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Abstract. The critical CR GJMS operator on a strictly pseudoconvex
CR manifold is a non-hypoelliptic CR invariant differential operator.
We prove that, under the embeddability assumption, it is essentially
self-adjoint and has closed range. Moreover, its spectrum is discrete,
and the eigenspace corresponding to each non-zero eigenvalue is a finite-
dimensional subspace of the space of smooth functions. As an applica-
tion, we obtain a necessary and sufficient condition for the existence of
a contact form with zero CR Q-curvature.
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1. Introduction

It is one of the most important topics in both conformal and CR geome-
tries to study invariant differential operators. Analytic properties of such
operators are deeply connected to geometric problems, such as the Yamabe
problem and the constant Q-curvature problem.

In conformal geometry, Graham, Jenne, Mason, and Sparling [GJMS92]
have constructed a family of conformally invariant differential operators,
called GJMS operators. Let (N, g) be a Riemannian manifold of dimension
n. For k ∈ N and k ≤ n/2 if n is even, the k-th GJMS operator Pk is a
differential operator acting on C∞(N) such that its principal part coincides
with the k-th power of the Laplacian, and it has the following transformation
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law under the conformal change ĝ = e2Υg:

e(n/2+k)ΥP̂k = Pke
(n/2−k)Υ,

where P̂k is defined in terms of ĝ. Analytic properties of Pk on closed
manifolds are quite simple. It follows from standard elliptic theory that Pk

is essentially self-adjoint and has closed range. Moreover, its spectrum is a
discrete subset of R, and the eigenspace corresponding to each eigenvalue is
a finite-dimensional subspace of C∞(N).

In CR geometry, Gover and Graham [GG05] have introduced a family
of CR invariant differential operators, called CR GJMS operators, via Fef-
ferman construction. Let (M,T 1,0M, θ) be a (2n + 1)-dimensional pseudo-
Hermitian manifold and k ∈ N with k ≤ n+1. The k-th CR GJMS operator
Pk is a differential operator acting on C∞(M) such that its principal part is
the k-th power of the sub-Laplacian, and its transformation rule under the
conformal change θ̂ = eΥθ is given by

e(n+1+k)Υ/2P̂k = Pke
(n+1−k)Υ/2,

where P̂k is defined in terms of θ̂. Although Pk is not elliptic, it is known
to be subelliptic for 1 ≤ k ≤ n [Pon08a]; in particular, the same statements
as in the previous paragraph also hold for Pk on closed manifolds. However,
the kernel of the critical CR GJMS operator Pn+1 contains the space of
CR pluriharmonic functions, which is infinite-dimensional on closed embed-
dable CR manifolds (Remark 2.1). Moreover, there exist L2 non-smooth CR
pluriharmonic functions, which implies that Pn+1 is not even hypoelliptic
(Remark 2.2). In this paper, nevertheless, we will prove that similar results
to the above are true for Pn+1 on the orthogonal complement of KerPn+1.
In what follows, we simply write P for the critical CR GJMS operator.

In the remainder of this section, let (M,T 1,0M, θ) be a closed embed-
dable pseudo-Hermitian manifold of dimension 2n+ 1. Here, “embeddable”
means that (M,T 1,0M) can be CR embedded into some CN . Note that the
embeddability automatically holds if n ≥ 2 [BdM75]. We consider P as an
unbounded operator on L2(M) with domain

DomP =
{
u ∈ L2(M)

∣∣∣ Pu in the weak sense is in L2(M)
}
.

We will first prove

Theorem 1.1. The operator P is self-adjoint and has closed range.

Moreover, we obtain the following theorem on the spectrum of P :

Theorem 1.2. The spectrum of P is a discrete subset in R and consists only
of eigenvalues. Moreover, the eigenspace corresponding to each non-zero
eigenvalue of P is a finite-dimensional subspace of C∞(M). Furthermore,
KerP ∩ C∞(M) is dense in KerP .

In dimension three, Hsiao [Hsi15] has shown Theorems 1.1 and 1.2 by
using Fourier integral operators with complex phase. Our proofs are similar
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to Hsiao’s ones, but based on the Heisenberg calculus, the theory of Heisen-
berg pseudodifferential operators. The use of these operators simplifies some
proofs and gives better regularity results.

We will also give some applications of these theorems and their proofs.
Let P and P be the space of CR pluriharmonic functions and its L2-closure
respectively. Then KerP contains P, and the supplementary space W is
defined by

W := KerP ∩ P
⊥
.

Proposition 1.3. The supplementary space W is a finite dimensional sub-
space of C∞(M).

