RATIONALITY OF REPRESENTATION ZETA FUNCTIONS
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ABSTRACT. We prove that for any FAb compact p-adic analytic group
G, its representation zeta function is a finite sum of terms n; ° f;(p™?),
where n; are natural numbers and f;(t) € Q(¢) are rational functions.
Meromorphic continuation and rationality of the abscissa of the zeta
function follow as corollaries. If G is moreover a pro-p group, we prove

that its representation zeta function is rational in p~°. These results

were proved by Jaikin-Zapirain for p > 2 or for G uniform and pro-2,
respectively. We give a new proof which avoids the Kirillov orbit method
and works for all p.

1. INTRODUCTION

A group G is called representation rigid if the number r,(G) of iso-
morphism classes of (continuous, if G is topological) complex irreducible
n-dimensional representations of G is finite, for each n. If G is finitely
generated profinite and FAb (i.e., H/[H, H] is finite for every finite index
subgroup H of G), then G is representation rigid (see [5, Proposition 2]).
For any representation rigid group G we have the formal Dirichlet series

Za(s) = Y (G = 3 p()
n=1

pelrr(G)

where Irr(G) denotes the set of irreducible characters of G. If the sequence
Rn(G) = Zf\il ri(G) grows at most polynomially, Z;(s) defines a holo-
morphic function {g(s) on some right half-plane of C, which is called the
representation zeta function of G.

Suppose that G is a FAb compact p-adic analytic group. In this case,
as we will see, the representation zeta function is defined and extends to a
meromorphic function on C. It is not true in general that ((s) is a rational
function in p~#%, but this is not too far from the truth. Any formal Dirichlet
series with coefficients in Z is an element of the ring Z[p; *, p; °, .. .]], where

P1,P2, ... are the primes in N, via >~ a,n™% — > app; *'py °? -+, where
p'ps? - -+ is the prime factorisation of n. We say that a Dirichlet series
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(with integer coefficients) is wvirtually rational in p—* if, as an element of
Zpy®,py°, .. .], it is of the form

k
(11) >0 i),

for some natural numbers k and n; and rational functions f;(t) € Q(¢).

If Zg(s) defines a zeta function (g(s), we say that (g(s) is virtually
rational in p~% if Zg(s) is, or equivalently, if (5(s) is of the form (1.1), for
all s in some right half-plane of C. In [16], Jaikin-Zapirain proved one of the
first and most fundamental results on representation zeta functions, namely,
that when p > 2 the zeta function (g(s) is virtually rational in p~° and if
G is pro-p, then (¢(s) is rational in p~5. Moreover, he conjectured that the
results hold also for p = 2, and proved this in the special case when G is
uniform pro-2. Recall that a pro-p group is called uniform (or uniformly
powerful) if it is finitely generated, torsion free and [G,G] < GP if p > 2
and [G,G] < G* if p = 2. These results may be compared with analogous
(virtual) rationality results proved earlier by du Sautoy for subgroup zeta
functions (see [11]). Both Jaikin-Zapirain and du Sautoy rely on a rationality
result for definable integrals, due to Denef and van den Dries [8]. We will
instead use a result of Cluckers (see Section 2.3), which differs from that
used by Jaikin-Zapirain and du Sautoy insofar as it, in addition to definable
sets, also allows the use of a definable family of equivalence relations.

In [2], Avni used Jaikin-Zapirain’s virtual rationality theorem as an in-
gredient to prove that the abscissa of convergence of representation zeta
functions of certain arithmetic groups is rational. Jaikin-Zapirain’s result
has also been fundamental for (albeit not always a logical prerequisite of)
work of Larsen and Lubotzky [21], Aizenbud and Avni [1], of Avni, Klop-
sch, Onn and Voll, e.g., [3, 4], of Budur [6], of Kionke and Klopsch [19], and
Zordan [27, 28].

1.1. Main result and consequences. The goal of the present paper is to
give a uniform proof of the (virtual) rationality of (g(s) for G FAb com-
pact p-adic analytic and in particular to prove Jaikin-Zapirain’s conjecture
mentioned above. Our main result is:

Theorem 1.1. Let G be a FAb compact p-adic analytic group. Then (g (s)
is virtually rational in p=°. If in addition G is pro-p, then (g(s) is rational
m p .

This theorem has the following consequences.

Corollary 1.2. Let G be a FAb compact p-adic analytic group. Then the
following holds regarding (g (s):

i) it extends meromorphically to the whole complex plane,
i1) it has an abscissa of convergence which is a rational number,
i11) it has no poles at negative integers and (z(—2) = 0.
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Here i) and 4ii) were previously known consequences of Jaikin-Zapirain’s
results when p # 2 or G is uniform pro-2, while i) follows from Jaikin-
Zapirain’s results for all p, since for p = 2 the abscissa of GG is the same as for
any finite index uniform pro-2 subgroup. In general, i) follows immediately
from Theorem 1.1, because any virtually rational function in p~* is clearly
meromorphic in all of C. Statement i) follows from the model theoretic
rationality result we use (Theorem 2.7), which implies that each rational
function appearing in the expression for (z(s) has denominator that is a
product of factors of the form 1—p'~%J for integers i, j with j > 0. Moreover,
the series Zg(s) diverges at s = 0 (since G is an infinite profinite group,
hence possesses infinitely many non-equivalent irreducible representations).
Thus the abscissa of (¢(s) is finite and equals i/, for some 4, j as above (note
that it does not necessarily equal max{i/j}, because some denominators may
cancel). Part iii) of Corollary 1.2 was proved in [12, Theorem 1] for all G
for which virtual rationality of (s(s) holds. Theorem 1.1 therefore implies
that it holds for all p.

1.2. Outline of the paper and the proofs. In Section 2 we give the

basic definitions and results from model theory that we will use in this

paper. Similarly, Section 3 provides the definitions and results from the

theory of projective representations and projective characters, as well as

related Clifford theory and group cohomology, that we need in later parts of

the paper. The remaining sections are devoted to proving our main result.
Our proof of Theorem 1.1 has the following main features:

— anew argument (i.e., different from the one in [16, Section 5]) for the
main part of the proof, namely the rationality of the ‘partial’ zeta se-
ries (see below), making systematic use of projective representations
and associated cohomology classes;

— avoiding the use of Lie algebras and the Kirillov orbit method (which
were essential in [16, Section 5]). This is necessary if one hopes to
find an analogous proof for F[t]-analytic groups (see Section 1.3).

We now describe the main ideas of the proof in more detail, and point out
how it relates to and differs from Jaikin-Zapirain’s proof for p > 2 and the
approach in [14]. The first step is to reduce the (virtual) rationality of (g (s)
to the rationality in p~* of the partial zeta series

Zix(s)= Y 07"

0€lrrf (N)

where N a fixed open normal uniform subgroup of GG, K is a subgroup of
G containing N, and Irr% (N) denotes the set of irreducible characters of
N with stabiliser K which determine the cohomology class ¢ in the Schur
multiplier H?(K,/N), where K, is a pro-p Sylow subgroup of K. This
reduction step follows [16, Sections 5-6] and uses Clifford theory, together
with a result which shows that we can replace H?(K/N) by H?(K,/N) (see
Section 4).
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In Sections 5-6 we prove the rationality of the partial zeta series and
hence Theorem 1.1. To do this, we show that enumerating characters in
Irr% (N) of given degrees is equivalent to enumerating the classes of a family
of equivalence relations that is definable with respect to an analytic language
Lan of p-adic numbers (see Section 2.2). The rationality then follows from
a result of Cluckers (see Theorem 2.7). The possibility of using a definable
equivalence relation, as in [14], gives an added flexibility not present in the
definability results in [16]. We note that in contrast to [14], which works with
an extended language of rings, we need a p-adic analytic language because
of the analytic structure of G and du Sautoy’s parametrisation of subgroups
via bases, which is one of our key ingredients.

