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Abstract. We prove that for any FAb compact p-adic analytic group
G, its representation zeta function is a finite sum of terms n−s

i fi(p
−s),

where ni are natural numbers and fi(t) ∈ Q(t) are rational functions.
Meromorphic continuation and rationality of the abscissa of the zeta
function follow as corollaries. If G is moreover a pro-p group, we prove
that its representation zeta function is rational in p−s. These results
were proved by Jaikin-Zapirain for p > 2 or for G uniform and pro-2,
respectively. We give a new proof which avoids the Kirillov orbit method
and works for all p.

1. Introduction

A group G is called representation rigid if the number rn(G) of iso-
morphism classes of (continuous, if G is topological) complex irreducible
n-dimensional representations of G is finite, for each n. If G is finitely
generated profinite and FAb (i.e., H/[H,H] is finite for every finite index
subgroup H of G), then G is representation rigid (see [5, Proposition 2]).
For any representation rigid group G we have the formal Dirichlet series

ZG(s) =

∞∑
n=1

rn(G)n−s =
∑

ρ∈Irr(G)

ρ(1)−s,

where Irr(G) denotes the set of irreducible characters of G. If the sequence

RN (G) =
∑N

i=1 ri(G) grows at most polynomially, ZG(s) defines a holo-
morphic function ζG(s) on some right half-plane of C, which is called the
representation zeta function of G.

Suppose that G is a FAb compact p-adic analytic group. In this case,
as we will see, the representation zeta function is defined and extends to a
meromorphic function on C. It is not true in general that ζG(s) is a rational
function in p−s, but this is not too far from the truth. Any formal Dirichlet
series with coefficients in Z is an element of the ring Z[[p−s1 , p−s2 , . . .]], where

p1, p2, . . . are the primes in N, via
∑

n ann
−s 7→

∑
n anp

−se1
1 p−se22 · · · , where

pe11 p
e2
2 · · · is the prime factorisation of n. We say that a Dirichlet series
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(with integer coefficients) is virtually rational in p−s if, as an element of
Z[[p−s1 , p−s2 , . . .]], it is of the form

(1.1)
k∑
i=1

n−si fi(p
−s),

for some natural numbers k and ni and rational functions fi(t) ∈ Q(t).
If ZG(s) defines a zeta function ζG(s), we say that ζG(s) is virtually

rational in p−s if ZG(s) is, or equivalently, if ζG(s) is of the form (1.1), for
all s in some right half-plane of C. In [16], Jaikin-Zapirain proved one of the
first and most fundamental results on representation zeta functions, namely,
that when p > 2 the zeta function ζG(s) is virtually rational in p−s and if
G is pro-p, then ζG(s) is rational in p−s. Moreover, he conjectured that the
results hold also for p = 2, and proved this in the special case when G is
uniform pro-2. Recall that a pro-p group is called uniform (or uniformly
powerful) if it is finitely generated, torsion free and [G,G] ≤ Gp if p > 2
and [G,G] ≤ G4 if p = 2. These results may be compared with analogous
(virtual) rationality results proved earlier by du Sautoy for subgroup zeta
functions (see [11]). Both Jaikin-Zapirain and du Sautoy rely on a rationality
result for definable integrals, due to Denef and van den Dries [8]. We will
instead use a result of Cluckers (see Section 2.3), which differs from that
used by Jaikin-Zapirain and du Sautoy insofar as it, in addition to definable
sets, also allows the use of a definable family of equivalence relations.

In [2], Avni used Jaikin-Zapirain’s virtual rationality theorem as an in-
gredient to prove that the abscissa of convergence of representation zeta
functions of certain arithmetic groups is rational. Jaikin-Zapirain’s result
has also been fundamental for (albeit not always a logical prerequisite of)
work of Larsen and Lubotzky [21], Aizenbud and Avni [1], of Avni, Klop-
sch, Onn and Voll, e.g., [3, 4], of Budur [6], of Kionke and Klopsch [19], and
Zordan [27, 28].

1.1. Main result and consequences. The goal of the present paper is to
give a uniform proof of the (virtual) rationality of ζG(s) for G FAb com-
pact p-adic analytic and in particular to prove Jaikin-Zapirain’s conjecture
mentioned above. Our main result is:

Theorem 1.1. Let G be a FAb compact p-adic analytic group. Then ζG(s)
is virtually rational in p−s. If in addition G is pro-p, then ζG(s) is rational
in p−s.

This theorem has the following consequences.

Corollary 1.2. Let G be a FAb compact p-adic analytic group. Then the
following holds regarding ζG(s):

i) it extends meromorphically to the whole complex plane,
ii) it has an abscissa of convergence which is a rational number,

iii) it has no poles at negative integers and ζG(−2) = 0.
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Here i) and iii) were previously known consequences of Jaikin-Zapirain’s
results when p 6= 2 or G is uniform pro-2, while ii) follows from Jaikin-
Zapirain’s results for all p, since for p = 2 the abscissa of G is the same as for
any finite index uniform pro-2 subgroup. In general, i) follows immediately
from Theorem 1.1, because any virtually rational function in p−s is clearly
meromorphic in all of C. Statement ii) follows from the model theoretic
rationality result we use (Theorem 2.7), which implies that each rational
function appearing in the expression for ζG(s) has denominator that is a
product of factors of the form 1−pi−sj , for integers i, j with j > 0. Moreover,
the series ZG(s) diverges at s = 0 (since G is an infinite profinite group,
hence possesses infinitely many non-equivalent irreducible representations).
Thus the abscissa of ζG(s) is finite and equals i/j, for some i, j as above (note
that it does not necessarily equal max{i/j}, because some denominators may
cancel). Part iii) of Corollary 1.2 was proved in [12, Theorem 1] for all G
for which virtual rationality of ζG(s) holds. Theorem 1.1 therefore implies
that it holds for all p.

1.2. Outline of the paper and the proofs. In Section 2 we give the
basic definitions and results from model theory that we will use in this
paper. Similarly, Section 3 provides the definitions and results from the
theory of projective representations and projective characters, as well as
related Clifford theory and group cohomology, that we need in later parts of
the paper. The remaining sections are devoted to proving our main result.

Our proof of Theorem 1.1 has the following main features:

– a new argument (i.e., different from the one in [16, Section 5]) for the
main part of the proof, namely the rationality of the ‘partial’ zeta se-
ries (see below), making systematic use of projective representations
and associated cohomology classes;

– avoiding the use of Lie algebras and the Kirillov orbit method (which
were essential in [16, Section 5]). This is necessary if one hopes to
find an analogous proof for Fp[[t]]-analytic groups (see Section 1.3).

We now describe the main ideas of the proof in more detail, and point out
how it relates to and differs from Jaikin-Zapirain’s proof for p > 2 and the
approach in [14]. The first step is to reduce the (virtual) rationality of ζG(s)
to the rationality in p−s of the partial zeta series

ZcN ;K(s) =
∑

θ∈IrrcK(N)

θ(1)−s,

where N a fixed open normal uniform subgroup of G, K is a subgroup of
G containing N , and IrrcK(N) denotes the set of irreducible characters of
N with stabiliser K which determine the cohomology class c in the Schur
multiplier H2(Kp/N), where Kp is a pro-p Sylow subgroup of K. This
reduction step follows [16, Sections 5-6] and uses Clifford theory, together
with a result which shows that we can replace H2(K/N) by H2(Kp/N) (see
Section 4).
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In Sections 5-6 we prove the rationality of the partial zeta series and
hence Theorem 1.1. To do this, we show that enumerating characters in
IrrcK(N) of given degrees is equivalent to enumerating the classes of a family
of equivalence relations that is definable with respect to an analytic language
Lan of p-adic numbers (see Section 2.2). The rationality then follows from
a result of Cluckers (see Theorem 2.7). The possibility of using a definable
equivalence relation, as in [14], gives an added flexibility not present in the
definability results in [16]. We note that in contrast to [14], which works with
an extended language of rings, we need a p-adic analytic language because
of the analytic structure of G and du Sautoy’s parametrisation of subgroups
via bases, which is one of our key ingredients.

We now describe the contents of Sections 5-6 in more detail. In Section 5,
we use some of the theory of projective representations to show that the
cohomology class in H2(Kp/N) associated with a character triple (Kp, N, θ),
for Kp a pro-p Sylow subgroup of K, can be obtained from a character
triple (N,N ∩ H,χ), where H is an open subgroup of G such that Kp =
HN , and χ is of degree one (see Proposition 5.2). This is a key step,
because, just like in [14], we can only talk about degree one characters in
definability statements. We also introduce a set XK of pairs (H,χ), which,
modulo a suitable equivalence relation, parametrises the elements in Irr(N)
whose stabiliser is K, and a function C : XK → H2(Kp/N) whose fibres
parametrise the sets IrrcK(N), modulo the relation. We then show that
these fibres are expressible by a first order formula involving the values of χ,
2-cocycles and 2-coboundaries (see Lemma 6.5). The approach in Section 5
is new, compared to [16], and avoids Lie algebra methods by exploiting the
monomiality, for projective representations, of Kp.