In dimension three, Proposition 1.3 has been already proved by Hsiao [Hsi15].
However, in this case, the author [Tak20] has shown that W is equal to zero.
On the other hand, for each n ≥ 2, there exists a closed pseudo-Hermitian
manifold (M,T 1,0M, θ) of dimension 2n+ 1 such that W 6= 0; see the proof
of [Tak18, Theorem 1.6].

We will also tackle the zero CRQ-curvature problem. The CR Q-curvature
Q, introduced by Fefferman and Hirachi [FH03], is a smooth function on M
such that it transforms as follows under the conformal change θ̂ = eΥθ:

(1.1) Q̂ = e−(n+1)Υ(Q+ PΥ),

where Q̂ is defined in terms of θ̂. Marugame [Mar18] has proved that the
total CR Q-curvature

Q :=
∫

M
Qθ ∧ (dθ)n

is always equal to zero. Moreover, the CR Q-curvature itself is identically
zero for pseudo-Einstein contact forms [FH03]. Hence it is natural to ask
whether (M,T 1,0M) admits a contact form whose CR Q-curvature van-
ishes identically; this is the zero CR Q-curvature problem. This problem
has been solved affirmatively for embeddable CR three-manifolds by the au-
thor [Tak20]. However, it is still open in general. By the transformation law
(1.1), it is necessary that ∫

M
fQ θ ∧ (dθ)n = 0

holds for any f ∈ KerP ∩C∞(M). Note that this condition is independent
of the choice of θ. The following proposition states that it is also a sufficient
condition for embeddable CR manifolds:

Proposition 1.4. There exists a contact form θ̂ on M such that the CR
Q-curvature Q̂ vanishes identically if and only if Q ⊥ (KerP ∩ C∞(M)).

This paper is organized as follows. In Section 2, we recall basic facts on
CR manifolds. Section 3 deals with convolution operators on the Heisenberg
group, which is a “model” of the Heisenberg calculus. In Section 4, we give
a brief exposition of the Heisenberg calculus. Section 5 is devoted to proofs
of the main results in this paper.
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2. CR manifolds

Let M be an orientable smooth (2n + 1)-dimensional manifold without
boundary. A CR structure is a rank n complex subbundle T 1,0M of the
complexified tangent bundle TM ⊗ C such that

T 1,0M ∩ T 0,1M = 0,
[
Γ(T 1,0M),Γ(T 1,0M)

]
⊂ Γ(T 1,0M),

where T 0,1M is the complex conjugate of T 1,0M in TM ⊗ C. Define a
hyperplane bundle HM of TM by HM := ReT 1,0M . A typical example of
CR manifolds is a real hypersurface M in an (n + 1)-dimensional complex
manifold X; this M has the canonical CR structure

T 1,0M := T 1,0X|M ∩ (TM ⊗ C).

Take a nowhere-vanishing real one-form θ on M such that θ annihilates
T 1,0M . The Levi form Lθ with respect to θ is the Hermitian form on T 1,0M

defined by

Lθ(Z,W ) := −
√

−1 dθ(Z,W ), Z,W ∈ T 1,0M.

A CR structure T 1,0M is said to be strictly pseudoconvex if the Levi form
is positive definite for some θ; such a θ is called a contact form. The triple
(M,T 1,0M, θ) is called a pseudo-Hermitian manifold. Denote by T the Reeb
vector field with respect to θ; that is, the unique vector field satisfying

θ(T ) = 1, T⌟ dθ = 0.

Define an operator ∂b : C∞(M) → Γ((T 0,1M)∗) by

∂bf := df |T 0,1M .

A smooth function f is called a CR holomorphic function if ∂bf = 0. A CR
pluriharmonic function is a real-valued smooth function that is locally the
real part of a CR holomorphic function. We denote by P the space of CR
pluriharmonic functions.

Remark 2.1. It is known that the spaces of CR holomorphic functions and
CR pluriharmonic functions are infinite-dimensional if there exists a not
locally constant CR holomorphic function f . Suppose to the contrary that
the space of CR holomorphic functions is finite-dimensional. Then f is
algebraically dependent over C since fk is also CR holomorphic for k ∈ N.
This implies that f is locally constant, which is a contradiction. Taking
the real part yields that the space of CR pluriharmonic functions is also
infinite-dimensional.

Remark 2.2. Let

S2n+1 =
{
z = (z1, . . . , zn+1) ∈ Cn+1

∣∣∣ |z|2 = 1
}

be the unit sphere in Cn+1 with the standard CR structure. The function
u = log

∣∣1 − z1∣∣2 is L2 but not continuous. Moreover, uε = log
∣∣1 + ε− z1∣∣2
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is CR pluriharmonic and uε → u as ε → +0 in L2(S2n+1). Hence u is an
example of L2 non-smooth CR pluriharmonic functions.

