D(γ+α)φj(x)

α!

ψ1(y) dy,

where M ′ is some large number to be chosen. By Taylor’s theorem, the expression in parenthesis
is bounded in absolute value by

1

M ′!
|2−my|M ′ sup

B(x,2−m|y|)

∣∣∣D|γ|+M ′φj∣∣∣ .
Since φ0 and φ1 are Schwartz, we have for j = 0, 1

(4.7) sup
B(x,2−m|y|)

∣∣∣D|γ|+M ′φj∣∣∣ .γ,M ′
{

(1 + |x|)−M ′ , |x| ≥ 21−m|y|
1, |x| < 21−m|y|

for M ′ > 0, γ ∈ NN .

Therefore for j = 0 or 1 we have∫
|x|≥2−l

|Dγφj ∗ ψm+1(x)| dx

.γ,M ′
∫
|x|≥2−l

[(∫
|y|≤2m−1|x|

+

∫
|y|≥2m−1|x|

)
|2−my|M ′

M ′!
sup

B(x,2−m|y|)

∣∣∣D|γ|+M ′φj∣∣∣ |ψ1(y)| dy

]
dx

.γ,M ′
∫
|x|≥2−l

[∫
|y|≤2m−1|x|

|2−my|M ′(1 + |x|)−M ′ |ψ1(y)| dy +

∫
|y|≥2m−1|x|

|2−my|M ′ |ψ1(y)| dy

]
dx.

Using polar coordinates and (4.7) we can bound the above expression by

2−mM
′
∫ ∞

2−l

[
(1 + ρ)−M

′
∫ ∞

0
rM
′
rN−1(1 + r)−2M ′−N dr

+

∫ ∞
2m−1ρ

rM
′
(1 + r)−2M ′−NrN−1 dr

]
ρN−1 dρ

.γ,M ′2
−mM ′

∫ ∞
2−l

ρN−1

[
(1 + ρ)−M

′
+

∫ ∞
2m−1ρ

(1 + r)−M
′−1 dr

]
dρ

.γ,M ′2
−mM ′

∫ ∞
2−l

ρN−1
(

(1 + ρ)−M
′
+ (1 + 2m−1ρ)−M

′
)
dρ

.γ,M ′2
−mM ′

∫ ∞
2−l

ρN−1(1 + ρ)−M
′
dρ.

Taking M ′ ≥ 2M +N , then the above is bounded by Cγ,M ′2
−mM ′ min{2l(M ′−N), 1} ≤ Cγ,M ′2−2Mm

×min{2Ml, 1} ≤ Cγ,M ′2−M(m+max{m−l,0}), which is what we need for the estimate.
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Finally, if j = k = 0, we use the fact that φ0 ∗ ψ0 is Schwartz, and therefore∫
|x|≥2−l

|Dγ [φ0 ∗ ψ0](x) dx| ≤ C2−l, l < 0;∫
|x|≥2−l

|Dγ [φ0 ∗ ψ0](x) dx| ≤ C, l ≥ 0,

which implies (4.5).
�

Corollary 4.5. Let (ψj)
∞
j=0 ⊆ S (RN ) be a generalized dyadic decomposition. Then for any M > 0

and γ ∈ NN there is a C = Cψ,M,γ > 0 such that

(4.8)

∫
|x|≥2−l

|Dαψk(x)|dx ≤ C2k|γ|−M max(0,k−l), ∀k ∈ N, l ∈ Z.

Proof. Let φ = (φj)
∞
j=0 be any regular dyadic resolution, so ψk =

∑∞
j=0 φj ∗ ψk and we have∫

|x|≥2−l |D
αψk| ≤

∑∞
j=0

∫
|x|≥2−l |D

α(φj ∗ ψk)|. Taking sum over j ∈ N on the right hand side of

(4.5) we get (4.8). �

We remark that Corollary 4.5 can also be proved independently without the use of Lemma 4.4.

In our proof we use the following dyadic decomposition:

Pk := {(x′, xN ) : 2−
1
2
−k < xN − ρ(x′) < 2

1
2
−k} ⊆ ω, k ∈ Z,(4.9)

Sk := {(x′, xN ) : −2
1
2
−k < xN − ρ(x′) < −2−

1
2
−k} ⊆ ωc, k ∈ Z.(4.10)

Up to sets of measure zero, we have disjoint unions ω =
⊔
k∈Z Pk and ωc =

⊔
k∈Z Sk.

Lemma 4.6. Let 1 ≤ p ≤ ∞. For any M there is a CM > 0 such that for every j, j′ ∈ N and
k, k′ ∈ Z,

(4.11) ‖ψj ∗ (D1ω · (φj ∗ ψj′ ∗ (1Pk′ · (φj′ ∗ f)))‖Lp(Sk) ≤ C2j−M(|j−k|+|j−j′|+|j′−k′|)‖φj′ ∗ f‖Lp(Pk′ )
.

Proof. Since D1ω = −D1ωc as distributions on RN , the term ψj ∗ (D1ω · (φj ∗ψj′ ∗ (1Pk′ · (φj′ ∗ f)))
in (4.11) has two identical expressions:

Ajj′k′ := Dψj ∗ (1ω(φj ∗ ψj′ ∗ (1Pk′ (φj′ ∗ f))))− ψj ∗ (1ω(Dφj ∗ ψj′ ∗ (1Pk′ (φj′ ∗ f)))),(4.12)

Bjj′k′ := −Dψj ∗ (1ωc(φj ∗ ψj′ ∗ (1Pk′ (φj′ ∗ f)))) + ψj ∗ (1ωc(Dφj ∗ ψj′ ∗ (1Pk′ (φj′ ∗ f)))).(4.13)

First we show that the left-hand side of (4.11) is 0 if j ≤ k− 2 or j′ ≤ k′ − 2. By (4.12) and the
fact that suppφj , suppψj ⊆ {xN < −2−j}, we see if j′ ≤ k′ − 2,

supp(φj ∗ ψj′ ∗ (1Pk′ · (φj′ ∗ f))) ⊆ suppφj + suppψj′ + supp
(
1Pk′ · (φj′ ∗ f)

)
⊆ {xN − ρ(x′) < −21−j − 21−j′ + 2−k

′}
⊆ {xN − ρ(x′) < 0},

and similarly,

supp(Dφj ∗ ψj′ ∗ (1Pk′ · (φj′ ∗ f))) ⊆ {xN − ρ(x′) < 0}.

Hence the left-hand side of (4.11) vanishes if j′ ≤ k′ − 2. On the other hand, the expression in

(4.13) is supported in suppψj +ωc ⊆ {xN −ρ(x′) < −2−j}, which is disjoint from Sk = {−2−k+ 1
2 <

xN − ρ(x′) < −2−k−
1
2 } when j < k− 1. Hence the left-hand side of (4.11) again vanishes. We shall

now assume that j ≥ k − 2 and j′ ≥ k′ − 2.
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We first estimate the left-hand side of (4.11) using (4.12). Write (4.12) as Ajj′k′ =: A1
jj′k′−A2

jj′k′

where

A1
jj′k′ := Dψj ∗ (1ω(φj ∗ ψj′ ∗ (1Pk′ (φj′ ∗ f)))),

A2
jj′k′ := ψj ∗ (1ω(Dφj ∗ ψj′ ∗ (1Pk′ (φj′ ∗ f)))).

Denoting hjj′k′ := φj ∗ ψj′ ∗ (1Pk′ · (φj′ ∗ f)), we have

‖A1
jj′k′‖Lp(Sk) = ‖Dψj ∗ (1ω · hjj′k′)‖Lp(Sk).

For x ∈ Sk and y ∈ ω, we have |x− y| ≥ dist(Sk, ω) ≥ 2−1−k, and

Dψj ∗ (1ωhjj′k′)(x) =

∫
ω∩|x−y|≥2−1−k

Dψj(x− y)hjj′k′(y) dy.

Since ψj = 2N(j−1)ψ1(2j−1x) and ψ1 and Dψ1 are Schwartz functions, we have∫
|x|>2−1−k

|Dψj(x)| dx =

∫
|x|>2j−2−k

2j−1|Dψ1(x)| dx .M 2j−M(j−k)(4.14) ∫
|x|>2−1−k

|ψj(x)| dx =

∫
|x|>2j−2−k

|ψ1(x)| .M 2−M(j−k).(4.15)

Now supp(φj ∗ψj′) ⊂ {xN < −2−j} by Definition 3.5. Hence by Lemma 4.4 applied with l = j, we
have

(4.16) ‖Dγφj ∗ ψj′‖L1(RN ) = ‖Dγφj ∗ ψj′‖L1(|x|≥2−j) . 2j|γ|−M |j−j
′|.

Applying Young’s inequality and estimates (4.14), (4.16), we have

‖A1
jj′k′‖Lp(Sk) ≤ ‖Dψj‖L1({|x|≥2−1−k})‖hjj′k′‖Lp(ω)

. 2j−M(j−k)‖φj ∗ ψj′ ∗ (1Pk′ · (φj′ ∗ f))‖Lp(ω)

. 2j−M(j−k)‖φj ∗ ψj′‖L1(RN )‖φj′ ∗ f‖Lp(Pk′ )

. 2j2−M |j−j
′|2−M(j−k)‖φj′ ∗ f‖Lp(Pk′ )

.

Similarly by (4.15) and we can show that

‖A2
jj′k′‖Lp(Sk) . ‖ψj‖L1(|x|>2−1−k)‖Dφj ∗ ψj′‖L1(RN )‖φj′ ∗ f‖Lp(Pk′ )

. 2j2−M |j−j
′|2−M(j−k)‖φj′ ∗ f‖Lp(Pk′ )

.

Next, we estimate the left-hand side of (4.11) using (4.13). Write (4.13) as Bjj′k′ =: −B1
jj′k′ +

B2
jj′k′ where

B1
jj′k′ := Dψj ∗ (1ωc(φj ∗ ψj′ ∗ (1Pk′ (φj′ ∗ f)))),

B2
jj′k′ := ψj ∗ (1ωc(Dφj ∗ ψj′ ∗ (1Pk′ (φj′ ∗ f)))).