We now describe the contents of Sections 5-6 in more detail. In Section 5,
we use some of the theory of projective representations to show that the
cohomology class in H?(K,,/N) associated with a character triple (K,, N, 6),
for K, a pro-p Sylow subgroup of K, can be obtained from a character
triple (N, N N H,x), where H is an open subgroup of G such that K, =
HN, and x is of degree one (see Proposition 5.2). This is a key step,
because, just like in [14], we can only talk about degree one characters in
definability statements. We also introduce a set X of pairs (H, x), which,
modulo a suitable equivalence relation, parametrises the elements in Irr(NV)
whose stabiliser is K, and a function C : Xx — H?*(K,,/N) whose fibres
parametrise the sets Irr% (N), modulo the relation. We then show that
these fibres are expressible by a first order formula involving the values of x,
2-cocycles and 2-coboundaries (see Lemma 6.5). The approach in Section 5
is new, compared to [16], and avoids Lie algebra methods by exploiting the
monomiality, for projective representations, of K.

In Section 6 we use the results of Section 5 to prove that the fibres of C and
the required equivalence relation are definable in the structure M, of p-adic
numbers, with respect to the language £.,. Among other things, we exploit
the known fact about Schur multipliers that every element in H?(K,/N) has
a cocycle representative of p-power order and that we can also choose our
coboundaries to have p-power order. This implies that we can consider our
cocycles and coboundaries as functions with values in Q,/Z,, and hence ulti-
mately as elements of definable sets. Once the definability of the fibres of C,
modulo the equivalence relation, is established, an application of Cluckers’s
rationality result mentioned above finishes the proof of Theorem 1.1.

In the proof of the definability of the fibres of C and the equivalence re-
lation, we adapt some ideas in [14] to the setting of p-adic analytic pro-p
groups. The main idea here is that the irreducible characters of N are in-
duced from degree one characters of finite index subgroups, and thus that
Irr(N) can be parametrised (in a many-to-one way) by certain pairs (H, x)
where H < N and x € Irr(H). Modulo a suitable definable equivalence re-
lation, the parametrisation is bijective and this approach is the reason why
the Kirillov orbit method can be avoided. The main new contribution in
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Section 6 compared to [14], is the definability of the condition for a repre-
sentation corresponding to a pair (H,x) to map to a given ¢ € H(K,,/N)
under C (note that all of Section 5 is needed for this purpose).

1.3. Remarks on the positive characteristic case. It is a natural ques-
tion to ask whether FAD finitely generated compact I, [t]-analytic groups
have virtually rational representation zeta functions. This is known for
SLy(F,[[t]) with ¢ a power of an odd prime (see [16, Theorem 7.5]) and
was asked more generally by Larsen and Lubotzky for groups which are
[, [t]-points of certain group schemes (see [21, Problem 6.2]).

Our proof of Theorem 1.1 is a first step towards a solution to this problem,
as it avoids the Kirillov orbit method (which is unavailable in characteristic
p) and Lie algebras (which are often less effective or inadequate in character-
istic p). Moreover, the model theoretic rationality result of Cluckers which
we use has a version for uniformly definable equivalence classes over local
fields of characteristic p, for large enough p (see Nguyen [24]). On the other
hand, an essential ingredient in our proof of Theorem 1.1 is du Sautoy’s
parametrisation of finite index subgroups of GG, which only works in char-
acteristic 0. To go further, one will have to narrow down the set of those
subgroups of a pro-p group from which all irreducible characters can be
obtained by induction of linear characters.

2. BASICS FROM MODEL THEORY

In this section we introduce the necessary tools and notation from model
theory. We refer the interested reader to the first chapters of [22] and [26] for
further details. In particular, we refer to [26, Section 1.1] for the concepts
of (many-sorted) languages, structures, and definability (with or without
parameters). By convention, for us a definable set will always mean an
()-definable set (which is also called 0-definable set in [26, Section 1.1]).

In the present paper we will use languages that model the field Q, and
p-adic analytic groups. Preceding authors have used a number of languages
for these two objects; we review and compare those that are relevant for us.

2.1. The language of p-adic analytic groups. Let Ny denote the set of
non-negative integers. It will often be necessary for us to show definability
in structures whose underlying set is a pro-p group. In these situations, fol-
lowing [11], we will use a language whose constants, functions and relations
closely resemble the those in a normal pro-p subgroup N inside a p-adic ana-
lytic group G. The following definition is our version of [11, Definition 1.13].

Definition 2.1. Let N be a normal pro-p subgroup of a p-adic analytic
group G. The language Ly has two sorts s; (also called the group sort)
and sg, constant symbols in the sort s; for each element of N, and a binary
relation symbol z | y of sort (s1, s1). We have the following function symbols,
which all have target sort s;:

i) a binary function symbol z.y of source type (s1, $1);
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ii) a unary function symbol 27! of source type s1;
i) a binary function symbol 2} of source type (s1,s2);
iv) for each, g € G, a unary function symbol ¢, of source type s;.

We define an Ly-structure My with underlying set N for the first sort
and Z, for the second sort. The interpretation of the symbols in Ly as
operations in the group N is immediately suggested by the notation, with
the exception of « | y and the functions ¢4. The latter is interpreted as the
conjugation function N — N, z + gzg~'. In order to interpret = | y we
will use that N is a pro-p group. Recall that the lower p-series of a pro-p
group H is defined as H; > Hy > - -+, where

Hy=H, and H, = H'[H;, H],

where H?[H;, H| denotes the closure of H'[H;, H] as a topological subgroup
of H. We interpret x | y as the relation w(x) > w(y), where w is as follows.

Definition 2.2 ([11, Definition 1.12]). Define w : N — NU{oo} by w(g) =n
if g € Np \ Npt1 and w(l) = oo.

2.2. The analytic language of the p-adic numbers. We recall the def-
inition of the language used in [14, Appendix A].

Definition 2.3. The language L,, is a three-sorted language with a valued
field sort VF, a value group sort VG and a residue field sort RF. We have
all constants, functions and relations of Lying = {+, —, -, 0,1} for the valued
field and the residue field sort, and all constants, functions and relations of
Loag = {+, <, 0} for the value group sort. In addition, Ly, contains

i) for m > 0, a function symbol f with source type VF"* and target sort
VF for each convergent power series in m variables with coefficients
in Zy;

i1) a function symbol ord with source type VF and target sort VG;
ii1) a function symbol ac with source type VF and target sort RF.

We define an Lay-structure My, with underlying sets Q, for the valued
field sort, Z U {—oo} for the value group, and F,, (the field with p elements)
for the residue field sort. The constants, functions and relations of L.,z and
Loag are interpreted in the usual way. The functions f are interpreted as
restricted analytic functions defined by the power series they correspond to:

Sieng Xy Xir X € Z)

M m
an — Qyp, X+—
/ Qp 2 { 0 otherwise.

The function symbol ord is interpreted as the valuation map on Q, (the
valuation of 0 is —o00). Finally the function symbol ac is interpreted as
acMan . Qp — F,, sending 0 to 0 and z to

_OrdMan ((E)

Tp mod p.
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We show that there is a set of rules thorough which definable sets in My
may be interpreted as definable sets in M,,. We shall need the concept of
definable interpretation, for which we refer the reader to [13, Section 5.3].

Let N be a uniform pro-p group and let ni,...,nqy be a minimal set
of topological generators for N. By [9, Proposition 3.7], N is in bijection

with Zg via the map (A1,...,\g) — ni\l---ngd. If ¢ € N is such that

g = ni\l--m;‘d for some Ai,...,A\q € Z, we say that (A1,...,\g) are its
Zy-coordinates (with respect to ny,...,ng).

Lemma 2.4. Suppose that N is a uniform normal pro-p group of a compact
p-adic analytic group G. Then My is definably interpreted in May,.

Proof. Let LL be the analytic language in [11, Definition 1.6], [8, Sec-
tion 0.6] and let MZ be the corresponding structure with underlying set Ly,
and the interpretations in [11, Definition 1.5]. Theorem 1.18 and Lemma 1.19
in [11] give the definable interpretation of My in ML . It is easy to con-
strue the function symbol D of Eaﬁ as a definable function in Mj,, so that
the structure ML is definably interpreted in My,. O

2.3. Rationality and definable enumerations in M,,. The following
definition is taken from [14] (Section 6, before Theorem 6.1).