The Levi form induces a Hermitian metric on (T 0,1M)∗. By using this
Hermitian metric and the volume form θ ∧ (dθ)n, we obtain the formal
adjoint ∂∗

b : Γ((T 0,1M)∗) → C∞(M) of ∂b. The Kohn Laplacian □b and the
sub-Laplacian ∆b are defined by

□b := ∂
∗
b∂b, ∆b := □b + □b.

Note that
□b = 1

2
∆b +

√
−1
2

nT ;

see [Lee86, Theorem 2.3] for example. The Gaffney extension of the Kohn
Laplacian, also denoted by □b, is a self-adjoint operator on L2(M). The
kernel Ker□b is the space of L2 CR holomorphic functions.

The critical CR GJMS operator P is a real differential operator of order
2n + 2 acting on C∞(M). It is known to be formally self-adjoint [GG05,
Proposition 5.1]. Moreover, it annihilates CR pluriharmonic functions [Hir14,
Section 3.2].

A CR manifold (M,T 1,0M) is said to be embeddable if there exists a
smooth embedding of M to some CN such that T 1,0M = T 1,0CN |M ∩(TM⊗
C). It is known that a closed strictly pseudoconvex CR manifold (M,T 1,0M)
is embeddable if and only if □b has closed range [BdM75,Koh86].

3. Model operators on the Heisenberg group

The Heisenberg group G is the Lie group with the underlying manifold
R × Cn and the multiplication

(t, z) · (t′, z′) := (t+ t′ + 2 Im(z · z′), z + z′).

The left translation by (t, z) and the inversion on G are denoted by l(t,z) and
ι respectively.

For α = 1, . . . , n, we introduce a left-invariant complex vector field Z0
α by

Z0
α := ∂

∂zα
+

√
−1zα ∂

∂t
.

The canonical CR structure T 1,0G is spanned by Z0
1 , . . . , Z

0
n. Define a left-

invariant one-form θ0 on G by

θ0 := dt+
√

−1
n∑

α=1
(zαdzα − zαdzα).

Then θ0 annihilates T 1,0G and the Levi form Lθ0 satisfies Lθ0(Z0
α, Z

0
β) =

2δαβ; in particular, θ0 is a contact form on G. The Reeb vector field T 0

coincides with ∂/∂t.
The Lie algebra g of G is isomorphic to R × Cn as a linear space via

g → R × Cn; tT 0 + 2
n∑

α=1
Re(zαZ0

α) 7→ (t, z).
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Under this identification, the Lie bracket on g is given by[
(t, z), (t′, z′)

]
= (4 Im(z · z′), 0).

Moreover, the exponential map g → G coincides with the identity map on
R × Cn. Furthermore, the dual g∗ of g is also canonically isomorphic to
R × Cn as a linear space. We write this linear coordinate as (τ, ζ).

For r ∈ R+, the parabolic dilation δr on R × Cn is defined by

δr(t, z) = (r2t, rz).

This dilation defines automorphisms on G, g, and g∗, for which we will
use the same letter δr by abuse of notation. In what follows, the term
“homogeneous” is defined in terms of δr. We will sometime write v for a
point of G. Denote by dv the Lebesgue measure on G, which is a Haar
measure on G.

Let S (G) (resp. S (g∗)) be the space of rapidly decreasing functions on
G (resp. g∗), and S ′(G) (resp. S ′(g∗)) be that of tempered distributions
on G (resp. g∗). The coupling of f ∈ S (G) and k ∈ S ′(G) is written as
〈k, f〉. The pull-back by δr induces endomorphisms on S (G) and S (g∗),
and these extend to those on S ′(G) and S ′(g∗). The Fourier transform F
defines isomorphisms

S (G)
∼=−→ S (g∗), S ′(G)

∼=−→ S ′(g∗);

in our convention, the Fourier transform F(f) of f ∈ S (G) is defined by

F(f)(τ, ζ) :=
∫

G
e−

√
−1(tτ+Re(z·ζ))f(t, z)dv.

Now we consider “model operators” of the Heisenberg calculus. For m ∈
R, set

Sm
H := { a ∈ C∞(g∗ \ {0}) | δ∗

ra = rma } ,
which is the space of Heisenberg symbols of order m. Let G m be the space
of g ∈ S ′(g∗) such that g is smooth on g∗ \ {0} and satisfies

δ∗
rg = rmg + (rm log r)h,

where h ∈ S ′(g∗) with supph ⊂ {0} and δ∗
rh = rmh. The restriction map

G m → Sm
H is known to be surjective [BG88, Proposition 15.8]. Moreover,

the inverse Fourier transform gives an isomorphism

F−1 : G m ∼=−→ K−m−2n−2,

where Kl is the space of k ∈ S ′(G) such that k is smooth on G \ {0} and
satisfies

δ∗
rk = rlk + (rl log r)ψ

for a homogeneous polynomial ψ of degree l [BG88, Proposition 15.24]. We
also introduce a function space on which Heisenberg symbols act. Let S0(G)
be the space of f ∈ S (G) such that∫

G
ψ(v)f(v)dv = 0
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for any polynomial ψ on G. This condition is equivalent to that F(f) ∈
S (g∗) vanishes to infinite order at the origin.