In Section 6 we use the results of Section 5 to prove that the fibres of C and
the required equivalence relation are definable in the structureMan of p-adic
numbers, with respect to the language Lan. Among other things, we exploit
the known fact about Schur multipliers that every element in H2(Kp/N) has
a cocycle representative of p-power order and that we can also choose our
coboundaries to have p-power order. This implies that we can consider our
cocycles and coboundaries as functions with values in Qp/Zp, and hence ulti-
mately as elements of definable sets. Once the definability of the fibres of C,
modulo the equivalence relation, is established, an application of Cluckers’s
rationality result mentioned above finishes the proof of Theorem 1.1.

In the proof of the definability of the fibres of C and the equivalence re-
lation, we adapt some ideas in [14] to the setting of p-adic analytic pro-p
groups. The main idea here is that the irreducible characters of N are in-
duced from degree one characters of finite index subgroups, and thus that
Irr(N) can be parametrised (in a many-to-one way) by certain pairs (H,χ)
where H ≤ N and χ ∈ Irr(H). Modulo a suitable definable equivalence re-
lation, the parametrisation is bijective and this approach is the reason why
the Kirillov orbit method can be avoided. The main new contribution in
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Section 6 compared to [14], is the definability of the condition for a repre-
sentation corresponding to a pair (H,χ) to map to a given c ∈ H2(Kp/N)
under C (note that all of Section 5 is needed for this purpose).

1.3. Remarks on the positive characteristic case. It is a natural ques-
tion to ask whether FAb finitely generated compact Fp[[t]]-analytic groups
have virtually rational representation zeta functions. This is known for
SL2(Fq[[t]]) with q a power of an odd prime (see [16, Theorem 7.5]) and
was asked more generally by Larsen and Lubotzky for groups which are
Fp[[t]]-points of certain group schemes (see [21, Problem 6.2]).

Our proof of Theorem 1.1 is a first step towards a solution to this problem,
as it avoids the Kirillov orbit method (which is unavailable in characteristic
p) and Lie algebras (which are often less effective or inadequate in character-
istic p). Moreover, the model theoretic rationality result of Cluckers which
we use has a version for uniformly definable equivalence classes over local
fields of characteristic p, for large enough p (see Nguyen [24]). On the other
hand, an essential ingredient in our proof of Theorem 1.1 is du Sautoy’s
parametrisation of finite index subgroups of G, which only works in char-
acteristic 0. To go further, one will have to narrow down the set of those
subgroups of a pro-p group from which all irreducible characters can be
obtained by induction of linear characters.

2. Basics from model theory

In this section we introduce the necessary tools and notation from model
theory. We refer the interested reader to the first chapters of [22] and [26] for
further details. In particular, we refer to [26, Section 1.1] for the concepts
of (many-sorted) languages, structures, and definability (with or without
parameters). By convention, for us a definable set will always mean an
∅-definable set (which is also called 0-definable set in [26, Section 1.1]).

In the present paper we will use languages that model the field Qp and
p-adic analytic groups. Preceding authors have used a number of languages
for these two objects; we review and compare those that are relevant for us.

2.1. The language of p-adic analytic groups. Let N0 denote the set of
non-negative integers. It will often be necessary for us to show definability
in structures whose underlying set is a pro-p group. In these situations, fol-
lowing [11], we will use a language whose constants, functions and relations
closely resemble the those in a normal pro-p subgroup N inside a p-adic ana-
lytic group G. The following definition is our version of [11, Definition 1.13].

Definition 2.1. Let N be a normal pro-p subgroup of a p-adic analytic
group G. The language LN has two sorts s1 (also called the group sort)
and s2, constant symbols in the sort s1 for each element of N , and a binary
relation symbol x | y of sort (s1, s1). We have the following function symbols,
which all have target sort s1:

i) a binary function symbol x.y of source type (s1, s1);
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ii) a unary function symbol x−1 of source type s1;
iii) a binary function symbol xλ of source type (s1, s2);
iv) for each, g ∈ G, a unary function symbol ϕg of source type s1.

We define an LN -structure MN with underlying set N for the first sort
and Zp for the second sort. The interpretation of the symbols in LN as
operations in the group N is immediately suggested by the notation, with
the exception of x | y and the functions ϕg. The latter is interpreted as the
conjugation function N → N , x 7→ gxg−1. In order to interpret x | y we
will use that N is a pro-p group. Recall that the lower p-series of a pro-p
group H is defined as H1 ≥ H2 ≥ · · · , where

H1 = H, and Hi+1 = Hp
i [Hi, H],

where Hp
i [Hi, H] denotes the closure of Hp

i [Hi, H] as a topological subgroup
of H. We interpret x | y as the relation ω(x) ≥ ω(y), where ω is as follows.

Definition 2.2 ([11, Definition 1.12]). Define ω : N → N∪{∞} by ω(g) = n
if g ∈ Nn \Nn+1 and ω(1) =∞.

2.2. The analytic language of the p-adic numbers. We recall the def-
inition of the language used in [14, Appendix A].

Definition 2.3. The language Lan is a three-sorted language with a valued
field sort VF, a value group sort VG and a residue field sort RF. We have
all constants, functions and relations of Lring = {+,−, ·, 0, 1} for the valued
field and the residue field sort, and all constants, functions and relations of
Loag = {+, <, 0} for the value group sort. In addition, Lan contains

i) for m ≥ 0, a function symbol f with source type VFm and target sort
VF for each convergent power series in m variables with coefficients
in Zp;

ii) a function symbol ord with source type VF and target sort VG;
iii) a function symbol ac with source type VF and target sort RF.

We define an Lan-structure Man with underlying sets Qp for the valued
field sort, Z∪ {−∞} for the value group, and Fp (the field with p elements)
for the residue field sort. The constants, functions and relations of Lring and
Loag are interpreted in the usual way. The functions f are interpreted as
restricted analytic functions defined by the power series they correspond to:

fMan : Qm
p −→ Qp, X 7−→

{∑
i∈Nm

0
aiX

i1
1 · · ·Xim

m if X ∈ Zmp
0 otherwise.

The function symbol ord is interpreted as the valuation map on Qp (the
valuation of 0 is −∞). Finally the function symbol ac is interpreted as
acMan : Qp → Fp sending 0 to 0 and x to

xp−ord
Man (x) mod p.
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We show that there is a set of rules thorough which definable sets inMN

may be interpreted as definable sets in Man. We shall need the concept of
definable interpretation, for which we refer the reader to [13, Section 5.3].

Let N be a uniform pro-p group and let n1, . . . , nd be a minimal set
of topological generators for N . By [9, Proposition 3.7], N is in bijection

with Zdp via the map (λ1, . . . , λd) 7→ nλ11 · · ·n
λd
d . If g ∈ N is such that

g = nλ11 · · ·n
λd
d for some λ1, . . . , λd ∈ Zp we say that (λ1, . . . , λd) are its

Zp-coordinates (with respect to n1, . . . , nd).

Lemma 2.4. Suppose that N is a uniform normal pro-p group of a compact
p-adic analytic group G. Then MN is definably interpreted in Man.

Proof. Let LDan be the analytic language in [11, Definition 1.6], [8, Sec-
tion 0.6] and letMD

an be the corresponding structure with underlying set Zp
and the interpretations in [11, Definition 1.5]. Theorem 1.18 and Lemma 1.19
in [11] give the definable interpretation of MN in MD

an. It is easy to con-
strue the function symbol D of LDan as a definable function in Man, so that
the structure MD

an is definably interpreted in Man. �

2.3. Rationality and definable enumerations in Man. The following
definition is taken from [14] (Section 6, before Theorem 6.1).

Definition 2.5. Let d ∈ N. A definable family of subsets of Qd
p is a definable

subset of Qd
p ×Z in Man. If X ⊆ Qd

p ×Z is a definable family, we define X`

to be the fibre above ` ∈ Z of the projection map X → Z.

Definition 2.6. A definable family of equivalence relations on a definable
family X is an equivalence relation E on X such that if (x, y) ∈ E, then
there is an ` ∈ Z such that x, y ∈ X`. This gives a definable equivalence
relation on X` for each ` ∈ Z, namely E` = E ∩ (X` ×X`).

Notice that, since N0 is a definable subset of Z in Man, we may replace
Z with N0 in the two definitions above.

Theorem 2.7 ([14, Theorem A.2]). Let d ∈ N. Let E be a definable family
of equivalence relations inMan on a definable family X ⊆ Qd

p×N0. Suppose
that for each n ∈ N0 the quotient Xn/En is finite, say, of size an. Then the
Poincaré series ∑

n∈N0

ant
n

is a rational power series in t over Q whose denominator is a product of
factors of the form (1− pitj) for some integers i, j with j > 0.