Denoting h′j′k′ = 1Pk′ · (φj′ ∗ f) and applying Young’s inequality we get

(4.17) ‖B1
jj′k′‖Lp(Sk) . ‖Dψj‖L1(RN )‖φj ∗ ψj′ ∗ h′j′k′‖Lp(ωc).

For x ∈ ωc and y ∈ Pk′ , we have |x− y| ≥ dist(Pk′ , ω
c) ≥ 2−1−k′ . Hence for x ∈ ωc,

Dγφj ∗ ψj′ ∗ h′j′k′(x) =

∫
Pk′∩{y:|x−y|≥2−1−k′}

(Dγφj ∗ ψj′)(x− y)h′j′k′(y) dy.



14

By Young’s inequality and Lemma 4.4,

‖Dγφj ∗ ψj′ ∗ h′j′k′‖Lp(ωc) ≤

(∫
|x|≥2−1−k′

|Dγφj ∗ ψj′ |

)
‖h′j′k′‖Lp(RN )

. 2j|γ|−M(|j−j′|+j′−k′)‖φj′ ∗ f‖Lp(Pk′ )
.

Since ‖Dψj‖L1(RN ) = 2j−1‖Dψ1‖L1(RN ) ≤ C2j−1, we get (4.17) that

‖B1
jj′k′‖Lp(Sk) . 2j−1−M |j−j′|−M(j′−k′)‖φj′ ∗ f‖Lp(Pk′ )

.

In the same way we can show that B2 satisfies the same estimate

‖B2
jj′k′‖Lp(Sk) . 2j−M |j−j

′|−M(j′−k′)‖φj′ ∗ f‖Lp(Pk′ )
.

Finally combining the estimates for A1
jj′k′ , A

2
jj′k′ , B

1
jj′k′ and B2

jj′k′ we get

‖ψj ∗ ((D1ω) · (φj ∗ ψj′ ∗ (1Pk′ · (φj′ ∗ f)))‖Lp(Sk)

≤ 2j−M |j−j
′|min

{
2−M(j−k), 2−M(j′−k′)

}
‖φj′ ∗ f‖Lp(Pk′ )

≤ 2j−M |j−j
′|2−M max{j−k,j′−k′}‖φj′ ∗ f‖Lp(Pk′ )

≤ 2j−M |j−j
′|2−

M
2

[(j−k)+(j′−k′)]‖φj′ ∗ f‖Lp(Pk′ )

. 2j−
M
2

[|j−j′|+|j−k|+|j′−k′|]‖φj′ ∗ f‖Lp(Pk′ )
,

where in the last step we use j ≥ k−2 and j′ ≥ k′−2. Replacing M/2 by M we get the result. �

Lemma 4.7. Let M > 1. Then there is a CM > 0 such that∑
b∈Z

2−M(|a−b|+|b−c|) ≤ CM2−(M−1)|a−c|, for all a, c ∈ Z.

Proof. By a substitution b̃ = a− b we see that
∑

b∈Z 2−M(|a−b|+|b−c|) =
∑

b̃∈Z 2−M(|̃b|+|a−c−b̃|. So it
suffices to show that ∑

b∈Z
2−M(|b|+|a−b|) ≤ CM2−(M−1)|a|.

By symmetry we can assume a > 0 in the above inequality. It follows that∑
b∈Z

2−M(|b|+|a−b|) ≤
∑

b ≤ 0 or b ≥ 2a

2−M(|b|+|a−b|) +

a∑
b=1

2−M(b+(a−b)) +

2a−1∑
b=a+1

2−M(b+(b−a))

≤ CM
∑
b∈Z

2−M(|b|+a) +
a∑
b=1

2−Ma +
2a−1∑
b=a+1

2−Ma

= CM2−Ma

(∑
b∈Z

2−M |b| +
2a−1∑
b=1

1

)
. CM (a+ 1)2−Ma.

Clearly a+ 1 ≤ 2a, for a ∈ Z+. Hence
∑

b∈Z 2−M(|b|+|a−b|) ≤ 2−(M−1)|a|. �
We are now ready to prove the main result of the section.

Proof of Theorem 4.1. As mentioned in Remark 4.2 (i), we will prove the following stronger esti-
mate

(4.2) ‖δ1−s[D,Eω]f‖Lp(ωc) ≤ Cp,s
∥∥ sup
j∈N

2js|φj ∗ f |
∥∥
Lp(ω)

, ∀f ∈ S ′(ω),

for 1 ≤ p ≤ ∞, provided that the norm on the right hand side is finite.
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Let Pk and Sk be the dyadic strips defined in (4.9) and (4.10). Since δ ≈ 2−k on Sk, we can
replace the function δ by

∑
k∈Z 2−k1Sk . Also

[D,Eω]f = DEωf − EωDf

=
∞∑
j=0

ψj ∗ [(D1ω) · (φj ∗ f) + 1ω · (φj ∗Df)]−
∞∑
j=0

ψj ∗ (1ω · (φj ∗Df))

=

∞∑
j=0

ψj ∗ ((D1ω) · (φj ∗ f))

=

∞∑
j,j′=0

ψj ∗
(
(D1ω) ·

(
φj ∗ ψj′ ∗ (1ω · (φj′ ∗ f))

))
=

∑
j,j′∈N,k′∈Z

ψj ∗
(
(D1ω) · (φj ∗ ψj′ ∗ (1Pk′ · (φj′ ∗ f)))

)
.

Denoting the summand on the right-hand side by Ajj′k′ , we have by (4.11),

‖Ajj′k′‖Lp(Sk) . 2j−M(|j−j′|+|j−k|+|j′−k′|)‖φj′ ∗ f‖Lp(Pk′ )
.

Therefore

‖δ1−s[D,Eω]f‖Lp(Sk) . 2−k(1−s) ‖[D,Eω]f‖Lp(Sk)

. 2(s−1)k
∑

j,j′∈N,k′∈Z
2j−M(|j−j′|+|j−k|+|j′−k′|)‖φj′ ∗ f‖Lp(Pk′ )

.

Write k = j′ + (k − j′) and j = j′ + (j − j′). Then the above is bounded by

‖δ1−s[D,Eω]f‖Lp(Sk) .
∑

j,j′∈N,k′∈Z
2(s−1)j′+j′2|s−1||k−j′|+|j−j′|2−M(|j−k|+|j−j′|+|j′−k′|)‖φj′ ∗ f‖Lp(Pk′ )

.
∑

j,j′∈N,k′∈Z
2(|s−1|+1)(|j−j′|+|k−j|)2−M(|j−k|+|j−j′|+|j′−k′|)2sj

′‖φj′ ∗ f‖Lp(Pk′ )

.
∑

j,j′∈N,k′∈Z
2−(M−|s−1|−1)(|j−k|+|j−j′|+|j′−k′|)2sj

′‖φj′ ∗ f‖Lp(Pk′ )
.

Applying Lemma 4.7 to the sum over j and then again to the sum over j′, we get

‖δ1−s[D,Eω]f‖Lp(Sk) .
∑

j′∈N,k′∈Z
2−(M−|s−1|−2)(|k−j′|+|j′−k′|)2sj

′‖φj′ ∗ f‖Lp(Pk′ )

.
∑
k′∈Z

2−(M−|s−1|−3)|k−k′| sup
j′∈N

2sj
′‖φj′ ∗ f‖Lp(Pk′ )

.
∑
k′∈Z

2−(M−|s−1|−3)|k−k′|‖ sup
j′∈N

2sj
′ |φj′ ∗ f |‖Lp(Pk′ )

.

Define sequences u, v, w by

u[j] := ‖δ1−s[D,Eω]f‖Lp(Sj), v[j] := 2−(M−|s−1|−3)|j|, w[j] := ‖ sup
l∈N

2sl|φl ∗ f |‖Lp(Pj).

Then we have shown that u . v ∗ w. By Young’s inequality we get ‖u‖`p ≤ ‖v‖`1‖w‖`p . Clearly
‖u‖`p ≈ ‖δ1−s[D,Eω]f‖Lp(ωc) and ‖w‖`p = ‖f‖F s

p,∞(ω;φ) (see Remark 4.2 (i)). By choosing M

sufficiently large so that ‖v‖`1 <∞ we obtain the desired estimate (4.2). �
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5. Hardy-Littlewood Lemma of Sobolev Type

In the last section we estimated Lp(Ω, λ) norm using Hs,p(Ω) norm, where the weight λ is some

power of the boundary distance function. To show that our solution for ∂ is in Hs+ 1
2
,p(Ω), we also

need to bound the Hs,p(Ω) norms by weighted Sobolev norms W k,p(Ω, λ). We will call this kind of
estimates Hardy-Littlewood lemma of Sobolev type, after the classical version for Hölder spaces.

Lemma 5.1. Let s > −1
p and 1 < p <∞. Then

(i) There is a Cs,p > 0 such that for all v ∈W 1,p
loc (0, 2) such that v ≡ 0 near 2,

(5.1)

∫ 2

0
tsp|v(t)|p dt ≤ Cs,p

∫ 2

0
t(s+1)p|v′(t)|p dt.

(ii) Let ω = {xN > ρ(x′)} ⊆ RN be a bounded special Lipschitz domain. Suppose u ∈ W 1,p
loc (ω)

and suppu ⊆ ω ∩ BN . Then

‖δsu‖Lp(ω) ≤ C ′s,p‖δs+1Du‖Lp(ω),

where δ(x) = dist(x, bω) and C ′s,p > 0 is the constant that does not depend on u.

Proof. (i) By assumption v ∈W 1,1
loc (0, 2) is locally absolutely continuous, hence v(t) can be defined

point-wise.
Let ε be a small positive number. Using integration by parts we have∫ 2

δ
tsp|v(t)|p dt = − δsp+1

sp+ 1
+

∫ 2

δ

tsp+1

sp+ 1
p|v(t)|p−1v′(t) sign(v(t)) dt

≤
∫ 2

δ

tsp+1

sp+ 1
p|v(t)|p−1|v′(t)| dt

≤ Cs,p‖ts(p−1)|v|p−1‖
L

p
p−1 ([δ,2])

‖ts+1v′‖Lp([δ,2])

= Cs,p‖tsv‖p−1
Lp([δ,2])‖t

s+1v′‖Lp([δ,2]).