We denote by Ψm
H the space of endomorphisms A on S0(G) commuting

with left translation and admitting its formal adjoint A∗ of homogeneous
degree m; that is,

A∗ ◦ δ∗
r = rmδ∗

r ◦A∗.

We would like to define a canonical isomorphism between Sm
H and Ψm

H .

Proposition 3.1. Let a ∈ Sm
H and take g ∈ G m with g|g∗\{0} = a. Then the

convolution operator

(3.1) f 7→ [F−1(g) ∗ f ](v) :=
〈
F−1(g), f ◦ lv ◦ ι

〉
defines an endomorphism on S0(G) and is independent of the choice of g.
Moreover, this operator commutes with left translation and is homogeneous
of degree m. Furthermore, it is equal to zero if and only if a = 0.

Definition 3.2. For a ∈ Sm
H , an operator O0(a) : S0(G) → S0(G) is defined

by (3.1).

Proof of Proposition 3.1. It follows from [CGGP92, Proposition 2.2] that
(3.1) defines an endomorphism on S0(G) commuting with left translation
and homogeneous of degree m. Assume that g′ also satisfies g′|g∗\{0} = a.
Then the support of g′ − g is contained in {0} ⊂ g∗. Hence F−1(g′ − g) is a
polynomial on G, and so F−1(g′−g)∗f = 0 for any f ∈ S0(G). This implies
the independence of the choice of g. Next, suppose that the operator (3.1)
is equal to zero. For any f ∈ S0(G), we have

〈
F−1(g), f ◦ ι

〉
= 0. Hence g

annihilates F(S0(G)). Since C∞
c (g∗ \ {0}) is a subspace of F(S0(G)), the

support of g is contained in {0} ⊂ g∗. Therefore a = g|g∗\{0} = 0. □

The operator O0(a) is well-behaved under formal adjoint and composition.

Theorem 3.3. (i) The formal adjoint of O0(a), a ∈ Sm
H , is given by O0(a).

In particular, O0(a) is formally self-adjoint if and only if a is real-valued.
(ii) There exists a bilinear product

∗0 : Sm1
H × Sm2

H → Sm1+m2
H

such that O0(a1)O0(a2) = O0(a1 ∗0 a2) for any a1 ∈ Sm1
H and a2 ∈ Sm2

H .

Proof. (i) Take g ∈ G m with g|g∗\{0} = a The formal adjoint of O0(a) is
given by the convolution with respect to

F−1(g) ◦ ι = F−1(g);

see [CGGP92, Section 3]. Thus we have (O0(a))∗ = O0(a).
(ii) See [Pon08a, Proposition 3.1.3(2)]. □

In particular, O0 defines an injective map from Sm
H to Ψm

H . In fact, this
is an isomorphism.
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Proposition 3.4. For any A ∈ Ψm
H , there exists the unique a ∈ Sm

H such
that A = O0(a).

Proof. Let A ∈ Ψm
H . By [CGGP92, Proposition 3.2], we have k ∈ K−m−2n−2

such that Af = k ∗ f for any f ∈ S0(G). If we define a ∈ Sm
H by a :=

F(k)|g∗\{0}, then O0(a) coincides with A by definition. □

Definition 3.5. The Heisenberg symbol

σ0
m : Ψm

H → Sm
H

is defined by the inverse map of O0.

It follows from Theorem 3.3 that

σ0
m(A∗) = σ0

m(A), σ0
m1+m2(A1A2) = σ0

m1(A1) ∗0 σ0
m2(A2)

for A ∈ Ψm
H , A1 ∈ Ψm1

H , and A2 ∈ Ψm2
H . In particular, A is formally self-

adjoint if and only if σ0
m(A) is real-valued.

Before the end of this section, we note a relation between the Reeb vector
field and Ψm

H .

Lemma 3.6. The Reeb vector field T 0 commutes with any A ∈ Ψm
H .

Proof. The vector field T 0 generates the flow l(t,0). Since A ∈ Ψm
H commutes

with left translation, we have
[
T 0, A

]
= 0. □

4. Heisenberg calculus

In this section, we recall basic properties of Heisenberg pseudodifferen-
tial operators; see [BG88, Pon08a] for a comprehensive introduction to the
Heisenberg calculus.

Throughout this section, we fix a closed pseudo-Hermitian manifold (M,T 1,0M, θ)
of dimension 2n+ 1. Let

gM := (TM/HM) ⊕HM.