Definition 2.5. Let d € N. A definable family of subsets of Qg is a definable

subset of Qg XZin Mg, If X C Qg X 7 is a definable family, we define X,
to be the fibre above ¢ € Z of the projection map X — Z.

Definition 2.6. A definable family of equivalence relations on a definable
family X is an equivalence relation E on X such that if (x,y) € E, then
there is an ¢ € Z such that x,y € X,. This gives a definable equivalence
relation on X, for each ¢ € Z, namely Ey = E N (X, x Xy).

Notice that, since Ny is a definable subset of Z in M,,, we may replace
Z with Ny in the two definitions above.

Theorem 2.7 ([14, Theorem A.2]). Let d € N. Let E be a definable family
of equivalence relations in Man on a definable family X C Qg x No. Suppose
that for each n € Ny the quotient X,,/E, is finite, say, of size a,. Then the
Poincaré series

Z ant”

neNp
is a rational power series in t over Q whose denominator is a product of
factors of the form (1 — p't?) for some integers i,j with j > 0.

Proof. The proof is the same as the one at the end of Appendix A in [14].
The only difference is that instead of setting Y to be the set of non-negative
integers, we set Y = {n € Ny | X,, # 0}. This set is definable in M,,
because it is the projection of X on the Z-component of Qg X Z. Thus Y is
definable because X is. The rest of the proof remains unchanged. O
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3. PRELIMINARIES ON PROJECTIVE REPRESENTATIONS

The main representation theoretic steps of our proof (Section 5) will use
projective representations and projective characters of (pro-)finite groups.
In this section, we collect the definitions and results that we will need. We
use [15], [17] and [18] as sources for this theory (precise references for the
non-trivial results are given below).

In the following, we regard any GL,(C) with its discrete topology. All
the definitions and results in this section apply to finite groups, regarded as
discrete profinite groups. In fact, the results are trivial generalisations from
the finite groups case because we consider only continuous representations
and finite index subgroups. We will however need to apply the results to
infinite profinite groups.

From now on, we will consider only continuous representations and their
characters. Let G be a profinite group and N an open normal subgroup. We
define Irr(G) to be the set of characters of continuous irreducible complex
representations of G. For any subgroup K < G and 6 € Irr(K), we denote
by Irr(G | 0) the set of irreducible characters of G whose restriction to K
contains 6. The elements of Irr(G | 0) are said to lie above or to contain 6.

For any K < G, we write

Irrg (N) = {6 € Irr(NV) | Stabg(0) = K}

for the irreducible characters of N whose stabiliser under the conjugation
action of G is precisely K.

We call (K, N, 0) a character triple if 6 € Irr(N) and K fixes 6, that is, if
K < Stabg(#). Thus Irrg(N) is the set of character triples (G, N, 0).

A projective representation of G is a continuous function p : G — GL,(C),
such that there exists a continuous function a : G x G — C* satisfying

p(g)p(h) = p(gh)a(g,h)  forall g,h € G.

The function « is called the factor set of p. The projective character of p is
the function G — C given by g — tr(p(g)).

Just like for finite groups, one shows that the factor sets on G x G are
precisely the elements in the group Z?(G) := Z?(G,C*) of continuous 2-
cocycles with values in C* (see [15, (11.6)]). Moreover, we have the subgroup
B2%(G) := B2(G, CX) of 2-coboundaries and the cohomology group H?(G) =
72(Q)/B%(G), the Schur multiplier of G. It is well known that the Schur
multiplier of a finite group is finite (see [15, (11.15)]).

Two projective representations p and o are said to be similar if there
exists a T € GL,(C) such that p(g) = To(g)T™", for all ¢ € G. Two
projective representations have the same projective character if and only if
they are similar. Note that there exists a notion of equivalent projective
representations which we will not use.

Projective representations with factor set « naturally correspond to mod-
ules for the twisted group algebra C[G]|* (see, e.g., [15, Section 11]). It
is well known that this algebra is semisimple. A projective representation
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© with factor set o and the character it affords are called irreducible if ©
corresponds to a simple C[G]*-module. We let

Phrry (G)
denote the set of irreducible projective characters of G with factor set a.

Definition 3.1. Let © be an irreducible representation of N fixed by K <
G. We say that a projective representation II of K strongly extends (or is a
strong extension of) © if for all g € K and n € N, we have:
i) (n) = O(n),

it) I(ng) = II(n)II(g),

iti) (gn) = I1(g)I(n).
Moreover, in this situation, we say that the projective character of II strongly
extends (or is a strong extension of) the character of ©.

Lemma 3.2. Let © be an irreducible representation of N fixed by K < G
and let II be a projective representation of G with factor set o such that
II(n) = ©(n), for alln € N. Then II strongly extends © if and only if
a(g,n) =a(n,g) =1, forallg € G andn € N.

Proof. The definition of factor set gives that
I(ng)a(n, g) = (n)Il(g),

so II(ng) = II(n)Il(g) is equivalent to a(n,g) = 1. Similarly II(gn)
I1(g)II(n) is equivalent to a(g,n) = 1.

O

Theorem 3.3. Let © be an irreducible representation of N fixed by K < G.
There exists a projective representation 11 of K which strongly extends ©.
Let & be the factor set of II. Then & is constant on cosets in K/N, so we
have a well-defined element o € Z*(K/N) given by

a(gN,hN) = &(g; h).
Moreover, we have a well-defined function
Cr : {0 € rr(N) | K < Stabg()} — H2(K/N), Ck(0) = [a].

Proof. Since N is open in K and every representation of NV factors through
a finite quotient, we can reduce to the case of finite groups. Now, the
statements are contained in (the proofs of) [15, (11.2) and (11.7)]. O

Lemma 3.4. Let 0 be an irreducible character of N fized by K < G, let
a € Z2(K/N) be a representative of the cohomology class Cx(0) and let &
be the pull-back given by &(g,h) = a(gN,hN), for g,h € K. Assume that
a is trivial on N x N (i.e, not merely constant but equal to 1). Then there
exists a strong extension of 0 to K with factor set &.

Proof. Let 0 be a strong extension of 6. Let B be the factor set of § and
B € Z*(K/N) such that 8(gN,hN) = ((g,h). By Theorem 3.3, there is a
§ € B2(K/N) such that a = $§. Pulling back to K, we get & = 30, where
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S(g, h) = 6(gN,hN) for g,h € K. Since é is a coboundary, there isa 4 : K —
C*, that is constant on cosets of N and such that 6(g, h) = 5(gh) " 4(g)5(h),
for g,h € K. As both & (by definition) and 3 (by Lemma 3.2) are trivial on
N x N, the function 4|y is a constant homomorphism. We conclude that
¥|n=1 and ’yé is a strong extension of # with factor set a. O

For any H < G and factor set a € Z%(G), we denote the restriction of «
to H x H by ay. Suppose that H is open in G, and let o € Z2(G). If y is a
projective character of H with factor set agy, we define the induced projective
character Ind% o X as the character of the induced projective representation
given by tensoring by the twisted group algebra C*[G] (see [18, I, Section 9]).
Then Indgya X is a projective character of G with factor set . A projective
character with trivial factor set is the character of a linear representation
and in this case we omit the factor set, so that our notation coincides with
the standard notation for induced characters of linear representations.

In Section 5 we will freely use basic facts about projective characters
which are direct analogues of well known results for ordinary characters; for
example: Frobenius reciprocity [18, Ch. 1, Lemma 9.18], Mackey’s intertwin-
ing number formula [18, Ch. 1, Theorem 8.6], and the fact that the inner
product (x,x’) of two projective characters, with y irreducible, equals the
multiplicity of x as an irreducible constituent of x’ [18, Ch. 1, Lemma 8.10].

Lemma 3.5. Let P be a pro-p group. Then any projective representation
is induced from a one-dimensional projective representation of an open sub-
group of P.

