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Abstract. We determine the irreducible components of Igusa varieties for Shimura varieties of
Hodge type under a mild condition and use that to compute the irreducible components of central
leaves. In particular, we show that a strong version of the discrete Hecke orbit conjecture is false
in general. Our method combines recent work of D’Addezio on monodromy groups of compatible
local systems with a generalisation of a method of Hida, using the Honda–Tate theory for Shimura
varieties of Hodge type developed by Kisin–Madapusi Pera–Shin. We also determine the irreducible
components of Newton strata in Shimura varieties of Hodge type by combining our methods with
recent work of Zhou–Zhu.

1. Introduction

Let N ≥ 4, let p be a prime number coprime to N , let Y1(N) be the modular curve of level Γ1(N)
over Fp and let Y1(N)ord be the ordinary locus. There is a tower of finite étale covers (see [26])
Igm → Y1(N)ord with Galois groups (Z/pmZ)×, and we let Ig∞ → Y1(N)ord be their inverse limit.
It is a classical result due to Igusa that Ig∞ is irreducible.

Igusa varieties exist more generally as profinite étale covers of central leaves in the special fibers
of Shimura varieties of Hodge type (cf. [19]*Section 5; see [37] for the PEL case). Understanding the
irreducible components of these Igusa varieties has important consequences for the theory of p-adic
automorphic forms. For example, in the work of Eischen–Mantovan [13] on p-adic automorphic
forms for unitary Shimura varieties, the irreducibility of Igusa varieties is assumed throughout.

1.1. Main results. Let (G,X) be a Shimura datum of Hodge type with reflex field E. Let p > 2 be
a prime number, letKp ⊂ G(Apf ) be a sufficiently small compact open subgroup and letKp ⊂ G(Qp)

be a hyperspecial subgroup. For a prime v|p of E, we let ShG be the base change to Fp of the
canonical integral model over OE,v of the Shimura variety of level KpKp, see [29, main theorem].

Let ShG,[b] ⊂ ShG be a non-basic Newton stratum and let C ⊂ ShG,[b] be a central leaf (see [19]
or Section 2.1.3). Then the Igusa variety Ig[b] → C is a profinite étale cover with Galois group a
compact open subgroup HC ⊂ Jb(Qp), where Jb(Qp) is the twisted centraliser in G(Q̆p) of some
b ∈ [b] (see Section 2.1.5). Let Gder denote the derived group of G. Write Gab for the maximal
abelian quotient of G and Gab(Zp) for the Zp-points of the connected Néron model of Gab

Qp
. Under

the natural surjective map Jb(Qp)→ Gab(Qp) (see Section 2.1.5) the subgroupHC maps to Gab(Zp),
which defines an action of HC on Gab(Zp).

Theorem 1. Assume that Gder is simply connected and Q-simple. If Jder
b has no compact factors,

then the natural map (induced by Ig[b] → C → ShG)

π0(Ig[b])→ π0(ShG),

is surjective with fibers in bijection with Gab(Zp), equivariant for the action of HC .
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The natural map in Theorem 1 is equivariant for the prime-to-p Hecke operators, but it should
not be true that these operators act trivially on the fibers, see Conjectures 6.1.1 and 6.2.2.

Remark 1.1.1. In the case of the modular curve, the ordinary Igusa variety Ig[ord] is a (Z×p )2-torsor
over the ordinary locus, and our theorem tells us that its connected components are in bijection
with Z×p ; here (Z×p )2 acts on Z×p via the product map. This recovers the result of Igusa from the first
paragraph of the introduction, because the Igusa tower Ig∞ introduced there is the inverse image
of 1 under Ig[ord] → Z×p .

The irreducibility of Igusa varieties was proved for Siegel modular varieties by Chai-Oort [7], and
their proof works more generally for Shimura varieties of PEL type when hypersymmetric points
exist (cf. [13, 23]). We would like to point out that even in the µ-ordinary locus, hypersymmetric
points often do not exist (see [53]*Corollary 7.5.). Hida, see [22], proved the irreducibility of the
ordinary Igusa tower over Shimura varieties of PEL type A and C without using hypersymmetric
points. Our results are the first to treat Hodge type Shimura varieties and Igusa varieties over
general central leaves (but see Remark 1.1.5); they are even new for the µ-ordinary locus in many
PEL type cases.

When [b] is basic, the Igusa variety Ig[b] is zero-dimensional and highly reducible. In particular,
the theorem is false for products of Shimura varieties with [b] basic in one factor and non-basic
in the other; this is where the assumption that Gder is Q-simple comes from. This assumption is
equivalent to asking that the adjoint group Gad is Q-simple, since we also assume that Gder is simply
connected. It can be replaced with the assumption that [b] is Q-non-basic, see Section 3.

Remark 1.1.2. The assumption that Jder
b has no compact factors is relatively mild; For Siegel

modular varieties, it comes down to the assumption that the F -isocrystal corresponding to [b] does
not have slope 1/2 with multiplicity one. It is automatic for the µ-ordinary locus or more generally
for Newton strata corresponding to [b] with Jb quasi-split.

We can use Theorem 1 to determine the irreducible (equivalently, connected) components of the
central leaf C.

Corollary 1.1.3. Assume that Gder is simply connected and Q-simple. If Jder
b has no compact

factors, then the natural map

π0(C)→ π0(ShG)

is surjective with finite fibers given by the quotient HC\Gab(Zp).

A strong version of the discrete Hecke orbit conjecture, see [34]*Question 8.2.1.HO+
disc, predicts

that the natural map π0(C) → π0(ShG) is an isomorphism. Using Corollary 1.1.3, the conjecture
comes down to the surjectivity of HC → Gab(Zp). We will show that if HC is a parahoric subgroup,
then HC surjects onto Gab(Zp); this is also used in our proof of Theorem 1. In Section 6.3, we give
an example, due to Rong Zhou, which shows that this equality does not always hold. In particular,
[34]*Question 8.2.1.HO+

disc has a negative answer in general.

Our second main result is about irreducible components of Newton strata.

Theorem 2. Assume that Gder is simply connected and Q-simple. If Jder
b has no compact factors,

then the natural map

π0(ShG,[b])→ π0(ShG)

is a bijection. Moreover, the number of irreducible components in each connected component of
ShG,[b] is given by the representation-theoretic constant

DimVµ(λb)rel,



MONODROMY AND IRREDUCIBILITY OF IGUSA VARIETIES 3

introduced in [55, Section 2.6]. In particular, if GQp is split, then the connected components of
ShG,[b] are irreducible.

Theorems 1 and 2 were proved for Siegel modular varieties by Chai and Oort in their seminal
paper [7]. Amusingly, they prove irreducibility of Newton strata first, irreducibility of central leaves
second and irreducibility of Igusa varieties last.

Remark 1.1.4. In Section 6 we prove versions of our main theorems beyond the case that Kp is
hyperspecial. To be precise, we work with the Igusa varieties constructed by Hamacher–Kim, see
[19], over the Kisin–Pappas integral models of Shimura varieties of Hodge type, see [31], when Kp

is a connected very special parahoric. See Theorems 6.0.4 and 6.0.7 for the more general versions
of Theorems 1 and 2 and Corollary 6.0.6 for the general version of Corollary 1.1.3.

Remark 1.1.5. In recent work [34], Kret and Shin also determine the irreducible components of
Igusa varieties when GQp is unramified, and they moreover prove the discrete Hecke orbit conjecture
(Conjecture 6.2.2). Their proof uses harmonic analysis and automorphic forms and is completely
different from ours. They compute the 0-th étale cohomology of Ig[b] as a representation of G(Apf )×
Jb(Qp) using the Langlands–Kottwitz method ([34]*Theorem A), and then determine the irreducible
components of Ig[b] using that computation. It might be possible to recover their computation of
the 0-th étale cohomology from Theorem 1, see Conjecture 6.1.1 and Question 6.1.3.

1.2. Strategy.

1.2.1. Setup. Recall that the Igusa variety is a profinite étale cover Ig[b] → C of a central leaf C inside
the Newton stratum ShG,[b]. To be precise, it is a torsor for a compact open subgroup HC ⊂ Jb(Qp),
where Jb is the twisted centraliser in G(Q̆p) attached to some b ∈ [b] (see Section 2). There are
many different central leaves C inside the Newton stratum ShG,[b], all giving rise to isomorphic Igusa
varieties, but the group HC does depend on C. For the purposes of our proof we will always choose
C to be a distinguished central leaf, that is, a central leaf that is also an Ekedahl–Oort stratum;
these always exist by [49, Theorem D], see Section 2.5. Informally, distinguished central leaves are
the ‘smallest possible’ central leaves C and correspondingly HC is ‘as large as possible’ when C is
distinguished. For the rest of this section, we assume that C is distinguished and write H for HC .

The algebraic group Jb is an inner form of a Levi subgroup of GQp , and therefore has a surjective
map Jb → Gab. Let J ′b be the kernel of this map and let H ′ = H ∩ J ′b(Qp). In Section 2.6, we will
show that H/H ′ is isomorphic to Gab(Zp). When C is not distinguished, the quotient HC/H

′
C is in

general strictly contained in Gab(Zp), see Section 6.3.

1.2.2. Outline of the proof. Theorem 2 is a consequence of Theorem 1 together with a careful analysis
of the Mantovan product-formula, due to Hamacher–Kim in this generality, and results of Chen–
Kisin–Viehmann, Zhou–Zhu and He–Zhou, see [8, 19, 21, 37, 55]. Below, we will outline the proof
of Theorem 1.

Under the assumptions of our main theorem, distinguished central leaves are irreducible. To be
precise, [24]*Theorem 4 tells us that for a distinguished C the natural map

π0(C)→ π0(ShG)

is a bijection. Therefore, the main theorem would follow if we could show that the fibers of
π0(Ig[b],Kp)→ π0(C) are in bijection withGab(Zp), equivariant for the action ofH viaH → Gab(Zp).
This comes down to showing that the stabiliser in H of a connected component of Ig[b],Kp is given
by H ′.
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Fix a connected component C◦ of C. The H-torsor Ig◦[b] → C◦ corresponds to a continuous
morphism

ρIg : πét
1 (C◦)→ H,

with image M . If we could show that M = H ′, then the fibers of Ig◦[b] → C◦ are given by H/H ′ =

Gab(Zp). Let M be the Zariski closure of M inside Jb(Qp), which is an algebraic group over Qp.
Let A→ C◦ be the ‘universal’ abelian variety coming from a choice of Hodge embedding. It is a

consequence of [24]*Theorem 4 that the `-adic monodromy of A over C◦ is maximal. This can be
combined with two results of D’Addezio from [9, 10] to show that a certain (overconvergent) p-adic
monodromy group over C◦ is maximal. We deduce from this that M = J ′b using Proposition 3.3.1,
which compares M with the monodromy group of the F -isocrystal associated to A over C◦; this
proposition might be of independent interest. As a corollary, we find that M contains a compact
open subgroup of Jder

b (Qp) and that M is contained in J ′b(Qp). In order to show that M = H ′, we
will make use of the fact that the action of H on Ig[b] extends to an action of Jb(Qp). The goal is to
show that the action of J ′b(Qp) on π0(Ig[b]) is trivial, which then implies thatM = H∩J ′b(Qp) = H ′.