The Reeb vector field T defines a nowhere-vanishing section [T ] of TM/HM .
For sections X0 and Y0 of TM/HM and X ′ and Y ′ of HM , the Lie bracket
[X0 +X ′, Y0 + Y ′] is defined by[

X0 +X ′, Y0 + Y ′] := −dθ(X ′, Y ′)[T ].

This bracket makes gM a bundle of two-step nilpotent Lie algebras. The
dilation δr on gM is defined by

δr|T M/HM := r2, δr|HM := r.

It follow from the definition of the Lie bracket that δr is a fiberwise Lie al-
gebra isomorphism. Set GM := gM as a smooth fiber bundle with the
fiberwise group structure defined via the Baker-Campbell-Hausdorff for-
mula. The dilation δr on gM induces that on GM , which we write as
δr for abbreviation.
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Take a local frame (Zα) of T 1,0M on an open set U ⊂ M such that

Lθ(Zα, Zβ) = 2δαβ .

Then the map

(4.1) gM |U → U × g;
(
p, t[T ] + 2 Re

n∑
α=1

zαZα

)
7→ (p, t, z)

gives an isomorphism between fiber bundles of Lie algebras. This isomor-
phism is compatible with the dilation. The identification (4.1) induces those
on GM and the dual bundle g∗M := (gM)∗ of gM :

(4.2) GM |U → U ×G, g∗M |U → U × g∗.

These are also compatible with the dilation. Let (Z ′
α) be another local

frame of T 1,0M on U satisfying Lθ(Z ′
α, Z

′
β) = 2δαβ . This gives another

identification gM |U → U × g. These two identifications relate with each
other by a smooth family (U(p))p∈U of unitary matrices; that is,

U × g → U × g; (p, t, z) 7→ (p, t, U(p) · z).

The same is true for GM and g∗M .
For m ∈ R, the space Sm

H (M) consists of functions in C∞(g∗M \{0}) that
are homogeneous of degree m on each fiber. Under the identification (4.2),
the fiberwise product ∗0 induces a well-defined bilinear product

∗ : Sm1
H (M) × Sm2

H (M) → Sm1+m2
H (M).

Now we consider Heisenberg pseudodifferential operators. For m ∈ R, de-
note by Ψm

H(M) the space of Heisenberg pseudodifferential operators A : C∞(M) →
C∞(M) of order m. This space is closed under complex conjugate, trans-
pose, and formal adjoint [Pon08a, Proposition 3.1.23]. In particular, any
A ∈ Ψm

H extends to a linear operator

A : D ′(M) → D ′(M),

where D ′(M) is the space of distributions on M . For example, V ∈ Γ(HM)
is an element of Ψ1

H(M) and T ∈ Ψ2
H(M). Note that Ψ−∞

H (M) :=
⋂

m∈Z Ψm
H(M)

coincides with the space of smoothing operators on M . As in the usual pseu-
dodifferential calculus, there exists the Heisenberg principal symbol

σm : Ψm
H(M) → Sm

H (M),

which has the following properties:

Proposition 4.1 ([Pon08a, Propositions 3.2.6 and 3.2.9]). (i) The Heisen-
berg principal symbol σm gives the following exact sequence:

0 → Ψm−1
H (M) → Ψm

H(M) σm−−→ Sm
H (M) → 0.

(ii) For A1 ∈ Ψm1
H (M) and A2 ∈ Ψm2

H (M), the operator A1A2 is a Heisen-
berg pseudodifferential operator of order m1 +m2, and

σm1+m2(A1A2) = σm1(A1) ∗ σm2(A2).
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On the other hand, there exists a crucial difference between the usual
pseudodifferential calculus and the Heisenberg one. Since the product ∗
is non-commutative, the commutator [A1, A2] of A1 ∈ Ψm1

H (M) and A2 ∈
Ψm2

H (M) is not an element of Ψm1+m2−1
H (M) in general. However, we have

the following

Lemma 4.2. Let A ∈ Ψm
H(M). Then [T,A] ∈ Ψm+1

H (M).

Proof. It is enough to show that σm+2([T,A]) = 0, or equivalently,

σ2(T ) ∗ σm(A) = σm(A) ∗ σ2(T ).

Fix an identification (4.2). Then σ2(T ) ∈ S2
H(M) is given by

σ2(T )(p, τ, ζ) =
√

−1τ = σ0
2(T 0)(τ, ζ);

see [Pon08a, Example 3.2.5]. Hence it suffices to prove that σ0
2(T 0) ∗0 a =

a ∗0 σ0
2(T 0) holds for any a ∈ Sm

H . From Lemma 3.6, we obtain

O0(σ0
2(T 0) ∗0 a) = T 0O0(a) = O0(a)T 0 = O0(a ∗0 σ0

2(T 0)),

which is equivalent to σ0
2(T 0) ∗0 a = a ∗0 σ0

2(T 0). □

Next, consider approximate inverses of Heisenberg pseudodifferential op-
erators. We write A ∼ B if A−B is a smoothing operator.