Proof. By definition, every projective representation of P factors through a
finite quotient. Since a finite p-group is supersolvable, the result now follows
from [17, Ch. 3, Theorem 11.2]. O

3.1. Projective representations and Clifford theory. If two projective
representations of a group G have factor sets a and (3, respectively, then their
tensor product has factor set «3. This is an immediate consequence of the
definitions, but is a fact that we will use repeatedly throughout the paper.
The following two lemmas are due to Clifford [7, Theorems 3-5], but are not
stated in the literature in a form that is useful for us.

Lemma 3.6. Let (K,N,0) be a character triple. Let § € Plrrg(K) be a
strong extension of 0, so that Cx(0) = [a]. For any © € Plrr,—1(K/N), let
m € Plrrg—1(K) denote the pull-back of ™ along the map K — K/N. Then
there is a bijection Plrr—1(K/N) — Irr(K | 0) given by 7 — 0.

Proof. Since 0 factors through a finite group, the statements immediately
reduce to the case where K and N are finite. The fact that 7 — 7 is a func-
tion with the given domain and codomain is proved in [23, Theorem 5.8 (ii)]
in the context of projective representations. This immediately implies the
corresponding fact for projective characters. The fact that it is surjective is
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[23, Theorem 5.8 (i)]. We prove injectivity using a simplified version of the
argument in [7, p. 545-546]. Let O be a K-fixed irreducible representation of
N and let © be a strong extension of © to K with factor set &. Let II, I be
irreducible projective representations of K/N with factor set o', and let
IT, I’ be their pull-backs to K. Let d = dim®© = dim©, e = dim IT = dim II
and ¢ = dimII' = dim 1T . Assume that © ® II is similar to © @ II'. Then
II ® O is also similar to II ® ©’, that is, there exists a P € GLg(C) such
that for all k € K,

P (II(k) ® O(k))P =1'(k) ® O (k).
Then, for any n € N, we have P~1(&(1,1)" ', ® O(n))P = &(1,1)"'I. ®
©(n), and thus
P YI,®0(n)P =12 06(n).
The matrix I, ® ©(n) is the value at n of the representation @%¢, so Schur’s

lemma implies that P is a block matrix consisting of e? scalar blocks of size
d x d, that is, P = Q ® I, for some @ € GL.(C). Hence, for all k € K,

0=P ' (II(k) ® O(k))P —1I'(k) ® O(k) = (Q ' TI(k)Q — II'(k)) ® O(k).
This implies that O (k) ® (Q~'II(k)Q —1II'(k)) = 0, so since O(k) is non-zero,

we must have Q'TI(k)Q = IT'(k), by the definition of Kronecker product.

We have thus proved that if © ® II has the same character as © ® I’ , then
IT has the same character as II’, and this proves the asserted injectivity. O

Lemma 3.7. Let 0,0' € Trr(N) be two characters fized by K such that
Cx(0) = Cx(#) = |, for some a € Z2(K/N). Let 0,0' € Plrrg(K) be
strong extensions of 0 and €', respectively, where & is the pull-back of o to
K (such 0 and 0’ exist thanks to Lemma 3.4). Then there is a bijection

cTrr(K | 0) = Ire(K | 0'), Or — 0'm, where 7w is the pull-back of T €
PIrra_l(K/N), such that

(6m)(1) _ o(Im)(1)
ZO O

Proof. Lemma 3.6 implies that o is a bijection. For the statement regarding
ratios of degrees, it remains to note that

(0m)(1) = (1)w(1) and (F'7)(1) = &' (1)x(1).

O

The following is a well known result from the cohomology of finite groups.
Note that we write the abelian group structure of cohomology groups mul-
tiplicatively as this will be more natural for the cohomology groups we will
consider.

Lemma 3.8. Let G be a finite group of order m and let A be a G-module.
For any integer i > 1, the following holds:
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i) For any v € H(G, A), we have 2™ = 1. Thus, if HY(G, A) is finite
and if a prime p divides |H' (G, A)|, then p divides m.
it) If P is a Sylow p-subgroup of G, then the restriction homomorphism
resg,p : H'(G, A) — H'(P, A) restricts to an injection
resy : Hi(G,A)(p) —— HY(P, A),

where H'(G, A)(p) is the p-torsion subgroup of HY(G, A). Thus, if
HZ:(P, A) =1 for all Sylow p-subgroups and all primes p | m, then
H'(G,A) =

Proof. See, for example, Corollaries 2 and 3 of [25, Theorem 7.26]. O

Since any torsion abelian group (not necessarily finite) is a direct sum
of its p-torsion subgroups where p runs through all torsion primes (see [25,
Theorem 5.5]), Lemma 3.8 i) implies that H'(G, A),) is the p-primary com-
ponent of H(G, A). In general, for any torsion abelian group M we will
denote its p-primary component (possibly trivial) by M. Similarly, we
will write m g for the g-part of an element m € M.

4. REDUCTION TO THE PARTIAL ZETA SERIES

Let G be a representation rigid profinite group, such that there exists a
finite index normal pro-p subgroup N < G. For example, one can take G
to be FAb and compact p-adic analytic (see [9, Corollary 8.34]). For any
K < G such that N < K, let K, be a pro-p Sylow subgroup of K. Since N
is normal and pro-p we necessarily have N < K,,. For ¢ € H?(K,/N), define

Irrf (N) = {0 € Irrg (N) | Ck,(0) = ¢},
where Cf, is the function defined in Theorem 3.3. Note that any two choices

of K, are G-conjugate, so up to the natural identification of the groups
2(K,/N), for different K, the set Irr% (N) is independent of K,. We call

Zix(s)= Y, 61
O€lrrf, (N)

a partial zeta series. Since H?(K,/N) is finite, there are only finitely many

partial zeta series and
= 2 D Zhxk(®
N<K<G ceH2(K,/N)

for fixed G and N. Following Jaikin-Zapirain [16, Section 5], we show how
the (virtual) rationality of Zg(s), and thus of {g(s), is reduced to the ratio-
nality in p~* of the partial zeta series.

Let (K, N, 0) be a character triple. By Clifford’s theorem, A(1)/6(1) is an
integer for any A\ € Irr(K | 6), so we may define the finite Dirichlet series

fieno ()= > <28;>_8.

AeIrr(K|6)
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The following result is contained in [16, Proposition 5.1]. We give a
complete proof, which adds several steps involving Schur multipliers.

Lemma 4.1. Let N be a finite index pro-p group in K and let (K, N,0)
and (K,N,0') be two character triples. If Ck,(0) = Ck,(0'), then

Cr(0) = Ck(0") and  fix,n9)(8) = fx,ne)(5)

Proof. By the remark after Lemma 3.8, any ¢ € H2(K/N) can be written
as ¢ =[], ¢(g), where ¢ runs through the primes dividing [K/N| and ¢(y) €
H*(K/N )(q) is the g-primary component of c. Let ¢ be a prime dividing
|K/N| and let K, < K be such that K,/N is a Sylow g-subgroup of K/N
(note that this agrees with our notation K, for ¢ = p). By Lemma 3.8,
resq : H*(K/N) ) — H?*(Ky/N) is injective.

Since resg N, K ,/N has a g-group as target, this homomorphism is trivial
on H?(K/N) y) for primes £ # g; hence res,(Cx (0)(y)) = resg/N, i, /N (Ck (0)).
Restricting a strong extension of 6 to K down to K, it is straightforward
to show that resg/n k,/N(Cx (0)) = Ck,(0), so

(4.1) resy(Cx (0)(q)) = Crk,(0) (and similarly for ¢").