1.2.3. We will show in Section 3 via a group-theoretic argument that Jder
b (Qp) acts trivially on

π0(Ig[b]). The main ingredients are the equality M = J ′b mentioned above and the fact that the
Qp-points of semisimple and simply connected groups with no compact factors have no finite index
proper subgroups. We then show in Section 4 that for each connected component Z of Ig[b], there
is a maximal torus T ′ ⊂ J ′b such that T ′(Qp) stabilises Z. In fact, we can show that this is true for
all maximal tori T ′ in J ′b, up to isomorphism of tori. This is done by generalising an argument of
Hida [22] using the Honda–Tate theory for Shimura varieties of [30].

In Section 5, we will deduce from this that J ′b(Qp) acts trivially on π0(Ig[b]). Indeed, we will show
that J ′b(Qp) is (topologically) generated by Jder

b (Qp) and T1(Qp), · · · , Tn(Qp), where Ti are maximal
tori of J ′b, which may be specified up to isomorphism, see Proposition 5.0.1. When J ′b is quasi-split
one only needs a single torus T1, namely the centraliser of a maximal split torus. When J ′b is not
quasi-split, one needs 2m tori for some explicit m depending on [b], see the statement of Proposition
5.0.1.

In Section 6 we state and prove the general versions of our main results.

2. Shimura varieties and Igusa varieties

The goal of this section is to recall the integral models of Shimura varieties of Hodge type
constructed in [30, 31], and the constructions of central leaves and Igusa varieties from [19].

2.0.1. Hodge cocharacters. If (G,X) is a Shimura datum, then for each x ∈ X there is a cocharacter
µx : Gm,C → GC, see [30, Section 1.2.3] for the precise definition. The G(C)-conjugacy class of µx
does not depend on the choice of x and we will denote it by {µ}. This conjugacy class of cocharacters
is defined over a number field E ⊂ C, called the reflex field. Given a place v of E above a rational
prime p and a choice of algebraic closure Ev → Qp, there is an induced G(Qp)-conjugacy class of
cocharacters of GQp , which we will also denote by {µ}.

2.1. The construction of integral models. For a symplectic space (V, ψ) over Q, we write
GV := GSp(V, ψ) for the group of symplectic similitudes of V over Q. It admits a Shimura datum
(GV ,HV ), where HV is the union of the Siegel upper and lower half-spaces. Let (G,X) be a Shimura
datum of Hodge type with reflex field E and let (G,X)→ (GV ,HV ) be a Hodge embedding. Fix a
prime p > 2 such that GQp is tamely ramified and such that the order of π1(Gder) is coprime to p.

Choose a Z(p)-lattice V(p) ⊂ V on which ψ is Z(p)-valued, and write Vp = V(p) ⊗ Zp. Write
Kp ⊂ GV (Qp) for the stabiliser of Vp in GV (Qp), and similarly write Kp for the stabiliser of Vp in
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G(Qp). We will assume that Kp is a parahoric subgroup and let G be the parahoric group scheme
over Zp with G(Zp) = Kp.

Because Kp is the inverse image in G(Qp) of the stabiliser of a lattice, it is automatically a
connected parahoric subgroup in the sense of [54, start of Section 2]. Conversely, given a connected
parahoric subgroup Kp of G(Qp) we can always find a Hodge embedding (G,X)→ (GV ,HV ) and a
Z(p)-lattice V(p) ⊂ V on which ψ is Z(p)-valued, such that Kp is the stabiliser of Vp in G(Qp); this
is explained in [30, Section 1.3.2].

2.1.1. For every sufficiently small compact open subgroup Kp ⊂ G(Apf ), we can find Kp ⊂ GV (Apf )

such that the Hodge embedding induces a closed immersion (see [29, Lemma 2.1.2])

ShK(G,X)→ ShK(GV ,HV )⊗Q E

of Shimura varieties of levels K = KpKp and K = KpKp, respectively. We let SK over Z(p) be the
moduli-theoretic integral model of ShK(GV ,HV ); it is a moduli space of (weakly) polarised abelian
schemes (A, λ) up to prime-to-p isogeny with level Kp-structure. Fix a prime v|p of E and let

SK := SK(G,X)→ SK ⊗Z(p)
OE,(v)

be the normalisation of the Zariski closure of ShK(G,X) in SK ⊗Z(p)
OE,(v). This construction is

compatible with changing the level away from p and we define

SKp := lim←−
Kp⊂GV (Ap

f )

SKpKp ; SKp := lim←−
Kp⊂G(Ap

f )

SKpKp .

Then, as discussed in [30, Section 2.1], the transition maps in both inverse systems are finite étale
and moreover G(Apf ) acts on SKp . Choose a map OE,(v) → Fp and write ShG for the base change
to Fp of SKp and ShG,Kp for the base change to Fp of SKpKp ; these are both schemes over Fp and
G(Apf ) acts on ShG. We will write ShGV ,Kp for the base change to Fp of SKpKp⊗Z(p)

OE,(v) and ShGV
the base change to Fp of SKp ⊗Z(p)

OE,(v). In particular, we are omitting Kp from the notation.
Let π : A → ShGV be the universal abelian variety and let Vp be the prime-to-p adelic Tate

module of A; it is a smooth Apf -sheaf on SKp . As explained in [30, Section 2.1.1], there is a universal
isomorphism

ε : V ⊗ Apf ' V
p,

sending the symplectic form ψ to an Ap,×f -multiple of the Weil pairing. Here Apf denotes the pro-étale
sheaf associated to the topological group Apf .

2.1.2. Tensors. Write V ⊗ for the direct sum of V ⊗n⊗ (V ∗)⊗m for all pairs of integers m ≥ 0, n ≥ 0.
We will also use this notation later for modules over commutative rings and modules over sheaves
of rings. Write GZ(p)

for the Zariski closure of G in GL(Vp), then GZ(p)
⊗ Zp = G.

By [29, Lemma 1.3.2], there are tensors ({sα})α∈A ⊂ V ⊗p such that GZ(p)
is their pointwise

stabiliser in GL(Vp). Then, as explained in [30, Section 1.3.4, Section 2.1.2], there are global
sections

{sα,Ap
f
}α∈A ∈ H0(SKpKp , (Vp)⊗)

such that if we restrict the isomorphism ε via SKp → SKp , then we get an isomorphism

η : V ⊗ Apf → V
p

taking sα ⊗ 1 to sα,Ap
f
for all α ∈ A . In particular, for each x ∈ SKp(Fp), the stabiliser of the

tensors {sα,Ap
f ,x
}α∈A ⊂ (Vpx)⊗ in GL(Vpx) is canonically identified with G⊗Apf . Here, the subscript

x denotes taking the stalk at x of a sheaf (respectively, a section of a sheaf).
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2.1.3. Central leaves and Newton strata. We will use Z̆p to denote the p-typical Witt vectorsW (Fp)
of Fp and Q̆p = Z̆p[1/p]. We let σ : Z̆p → Z̆p be the automorphism induced by the Frobenius of
Fp, and also denote by σ the induced automorphism of Q̆p. Since Kp is a parahoric subgroup, the
integral models SKpKp are the same as the ones constructed in [31].

For x ∈ ShG,Kp(Fp), we write Ax for the abelian variety over Fp corresponding to the image of
x ∈ ShGV ,Kp(Fp). Let x ∈ ShG,Kp(Fp) and let Dx be the contravariant Dieudonné module of the
p-divisible group Ax[p∞], equipped with its Frobenius φ. By [19, Paragraph before Proposition
2.4.2], there are φ-invariant tensors {sα,cris,x}α∈A ⊂ D⊗x , and in [19, Section 2.5] it is argued that
there is an isomorphism Z̆p ⊗ Vp → Dx sending 1⊗ sα to sα,cris,x for all α ∈ A .

Under such an isomorphism, the Frobenius φ corresponds to an element bx ∈ G(Q̆p), which is
well-defined up to σ-conjugacy by G(Z̆p), where σ : G(Q̆p) → G(Q̆p) is induced by σ : Q̆p → Q̆p.
We will denote by JbxK the G(Z̆p)-σ-conjugacy class of bx and by [bx] the G(Q̆p)-σ-conjugacy class of
bx. We denote the set of G(Q̆p)-σ-conjugacy classes in G(Q̆p) by B(G) = B(GQp). By [30, Lemma
1.3.9], the element [bx] is contained in the neutral acceptable set B(G, {µ−1}) ⊂ B(G), consisting
of the {µ−1}-admissible elements defined in [30, Section 1.1.5].

There is a natural partial order on B(G, {µ−1}) defined in [47]. The set B(G, {µ−1}) admits a
unique minimal element called the basic element, and when GQp is quasi-split it admits a unique
maximal element called the µ-ordinary element.

It follows from [19, Cor. 3.3.8] that for b ∈ G(Q̆p) there are (reduced) locally closed subschemes

CJbK,Kp ⊂ ShG,[b],Kp ⊂ ShG,Kp

of ShG,Kp such that their Fp-points can be identified with

CJbK,Kp(Fp) = {x ∈ ShG,Kp(Fp) : JbxK = JbK}
ShG,[b],Kp(Fp) = {x ∈ ShG,Kp(Fp) : [bx] = [b]}.

The subscheme ShG,[b],Kp is called the Newton stratum attached to [b], and the subscheme CJbK,Kp ⊂
ShG,[b],Kp is called the central leaf attached to JbK. The construction of these subschemes is com-
patible with changing the level away from p and we set

CJbK := lim←−
Kp⊂G(Ap

f )

CJbK,Kp ,

ShG,[b] := lim←−
Kp⊂G(Ap

f )

ShG,[b],Kp .