Proof. The proof is the same as the one at the end of Appendix A in [14].
The only difference is that instead of setting Y to be the set of non-negative
integers, we set Y = {n ∈ N0 | Xn 6= ∅}. This set is definable in Man

because it is the projection of X on the Z-component of Qd
p ×Z. Thus Y is

definable because X is. The rest of the proof remains unchanged. �
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3. Preliminaries on projective representations

The main representation theoretic steps of our proof (Section 5) will use
projective representations and projective characters of (pro-)finite groups.
In this section, we collect the definitions and results that we will need. We
use [15], [17] and [18] as sources for this theory (precise references for the
non-trivial results are given below).

In the following, we regard any GLn(C) with its discrete topology. All
the definitions and results in this section apply to finite groups, regarded as
discrete profinite groups. In fact, the results are trivial generalisations from
the finite groups case because we consider only continuous representations
and finite index subgroups. We will however need to apply the results to
infinite profinite groups.

From now on, we will consider only continuous representations and their
characters. Let G be a profinite group and N an open normal subgroup. We
define Irr(G) to be the set of characters of continuous irreducible complex
representations of G. For any subgroup K ≤ G and θ ∈ Irr(K), we denote
by Irr(G | θ) the set of irreducible characters of G whose restriction to K
contains θ. The elements of Irr(G | θ) are said to lie above or to contain θ.

For any K ≤ G, we write

IrrK(N) = {θ ∈ Irr(N) | StabG(θ) = K}
for the irreducible characters of N whose stabiliser under the conjugation
action of G is precisely K.

We call (K,N, θ) a character triple if θ ∈ Irr(N) and K fixes θ, that is, if
K ≤ StabG(θ). Thus IrrG(N) is the set of character triples (G,N, θ).

A projective representation of G is a continuous function ρ : G→ GLn(C),
such that there exists a continuous function α : G×G→ C× satisfying

ρ(g)ρ(h) = ρ(gh)α(g, h) for all g, h ∈ G.
The function α is called the factor set of ρ. The projective character of ρ is
the function G→ C given by g 7→ tr(ρ(g)).

Just like for finite groups, one shows that the factor sets on G × G are
precisely the elements in the group Z2(G) := Z2(G,C×) of continuous 2-
cocycles with values in C× (see [15, (11.6)]). Moreover, we have the subgroup
B2(G) := B2(G,C×) of 2-coboundaries and the cohomology group H2(G) =
Z2(G)/B2(G), the Schur multiplier of G. It is well known that the Schur
multiplier of a finite group is finite (see [15, (11.15)]).

Two projective representations ρ and σ are said to be similar if there
exists a T ∈ GLn(C) such that ρ(g) = Tσ(g)T−1, for all g ∈ G. Two
projective representations have the same projective character if and only if
they are similar. Note that there exists a notion of equivalent projective
representations which we will not use.

Projective representations with factor set α naturally correspond to mod-
ules for the twisted group algebra C[G]α (see, e.g., [15, Section 11]). It
is well known that this algebra is semisimple. A projective representation
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Θ with factor set α and the character it affords are called irreducible if Θ
corresponds to a simple C[G]α-module. We let

PIrrα(G)

denote the set of irreducible projective characters of G with factor set α.

Definition 3.1. Let Θ be an irreducible representation of N fixed by K ≤
G. We say that a projective representation Π of K strongly extends (or is a
strong extension of) Θ if for all g ∈ K and n ∈ N , we have:

i) Π(n) = Θ(n),
ii) Π(ng) = Π(n)Π(g),

iii) Π(gn) = Π(g)Π(n).

Moreover, in this situation, we say that the projective character of Π strongly
extends (or is a strong extension of) the character of Θ.

Lemma 3.2. Let Θ be an irreducible representation of N fixed by K ≤ G
and let Π be a projective representation of G with factor set α such that
Π(n) = Θ(n), for all n ∈ N . Then Π strongly extends Θ if and only if
α(g, n) = α(n, g) = 1, for all g ∈ G and n ∈ N .

Proof. The definition of factor set gives that

Π(ng)α(n, g) = Π(n)Π(g),

so Π(ng) = Π(n)Π(g) is equivalent to α(n, g) = 1. Similarly Π(gn) =
Π(g)Π(n) is equivalent to α(g, n) = 1. �

Theorem 3.3. Let Θ be an irreducible representation of N fixed by K ≤ G.
There exists a projective representation Π of K which strongly extends Θ.
Let α̂ be the factor set of Π. Then α̂ is constant on cosets in K/N , so we
have a well-defined element α ∈ Z2(K/N) given by

α(gN, hN) = α̂(g, h).

Moreover, we have a well-defined function

CK : {θ ∈ Irr(N) | K ≤ StabG(θ)} −→ H2(K/N), CK(θ) = [α].

Proof. Since N is open in K and every representation of N factors through
a finite quotient, we can reduce to the case of finite groups. Now, the
statements are contained in (the proofs of) [15, (11.2) and (11.7)]. �

Lemma 3.4. Let θ be an irreducible character of N fixed by K ≤ G, let
α ∈ Z2(K/N) be a representative of the cohomology class CK(θ) and let α̂
be the pull-back given by α̂(g, h) = α(gN, hN), for g, h ∈ K. Assume that
α is trivial on N ×N (i.e, not merely constant but equal to 1). Then there
exists a strong extension of θ to K with factor set α̂.

Proof. Let θ̂ be a strong extension of θ. Let β̂ be the factor set of θ̂ and
β ∈ Z2(K/N) such that β(gN, hN) = β̂(g, h). By Theorem 3.3, there is a

δ ∈ B2(K/N) such that α = βδ. Pulling back to K, we get α̂ = β̂δ̂, where
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δ̂(g, h) = δ(gN, hN) for g, h ∈ K. Since δ̂ is a coboundary, there is a γ̂ : K →
C×, that is constant on cosets of N and such that δ̂(g, h) = γ̂(gh)−1γ̂(g)γ̂(h),

for g, h ∈ K. As both α̂ (by definition) and β̂ (by Lemma 3.2) are trivial on
N × N , the function γ̂|N is a constant homomorphism. We conclude that

γ̂|N= 1 and γ̂θ̂ is a strong extension of θ with factor set α. �

For any H ≤ G and factor set α ∈ Z2(G), we denote the restriction of α
to H ×H by αH . Suppose that H is open in G, and let α ∈ Z2(G). If χ is a
projective character of H with factor set αH , we define the induced projective
character IndGH,α χ as the character of the induced projective representation
given by tensoring by the twisted group algebra Cα[G] (see [18, I, Section 9]).
Then IndGH,α χ is a projective character of G with factor set α. A projective
character with trivial factor set is the character of a linear representation
and in this case we omit the factor set, so that our notation coincides with
the standard notation for induced characters of linear representations.

In Section 5 we will freely use basic facts about projective characters
which are direct analogues of well known results for ordinary characters; for
example: Frobenius reciprocity [18, Ch. 1, Lemma 9.18], Mackey’s intertwin-
ing number formula [18, Ch. 1, Theorem 8.6], and the fact that the inner
product 〈χ, χ′〉 of two projective characters, with χ irreducible, equals the
multiplicity of χ as an irreducible constituent of χ′ [18, Ch. 1, Lemma 8.10].

Lemma 3.5. Let P be a pro-p group. Then any projective representation
is induced from a one-dimensional projective representation of an open sub-
group of P .

Proof. By definition, every projective representation of P factors through a
finite quotient. Since a finite p-group is supersolvable, the result now follows
from [17, Ch. 3, Theorem 11.2]. �

3.1. Projective representations and Clifford theory. If two projective
representations of a group G have factor sets α and β, respectively, then their
tensor product has factor set αβ. This is an immediate consequence of the
definitions, but is a fact that we will use repeatedly throughout the paper.
The following two lemmas are due to Clifford [7, Theorems 3-5], but are not
stated in the literature in a form that is useful for us.

Lemma 3.6. Let (K,N, θ) be a character triple. Let θ̂ ∈ PIrrα̂(K) be a
strong extension of θ, so that CK(θ) = [α]. For any π ∈ PIrrα−1(K/N), let
π ∈ PIrrα̂−1(K) denote the pull-back of π along the map K → K/N . Then

there is a bijection PIrrα−1(K/N)→ Irr(K | θ) given by π 7→ θ̂π.

Proof. Since θ factors through a finite group, the statements immediately
reduce to the case where K and N are finite. The fact that π 7→ θ̂π is a func-
tion with the given domain and codomain is proved in [23, Theorem 5.8 (ii)]
in the context of projective representations. This immediately implies the
corresponding fact for projective characters. The fact that it is surjective is
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[23, Theorem 5.8 (i)]. We prove injectivity using a simplified version of the
argument in [7, p. 545-546]. Let Θ be a K-fixed irreducible representation of

N and let Θ̂ be a strong extension of Θ to K with factor set α̂. Let Π,Π
′
be

irreducible projective representations of K/N with factor set α−1, and let

Π,Π′ be their pull-backs to K. Let d = dim Θ̂ = dim Θ, e = dim Π = dim Π

and e′ = dim Π′ = dim Π
′
. Assume that Θ̂ ⊗ Π is similar to Θ̂ ⊗ Π′. Then

Π ⊗ Θ̂ is also similar to Π ⊗ Θ̂′, that is, there exists a P ∈ GLde(C) such
that for all k ∈ K,

P−1(Π(k)⊗ Θ̂(k))P = Π′(k)⊗ Θ̂(k).