Definition 4.3. Let A ∈ Ψm
H(M). An operator B ∈ Ψ−m

H (M) is called a
parametrix of A if AB ∼ I and BA ∼ I.

The existence of a parametrix of a Heisenberg pseudodifferential operator
is determined only by its Heisenberg principal symbol.

Proposition 4.4 ([Pon08a, Proposition 3.3.1]). Let A ∈ Ψm
H(M) with Heisen-

berg principal symbol a ∈ Sm
H (M). Then A has a parametrix if and only if

there exists b ∈ S−m
H (M) such that a ∗ b = b ∗ a = 1.

Now consider the Heisenberg differential operator ∆b + 1 of order 2. It is
known that this operator has a parametrix; see the proof of [Pon08a, Propo-
sition 3.5.7] for example. Since ∆b + 1 is positive and self-adjoint, the s-th
power (∆b +1)s of ∆b +1, s ∈ R, is a Heisenberg pseudodifferential operator
of order 2s [Pon08a, Theorems 5.3.1 and 5.4.10]. Using this operator, we
define

W s
H(M) :=

{
u ∈ D ′(M) | (∆b + 1)s/2u ∈ L2(M)

}
.

This space is a Hilbert space with the inner product

(u, v)s =
(
(∆b + 1)s/2u, (∆b + 1)s/2v

)
L2(M)

;

write ‖·‖s for the norm determined by (·, ·)s. The space C∞(M) is dense
in W s

H(M), and C∞(M) =
⋂

s∈RW
s
H(M) [Pon08a, Proposition 5.5.3]. Note

that, for k ∈ N, the Hilbert space W k
H(M) coincides with the Folland-Stein

space Sk,2(M) as a topological vector space [Pon08a, Proposition 5.5.5].
Similar to the usual L2-Sobolev space theory, we obtain the following
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Lemma 4.5. For s1 < s2, the embedding W s2
H (M) ↪→ W s1

H (M) is compact.

Proof. The operator (∆b + 1)s′/2, s′ ∈ R, gives an isometry W s+s′

H (M) →
W s

H(M), and so we may assume that s1 = 0. From [Pon08a, Proposition
5.5.7], we derive that the embedding W s2

H (M) ↪→ W 0
H(M) = L2(M) is the

composition of the two embeddings W s2
H (M) ↪→ Hs2/2(M) and Hs2/2(M) ↪→

L2(M), where Hs(M) is the usual L2-Sobolev space on M of order s. Thus
the compactness of W s2

H (M) ↪→ L2(M) follows from Rellich’s lemma. □

Heisenberg pseudodifferential operators act on these Hilbert spaces as
follows:

Proposition 4.6. Any A ∈ Ψm
H(M) extends to a continuous linear operator

A : W s+m
H (M) → W s

H(M)

for every s ∈ R. In particular if m < 0, the operator A : L2(M) → L2(M)
is compact.

Proof. The former statement follows from [Pon08a, Propositions 5.5.8]. The
latter one is a consequence of the former one and Lemma 4.5. □

5. Proofs of the main results

In this section, we prove the main results in this paper. In what fol-
lows, we fix a closed embeddable pseudo-Hermitian manifold (M,T 1,0M, θ)
of dimension 2n+ 1.

For µ ∈ R, we define a formally self-adjoint Heisenberg differential oper-
ator Lµ of order 2 by

Lµ := 1
2

∆b +
√

−1
2

µT.

It is known that Lµ has a parametrix Nµ ∈ Ψ−2
H (M) if and only if µ /∈

±(n + 2N); see the proof of [Pon08a, Proposition 3.5.7] for example. On
the other hand, the embeddability of M implies that there exist the partial
inverseNn ∈ Ψ−2

H (M) of Ln = □b and the orthogonal projection S ∈ Ψ0
H(M)

to Ker□b, called the Szegő projection [BG88, Theorem 24.20 and Corollary
25.67]. Note that σ0(S) 6= 0; see [Pon08b, Section 5] for example. Taking
the complex conjugate gives the partial inverse N−n ∈ Ψ−2

H (M) of L−n = □b

and the orthogonal projection S ∈ Ψ0
H(M) to Ker□b

Lemma 5.1. For any µ ∈ R, one has [Lµ, S] ∈ Ψ1
H(M).