Here signx = x
|x| when x 6= 0 and signx = 0.

Note that the left-hand side of the above inequality is ‖tsv‖pLp([δ,2]). Dividing by ‖tsv‖p−1
Lp([δ,2])

(which is finite) from both sides and taking the limit as δ → 0 we get (5.1).

(ii) By assumption u vanishes outside BN , so

‖δsu‖pLp(ω) .
∫
|y′|<1

∫ 1

yN=ρ(y′)
(yN − ρ(y′))sp|u(y′, yN )|p dyN dy′

=

∫
|y′|<1

∫ 1−ρ(y′)

t=0
tsp|u(y′, t+ ρ(y′))|p dt dy′.

Set ũ(y′, t) := u(y′, t+ ρ(y′)). Then ũ(y′, t) vanishes near t = 1− ρ(y′). Since sup |ρ| < 1, for every
y′ ∈ RN−1, we see that the map t 7→ u(y′, t+ ρ(y′)) is supported in [0, 1− ρ(y′)) and vanishes near
1− ρ(y′). Since 1− ρ(y′) < 2, by part (i) we have

‖δsu‖Lp(ω) .
∫
|y′|<1

∫ 1−ρ(y′)

0
t(s+1)p|Dtu(y′, t+ ρ(y′))|p dt dy′

=

∫
|y′|<1

∫ 1

ρ(y′)
(yN − ρ(y′))(s+1)p|DyNu(y′, yN )|p dyN dy′

. ‖δs+1Du‖Lp(ω).

This completes the proof. �
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The following result can be viewed as a weighted version of the Poincaré inequality.

Proposition 5.2. Let 1 < p < ∞ and k, l be non-negative integers with l < k. Let Ω be a
bounded Lipschitz domain in RN and define δ(x) to be the distance function to the boundary bΩ. If

u ∈W k,p
loc (Ω) and ∑

|γ|≤k

‖δk−lDγu‖Lp(Ω) <∞,

then u ∈W l,p(Ω). Furthermore, there exists a constant C that does not depend on u such that

‖u‖W l,p(Ω) ≤ C
∑
|γ|≤k

‖δk−lDγu‖Lp(Ω).

Proof. For each 0 ≤ i ≤ l < k and each |α| = i, we show that

(5.2)

∫
Ω
|Dαu|p dV (x) .

∑
|γ|≤k

∫
Ω
δ(x)p(k−l)|Dγu|p dV (x).

It suffices to show that for every non-negative integer j and 1 < p <∞, one has

(5.3) ‖δjv‖Lp(Ω) .j,p,Ω ‖δj+1v‖Lp(Ω) + ‖δj+1Dv‖Lp(Ω).

Indeed, setting v = Dαu and using (5.3) (k − i) times we get

‖Dαu‖Lp(Ω) . ‖δDαu‖Lp(Ω) + ‖δDDαu‖Lp(Ω)

. · · · .
∑
|γ|≤k−i

‖δk−iDα+γu‖Lp(Ω)

.
∑
|γ|≤k

‖δk−lDγu‖Lp(Ω).

It remains to prove (5.3). Take a finite open cover {Uν}Mν=0 of Ω such that U0 ⊂⊂ Ω and⋃M
ν=1 Uν ⊃ bΩ. Let {χν} be a partition of unity such that χν ∈ C∞c (Uν), 0 ≤ χν ≤ 1, and∑M
ν=0 χν ≡ 1 in some neighborhood of Ω. We can assume that for each 1 ≤ ν ≤M there exists an

invertible affine linear transformation ψν : BN → Uν , where BN is the unit ball in RN , such that

ψν(BN ∩ ων) = Uν ∩ Ω, 1 ≤ ν ≤M.

Here ων = {yN > ρν(y′)} are special Lipschitz domains. For y ∈ BN ∩ ων , δ ◦ ψν(y) ≈ δν(y) :=
yN − ρν(y′), thus

‖δjv‖Lp(Ω) . ‖χ0δ
jv‖Lp(Ω) +

M∑
ν=1

‖χνδjv‖Lp(Ω∩Uν)

. ‖χ0v‖Lp(Ω) +

M∑
ν=1

‖δjν [(χνv) ◦ ψν ]‖Lp(ων∩BN ).

Clearly ‖χ0v‖Lp(Ω) . ‖δj+1χ0v‖Lp(Ω) ≤ ‖δj+1v‖Lp(Ω). By Lemma 5.1 (ii), we have for 1 ≤ ν ≤M ,

‖δjν [(χνv) ◦ ψν ]‖Lp(BN∩ων) . ‖δj+1
ν D[(χνv) ◦ ψν ]‖Lp(BN∩ων)

. ‖δj+1
ν D(χνv) ◦ ψν‖Lp(BN∩ων)

. ‖δj+1D(χνv)‖Lp(Uν∩Ω)

. ‖δj+1v‖Lp(Uν∩Ω) + ‖δj+1Dv‖Lp(Uν∩Ω)

. ‖δj+1v‖Lp(Ω) + ‖δj+1Dv‖Lp(Ω).

Taking sum over 0 ≤ ν ≤M , this proves (5.3) and thus the proposition. �
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Lemma 5.3. Let Ω be a bounded Lipschitz domain. Denote δ(x) = dist(x, bΩ). Then for any
k ∈ N and 1 < p <∞ there is a C = Ck,p,Ω > 0 such that

‖δ−kf‖Lp(Ω) ≤ C‖f‖Hk,p
0 (Ω)

.

Proof. We only need to prove the statement for special Lipschitz domain ω = {(x′, xN ) ∈ RN :

xN > ρ(x′)} and for f ∈ Hk,p
0 (ω) which is supported in BN , namely,

(5.4) ‖δ−kf‖Lp(ω) ≤ C‖f‖Hk,p
0 (ω)

, ∀f ∈ Hk,p
0 (ω), supp f ⊆ BN .

For a bounded Lipschitz domain one can use partition of unity and the result for special Lipschitz
domains. We leave the reader to check the details.

The case k = 0 is trivial, so we assume k > 0. Since Hk,p
0 (ω) is the completion of C∞c (ω) under

the norm Hk,p(RN ) (see Definition 2.6 (iii)), it suffices to prove (5.4) for f ∈ C∞c (ω) with uniform
bounds. Indeed, for a general f ∈ Hk,p(ω), take (fj)

∞
j=1 ⊂ C∞c (ω) such that ‖fj − f‖Hk,p

0 (ω)
→ 0,

so then (δ−kfj)
∞
j=1 ⊂ Lp(ω) is a Cauchy sequence, and ‖δ−kf‖Lp(ω) ≤ C‖f‖

Hk,p
0 (ω)

with the same

constant.
Since ‖ρ‖C0,1 < 1, we know that 1

2δ(x) ≤ |xN − ρ(x′)| ≤ 2δ(x) for all x ∈ RN , so we can replace
δ(x) by |xN − ρ(x′)|.

Let g(t) ∈ C∞c (0, 2). By Taylor’s theorem

g(t) =
1

(k − 1)!

∫ t

0
g(k)(s)(t− s)k−1ds, t > 0.

Therefore

‖t−kg(t)‖Lpt (R+) ≤
1

(k − 1)!

∥∥∥1

t

∫ t

0
|g(k)(s)|ds

∥∥∥
Lpt (R+)

=
1

(k − 1)!

∥∥∥∫ 2

0
|g(k)(λt)|dλ

∥∥∥
Lp(R+)

≤ 1

(k − 1)!

∫ 2

0
‖g(k)(λ·)‖Lp(R+)dλ

=
1

(k − 1)!

∫ 2

0
‖g(k)‖Lp(R+)λ

− 1
pdλ

=
p/(p− 1)

(k − 1)!
‖g(k)‖Lp(R+).

Now for each x′ ∈ RN−1, set gx′(t) := f(x′, t+ ρ(x′)) so g
(k)
x′ (t) = ∂kt f(x′, t+ ρ(x′)) = (∂kxN f)(x′, t+

ρ(x′)), we see that supp g ⊆ [0, 2) since supp f ⊆ BN . By Fubini theorem we have∫
ω

∣∣∣|xN − ρ(x′)|−kf(x′, xN )
∣∣∣p dV (x) =

∫
RN−1

dx′
∫ ∞

0
|t−kf(x′, t+ ρ(x′))|pdt

=

∫
RN−1

‖t−kgx′(t)‖pLpt (R+)
dx′

≤ Ck,p
∫
RN−1

‖g(k)
x′ ‖

p
Lp(R+)dx

′

= Ck,p

∫
RN−1

(∫
R+

|(∂kxN f)(x′, t+ ρ(x′))|pdt
)
dx′

= Ck,p

∫
ω
|∂kxN f(x)|pdx ≤ Ck,p

∫
ω
|Dkf |p dV (x).

Thus we have ‖δ−kf‖Lp(ω) . ‖Dkf‖Lp(ω) ≤ ‖f‖Wk,p(ω) = ‖f‖Wk,p(RN ) uniformly for all f ∈ C∞c (ω).
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Note that by Lemma 2.10, Hk,p(RN ) = W k,p(RN ) with equivalent norm, and by density of

C∞c (ω) in Hk,p
0 (ω) (see Definition 2.6 (iii)) we conclude that ‖δ−kf‖Lp(ω) . ‖f‖Hk,p(RN ) for all

f ∈ Hk,p
0 (ω). �

Proposition 5.4. Let Ω ⊆ RN be a bounded Lipschitz domain. Denote δ(x) = dist(x, bΩ). Then
for s ≥ 0 and 1 < p <∞, there is a C = C(s, p,Ω) > 0 such that

(5.5) ‖u‖H−s,p(Ω) ≤ C‖δsu‖Lp(Ω), ∀u ∈ Lploc(Ω).

Remark 5.5. For the special case when p = 2, s ≥ 0 is not a half integer, and Ω has smooth
boundary, the above result is proved in [CS01, Theorem C.4].

