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Abstract. We generalize the theory of linked partition ideals due to
Andrews using finite automata in formal language theory and apply it
to prove three Rogers–Ramanujan type identities for modulus 14 that
were posed by Nandi through a vertex operator theoretic construction

of the level 4 standard modules of the affine Lie algebra A
(2)
2 .

1. Introduction

1.1. Rogers–Ramanujan type identities. A partition of a nonnegative
integer n is a weakly decreasing sequence of positive integers (called parts)
whose sum is n. We denote the set of all partitions by Par. Let i = 1 or 2.
Then the celebrated Rogers–Ramanujan identities may be stated as follows.

The number of partitions of n such that parts are at least i and such
that consecutive parts differ by at least 2 is equal to the number of
partitions of n into parts congruent to ±i modulo 5.

(1.1)

As q-series identities the Rogers–Ramanujan identities are stated as∑
n≥0

qn
2

(q; q)n
=

1

(q, q4; q5)∞
,
∑
n≥0

qn
2+n

(q; q)n
=

1

(q2, q3; q5)∞
, (1.2)

where for n ∈ Z≥0 t {∞},

(a; q)n :=
∏

0≤j<n
(1− aqj), (a1, . . . , ak; q)n := (a1; q)n · · · (ak; q)n.

The identities (1.1) and (1.1) have a number of generalizations, often
called Rogers–Ramanujan type (RR type for short) identities, arising from
various motivations (see e.g., [4, §7], [35]). In particular, generalizations of
(1.1) are called RR type partition identities, which are theorems of the form

C PT∼ D for C,D ⊆ Par ([3, Definition 3]), meaning that partitions of n in C
are equinumerous to those in D for all n ≥ 0, where most commonly C (resp.
D) is given by “difference conditions” (resp. “congruence conditions”) on
parts.

1.2. Algorithmic derivation of q-difference equations. A common strat-
egy to prove a RR type partition identity is to follow the three steps below
(cf. [3, p. 1037]), starting with the set C ⊆ Par given by “difference condi-
tions” in the statement of the identity.

Date: August 25, 2022.

1



2 MOTOKI TAKIGIKU AND SHUNSUKE TSUCHIOKA

(Step 1) Find a q-difference equation for the generating function

fC(x, q) :=
∑
λ∈C

x`(λ)q|λ|, (1.3)

where |λ| :=
∑`

i=1 λi (=
∑

i≥1 imi(λ)) and `(λ) := ` (=
∑

i≥1mi(λ))

for λ = (λ1, λ2, . . . , λ`) ∈ Par and mi(λ) := #{j | λj = i} for i ≥ 1.
(Step 2) Solve the equation and find a q-series expression for fC(1, q).
(Step 3) Use q-series formulas to show that fC(1, q) is equal to the desired

infinite product corresponding to D.

The aim of this paper is to give a proof (following these steps) for three
conjectural RR type partition identities (see §1.3) posed by Nandi [30]. For
that purpose, we give an extention (by using finite automata in formal lan-
guage theory) of the theory of linked partition ideals introduced by Andrews
[3],[4, §8], which provides in many cases an algorithmic derivation in the
Step 1 above (see §1.4 for more details).

1.3. Nandi’s conjectures. The Rogers–Ramanujan identities were one of
the motivations for inventing vertex operators. It started from Lepowsky–
Milne’s observation [24], which led to Lepowsky–Wilson’s proof for Rogers–
Ramanujan identities [25–27] by constructing bases of the vacuum spaces

Ω(V (λ)) for the standard modules V (λ) of the affine Lie algebra A
(1)
1 as-

sociated with the level 3 dominant integral weights λ, using certain ver-
tex operators called Z-operators. Moreover, Andrews–Gordon’s [2, 20] and
Andrews–Bressoud’s [6, 7] generalizations of the Rogers–Ramanujan identi-
ties can be interpreted and proved via similar constructions for the level ≥ 4

standard modules of A
(1)
1 [27–29].

It is therefore natural to expect that there should exist a RR type identity
corresponding to any given affine Lie type and a dominant integral weight
(see [13, 16, 17, 21, 31] on recent progress). As a first step beyond the case

A
(1)
1 , Capparelli [9] investigated the structure of the level 3 standard modules

of the affine Lie algebra A
(2)
2 via Z-operators, yielding some conjectural

partition identities (which were later proved in [5, 10, 32, 39, 40] etc.). As

a next step, Nandi [30] studied the level 4 standard modules of A
(2)
2 via

Z-operators and conjectured some partition identities (Conjecture 1.2). For
higher levels, see e.g., [34],[39, §1.4].

Definition 1.1. For a finite sequence j = (j1, . . . , jn) (which we assume to
be nonempty for simplicity, i.e., n > 0) and a (finite or infinite) sequence
i = (i1, . . . , iN ) or i = (i1, i2, . . . ), we say that, letting len(i) := N(≥ 0) or
∞ respectively,

• i matches j if (ik+1, ik+2, . . . , ik+n) = (j1, j2, . . . , jn) for some 0 ≤
k ≤ len(i)− n,
• i begins with j if n ≤ len(i) and (i1, i2, . . . , in) = (j1, j2, . . . , jn).

Conjecture 1.2 (Nandi [30, §8.1]. See also [35, Conjecture 5.5, 5.6, 5.7]).
Let N denote the set of partitions λ satisfying the conditions (N1)-(N6):

(N1) For all 1 ≤ i ≤ `(λ)− 1, λi − λi+1 6= 1.
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(N2) For all 1 ≤ i ≤ `(λ)− 2, λi − λi+2 ≥ 3.
(N3) For all 1 ≤ i ≤ `(λ)− 2, λi − λi+2 = 3 =⇒ λi 6= λi+1.
(N4) For all 1 ≤ i ≤ `(λ)− 2, λi − λi+2 = 3 and 2 - λi =⇒ λi+1 6= λi+2.
(N5) For all 1 ≤ i ≤ `(λ)− 2,

λi − λi+2 = 4 and 2 - λi =⇒ λi 6= λi+1 and λi+1 6= λi+2.
(N6) (λ1−λ2, λ2−λ3, . . . , λ`(λ)−1−λ`(λ)) does not match (3, 2∗, 3, 0). Here

2∗ denotes any number (possibly zero) of repetitions of 2.

Define N1,N2,N3 ⊆ N by

N1 = {λ ∈ N | m1(λ) = 0},
N2 = {λ ∈ N | mi(λ) ≤ 1 for i = 1, 2, 3},

N3 =

{
λ ∈ N

∣∣∣∣∣ m1(λ) = m3(λ) = 0, m2(λ) ≤ 1,

λ does not match (2k + 3, 2k, 2k − 2, . . . , 4, 2) for any k ≥ 1

}
.

Then

N1
PT∼ T

(14)
2,3,4,10,11,12, N2

PT∼ T
(14)
1,4,6,8,10,13, N3

PT∼ T
(14)
2,5,6,8,9,12.

Here T
(N)
a1,...,ak denotes the set of partitions with parts congruent to a1, . . . , ak

modulo N .

In the present article we prove Conjecture 1.2. We also give the cor-
responding q-series identities (like (1.1), although not manifestly positive),
which are missing in Conjecture 1.2. For a = 1, 2, 3 we consider the double
sum

Na :=
∑
i,j≥0

(−1)jq(
i
2)+2(j2)+2ij+Aa(i,j)

(q; q)i(q2; q2)j
, (1.4)

where A1(i, j) = i+ j, A2(i, j) = i+ 3j and A3(i, j) = 2i+ 3j.

Theorem 1.3. We have∑
λ∈N1

q|λ| =
1

(q2, q3, q4, q10, q11, q12; q14)∞
= N1,

∑
λ∈N2

q|λ| =
1

(q, q4, q6, q8, q10, q13; q14)∞
= N2,

∑
λ∈N3

q|λ| =
1

(q2, q5, q6, q8, q9, q12; q14)∞
= N3.

Obviously, the first equality in each of the statements of Theorem 1.3
implies one of the claims of Conjecture 1.2.

1.4. Linked partition ideals and regularly linked sets. As mentioned
above, a common technique for achieving Step 1 (in §1.2) is to use linked
partition ideals (LPI for short) of Andrews [3],[4, §8] (see also [11, 12, 33]),
which we review in Appendix E. Roughly speaking, a linked partition ideal
is a subset C ⊆ Par whose elements can be encoded as infinite sequences (on
a certain finite set) in which certain (finite length) patterns are forbidden
to appear. Theorem 1.4 below is a main result of [3], and this is applicable
for most of known RR type identities.
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Theorem 1.4 ([3, Theorem 4.1], [4, Theorem 8.11]). If C ⊆ Par is an LPI,
then one can algorithmically obtain a q-difference equation for fC(x, q).