Finally, we note that the natural map CJbK,Kp → ShG,[b],Kp is a closed immersion by [19, Cor. 3.3.8]
and that the central leaf CJbK,Kp is smooth and equidimensional by [28, Corollary 5.3.1].

Remark 2.1.4. When (G,X) = (GV ,HV ), then the G(Z̆p)-conjugacy class JbxK captures precisely
the isomorphism class of the polarised p-divisible group (Ax[p∞], λx), where an isomorphism of
polarised p-divisible groups f : (Y, µ)→ (Y ′, µ′) is an isomorphism f : Y → Y ′ such that f∗µ′ = cµ
for some c ∈ Z×p . In particular, when (G,X) = (GV ,HV ) our central leaves do not agree with those
defined in [7], which are defined using isomorphisms f : (Y, µ)→ (Y ′, µ′) with f∗µ′ = µ.

In general, our central leaves are finite unions of the central leaves of [7], which explains why
it is not surprising that our central leaves can have more connected components than ShG,Kp , see
Section 6.3. It would be interesting to find an explicit example of this with (G,X) = (GV ,HV ).

2.1.5. For b ∈ [b] we write Jb for the twisted centraliser of b, which is an algebraic group over Qp

with R-points given by

Jb(R) = {g ∈ G(R⊗Qp Q̆p) | g−1bσ(g) = b}.
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The isomorphism class of the algebraic group Jb only depends on the σ-conjugacy class [b] of b.
When GQp is quasi-split, the algebraic group Jb is an inner form of a standard Levi subgroup

Mb ⊂ GQp (see [30, Section 1.1.4]). Moreover there is a natural map Jb,Q̆p
→ GQ̆p

with image
Mb. Let Gab

Qp
denote the maximal abelian quotient of GQp , we will use the same notation for other

reductive groups. The natural map
Mb → GQp → Gab

Qp

factors throughMab
b , which we can identify with Jab

b using the inner twisting. We denote the kernel
of the composite map Jb → Jab

b → Gab
Qp

by J ′b.

Lemma 2.1.6. The group J ′b is connected reductive.

Proof. We can prove this after basechanging to Q̆p and we can identify Jb,Q̆p
→ Gab

Q̆p
with Mb,Q̆p

→
Gab

Q̆p
. Thus it suffices to prove that the kernel M ′b of Mb → Gab

Qp
is connected. The group Mb is

connected reductive because it is a Levi subgroup, and M ′b = Gder
Qp
∩Mb is connected because it is

the corresponding Levi subgroup of Gder. �

If G is the parahoric group scheme over Zp with G(Zp) = Kp ⊂ G(Qp) = G(Qp), then we will
write Hb ⊂ Jb(Qp) for the compact open subgroup of Jb(Qp) given by G(Z̆p) ∩ Jb(Qp).

2.1.7. Automorphism groups. Let x ∈ ShG(Fp) and let Aut(Ax) be the algebraic group over Q with
functor of points

R 7→ Aut(Ax)(R) = (End(Ax)⊗Z R)× .

Following [30, Section 2.1.3], we define Ipx to be the largest closed subgroup of Aut(Ax) that fixes
the tensors sα,Ap

f ,x
for all α ∈ A , and Ix ⊂ Ipx to be the largest closed subgroup that also fixes the

tensors sα,cris,x for all α ∈ A . Then there is a natural injective homomorphism of algebraic groups

jpx : Ix,Ap
f
→ GAp

f
.

The group Ix is a connected reductive group and the subgroup Ix,Q`
⊂ GQ`

is a Levi subgroup, see
[30, Corollary 2.1.9]. A choice of isomorphism Q̆p ⊗ V → Dx[1/p] sending 1 ⊗ sα to sα,cris,x for all
α ∈ A , under which the Frobenius of Dx[1/p] corresponds to b ∈ G(Q̆p), induces a map Ix,Qp → Jb.

2.2. Igusa varieties. We will now recall the construction of Igusa varieties from [19]. Fix [b] ∈
B(G, {µ−1}) and let ShG,[b],Kp ⊂ ShG,Kp be the corresponding Newton stratum. We also fix a
basepoint x ∈ ShG,[b](Fp) with corresponding principally polarised abelian variety (Ax, λx) and
write (X, µ) for the associated polarised p-divisible group over Fp. We also fix an isomorphism
Z̆p ⊗ Vp → Dx sending 1 ⊗ sα to sα,cris,x for all α ∈ A , and we let b ∈ G(Q̆p) be the element
corresponding to the Frobenius of Dx. Then we have the Igusa variety

Ig[b],GV ,Kp → ShGV ,Kp ,

which is the ShGV ,Kp-scheme with functor of points

T 7→ Isomλ((AT [p∞], λT ), (XT , µT )).

Here Isomλ denotes the set of isomorphisms f : AT [p∞] → XT such that f∗µT = cλT for some
c ∈ Z×p . The functor Ig[b],GV ,Kp is representable by a perfect scheme by [5, Proposition 4.3.3,
Corollary 4.3.5]. The scheme Ig[b],GV ,Kp has a natural (right) action of the profinite group Autλ(X)

of automorphisms f : X → X satisfying f∗µ = cµ for some c ∈ Z×p . Moreover, by [5, Corollary
4.3.5], the natural action Autλ(X) extends to an action of the locally profinite group QIsogλ(X) of
quasi-isogenies f : X 99K X satisfying f∗µ = cµ for some c ∈ Q×p .
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In [19, Section 5.1, Lemma 5.1.1], Hamacher and Kim construct a perfect closed subscheme

Ig[b],Kp ⊂ Ig[b],GV ,Kp ×ShGV ,Kp ShG,Kp .

Its Fp-points consist precisely of those isomorphisms f : Ay[p
∞] → X = Ax[p∞], such that the

induced isomorphism on Dieudonné-modules

f : Dy → Dx
satisfies sα,cris,y = f∗sα,cris,x for all α ∈ A . In particular, it follows that the map Ig[b],Kp → ShG,Kp

factors through CJbK,Kp (where JbK = JbxK). There is a tautological point x̃ ∈ Ig[b],Kp(Fp), mapping
to x ∈ CJbK,Kp(Fp), which corresponds to the identity map Ax[p∞] = X → X. Hamacher and Kim
prove (see [19, Proposition 5.1.2]) that Ig[b],Kp is stable under the action of the subgroup

QIsogG(X) ⊂ QIsog(X),

consisting of those quasi-isogenies f : X 99K X such that the induced isomorphism f : Dx[1/p] →
Dx[1/p] on rational Dieudonné modules satisfies

f∗sα,cris,x = sα,cris,x

for all α ∈ A . Using our fixed isomorphism Z̆p ⊗ Vp → Dx sending 1⊗ sα to sα,cris,x for all α ∈ A ,
we can identify

QIsogG(X) ' Jb(Qp).

Hamacher and Kim prove in [19, Lemma 5.1.4] that their construction of Ig[b],Kp is compatible with
changing the level at p and that G(Apf ) acts on

Ig[b] := lim←−
Kp⊂G(Ap

f )

Ig[b],Kp

in a way that makes the map Ig[b] → ShG into a G(Apf )-equivariant map.

2.3. The product formula. Let the notation be as in Section 2.2; in particular, we have a fixed
base point x ∈ ShG,[b](Fp), an isomorphism Z̆p ⊗ Vp → Dx sending 1⊗ sα to sα,cris,x for all α ∈ A ,
giving rise to b = bx ∈ G(Q̆p), and a tautological point x̃ ∈ Ig[b],Kp(Fp).

In [19, Section 4.2], the authors introduce a perfect scheme X{ν}(b) equipped with an action of
the locally profinite group Jb(Qp), called an affine Deligne–Lusztig variety. To describe its set of
Fp-points, we need to introduce some notations.

Let G be the parahoric group scheme over Zp with G(Zp) = Kp. Let {µ} be the G(Qp)-conjugacy
class of cocharacters of G from Section 2.0.1 and let {ν} = σ({µ−1}). Moreover, let Adm({ν}) ⊂ W̃
be the admissible set inside the affine Weyl group W̃ of G (see [19, Section 4.1.2]). Then there is a
Jb(Qp)-equivariant bijection (see [19, Remark 4.2.1])

X{ν}(b)(Fp)→ {g · G(Z̆p) ∈ G(Q̆p)/G(Z̆p) : g−1bσ(g) ∈
⋃

w∈Adm({ν})

G(Z̆p)wG(Z̆p)},(2.3.1)

where the right-hand side is equipped with the action of Jb(Qp) ⊂ G(Q̆p) by left translation. It
is explained in [54, Section 6.7] that b ∈ G(Z̆p)wG(Z̆p) for some w ∈ Adm({ν}); in particular
1 ∈ X{ν}(b)(Fp). For an element y ∈ X{ν}(b)(Fp) of the form gy · G(Z̆p), we will write by for the
element g−1

y bσ(gy) ∈ G(Q̆p).

Lemma 2.3.1. Two points y, y′ ∈ X{ν}(b)(Fp) satisfy JbyK = Jby′K if and only if y′ is in the Jb(Qp)-
orbit of y.
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Proof. This is a straightforward consequence of the definition of Jb(Qp) and the description of
X{ν}(b)(Fp) in (2.3.1). �

The stabiliser Hy of a point gyG(Z̆p) = y ∈ X{ν}(b)(Fp) is given by the intersection of Jb(Qp) with
the compact open subgroup gyG(Z̆p)g−1

y and therefore Hy ⊂ Jb(Qp) is a compact open subgroup.
Left multiplication by gy induces an isomorphism Jb → Jby that identifies Hy with Hby := Jby(Qp)∩
G(Z̆p).

Lemma 2.3.2. Let y ∈ X{ν}(b)(Fp) and let Orb(y) ⊂ X{ν}(b)(Fp) be the Jb(Qp)-orbit of y. Then
Orb(y) is Zariski closed inside X{ν}(b)(Fp).

Proof. The stabiliser HZ of an irreducible component Z of X{ν}(b) containing y is a parahoric
subgroup of Jb(Qp) by [55, Theorem 3.1.1], and hence contains Hy as a finite index subgroup. Thus
the fibers of

Jb(Qp)/Hy → Jb(Qp)/HZ

are finite, or equivalently, the orbit of y under Jb(Qp) intersects each irreducible component in the
orbit of Z in finitely many points. We conclude that Orb(y) intersects each irreducible component
Z of X{ν}(b) in finitely many points.