Now, if ¢ # p, then p { |K,/N|, so by [15, (8.16)], 0 extends to K, and
thus Cr, (0) = 1. By (4.1) we obtain res,(Cr (0)(q)) = 1, whence Cx (6) (4 = 1
(by the injectivity of res;). We must therefore have Cx (0) = Cx (0)(p), and
since § was arbitrary, we also have C (6') = Cx (6') (). For ¢ = p, (4.1) gives

res, (Cx (0) () = Cr, (0) = Ck, (0') = res, (Cx (6) ()

and we conclude that Cx(6)y) = Ck(0')(), and thus Cx(0) = Ck(¢').
Now Lemma 3.7 gives a bijectlon o Irr(K \ 0) — Irr(K | 0') such that
A(1)/0(1) = a(N)(1)/0'(1). Thus fix, ne)(s) = fx,ne)(s) also holds. O

Let S denote the set of subgroups K < G such that N < K and
Stabg(0) = K, for some 6 € Irr(N).

Proposition 4.2. Suppose that Z]CV;K(S) is rational in p~—*, for every K € S
and every ¢ € H*(K,/N). Then Theorem 1.1 holds.

Proof. By Clifford’s theorem, for every p € Irr(G), there are |G : Stabg(0)]
distinct characters 6 € Irr(IN) such that p € Irr(G | 9). Thus

s 1 —s
Za(s)= D p()*= Y |G- Stabg (8)] > )

p€Elrr(G) 0cIrr(N) p€Elrr(G|0)
By standard Clifford theory (see [15, (6.11)]), induction yields a bijection
between Irr(Stabg(0) | €) and Irr(G | 0), for every 6 € Irr(NV), so

>, p()7 = Y. (A(1)-|G : Stabg(6)))~*

p€lrr(G|0) A€lrr(Stabg (6)]0)
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This implies that

Zos) = Y |G :Stabe(0) Y 9<1)_S<2§B>_8

0elrr(N) A€lrr(Stabg (6)]0)
= Z ’G:StabG(a)|7871‘9(1)7Sf(Stabg(9),N,0)(5)

Oelrr(N)
= Z G: K| Z 0(1) " fix,n0)(5)-
KeS Ockrri (N)

By Lemma 4.1, fixng)(s) = fixne(s), for 0,0 € Trr(N) if Ck,(0) =
Cr,(0'). By the above, we can therefore write

Za(s)= D IG K770 Y fi(8) 25k (s)

KeS ceH2(K,/N)

where fr(s) := fix,ng)(s) for some (equivalently, any) character triple
(K, N,0) such that Ck,(0) = c.

The set S is finite and the group H?(K,,/N) is also finite by [15, (11.15)].
From the assumption that Z]CV; x(s) is rational in p~*, it now follows that
Za(s), and hence (g(s), is virtually rational. Moreover, if G is pro-p, then
|G : K| is a power of p for any subgroup K, and likewise A(1) is a power of
p for any A € Irr(K), so f(k,ng)(s) is a polynomial in p~*. Thus, when G is
pro-p, Zg(s), and hence (g(s), is rational in p~*. O

5. COHOMOLOGY CLASSES AND DEGREE ONE CHARACTERS

To prove the rationality in p~* of the partial zeta series ZJCV;K(S) for G FAb
compact p-adic analytic, we will prove that the set Irr% (V) is in bijection
with the set of equivalence classes of a definable equivalence relation on a
definable set in M,,. To this end, we need to show that the condition
Ck,(0) = c is equivalent to a similar condition where K, is replaced by a
subgroup H of K, and 6 is replaced by a character x of NN H of degree one.
In this section we will state and prove the main technical result allowing for
this reduction.

As in the previous section, let G be a profinite group possessing a finite
index normal pro-p subgroup N < G. All the results in the present section
are really theorems about finite groups with trivial generalisations to profi-
nite groups, and the reader may assume that G is finite with the discrete
topology throughout the section (without changing any of the proofs). We
work in the profinite setting because this is what we will need to apply the
results to in Section 6.

For any K < G such that N < K, define the set

H(K)={H < K| Hopenin K, K=HN}.
From now on, and until the end of Section 6, let N < K < G be fixed.
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Lemma 5.1. Let v € Z*(K}), H € H(K,) and n € Plrr,,, (H) be of degree
one. If Ind%mHﬁN Resk yn or Resﬁp Indgpw n s irreducible, then

N H K K
IndNnp y Resyng 1 = Resy” Ind " 0.

Proof. By Mackey’s induction-restriction formula and Frobenius reciprocity
for projective representations,

K K K K
<Ind%meN ResﬁmH 7, Resy” Idef’7 77> = <Res%mH 1, Res iy Ind ", 7]>
= > (Resom 0 AN om0y Resihsnon 1)
gE(NNH)\Kp/H
H H _
2 <RestH n, Resyqy 77> =1
Here g € K, denotes an arbitrary representative of g. Since K, = HN and
|[Kp:N|-IN:NNH|=|K,:H|-|H: NNH|=|K,: H|-|HN : N|,

we deduce that |[N : NN H| = |K, : H|. Hence Ind]NVmHﬁN Resi ;;n and

Resg” Ind§f7 7 have the same degree, so if one of them is irreducible, they
are equal. O

For H < K, such that K, = HN, we let fg : Z2(H/(N N H)) —
Z?(K,/N) be the isomorphism induced by pulling back cocycles along the
isomorphism K,/N — H/(N N H). We describe this isomorphism more
explicitly. Since K, = HN, every coset in K, /N contains a unique coset in
H/(N N H). Then, for a € Z*(H/(N N H)) and g,¢ € K,,

(5.1) Ju(@)(gN,g'N) = a(h(N 1 H), /(N 1 H))
where h, h' are such that h(NNH) C gN and (NN H) C ¢'N. Moreover,
for 3 € Z*(K,/N) and h,h' € H,

T (B)(h(N 0V H), W' (N 0 H)) = B(hN,W'N).
We denote by fp the corresponding induced isomorphism

H*(H/(N N H)) — H*(K,/N).

Proposition 5.2. Let (K, N,0) be a character triple. Then there exists an
H € H(K,) and a character triple (H, N N H, x) such that:

i) X 1s of degree one,
i) 6 = IndNy X,
iii) Cr,(0) = fu(Cu(x)).
Moreover, let H € H(K,) be such that (H,N N H,x) is a character triple
with x of degree one, such that (K, N,0) is a character triple, where § =

IndNng x. Then Ck, (0) = fu(Cr(x)).
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Proof. Assume that (K, N,6) is a character triple. By Theorem 3.3, there
exists an o € Z?(K,/N) such that [o] = C, (f) and af € Plrrg(K,) strongly
extending #. Note that by Lemma 3.2, &(n,z) = &(z,n) =1, for alln € N
and x € K, so in particular, any = 1.

By Lemma 3.5, there exist an open subgroup H of K, and n € Plrrg,, (H)
of degree one such that 6 = Indgf’d 7. Then 0 = Resx” Indgf », 1 1s irreducible,
SO

1= <Res]‘r\<,” Indgp T Resjff,p Indg” 5 17> =

= Z Z <IndegH ReSngH T],IHdehH ReSthH 77>
GEN\Kp/H heN\K,/H

= Z Z <IHdeqHReSngH n,IndehHResthH 77>
gEKp/HN heK,/HN

> 3 (o Resihon . o Resihoy %)
geKy/HN
>|K,: HNJ.

Thus, |K,: HN| =1, and so K, = HN, that is, H € H(K,).
Next, let x = Res¥. ;7. Then  is fixed by H, and Lemma 5.1 (with
v = &) implies that § = IndY -z x. Moreover, let ay € Z*(H/(N N H)) be
defined as
a(h(NNH),(NNH))=éag(h,h') for h,h' € H.

Then fg([ag]) = Ck,(0). We conclude that Ck,(0) = fu(Cr(x)), because
n strongly extends Y.