Proof. Note that the estimate is equivalent to showing the boundedness of the inclusion operator

ι : Lp(Ω, δs) ↪→ H−s,p(Ω)

for s ≥ 0 and 1 < p <∞. We will argue by duality and interpolation.
Let p′ be the conjugate of p. By Proposition 5.3, for k ∈ N,

‖g‖Lp′ (Ω,δ−k) ≤ Ck,p′‖g‖Hk,p′
0 (Ω)

, ∀g ∈ Hk,p′

0 (Ω),

is a bounded operator. By Proposition 2.12 (iii), we have H−k,p(Ω) = Hk,p′

0 (Ω)′. Using Hölder’s
inequality, we have for every f ∈ Lp(Ω, δk),

‖f‖H−k,p(Ω) = sup

g∈Hk,p′
0 (Ω);‖g‖

H
k,p′
0 (Ω)

≤1

〈f, g〉

≤ sup
g∈Lp′ (Ω,δ−k);‖g‖

Lp
′
(Ω,δ−k)

≤Ck,p′

∫
Ω
|fg|

= sup
‖δ−kg‖

Lp
′
(Ω)
≤Ck,p′

∫
Ω
|δkf ||δ−kg|

≤ sup
‖δ−kg‖

Lp
′
(Ω)
≤Ck,p′

‖δkf‖Lp(Ω)‖δ−kg‖Lp′ (Ω)

≤ Ck,p′‖δkf‖Lp(Ω) = Ck,p′‖f‖Lp(Ω,δk).

Hence the inclusion ι : Lp(Ω, δk) ↪→ H−k,p(Ω) is bounded for k ∈ N.
For general s > 0, take any integer k > s and denote θ = s/k. By Proposition 2.15 we have

[Lp(Ω), Lp(Ω, δk)]θ = Lp(Ω, δs),

and

[Lp(Ω), H−k,p(Ω)]θ = H−s,p(Ω).

Using interpolation we obtain the boundedness of inclusion ι : Lp(Ω, δs)→ H−s,p(Ω). �

We now use Proposition 5.4 to extend Lemma 5.3 to all s ≥ 0.

Proposition 5.6. Let Ω be a bounded Lipschitz domain. Denote δ(x) = dist(x, bΩ). Then for any
s ≥ 0 and 1 < p <∞ there is a C = Cs,p,Ω > 0 such that ‖δ−sf‖Lp(Ω) ≤ C‖f‖Hs,p

0 (Ω).

Proof. Since the dual space of Lp(Ω, δ−s) is Lp
′
(Ω, δs), we have

‖δ−sf‖Lp(Ω) = sup
g∈Lp′ (Ω,δs),
‖g‖

Lp
′
(Ω,δs)

≤1

|〈f, g〉| .
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Since Lp
′
(Ω, δs) ⊂ H−s,p

′
(Ω) by Proposition 5.4 and since Hs,p

0 (Ω) = H−s,p
′
(Ω)′ from Proposition

2.12 (iii), we have

‖δ−sf‖Lp(Ω) ≤ sup
g∈H−s,p′ (Ω),
‖g‖

H−s,p′ (Ω)
≤C

|〈f, g〉| ≈ ‖f‖Hs,p
0 (Ω),

which completes the proof. �

Remark 5.7. Proposition 5.6 holds for Hölder-Zygmund space as well. Namely, for any s ≥ 0, there
exists a C = Cs,Ω > 0 such that ‖δ−sf‖L∞(Ω) ≤ C‖f‖Λs0(Ω). Here Λs0(Ω) denotes the closure of

C∞c (Ω) in Λs(Ω).

As a consequence to Proposition 5.6, we can now prove a weighted estimate for the commutator
[D, E ]. Recall that for a bounded Lipschitz domain Ω, we define the extension operator EΩ by
formula (3.3),

(5.6) EΩf = χ0f +
M∑
ν=1

χνEν(χνf),

where Eνg := Eων (g ◦ Φν) ◦ Φ−1
ν , and ων , Uν ,Φν are given in the remark before (3.3).

Lemma 5.8. Let Ω ⊆ RN be a bounded Lipschitz domain, and let E be defined as above. Then for
1 < p <∞, we have

‖δ1−s[D, E ]f‖Lp(Ω
c
) ≤ Cs,p‖f‖Hs,p(Ω), ∀f ∈ Hs,p(Ω), s > 0;

‖δ1−s[D, E ]f‖L∞(Ω
c
) ≤ Cs,p‖f‖Λs(Ω), ∀f ∈ Λs(Ω), s > 0

Proof. We have

[D, E ]f = D

[
(χ0f) +

M∑
ν=1

χνEν(χνf)

]
−

[
χ0(Df) +

M∑
ν=1

χνEν(χν(Df))

]

= (Dχ0)f +

M∑
ν=1

D(χν)Eν(χνf) + χνDEν(χνf)− χνEν(χν(Df))

= (Dχ0)f +

M∑
ν=1

D(χν)Eν(χνf) + χν [D,Eν ](χνf) + χνEνD(χνf)− χνEν(χν(Df))

= (Dχ0)f +

M∑
ν=1

χν [D,Eν ](χνf) +

M∑
ν=1

D(χν)Eν(χνf)− χνEν(D(χν)f)

The first term above is identically 0 in Ω
c
. For the last two terms, we note that g := D(χν)Eν(χνf)−

χνEν(D(χν)f) ≡ 0 in Ω. Moreover, by the estimate for Eν we have ‖g‖Hs,p(RN ) ≤ Cs,p‖f‖Hs,p(Ω).

Hence g ∈ Hs,p
0 (Ω

c
) by Proposition 2.12 (ii). It now follows from Proposition 5.6 and Remark 5.7

that

‖δ−sg‖Lp(Ω
c
) ≤ Cs,p‖g‖Hs,p

0 (Ω
c
) ≤ Cs,p‖f‖Hs,p(Ω), s ≥ 0;

‖δ−sg‖L∞(Ω
c
) ≤ Cs‖g‖Λs0(Ω

c
) ≤ Cs‖f‖Λs(Ω), s ≥ 0.

To finish the proof we will show that

‖δ1−s[D,Eν ](χνf)‖Lp(Uν∩Ω
c
) ≤ Cs,p‖f‖Hs,p(Ω), s ∈ R;(5.7)

‖δ1−s[D,Eν ](χνf)‖L∞(Uν∩Ω
c
) ≤ Cs,p‖f‖Λs(Ω), s ∈ R.(5.8)
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Indeed we have

[D,Eν ](χνf) = D(Eν(χνf))− Eν(D(χνf))

= D(Eων [(χνf) ◦ Φν ] ◦ Φ−1
ν )− Eων [D(χνf) ◦ Φν ] ◦ Φ−1

ν

= (∇Eων [(χνf) ◦ Φν ]) ◦ Φ−1
ν ·DΦ−1

ν − Eων [∇((χνf) ◦ Φν)] ◦ Φ−1
ν ·DΦ−1

ν

+ Eων [∇((χνf) ◦ Φν)] ◦ Φ−1
ν ·DΦ−1

ν − Eων [D(χνf) ◦ Φν ] ◦ Φ−1
ν

= [∇, Eων ]((χνf) ◦ Φν) ◦ Φ−1
ν ·DΦ−1

ν .

Note that in the last step above we used the fact that Φν is a linear transformation so that

Eων [∇((χνf) ◦ Φν)] ◦ Φ−1
ν ·DΦ−1

ν = Eων [∇(χνf) ◦ Φν ] ◦ Φ−1
ν ·D(Φν · Φ−1

ν )

= Eων [D(χνf) ◦ Φν ] ◦ Φ−1
ν .

Applying Theorem 4.1 to the domain ων , we have for any s ∈ R:

‖δ1−s[D,Eν ](χνf)‖Lp(Uν∩Ω
c
).‖δ

1−s[D,Eων ]((χνf) ◦ Φν)‖Lp(Φ−1
ν (Uν∩Ω

c
))

= ‖δ1−s[D,Eων ]((χνf) ◦ Φν)‖Lp(BN∩ωcν)

.‖(χνf) ◦ Φν‖Hs,p(ων)

.‖f‖Hs,p(Ω),

where we used that Uν = Φν(BN ) and Φν(BN ∩ ων) = Uν ∩ Ω. This proves (5.7).
In a similar way, we obtain (5.8) from Corollary 4.3. The proof is now complete. �

Proposition 5.9. Let Ω ⊆ RN be a bounded domain with C2 boundary. Then for 1 < p <∞ and
0 ≤ r ≤ 2, there is a C = CΩ,r,p > 0 such that

(i) ‖f‖Hr,p(Ω) ≤ C(‖δ1−rf‖Lp(Ω) + ‖δ1−rDf‖Lp(Ω)) for 0 ≤ r ≤ 1 and f ∈W 1,p(Ω, δ1−r).

(ii) ‖f‖Hr,p(Ω) ≤ C(‖δ2−rf‖Lp(Ω) + ‖δ2−rDf‖Lp(Ω) + ‖δ2−rD2f‖Lp(Ω)) for 1 ≤ r ≤ 2 and f ∈
W 2,p(Ω, δ2−r).

Proof. (i) Since bΩ is C2 and 0 ≤ s ≤ 1, we can apply Proposition A.1 (i) to get

‖f‖Hs,p(Ω) . ‖f‖Hs−1,p(Ω) + ‖Df‖Hs−1,p(Ω).

Now s− 1 ≤ 0 so Proposition 5.4 applies, and we have

‖f‖Hs−1,p(Ω) . ‖δ1−sf‖Lp(Ω);

‖Df‖Hs−1,p(Ω) . ‖δ1−sDf‖Lp(Ω).

Combining them we get ‖f‖Hs,p(Ω) . ‖δ1−sf‖Lp(Ω) + ‖δ1−sDf‖Lp(Ω), which proves (i).

(ii) Since 1 ≤ s ≤ 2 we have s, s− 1 ∈ [0, 2]. So by Proposition A.1 (ii),

‖f‖Hs,p(Ω) . ‖f‖Hs−2,p(Ω) + ‖Df‖Hs−2,p(Ω) + ‖D2f‖Hs−2,p(Ω).

Since s− 2 ≤ 0, we again apply (5.4) to get

‖Djf‖Hs−2,p(Ω) . ‖δ2−sDjf‖Lp(Ω), j = 0, 1, 2.