Then, for any n ∈ N , we have P−1(α̂(1, 1)−1Ie ⊗ Θ(n))P = α̂(1, 1)−1Ie ⊗
Θ(n), and thus

P−1(Ie ⊗Θ(n))P = Ie ⊗Θ(n).

The matrix Ie⊗Θ(n) is the value at n of the representation Θ⊕e, so Schur’s
lemma implies that P is a block matrix consisting of e2 scalar blocks of size
d× d, that is, P = Q⊗ Id, for some Q ∈ GLe(C). Hence, for all k ∈ K,

0 = P−1(Π(k)⊗ Θ̂(k))P −Π′(k)⊗ Θ̂(k) = (Q−1Π(k)Q−Π′(k))⊗ Θ̂(k).

This implies that Θ̂(k)⊗(Q−1Π(k)Q−Π′(k)) = 0, so since Θ̂(k) is non-zero,
we must have Q−1Π(k)Q = Π′(k), by the definition of Kronecker product.

We have thus proved that if Θ̂⊗Π has the same character as Θ̂⊗Π′, then
Π has the same character as Π′, and this proves the asserted injectivity. �

Lemma 3.7. Let θ, θ′ ∈ Irr(N) be two characters fixed by K such that

CK(θ) = CK(θ′) = [α], for some α ∈ Z2(K/N). Let θ̂, θ̂′ ∈ PIrrα̂(K) be
strong extensions of θ and θ′, respectively, where α̂ is the pull-back of α to
K (such θ̂ and θ̂′ exist thanks to Lemma 3.4). Then there is a bijection

σ : Irr(K | θ) → Irr(K | θ′), θ̂π 7→ θ̂′π, where π is the pull-back of π ∈
PIrrα−1(K/N), such that

(θ̂π)(1)

θ(1)
=
σ(θ̂π)(1)

θ′(1)
.

Proof. Lemma 3.6 implies that σ is a bijection. For the statement regarding
ratios of degrees, it remains to note that

(θ̂π)(1) = θ̂(1)π(1) and (θ̂′π)(1) = θ̂′(1)π(1).

�

The following is a well known result from the cohomology of finite groups.
Note that we write the abelian group structure of cohomology groups mul-
tiplicatively as this will be more natural for the cohomology groups we will
consider.

Lemma 3.8. Let G be a finite group of order m and let A be a G-module.
For any integer i ≥ 1, the following holds:
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i) For any x ∈ Hi(G,A), we have xm = 1. Thus, if Hi(G,A) is finite
and if a prime p divides |Hi(G,A)|, then p divides m.

ii) If P is a Sylow p-subgroup of G, then the restriction homomorphism
resG,P : Hi(G,A)→ Hi(P,A) restricts to an injection

resp : Hi(G,A)(p) ↪−→Hi(P,A),

where Hi(G,A)(p) is the p-torsion subgroup of Hi(G,A). Thus, if

Hi(P,A) = 1 for all Sylow p-subgroups and all primes p | m, then
Hi(G,A) = 1.

Proof. See, for example, Corollaries 2 and 3 of [25, Theorem 7.26]. �

Since any torsion abelian group (not necessarily finite) is a direct sum
of its p-torsion subgroups where p runs through all torsion primes (see [25,
Theorem 5.5]), Lemma 3.8 i) implies that Hi(G,A)(p) is the p-primary com-

ponent of Hi(G,A). In general, for any torsion abelian group M we will
denote its p-primary component (possibly trivial) by M(p). Similarly, we
will write m(q) for the q-part of an element m ∈M .

4. Reduction to the partial zeta series

Let G be a representation rigid profinite group, such that there exists a
finite index normal pro-p subgroup N ≤ G. For example, one can take G
to be FAb and compact p-adic analytic (see [9, Corollary 8.34]). For any
K ≤ G such that N ≤ K, let Kp be a pro-p Sylow subgroup of K. Since N
is normal and pro-p we necessarily have N ≤ Kp. For c ∈ H2(Kp/N), define

IrrcK(N) = {θ ∈ IrrK(N) | CKp(θ) = c},
where CKp is the function defined in Theorem 3.3. Note that any two choices
of Kp are G-conjugate, so up to the natural identification of the groups
H2(Kp/N), for different Kp, the set IrrcK(N) is independent of Kp. We call

ZcN ;K(s) =
∑

θ∈IrrcK(N)

θ(1)−s

a partial zeta series. Since H2(Kp/N) is finite, there are only finitely many
partial zeta series and

ZN (s) =
∑

N≤K≤G

∑
c∈H2(Kp/N)

ZcN ;K(s)

for fixed G and N . Following Jaikin-Zapirain [16, Section 5], we show how
the (virtual) rationality of ZG(s), and thus of ζG(s), is reduced to the ratio-
nality in p−s of the partial zeta series.

Let (K,N, θ) be a character triple. By Clifford’s theorem, λ(1)/θ(1) is an
integer for any λ ∈ Irr(K | θ), so we may define the finite Dirichlet series

f(K,N,θ)(s) =
∑

λ∈Irr(K|θ)

(
λ(1)

θ(1)

)−s
.
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The following result is contained in [16, Proposition 5.1]. We give a
complete proof, which adds several steps involving Schur multipliers.

Lemma 4.1. Let N be a finite index pro-p group in K and let (K,N, θ)
and (K,N, θ′) be two character triples. If CKp(θ) = CKp(θ′), then

CK(θ) = CK(θ′) and f(K,N,θ)(s) = f(K,N,θ′)(s).

Proof. By the remark after Lemma 3.8, any c ∈ H2(K/N) can be written
as c =

∏
q c(q), where q runs through the primes dividing |K/N | and c(q) ∈

H2(K/N)(q) is the q-primary component of c. Let q be a prime dividing
|K/N | and let Kq ≤ K be such that Kq/N is a Sylow q-subgroup of K/N
(note that this agrees with our notation Kp for q = p). By Lemma 3.8,
resq : H2(K/N)(q) → H2(Kq/N) is injective.

Since resK/N,Kq/N has a q-group as target, this homomorphism is trivial

on H2(K/N)(`) for primes ` 6= q; hence resq(CK(θ)(q)) = resK/N,Kq/N (CK(θ)).
Restricting a strong extension of θ to K down to Kp, it is straightforward
to show that resK/N,Kq/N (CK(θ)) = CKq(θ), so

(4.1) resq(CK(θ)(q)) = CKq(θ) (and similarly for θ′).

Now, if q 6= p, then p - |Kq/N |, so by [15, (8.16)], θ extends to Kq, and
thus CKq(θ) = 1. By (4.1) we obtain resq(CK(θ)(q)) = 1, whence CK(θ)(q) = 1
(by the injectivity of resq). We must therefore have CK(θ) = CK(θ)(p), and
since θ was arbitrary, we also have CK(θ′) = CK(θ′)(p). For q = p, (4.1) gives

resp(CK(θ)(p)) = CKp(θ) = CKp(θ′) = resp(CK(θ′)(p)),

and we conclude that CK(θ)(p) = CK(θ′)(p), and thus CK(θ) = CK(θ′).
Now Lemma 3.7 gives a bijection σ : Irr(K | θ) → Irr(K | θ′) such that
λ(1)/θ(1) = σ(λ)(1)/θ′(1). Thus f(K,N,θ)(s) = f(K,N,θ′)(s) also holds. �

Let S denote the set of subgroups K ≤ G such that N ≤ K and
StabG(θ) = K, for some θ ∈ Irr(N).

Proposition 4.2. Suppose that ZcN ;K(s) is rational in p−s, for every K ∈ S
and every c ∈ H2(Kp/N). Then Theorem 1.1 holds.

Proof. By Clifford’s theorem, for every ρ ∈ Irr(G), there are |G : StabG(θ)|
distinct characters θ ∈ Irr(N) such that ρ ∈ Irr(G | θ). Thus

ZG(s) =
∑

ρ∈Irr(G)

ρ(1)−s =
∑

θ∈Irr(N)

1

|G : StabG(θ)|
∑

ρ∈Irr(G|θ)

ρ(1)−s.