Proof. We have

[Lµ, S] = [Ln, S] +
√

−1
2

(µ− n)[T, S] =
√

−1
2

(µ− n)[T, S] ∈ Ψ1
H(M)

by Lemma 4.2. □

On the other hand, Hsiao [Hsi10, Chapter 7] has studied the distribution
kernel of the Szegő projection. A similar discussion to [Hsi15, Lemma 4.2]
yields
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Lemma 5.2. The operators SS and SS are smoothing operators.

The critical CR GJMS operator P on (M,T 1,0M, θ) coincides with

LnLn−2 · · ·L−n+2L−n

modulo Ψ2n+1
H (M); see [Pon08a, Proposition 3.5.7]. Set

G0 := N−nN−n+2 · · ·Nn−2Nn ∈ Ψ−2n−2
H (M), Π0 := S + S ∈ Ψ0

H(M)

Then modulo Ψ−1
H (M),

G0P ≡ N−nN−n+2 · · ·Nn−2NnLnLn−2 · · ·L−n+2L−n

= N−nN−n+2 · · ·Nn−2(I − S)Ln−2 · · ·L−n+2L−n

≡ N−nN−n+2 · · ·Nn−2Ln−2 · · ·L−n+2L−n(I − S) (∵ Lemma 5.1)

≡ (I − S)(I − S)

= I − S − S + SS

≡ I − Π0.

Thus we have
R0 := G0P + Π0 − I ∈ Ψ−1

H (M).
This G0 gives an approximation of the partial inverse of P .

Proposition 5.3. There exists G∞ ∈ Ψ−2n−2
H (M) such that

G∞P + Π0 − I ∈ Ψ−∞
H (M).

Proof. Since the critical GJMS operator annihilates CR pluriharmonic func-
tions, we have PΠ0 = 0. Hence

(Π0)2 = (G0P + Π0)Π0 = Π0 +R0Π0.

On the other hand, (Π0)2 is equal to Π0 modulo a smoothing operator by
Lemma 5.2. Thus we have R0Π0 ∈ Ψ−∞

H (M). Take G∞ ∈ Ψ−2n−2
H (M) such

that

G∞ −
k∑

l=0
(−R0)lG0 ∈ Ψ−2n−k−3

H (M)

for any k ∈ N. Then modulo Ψ−k−1
H (M),

G∞P + Π0 ≡
k∑

l=0
(−R0)lG0P + Π0

=
k∑

l=0
(−R0)l(I − Π0 +R0) + Π0

≡
k∑

l=0
(−R0)l(I +R0)

≡ I.

Therefore G∞P + Π0 − I is a smoothing operator. □
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Consider P as an unbounded closed operator on L2(M) with domain

DomP =
{
u ∈ L2(M)

∣∣∣ Pu in the weak sense is in L2(M)
}
.

This domain contains W 2n+2
H (M) by Proposition 4.6. Conversely, any u ∈

DomP is an element of W 2n+2
H (M) modulo KerP by the lemma below.

Lemma 5.4. For u ∈ DomP , one has u−Π0u ∈ W 2n+2
H (M). In particular,

DomP = KerP +W 2n+2
H (M).

Proof. Set

(5.1) R∞ := G∞P + Π0 − I ∈ Ψ−∞
H (M).

If v = Pu ∈ L2(M), then

u− Π0u = G∞v −R∞u ∈ W 2n+2
H (M).

In particular, u ∈ KerP +W 2n+2
H (M) since Π0u ∈ KerP . □

Lemma 5.5. The range RanP of P is orthogonal to Ran Π0 in L2(M).

Proof. Assume that u ∈ DomP and v ∈ L2(M). Take a sequence (vj) ∈
C∞(M) such that vj converges to v in L2(M) as j → +∞. Since Π0 ∈
Ψ0

H(M), the function Π0vj is smooth and converges to Π0v in L2(M) as
j → +∞ also. Hence

(Pu,Π0v)0 = lim
j→∞

(Pu,Π0vj)0 = lim
j→∞

(u, PΠ0vj)0 = 0,

which completes the proof. □

Proof of Theorem 1.1. We first prove that P is self-adjoint. To this end,
it is enough to show that P is symmetric. Let u, v ∈ DomP . It follows
from Lemma 5.4 that v′ := v − Π0v is in W 2n+2

H (M). Take a sequence (vj)
in C∞(M) such that vj converges to v′ in W 2n+2

H (M) as j → +∞. Then
Pvj converges to Pv′ = Pv in L2(M) as j → +∞ by the continuity of
P : W 2n+2

H (M) → L2(M). We derive from Lemma 5.5 that

(Pu, v)0 =
(
Pu, v′)

0+(Pu,Π0v)0 = lim
j→∞

(Pu, vj)0 = lim
j→∞

(u, Pvj)0 = (u, Pv)0,

which means that P is symmetric.
We next prove that P : DomP → L2(M) has closed range. It suffices to

show that there exists ε > 0 such that

‖Pu‖0 ≥ ε‖u‖0

for any u ∈ DomP∩(KerP )⊥. Note that (KerP )⊥ ⊂ Ker Π0 since Ran Π0 ⊂
KerP . Suppose to the contrary that we can take a sequence (uj) in DomP ∩
(KerP )⊥ such that

‖uj‖0 = 1, ‖Puj‖0 ≤ 1
j
.