It is natural to hope to apply this to Nandi’s conjectures, but unfortu-
nately it can be shown that the set N (and Na for a = 1, 2, 3) is not an
LPI. Roughly speaking, this is because while elements of N can be encoded
as certain infinite sequences (Proposition 2.6), there are arbitrarily long for-
bidden patterns which originally come from the condition (N6). Hence the
theory of LPIs is not applicable in an obvious way. However, we can still
derive a q-difference equation for fN (x, q) (and fNa(x, q) for a = 1, 2, 3 as
well). We show this in a generalized and algorithmic manner in §3, and
apply it to Nandi’s conjectures in §4.1.

In §3 we extend the theory of LPIs using finite automata. We consider
a class of subsets C ⊆ Par such that, roughly speaking, the elements of C
can be encoded as infinite sequences (on a certain finite set) in which certain
patterns given by a regular language (in the sense of formal language theory ;
see Definition 3.1) are forbidden to appear, and we say such C is regularly
linked (Definition 3.8). This notion generalizes LPIs (Proposition E.4), and
we show that N and Na (a = 1, 2, 3) are regularly linked (Example 3.9).

Theorem 1.5 (Theorem 3.14 + Appendix B). If a subset C ⊆ Par is regu-
larly linked, then one can algorithmically obtain a q-difference equation for
fC(x, q).

As an application of the main result above, in §4.1 we automatically
obtain a q-difference equation for fNa(x, q) (for a = 1, 2, 3), finishing Step 1
for Nandi’s conjectures (Proposition 4.2). We solve these equations in §4.2,
finishing Step 2. The technique used there seems to be common in dealing
with such equations. Indeed, the flow of §4.2 is similar to [1], [8, Proposition
2.2, Proposition 2.3], etc. Finally, Step 3 is done (also in §4.2) by employing
three identities of Slater [37].

As we see in §3.3, once Theorem 1.5 is expressed in terms of finite au-
tomata its key part (Theorem 3.14) is proved immediately from an almost
trivial lemma (Lemma 3.13). Nevertheless, its application to a concrete
problem can be nontrivial (such as Proposition 4.2) and it seems worthwhile
presenting the details of this generalization of LPIs as it works well in solving
Nandi’s conjectures. We hope that the regulary linked sets would be widely
used as a method of algorithmic derivation of q-difference equations in the
theory of partitions like the WZ method in hypergeometric summations.

Organization of the paper. In §2 we rephrase the defining conditions
for N as certain forbidden patterns and prefixes on a certain finite set.
In §3.1 we recall standard definitions and facts in formal language theory
(some details are put in Appendix A). In §3.2 we define regularly linked sets
and in §3.3 show Theorem 1.5. In §4.1 we obtain q-difference equations for
fNa(x, q) (a = 1, 2, 3) using the results in §3.3 (we also need the Modified
Murray–Miller Theorem reviewed in Appendix B, which is given in [3] and
constitutes the final step in Theorem 1.4 (and Theorem 1.5). We apply it
explicitly in Appendix C). In §4.2 we solve these equations, proving Theorem
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1.3. In Appendix D we give supplementary results regarding Theorem 1.5.
In Appendix E we review LPIs and compare it to our results.

2. Nandi’s partitions N

2.1. Multiplicity sequences. A partition λ ∈ Par can be identified with
its multiplicity sequence (fi)i≥1, where fi = mi(λ). By this, we have a
bijection

̂ : Par
∼−→ P̂ar :=

{
(fi)i≥1 ∈ (Z≥0)Z≥1

∣∣∣ #{i ≥ 1 | fi > 0} <∞
}
,

and we denote the image in P̂ar (via this bijection) of λ ∈ Par and C ⊆ Par,

say, by λ̂ and Ĉ. It is easy to see for any λ ∈ Par and k, d ≥ 1 that

1 ≤ ∀i ≤ `(λ)− k, λi − λi+k ≥ d ⇐⇒ ∀j ≥ 1, fj + · · ·+ fj+d−1 ≤ k. (2.1)

Lemma 2.1. The set N̂ consists of (fi)i≥1 satisfying (N1′)-(N4′), (N5a′),
(N5b′) and (N6′k) (for all k ≥ 0). Here, for i = 1, . . . , 4, 5a, 5b, the condition
(Ni′) is given by

(Ni′): there are no j ≥ 1 such that (Pij), where
(P1j): (fj , fj+1) = (≥ 1,≥ 1),
(P2j): fj + fj+1 + fj+2 ≥ 3,
(P3j): (fj , fj+1, fj+2, fj+3) = (≥ 1, 0, 0,≥ 2),
(P4j): (f2j , f2j+1, f2j+2, f2j+3) = (≥ 2, 0, 0,≥ 1),
(P5aj): (f2j−1, f2j , f2j+1, f2j+2, f2j+3) = (≥ 2, 0, 0, 0,≥ 1),
(P5bj): (f2j−1, f2j , f2j+1, f2j+2, f2j+3) = (≥ 1, 0, 0, 0,≥ 2),

and the condition (N6′k) (k ≥ 0) is given by

(N6′k): there are no j ≥ 1 such that
(fj , fj+1, . . . , fj+2k+6) = (≥ 2, 0, 0, 1, 0, 1, 0, . . . , 1, 0, 1︸ ︷︷ ︸

2k

, 0, 0,≥ 1).

Here, for n ≥ 2, we write (x1, x2, . . . , xn−1, xn) = (≥ y1, y2, . . . , yn−1,≥ yn)
to mean x1 ≥ y1, xi = yi (for 2 ≤ i ≤ n− 1) and xn ≥ yn.

Proof. It is clear that (N1)⇐⇒(N1′). That (N2)⇐⇒(N2′) is a special case
of (2.1). The condition (N3) is equivalent to that λ does not match (in the
sense of Definition 1.1) (j + 3, j + 3, j) for j ≥ 1, which is precisely (N3′).
Similarly we have (N4) ⇐⇒ (N4′) and (N5) ⇐⇒ (N5a′), (N5b′). For (N6),
the condition (N6′k) is equivalent to that (λ1 − λ2, . . . , λ`(λ)−1 − λ`(λ)) does

not match (3, 2k, 3, 0). �

2.2. Encoding N as infinite sequences. We write

f≤m := (f1, . . . , fm, 0, 0, . . . ), λ≤m := (λ`′+1, . . . , λ`(λ))

for m > 0 and f = (fi)i≥1 ∈ P̂ar, λ ∈ Par, where `′ := #{i ≥ 1 | λi > m}.
We clearly have λ̂≤m = f≤m when λ̂ = f . Furthermore, for C ⊆ Par we
write

C≤m := {λ ∈ C | λ = λ≤m}.
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Definition 2.2. The maps φ+, φ− : P̂ar −→ P̂ar are given by

φ+((f1, f2, . . . )) = (0, f1, f2, . . . ), φ−((f1, f2, . . . )) = (f2, f3, . . . ).

By abuse of notation, we also regard φ+, φ− as maps from Par to Par:

φ+((λ1, . . . , λ`)) = (λ1 + 1, . . . , λ` + 1),

φ−((λ1, . . . , λ`)) = (λ1 − 1, . . . , λ`′ − 1), where `′ := #{i ≥ 1 | λi > 1}(= f2 + f3 + · · · ).

The following lemma is essentially [4, Lemma 8.9]. We include the proof
since we require weaker conditions on C. For a comparison with the original
arguments in [3],[4, §8] we refer the reader to Appendix E.1. For λ, µ ∈ Par,
let λ⊕µ be the partition obtained by reordering (λ1, . . . , λ`(λ), µ1, . . . , µ`(µ))

in non-increasing order. In terms of P̂ar, it means (fi)i≥1 ⊕ (gi)i≥1 = (fi +
gi)i≥1.

Lemma 2.3. If a subset C ⊆ Par and an integer m ∈ Z>0 satisfy

λ ∈ C =⇒ λ≤m ∈ C and φm− (C) ⊆ C, (2.2)

then for each λ ∈ C there exists a unique sequence λ(1), λ(2), . . . in C≤m such
that

λ = λ(1) ⊕ φm+ (λ(2))⊕ φ2m
+ (λ(3))⊕ · · · .

Proof. Let f = (fi)i≥1 := λ̂. Obviously λ̂(i) must be (f1+m(i−1), . . . , fmi, 0, 0, . . . )

(= (φ
m(i−1)
− (f))≤m) and hence is unique. On the other hand, by the assump-

tion we have φ
m(i−1)
− (λ) ∈ C and hence (φ

m(i−1)
− (λ))≤m ∈ C≤m. �

Lemma 2.4. The set N satisfies (2.3) with m = 2.