Thus

‖f‖Hs,p(Ω) . ‖δ2−sf‖Lp(Ω) + ‖δ2−sDf‖Lp(Ω) + ‖δ2−sD2f‖Lp(Ω),

which proves (ii). �
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6. Sobolev Estimates of Homotopy Operators

In this section we derive the weighted estimates for the homotopy operator. Together with the
commutator estimate and Hardy-Littlewood lemma, this leads to the proof of Theorem 1.1. Unlike
in [Gon19] and [Shi21], no integration by parts is used in our proof.

In what follows we let ρ be a C2 defining function of Ω which is strictly plurisubharmonic in a
neighborhood of bΩ. We will adopt the following notation:

Ωε = {z ∈ Cn : dist(z,Ω) < ε}, Ω−ε = {z ∈ Ω : dist(z, bΩ) > ε}.

Proposition 6.1. Let Ω be a bounded domain in Cn with C2 boundary. Suppose W (z, ζ) ∈ C1(Ωε×
(Ωε \ Ω−ε)) is a Leray mapping, that is, W is holomorphic in z ∈ Ωε and satisfies

Φ(z, ζ) := W (z, ζ) · (ζ − z) 6= 0, z ∈ Ω, ζ ∈ Ωε \ Ω.

Let U be a bounded neighborhood of Ω such that U ⊂ Ωε. Suppose ϕ is a (0, q)-form with 1 ≤ q ≤ n
such that ϕ and ∂ϕ are in C∞(Ω). Then

ϕ = ∂Hqϕ+Hq+1∂ϕ.

Here Hq is the operator defined by

(6.1) Hqϕ =

∫
U
K0

0,q−1 ∧ Eϕ+

∫
U\Ω

K01
0,q−1 ∧ [∂,E]ϕ,

where E is any extension operator that maps C∞(Ω) into C∞(Cn) with suppEϕ ⊆ U for all ϕ,
and

K0(z, ζ) =
1

(2πi)n

〈
ζ − z , dζ

〉
|ζ − z|2

∧

(
∂ζ,z

〈
ζ − z , dζ

〉
|ζ − z|2

)n−1

, ∂ζ,z = ∂ζ + ∂z;

K0,1(z, ζ) =
1

(2πi)n

〈
ζ − z , dζ

〉
|ζ − z|2

∧ 〈W,dζ〉
〈W , ζ − z〉

(6.2)

∧
∑

i+j=n−2

[〈
dζ − dz , dζ

〉
|ζ − z|2

]i
∧
[
∂ζ,z

〈W,dζ〉
〈W, ζ − z〉

]j
.

We set K1
0,−1 = 0 and K0,1

0,−1 = 0.

The reader can find the proof of Proposition 6.1 in [Gon19], where E is taken to be Stein extension
operator. Here we note that on any bounded strictly pseudoconvex domain Ω with C2 boundary,
there exists an ε > 0 such that W satisfies the assumptions in Proposition 6.1 on Ωε × (Ωε \Ω−ε).
Furthermore, near every ζ∗ ∈ bΩ, one can find a small neighborhood V of ζ∗ such that for all z ∈ V,
there exists a coordinate map φz : V → R2n given by φz : ζ 7→ (s, t) = (s1, s2, t3, . . . , t2n), where
s1 = ρ(ζ) (we have s1 ≈ δ(ζ) for ζ ∈ V \ Ω). Moreover for z ∈ V ∩ Ω, ζ ∈ V \ Ω, the function
Φ(z, ζ) = W (z, ζ) · (ζ − z) satisfies

(6.3) |Φ(z, ζ)| ≥ c
(
δ(z) + s1 + |s2|+ |t|2

)
, δ(z) = dist(z, bΩ),

(6.4) |Φ(z, ζ)| ≥ c|z − ζ|2, |ζ − z| ≥ c(s1 + |s2|+ |t|),

for some constant c depending on the domain. We call such Φ a holomorphic support function.
The reader can refer to [Gon19] for details.

From now on we shall fix an open set U such that Ω ⊂⊂ U ⊂⊂ Ωε, and we will use the extension
operator E defined by formula (3.3) with supp Eϕ ⊂ U for all ϕ.
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Theorem 6.2. Let Ω ⊆ Cn be a bounded strictly pseudoconvex domain with C2 boundary. Given
1 ≤ q ≤ n, let Hq be defined as in (6.1), where the extension operator E is given by formula (3.3).

Then for any 1 < p <∞ and s > 1
p , Hq is a bounded linear operator Hq : Hs,p

(0,q)(Ω)→ H
s+ 1

2
,p

(0,q−1)(Ω).

Remark 6.3. In fact, when q = n, then any extension of ϕ is automatically ∂ closed, so [∂,E]ϕ ≡ 0
and

Hnϕ =

∫
U
K0

0,q−1 ∧ Eϕ.

In this case for all s ≥ 0 and 1 < p < ∞, Hn : Hs,p
(0,n)(Ω) → Hs+1,p

(0,n−1)(Ω) where Ω is any bounded

Lipschitz domain. See Proposition 6.6.

Theorem 6.2 allows us to prove a homotopy formula under much weaker regularity assumption.

Theorem 6.4 (Homotopy formula). Let Ω ⊆ Cn be a bounded strictly pseudoconvex domain with
C2 boundary. Given 1 < p < ∞ and 1 ≤ q ≤ n, suppose ϕ ∈ Hs,p

(0,q)(Ω) satisfies ∂ϕ ∈ Hs,p
(0,q+1)(Ω)

where s > 1
p . Let Hq be defined by (6.1), where the extension operator E = EΩ is given by formula

(3.3). Then the following homotopy formula holds in the sense of distributions:

(6.5) ϕ = ∂Hqϕ+Hq+1∂ϕ.

In particular for a ∂-closed ϕ which is in Hs,p
(0,q)(Ω) for s > 1

p , the equation ∂Hqϕ = ϕ holds and

Hqϕ ∈ H
s+ 1

2
,p

(0,q−1)(Ω).

Proof. Formula (6.5) is proved in [Gon19] for Stein’s extension operator for ϕ, ∂ϕ ∈ C1(Ω). The
statement holds for smooth forms by Proposition 6.1, and we shall use approximation for the general
case. First we show that there exists a sequence ϕε ∈ C∞(Ω) such that

ϕε
ε→0−→ ϕ in Hs,p(Ω),

∂ϕε
ε→0−→ ∂ϕ in Hs,p(Ω).

The smoothing is done componentwise, and for simplicity we will continue to denote the coefficient
functions of ϕ by ϕ. Take an open covering {Uν}Mν=0 of Ω such that

U0 ⊂⊂ Ω, bΩ ⊆
M⋃
ν=1

Uν , Uν ∩ Ω = Uν ∩ Φν({xN > ρν(x′)}), ν = 1, . . . ,M.

Here Φν , 1 ≤ ν ≤ M are some invertible affine linear transformations. Let χν be a partition of
unity associated with {Uν}∞ν=0, i.e. χν ∈ C∞c (Uν) and

∑M
ν=0 χν = 1.

Let B2n be the unit ball in Cn and B(0, r) be the ball centered at 0 with radius r. For each
1 ≤ ν ≤M , we can find an open cone Kν and some εν such that (Uν ∩ Ω) + (Kν ∩B(0, εν)) ⊆ Ω.

Take ψ0 ∈ C∞c (B2n) with ψ0 ≥ 0 and
∫
Cn ψ0 = 1. For 1 ≤ ν ≤ N , take ψν ∈ C∞c (−Kν) with

ψν ≥ 0 and
∫
Cn ψν = 1. Write ψν,ε(x) = ε−2nψν(xε ). For ε > 0 sufficiently small, we can define

(χ0ϕ) ∗ ψ0,ε(z) =

∫
BN

(χ0ϕ)(z − εζ)ψ0(ζ) dV (ζ), z ∈ U0,

(χνϕ) ∗ ψν,ε(z) =

∫
−K

(χνϕ)(z − εζ)ψν(ζ) dV (ζ), z ∈ Uν ∩ Ω, ν = 1, . . . ,M.

We now set ϕε :=
∑M

ν=0(χνϕ) ∗ ψεν ∈ C∞(Ω). Clearly ‖ϕε − ϕ‖Hs,p(Ω) → 0 since ‖(χνϕ) ∗ ψν,ε −
χνϕ‖Hs,p(Ω)

ε→0−→ 0 for each 0 ≤ ν ≤M . Meanwhile,

∂ϕε =

M∑
ν=0

ψεν ∗
(
ϕ∂χν + χν∂ϕ

)
.
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By assumption, both ϕ∂χν and χν∂ϕ are in Hs,p(Ω), so ψεν ∗
(
∂χνϕ+ χν∂ϕ

)
converges to χν∂ϕ+

∂χνϕ in Hs,p(Ω) as ε→ 0. Taking the sum over ν we see that ‖∂ϕε − ∂ϕ‖Hs,p(Ω) → 0.
Now (6.5) holds for ϕ replaced with ϕε. By Theorem 6.2,

‖∂Hq(ϕε − ϕ)‖
Hs− 1

2 ,p(Ω)
≤ ‖Hq(ϕε − ϕ)‖

Hs+ 1
2 ,p(Ω)

≤ ‖ϕε − ϕ‖Hs,p(Ω),

and also

‖Hq+1∂(ϕε − ϕ)‖
Hs+ 1

2 ,p(Ω)
≤ ‖∂(ϕε − ϕ)‖Hs,p(Ω).

Then (6.5) follows by taking ε→ 0.
Note that if ϕ ∈ Hs,p(Ω) is ∂-closed, then the distribution ∂ϕ(≡ 0) is in Hs,p(Ω). Therefore

(6.5) holds for this ϕ. In particular u = Hqϕ ∈ H
s+ 1

2
,p

(0,q−1) and ∂u = ϕ. �

First we prove a lemma which will be useful later.

Lemma 6.5. Let n ≥ 2, β ≥ 0, α > −1, and let 0 < δ < 1
2 . If α < β − 1

2 , then∫ 1

0

∫ 1

0

∫ 1

0

sα1 t
2n−3 ds1 ds2 dt

(δ + s1 + s2 + t2)2+β(δ + s1 + s2 + t)2n−3
≤ Cδα−β+ 1

2 .