By standard Clifford theory (see [15, (6.11)]), induction yields a bijection
between Irr(StabG(θ) | θ) and Irr(G | θ), for every θ ∈ Irr(N), so∑

ρ∈Irr(G|θ)

ρ(1)−s =
∑

λ∈Irr(StabG(θ)|θ)

(λ(1) · |G : StabG(θ)|)−s.
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This implies that

ZG(s) =
∑

θ∈Irr(N)

|G : StabG(θ)|−s−1
∑

λ∈Irr(StabG(θ)|θ)

θ(1)−s
(
λ(1)

θ(1)

)−s
=

∑
θ∈Irr(N)

|G : StabG(θ)|−s−1θ(1)−sf(StabG(θ),N,θ)(s)

=
∑
K∈S
|G : K|−s−1

∑
θ∈IrrK(N)

θ(1)−sf(K,N,θ)(s).

By Lemma 4.1, f(K,N,θ)(s) = f(K,N,θ′)(s), for θ, θ′ ∈ Irr(N) if CKp(θ) =
CKp(θ′). By the above, we can therefore write

ZG(s) =
∑
K∈S
|G : K|−s−1

∑
c∈H2(Kp/N)

f cK(s)ZcN ;K(s)

where f cK(s) := f(K,N,θ)(s) for some (equivalently, any) character triple
(K,N, θ) such that CKp(θ) = c.

The set S is finite and the group H2(Kp/N) is also finite by [15, (11.15)].
From the assumption that ZcN ;K(s) is rational in p−s, it now follows that

ZG(s), and hence ζG(s), is virtually rational. Moreover, if G is pro-p, then
|G : K| is a power of p for any subgroup K, and likewise λ(1) is a power of
p for any λ ∈ Irr(K), so f(K,N,θ)(s) is a polynomial in p−s. Thus, when G is

pro-p, ZG(s), and hence ζG(s), is rational in p−s. �

5. Cohomology classes and degree one characters

To prove the rationality in p−s of the partial zeta series ZcN ;K(s) for G FAb

compact p-adic analytic, we will prove that the set IrrcK(N) is in bijection
with the set of equivalence classes of a definable equivalence relation on a
definable set in Man. To this end, we need to show that the condition
CKp(θ) = c is equivalent to a similar condition where Kp is replaced by a
subgroup H of Kp and θ is replaced by a character χ of N ∩H of degree one.
In this section we will state and prove the main technical result allowing for
this reduction.

As in the previous section, let G be a profinite group possessing a finite
index normal pro-p subgroup N ≤ G. All the results in the present section
are really theorems about finite groups with trivial generalisations to profi-
nite groups, and the reader may assume that G is finite with the discrete
topology throughout the section (without changing any of the proofs). We
work in the profinite setting because this is what we will need to apply the
results to in Section 6.

For any K ≤ G such that N ≤ K, define the set

H(K) = {H ≤ K | H open in K, K = HN}.

From now on, and until the end of Section 6, let N ≤ K ≤ G be fixed.
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Lemma 5.1. Let γ ∈ Z2(Kp), H ∈ H(Kp) and η ∈ PIrrγH (H) be of degree

one. If IndNN∩H,γN ResHN∩H η or Res
Kp

N Ind
Kp

H,γ η is irreducible, then

IndNN∩H,γN ResHN∩H η = Res
Kp

N Ind
Kp

H,γ η.

Proof. By Mackey’s induction-restriction formula and Frobenius reciprocity
for projective representations,〈

IndNN∩H,γN ResHN∩H η,Res
Kp

N Ind
Kp

H,γ η
〉

=
〈

ResHN∩H η,Res
Kp

N∩H Ind
Kp

H,γ η
〉

=
∑

g∈(N∩H)\Kp/H

〈
ResHN∩H η, IndN∩HN∩H∩gH,γN∩H

Res
gH
N∩H∩gH

gη
〉

≥
〈
ResHN∩H η,ResHN∩H η

〉
= 1.

Here g ∈ Kp denotes an arbitrary representative of g. Since Kp = HN and

|Kp : N | · |N : N ∩H| = |Kp : H| · |H : N ∩H| = |Kp : H| · |HN : N |,

we deduce that |N : N ∩ H| = |Kp : H|. Hence IndNN∩H,γN ResHN∩H η and

Res
Kp

N Ind
Kp

H,γ η have the same degree, so if one of them is irreducible, they
are equal. �

For H ≤ Kp such that Kp = HN , we let f̃H : Z2(H/(N ∩ H)) →
Z2(Kp/N) be the isomorphism induced by pulling back cocycles along the
isomorphism Kp/N → H/(N ∩ H). We describe this isomorphism more
explicitly. Since Kp = HN , every coset in Kp/N contains a unique coset in
H/(N ∩H). Then, for α ∈ Z2(H/(N ∩H)) and g, g′ ∈ Kp,

(5.1) f̃H(α)(gN, g′N) = α(h(N ∩H), h′(N ∩H))

where h, h′ are such that h(N ∩H) ⊆ gN and h′(N ∩H) ⊆ g′N . Moreover,
for β ∈ Z2(Kp/N) and h, h′ ∈ H,

f̃−1H (β)(h(N ∩H), h′(N ∩H)) = β(hN, h′N).

We denote by fH the corresponding induced isomorphism

H2(H/(N ∩H)) −→ H2(Kp/N).

Proposition 5.2. Let (K,N, θ) be a character triple. Then there exists an
H ∈ H(Kp) and a character triple (H,N ∩H,χ) such that:

i) χ is of degree one,
ii) θ = IndNN∩H χ,

iii) CKp(θ) = fH(CH(χ)).

Moreover, let H ∈ H(Kp) be such that (H,N ∩ H,χ) is a character triple
with χ of degree one, such that (K,N, θ) is a character triple, where θ =
IndNN∩H χ. Then CKp(θ) = fH(CH(χ)).
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Proof. Assume that (K,N, θ) is a character triple. By Theorem 3.3, there

exists an α ∈ Z2(Kp/N) such that [α] = CKp(θ) and a θ̂ ∈ PIrrα̂(Kp) strongly
extending θ. Note that by Lemma 3.2, α̂(n, x) = α̂(x, n) = 1, for all n ∈ N
and x ∈ Kp, so in particular, α̂N = 1.

By Lemma 3.5, there exist an open subgroup H of Kp and η ∈ PIrrα̂H
(H)

of degree one such that θ̂ = Ind
Kp

H,α̂ η. Then θ = Res
Kp

N Ind
Kp

H,α̂ η is irreducible,
so

1 =
〈

Res
Kp

N Ind
Kp

H,α̂ η,Res
Kp

N Ind
Kp

H,α̂ η
〉

=

=
∑

g∈N\Kp/H

∑
h∈N\Kp/H

〈
IndNN∩gH Res

gH
N∩gH

gη, IndN
N∩hH

Res
hH
N∩hH

hη
〉

=
∑

g∈Kp/HN

∑
h∈Kp/HN

〈
IndNN∩gH Res

gH
N∩gH

gη, IndN
N∩hH

Res
hH
N∩hH

hη
〉

≥
∑

g∈Kp/HN

〈
IndNN∩gH Res

gH
N∩gH

gη, IndNN∩gH Res
gH
N∩gH

gη
〉

≥ |Kp : HN |.

Thus, |Kp : HN | = 1, and so Kp = HN , that is, H ∈ H(Kp).

Next, let χ = ResHN∩H η. Then χ is fixed by H, and Lemma 5.1 (with

γ = α̂) implies that θ = IndNN∩H χ. Moreover, let αH ∈ Z2(H/(N ∩H)) be
defined as

αH(h(N ∩H), h′(N ∩H)) = α̂H(h, h′) for h, h′ ∈ H.

Then fH([αH ]) = CKp(θ). We conclude that CKp(θ) = fH(CH(χ)), because
η strongly extends χ.

Assume now that (H,N ∩H,χ) and (K,N, θ) are as in the second part
of the statement. By Theorem 3.3, there exists a β ∈ Z2(H/(N ∩H)) and a
χ̂ ∈ PIrrβ̂(H) strongly extending χ, such that [β] = CH(χ). Let γ ∈ Z2(Kp)

be the pull-back of f̃H(β) ∈ Z2(Kp/N). Then, for any h, h′ ∈ H,

γH(h, h′) = γ(h, h′) = f̃H(β)(hN, h′N) = β(h(N∩H), h′(N∩H)) = β̂(h, h′),

where in the second to last step we have used (5.1). Thus γH = β̂, and since
θ is irreducible, Lemma 5.1 (with η = χ̂) implies that

θ = IndNN∩H,γN ResHN∩H χ̂ = Res
Kp

N Ind
Kp

H,γ χ̂.