This implies that Orb(y) ∩ Z is closed in Z for all irreducible components Z of X{ν}(b). Since
X{ν}(b) has an open cover by perfections of finite type Fp-algebras, which have finitely many irre-
ducible components, we deduce from this that Orb(y) is closed inside all of X{ν}(b). �

2.3.3. From now on, we will assume that GQp is quasi-split and that Kp is a very
special parahoric subgroup. In [19, Section 5.2, Theorem 5.2.6], Hamacher and Kim construct
a Jb(Qp)-invariant and G(Apf )-equivariant map, known as the product formula:

π∞ : Ig[b]×X{ν}(b)→ Shperf
G,[b],

where perf denotes the perfection of a scheme. The construction of this map relies on [19, Axiom A],
which is true under our assumptions by [24, Theorem 2], see also [15, Corollary 1.6]. Furthermore,
Hamacher and Kim prove that this map is a Jb(Qp)-torsor for the pro-étale topology, see [19,
Corollary 5.2.7]. We will also write π∞ for the induced map at level Kp ⊂ G(Apf ). It follows
from the construction that π∞(x̃, 1) = x, where x̃ ∈ Ig[b],Kp(Fp) is the tautological point as in the
beginning of Section 2.3.

Proposition 2.3.4. If y ∈ X{ν}(b)(Fp) is a point with stabiliser Hy ⊂ Jb(Qp), then the map

Ig[b],Kp ×Orb(y)→ Shperf
G,[b],Kp

factors through Cperf
JbyK,Kp ⊂ Shperf

G,[b],Kp . Moreover, the following diagram is Cartesian:

Ig[b],Kp ×Orb(y) Ig[b],Kp ×X{ν}(b)

Cperf
JbyK,Kp Shperf

G,[b],Kp .

Proof. We start by pointing out that both Ig[b],Kp and X{ν}(b) have a dense set of Fp-points. This is
true for Ig[b],Kp because it is an inverse limit of perfections of finite type Fp-schemes along finite étale
transition maps, and for X{ν}(b) since it has an open cover by perfections of finite type Fp-algebras.
Then, since perfect schemes are reduced, it suffices to prove the first claim on the level of Fp-points.
In this case, what we want to prove is that for w = π∞(z, y) we have an equality JbwK = JbyK.
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By [19, Lemma 5.2.5], the restriction of π∞ to {z}×X{ν}(b), for z ∈ Ig[b],Kp(Fp), can be identified
with the so-called Rapoport–Zink uniformisation map Θz : X{ν}(b) → ShG,[b],Kp ; see [19, Section
4.3]. The relevant result for the Rapoport–Zink uniformisation map is [54, Proposition 6.5], see also
the discussion in [54, Section 8. Axiom 4].

It follows from this discussion that the diagram is Cartesian on the level of Fp-points, since
JbyK = Jby′K if and only if y and y′ are in the same Jb(Qp)-orbit in X{ν}(b)(Fp); this is Lemma
2.3.1. We claim that this implies that the diagram is Cartesian on the level of perfect schemes.
Indeed, both the fiber product and the image of Ig[b],Kp ×Orb(y) are reduced closed subschemes of
Ig[b],Kp ×X{ν}(b), see Lemma 2.3.2, and reduced closed subschemes are determined by their (dense
sets of) Fp-points. �

Corollary 2.3.5. For y ∈ X{ν}(b)(Fp), the natural map

π∞(−, y) : Ig[b],Kp ×{y} → CJbyK,Kp

is a pro-étale Hy-torsor.

Proof. It follows from Proposition 2.3.4 that

Ig[b],Kp ×Orb(y)→ Cperf
JbyK,Kp

is a pro-étale Jb(Qp)-torsor, and therefore the induced map

Ig[b],Kp ×{y} → Cperf
JbyK,Kp

is a pro-étale Hy = StabJb(Qp)(y)-torsor. �

Since the product formula is G(Apf )-equivariant it follows that the maps Ig[b],Kp ×{y} → CJbyK,Kp

are compatible with changing the level away from p. Therefore there is an inducedG(Apf )-equivariant
map

Ig[b] → Cperf
JbyK ,

which is again a pro-étale Hy-torsor.

Lemma 2.3.6. The locally profinite group Jb(Qp) acts continuously on π0(Ig[b],Kp).

Proof. The Igusa variety Ig[b],Kp → Cperf
JbyK,Kp is a pro-étale Hy-torsor by Corollary 2.3.5 and therefore

Hy acts continuously on π0(Ig[b],Kp), see [25, Lemma 3.1.4, Corollary 3.1.5]. The lemma now follows
because Hy ⊂ Jb(Qp) is an open subgroup, and thus if the Hy action is continuous, then so is the
Jb(Qp)-action. �

2.4. Connected components and the product formula. We start with a lemma about con-
nected components. Let ν : G → Gab be the natural map and assume from now on that Gder

is simply connected.

Lemma 2.4.1. The map

π0(ShKp(G,X))→ π0(ShKpKp(G,X))

is a ν(Kp)-torsor, compatible with the action of Kp on ShKp(G,X).

Proof. Let Gab(R)† be the image of ZG(R) → Gab(R) and let Gab(Q)† be its intersection with
Gab(Q). By [40, Theorem 5.17], there is a natural identification

π0(ShKpKp(G,X)) = Gab(Q)†\Gab(Af )/ν(KpKp),
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compatible with changing Kp, where ν : G(Af ) → Gab(Af ) is the natural map. Since (G,X) is
of Hodge type, axiom SV5 of op. cit. is satisfied for (G,X) and therefore also for (Gab, Xab).
Therefore it follows from [40, Lemma 4.20] that there is a bijection

π0(ShKp(G,X)) = Gab(Q)†\Gab(Af )/ν(Kp).

We see that the map

π0(ShKp(G,X))→ π0(ShKpKp(G,X))

is a pro-étale ν(Kp)-torsor, compatible with the action of Kp on ShKp(G,X). �

Lemma 2.4.2. For each finite extension F of the reflex field E and any place w of F extending v,
the natural maps

π0(ShKpKp(G,X)⊗E F )← π0(SKpKp ⊗OE,(v)
OF,(w))→ π0(SKpKp ⊗OE,(v)

k(w))

are isomorphisms.

Proof. The Shimura variety ShG,Kp is locally integral since Kp is very special, see [31, Corollary
4.6.26]. The result now follows from [35, Corollary 4.1.11]. �

2.4.3. Let π1(G) be the algebraic fundamental group of G⊗Qp, see [3, Definition 3]. Let π1(G)I
be the coinvariants under the action of the inertia group I = Gal(Qp/Qur

p ), and let π1(G)σI be
the invariants of π1(G)I under Frobenius. Recall the functorial Kottwitz homomorphism from [27,
Chapter 11.5]

κ : G(Q̆p)→ π1(G)I .

By [24, Lemma 3.4.2], the restriction of κ to G(Qp) identifies

G(Qp)

Gder(Qp)Kp
→ Gab(Qp)

ν(Kp)
' π1(G)σI .

It follows from the proof of Lemma 2.4.1 that the abelian group Gab(Qp)/ν(Kp) = π1(G)σI acts on
π0(ShKp(G,X)), and that the action commutes with that of G(Apf ). Using the isomorphisms from
Lemma 2.4.2, this gives an action of π1(G)σI ×G(Apf ) on π0(ShG).

Lemma 2.4.4. If x̃ ∈ Ig[b],Kp(Fp) is the tautological point as in the beginning of Section 2.3, then

Θx̃ := π∞(x̃,−) : X{ν}(b)→ ShG,[b],Kp → π0(ShG,Kp)

is Jb(Qp)-equivariant, where Jb(Qp) acts on the target via the natural map Jb(Qp) → Gab(Qp) →
π1(G)σI .

Proof. This is [24, Proposition 3.4.5], where Θx̃ is denoted by ix. Indeed, it is shown there that
the point ix(y) lies in the connected component κ(y) · ix(1), where κ : π0(X{ν}(b)) → π1(G)σI is
the natural map introduced in [24, Section 3.4.4]. This natural map is Jb(Qp)-equivariant for the
Jb(Qp) action on π1(G)σI coming from the natural map Jb(Qp) → Gab(Qp) → π1(G)σI ; this proves
the lemma. �

2.5. Distinguished central leaves. Let W̃ be the affine Weyl group of G. Recall from [28, Lemma
2.2.8, Definition 2.2.9] that to an element w ∈ W̃ we can associate a well-defined G(Z̆p)-σ-conjugacy
class JwK. Recall from [48, Section 1.2.10] the notion of a σ-straight element of W̃ .

Definition 2.5.1. We call y ∈ X{ν}(b)(Fp) distinguished if JbyK = JwK for some σ-straight element
w ∈ Adm({ν}). We call a central leaf CJbK,Kp distinguished if JbK = JwK for some σ-straight element
w ∈ Adm({ν}).
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Lemma 2.5.2. If CJbK,Kp is distinguished, then CJbK,Kp ⊂ ShG,[b],Kp is an Ekedahl–Kottwitz–Oort–
Rapoport (EKOR) stratum in the sense of [48, Theorem 3.4.12].

Proof. Write JbK = JwK with w ∈ Adm({ν}) a σ-straight element. By the proof of [20, Theorem
6.17], there is an element v ∈ W̃ such that w′ := vwσ(v)−1 lies in K Adm({ν}) := KW̃ ∩Adm({ν})
and w′ is again a σ-straight element. (The subset KW̃ ⊂ W̃ is introduced in [48, page 3125], but
its precise meaning is not relevant for us.) Then JwK = Jw′K and the result now follows from [48,
Corollary 3.4.14], see [48, paragraph after Theorem 1.3.5]. �

Lemma 2.5.3. There exists a distinguished central leaf CJbK,Kp ⊂ ShG,[b],Kp.

Proof. This follows from [48, Theorem 1.3.5, paragraph after Theorem 1.3.5]. �

Lemma 2.5.4. If y is distinguished, then there are parahoric subgroups J and J ′ of Jb(Qp) such
that J ⊂ Hy ⊂ J ′.

Proof. The stabiliser Hy ⊂ Jb(Qp) of the point y ∈ X{ν}(b)(Fp) is contained in the stabiliser HZ of
an irreducible component Z containing y. The subgroup HZ ⊂ Jb(Qp) is a parahoric subgroup of
Jb(Qp) by [55, Theorem 3.1.1], thus we can take J ′ = HZ .