Assume now that (H, N N H,x) and (K, N, ) are as in the second part
of the statement. By Theorem 3.3, there exists a 8 € Z?(H/(N N H)) and a
X € PIrrB(H) strongly extending x, such that [3] = Cy(x). Let v € Z*(K},)

be the pull-back of fi(3) € Z2(K,/N). Then, for any h,h' € H,
i (h,h) = y(h, 1) = fu(B)(hN, W' N) = B(M(NNH), B/ (NOH)) = B(h, 1),
where in the second to last step we have used (5.1). Thus vy = B , and since
0 is irreducible, Lemma 5.1 (with n = x) implies that

0 = IndN 7, Resil X = Resy” Indjj”. X

Hence Ind; K )Z is an extension of # and we show that it is in fact a strong
extension (see Definition 3.1). Indeed, as 7y is constant on cosets of N in K,

7(377 n) = ’Y(hn/7 n) - 7(h7 1) - 7H(h7 1) = B(h7 1) =

where we have written & = hn/, with h € H, n’ € N and (h,1) = 1 by
Lemma 3.2, because (3 is the factor set of a strong extension. In a similar way,
we show that v(n,x) = 1; thus, by Lemma 3.2, we conclude that Indg”ﬁ/f(
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strongly extends 6. Since I]ndgf’7 X has factor set 7, which descends (modulo
N) to fu(B), it follows that Cr, (0) = [fu(8)] = fu([B]) = fu(Cu(x)). O

It will be useful for us to state a consequence of Proposition 5.2 in terms
of a commutative diagram. To this end, let Xx be the set of pairs (H, x)
with H € H(K,), where:

i) (H,N N H,yx) is a character triple.
i1) x is of degree one,
iii) nd¥n g x € Irrge(N).
Note that 6 € Irrg (V) means that K = Stabg(6), and not merely that K
is contained in the stabiliser. Define the function

C: Xxg — H*(K,/N)
by C(H,x) = fu(Cu(x))-

Corollary 5.3. The function Xx — Irrg(N), (H,x) — Ind¥~g x is sur-
jective and the following diagram commutes:

XK — II“I“K
\ chp
(Kp/N).

Proof. Every 0 € Irr i (N) defines a character triple (K, N, 6). Thus, the sur-
jectivity follows from the first statement in Proposition 5.2. The commuta-
tivity of the diagram follows by the second statement in Proposition 5.2. [

6. RATIONALITY OF THE PARTIAL ZETA SERIES

From now on, let G be a FAb compact p-adic analytic group and let
N < G be a normal uniform subgroup. As in Section 5, let K < G be such
that N < K and fix a pro-p Sylow subgroup K, of K. In this section we show
that the set of characters Irr§ (N), for each ¢ € H3(K,/N), is in bijection
with a set of equivalence classes under a definable equivalence relation in
M. We deduce from this that each partial zeta series is rational in p—*
and hence prove Theorem 1.1.

6.1. Bases for p-adic analytic groups. Recall from Section 5 that H (kX))
= {H < K, | Hopenin K,,, K, = HN}. In this section, we describe
du Sautoy’s parametrisation of H(K)).

One starts by parametrising open subgroups of N. The following defi-
nition is from [10, p. 259] and is equivalent to [11, Definition 2.2]. Some
properties characterising open subgroups of N and some notation are nec-
essary to state it. A subgroup H of N is open if and only if it contains NV,
for some m > 1, where NN,, denotes the m-th term of the lower p-series of
N. Moreover, as N is uniform, raising to the power of p induces an iso-
morphism N;/N;y1 — Njt1/Nito and N4 is the Frattini subgroup of N,
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for all i € N (see [9, Lemma 2.4, Definition 4.1 (iii)]). Thus N;/N;4; is an
[Fp-vector space, and denoting by d = dimg, N/N2 the minimum number
of topological generators for N, each quotient N;/N; 1 is isomorphic to Fg.
Recall the function w in Definition 2.2.

Definition 6.1. Let H < N be open with N,,, < H. A d-tuple (hq,...,hq)
of elements in H is called a good basis for H if

i) w(h;) < w(hj) whenever i < j, and

i1) for each n < m, the set

n—w(h,;)

is a basis for the F),-vector space (N, N H)Np41/Npy1.

Notice that the definition is constructive so a good basis for an open
subgroup of N always exists. Notice also that a good basis for N is just
an ordered minimal set of topological generators of N and that, by [11,
Lemma 2.4 (i)], if H is an open subgroup of N and (hy,...,hq) is a good
basis for H, then for every h € H there are Ay,...,\; € Z, such that

h=hte .

The recursive construction in the proof of [11, Lemma 2.4 (i)] implies that
Al, ..., A\g are unique with the property above.

Remark 6.2. Good bases give a many-to-one parametrisation of the set of
finite index subgroups of N in terms of p-adic analytic coordinates. Indeed
the set of good bases is definable in My by [11, Lemma 2.8]. By Lemma 2.4,
using Z,-coordinates for IV, the set of good bases is interpreted as a definable
set in Myy,.

The parametrisation of # (k) is obtained by extending the parametrisa-
tion given by good bases. Let r = |K), : N|. Fix a left transversal (y1,...,y,)
for N in K, with y; = 1. Every coset y; N contains a unique coset (N NH),
with x € H. Thus, x = y;t; for some t; € N, and we conclude that there
exist elements t1,...,t. € N such that (yit1,...,y.t,) is a left transversal
for NN H in H. The following definition is from [11, Definition 2.10]; see
also [10, p. 261] (note that we use left cosets instead of du Sautoy’s right
coset convention).

Definition 6.3. Let H € H(K),). A (d+ r)-tuple (h1,...,hq,t1,...,t,) of
elements in N is called a basis for H if

i) (h1,...,hq) is a good basis for N N H, and

it) (yit1,...,yrty) is a (left) transversal for NN H in H.

If (h1,...,hg,t1,...,t,) is a basis for H € H(K,), it follows from the
definition that

H = <hla" 'hd7y1t17"')y7“t'r‘>-
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In particular, unlike a good basis for N, a basis for H need not be a (topolog-
ical) generating set for H. Notice moreover that a basis of H always exists:
it suffices to construct a good basis (h1, ..., hq) of NNH as described in Def-
inition 6.1 and then find ¢4, ... ,¢, using that each coset of N in K, contains
a unique coset of N N H in H because K, = HN. The groups, transversals
and bases appearing above are illustrated by the following diagrams:

Kp (yla .. 7y7“)
AN
/ H (ylth- "’yrtr)
N (t1,...,tr)
AN
NnH (h,. . ha)

Remark 6.4. By [11, Lemma 2.12], the set of bases is definable in My, hence,
by Lemma 2.4, can be interpreted as a definable set in M,, by passing to
Zy-coordinates for N.

6.2. The fibres of C in terms of degree one characters. From now on,
let ¢ € H?(K,/N). The aim of this section is to show that the set C~*(c) may
be characterised by a predicate involving only elements of N and degree one
characters of finite index subgroups of N. We will at the end of the section
produce an L,, formula for the fibre of C. We therefore start by reducing
the range for ¢ to a cohomology group with values in the group of roots of
unity of order a power of p. In order to do this, we need to set up some
notation. Let W < C* be the group of roots of unity. This is a torsion
abelian group so it splits as

w= 1] W

¢ prime

where W, < W is the group of roots of unity of order a power of £. It is
clear that W is a divisible group so by [20, XX, Lemma 4.2] it is injective
in the category of abelian groups, hence it is complemented in C*. We
may therefore fix a homomorphism C* — W, and for each prime ¢ denote
by 7 : C* — W(y the homomorphism obtained by composing with the
projection W — Wy).

If f is a function with image inside C* and £ is a prime, we define

Jey=meo f.

Note that if f has finite order, that is, if f has image in W, then f(;) coincides
with the ¢-primary component of f. Moreover, since 7, is a homomorphism,
(ff e = fo f(/z) for all f, f with the same domain and with codomain C*.
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We introduce the following groups:
Zyp =T (Kp/N, W), and By, = B*(K,/N,W,).

By [15, (11.15)] and its proof, every class in H?(K,/N) has a representative
in Z,. Moreover, let § € B%(K,/N) N Z,. Then, by definition, there is a
function ¢ : K/N — C* such that, for all a,b € K/N,

3(a,b) = p(a)p(b)p(ab)~".
Now ¢ has values in W, already, so, for all a,b € K /N,

8(a,b) = é()(a,0) = @y (@) () (D) () (ab) ™

Thus § € By, and B?(K,/N) N Z, = B,. It follows that the inclusion of Z,
in Z*(K,/N) induces an isomorphism H?(K,/N) = Z,/B,,.