Hence Ind
Kp

H,γ χ̂ is an extension of θ and we show that it is in fact a strong

extension (see Definition 3.1). Indeed, as γ is constant on cosets of N in Kp,

γ(x, n) = γ(hn′, n) = γ(h, 1) = γH(h, 1) = β̂(h, 1) = 1,

where we have written x = hn′, with h ∈ H, n′ ∈ N and β̂(h, 1) = 1 by

Lemma 3.2, because β̂ is the factor set of a strong extension. In a similar way,

we show that γ(n, x) = 1; thus, by Lemma 3.2, we conclude that Ind
Kp

H,γ χ̂
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strongly extends θ. Since Ind
Kp

H,γ χ̂ has factor set γ, which descends (modulo

N) to f̃H(β), it follows that CKp(θ) = [f̃H(β)] = fH([β]) = fH(CH(χ)). �

It will be useful for us to state a consequence of Proposition 5.2 in terms
of a commutative diagram. To this end, let XK be the set of pairs (H,χ)
with H ∈ H(Kp), where:

i) (H,N ∩H,χ) is a character triple.
ii) χ is of degree one,

iii) IndNN∩H χ ∈ IrrK(N).

Note that θ ∈ IrrK(N) means that K = StabG(θ), and not merely that K
is contained in the stabiliser. Define the function

C : XK −→ H2(Kp/N)

by C(H,χ) = fH(CH(χ)).

Corollary 5.3. The function XK → IrrK(N), (H,χ) 7→ IndNN∩H χ is sur-
jective and the following diagram commutes:

XK IrrK(N)

H2(Kp/N).

C
CKp

Proof. Every θ ∈ IrrK(N) defines a character triple (K,N, θ). Thus, the sur-
jectivity follows from the first statement in Proposition 5.2. The commuta-
tivity of the diagram follows by the second statement in Proposition 5.2. �

6. Rationality of the partial zeta series

From now on, let G be a FAb compact p-adic analytic group and let
N ≤ G be a normal uniform subgroup. As in Section 5, let K ≤ G be such
that N ≤ K and fix a pro-p Sylow subgroup Kp of K. In this section we show
that the set of characters IrrcK(N), for each c ∈ H2(Kp/N), is in bijection
with a set of equivalence classes under a definable equivalence relation in
Man. We deduce from this that each partial zeta series is rational in p−s

and hence prove Theorem 1.1.

6.1. Bases for p-adic analytic groups. Recall from Section 5 thatH(Kp)
= {H ≤ Kp | H open in Kp, Kp = HN}. In this section, we describe
du Sautoy’s parametrisation of H(Kp).

One starts by parametrising open subgroups of N . The following defi-
nition is from [10, p. 259] and is equivalent to [11, Definition 2.2]. Some
properties characterising open subgroups of N and some notation are nec-
essary to state it. A subgroup H of N is open if and only if it contains Nm

for some m ≥ 1, where Nm denotes the m-th term of the lower p-series of
N . Moreover, as N is uniform, raising to the power of p induces an iso-
morphism Ni/Ni+1 → Ni+1/Ni+2 and Ni+1 is the Frattini subgroup of Ni,
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for all i ∈ N (see [9, Lemma 2.4, Definition 4.1 (iii)]). Thus Ni/Ni+1 is an
Fp-vector space, and denoting by d = dimFp N/N2 the minimum number

of topological generators for N , each quotient Ni/Ni+1 is isomorphic to Fdp.
Recall the function ω in Definition 2.2.

Definition 6.1. Let H ≤ N be open with Nm ≤ H. A d-tuple (h1, . . . , hd)
of elements in H is called a good basis for H if

i) ω(hi) ≤ ω(hj) whenever i ≤ j, and
ii) for each n ≤ m, the set{

hp
n−ω(hj)

i Nn+1

∣∣ i ∈ {1, . . . , d}, ω(hi) ≤ n
}

is a basis for the Fp-vector space (Nn ∩H)Nn+1/Nn+1.

Notice that the definition is constructive so a good basis for an open
subgroup of N always exists. Notice also that a good basis for N is just
an ordered minimal set of topological generators of N and that, by [11,
Lemma 2.4 (i)], if H is an open subgroup of N and (h1, . . . , hd) is a good
basis for H, then for every h ∈ H there are λ1, . . . , λd ∈ Zp such that

h = hλ11 · · ·h
λd
d .

The recursive construction in the proof of [11, Lemma 2.4 (i)] implies that
λ1, . . . , λd are unique with the property above.

Remark 6.2. Good bases give a many-to-one parametrisation of the set of
finite index subgroups of N in terms of p-adic analytic coordinates. Indeed
the set of good bases is definable inMN by [11, Lemma 2.8]. By Lemma 2.4,
using Zp-coordinates for N , the set of good bases is interpreted as a definable
set in Man.

The parametrisation of H(Kp) is obtained by extending the parametrisa-
tion given by good bases. Let r = |Kp : N |. Fix a left transversal (y1, . . . , yr)
for N in Kp with y1 = 1. Every coset yiN contains a unique coset x(N ∩H),
with x ∈ H. Thus, x = yiti for some ti ∈ N , and we conclude that there
exist elements t1, . . . , tr ∈ N such that (y1t1, . . . , yrtr) is a left transversal
for N ∩ H in H. The following definition is from [11, Definition 2.10]; see
also [10, p. 261] (note that we use left cosets instead of du Sautoy’s right
coset convention).

Definition 6.3. Let H ∈ H(Kp). A (d + r)-tuple (h1, . . . , hd, t1, . . . , tr) of
elements in N is called a basis for H if

i) (h1, . . . , hd) is a good basis for N ∩H, and
ii) (y1t1, . . . , yrtr) is a (left) transversal for N ∩H in H.

If (h1, . . . , hd, t1, . . . , tr) is a basis for H ∈ H(Kp), it follows from the
definition that

H = 〈h1, . . . hd, y1t1, . . . , yrtr〉.
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In particular, unlike a good basis for N , a basis for H need not be a (topolog-
ical) generating set for H. Notice moreover that a basis of H always exists:
it suffices to construct a good basis (h1, . . . , hd) of N∩H as described in Def-
inition 6.1 and then find t1, . . . , tr using that each coset of N in Kp contains
a unique coset of N ∩H in H because Kp = HN . The groups, transversals
and bases appearing above are illustrated by the following diagrams:

Kp

H

N

N ∩H

(y1, . . . , yr)

(y1t1, . . . , yrtr)

(t1, . . . , tr)

(h1, . . . , hd)

Remark 6.4. By [11, Lemma 2.12], the set of bases is definable inMN , hence,
by Lemma 2.4, can be interpreted as a definable set in Man by passing to
Zp-coordinates for N .

6.2. The fibres of C in terms of degree one characters. From now on,
let c ∈ H2(Kp/N). The aim of this section is to show that the set C−1(c) may
be characterised by a predicate involving only elements of N and degree one
characters of finite index subgroups of N . We will at the end of the section
produce an Lan formula for the fibre of C. We therefore start by reducing
the range for c to a cohomology group with values in the group of roots of
unity of order a power of p. In order to do this, we need to set up some
notation. Let W ≤ C× be the group of roots of unity. This is a torsion
abelian group so it splits as

W =
∏

` prime

W(`)

where W(`) ≤ W is the group of roots of unity of order a power of `. It is
clear that W is a divisible group so by [20, XX, Lemma 4.2] it is injective
in the category of abelian groups, hence it is complemented in C×. We
may therefore fix a homomorphism C× → W , and for each prime ` denote
by π` : C× → W(`) the homomorphism obtained by composing with the
projection W →W(`).

If f is a function with image inside C× and ` is a prime, we define

f(`) = π` ◦ f.

Note that if f has finite order, that is, if f has image in W , then f(`) coincides
with the `-primary component of f . Moreover, since π` is a homomorphism,
(ff ′)(`) = f(`)f

′
(`) for all f, f ′ with the same domain and with codomain C×.
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We introduce the following groups:

Zp = Z2(Kp/N,W(p)), and Bp = B2(Kp/N,W(p)).

By [15, (11.15)] and its proof, every class in H2(Kp/N) has a representative
in Zp. Moreover, let δ ∈ B2(Kp/N) ∩ Zp. Then, by definition, there is a
function ϕ : K/N → C× such that, for all a, b ∈ K/N ,

δ(a, b) = ϕ(a)ϕ(b)ϕ(ab)−1.

Now δ has values in W(p) already, so, for all a, b ∈ K/N ,

δ(a, b) = δ(p)(a, b) = ϕ(p)(a)ϕ(p)(b)ϕ(p)(ab)
−1.

Thus δ ∈ Bp, and B2(Kp/N) ∩ Zp = Bp. It follows that the inclusion of Zp
in Z2(Kp/N) induces an isomorphism H2(Kp/N) ∼= Zp/Bp.

We now turn to describing the fibres of the map C. Define aij ∈ N and
γ : {1, . . . , r}2 → {1, . . . , r} by

(6.1) yiyj = yγ(i,j)aij .

We also define the inner automorphisms ϕi = ϕyi : G→ G, ϕi(g) = yigy
−1
i ,

for g ∈ G. The purpose of the following lemma is to show that the fibres
of C are given by a first order statement involving only values of degree one
characters, cocycles and coboundaries.