If y = gy ·G(Z̆p) is distinguished, then we can find a representative of gy such that g−1
y bσ(gy) = w,

where w ∈ W̃ is a σ-straight element. Let I(Z̆p) be a standard Iwahori subgroup containing G(Z̆p),
then as explained in Section 5.3 of [21], the σ-centraliser Jw(Qp) ⊂ G(Q̆p) intersects I(Z̆p) in an
Iwahori subgroup of Jw(Qp). After conjugating by gy, we see that Hy contains an Iwahori subgroup
J of Jb(Qp). �

2.6. Some results on parahoric group schemes. Let Kp ⊂ G(Qp) be a parahoric subgroup and
let Jp ⊂ Jb(Qp) be a parahoric subgroup. Let Z denote the connected Néron model of Gab

Qp
over Zp

and let Gab(Zp) := Z(Zp). The goal of this section is to prove the following results, the second of
which is well-known.

Proposition 2.6.1. The image of Jp → Jb(Qp)→ Gab(Qp) is equal to Gab(Zp).

Proposition 2.6.2. The image of Kp → G(Qp)→ Gab(Qp) is equal to Gab(Zp).

We will refer to [27, Chapter 4] for conventions regarding Bruhat–Tits buildings, parahoric sub-
groups and parahoric group schemes. In particular, we do not work with the extended Bruhat–Tits
buildings in this paper. Thus, for a parahoric subgroup Kp ⊂ G(Qp), there is a facet F of the
Bruhat–Tits building B(GQp) such that Kp = G0

F (Zp). Here the Bruhat–Tits parahoric group
scheme G0

F is a smooth affine group scheme which is the relative identity component of the Bruhat–
Tits stabiliser group scheme G1

F . We will similarly write Jp = J 0
FJ

(Zp) for a facet FJ of the
Bruhat–Tits building of B(Jb) of Jb.

Recall that J ′b is a connected reductive group of Jb whose derived group is isomorphic to Jder
b ,

see Lemma 2.1.6. Since the buildings of Gder
Qp

and GQp respectively of J ′b and Jb are equal, see [27,
bottom of page 343], the inclusions Gder

Qp
→ GQp and J ′b → Jb induce morphisms

Gder,1
F → G1

F

J
′,1
FJ
→ J 1

FJ
.

By [33, Proposition 2.4.9], these maps are closed immersions since GQp splits over a tamely ramified
extension of Qp (and thus the same holds for Jb). Note that the superscript 1 in our notation
corresponds to the tilde in the notation of [33, Proposition 2.4.9].

Lemma 2.6.3. The preimage of J 0
FJ

in J
′,1
FJ

has connected special fibre. In particular, it is equal

to J
′,0
FJ

.
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Proof. Recall that there is a functorial Kottwitz homomorphism

κ : J ′b(Q̆p)→ π1(J ′b)I .

Here π1(J ′b) is the algebraic fundamental group of J ′b and I is the inertia group. In particular, there
is a commutative diagram

(2.6.1)
J

′,1
FJ

(Z̆p) J 1
FJ

(Z̆p)

π1(J ′b)I π1(Jb)I .

By [27, Corollary 11.6.3], the images of the horizontal maps in (2.6.1) can be identified with the
component groups of the special fibers of J

′,1

FJ ,Z̆p
and J 1

FJ ,Z̆p
, respectively. Thus to show that the

inverse image of J 0
FJ

in J
′,1
FJ

is connected, it would be enough to show that π1(J ′b)I → π1(Jb)I is
injective.

To prove this, we need to recall the definition of the algebraic fundamental group. Let T ⊂ Jb,Q̆p

be a maximal torus defined over Qp that is the centraliser of a maximal Q̆p-split torus, let T ′ be its
intersection with J ′

b,Q̆p
and T der its intersection with Jder

b,Q̆p
. Then the short exact sequences defining

the algebraic fundamental groups are given by

0 X∗(T
der) X∗(T

′) π1(J ′b) 0

0 X∗(T
der) X∗(T ) π1(Jb) 0,

where X∗ denotes the cocharacter lattice of a torus, equipped with its natural action of I. Recall
that Jb,Q̆p

'Mb,Q̆p
⊂ GQ̆p

is a standard Levi. In particular, T ⊂ Jb,Q̆p
⊂ GQ̆p

is also the centraliser

of a maximal Q̆p-split torus in GQ̆p
. Then X∗(T der) and X∗(T ′) are both induced Galois modules

by [4]*Proposition 4.4.16, since Gder and Jder
b are simply connected (see [36]*Proposition 12.14).

This means that X∗(T der)I and X∗(T ′)I are torsion-free. In particular, the maps

X∗(T
der)I → X∗(T

′)I and X∗(T der)I → X∗(T )I ,

which are injective after tensoring with Q, are injective. This gives us a diagram of short exact
sequences

0 X∗(T
der)I X∗(T

′)I π1(J ′b)I 0

0 X∗(T
der)I X∗(T )I π1(Jb)I 0,

b c

and the snake lemma gives us an isomorphism ker c ' ker b. Because X∗(T ′)I is torsion free, it
follows that ker c is trivial, since c is injective after tensoring with Q. �

Lemma 2.6.4. We have an equality Gder,1
F = Gder,0

F .

Proof. This can be proved as in the proof of Lemma 2.6.3, using the fact that π1(Gder) = 0 because
Gder is semisimple and simply connected, see [3, Example 1.6]. �

Let Z denote the connected Néron model of Gab
Qp

as before.

Lemma 2.6.5. There is a short exact sequence

1→ J
′,0
FJ
→ J 0

FJ
→ Z → 1.
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Proof. There is a natural group homomorphism from J 0
FJ

to the lft-Néron model of Gab
Qp

, by the
universal property of the lft-Néron model of tori. Since J 0

FJ
has connected special fiber, it follows

that this group homomorphism lands in Z. To show that the map J 0
FJ
→ Z is surjective, we argue

as in [31]*Proposition 1.1.4. There, it is argued that there exists some tamely ramified maximal
torus T of Jb whose connected Néron model T is contained in J 0

FJ
. It then follows from [44, Lemma

6.7] that T → Z is surjective.
We are left to show that J

′,0
FJ

is the kernel of the map J 0
FJ
→ Z. This can be checked on Z̆p-points,

and there we consider the following diagram

J
′,0
FJ

(Z̆p) J 0
FJ

(Z̆p) Z(Z̆p) 1

1 J ′b(Q̆p) Jb(Q̆p) Gab(Q̆p) 1.

The exactness on the left of the top row follows from the fact that the leftmost square is Cartesian,
see Lemma 2.6.3, and so we are done. �

Lemma 2.6.6. There is a short exact sequence

1→ Gder,0
F → G0

F → Z → 1.

Proof. This can be established by a similar, but simpler version of the proof of Lemma 2.6.5. �

Proof of Proposition 2.6.1. Taking Zp-points of the short exact sequence from Lemma 2.6.5, we see
that it suffices to show that H1(Zp,J

′,0
FJ

) = 0. But this follows from Lang’s Lemma, since J
′,0
FJ

is a
smooth group scheme with connected special fiber. �

The proof of Proposition 2.6.2 is the same as the Proof of Proposition 2.6.1, using Lemma 2.6.6
instead of Lemma 2.6.5.

3. Geometric Monodromy

Let the notation be as in Section 2 and recall that we have assumed that Kp is a very special
parahoric and that Gder is simply connected. Moreover, recall that we have a fixed base point
x ∈ ShG,[b](Fp) with tautological point x̃ ∈ Ig[b],Kp(Fp), and an isomorphism Z̆p ⊗ Vp → Dx sending
1⊗sα to sα,cris,x for all α ∈ A , giving rise to b = bx ∈ G(Q̆p). By Lemma 2.5.3 we may choose x to lie
in a distinguished central leaf, and we will assume from now on that CJbK,Kp is distinguished.
Then the central leaf CJbK,Kp is equal to CJb1K,Kp for 1 ∈ X{ν}(b)(Fp), and we write H := H1.

Consider the product decomposition Gad =
∏n
i=1Gi into simple groups over Q, which induces

maps

B(GQp)→ B(Gad
Qp

)→
n∏
i=1

B(Gi,Qp).

For an element [b] ∈ B(GQp) we will write [bi] for its image in B(Gi,Qp) under this map. Recall
from [34, Def. 5.3.2] that an element [b] ∈ B(GQp) is called Q-non-basic if [bi] is non-basic for all
i. A Newton stratum ShG,[b],Kp is called Q-non-basic if [b] is Q-non-basic. Assume from now on
that [b] is Q-non-basic.



MONODROMY AND IRREDUCIBILITY OF IGUSA VARIETIES 15

3.1. `-adic monodromy. Recall that ShG → ShG,Kp is a pro-étale Kp-torsor. Let ` 6= p be a
prime number, let K` be the image of the projection Kp → G(Q`), and let ShG,Kp,` → ShG,Kp be
the induced pro-étale K`-torsor.

Let π : A → ShG,Kp be the abelian scheme pulled back from the universal abelian variety over
ShGV ,Kp along ShG,Kp → ShGV ,Kp . The local system R1π∗Q` corresponds to the pro-étale GLV (Q`)-
torsor over ShG,Kp given by pushing out ShG,Kp,` → ShG,Kp via K` → G(Q`) → GLV (Q`). The
following lemma is well-known, but we’ve included a proof for the benefit of the reader.

Lemma 3.1.1. Let Sh◦G,Kp ⊂ ShG,Kp be a connected component and let a ∈ Sh◦G,Kp(Fp). Then the
Zariski closure of the monodromy representation

πét
1 (Sh◦G,Kp , a)→ K` → GLV (Q`)

corresponding to R1π∗Q` is equal to Gder
Q`

.

Proof. It follows from Lemma 2.4.1 and Lemma 2.4.2 that

π0(ShG)→ π0(ShG,Kp)

is a pro-étale ν(Kp)-torsor. In particular, the stabiliser of a connected component of π0(ShG) under
the action of Kp is equal to Kp ∩Gder(Apf ). If we pass to the induced K`-torsor

ShG,Kp,` := ShG×KpK` → ShG,Kp ,

then the action of K` on a connected component has stabiliser equal to K` ∩Gder(Q`). By profinite
Galois theory for schemes, cf. [25, Section 3.1.10, 3.1.11], this stabilizer can be identified with
the image of the monodromy representation πét

1 (Sh◦G,Kp , a) → K`. Thus the image is equal to
K` ∩ Gder(Q`), which is a compact open subgroup of Gder(Q`). We thus see that the image has
Zariski closure Gder

Q`
in GLV,Q`

. �

To proceed, we will make the following assumption:

Assumption 3.1.2. If [b] isQ-non-basic, then for any distinguished central leaf CJbyK,Kp ⊂ ShG,[b],Kp

the natural map

CJbyK,Kp → ShG,Kp

induces a bijection on connected components for all Kp ⊂ G(Apf ).