Proof. The conditions (N1′)-(N3′), (N6′k) (resp. (N4′), (N5a′), (N5b′)) are
stable under φ− (resp.φ2

−) and all the conditions (N1′)-(N6′k) are stable

under (P̂ar 3) f 7→ f≤m for any m > 0. �

2.3. Forbidden patterns and prefixes. To avoid confusion we denote the
empty partition by ∅ ∈ Par.

Definition 2.5. (1) For a nonempty set I, we write the set of infinite
sequences of I as

Seq(I) := {(i1, i2, . . . ) | ij ∈ I for j ≥ 1} (= IZ≥1).

(2) For a triple (I,m, π) where I is a nonempty set, m ∈ Z>0 and π : I −→
Par≤m is a map, we define

Seq(I, π) := {(i1, i2, . . . ) ∈ Seq(I) | #{j ≥ 1 | π(ij) 6= ∅} <∞}

and π• : Seq(I, π) −→ Par by

π•(i1, i2, i3, . . . ) := π(i1)⊕ φm+ (π(i2))⊕ φ2m
+ (π(i3))⊕ · · · .
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Now N≤2 = {λ ∈ N | λ1 ≤ 2} = {πi | i ∈ I} where I = {0, 1, 2, 3, 4} and

π0 = ∅, π1 = (2), π2 = (2, 2), π3 = (1), π4 = (1, 1), (2.3)

and N̂≤2 = {π̂i | i ∈ I} is given by

π̂0 = (0, 0), π̂1 = (0, 1), π̂2 = (0, 2), π̂3 = (1, 0), π̂4 = (2, 0).

Here we simply write π̂i = (f1, f2) instead of π̂i = (f1, f2, 0, 0, . . . ). Moreover
we write π : I −→ Par≤2 ; i 7→ πi (using the same symbol).

By Lemma 2.3 and Lemma 2.4, we see N (and hence Na, a = 1, 2, 3) is
in bijection with a subset of Seq(I, π), and the condition that (i1, i2, . . . ) ∈
Seq(I, π) is in the image of N (resp. Na) is as follows.

Proposition 2.6. Let i = (i1, i2, . . . ) ∈ Seq(I, π). Then π•(i) ∈ N if and
only if i does not match any of

(1, {2, 3, 4}), (2, {1, 2, 3, 4}), (3, {2, 4}), (4, {2, 3, 4}),
(1, 0, 4), (2, 0, {3, 4}), (3, 0, 4), (4, 0, 4), (4, 1∗, 0, 3).

(2.4)

Here, for x, y, . . . ∈ I, {x, y, . . . } means exactly one occurence of one of
x, y, . . . , and x∗ means zero or more repetitions of x (see also (3)).

Proof. It is straightforward to check the conditions (N1′)-(N5′) and (N6′k)
(k ≥ 0) correspond to forbidding the patterns in Table 1 and 2.

(j: odd) (j: even)
(N1′) (1, 3), (1, 4), (2, 3), (2, 4)

(N2′)
(1, 4), (2, 3), (2, 4)
(3, 4), (4, 3), (4, 4)

(1, 2), (1, 4), (2, 1),
(2, 2), (2, 3), (2, 4)

(N3′) (3, 2), (4, 2) (1, 0, 4), (2, 0, 4)

(N6′k) (k ≥ 0) (4, 1, 1k, 0, 3), (4, 1, 1k, 0, 4) (2, 0, 3, 3k, 1), (2, 0, 3, 3k, 2)

Table 1. Forbidden patterns corresponding to (N1′)-(N3′), (N6′).

(N4′) (2, 0, 3), (2, 0, 4)
(N5a′) (4, 0, 3), (4, 0, 4)
(N5b′) (3, 0, 4), (4, 0, 4)

Table 2. Forbidden patterns corresponding to (N4′), (N5a′), (N5b′).

It is also easy to see that forbidding all the patterns in Table 1 and 2 is
equivalent to forbidding the patterns in (2.6). (For example, (2, 0, 3, 3k, 1)
in (N6′k) is redundant since (2, 0, 3) is in (2.6).) �

Proposition 2.7. Let i = (i1, i2, . . . ) ∈ Seq(I, π) satisfy π•(i) ∈ N . Then
π•(i) ∈ Na (a = 1, 2, 3) if and only if i does not start with any of

(3), (4), (a = 1),

(2), (4), (0, 4), (a = 2),

(2), (3), (4), (0, 4), (1∗, 0, 3), (a = 3).

(2.5)
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Proof. For N1, the additional condition m1(λ) = 0 is equivalent to the
condition that i does not start with any of (3), (4).

For N2, the additional condition mi(λ) ≤ 1 for i = 1, 2, 3 is equivalent
to the condition that i does not start with any of (2), (4), ({0, 1, 2, 3, 4}, 4),
which is equivalent to, after reducing redundancy, the condition that i does
start with any of (2), (4), (0, 4).

For N3, the additional condition that m1(λ) = m3(λ) = 0, m2(λ) ≤ 1 and
λ does not match (2k+3, 2k, 2k−2, . . . , 4, 2) (for k ≥ 1) is equivalent to the
condition that i does not start with any of (2), (3), (4), ({0, 1, 2, 3, 4}, {3, 4}), (1k, 0, {3, 4})
(for k ≥ 1). That is equivalent to, after reducing redundancy, the condition
that i does not start with any of (2), (3), (4), (0, 4), (1∗, 0, 3). �

3. A formal language theoretic approach

In this section we assume that Σ is a nonempty finite set. Let Σ∗ =⊔
n≥0 Σn be the monoid of words on Σ. An element of Σ∗ is written like

i1 · · · in (where ij ∈ Σ), and the monoid multiplication is concatenation. Let
ε be the empty word (i.e., Σ0 = {ε}) and put Σ+ := Σ∗ \ {ε}. A language
(over Σ) is a subset of Σ∗. We write the product of X,Y ⊆ Σ∗ and the
Kleene star of X ⊆ Σ∗ as

XY := {ab | a ∈ X, b ∈ Y }, X∗ :=
⋃
n≥0

Xn. (3.1)

3.1. Regular languages and finite automata.

Definition 3.1 ([36, Definition 1.5]). A deterministic finite automaton (or
DFA for short) over Σ is a 5-tuple M = (Q,Σ, δ, s, F ) where Q is a finite
set (the set of states), δ : Q×Σ −→ Q (the transition function), s ∈ Q (the
start state) and F ⊆ Q (the set of accept states).

Definition 3.2. For a DFA (Q,Σ, δ, s, F ), we define δ̂ : Q×Σ∗ −→ Q induc-

tively by δ̂(q, ε) := q and δ̂(q, wa) := δ(δ̂(q, w), a) (q ∈ Q, a ∈ Σ, w ∈ Σ∗).
For M a DFA, let L(M) denote the language that M recognizes (or accepts),

i.e.,L(M) = {w ∈ Σ∗ | δ̂(s, w) ∈ F}.

Definition 3.3 ([36, Definition 1.16]). A language X ⊆ Σ∗ is called regular
(or rational) if there exists a DFA recognizing X.

Example 3.4. The empty set ∅, singletons {i} (i ∈ Σ) and Σ are regular.

Proposition 3.5 (See e.g., [36, Theorem 1.25, 1.47, 1.49]). If Y, Z ⊆ Σ∗ are
regular, so are Y ∩Z, Y Z, Y c and Y ∗ (and thus Y ∪Z and Y \Z as well).

We review an algorithmic proof of Proposition 3.5 in Appendix A.

For any regular language X ⊆ Σ∗, there exists a unique DFA recognizing
X with the fewest states (up to isomorphism of DFAs, i.e., renaming of
states), called the minimal DFA recognizing X. For a DFA M , we denote by
Mmin the minimal DFA such that L(Mmin) = L(M). There is an algorithm
to compute Mmin from a given DFA M (see Remark A.4).

Corollary 3.6. L(M) = L(N)⇐⇒Mmin ' Nmin for DFAs M and N .



A PROOF OF CONJECTURED PARTITION IDENTITIES OF NANDI 9

3.2. Regularly linked sets. Recall Definition 2.5. Recall also that we
assume n > 0 in Definition 1.1 for simplicity.

Definition 3.7. For S ⊆ Seq(Σ) and X,X ′ ⊆ Σ+, we write

avoid(S,X,X ′) :=

{
i ∈ S

∣∣∣∣∣ ∀j ∈ X, i does not match j, and

∀j ∈ X ′, i does not begin with j

}
.

In other words,

avoid(S,X,X ′) = S ∩
(
Σ∗ \ (Σ∗XΣ∗ ∪X ′Σ∗)

)∧
(3.2)

where we write for A ⊆ Σ∗

A∧ := {(ij)j≥1 ∈ Seq(Σ) | ∀n ≥ 1, i1 · · · in ∈ A}.