Proof. Partition the domain of integration into seven regions:
R1 : t > t2 > δ, s1, s2. We have

I ≤
∫ 1

√
δ

t2n−3

t4+2βt2n−3

(∫ t2

0
sα1 ds1

)(∫ t2

0
ds2

)
dt ≤ C

∫ 1

√
δ
t2α−2β dt ≤ Cδα−β+ 1

2 .

R2 : t > δ > t2, s1, s2. We have

I ≤ δ−2−β

(∫ √δ
δ

t2n−3

t2n−3
dt

)(∫ δ

0
sα1 ds1

)(∫ δ

0
ds2

)
≤ Cδα−β+ 1

2 .

R3 : t > s1 > δ, t2, s2. We have

I ≤
∫ 1

δ

sα1

s2+β
1

(∫ √s1
0

t2n−3

t2n−3
dt

)(∫ s1

0
ds2

)
ds1 ≤ C

∫ 1

δ
s
α−β+ 1

2
−1

1 ds1 ≤ Cδα−β+ 1
2 .

R4 : t > s2 > δ, t2, s1. We have

I ≤
∫ 1

δ

1

s2+β
2

(∫ √s2
0

t2n−3

t2n−3
dt

)(∫ s2

0
sα1 ds1

)
ds2 ≤ C

∫ 1

δ
s
α−β+ 1

2
−1

2 ds2 ≤ Cδα−β+ 1
2 .

R5 : δ > t, t2, s1, s2. We have

I ≤ δ−2−βδ−(2n−3)

(∫ δ

0
t2n−3 dt

)(∫ δ

0
sα1 ds1

)(∫ δ

0
ds2

)
≤ Cδα−β+1.

R6 : s1 > δ, t, t2, s2. We have

I ≤
∫ 1

δ

sα1

s2+β
1 s2n−3

1

(∫ s1

0
t2n−3 dt

)(∫ s1

0
ds2

)
ds1 ≤ C

∫ 1

δ
sα−β1 ds1.

R7 : s2 > δ, t, t2, s1. We have

I ≤
∫ 1

δ

1

s2+β
2 s2n−3

2

(∫ s2

0
t2n−3 dt

)(∫ s2

0
sα1 ds1

)
ds2 ≤ C

∫ 1

δ
sα−β2 ds2.
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Here the constants depend only on n, α and β. For R6 and R7, we have∫ 1

δ
rα−βdr ≤


C, α− β > −1,

C(1 + | log δ|), α− β = −1,

Cδα−β+1, α− β < −1,

which is bounded by Cδα−β+ 1
2 in all cases. �

We now write the homotopy operator Hqϕ as

Hqϕ = H0
qϕ+H1

qϕ,(6.6)

where

H0
qϕ :=

∫
U
K0

0,q−1 ∧ Eϕ, H1
qϕ :=

∫
U\Ω

K01
0,q−1 ∧ [∂, E ]ϕ.

For the operator H0
q , we can gain one derivative for any ϕ ∈ Hs,p(Ω), s ≥ 0.

Proposition 6.6. Let 1 < p < ∞ and s ≥ 0. Suppose ϕ ∈ Hs,p
(0,q)(Ω) with q ≥ 1. Then H0

qϕ is in

Hs+1,p
(0,q−1)(U), and

‖H0
qϕ‖Hs+1,p(U) . ‖Eϕ‖Hs,p(U) . ‖ϕ‖Hs,p(Ω).

Proof. The proof for integers s can be found in [Shi21, Proposition 3.2]. The general case follows
from interpolation (see Propositions 2.14 and 2.15). �

Proposition 6.7. Let Ω ⊆ Cn be a bounded strictly pseudoconvex domain with C2 boundary, and
1 < p < ∞. For q ≥ 1, let H1

qϕ be given by (6.6), where the extension operator E is defined by

formula (3.3). Suppose ϕ ∈ Hs,p
(0,q)(Ω) for s > 1

p and m is a positive integer such that m−s− 1
2 > 0.

Then there exists some constant C = C(Ω, p) such that

‖δm−s−
1
2DmH1

qϕ‖Lp(Ω) < C‖ϕ‖Hs,p(Ω).

Proof. Note that in view of Remark 4.2 (iii), H1
qϕ is C∞ in the interior of Ω. To prove the statement

we will show that

(6.7) ‖δm−s−
1
2DmH1

qϕ‖Lp(Ω) ≤ C‖δ1−s[∂, E ]ϕ‖Lp(U\Ω).

Then by Theorem 4.1 the right-hand side above is bounded by ‖ϕ‖Hs,p(Ω). We now proceed with
the proof of (6.7), for which we will estimate

(6.8)

∫
Ω
δ(z)p(m−s−

1
2

)

∣∣∣∣∣Dm
z

∫
U\Ω

K01
0,q(z, ζ) ∧ [∂, E ]ϕ(ζ) dV (ζ)

∣∣∣∣∣
p

dV (z),

where in the definition of K01
0,q (see (6.2)) we set W to be a C1 Leray map. Writing Φ(z, ζ) =

W (z, ζ) · (ζ − z), the inner integral can be expanded to a linear combination of

Kf(z) =

∫
U\Ω

f(ζ)P (W1(z, ζ), z, ζ)
N1(ζ − z)

Φn−l(z, ζ)|ζ − z|2l
dV (ζ), 1 ≤ l ≤ n− 1.(6.9)

W1 = (W,∂ζW,∂
k0
z W ), k0 ≤ m.

Here f is a coefficient function of [∂, E ]ϕ. P (w) denotes a polynomial in w and w, and N1 denotes
a monomial of degree 1 in ζ − z and ζ − z. P may differ when recurs.

By the remark after Proposition 6.1, we can take a small neighborhood V of a fixed boundary
point ζ∗ ∈ bΩ. For z ∈ V, let φz : V → Cn be the coordinate transformation satisfying (6.3) and
(6.4). Using a partition of unity in ζ space and replacing f by χf for a C∞ cut-off function χ, we
may assume

suppζ f ⊆ V \ Ω.
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Similarly by a partition of unity in z space and replacing K01
0,q by χK01

0,q we may assume

suppz K
01
0,q(z, ζ) ⊆ V.

Write Ñ1−2l(z, ζ) = N1(ζ−z)
|ζ−z|2l . For z ∈ V ∩ Ω and ζ ∈ V \ Ω, we have

(6.10) |∂jzÑ1−2l(ζ − z)| . |ζ − z|1−2l−j ,

(6.11) |∂jzΦ−(n−l)(z, ζ)| . |Φ−(n−l)−j(z, ζ)|,

where we use the fact that W is holomorphic in z ∈ U . Write

Dm
z Kf(z) =

∫
U\Ω

Am(z, ζ)f(ζ) dV (ζ),

where Am(z, ζ) is a sum of terms of the form

(6.12) Am(z, ζ) =
P1(z, ζ)

Φn−l+µ1(z, ζ)
∂µ2
z Ñ1−2l(z, ζ), 1 ≤ l ≤ n− 1, µ1 + µ2 ≤ m.

Setting 1
p + 1

p′ = 1, we have

|Dm
z Kf(z)| ≤

∫
U\Ω
|Am(z, ζ)|

1
p |Am(z, ζ)|

1
p′ |f(ζ)| dV (ζ)

=

∫
U\Ω

[
δ(ζ)−η|δ(ζ)ηAm(z, ζ)|

1
p

] [
|f(ζ)|δ(ζ)η|Am(z, ζ)|

1
p′
]
dV (ζ),

where η is a number to be specified. By Hölder’s inequality, we get

(6.13) |Dm
z Kf(z)|p ≤

[∫
U\Ω

δ(ζ)−ηp+η|Am(z, ζ)||f(ζ)|p dV (ζ)

][∫
U\Ω

δ(ζ)η|Am(z, ζ)| dV (ζ)

] p
p′

.

By (6.4), we have C ′|ζ − z| ≥ |Φ(z, ζ)| ≥ C|ζ − z|2. In view of (6.10) and (6.11), it suffices to
estimate Am(z, ζ) for l = n− 1, µ1 = m and µ2 = 0. Thus from now on we can just assume

Am(z, ζ) =
P (W1, z, ζ)

Φm+1(z, ζ)
Ñ−(2n−3).

By estimate (6.3), we have for z ∈ V ∩ Ω and ζ ∈ V \ Ω,

(6.14) |Φ(z, ζ)| ≥ c(δ(z) + |s1|+ |s2|+ |t|2), |ζ − z| ≥ c(δ(z) + |s1|+ |s2|+ |t|),

where (s1, s2, t) =
(
φ1
z(ζ), φ2

z(ζ), φ′z(ζ)
)
, φ1

z(ζ) = ρ(ζ).

By (6.14) and integrating in polar coordinates t = (t1, . . . , t2n−2) ∈ R2n−2, we obtain

(6.15)

∫
U\Ω

δ(ζ)η|Am(z, ζ)| dV (ζ)

≤ C0

∫ 1

s1=0

∫ 1

s2=0

∫ 1

t=0

sη1t
2n−3 ds1 ds2 dt

(δ(z) + s1 + s2 + t2)2+(m−1)(δ(z) + s1 + s2 + t)2n−3

≤ C0δ(z)
η+ 1

2
−(m−1) = C0δ(z)

η−m+ 3
2 ,

where we apply Lemma 6.5 using α = η, β = m− 1 ≥ 0 and by choosing

(6.16) − 1 < η < β − 1

2
= m− 3

2
.
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Note that the constant C0 depends only on the domain Ω and the defining function ρ. Hence by
(6.13), (6.15) and the Fubini theorem we get

(6.17)

∫
Ω
δ(z)p(m−s−

1
2

)|Dm
z Kf(z)|p dV (z)

.
∫

Ω
δ(z)γ

(∫
U\Ω

δ(ζ)(1−p)η|Am(z, ζ)||f(ζ)|p dV (ζ)

)
dV (z)

.
∫
U\Ω

δ(ζ)(1−p)η
[∫

Ω
δ(z)γ |Am(z, ζ)| dV (z)

]
|f(ζ)|p dV (ζ),

where

(6.18) γ = p

(
m− s− 1

2

)
+

(
η −m+

3

2

)
p

p′
= m− 3

2
+ (1− s)p+ η(p− 1).