We now turn to describing the fibres of the map C. Define a;; € N and
v:{l,...,r}2 = {1,...,7} by
(6.1) Yilj = Yrn(i,5)Qij-
We also define the inner automorphisms ¢; = ¢y, : G — G, vi(g9) = vigy; ',
for g € G. The purpose of the following lemma is to show that the fibres

of C are given by a first order statement involving only values of degree one
characters, cocycles and coboundaries.

Lemma 6.5. Let (H,x) € Xk and ty,...,t, € N such that (y1t1,...,yrt)
is a left transversal for NN H in H. Let o € Z, such that [a] = c. Then
C(H, x) = c if and only if there exists § € By, such that for alln,n’ € NNH
and all i,5 € {1,...,7}, we have

(6.2) X(t5 pyaisey  (tm)tn)alyN, y;iN)é(y:N, y;N) = x(nn').

Proof. We have C(H, x) = [o] if and only if there exists a strong extension
X € Phrry(H) of x, with 8 € Z?(H) such that fy([f]) = [a]. Since every
two strong extensions of x to H define the same element

Cr(x) € H*(H/(N N H)),

we may without loss of generality assume that x is given by

(6.3) X(yitin) = x(n),

for all n € NN H and y;t;. Thus C(H,x) = [a] if and only if there exists
B € Z2(H/(N N H)) such that fg([3]) = [a] and such that for all n,n’ €
NNH and all 4,5 € {1,...,r},

X(yitiny;tn') Byitin, yitn') = X(yitin) X (y;t;n’).
Notice that, by definition, X has values in W(,). Thus we may strengthen

the last equivalence by assuming that B € Z%(H, W(y)) and consequently
B € Zp. The last equation is equivalent to

X(yitiny;tin') B(yiti(N 0 H), yjt;(N N H)) = x(nn').
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Furthermore, y;t;(NNH) C y;N, so fg([8]) = [o] if and only if there exists
a 0 € By such that for all 4,5 € {1,...,r},

Blyiti(N N H),yt;(N O H)) = a(yiN,y;N)o(yi N, y; N).
Notice that here we were able to restrict the range for § to B, because we
could assume that 3 € Z, and we chose a € Z,,.

Combining these two statements of equivalence we obtain that C(H, x) =
[a] if and only if there exists § € B, such that for all n,n’ € N N H and for
all i,5 € {1,...,r},

x(ntiyin'tjy;)a(yiN, y;N)o(yiN, y;N) = x(nn').
Hence, to finish the proof, we need to show that

X(ntiyin'tyy;) = x5 yaige;  (Lin)tn').
Indeed, this follows from (6.3) and the identities
yitinyitn' = yiysy; tinyitin = yiyse; " (tm)tn!
= Yy () @395 ()L = Yy gt gy iy (En)tn',
noting that t;(li’j)aijgoj_l(tm)tjn’ lies in H (since y;t;ny;t;n’ and Yry (i) by (3,)
do), and therefore in N N H. O

6.3. Definable sets for Z, and B,. We will now introduce the definable
sets that will be used to interpret predicates quantifying over Z, and B,,.

Remark 6.6. It is well-known that Q,/Z, is isomorphic to W, via the map
Lia/p™ + Ly s 2T (cf. [14, Lemma 8.7)).
Lemma 6.7. Define Z and B to be the sets of matrices (z;;) € M,(Qp) such
that the map

(yiN,y; N) — (zi; + Zp), fori,je{l,...,r}
is in Zy and B, respectively. Then Z and B are definable subsets of Qf mn
Man~

Proof. Let (z;;) € M,(Qp) and let « be the the map K,/N xK,/N — Q,/Z,
defined as

a(yiN,y;N) — u(zij + Zp), i,7€{1,...,r}
Imposing that « satisfy the 2-cocycle identity, we obtain that (z;;) € Z if
and only if for all 4,5,k € {1,...,r},
i)k T %G = Zin(i) t 2k mod Zy,

where v is as defined in (6.1). Notice that Z, is definable in M.y, hence
equivalence modulo Z, is a definable relation. It follows that the set Z is
definable in M.

The set B is also definable in M. Indeed, 6 € B, if and only if

S5z, y) = p(x)e(y)e(zy) ",
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for some function ¢ : K,/N — Qp/Z, We parametrise the functions
K,/N — @, by the r-tuples of their values on y1N,...,yN. In these
coordinates, we obtain that o € B, if and only if there are b1,...,b, € Q,
with the property that for all 4,5 € {1,...,r},

Zij = b; + bj — b'y(i,j) mod Zp.
This is a definable predicate in M, so B is definable in M. O

6.4. Definability of the fibres of C. We now find a definable parametri-
sation of the fibres of C in Corollary 5.3. We need the following lemma to
definably express K-stability of characters by an L,,-formula.

Lemma 6.8. Let M be a finite index subgroup of N and x be a character
of M of degree one. Then, for all g € G,

g(IndJ\N/lx) = Ind}, %
Moreover if M' is another finite index subgroup of N and x, X' are degree
one characters of M and M' respectively, such that IndJ\NJ X and Ind]]y/[, X' are

irreducible, then Ind]\N/[ X = Indﬁ\v/[, X' if and only if there exists g € N such
that Resoysa 9x = Reshh o X'

Proof. The proof of the first statement is a routine check using the formula
for an induced character. The second statement follows from Mackey’s the-
orem (cf. [14, Proposition 8.6 (c)]). O

We are ready to construct the definable set parametrising C~*(c) C Xk.
Let from now on n1,...,ng € N be a minimal topological generating set for
N.

Proposition 6.9. Let ¢ € H?>(K,/N) and let D¢ be the set of pairs (X, §),

A € Myy(asr)(Zyp), € = (&1,---, &) € Qg such that:

i) the columns of A are the Z,-coordinates with respect to ni,...,nq of
a basis (hi,...,hq,t1,...,t.) for some subgroup H € H(Kp).

i) The function {hi,...,hq} = Qp/Zy, hi — & + Zyp, extends to a
(necessarily unique) continuous H-invariant homomorphism

X:NNH — Qy/Z,.
iii) IndN g (cox) € Irrg (N),
iw) C(H,(tox)) =c.
Then D¢ is a definable subset of Qg(dJrTH) in Man.
Proof. Condition i) is expressible by an L,,-formula by [11, Lemma 2.12].

Following the proof of [14, Lemma 8.8], we show that if i) holds, then ii)
holds if and only if:

a) there exists (u;;) € Mg(Z,) whose columns are the Z,-coordinates
of a good basis for some finite index normal subgroup M of N N H;
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b) there exist £ € Qp, 71,...,7q € Zp, and h € N N H such that the
order of £ in Q,/Zy is [N N H : M| and for every i,j € {1,...,d},

—1

hj = b (p;l(hrﬂ') mod M and ri{ =& mod Zy.

Suppose that conditions ) and 4i) in the statement hold. Then x factors
through a finite quotient of N N H. Set M = Kerx and choose (u;;) €
M4(Z,) such that its columns are the Z,-coordinates of a good basis of
M. Condition a) is immediately satisfied. Moreover the group (N N H)/M
is cyclic, because it is isomorphic to a subgroup of C*. This, together
with the H-invariance of y, implies condition b) for h € N N H such that
(NN H)/M = (hM), § := x(h) and r1,...,74 € Z such that, for i €
{1,...,d}, h,M = h" M.

Conversely, assume there are (1) € My(Zy), h € H, and § € Q, such that
a) and b) hold. We define a continuous homomorphism x : NNH — Q,/Z,
as follows. By [11, Lemma 1.19] the map Z, — N N H defined by A — h*
is analytic in the Z,-coordinates of IV and therefore it is continuous. Since
M is an open subgroup, we may find a neighbourhood of U of 0 such that
h* € M for all A € U. Now, Z is dense in Ly, so, for all i € {1,...,d}, we
may find s; € (r; + U) NZ. Clearly, since s; € r; + U, we have

hSiM = h""M = h;M,

showing that (N N H)/M is cyclic with generator hM.
By assumption, the order of £ +Z, in Q,/Z, is equal to the order of hM
in (NN H)/M, thus there is an injective homomorphism

B: (NN H)/M — Q,/Z, defined by hM — & + Z,.