Definition 3.8. We say that a subset C ⊆ Par is regularly linked if there ex-
ists a 5-tuple (m, I, π,X,X ′) consisting of a positive integer m, a nonempty
finite set I, an injective map π : I −→ Par≤m (hence π• : Seq(I, π) −→ Par
is injective) and regular languages X,X ′ ⊆ I+ such that

π•(avoid(Seq(I, π), X,X ′)) = C.

Example 3.9. The sets N and Na (a = 1, 2, 3) (see Conjecture 1.2) are
regularly linked. Indeed, Proposition 2.6 and 2.7 translate as

π•(avoid(Seq(I, π), XN , ∅)) = N ,
π•(avoid(Seq(I, π), XN , XNa)) = Na (3.3)

where I = {0, 1, 2, 3, 4}, π : I −→ Par≤2 ; i 7→ πi is given by (2.3), and

XN =

{
12, 13, 14, 21, 22, 23, 24, 32, 34, 42, 43, 44,

104, 203, 204, 304, 404

}
∪ {4}{1}∗{03}, (3.4)

XN1 = {3, 4}, XN2 = {2, 4, 04}, XN3 = {2, 3, 4, 04} ∪ {1}∗{03} (3.5)

are the regular languages over I consisting of the patterns in (2.6) and (2.7).

Remark 3.10. In Definition 3.8, X is superfluous since we can write

avoid(Seq(I, π), X,X ′) = avoid(Seq(I, π), ∅, X ′ ∪ Σ∗X).

Note that if X(⊆ Σ+) is regular then so is Σ∗X(⊆ Σ+) (see Proposition
3.5). Nevertheless, it seems more consistent with intuition to separate some
forbidden patterns from forbidden prefixes as seen in Example 3.9 (see also
Proposition E.4).

3.3. The main construction.

Definition 3.11. For a DFA M = (Q,Σ, δ, s, F ) and v ∈ Q we write Mv :=
(Q,Σ, δ, v, F ). That is, Mv is identical to M except that its start state is v.

Definition 3.12. For a nonempty set I, we write

j · i := (j, i1, i2, . . . ) ∈ Seq(I) for j ∈ I, i = (i1, i2, . . . ) ∈ Seq(I),

j · S := {j · i | i ∈ S} ⊆ Seq(I) for j ∈ I, S ⊆ Seq(I).



10 MOTOKI TAKIGIKU AND SHUNSUKE TSUCHIOKA

Lemma 3.13. Let M = (Q, I, δ, s, F ) be a DFA. For v ∈ Q we have

(L(Mv)
c)∧ =

⊔
a∈I

δ(v,a)/∈F

a · (L(Mδ(v,a))
c)∧.

Proof. By (L(Mv)
c)∧ = {(ai)i≥1 ∈ Seq(I) | ∀n ≥ 1, δ̂(v, a1 · · · an) /∈ F}. �

For λ ∈ Par we write wt(λ) := x`(λ)q|λ|. Assume a map π : I −→ Par≤m
is given. For i ∈ Seq(I, π) and j ∈ I, we have

wt(π•(j · i)) = wt(π(j)) ·
(

wt(π•(i))|x 7→xqm
)

(3.6)

by π•(j · i) = π(j)⊕ φm+ (π•(i)) (and wt(φ+(λ)) = wt(λ)|x 7→xq).
Theorem 3.14. Assume C ⊆ Par is regularly linked and let m, I, π,X,X ′ be
as in Definition 3.8. Let M = (Q, I, δ, s, F ) be a DFA recognizing I∗XI∗ ∪
X ′I∗. Define

C(v) := π•
(
Seq(I, π) ∩ (L(Mv)

c)∧
)

(3.7)

for v ∈ Q \ F . Then s ∈ Q \ F and C(s) = C. Moreover, we have the system
of q-difference equations

fC(v)(x, q) =
∑

u∈Q\F

( ∑
a∈I

u=δ(v,a)

x`(πa)q|πa|
)
fC(u)(xq

m, q) (v ∈ Q \ F ). (3.8)

Proof. We have s ∈ Q\F since ε /∈ I∗XI∗∪X ′I∗ = L(M). The fact C(s) = C
is obvious by Ms = M and (3.7). Put Sv := Seq(I, π) ∩ (L(Mv)

c)∧. Then
by Lemma 3.13 we have

Sv =
⊔
a∈I

δ(v,a)/∈F

a · Sδ(v,a).

Apply the map Seq(I, π) ⊇ S 7→
∑

i∈S wt(π•(i)). Since π• is injective
and fC(x, q) =

∑
λ∈C wt(λ) for C ⊆ Par (see (1.2)), Sv is then mapped to

fC(v)(x, q). Hence by (3.3) we get (3.14). �

Remark 3.15. In Theorem 3.14, we can explicitly determine C(v) if v ∈ Q\F
is reachable, i.e., v = δ̂(s, w) for some w ∈ Σ∗. (For example, every state in
a minimal DFA is reachable.) In Appendix D we show

L(Mv) = I∗XI∗ ∪X ′′I∗ for some X ′′ ⊆ I+,

and explicitly find the minimum such X ′′, namely, the regular language Xv

given in (D.4) (with Σ := I). Hence for v ∈ Q \ F we have by (3.7)

(L(Mv)
c)∧ = avoid(Seq(I), X,Xv).

Thus, C(v) is regularly linked with forbidden patterns X and prefixes Xv:

C(v) = π•(avoid(Seq(I, π), X,Xv)) (⊆ C).
Proof of Theorem 1.5. Since |Q \F | is finite in Theorem 3.14, from the sys-
tem (3.14) we can deduce for any v ∈ Q\F a single q-difference equation for
fC(v)(x, q) by the algorithm given in [3, p. 1040] (called Modified Murray–
Miller Theorem therein). We review it in Appendix B for completeness. �
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4. A proof of Nandi’s conjectures

4.1. Algorithmic derivation of q-difference equations. We apply The-
orem 3.14 to N (recall Example 3.9). The resulting system (3.14) depends
on the choice of a DFA M in Theorem 3.14, and in this case we can complete
the proof by taking M minimal.

Let I = {0, 1, 2, 3, 4} and let X = XN ⊆ I+ be the regular language
given in (3.9). Since the proof of Proposition 3.5 and Remark A.4 are
constructive, we can algorithmically find (see Remark 4.3) the minimal DFA
that recognizes I∗XI∗ is M = (Q, I, δ, s, F ) where Q = {q0, . . . , q7}, s = q0,
F = {q6} and δ : Q×I −→ Q is given by Table 3, in which we display δ′(v, j)
such that δ(qv, j) = qδ′(v,j) (v ∈ {0, . . . , 7}, j ∈ I). See also Figure 1.

v\j 0 1 2 3 4
0 0 1 2 3 4
1 5 1 6 6 6
2 7 6 6 6 6
3 5 1 6 3 6
4 7 4 6 6 6
5 0 1 2 3 6
6 6 6 6 6 6
7 0 1 2 6 6

Table 3. δ′(v, j)

q0start

q1

q2

q3

q4

q5

q6

q7
0

1

2

3

4

0
1

2,3,4

0
1,2,3,4

0
1

2,4

3

0
1 2,3,4

0

1

2

3

4

0,1,2,3,40
1 2

3,4

Figure 1

Writing Fi(x) := fN (qi)(x, q) for qi ∈ Q \ F (i.e., i ∈ {0, . . . , 5, 7}), by
Theorem 3.14 we obtain a system of q-difference equations



F0(x)
F1(x)
F2(x)
F3(x)
F4(x)
F5(x)
F7(x)


=



1 xq2 x2q4 xq x2q2 0 0
0 xq2 0 0 0 1 0
0 0 0 0 0 0 1
0 xq2 0 xq 0 1 0
0 0 0 0 xq2 0 1
1 xq2 x2q4 xq 0 0 0
1 xq2 x2q4 0 0 0 0





F0(xq2)
F1(xq2)
F2(xq2)
F3(xq2)
F4(xq2)
F5(xq2)
F7(xq2)


. (4.1)

Moreover, it can be algorithmically proved (see Remark 4.3) that

L(Mq7) = I∗XI∗ ∪XN1I
∗,

L(Mq3) = I∗XI∗ ∪XN2I
∗,

L(Mq4) = I∗XI∗ ∪XN3I
∗,

(4.2)

where XN1 , XN2 , XN3 ⊆ I+ are as in (3.9). Actually, one can construct
DFAs recognizing the right-hand sides via Proposition 3.5 and then use
Corollary 3.6. Now by (3.7), (3.9), (3.14) and (4.1) we have

N (q7) = N1, N (q3) = N2, N (q4) = N3. (4.3)
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Remark 4.1. Alternatively, one can show (4.1) by computing DFAs recog-
nizing XNa (a = 1, 2, 3) and Xqi (given by (D.4); see also Remark 3.15) for
qi ∈ Q \ F and check Xq7 = XN1 , Xq3 = XN2 , Xq4 = XN3 by Corollary 3.6.