We now estimate the inner integral in the last line of (6.17). Recall that for each z ∈ V, we
define C1 coordinate transformation φz for ζ ∈ V:

φ1
z(ζ) = ρ(ζ), φ2

z(ζ) = Im(ρζ · (ζ − z)), φ′z(ζ) =
(
Re(ζ ′ − z′), Im(ζ ′ − z′)

)
.

Now for ζ ∈ V, we can similarly define a new coordinate φ̃ζ : V → Cn for z ∈ V:

φ̃1
ζ(z) = ρ(z), φ̃2

ζ(z) = Im(ρζ · (ζ − z)), φ̃′ζ(z) =
(
Re(ζ ′ − z′), Im(ζ ′ − z′)

)
.

Write (s̃1, s̃2, t̃) = (φ̃1
ζ(z), φ̃

2
ζ(z), φ̃

′
ζ(z)) where |φ̃1

ζ(z)| = |ρ(z)| ≈ δ(z). By (6.14) we have for z ∈ V∩Ω

and ζ ∈ V \ Ω,

|Φ(z, ζ)| ≥ c(δ(z) + φ1
z(ζ) + |φ2

z(ζ)|+ |φ′z(ζ)|2)(6.19)

≥ c(δ(ζ) + |φ̃1
ζ(z)|+ |φ̃2

ζ(z)|+ |φ̃′ζ(z)|2)

= c(δ(ζ) + |s̃1|+ |s̃2|+ |t̃|2),

and

(6.20) |ζ − z| ≥ c(|δ(ζ) + |s̃1|+ |s̃2|+ |t̃|)
Writing in polar coordinates t̃ = (t1, . . . , t2n−2) ∈ R2n−2, we have

∫
Ω
δ(z)γ |Am(z, ζ)| dV (z) ≤ C

∫ 1

s̃1=0

∫ 1

s̃2=0

∫ 1

t̃=0

s̃γ1 t̃
2n−3 ds̃1 ds̃2 dt̃

(δ(ζ) + s̃1 + s̃2 + t̃2)m+1 (δ(ζ) + s̃1 + s̃2 + t̃)2n−3
.

(6.21)

To apply Lemma 6.5 we take α = γ and β = m − 1, and we need −1 < γ < β − 1
2 = m − 3

2 . In
view of (6.18), this is the same as

−1 < m− 3

2
+ (1− s)p+ η(p− 1) < m− 3

2
,

which translates to

(6.22)
(s− 1)p

p− 1
−
m− 1

2

p− 1
< η <

(s− 1)p

p− 1
= (s− 1)p′.

Note that this is always possible by our assumption on m. Indeed, by (6.16) and (6.22) we need to
choose

(6.23) max

{
−1,

(s− 1)p

p− 1
−
m− 1

2

p− 1

}
< η < min

{
m− 3

2
,
(s− 1)p

p− 1

}
,

1

p
+

1

p′
= 1.

By assumption s > 1
p and m > s+ 1

2 , so the range of admissible η is non-empty.
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Now applying Lemma 6.5 to (6.21) we obtain

(6.24)

∫
Ω
δ(z)γ |Am(z, ζ)| dV (z) ≤ Cδ(ζ)γ+ 1

2
−(m−1) = Cδ(ζ)γ−m+ 3

2 ,

where the constant depends on Ω only.
Putting (6.24) in (6.17) we get[∫

Ω
δ(z)(m−s−

1
2)p|Dm

z Kf(z)|p dV (z)

] 1
p

.

[∫
U\Ω

δ(ζ)(1−p)ηδ(ζ)γ−m+ 3
2 |f(ζ)|p dV (ζ)

] 1
p

.

[∫
U\Ω

δ(ζ)(1−s)p|[∂, E ]ϕ(ζ)|p dV (ζ)

] 1
p

.

This proves (6.7) and thus the proposition. �

Next we extend the result of Proposition 6.7 to all lower order derivatives of u.

Proposition 6.8. Keeping the assumptions of Proposition 6.7, the following holds

‖DkH1
qϕ‖Lp(Ω, δ(z)m−s−

1
2 )
≤ C(Ω, p)‖ϕ‖Hs,p(Ω), 0 ≤ k ≤ m.

Proof. We need to estimate ∫
Ω
δ(z)p(m−s−

1
2

)
∣∣∣Dk

zKf
∣∣∣p dV (z),

where

Kf(z) =

∫
U\Ω

K01
0,q(z, ζ) ∧ [∂, E ]ϕ(ζ) dV (ζ), f = [∂, E ]ϕ.

As before we write

Dk
zKf(z) =

∫
U\Ω

Ak(z, ζ)f(ζ) dV (ζ),

and

(6.25) |Dk
zKf(z)|p ≤

[∫
U\Ω

δ(ζ)(1−p)α|Ak(z, ζ)||f(ζ)|p dV (ζ)

][∫
U\Ω

δ(ζ)α|Ak(z, ζ)| dV (ζ)

] p
p′

.

for some α to be chosen. Now Ak is a sum of the form (see (6.12))

Ak(z, ζ) =
P1(z, ζ)

Φn−l+µ1(z, ζ)
∂µ2
z

{
Ñ1−2l(ζ − z)

}
, 1 ≤ l ≤ n− 1, µ1 + µ2 ≤ k.

By the same reasoning as before, it suffices to estimate the term for l = n− 1, µ1 = k, namely we
have

|Ak(z, ζ)| . 1

|Φk+1(z, ζ)||ζ − z|2n−3
.

By a partition of unity in both z and ζ space, we can assume that suppz Ak(z, ζ) ⊆ V ∩ Ω and
suppζ f ⊆ V \ Ω, where V is some small neighborhood of a fixed point ζ0 ∈ bΩ.

Now as |Φ(z, ζ)| < C|z− ζ|, we can assume that |Φ(z, ζ)| < 1 for any z, ζ ∈ V . Hence for k ≤ m,

|Ak(z, ζ)| ≤ C

|Φm+1(z, ζ)||ζ − z|2n−3
, z, ζ ∈ V.

In view of (6.25), the rest of proof is identical to that of previous theorem. �

Together with the Hardy-Littlewood lemmas from Section 4, we can prove the gain of 1/2 deriv-
ative in Sobolev space for the operator H1

q .
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Proposition 6.9. Let Ω ⊆ Cn be a bounded strictly pseudoconvex domain with C2 boundary.
For q ≥ 1, let Hqϕ be given by (6.1), where the extension operator E is given by (3.3). Suppose

ϕ ∈ Hs,p
(0,q)(Ω) with s > 1

p , then H1
qϕ ∈ H

s+ 1
2
,p

(0,q−1)(Ω).

Proof. We divide into cases.
Case 1: s = 2k+1

2 , k ∈ Z+.

We have s+ 1
2 ∈ Z+ and also s > 1

p . Take m to be any integer greater than s+ 1
2 . By Propositions

6.8 and 5.2 we obtain

‖H1
qϕ‖W s+ 1

2 ,p(Ω)
.
∑
|γ|≤k

‖δm−s−
1
2DγH1

qϕ‖Lp(Ω) . ‖ϕ‖Hs,p(Ω).

Since ‖H1
qϕ‖W s+ 1

2 ,p(Ω)
= ‖H1

qϕ‖Hs+ 1
2 ,p(Ω)

for s+ 1
2 a positive integer, the result follows.

Case 2: s ∈
(

1
p ,

3
2

)
and s+ 1

2 ∈ [0, 1].

We apply Proposition 5.9 (i) and Proposition 6.8 for m = 1 to get

‖H1
qϕ‖Hs+ 1

2 ,p(Ω)
≤ ‖δ1−s− 1

2H1
qϕ‖Lp(Ω) + ‖δ1−s− 1

2DH1
qϕ‖Lp(Ω) ≤ C‖ϕ‖Hs,p(Ω).

Case 3: s ∈
(

1
p ,

3
2

)
and s+ 1

2 ∈ [1, 2].

We apply Proposition 5.9 (ii) and Proposition 6.8 for m = 2 to get

‖H1
qϕ‖Hs+ 1

2 ,p(Ω)
≤ C‖H1

qϕ‖Lp(Ω) + ‖δ2−s− 1
2DH1

qϕ‖Lp(Ω) + ‖δ2−s− 1
2D2H1

qϕ‖Lp(Ω)

≤ C‖ϕ‖Hs,p(Ω).

Finally the remaining cases can be done by interpolation. �

By combining Proposition 6.6 and Proposition 6.9 we obtain Theorem 6.2.

7. Λr estimate for r > 0

Let r > 0 and let Ω ⊆ Cn be a bounded Lipschitz domain. We recall from Definition 2.3 that
Λr(Ω) is the space of Hölder-Zygmund functions of order r up to the boundary.

We first recall the interpolation result of Hölder-Zygmund spaces.

Proposition 7.1 (Complex interpolation of Λr-spaces). Let r0, r1 > 0 and let Ω ⊂ Cn be a bounded
Lipschitz domain. For 0 < θ < 1, let rθ = (1− θ)r0 + θr1. Then [Λr0(Ω),Λr1(Ω)]θ = Λrθ(Ω).

The proof is a combination of [BL76, Theorem 6.4.5(6)] and [Tri06, Theorems 1.110 and 1.122].

In [Gon19], Gong constructed a solution operator Sqϕ to ∂u = ϕ which maps any (0, q) form

ϕ ∈ Λr(Ω) to a (0, q − 1) form in Λr+
1
2 (Ω) for all r > 1. We now extend this result to all r > 0.

First let us recall the classical Hardy-Littlewood lemma for Hölder continuous functions.

Lemma 7.2. Let Ω be a bounded Lipschitz domain in RN and let δ(x) denote the distance function
from x to the boundary of Ω. If u is a C1 function in Ω and there exists an 0 < α < 1 and C > 0
such that

|Du(x)| ≤ Cδ(x)−1+α for every x ∈ Ω,

then u ∈ Λα(Ω).

The reader can refer to [CS01, p. 345] for a proof.