We define x : NNH — Q,/Zj, to be the composition of § with the canonical
map NNH — (NNH)/M. The latter is continuous by [9, Proposition 1.2], so
X is a continuous homomorphism. Since y; = 1 by assumption, t; € NN H.
So, for all j € {1,...,d},

X(hy) = x("" h'7) =16+ Ly = & + L.

—1
Similarly, for ¢,5 € {1,...,d}, we have X(ti ¢; 1 (h))) = & + Z, showing
that x is H-invariant.

Conditions a) and b) become L,,-formulas by passing to Z,-coordinates
with respect to nq,...,ng and via the interpretation of My in My, of
Lemma 2.4. Notice that membership in N N H can be expressed by means
of the Z,-coordinates of N because we assumed that hi,...,hq is a good
basis by i). Moreover, equivalence modulo M is definable in M,,, as we
have a good basis for M. Finally, the condition on the order of £ is equivalent

to
1

(h@‘l) € M) A (vn € Q, (ord(n) > ord(¢) = A" ") ¢ M)) .
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We now show that condition 4ii) is definable. To simplify notation we
will throughout the rest of the proof identify the group Q,/Z, with W,
through ¢. Under this identification, we re-define y = ¢ o x.

First we show that the irreducibility of IndY -z x is expressible as an Lap-
formula. Indeed, by Mackey’s irreducibility criterion Ind%n 57 X is irreducible
if and only if

VgeN : ((VheNmH, X(°h) = x(h)) :>g€H>.

By i) and i) we may rewrite the formula above in terms of A, & and of
the Z,-coordinates in N. By Lemma 2.4, this gives an L,,-formula for the
irreducibility statement in condition 7). To conclude the proof that this
condition gives rise to a definable set, we show that K-invariance can also be
expressed by an Lan-formula. Indeed, let w = |K : N| and m = |G : N|. Fix
Yrtls- -5 Ym € G such that (y1,...,y,) and (y1,...,ym) are left transversals
of N in K and G respectively. Recall that, for g € G, we denote by ¢, the
conjugation by g on N. Let

Ck ={py i€ {1,...,u}}, Co={py |ie{l,...,m}}.

Notice that Cx C Cg. By Lemma 6.8, the stabiliser of Ind%n 7 X is equal
to K if and only the following statement holds:

(6.4) VoeCg : (Ind%mHX:IndfpV(NﬁH)Xogo_l<:>cp€CK>.

Fix i € {1,...,m}. Lemma 6.8 with M = NN H, M' = ¥(NNH) and
X' = Yix implies that Ind%mH X = Indf;;_(NmH) X © go;il if and only if

Jge N,Vhe NNH : (%h e ¥(NNH)= x(h) = Yx(%)).

Again, by i) and i), we may write the latter in terms of A, & and of the
Zy-coordinates in N. Substituting in (6.4) finishes the proof that condition
ii1) is definable. Notice that we are allowed to conjugate elements of N by
elements of G because there are corresponding function symbols ¢, in Ly
(and these are interpreted as definable functions in M,, by Lemma 2.4).

Finally we show that also i) can be expressed by an Ly,-formula. Fix
B € Z, such that [5] = c. By Lemma 6.5, condition iv) is equivalent to

(6.5) 35€ B, : ( /\ VnoneNNH
i,5€{1,...,m}

(Xt a0y tim)tsn ) BN, g3 N)O(iN, y;N) = x(nn’)-)> .

We describe how the above is translated to an L£,,-formula. First, the mul-
tiplications by a;j,1;,t; etc. are analytic functions N — N, which have
corresponding expressions in L,,. Secondly, we need to choose a (b;;) € 2
corresponding to # and replace B(y;N,y;N) by b;;. In general, this could
cause the final £,,-formula to have parameters in Q,, which we might not be
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able to eliminate. However, every class in Q,/Z, has a representative in Q.
If a rational representative is chosen for each 5(y; NV, y;N) and we multiply
every equation in the conjunction by a suitable power of p, then we may
assume the b;;’s are parameters in Z, which (in the final L,,-formula) we
can replace with Lan-expressions evaluating to them in M,y (e.g. b € Z>p
is replaced by 1+ --- 4+ 1 where 1 appears b times).

Next, we replace (30 € B,,) by (3(dij) € B) where B is as in Lemma 6.7,
and we replace 6(y;N,y;N) by d;;. Finally, by i) and i) again, we write
the equations in (6.5) as congruences mod Z, with variables X, &, the Z,-
coordinates of n and n’, and d;;. This gives the required Lyp-formula. O

Proposition 6.9 shows that there is a surjective map ¥ : D¢ — C~(c)
defined by (X, &) — (H,x) where H € H(K,) is the subgroup correspond-
ing to the basis (hi,...,hq,t1,...,t,) of Proposition 6.9 i) and x is as in
Proposition 6.9 ).

6.5. Finishing the proof of Theorem 1.1. We write the partial zeta se-
ries as a generating function enumerating the equivalence classes of a family
of definable equivalence relations. We conclude rationality of the partial
zeta series by Theorem 2.7. Theorem 1.1 then follows from Proposition 4.2.

We start by constructing a definable equivalence relation on D¢ whose
equivalence classes will be in bijection with Irr% (V). Let (X, &), (N, ¢') € D¢
and let (H,x) = V(A €) and (H',x') = ¥(N,¢’). We define an equivalence
relation £ on D¢ by

(X €),(N, &) € & <= ndN yx =IndN X
Lemma 6.10. The relation £ is definable in M,.

Proof. Let (H,x), (H’,x') be as above. Lemma 6.8 implies that IndY; x =
Indy ;X' if and only if

JgeN,Vhe NNH (%he NnH = x(h) = x'(%h)).

Writing this in the Z,-coordinates of N we obtain an L,,-formula, which,
after restricting to the definable set D¢, gives the L,,-formula defining £. [J

Composing ¥ with the surjective map X — Irrg (V) of Corollary 5.3
induces a bijection between the set of equivalence classes D¢/E and Irr% (N).
We now use this bijection to produce a definable family of equivalence rela-
tions giving the partial zeta series. For (X, &) € D¢, write (hi(X), ..., hq(A))
for the good basis associated with A by Proposition 6.9 i). The function
f: D¢ — Ny given by

d
X&) — ) w(hi(N) -1
=1

is definable in M,, because My is definably interpreted in M,, and,
under this interpretation, w becomes a definable function by [11, Theo-
rem 1.18 (iv)]. Notice that, if W(X,§) = (H, x), then, by the discussion
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preceding [11, Lemma 2.8], p/*%) is the index of N N H in N, which is
equal to the degree of Ind%m 7 X-

We now define a family of equivalence relations that will allow us to
apply Theorem 2.7 to Z§ x(s). Our approach is the same as in [14] after

Remark 6.3 but for a fixed prime p. We set D¢ C @g(dJrrH) x Ny to be the
graph of f and define an equivalence relation £ C D¢ x D¢ by

((z,n),(2',n')) € B¢ < (z,2') € E.

Notice that, unlike [14], we do not require n = n’ here, as this condition is

vacuous whenever (z,2') € £. Clearly D€ is a definable family of subsets of

Qg(dﬂn“) and E° is a definable family of equivalence relations on D¢.

For all n € Ny the fibre of f above n is a union of £-equivalence classes.
Therefore the set DS /ES is in bijection with the subset of characters of
degree p" in Irr% (V). It follows that

Zxc(s) = Y #(Dy/Eq)p™"™.

n€eNg

Applying Theorem 2.7 to the series above we deduce that Z§ ;(s) is a
rational function in p~*. This concludes the proof.
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