Hence, we can apply the algorithm described in Appendix B to obtain q-
difference equations for fN1(x, q) = F7(x), fN2(x, q) = F3(x) and fN3(x, q) =
F4(x) (the explicit calculation is given in Appendix C).

Proposition 4.2. For a = 1, 2, 3, the series fNa(x, q) satisfies the q-difference
equation

0 =

5∑
i=0

p
(a)
2i (x, q)fNa(xq2i, q), (4.4)

where p
(a)
2i = p

(a)
2i (x, q) are given in the following table.

a = 1 a = 2 a = 3

p
(a)
0 1 1 1

p
(a)
2 −1 − x(q2 + q3 + q4) −1 − x(q + q2 + q4) −1 − x(q2 + q4 + q5)

p
(a)
4 xq4(1 − x + xq3 + xq4 + xq5) xq4(1 + xq + xq3) xq4(1 + xq5 + xq7)

p
(a)
6 x2q6(−1 + xq4(1 + q + q2 − q5)) x2q10(−1 + xq4 + xq6) x2q10(−1 + xq4 + xq6)

p
(a)
8 x3q13(1 + q + q2)(1 − xq6) x3q15(1 + q2 + q3)(1 − xq6) x3q18(1 + q + q3)(1 − xq6)

p
(a)
10 x3q17(1 − xq6)(1 − xq8) x3q19(1 − xq6)(1 − xq8) x3q23(1 − xq6)(1 − xq8)

Remark 4.3. We can use computer algebra in these constructions. For ex-
ample, using a GAP package Automata [15, 22] we can compute M (up to
renaming of states) as follows.
gap> LoadPackage("automata");

gap> Xn:=RationalExpression("12U13U14U21U22U23U24U32U34U42U43U44U104U203U204U304U404U41*03","01234");

gap> Is:=RationalExpression("(0U1U2U3U4)*","01234");

gap> r:=ProductRatExp(Is,ProductRatExp(Xn,Is));

gap> M:=RatExpToAut(r);

gap> Display(M);

We can also check (4.1) for N1 (N2 and N3 are similar).
gap> Xn1:=RationalExpression("3U4","01234");

gap> r1:=UnionRatExp(r,ProductRatExp(Xn1,Is));

gap> SetInitialStatesOfAutomaton(M,5);

gap> AreEquivAut(M,RatExpToAut(r1));

Here, the state 5 (in the third line) corresponds to q7 in our notation.

4.2. Solving the equation (4.2). Recall Euler’s identities [19, (II.1),(II.2)]∑
n≥0

xn

(q; q)n

(A)
=

1

(x; q)∞
,

∑
n≥0

q(
n
2)xn

(q; q)n

(B)
= (−x; q)∞.

The following lemma is a formal series version of Appell’s comparison
theorem [18, p. 101].

Lemma 4.4. For formal series

A(x) =
∑
m≥0

amx
m, B(x) =

A(x)

(1− x)
=
∑
n≥0

bnx
n,

if lim
n→∞

bn exists then (A(1) =)
∑
m≥0

am = lim
n→∞

bn.
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Within the proof below we freely use the fact the q-difference equation∑
i,j,k aijkx

iqjF (xqk) = 0 for a formal series F (x) =
∑

M∈Z fMx
M is equiv-

alent to the recurrence
∑

i,j,k aijkq
k(M−i)+jfM−i = 0 for all M ∈ Z.

Proof of Theorem 1.3. We simply write Fa(x) = fNa(x, q). First we consider

the case a = 1. Define G1(x) and {g(1)
M }M∈Z by

G1(x) =
∑
M∈Z

g
(1)
M xM :=

F1(x)

(x; q2)∞
. (4.5)

Note that g
(1)
M = 0 if M < 0. Dividing (4.2) by (xq6; q2)∞ yields

0 = (1− x)(1− xq2)(1− xq4)G1(x)

− (1− xq2)(1− xq4)(1 + xq2 + xq3 + xq4)G1(xq2)

+ xq4(1− xq4)(1− x+ xq3 + xq4 + xq5)G1(xq4)

− x2q6(1− xq4 − xq5 − xq6 + xq9)G1(xq6)

+ x3q13(1 + q + q2)G1(xq8) + x3q17G1(xq10),

which is equivalent to

0 = (1− q2M )g
(1)
M + (−1− q2 − q4 − q2M+1 + q4M )g

(1)
M−1

+ q2(1 + q2 + q4 − q2M−3)(1 + q2M−3)(1 + q2M−2)g
(1)
M−2

− q6(1− q2M−5)(1 + q2M−5)(1 + q2M−4)(1 + q2M−3)(1 + q2M−2)g
(1)
M−3

(4.6)
for all M ∈ Z. Letting

h
(1)
M :=

g
(1)
M

(−q; q)2M
and H1(x) :=

∑
M∈Z

h
(1)
M xM (4.7)

(note that h
(1)
M = 0 if M < 0) and dividing (4.2) by q−1(−q; q)2M−2, we have

0 = q(1− q2M )(1 + q2M−1)(1 + q2M )h
(1)
M + q(−1− q2 − q4 − q2M+1 + q4M )h

(1)
M−1

+ q3(1 + q2 + q4 − q2M−3)h
(1)
M−2 − q

7(1− q2M−5)h
(1)
M−3

for all M ∈ Z, which is equivalent to

0 = q(1− x)(1− xq2)(1− xq4)H1(x)

+ (1− xq2)(1− xq4)(1 + xq2)H1(xq2)− q(1− xq4)H1(xq4)−H1(xq6).
(4.8)

Finally we define I1(x) and i
(1)
M (M ∈ Z) by

I1(x) =
∑
M∈Z

i
(1)
M xM := H1(x)(x; q2)∞ (4.9)

(note that i
(1)
M = 0 if M < 0) and multiply (4.2) by (xq6; q2)∞ to obtain

0 = qI1(x) + (1 + xq2)I1(xq2)− qI1(xq4)− I1(xq6)
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which is equivalent to

0 = q(1− q2M )(1 + q2M )(1 + q2M−1)i
(1)
M + q2M i

(1)
M−1

for all M ∈ Z. Since i
(1)
0 = h

(1)
0 = g

(1)
0 = F1(0) = fN1(0, q) = 1, we have

i
(1)
M =

(−1)MqM
2

(−q; q)2M (q2; q2)M
, i.e., I1(x) =

∑
M≥0

(−1)MqM
2

(−q; q)2M (q2; q2)M
xM .

The cases a = 2, 3 can be treated in parallel. DefiningGa(x) =
∑

M g
(a)
M xM ,

Ha(x) =
∑

M h
(a)
M xM , Ia(x) =

∑
M i

(a)
M xM by transformations shown below,

a = 1 a = 2 a = 3

(4.2) G2(x) = F2(x)/(x; q2)∞ G3(x) = F3(x)/(x; q2)∞

(4.2) h
(2)
M = g

(2)
M /(−q; q)2M h

(3)
M = g

(3)
M /(−q2; q)2M

(4.2) I2(x) = H2(x)(x; q2)∞ I3(x) = H3(x)(x; q2)∞

we can get

Ia(x) =
∑
M≥0

(−1)MqM(M+2t)

(−q1+s; q)2M (q2; q2)M
xM ,

where (s, t) := (0, 0), (0, 1), (1, 1) for a = 1, 2, 3 respectively.
For each a = 1, 2, 3, by (A) we have

Ha(x) =
Ia(x)

(x; q2)∞
=
∑
N≥0

xN

(q2; q2)N

∑
M≥0

(−1)MqM(M+2t)

(−q1+s; q)2M (q2; q2)M
xM .

Hence by (4.2)

g
(a)
L =

∑
0≤M≤L

(−1)MqM(M+2t)(−q1+s; q)2L

(q2; q2)L−M (−q1+s; q)2M (q2; q2)M

for L ≥ 0, which implies

lim
L→∞

g
(a)
L =

(−q; q)∞
(q2; q2)∞

∑
M≥0

(−1)MqM(M+2t)

(−q; q)2M+s(q2; q2)M
.