Theorem 7.3. Let Ω ⊆ Cn be a bounded strictly pseudoconvex domain with C2 boundary. Let
1 ≤ q ≤ n and let Hq be given by formula (6.1), where the extension operator E is defined by

formula (3.3). Then for any r > 0, Hq is a bounded linear operator Hq : Λr(0,q)(Ω)→ Λ
r+ 1

2

(0,q−1)(Ω).
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Proof. For ϕ ∈ Λr(Ω) with r > 1, see [Gon19], where the homotopy operator is defined by formula
(6.1) in the classical sense. We note that Gong used a different extension operator than ours, but
in the case r > 1 the proofs work the same since the only property of the extension operator used
in his proof is the fact [D, E ] : Λr(Ω)→ Λr−1(Ω) for r > 1, which obviously holds for our extension
operator as well by Proposition 3.7 (ii).

By interpolation we only need to prove for 0 < r < 1
2 . In view of Lemma 7.2, it suffices to show

that
sup
z∈Ω

δ(z)1−(r+ 1
2

)
∣∣DH1

qϕ(z)
∣∣ ≤ C‖ϕ‖Λr(Ω).

We have

δ(z)1−(r+ 1
2

)|DH1
qϕ(z)| = δ(z)

1
2
−r

∣∣∣∣∣
∫
U\Ω

DzK
01
0,q(z, ζ) ∧ [∂, E ]ϕ(ζ) dV (ζ)

∣∣∣∣∣ .
Write A1(z, ζ) = DzK

01
0,q(z, ζ) and f = [∂, E ]ϕ. By Lemma 5.8, we get ‖δ1−rf‖L∞(U\Ω) ≤ ‖ϕ‖Λr(Ω),

so

δ(z)1−(r+ 1
2

)|DH1
qϕ(z)| = δ(z)

1
2
−r
∫
U\Ω
|A1(z, ζ)||f(ζ)| dV (ζ)

= δ(z)
1
2
−r
∫
U\Ω

δ(ζ)r−1|A1(z, ζ)|δ(ζ)1−r|f(ζ)| dV (ζ)

≤ δ(z)
1
2
−r

(∫
U\Ω

δ(ζ)r−1|A1(z, ζ)| dV (ζ)

)
‖ϕ‖Λr(Ω)

≤ C‖ϕ‖Λr(Ω),

where in the last inequality we apply Lemma 6.5 for α = r − 1 and β = 0 (which is possible since
0 < r < 1

2 and −1 < α < β + 1
2) to get∫

U\Ω
δ(ζ)r−1|A1(z, ζ)| dV (ζ) ≤ C

∫ 1

s1=0

∫ 1

s2=0

∫ 1

t=0

sr−1
1 t2n−3 ds1 ds2 dt

(δ(z) + s1 + s2 + t2)2(δ(z) + s1 + s2 + t)2n−3

≤ Cδ(z)r−
1
2 .

This completes the proof. �

Appendix A. An equivalent norm property

Proposition A.1. Let Ω ⊆ RN be a bounded C2-domain and let 1 < p <∞.

(i) For 0 < s < 2, Hs,p(Ω) has equivalent norm

‖f‖Hs,p(Ω) ≈ ‖f‖Hs−1,p(Ω) + ‖Df‖Hs−1,p(Ω).

(ii) For 1 < s < 2, Hs,p(Ω) has equivalent norm

‖f‖Hs,p(Ω) ≈ ‖f‖Hs−2,p(Ω) + ‖Df‖Hs−2,p(Ω) + ‖D2f‖Hs−2,p(Ω).

Note that the above results are known for C∞-domain (see [Tri83, Theorem 3.3.5(ii)]), and we
shall adopt similar method here.

To prove Proposition A.1 we first need a lemma.

Lemma A.2. Let Φ : RN → RN be a C2-diffeomorphism such that DΦ and DΦ−1 both have
bounded C1 norms. Then

(i) f̃ 7→ f̃DΦ defines a bounded linear map Hs,p(RN ) → Hs,p(RN ) for all 1 < p < ∞ and
−1 ≤ s ≤ 1.

(ii) f̃ 7→ f̃ ◦ Φ defines a bounded linear map Hs,p(RN ) → Hs,p(RN ) for all 1 < p < ∞ and
−1 ≤ s ≤ 2.
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See also [Tri92, Theorem 4.3.2] for (ii). Note that in the reference the result is only proved for
the range N(1

p − 1) < s < 2, which is not enough for us if 1
p − 1 < − 1

N .

Proof. Clearly the map [f̃ 7→ f̃DΦ] : W 1,p(RN ) → W 1,p(RN ) is bounded linear, and [f̃ 7→ f̃DΦ] :

W 1,p′(RN )→W 1,p′(RN ) is also bounded linear.

Since the product operator is self-adjoint and H−1,p(RN ) = W 1,p′(RN )′(Proposition 2.12), the

map [f̃ 7→ f̃DΦ] : H−1,p(RN )→ H−1,p(RN ) is also bounded linear.

By using interpolation (Proposition 2.14 and Proposition 2.15) , we get [f̃ 7→ f̃DΦ] : Hs,p(RN )→
Hs,p(RN ) for all −1 ≤ s ≤ 1. This finishes the proof of (i).

For (ii), clearly [f̃ 7→ f̃ ◦ Φ] : W k,p(RN ) → W k,p(RN ) are bounded linear for k = 0, 1, 2 since
DΦ, D2Φ are bounded. Since W k,p = Hk,p we have the boundedness for s = 0, 1, 2.

Using change of variables, the adjoint map of f̃ 7→ f̃ ◦ Φ is g̃ 7→ | detDΦ−1| · (g̃ ◦ Φ−1). Clearly

[g̃ 7→ g̃ ◦ Φ−1] : W 1,p′(RN ) → W 1,p′(RN ) is bounded linear. Since detDΦ−1 is bounded C1 and
non-vanishing everywhere, we have |detDΦ−1| ∈ C1(RN ). Therefore the map [g̃ 7→ | detDΦ−1| ·
(g̃ ◦ Φ−1)] : W 1,p′(RN )→W 1,p′(RN ) is bounded linear.

Since H−1,p(RN ) = W 1,p′(RN )′, taking the adjoint back we get the boundedness [f̃ 7→ f̃ ◦
Φ] : H−1,p(RN ) → H−1,p(RN ), which proves the case s = −1. Finally by interpolation, we get

[f̃ 7→ f̃ ◦ Φ] : Hs,p(RN )→ Hs,p(RN ) for all −1 ≤ s ≤ 2. �

Proof of Proposition A.1. Recall the definition ‖f‖Hs,p(Ω) = min
f̃ |Ω=f

‖f̃‖Hs,p(RN ). The “&”-part

follows from the equivalent norm in RN (see [Tri83, Theorem 2.3.8(ii)]) and the fact that if f̃ ∈
Hs,p(RN ) extends f ∈ Hs,p(Ω) then Dαf̃ ∈ Hs−1,p(RN ) extends Dαf . Also see the proof of [Tri83,
Theorem 3.3.5(ii)].

We now prove the “.”-part. It suffices to prove (i), since (ii) follows by applying (i) twice.
By [Tri83, Theorem 3.3.5(ii)], the result holds on the half space RN+ = {xN > 0}, namely, for

every r ∈ R and 1 < p <∞, the relation

‖g‖Hr,p(RN+ ) ≈r,p ‖g‖Hr−1,p(RN+ ) + ‖Dg‖Hr−1,p(RN+ ),(A.1)

holds for all g ∈ Hr,p(RN+ ) supported in BN ∩ RN+ . Here BN is the unit ball in RN .
By partition of unity, we can find the following:

• Open sets (Uν)Mν=1 such that bΩ ⊆
⋃M
ν=1 Uν .

• Functions χ0 ∈ C∞c (Ω), χν ∈ C∞c (Uν) for 1 ≤ ν ≤M such that
∑M

ν=0 χν |Ω ≡ 1.
• C2-maps Φν : RN → RN for 1 ≤ ν ≤ M such that Φν(BN ) = Uν , Φν(BN ∩ RN+ ) = Uν ∩ Ω

and DΦν , DΦ−1
ν have bounded C1 norm.

Therefore by Lemma A.2 (ii),

‖f‖Hs,p(Ω) ≤
M∑
ν=0

‖χνf‖Hs,p(Ω) . ‖χ0f‖Hs,p(RN ) +
M∑
ν=1

‖(χνf) ◦ Φν‖Hs,p(RN+ ).

By [Tri83, Theorem 2.3.8(ii)] we have

‖χ0f‖Hs,p(RN ) ≈ ‖χ0f‖Hs−1,p(RN ) + ‖D(χ0f)‖Hs−1,p(RN )

≤ ‖χ0f‖Hs−1,p(RN ) + ‖fDχ0‖Hs−1,p(RN ) + ‖χ0Df‖Hs−1,p(RN )

. ‖f‖Hs−1,p(Ω) + ‖Df‖Hs−1,p(Ω).
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For 1 ≤ ν ≤M , we apply Lemma A.2 with −1 ≤ s− 1 ≤ 1,

‖(χνf) ◦ Φν‖Hs,p(RN+ ) . ‖(χνf) ◦ Φν‖Hs−1,p(RN+ ) + ‖D((χνf) ◦ Φν)‖Hs−1,p(RN+ )

. ‖(χνf) ◦ Φν‖Hs−1,p(BN∩RN+ ) + ‖((D(χνf)) ◦ Φν) ·DΦν‖Hs−1,p(RN+ )

. ‖(χνf) ◦ Φν‖Hs−1,p(BN∩RN+ ) + ‖(D(χνf) ◦ Φν‖Hs−1,p(RN+ )

. ‖χνf‖Hs−1,p(Ω) + ‖D(χνf)‖Hs−1,p(Ω) . ‖f‖Hs−1,p(Ω) + ‖Df‖Hs−1,p(Ω).

By taking sum over 0 ≤ ν ≤M we complete the proof. �
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1992. MR 1163193

[Tri95] , Interpolation theory, function spaces, differential operators, second ed., Johann Ambrosius Barth,
Heidelberg, 1995. MR 1328645

[Tri02] , Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as
pointwise multipliers, Rev. Mat. Complut. 15 (2002), no. 2, 475–524. MR 1951822

[Tri06] , Theory of function spaces. III, Monographs in Mathematics, vol. 100, Birkhäuser Verlag, Basel,
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