Remark 3.1.3. This assumption holds true if either GQp splits over an unramified extension or
if ShKpKp(G,X) is proper, by [24]*Theorem 4.5.2 (see [24, Remark 4.3.2]). More generally, the
assumption holds when [24, Conjecture 4.3.1] holds for ShG,Kp . A proof of [24, Conjecture 4.3.1]
under the assumption that Gad is Q-simple will appear in the forthcoming PhD thesis of Shengkai
Mao, see [38, Corollary 1.6 ]. Moreover, the assumption holds unconditionally when [b] is the
µ-ordinary element, see Remark 6.0.5.

Let us denote by Jb(Qp)
′′ the kernel of the map Jb(Qp)→ Gab(Qp)→ π1(G)σI , note that J

′′
b (Qp) ⊃

J ′b(Qp). Moreover, since ν(Kp) = Gab(Zp) is the kernel of Gab(Qp) → π1(G)σI by Proposition
2.6.2, the group J ′′b (Qp) is just the inverse image of Gab(Zp) ⊂ Gab(Qp) under the natural map
Jb(Qp)→ Gab(Qp).

Lemma 3.1.4. If Assumption 3.1.2 holds, then for y ∈ X{ν}(b)(Fp) the map

π∞(−, y) : π0(Ig[b],Kp)× {y} → π0(ShG,Kp)(3.1.1)

is Jb(Qp)-equivariant, where Jb(Qp) acts on π0(ShG,Kp) via the inverse of the natural map Jb(Qp)→
Gab(Qp)→ π1(G)σI . In particular, the group J ′′b (Qp) acts on the fibers of (3.1.1).



16 POL VAN HOFTEN AND LUCIENA XIAO XIAO

Proof. We will prove the result for the map

π∞(−, y) : π0(Ig[b])× {y} → π0(ShG).

The map only depends on the connected component containing y, and thus it suffices to prove the
result for one point in each connected component of X{ν}(b). Since the map π∞ : Ig[b]×X{ν}(b)→
ShG is Jb(Qp)-invariant, it suffices to prove it for one point in each Jb(Qp)-orbit of connected
components of X{ν}(b). Since Jb(Qp) acts transitively on π0(X{ν}(b)) by [24, Theorem A.1.3], it is
enough to prove the result for y = 1.

By Lemma 2.4.4 we know that for g ∈ Jb(Qp) we have

π∞(x̃, g · 1) = κ(g) · π∞(x̃, 1),

where κ(g) is the image of g in π1(G)σI . Then the Jb(Qp)-invariance of π∞ tells us that

π∞(gx̃, gg−1 · 1) = π∞(x̃, g−1 · 1) = κ(g)−1π∞(x̃, 1).

Thus the result holds for the connected component of Ig[b] containing x̃ and therefore for the con-
nected components intersecting the Jb(Qp)-orbit of x̃. Since the map π∞(−, y) is G(Apf )-equivariant
and the G(Apf )-action commutes with the Jb(Qp) action on Ig[b] and with the π1(G)σI action on
π0(ShG), the result holds for the connected components of the G(Apf )× Jb(Qp)-orbit of x̃.

Assumption 3.1.2 tells us that H ⊂ Jb(Qp) acts transitively on the fibers of

π0(Ig[b])→ π0(ShG).

Now π1(G)σI ×G(Apf ) acts transitively on π0(ShG) by inspection, see the proof of Lemma 2.4.1. We
deduce from this that Jb(Qp) × G(Apf ) acts transitively on π0(Ig[b]), since H is contained in the
kernel of Jb(Qp)→ π1(G)σI by Proposition 2.6.1. �

It follows from the proof of Lemma 3.1.4 that the following result holds.

Corollary 3.1.5. If Assumption 3.1.2 holds, then the group G(Apf ) × Jb(Qp) acts transitively on
π0(Ig[b]).

Let Σ be a finite set of primes containing p and all the places ` such that Gder
Q`

has a compact
factor. Let AΣ

f be the set of finite adeles away from Σ.

Lemma 3.1.6. If Assumption 3.1.2 holds, then the group Gder(AΣ
f ) acts trivially on π0(Ig[b]).

Proof. It follows from Lemma 2.4.1 and Lemma 2.4.2 that Gder(Apf ) acts trivially on π0(ShG). It
follows from Assumption 3.1.2 that Gder(Apf ) acts trivially on π0(CJbK) as well, where we recall that
we have assumed that CJbK,Kp is distinguished central leaf.

Write H = lim←−Hn as an inverse limit of finite groups, indexed by the natural numbers. This
induces a description of Ig[b] → CJbK as a G(Apf )-equivariant inverse limit of finite étale covers of
CJbK. Concretely, Ig[b] = lim←−nC

n
JbK, where C

n
JbK is the quotient of Ig[b] by the kernel of H → Hn.

Since the group Gder(Apf ) acts trivially on π0(CJbK), it has finite orbits when acting on π0(CnJbK). In
particular, for each ` 6∈ S the group Gder(Q`) acts through a finite quotient on π0(CnJbK) for all n.

By the definition of Σ, the group Gder
Q`

has no compact factors for ` 6∈ Σ, which by [45, Theorem
7.1, Theorem 7.5] implies that the group Gder(Q`) has no finite index proper subgroups. Thus
Gder(Q`) ⊂ Gder(AΣ

f ) acts trivially on π0(CnJbK) for all ` 6∈ Σ, and the result follows by passing to
the inverse limit over n. �
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3.2. p-adic monodromy. Let C◦JbK,Kp be a connected component of CJbK,Kp and let z ∈ C◦JbK,Kp(Fp).
Let πét

1 (C◦JbK,Kp , z) → H be the monodromy representation associated to Ig[b],Kp → Cperf
JbK,Kp and

denote its image by M ⊂ H ⊂ Jb(Qp). Recall that J ′b ⊂ Jb is the kernel of the natural map
Jb → Gab as in Section 2.1.3.

Theorem 3.2.1. If Assumption 3.1.2 holds, then the Zariski closure of M in Jb(Qp) is equal to J ′b.

This result is a consequence of the results of D’Addezio [9, 10] in combination with Lemma 3.1.1
and Assumption 3.1.2. To explain this, we first need to introduce some notation.

3.2.2. Recall the following notions from [9, Sec. 2.2]. Write F -Isoc(S) for the Qp-linear Tannakian
category of F -isocrystals over a smooth finite type scheme S over Fp, and write F -Isoc†(S) for
the Qp-linear Tannakian category of overconvergent F -isocrystals over S. There is a natural fully
faithful embedding F -Isoc†(S) ⊂ F -Isoc(S), which sends an overconvergent F -isocrystalM† to the
underlying F -isocrystalM. Similarly, we write Isoc†(S) and Isoc(S) for the Q̆p-linear category of
(overconvergent) isocrystals over S. There are natural faithful forgetful functors from (overconver-
gent) F -isocrystals to (overconvergent) isocrystals.

Given an overconvergent isocrystalM† over S as above we writeM for its underlying isocrystal.
For a point s ∈ S(Fp), there are

Mon(S,M, s) ⊂ Mon(S,M†, s)

that are algebraic groups over Q̆p, see the introduction of [10]. They are defined to be the Tannakian
groups corresponding to the smallest Tannakian subcategory of Isoc(S) and Isoc†(S), respectively,
containingM, via the fiber functor ωs

ωs : Isoc(S)→ Isoc(Fp) = VectQ̆p
.

Relp : RepQp
G→ F -Isoc(ShG,Kp)(3.2.1)

such that the representation GQp → GV → GLV coming from the choice of Hodge embedding is
sent to the F -isocrystalM. SinceM is an overconvergent F -isocrystal, it follows that this tensor
functor factors through an exact Qp-linear tensor functor

Relp : RepQp
G→ F -Isoc†(ShG,Kp),(3.2.2)

see [25, Lemma 3.3.2].
Choose an isomorphism Dz ' Dx sending sα,cris,z to sα,cris,x for all α ∈ A . If we compose this

with our fixed isomorphism Z̆p ⊗ Vp → Dx, we get an isomorphism Z̆p ⊗ Vp → Dz which sends
1⊗ sα to sα,cris,z for all α ∈ A . This induces an isomorphism ωz(M†) = Dz[1/p]→ V ⊗ Q̆p sending
ωz(sα) = sα,cris,z to sα⊗1 for all α ∈ A . This identifies the composite ωz ◦Relp : RepQp

G→ VectQ̆p

with the standard fiber functor, tensored up to Q̆p. Thus if we apply Tannakian duality to (3.2.1)
and (3.2.2), we get inclusions

Mon(Z,M, z) ⊂ Mon(Z,M†, z) ⊂ G⊗ Q̆p ⊂ GL(V ⊗ Q̆p).

Lemma 3.2.3. If Assumption 3.1.2 holds, then the monodromy group

Mon(C◦JbK,Kp ,M†) ⊂ G⊗ Q̆p

is equal to Gder ⊗ Q̆p.
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Proof. The geometric monodromy group of R1π∗Q` over C◦JbK,Kp is isomorphic to Gder
Q`

, by Lemma
3.1.1 and Assumption 3.1.2. Then [9]*Theorem 1.2.1 tells us that Mp := Mon(C◦JbK,Kp ,M†) is
isomorphic to Gder over an algebraic closure of Q̆p. This implies that Mp is equal to its own derived
subgroup and therefore it is contained in Gder⊗Q̆p. SinceMp is connected and of the same dimension
as Gder, it follows that the inclusion Mp ⊂ Gder ⊗ Q̆p is an equality. �

Since C◦JbK,Kp is contained in a single Newton stratum, the F -isocrystalM admits a unique slope
filtration S•(M). It is explained in [25, Lemma 3.3.4 and the paragraph preceding it] that this
gives rise to a fractional cocharacter λ of G ⊗ Q̆p. Let bz ∈ G(Q̆p) ⊂ GL(V ⊗ Q̆p) be the element
corresponding to the Frobenius on ωz(M†) = Dz[1/p] = V ⊗ Q̆p. Then by construction of our
identification Dz[1/p] = V ⊗ Q̆p we have bz = b. It follows from[25, Lemma 3.3.4] that λ = νb,
where νb is the Newton cocharacter attached to b, see [30, Section 1.1.2]. As explained in [10, Sec.
4.1], we find that the monodromy group

Mon(C◦JbK,Kp ,M) ⊂ GQ̆p

is contained in the parabolic subgroup P (λ) ⊂ GQ̆p
associated to λ.