Since Fa(x) = (x; q2)∞Ga(x) = (1− x)(xq2; q2)∞Ga(x), by Lemma 4.4

Fa(1) = (q2; q2)∞ lim
L→∞

g
(a)
L = (−q; q)∞

∑
M≥0

(−1)MqM(M+2t)

(−q; q)2M+s(q2; q2)M
.(4.10)

Now the first equality in each of the statements of Theorem 1.3 follows
from three identities due to Slater ([37, (117),(118),(119)]=[35, (A.187),(A.186),(A.188)]
with q 7→ −q)∑

n≥0

(−1)nqn(n+2t)

(−q; q)2n+s(q2; q2)n
=

(q; q2)∞
(q2; q2)∞

(q2b, q14−2b, q14; q14)∞
(qb, q14−b; q14)∞

,

where (b, s, t) = (3, 0, 0), (1, 0, 1), (5, 1, 1).
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Also, using (B) for (−q; q)∞/(−q; q)2M+s = (−q2M+1+s; q)∞, we have

(4.2) =
∑
M≥0

(−1)MqM(M+2t)

(q2; q2)M

∑
K≥0

q(
K
2 )+(2M+1+s)K

(q; q)K
= Na,

proving the second equality in each of the statements of Theorem 1.3. �

Remark 4.5. By eliminating the summation over j in (1.3) using (B), we see

Na =
∑
i≥0

(q1+2i+2t; q2)∞
q(

i
2)+(1+s)i

(q; q)i
= (q; q2)∞

∑
i≥0

q(
i
2)+(1+s)i

(q; q)i(q; q2)i+t

for (a, s, t) = (1, 0, 0), (2, 0, 1), (3, 1, 1). Hence, as Step 3 in §1.2 for Nandi’s
conjectures, we can employ another three identities due to Slater∑

i≥0

q(
i
2)+(1+s)i

(q; q)i(q; q2)i+t
=

(qa, q7−a, q7; q7)∞(q7−2a, q7+2a; q14)∞
(q; q)∞(q; q2)∞

,

where (a, s, t) = (1, 0, 0), (2, 0, 1), (3, 1, 1) (see [37, (81),(80),(82)]=[35, (A.124),(A.125),(A.126)]).

Appendix A. Textbook constructions for finite automata

To recall the proof of Proposition 3.5 we need ε-NFAs.

Definition A.1 ([36, Definition 1.37]). A nondeterministic finite automaton
with ε-transitions (or ε-NFA for short) over Σ is a 5-tupleM = (Q,Σ,∆, s, F )
where Q is a finite set, ∆: Q× (Σ t {ε}) −→ 2Q, s ∈ Q and F ⊆ Q.

Definition A.2. Let M = (Q,Σ,∆, s, F ) be an ε-NFA.
(1) For A ⊆ Q, its ε-closure E(A) is the set of states that are reachable from
a state in A via successive ε-transitions, i.e., E(A) :=

⋃
n≥0 ∆n

ε (A) where

∆ε(B) :=
⋃
q∈B ∆(q, ε) for B ⊆ Q.

(2) We define ∆̂ : Q × Σ∗ −→ 2Q inductively by ∆̂(q, ε) = E({q}) and

∆̂(q, wa) = E
(⋃

q′∈∆̂(q,w)
∆(q′, a)

)
(q ∈ Q, a ∈ Σ, w ∈ Σ∗). We write

L(M) = {w ∈ Σ∗ | ∆̂(s, w) ∩ F 6= ∅}, the language that M recognizes.

Proposition A.3 (See e.g., [36, Corollary 1.40] for the details). A language
X ⊆ Σ∗ is regular if and only if there exists an ε-NFA recognizing X.

Proof. Every DFA can be seen as an ε-NFA (with no ε-transitions). Con-
versely, an ε-NFA (Q,Σ,∆, s, F ) can be converted into an equivalent DFA
(Q′,Σ, δ′, s′, F ′) via the subset construction: Q′ = 2Q, δ′ : Q′ × Σ −→ Q′ ;
(A, a) 7→ E(

⋃
q∈A ∆(q, a)), s′ = E({s}) and F ′ = {A ⊆ Q | A ∩ F 6= ∅}. �

Proof of Proposition 3.5. Assume DFAs (Q1,Σ, δ1, s1, F1) and (Q2,Σ, δ2, s2, F2)
recognize Y and Z respectively. By Proposition A.3 it suffices to give a DFA
or an ε-NFA recognizing (1) Y ∩ Z, (2) Y Z, (3) Y c, and (4) Y ∗.
(1) The DFA (Q1 × Q2,Σ, δ, (s1, s2), F1 × F2) recognizes Y ∩ Z, where
δ((q1, q2), a) = (δ1(q1, a), δ2(q2, a)).
(2) The ε-NFA (Q,Σ,∆, s, F ) recognizes Y Z, where Q = Q1 t Q2, s = s1,
F = F2, ∆(q, a) = {δi(q, a)} (i = 1, 2, q ∈ Qi, a ∈ Σ) and ∆(q, ε) = {s2} if
q ∈ F1 and ∆(q, ε) = ∅ if q ∈ (Q1 \ F1) tQ2.
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(3) The DFA (Q1,Σ, δ1, s1, Q1 \ F1) recognizes Y c.
(4) The ε-NFA (Q,Σ,∆, s, F ) recognizes Y ∗, where Q = Q1 t {s}, F =
{s} t F1, ∆(q, a) = {δ1(q, a)} (q ∈ Q1, a ∈ Σ), ∆(s, a) = ∅ (a ∈ Σ),
∆(s, ε) = {s1}, ∆(q, ε) = {s1} if q ∈ F1 and ∆(q, ε) = ∅ if q ∈ Q1 \ F1. �

Remark A.4 (DFA minimization. See e.g., [23, Lecture 14]). Given a DFA
M = (Q,Σ, δ, s, F ), one can compute Mmin by the following algorithm.

1. Remove all unreachable states.
2. Mark all (unordered) pairs {q, q′} with q ∈ F , q′ ∈ Q \ F .
3. Repeat until no more changes occur:

if there exists an unmarked pair {q, q′} ⊆ Q such that {δ(q, a), δ(q′, a)}
is marked for some a ∈ Σ, then mark {q, q′}.

4. The relation “q ∼ q′ :⇐⇒ {q, q′} is unmarked” is then an equiv-
alence relation. Writing [q] := {q′ ∈ Q | q ∼ q′}, we have a
new DFA Mmin = (Q′,Σ, δ′, s′, F ′) where Q′ := {[q] | q ∈ Q},
δ′([q], a) := [δ(q, a)], s′ := [s], F ′ := {[q] | q ∈ F}.

Appendix B. Modified Murray–Miller Theorem

We review an algorithm given in [3, p. 1040], [4, Lemma 8.10] (see also
[12, §3] for an exposition), which outputs a (nontrivial) q-difference equation
for F1(x) from a given system of q-difference equations

Fi(x) =
∑̀
j=1

pij(x)Fj(xq
m) (i = 1, . . . , `), (B.1)

where pij(x) = pij(x, q) ∈ Q(x, q).

Step 1: We obtain from (B) another system

F ′i (x) =

`′∑
j=1

p′ij(x)F ′j(xq
m) (i = 1, . . . , `′), (B.2)

where 1 ≤ `′ ≤ `, F ′1(x) = F1(x), and (p′ij)
`′
i,j=1 ∈ Mat`′(Q(x, q)) is of the

form (B) with (s, `) replaced by (`′, `′).
Step 1 is done in Algorithm 1, which receives (pij(x))`i,j=1 as the input

and returns (p′ij(x))`
′
i,j=1 as the output. The following are supplementary

explanations on the s-th iteration of the for loop in Algorithm 1.

• In the line 3, i.e., at the beginning of the iteration, it is ensured that
(a) the matrix P (s) is defined and is of the form



1 2 . . . s− 1 s . . . `

1 ? 1 0 . . . 0 0 . . . 0
2 ? ? 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...
? ? ? . . . 1 0 . . . 0

s− 1 ? ? ? . . . ? 1 . . . 0
s ? ? ? . . . ? ? . . . ?
...

...
...

...
...

...
...

. . .
...

` ? ? ? . . . ? ? . . . ?


, (B.3)
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i.e.,P
(s)
1,2 = · · · = P

(s)
s−1,s = 1 and P

(s)
i,j = 0 if i < s and j > i+ 1; and

(b) F ′1(x), . . . , F ′s(x) are (implicitly) defined (we let F ′1(x) := F1(x)
when s = 1) and satisfy

t
(
F ′1(x), . . . , F ′s(x), Fs+1(x), . . . , F`(x)

)
= P (s) · t

(
F ′1(xqm), . . . , F ′s(xq

m), Fs+1(xqm), . . . , F`(xq
m)
)
.

(B.4)

These assertions are obvious when s = 1 by putting P (1) := (pij(x))`i,j=1.
• The if statement in the line 4 is always true if s = `.
• If the algorithm reaches the line 5, we can see by (B) and (B) that
F ′1(x), . . . , F ′`′(x) satisfy the system of q-difference equations (B) with

(p′ij)
`′
i,j=1 := (P

(s)
ij )si,j=1.