Lemma 6.5. Let (H,χ) ∈ XK and t1, . . . , tr ∈ N such that (y1t1, . . . , yrtr)
is a left transversal for N ∩ H in H. Let α ∈ Zp such that [α] = c. Then
C(H,χ) = c if and only if there exists δ ∈ Bp such that for all n, n′ ∈ N ∩H
and all i, j ∈ {1, . . . , r}, we have

(6.2) χ(t−1γ(i,j)aijϕ
−1
j (tin)tjn

′)α(yiN, yjN)δ(yiN, yjN) = χ(nn′).

Proof. We have C(H,χ) = [α] if and only if there exists a strong extension

χ̂ ∈ PIrrβ̂(H) of χ, with β̂ ∈ Z2(H) such that fH([β]) = [α]. Since every

two strong extensions of χ to H define the same element

CH(χ) ∈ H2(H/(N ∩H)),

we may without loss of generality assume that χ̂ is given by

(6.3) χ̂(yitin) = χ(n),

for all n ∈ N ∩ H and yiti. Thus C(H,χ) = [α] if and only if there exists
β ∈ Z2(H/(N ∩ H)) such that fH([β]) = [α] and such that for all n, n′ ∈
N ∩H and all i, j ∈ {1, . . . , r},

χ̂(yitinyjtjn
′)β̂(yitin, yjtjn

′) = χ̂(yitin)χ̂(yjtjn
′).

Notice that, by definition, χ̂ has values in W(p). Thus we may strengthen

the last equivalence by assuming that β̂ ∈ Z2(H,W(p)) and consequently
β ∈ Zp. The last equation is equivalent to

χ̂(yitinyjtjn
′)β(yiti(N ∩H), yjtj(N ∩H)) = χ(nn′).
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Furthermore, yiti(N ∩H) ⊆ yiN , so fH([β]) = [α] if and only if there exists
a δ ∈ Bp such that for all i, j ∈ {1, . . . , r},

β(yiti(N ∩H), yjtj(N ∩H)) = α(yiN, yjN)δ(yiN, yjN).

Notice that here we were able to restrict the range for δ to Bp, because we
could assume that β ∈ Zp and we chose α ∈ Zp.

Combining these two statements of equivalence we obtain that C(H,χ) =
[α] if and only if there exists δ ∈ Bp such that for all n, n′ ∈ N ∩H and for
all i, j ∈ {1, . . . , r},

χ̂(ntiyin
′tjyj)α(yiN, yjN)δ(yiN, yjN) = χ(nn′).

Hence, to finish the proof, we need to show that

χ̂(ntiyin
′tjyj) = χ(t−1γ(i,j)aijϕ

−1
j (tin)tjn

′).

Indeed, this follows from (6.3) and the identities

yitinyjtjn
′ = yiyjy

−1
j tinyjtjn = yiyjϕ

−1
j (tin)tjn

′

= yγ(i,j)aijϕ
−1
j (tin)tjn

′ = yγ(i,j)tγ(i,j)t
−1
γ(i,j)aijϕ

−1
j (tin)tjn

′,

noting that t−1γ(i,j)aijϕ
−1
j (tin)tjn

′ lies in H (since yitinyjtjn
′ and yγ(i,j)tγ(i,j)

do), and therefore in N ∩H. �

6.3. Definable sets for Zp and Bp. We will now introduce the definable
sets that will be used to interpret predicates quantifying over Zp and Bp.

Remark 6.6. It is well-known that Qp/Zp is isomorphic to W(p) via the map

ι : a/pm + Zp 7→ e2πia/p
m

(cf. [14, Lemma 8.7]).

Lemma 6.7. Define Z and B to be the sets of matrices (zij) ∈ Mr(Qp) such
that the map

(yiN, yjN) 7−→ ι(zij + Zp), for i, j ∈ {1, . . . , r}

is in Zp and Bp respectively. Then Z and B are definable subsets of Qr2
p in

Man.

Proof. Let (zij) ∈ Mr(Qp) and let α be the the map Kp/N×Kp/N → Qp/Zp
defined as

α(yiN, yjN) 7−→ ι(zij + Zp), i, j ∈ {1, . . . , r}.
Imposing that α satisfy the 2-cocycle identity, we obtain that (zij) ∈ Z if
and only if for all i, j, k ∈ {1, . . . , r},

zγ(i,j) k + zij = zi γ(j,k) + zjk mod Zp,
where γ is as defined in (6.1). Notice that Zp is definable in Man, hence
equivalence modulo Zp is a definable relation. It follows that the set Z is
definable in Man.

The set B is also definable in Man. Indeed, δ ∈ Bp if and only if

δ(x, y) = ϕ(x)ϕ(y)ϕ(xy)−1,
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for some function ϕ : Kp/N → Qp/Zp. We parametrise the functions
Kp/N → Qp by the r-tuples of their values on y1N, . . . , yrN . In these
coordinates, we obtain that α ∈ Bp if and only if there are b1, . . . , br ∈ Qp

with the property that for all i, j ∈ {1, . . . , r},

zij = bi + bj − bγ(i,j) mod Zp.

This is a definable predicate in Man so B is definable in Man. �

6.4. Definability of the fibres of C. We now find a definable parametri-
sation of the fibres of C in Corollary 5.3. We need the following lemma to
definably express K-stability of characters by an Lan-formula.

Lemma 6.8. Let M be a finite index subgroup of N and χ be a character
of M of degree one. Then, for all g ∈ G,

g(
IndNMχ

)
= IndNgM

gχ.

Moreover if M ′ is another finite index subgroup of N and χ, χ′ are degree
one characters of M and M ′ respectively, such that IndNM χ and IndNM ′ χ

′ are

irreducible, then IndNM χ = IndNM ′ χ
′ if and only if there exists g ∈ N such

that Res
gM
gM∩M ′

gχ = ResM
′

gM∩M ′ χ
′.

Proof. The proof of the first statement is a routine check using the formula
for an induced character. The second statement follows from Mackey’s the-
orem (cf. [14, Proposition 8.6 (c)]). �

We are ready to construct the definable set parametrising C−1(c) ⊆ XK .
Let from now on n1, . . . , nd ∈ N be a minimal topological generating set for
N .

Proposition 6.9. Let c ∈ H2(Kp/N) and let Dc be the set of pairs (λ, ξ),

λ ∈ Md×(d+r)(Zp), ξ = (ξ1, . . . , ξd) ∈ Qd
p such that:

i) the columns of λ are the Zp-coordinates with respect to n1, . . . , nd of
a basis (h1, . . . , hd, t1, . . . , tr) for some subgroup H ∈ H(Kp).

ii) The function {h1, . . . , hd} → Qp/Zp, hi 7→ ξi + Zp, extends to a
(necessarily unique) continuous H-invariant homomorphism

χ : N ∩H −→ Qp/Zp.

iii) IndNN∩H(ι ◦ χ) ∈ IrrK(N),
iv) C(H, (ι ◦ χ)) = c.

Then Dc is a definable subset of Qd(d+r+1)
p in Man.

Proof. Condition i) is expressible by an Lan-formula by [11, Lemma 2.12].
Following the proof of [14, Lemma 8.8], we show that if i) holds, then ii)
holds if and only if:

a) there exists (µij) ∈ Md(Zp) whose columns are the Zp-coordinates
of a good basis for some finite index normal subgroup M of N ∩H;
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b) there exist ξ ∈ Qp, r1, . . . , rd ∈ Zp, and h ∈ N ∩ H such that the
order of ξ in Qp/Zp is |N ∩H : M | and for every i, j ∈ {1, . . . , d},

hj =
t−1
i ϕ−1i (hrj ) mod M and riξ = ξi mod Zp.

Suppose that conditions i) and ii) in the statement hold. Then χ factors
through a finite quotient of N ∩ H. Set M = Kerχ and choose (µij) ∈
Md(Zp) such that its columns are the Zp-coordinates of a good basis of
M . Condition a) is immediately satisfied. Moreover the group (N ∩H)/M
is cyclic, because it is isomorphic to a subgroup of C×. This, together
with the H-invariance of χ, implies condition b) for h ∈ N ∩ H such that
(N ∩ H)/M = 〈hM〉, ξ := χ(h) and r1, . . . , rd ∈ Z such that, for i ∈
{1, . . . , d}, hiM = hriM .

Conversely, assume there are (µij) ∈ Md(Zp), h ∈ H, and ξ ∈ Qp such that
a) and b) hold. We define a continuous homomorphism χ : N ∩H → Qp/Zp
as follows. By [11, Lemma 1.19] the map Zp → N ∩H defined by λ 7→ hλ

is analytic in the Zp-coordinates of N and therefore it is continuous. Since
M is an open subgroup, we may find a neighbourhood of U of 0 such that
hλ ∈ M for all λ ∈ U . Now, Z is dense in Zp, so, for all i ∈ {1, . . . , d}, we
may find si ∈ (ri + U) ∩ Z. Clearly, since si ∈ ri + U , we have

hsiM = hriM = hiM,

showing that (N ∩H)/M is cyclic with generator hM .
By assumption, the order of ξ +Zp in Qp/Zp is equal to the order of hM

in (N ∩H)/M , thus there is an injective homomorphism

β : (N ∩H)/M → Qp/Zp defined by hM 7→ ξ + Zp.