Lemma 3.2.4. If Assumption 3.1.2 holds, then the monodromy group

Mon(C◦JbK,Kp ,M) ⊂ Mon(C◦JbK,Kp ,M†) = Gder ⊗ Q̆p

is equal to the intersection of P (λ) with Gder ⊗ Q̆p.

Proof. This is [10, Theorem 5.1.2]. �

We also consider the centraliser M(λ) ⊂ P (λ) of λ.

Lemma 3.2.5. Let N = GrS•(M) be the associated graded of the slope filtration S•(M) on M.
Then the inclusion

Mon(C◦JbK,Kp ,N ) ⊂ Mon(C◦JbK,Kp ,M)

identifies Mon(C◦JbK,Kp ,N ) with the intersection of Gder ⊗ Q̆p and Z(λ) in G⊗ Q̆p.

Proof. This is [10, Proposition 5.1.4]. �

3.3. The proof of Theorem 3.2.1. We will deduce Theorem 3.2.1 from the results proved above
in combination with Proposition 3.3.1 below.

Let S be a smooth connected scheme over Fp and let π : A→ S be an abelian scheme such that
the p-divisible group X = A[p∞] is completely slope divisible; let S•(X) be the slope filtration of
X. LetM be the isocrystal attached to A and let S•M be the slope filtration ofM. Let s ∈ S(Fp),
let X = Xs and let S̃ → S be the scheme representing the functor sending an S-scheme T to the set
Isom(GrS•(XT ),XT ); it is a pro-étale torsor for the profinite group Aut(X) by [43, Corollary 1.10].
The rational Dieudonné module functor gives a natural continuous homomorphism

Aut(X)→ AutQ̆p
(Ms).

Proposition 3.3.1. Let ρ : πét
1 (S, s) → Aut(X) be the monodromy representation associated to

S̃ → S. Then the Zariski closure of the image of ρ inside AutQ̆p
(Ms) is equal to the monodromy

group

Mon(S,N , s) ⊂ GLQ̆p
(Ms),

where N = GrS•(M).
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Proof. As explained in the proof of [10, Theorem 5.16], the F -isocrystalM is the rational crystalline
Dieudonné crystal D(X)[1/p] of X and the F -isocrystal N is therefore the crystalline Dieudonné
crystal of GrS•(X). Thus the tautological isomorphism

GrS•(XS̃)→ XS̃
induces an isomorphism

NS̃ →Ms,S̃ .(3.3.1)

Let Z be a connected component of S̃. Then the stabiliser in Aut(X) of Z is equal to M , the image
of the monodromy representation. Moreover, Z → S is a pro-étale M -torsor.

Now let ηS = Spec k(ηS) be the generic point of S and let ηZ = Spec(k(ηZ)) be the generic point
of Z. Then ηZ → ηS is a pro-étale M -torsor, in other words, the field kηZ is a Galois extension of
k(ηS) with Galois group topologically isomorphic to M . Let NηS be the pullback of the isocrystal
N to ηS , and let 〈NηS 〉 be the Tannakian category generated by NηS inside the Tannakian category
of isocrystals on ηS . (The field k(ηS) has a finite p-basis, and so the category of isocrystals on it is
Tannakian by [12, Corollary 3.3.3].) By [11, Theorem 3.2.5] and its proof, pullback to ηS induces
an equivalence of Tannakian categories

〈N〉 ' 〈NηS 〉.

We can restrict (3.3.1) to ηZ to deduce that the isocrystal NηS becomes trivial after pullback to
ηZ . Since a : Z → S is a pro-étale M -torsor, it satisfies descent for isocrystals by [12, Proposition
3.5.4], see also [39, main result] or [1, Section 2]. By descent for isocrystals, any object P in 〈NηS 〉
can be described by its pullback a∗P , which is a Q̆p-vector space, together with its continuous and
Q̆p-linear action of M . We identify NηS itself with the vector space ωs(N ) = ωs(M) =:Ms.

This identifies 〈NηS 〉 with a full subcategory of the category of continuous representations of M
on Q̆p-vector spaces. Namely, the one generated (as a Tannakian category) by the representation
M → Aut(X)→ GLQ̆p

(Ms).

This category is also equivalent to the full subcategory 〈Ms〉 of the category of (not necessarily
continuous) representations ofM on finite-dimensional Q̆p-vector spaces, generated (as a Tannakian
category) by the representation M → Aut(X) → GLQ̆p

(Ms). Indeed, the continuity of the action
of M is automatic for objects in 〈Ms〉. By [51, Proposition 6.5.15], this implies that the Tannakian
group of 〈Ms〉 is equal to the Zariski closure of M in GLQ̆p

(Ms). But this Tannakian group is
equal to Mon(S,N , s) per definition. �

Proof of Theorem 3.2.1. Recall from [30, Section 1.1.4] that there is a natural map Jb⊗Q̆p → G⊗Q̆p

whose image can be identified with the centraliser Mνb of νb. As explained in the paragraph after
Lemma 3.2.3, the Newton cocharacter νb is equal to λ. Thus, by Lemma 3.2.5, the monodromy
group Mon(C◦JbK,Kp ,N ) is the intersection of Mνb ⊗ Q̆p and Gder ⊗ Q̆p.
Step 1: The Mantovan Igusa variety. Let CJbK,GV ,Kp be a central leaf in ShGV ,Kp containing

CJbK,Kp and let X = A[p∞] be the p-divisible group of the universal abelian variety over CJbK,GV ,Kp .
Then because we have chosen CJbK,Kp to be distinguished, it follows that the p-divisible group
X := Ax[p∞], where x is our fixed basepoint, is completely slope divisible in the sense of [28,
Definition 2.4.2], see [28, Lemma 2.4.3, paragraph after Definition 2.4.2]. As explained in [37,
Section 3.2.3], this implies that X is completely slope divisible over CJbK,GV ,Kp .

Let S•(X) be the slope filtration of X, and let GrS•(X) be the associated graded. Let λ (not to
be confused with the slope cocharacter λ introduced above) be the polarisation of X induced by the
polarisation on Ax and let Aut(X, λ) be the profinite group of automorphisms of X that preserve λ
up to a scalar in Z×p . Then it follows from [37, main result], see [5, discussion after Definition 4.3.6],
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that there is a pro-étale Aut(X, λ)-torsor

π : IgM,JbK,GV ,Kp → CJbK,GV ,Kp

parametrising isomorphisms GrS•(XCJbK,Kp ) ' XCJbK,GV ,Kp compatible with the polarisations up to
a scalar in Z×p . By [5, Proposition 4.3.8], the perfection of π can be identified with

Ig[b],GV ,Kp → Cperf
JbK,GV ,Kp .

There is moreover a commutative diagram

IgM,JbK,Kp IgM,JbK,GV ,Kp

CJbK,Kp CJbK,GV ,Kp ,

a

where IgM,JbK,Kp is the pro-étale H-torsor associated to Ig[b],Kp → Cperf
JbK,Kp , under the equivalence of

étale sites between CJbK,Kp and Cperf
JbK,Kp . Note that in the Siegel case, the Mantovan Igusa variety

depends on JbK rather than just on [b]. Therefore we have decided to include JbK rather than [b] in
the notation for the Mantovan Igusa varieties. Our fixed isomorphism Z̆p⊗Vp → Dx sending 1⊗ sα
to sα,cris,x for all α ∈ A induces a natural embedding

Jb(Qp)→ QIsogλ(X),

which mapsH ⊂ Jb(Qp) to Aut(X, λ). The morphism IgM,JbK,Kp → IgM,JbK,GV ,Kp isH-equivariant for
the H-action on the target via H → Aut(X, λ). In particular, IgM,JbK,Kp → CJbK,Kp naturally maps
H-equivariantly to the pro-étale Aut(X)-torsor over CJbK,Kp that was introduced in the beginning
of Section 3.3.
Step 2: Applying Proposition 3.3.1 It now follows from Proposition 3.3.1 that the Zariski

closure of the image of the monodromy representation ρ : πét
1 (C◦JbK,Kp , x) → H → Aut(X, λ) →

GLV (Q̆p) is equal to the monodromy group Mon(C◦JbK,Kp ,N , x). This monodromy group is equal
to
(
Mνb ∩Gder

)
⊗ Q̆p by Lemma 3.2.5. Thus the Zariski closure of M in G(Q̆p) is equal to(

Mνb ∩Gder
)
⊗ Q̆p = J ′b ⊗ Q̆p.

We conclude that the image ofM → Jb(Qp)→ Jb(Q̆p) is contained in J ′b(Q̆p) and thus in J ′b(Qp).
Moreover, this image is Zariski dense in J ′b(Q̆p) and therefore so in J ′b(Qp), since the formation of
Zariski closures commutes with flat base change. �

3.4. Consequences of Theorem 3.2.1. In this section we will deduce some consequences of
Theorem 3.2.1 that are relevant to us.

Corollary 3.4.1. If Assumption 3.1.2 holds, then the group M contains a compact open subgroup
of Jder

b (Qp) and is contained in J ′b(Qp).

Proof. The group M is a p-adic Lie group by [16, Prop. 2.3] and the morphism M → H → Jb(Qp)
is a morphism of p-adic Lie groups by [16, Prop. 2.2]. This implies that there is a Qp-Lie algebra
LieM and a morphism of Lie algebras LieM → Lie Jb(Qp) = Lie Jb. By Theorem 3.2.1, the group
M has Zariski closure equal to J ′b and is thus contained in J ′b(Qp).

This means that Lie J ′b is the smallest Lie algebra of an algebraic subgroup of Jb containing LieM .
In the notation of [2, Section 7.1], this is expressed as a(LieM) = Lie J ′b. By [2, Corollary 7.9] we
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have the following equality of Lie subalgebras of Lie Jb:

[LieM,LieM ] = [a(LieM), a(LieM)]

= [Lie J ′b,Lie J ′b]

= Lie Jder
b .