• The lines 9 and 10 correspond to switching F ′s+1(x) and F ′t(x). To
make the algorithm deterministic, one should choose the smallest t
in line 8, for example.
• In line 13, it can be checked (see [12, Claim 3.1]) that P (s+1) (∈

Mat`(Q(x, q))) is again of the form (B) with (s, `) replaced by (s +

1, `). Moreover, for F ′s+1(x) :=
∑`

j=s+1 P
(s)
s,j (xq−m)Fj(x) we can

check (B) with s replaced by s+ 1 (see [12, (3.7)]).

Algorithm 1 Obtain (B) from (B) ([4, Lemma 8.10], see also [12, §3])

Input: (pij(x))`i,j=1 // the coefficients in (B)

Output: `′, (p′ij(x))`
′
i,j=1 // the coefficients in (B)

1: P (1) ← (pij)
`
i,j=1

2: for s = 1 to ` do
3: // assert that P (s) is of the form (B)

4: if P
(s)
s,s+1 = P

(s)
s,s+2 = · · · = P

(s)
s,` = 0 then

5: return s,
(
P

(s)
ij (x)

)s
i,j=1

6: end if
7: if P

(s)
s,s+1 = 0 then

8: choose any t such that s+ 1 < t ≤ ` and P
(s)
s,t 6= 0

9: swap s+ 1-th and t-th rows of P (s)

10: swap s+ 1-th and t-th columns of P (s)

11: end if

12: Ts(x)←



1 s s + 1 `

1 1 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

s 0 . . . 1 0 0 . . . 0
s + 1 0 . . . 0 P

(s)
s,s+1(x) P

(s)
s,s+2(x) . . . P

(s)
s,` (x)

0 . . . 0 0 1 . . . 0
...

. . .
...

...
...

. . .
...

` 0 . . . 0 0 0 . . . 1


13: P (s+1) ← Ts(xq

−m)P (s)Ts(x)−1

14: end for
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This completes the algorithm to obtain a new system (B).

Step 2: Now the i-th equation (for i = 1, . . . , `′−1) in (B) is of the form 0 =

−F ′i (x) + F ′i+1(xqm) +
∑

j<i+1 p
′
ij(x)F ′j(xq

m). We can eliminate F ′`′ , . . . , F
′
2

from the system (in this order) to transform the final equation in (B) into a
q-difference equation for F ′1(x) = F1(x), which is nontrivial (see [4, Lemma
8.10] for more details).

Appendix C. Proof of Proposition 4.2

We apply the algorithm in Appendix B to (4.1).

C.1. The case N1. To find a q-difference equaiton for F7(x), first we per-
mute the positions of F0, . . . , F5, F7 in (4.1) as follows.

F7(x)
F1(x)
F2(x)
F3(x)
F4(x)
F5(x)
F0(x)


=



0 xq2 x2q4 0 0 0 1
0 xq2 0 0 0 1 0
1 0 0 0 0 0 0
0 xq2 0 xq 0 1 0
1 0 0 0 xq2 0 0
0 xq2 x2q4 xq 0 0 1
0 xq2 x2q4 xq x2q2 0 1





F7(xq2)
F1(xq2)
F2(xq2)
F3(xq2)
F4(xq2)
F5(xq2)
F0(xq2)


.

Next we apply Algorithm 1 (note that it is deterministic). It stops at the
5-th iteration of the for loop and we get

G1(x)
G2(x)
G3(x)
G4(x)
G5(x)
G6(x)
G7(x)


=



0 1 0 0 0 0 0
x2 x + 1 1 0 0 0 0

−x3+x2

q2
x
q

1
q

1 0 0 0
−x2

q3
−xq2+x2

q4
−q2+x

q4
−q2+x

q3
1 0 0

−x3

q7
0 0 0 x

q4
0 0

0 1 0 q
x−1

q3

−x2+x
0 0

0 1 0 q
x−1

q3

−x+1
0 0





G1(xq2)
G2(xq2)
G3(xq2)
G4(xq2)
G5(xq2)
G6(xq2)
G7(xq2)


,

where the square matrix displayed just above is P (5) in the notation of
Algorithm 1 and each Gi is a certain Q(x, q)-linear combination of Fj (j ∈
{0, . . . , 5, 7}) with G1 = F7. The equation given in the i-th row (i = 1, . . . , 4)
is

0 = −Gi(x) +Gi+1(xq2) +
∑
j≤i

P
(5)
i,j (x)Gj(xq

2),

by which each Gi+1(x) is written in terms of Gj(x) (j ≤ i) and Gi(xq
−2).

Thus we can eliminate G5, . . . , G2 and then the equation in the 5-th row

0 = −G5(x)− x3

q7
G1(xq2) +

x

q4
G5(xq2)

turns into an equation for {G1(xq2k) | k ∈ Z}:

0 = −G1(xq−8) +
q6 + x(q2 + q + 1)

q6
G1(xq−6) − xq8 + x2(q5 + q4 + q3 − 1)

q12
G1(xq−4)

− −x2q4 − x3(q5 + q2 + q + 1)

q14
G1(xq−2) +

x3(x− q2)(1 + q + q2)

q13
G1(x)

− x3(x− 1)(x− q2)

q9
G1(xq2). (C.1)
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By letting x 7→ xq8 in (C.1), we obtain (4.2) for G1(x) = F7(x) = fN1(x, q).

C.2. The case N2. The proof of Proposition 4.2 for N2 (and N3) proceeds
almost the same. We start by rewriting (4.1) as

F3(x)
F1(x)
F2(x)
F4(x)
F7(x)
F5(x)
F0(x)

 =


xq xq2 0 0 0 1 0
0 xq2 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 xq2 1 0 0
0 xq2 x2q4 0 0 0 1

xq xq2 x2q4 0 0 0 1
xq xq2 x2q4 x2q2 0 0 1




F3(xq2)
F1(xq2)
F2(xq2)
F4(xq2)
F7(xq2)
F5(xq2)
F0(xq2)

 .

Here we permuted the positions of F0, . . . , F5, F7 so that further row (and
column) swapping (in the lines 9 and 10 of Algorithm 1) will not happen.
Then Algorithm 1 stops at the 5-th iteration with

P (5) =



xq 1 0 0 0 0 0
xq x + 1 1 0 0 0 0
0 0 0 1 0 0 0

0 x2

q4
x2

q4
x
q2

1 0 0

0 x2q2−x3

q8
x2q2−x3

q8
0 0 0 0

xq 1 1 0 0 0 0

xq 1 1 1 q2

x−1
0 0


,

and by the same procedure we obtain

0 = −G1(xq−8) +
q7 + x(1 + q + q3)

q7
G1(xq−6) − xq7 + x2q2 + x2

q11
G1(xq−4)

+
x2q4 − x3q2 − x3

q10
G1(xq−2) +

x3(x− q2)(1 + q2 + q3)

q11
G1(x)

− x3(x− 1)(x− q2)

q7
G1(xq2), (C.2)

where G1(x) = F3(x) = fN2(x, q). Now, by letting x 7→ xq8 in (C.2) we
obtain (4.2) for fN2(x, q).

C.3. The case N3. Similarly, we start the algorithm by writing

F4(x)
F7(x)
F2(x)
F3(x)
F5(x)
F1(x)
F0(x)


=



xq2 1 0 0 0 0 0
0 0 x2q4 0 0 xq2 1
0 1 0 0 0 0 0
0 0 0 xq 1 xq2 0
0 0 x2q4 xq 0 xq2 1
0 0 0 0 1 xq2 0

x2q2 0 x2q4 xq 0 xq2 1





F4(xq2)
F7(xq2)
F2(xq2)
F3(xq2)
F5(xq2)
F1(xq2)
F0(xq2)


.

Then Algorithm 1 stops at the 5-th iteration with

P (5) =



xq2 1 0 0 0 0 0
0 0 1 0 0 0 0

x2q2 x2 1 1 0 0 0
0 0 x

q2
xq+x
q2

1 0 0

0 0 xq2−x2

q5
xq2−x2

q5
0 0 0

0 0 0 0 q
−x2+x

0 0

x2q2 0 1 1 −q
−x+1

0 0


.
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By the same procedure we obtain

0 = −G1(xq−8) +
q6 + x(q3 + q2 + 1)

q6
G1(xq−6) − x2q2 + xq3 + x2

q7
G1(xq−4)

+
x2q4 − x3q2 − x3

q10
G1(xq−2) +

x3(x− q2)(1 + q + q3)

q8
G1(x)

− x3(x− 1)(x− q2)

q3
G1(xq2), (C.3)

where G1(x) = F4(x) = fN3(x, q). Now, by letting x 7→ xq8 in (C.3) we
obtain (4.2) for fN3(x, q).