Let R∞ be as in (5.1). Then

uj = G∞(Puj) −R∞uj
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is uniformly bounded in W 2n+2
H (M). By Lemma 4.5, we may assume that

uj converges to some u ∈ L2(M) as j → +∞. We derive from the definition
of uj that u is in (KerP )⊥ and ‖u‖0 = 1. However, since ‖Puj‖0 ≤ 1/j, we
have u ∈ DomP and Pu = 0. This is a contradiction. □

Since P is a range-closed operator, there exist the partial inverse G of
P and the orthogonal projection Π to KerP . Next, we show that these
operators are Heisenberg pseudodifferential operators.

Theorem 5.6. The operators G and Π are Heisenberg pseudodifferential
operators of order −2n − 2 and 0 respectively. Moreover, Π coincides with
Π0 modulo Ψ−∞

H (M).

Proof. First note that
ΠΠ0 = Π0Π = Π0.

since Ran Π0 ⊂ KerP . Composing Π to (5.1) from the right and taking its
adjoint, we have

Π0 = Π +R∞Π, Π0 = Π + Π(R∞)∗.

Hence
Π − Π0 = −Π(R∞)∗ = R∞Π(R∞)∗ − Π0(R∞)∗,

which is a smoothing operator. In particular, Π is a Heisenberg pseudo-
differential operator of order 0 and coincides with Π0 modulo a smoothing
operator.

Next consider G. Composing G to (5.1) from the right and taking its
adjoint give that

G∞(I − Π) = G+R∞G, (I − Π)(G∞)∗ = G+G(R∞)∗.

Hence

G−G∞(I − Π) = −R∞G = −R∞(I − Π)(G∞)∗ +R∞G(R∞)∗,

which is a smoothing operator. Therefore G is a Heisenberg pseudodifferen-
tial operator of order −2n− 2. □

This theorem proves Theorem 1.2.

Proof of Theorem 1.2. From Proposition 4.6 and Theorem 5.6, we derive
that the partial inverse G : L2(M) → L2(M) is a compact self-adjoint op-
erator. Hence the spectrum σ(G) of G is bounded and consists only of
eigenvalues, and 0 is the only accumulation point of σ(G). Moreover, for any
non-zero eigenvalue λ, the eigenspace Hλ := Ker(G−λ) is finite-dimensional,
and there exists the following orthogonal decomposition:

L2(M) = KerG⊕
⊕

λ∈σ(G)\{0}
Hλ.

Furthermore, since G maps W s
H(M) to W s+2n+2

H (M), the eigenspace Hλ is
a linear subspace of C∞(M). By the definition of the partial inverse, Hλ

is the eigenspace of P with eigenvalue 1/λ, and KerG = KerP . Hence
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the spectrum σ(P ) is discrete and consists only of eigenvalues, and the
eigenspace corresponding to each non-zero eigenvalue is a finite-dimensional
subspace of C∞(M). Moreover, KerP ∩C∞(M) is dense in KerP since the
orthogonal projection Π to KerP is a Heisenberg pseudodifferential operator
of order 0. □

An argument similar to the proof of Theorem 5.6 also gives Proposi-
tion 1.3.

Proof of Proposition 1.3. Let π be the orthogonal projection to P. Note
that Π − π is the orthogonal projection to W . Hence it is enough to prove
that Π − π is a smoothing operator. Since Π ∼ Π0, it suffices to show that
π − Π0 is a smoothing operator. Since Ran Π0 ⊂ Ran π,

πΠ0 = Π0π = Π0.

It follows from (5.1) that

Π0 = π +R∞π, Π0 = π + π(R∞)∗.

Therefore we have

π − Π0 = −π(R∞)∗ = R∞π(R∞)∗ − Π0(R∞)∗,

which is a smoothing operator. □

As an application of results in this section, we give a necessary and suffi-
cient condition for the zero CR Q-curvature problem.

Proof of Proposition 1.4. As we saw in the introduction, Q ⊥ (KerP ∩
C∞(M)) if there exists a contact form with zero Q-curvature. Conversely,
assume that Q is orthogonal to KerP ∩ C∞(M). It follows from Theo-
rem 1.2 that Q is in fact orthogonal to KerP . Then Υ := −GQ ∈ C∞(M)
and PΥ = −Q. Hence θ̂ := eΥθ satisfies Q̂ = 0. □
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