We define χ : N ∩H → Qp/Zp to be the composition of β with the canonical
mapN∩H → (N∩H)/M . The latter is continuous by [9, Proposition 1.2], so
χ is a continuous homomorphism. Since y1 = 1 by assumption, t1 ∈ N ∩H.
So, for all j ∈ {1, . . . , d},

χ(hj) = χ( t
−1
1 hrj ) = rjξ + Zp = ξj + Zp.

Similarly, for i, j ∈ {1, . . . , d}, we have χ(
t−1
i ϕ−1i (hj)) = ξj + Zp showing

that χ is H-invariant.
Conditions a) and b) become Lan-formulas by passing to Zp-coordinates

with respect to n1, . . . , nd and via the interpretation of MN in Man of
Lemma 2.4. Notice that membership in N ∩H can be expressed by means
of the Zp-coordinates of N because we assumed that h1, . . . , hd is a good
basis by i). Moreover, equivalence modulo M is definable in Man, as we
have a good basis for M . Finally, the condition on the order of ξ is equivalent
to (

h(ξ
−1) ∈M

)
∧
(
∀ η ∈ Qp (ord(η) > ord(ξ)⇒ h(η

−1) /∈M)
)
.
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We now show that condition iii) is definable. To simplify notation we
will throughout the rest of the proof identify the group Qp/Zp with W(p)

through ι. Under this identification, we re-define χ = ι ◦ χ.
First we show that the irreducibility of IndNN∩Hχ is expressible as an Lan-

formula. Indeed, by Mackey’s irreducibility criterion IndNN∩H χ is irreducible
if and only if

∀ g ∈ N :
((
∀h ∈ N ∩H, χ(gh) = χ(h)

)
=⇒ g ∈ H

)
.

By i) and ii) we may rewrite the formula above in terms of λ, ξ and of
the Zp-coordinates in N . By Lemma 2.4, this gives an Lan-formula for the
irreducibility statement in condition iii). To conclude the proof that this
condition gives rise to a definable set, we show that K-invariance can also be
expressed by an Lan-formula. Indeed, let u = |K : N | and m = |G : N |. Fix
yr+1, . . . , ym ∈ G such that (y1, . . . , yu) and (y1, . . . , ym) are left transversals
of N in K and G respectively. Recall that, for g ∈ G, we denote by ϕg the
conjugation by g on N . Let

CK = {ϕyi | i ∈ {1, . . . , u}}, CG = {ϕyi | i ∈ {1, . . . ,m}}.

Notice that CK ⊆ CG. By Lemma 6.8, the stabiliser of IndNN∩H χ is equal
to K if and only the following statement holds:

(6.4) ∀ϕ ∈ CG :
(

IndNN∩H χ = IndNϕ(N∩H) χ ◦ ϕ
−1 ⇐⇒ ϕ ∈ CK

)
.

Fix i ∈ {1, . . . ,m}. Lemma 6.8 with M = N ∩ H, M ′ = yi(N ∩H) and
χ′ = yiχ implies that IndNN∩H χ = IndNϕyi (N∩H) χ ◦ ϕ−1yi if and only if

∃ g ∈ N, ∀h ∈ N ∩H :
(
gh ∈ yi(N ∩H) =⇒ χ(h) = yiχ(gh)

)
.

Again, by i) and ii), we may write the latter in terms of λ, ξ and of the
Zp-coordinates in N . Substituting in (6.4) finishes the proof that condition
iii) is definable. Notice that we are allowed to conjugate elements of N by
elements of G because there are corresponding function symbols ϕg in LN
(and these are interpreted as definable functions in Man by Lemma 2.4).

Finally we show that also iv) can be expressed by an Lan-formula. Fix
β ∈ Zp such that [β] = c. By Lemma 6.5, condition iv) is equivalent to

(6.5) ∃ δ ∈ Bp :

( ∧
i,j∈{1,...,r}

∀n, n′ ∈ N ∩H

(
χ(t−1γ(i,j)aijϕ

−1
j (tin)tjn

′)β(yiN, yjN)δ(yiN, yjN) = χ(nn′).
))

.

We describe how the above is translated to an Lan-formula. First, the mul-
tiplications by aij , ti, tj etc. are analytic functions N → N , which have
corresponding expressions in Lan. Secondly, we need to choose a (bij) ∈ Z
corresponding to β and replace β(yiN, yjN) by bij . In general, this could
cause the final Lan-formula to have parameters in Qp, which we might not be
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able to eliminate. However, every class in Qp/Zp has a representative in Q.
If a rational representative is chosen for each β(yiN, yjN) and we multiply
every equation in the conjunction by a suitable power of p, then we may
assume the bij ’s are parameters in Z, which (in the final Lan-formula) we
can replace with Lan-expressions evaluating to them in Man (e.g. b ∈ Z≥0
is replaced by 1 + · · ·+ 1 where 1 appears b times).

Next, we replace (∃δ ∈ Bp) by (∃(dij) ∈ B) where B is as in Lemma 6.7,
and we replace δ(yiN, yjN) by dij . Finally, by i) and ii) again, we write
the equations in (6.5) as congruences modZp with variables λ, ξ, the Zp-
coordinates of n and n′, and dij . This gives the required Lan-formula. �

Proposition 6.9 shows that there is a surjective map Ψ : Dc → C−1(c)
defined by (λ, ξ) 7→ (H,χ) where H ∈ H(Kp) is the subgroup correspond-
ing to the basis (h1, . . . , hd, t1, . . . , tr) of Proposition 6.9 i) and χ is as in
Proposition 6.9 ii).

6.5. Finishing the proof of Theorem 1.1. We write the partial zeta se-
ries as a generating function enumerating the equivalence classes of a family
of definable equivalence relations. We conclude rationality of the partial
zeta series by Theorem 2.7. Theorem 1.1 then follows from Proposition 4.2.

We start by constructing a definable equivalence relation on Dc whose
equivalence classes will be in bijection with IrrcK(N). Let (λ, ξ), (λ′, ξ′) ∈ Dc
and let (H,χ) = Ψ(λ, ξ) and (H ′, χ′) = Ψ(λ′, ξ′). We define an equivalence
relation E on Dc by

((λ, ξ), (λ′, ξ′)) ∈ E ⇐⇒ IndNN∩Hχ = IndNN∩H′χ
′.

Lemma 6.10. The relation E is definable in Man.

Proof. Let (H,χ), (H ′, χ′) be as above. Lemma 6.8 implies that IndNN∩H χ =
IndNN∩H′ χ

′ if and only if

∃ g ∈ N, ∀h ∈ N ∩H
(
gh ∈ N ∩H ′ =⇒ χ(h) = χ′(gh)

)
.

Writing this in the Zp-coordinates of N we obtain an Lan-formula, which,
after restricting to the definable set Dc, gives the Lan-formula defining E . �

Composing Ψ with the surjective map XK → IrrK(N) of Corollary 5.3
induces a bijection between the set of equivalence classes Dc/E and IrrcK(N).
We now use this bijection to produce a definable family of equivalence rela-
tions giving the partial zeta series. For (λ, ξ) ∈ Dc, write (h1(λ), . . . , hd(λ))
for the good basis associated with λ by Proposition 6.9 i). The function
f : Dc → N0 given by

(λ, ξ) 7−→
d∑
i=1

ω(hi(λ))− 1

is definable in Man because MN is definably interpreted in Man and,
under this interpretation, ω becomes a definable function by [11, Theo-
rem 1.18 (iv)]. Notice that, if Ψ(λ, ξ) = (H,χ), then, by the discussion
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preceding [11, Lemma 2.8], pf(λ,ξ) is the index of N ∩ H in N , which is
equal to the degree of IndNN∩H χ.

We now define a family of equivalence relations that will allow us to
apply Theorem 2.7 to ZcN ;K(s). Our approach is the same as in [14] after

Remark 6.3 but for a fixed prime p. We set Dc ⊆ Qd(d+r+1)
p × N0 to be the

graph of f and define an equivalence relation E ⊆ Dc ×Dc by

((x, n), (x′, n′)) ∈ Ec ⇐⇒ (x, x′) ∈ E .
Notice that, unlike [14], we do not require n = n′ here, as this condition is
vacuous whenever (x, x′) ∈ E . Clearly Dc is a definable family of subsets of

Qd(d+r+1)
p and Ec is a definable family of equivalence relations on Dc.
For all n ∈ N0 the fibre of f above n is a union of E-equivalence classes.

Therefore the set Dc
n/E

c
n is in bijection with the subset of characters of

degree pn in IrrcK(N). It follows that

ZcN ;K(s) =
∑
n∈N0

#(Dc
n/E

c
n)p−ns.

Applying Theorem 2.7 to the series above we deduce that ZcN ;K(s) is a

rational function in p−s. This concludes the proof.
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