Appendix D. Minimal forbidden patterns and prefixes

Let Σ be a nonempty finite set. Recall that for B ⊆ Σ∗, the language
Σ∗BΣ∗ (resp.BΣ∗) is the set of words matching (resp. beginning with) some
w ∈ B in the sense of Definition 1.1 (allowing n = 0 in Definition 1.1). Then,
a language A ⊆ Σ∗ is of the form A = Σ∗BΣ∗ (resp.A = BΣ∗) for some
B ⊆ Σ∗ if and only if A = Σ∗AΣ∗ (resp.A = AΣ∗). In [14] they gave an
algorithm to find from given A = Σ∗AΣ∗ ⊆ Σ∗ the minimum B ⊆ Σ∗ such
that A = Σ∗BΣ∗. By a slight generalization it can also be used to find
the minimum B for which A = BΣ∗, given A ⊆ Σ∗ such that A = AΣ∗

(Proposition D.1 and D.2).
In general, for a poset (P,≤) and a subset A ⊆ P we write

minimalA = minimal≤A := {w ∈ A | ∀v ∈ A, (v ≤ w =⇒ v = w)},
V (A) = V≤(A) := {w ∈ P | ∃v ∈ A, v ≤ w}.

Let us say a poset (P,≤) is good if A ⊆ V (minimalA) for any A ⊆ P .

Proposition D.1. Let (P,≤) be a good poset and assume that A,B ⊆ P
satisfy A = V (A). Then A = V (B) if and only if minimalA ⊆ B ⊆ A.

Proof. (=⇒): Assume A = V (B). Then B ⊆ A is obvious. For any w ∈ A
we have u ≤ w for some u ∈ B, and if w ∈ minimalA then w = u. (⇐=):
minimalA ⊆ B ⊆ A implies A ⊆ V (minimalA) ⊆ V (B) ⊆ V (A) = A. �

Let us consider partial orders ≤ and ≤r on Σ∗ defined by

v ≤ w :⇐⇒ ∃u ∈ Σ∗, ∃u′ ∈ Σ∗, w = uvu′,

v ≤r w :⇐⇒ ∃u ∈ Σ∗, w = vu.

Clearly V≤(B) = Σ∗BΣ∗ and V≤r(B) = BΣ∗ for B ⊆ Σ∗. It is easy to see
that (Σ∗,≤) and (Σ∗,≤r) are good.

Proposition D.2. Let A ⊆ Σ+ (= Σ∗ \ {ε}).
(1) If A = Σ∗AΣ∗ (= V≤(A)) then minimal≤A = A ∩AcΣ ∩ ΣAc.
(2) If A = AΣ∗ (= V≤r(A)) then minimal≤r A = A ∩AcΣ.

Proof. (1) is [14, Eq. (2)] with A replaced by Ac. (2) is proved in the same
way as (1), but for completeness we duplicate the proof. (⊆): Clearly

minimal≤r A ⊆ A. For any w ∈ minimal≤r A, since w 6= ε (otherwise
we get A = Σ∗) we can write w = w′a with w′ ∈ Σ∗, a ∈ Σ. Then
w′ /∈ A by w ∈ minimal≤r A. Hence w = w′a ∈ AcΣ. (⊇): For any
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w = a1 · · · an ∈ AcΣ, we have n ≥ 1 and a1 · · · an−1 /∈ A. For v ∈ Σ∗,
if v < w then v = a1 · · · ai for some 0 ≤ i < n, and hence v /∈ A since
A = AΣ∗. Therefore w ∈ minimal≤r A if w ∈ A. �

Lemma D.3. Let A,X ⊆ Σ+ and assume Σ∗XΣ∗ ⊆ A = AΣ∗. Then

X ′ := minimal≤r(A) \ Σ∗X =
(
A ∩ (Ac Σ)

)
\ Σ∗X (⊆ Σ+) (D.1)

is the minimum set (with respect to inclusion) such that A = Σ∗XΣ∗∪X ′Σ∗.

Proof. The equality in (D.3) follows from Proposition D.2 (2). We apply
Proposition D.1. Writing A′ = Σ∗X, we have A = A′Σ∗ ∪BΣ∗ (= V≤r(A′ ∪
B)) ⇐⇒ minimal≤r A ⊆ (A′ ∪ B) ⊆ A ⇐⇒ (minimal≤r A) \ A′ ⊆ B ⊆ A for
B ⊆ Σ∗. Thus, X ′ is the desired one. �

We apply this to DFAs. Recall Definition 3.11.

Proposition D.4. Let M = (Q,Σ, δ, s, F ) be a DFA and assume L(M) =
Σ∗XΣ∗ ∪X ′Σ∗ for some X,X ′ ⊆ Σ∗. For any reachable state v ∈ Q \F we
have L(Mv) = Σ∗XΣ∗ ∪XvΣ

∗, where

Xv :=
(
L(Mv) ∩ (L(Mv)

c Σ)
)
\ Σ∗X (⊆ Σ+). (D.2)

Moreover, Xv is the minimum such set (with respect to inclusion).

Proof. By the reachability, δ̂(s, b) = v for some b ∈ Σ∗. Then a ∈ L(Mv)⇐⇒
ba ∈ L(M) = Σ∗XΣ∗ ∪X ′Σ∗ for any a ∈ Σ∗, by which Σ∗XΣ∗ ⊆ L(Mv) =
L(Mv)Σ

∗ follows. Now the proposition follows from Lemma D.3 (note that
v /∈ F implies ε /∈ L(Mv)). �

Appendix E. Connection to linked partition ideals

E.1. On the definition of partition ideals. Consider a partial order

≤ on Par (' P̂ar) defined by (fi)i≥1 ≤ (gi)i≥1 :⇐⇒ ∀i ≥ 1, fi ≤ gi. In
[3, Definition 1] a subset C of Par is called a partition ideal (PI for short) if
it is an order ideal ([38, p. 282]) with respect to ≤, i.e.,

∀f ∈ Ĉ, ∀g ∈ P̂ar, (g ≤ f =⇒ g ∈ Ĉ). (E.1)

For m > 0 and λ ∈ Par we write λ>m := (λ1, . . . , λ`′) where `′ := #{i ≥
1 | λi > m}. In [3, Definition 7] a PI C is defined to have modulus m > 0
if φm+ (C) = C>m := {λ ∈ C | λ = λ>m}. As we see below, this is equivalent
to adding an extra condition φm+ (C) ⊆ C to φm− (C) ⊆ C (cf. (2.3)) under the
assumption

λ ∈ C =⇒ λ>m ∈ C. (E.2)

Proposition E.1. Let a subset C ⊆ Par satisfy (E.1). Then φm+ (C) = C>m
if and only if φm+ (C) ⊆ C and φm− (C) ⊆ C.

Proof. (⇒): Assume φm+ (C) = C>m. Then obviously φm+ (C) ⊆ C. Since

λ>m = φm+φ
m
− (λ) for any λ ∈ Par, (E.1) implies φm+φ

m
− (C) ⊆ C>m (= φm+ (C)),

and hence φm− (C) ⊆ C since φ+ is injective. (⇐): Assume φm+ (C) ⊆ C and

φm− (C) ⊆ C. Then obviously φm+ (C) ⊆ C>m. Since φm− (C) ⊆ C we have
φm+φ

m
− (C>m) ⊆ φm+ (C), and C>m = φm+φ

m
− (C>m) since φm+φ

m
− is identical on

Par>m. Hence C>m ⊆ φm+ (C). �
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Corollary E.2. A PI having modulus m satisfies (2.3).

Proof. Since a PI satisfies (E.1) we can apply Proposition E.1. The first
condition in (2.3) is obvious from (E.1). �

E.2. Linked partition ideals. Recall Definition 2.5.

Definition E.3 ([3, Definition 11]). A subset C of Par is a linked partition
ideal (LPI for short) if there exists m ∈ Z>0 for which

(L1) C is a PI having modulus m,
(L2) |C≤m| <∞,
(L3) there exist L : C≤m −→ 2C≤m and s : C≤m −→ Z>0 such that id•C≤m

(S) =

C, where S is the set of (λ(i))i≥1 ∈ Seq(C≤m, idC≤m
) with

∀j ≥ 1, λ(j+1) = · · · = λ(j+s(λ(j))−1) = ∅ and λ(j+s(λ(j))) ∈ L(λ(j)).

Proposition E.4. An LPI C is regularly linked (see Definition 3.8).

Proof. If C = ∅ then we can take m, I, π,X ′ arbitrarily and X = I in
Definition 3.8. Assume C 6= ∅ and let m be as in Definition E.3. Since C
is a PI, we have ∅ ∈ C and in particular C≤m 6= ∅. Write I := C≤m and
π := idC≤m

. Then the set S ⊆ Seq(I, π) in (L3) can be written as

avoid(Seq(I, π), X, ∅) = S,

where

X :=
⋃
λ∈I
{λ}

(
Is(λ) \

(
{∅ · · ·∅︸ ︷︷ ︸
s(λ)−1

}L(λ)
))

(⊆ I+),

which is finite and hence is a regular language over I (recall (3)). �
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