In particular, we see that Lie Jder
b ⊂ LieM . By the theory of p-adic Lie groups and their exponential

maps, see [16, Section 2], this implies that M contains a compact open subgroup of Jder
b (Qp). �

Let Z be the center of the algebraic group Jb.

Lemma 3.4.2. If Assumption 3.1.2 holds, then the quotient Z(Qp)\π0(Ig[b],Kp) is finite.

Proof. The quotient H\π0(Ig[b],Kp) can be identified with π0(CJbK,Kp) and is therefore finite. More-
over, the stabiliser of a connected component of π0(Ig[b],Kp) can be identified with M ⊂ H. Since
M contains a compact open subgroup of Jder

b (Qp) by Corollary 3.4.1, we see thatM ∩Jder
b (Qp) is of

finite index in Hder := H ∩Jder
b (Qp). Thus the map π0(Ig[b],Kp)→ Hder\π0(Ig[b],Kp) is finite-to-one,

and H acts with finitely many orbits on the target and its action moreover factors through H/Hder.
The quotient H/Hder can be identified with a compact open subgroup of Jab

b (Qp). In particular, a
compact open subgroup of Z(Qp) will act on it with finitely many orbits, and the lemma follows. �

Corollary 3.4.3. If Assumption 3.1.2 holds, then the group Jder
b (Qp) acts with finite orbits on

π0(Ig[b],Kp).

Proof. Let a ∈ π0(Ig[b],Kp) and write the Jb(Qp)-orbit of a as Jb(Qp)/Pa, where Pa ⊂ Jb(Qp) is
the stabiliser of a. We want to show that the group P der

a := Pa ∩ Jder
b (Qp) has finite index in

Jder
b (Qp). Equivalently, by the fact that Jder

b (Qp) · Z(Qp) has finite index in Jb(Qp) and the fact
that Z(Qp) ∩ Jder

b (Qp) is finite, we need to show that P der
a · Z(Qp) has finite index in Jb(Qp).

Lemma 3.4.2 implies that Pa · Z(Qp) has finite index in Jb(Qp), and so it suffices to show that

P der
a · Z(Qp) ⊂ Pa · Z(Qp)

has finite index. This is true because the cokernel of P der
a → Pa is naturally a subgroup of Jab

b (Qp),
and because Z(Qp)→ Jab

b (Qp) has finite cokernel. �

The group Jder
b is simply connected because Jb is an inner form of a Levi subgroup of G, and

Gder is simply connected (see [36]*Proposition 12.14). Therefore we can write Jder
b as a product

of restrictions of scalars of semi-simple and simply connected groups whose adjoint groups are
absolutely simple. In particular, we can write Jder

b = Jder
b,an × Jder

b,iso with the first factor anisotropic
and the second factor totally isotropic. In other words, the group Jder

b,iso has no compact factors.

Proposition 3.4.4. If Assumption 3.1.2 holds, then Jder
b,iso(Qp) acts trivially on π0(Ig[b],Kp).

Proof. It follows from Corollary 3.4.3 that Jder
b (Qp) acts with finite orbits on π0(Ig[b],Kp). Therefore

the subgroup Jder
b,iso(Qp) acts with finite orbits. However, since Jder

b,iso is totally isotropic, it follows that
Jder
b,iso(Qp) has no finite index proper subgroups, see [45, Theorem 7.1, Theorem 7.5]. We conclude

that the action of Jder
b,iso(Qp) on π0(Ig[b],Kp) is trivial. �

This argument will not work for the anisotropic part of Jder
b , because it is not true that Jder

b,an(Qp)

has no non-trivial finite quotients. This is why we have to assume that Jder
b = Jder

b,iso in our main
theorems.
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4. Constructing a maximal torus

In this section, we will show that there are (many) maximal tori of J ′b whose Qp-points stabilise
given connected components of Ig[b],Kp .

4.1. Prime-to-p Hecke operators. Let the notation be as in Section 2 and let z̃ ∈ Ig[b](Fp) be
a point with image z ∈ CJbK(Fp). By the construction of the Igusa variety Ig[b],Kp → CJbK,Kp in
Section 2.2, we know that the point z̃ corresponds to an isomorphism Az[p

∞]→ X = Ax[p∞], which
induces an isomorphism Dz ' Dx sending sα,cris,z to sα,cris,x for all α ∈ A . If we compose this with
our fixed isomorphism Z̆p ⊗ Vp → Dx, which sends 1⊗ sα to sα,cris,x for all α ∈ A , then we get an
induced embedding jz̃,p : Iz,Qp → Jb. Moreover, the image of z̃ in ShG(Fp) gives us an embedding

jpz̃ : Iz,Ap
f
→ GAp

f
.

We note that both G(Apf ) and Jb(Qp) act on Ig[b].

Lemma 4.1.1. The subgroup (jpz̃ , jz̃,p)(Iz(Q)) ⊂ G(Apf )× Jb(Qp), stabilises the point z̃ ∈ Ig[b](Fp).

Proof. It suffices to show this in the Siegel case, where it is a direct consequence of the moduli
interpretation of the Caraiani–Scholze Igusa variety with infinite prime-to-p level

lim←−
Kp⊂GV (Ap

f )

Ig[b],GV ,Kp ,

coming from [5, Lemma 4.3.4]. �

By [30, Lemma 2.2.8], there is a homomorphism Iz → Gab such that the induced morphism
Iz,Ap

f
→ Gab

Ap
f
agrees with the composition of jpz̃ with GAp

f
→ Gab

Ap
f
, and such that the induced

morphism Iz,Qp → Gab
Qp

agrees with the composition of jz̃,p with Jb → Gab
Qp

. We define I ′z ⊂ Iz to
be the kernel of this homomorphism.

Corollary 4.1.2. If Assumption 3.1.2 holds, then the group jz̃,p (I ′z(Q)) ⊂ Jb(Qp) acts trivially on
the image of z̃ in π0(Ig[b]).

Proof. By Lemma 4.1.1, the subgroup

(jpz̃ , jz̃,p)(Iz(Q)) ⊂ G(Apf )× Jb(Qp)

stabilises z̃. The group Gder(AΣ
f ) acts trivially on π0(Ig[b]) by Lemma 3.1.6 and thus stabilises the

image of z̃ in π0(Ig[b]). Now Iz(Q)∩Gder(AΣ
f ) = I ′z(Q) by the discussion in the paragraph before the

statement of Corollary 4.1.2. If we combine this with Lemma 4.1.1, we see that jz̃,p(I ′z(Q)) ⊂ Jb(Qp)
also stabilises the image of z̃ in π0(Ig[b]). �

Corollary 4.1.3. The closure of jz̃,p (I ′z(Q)) ⊂ Jb(Qp) acts trivially on the image of z̃ in π0(Ig[b])

and the image of z̃ in π0(Ig[b],Kp).

Proof. Recall that for a quasicompact and quasiseparated scheme X the topological space π0(X) of
connected components of X is a profinite set, see [50, Lemma 0906]. This applies in particular to
Ig[b],Kp and Ig[b], and thus π0(Ig[b],Kp) and π0(Ig[b]) are compact Hausdorff topological spaces.

Since the action of Jb(Qp) on π0(Ig[b]) is continuous by Lemma 2.3.6, it follows that the stabiliser
of the image of z̃ in π0(Ig[b]) under the action of Jb(Qp) is a closed subgroup. Since the stabiliser
contains I ′z(Q) ⊂ Jb(Qp) by Corollary 4.1.2, it thus contains its closure. The result for π0(Ig[b],Kp)

follows from the Jb(Qp)-equivariance of π0(Ig[b])→ π0(Ig[b],Kp). �
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4.2. Hypersymmetric points. We start with the following definition (compare with [6, Def. 6.4]).

Definition 4.2.1. We call z ∈ ShG,Kp(Fp) weakly hypersymmetric if Iz,Qp ' Jb. If in addition
Iz(Q) is dense in Iz(Qp), then we call z hypersymmetric.

If the Newton stratum ShG,[b],Kp contains a hypersymmetric point, then the arguments above
can be used to show that J ′b(Qp) acts trivially on Igb, without using the results of Section 3.
Unfortunately, although Newton strata on Siegel modular varieties always contain hypersymmetric
points, see [6], they are sparse in more general settings. For example, in the PEL case, not every
Newton stratum contains a hypersymmetric point, see [56]; they might not exist even in the µ-
ordinary stratum, see [53]*Corollary 7.5.. See also [14, Theorem 1.0.1] for a precise criterion for
the existence of hypersymmetric points in the Hodge type case, and [14, Chapter 5, 5.1.1] for
computations and counterexamples to the existence of hypersymmetric points.

4.3. Honda–Tate theory. Recall that a special point datum (T, h, i) for (G,X) consists of a
Shimura datum (T, h), where T is a maximal torus of G, and an embedding of Shimura data
i : (T, h) → (G,X). The Qp-points of ShKp(G,X) that lie in the Shimura variety for (T, h) are
called special points; they all have good reduction and so give rise to Fp-points z of ShG called special
points. These points z come equipped with morphisms j : T → Iz such that TQ`

→ Iz,Q`
→ GQ`

is conjugate to iQ`
for all ` 6= p. (When Kp is hyperspecial, this is explained in the proof of [32,

Proposition 5.7.6.(ii)], and the same proof works in general.) In particular, the natural morphism
T → Iz → Gab is equal to T → G → Gab. The main theorem of [30] shows that every Newton
stratum in ShG,Kp contains many special points. For a maximal torus T ⊂ Iz, we will write T ′ for
T ∩ I ′z.
Proposition 4.3.1. If Assumption 3.1.2 holds, then for each maximal torus T ⊂ Jb and every
connected component W of CJbK, there is a point z in W such that Iz contains a torus T , with T ′Qp

isomorphic to T ∩ J ′b. Furthermore, we can choose T such that T ′ satisfies weak approximation,
that is, such that T ′(Q) is dense in T ′(Qp).

Proof. Since GQp is quasi-split, the group Mb ⊂ GQp is quasi-split, and thus we can transfer T from
Jb to Mb and hence consider it as a maximal torus of GQp . This transfer can be done such that
T ∩Gder

Qp
is isomorphic to T ∩ J ′b. Indeed, the same argument applies to show that T ∩ J ′b transfers

to Mb ∩ Gder, and T ∩ J ′b extends uniquely to Jb and its transfer to Mb ∩ Gder extends uniquely
to Mb ∩ G. Then [30]*Proposition 1.2.5 tells us that we can find a maximal torus i : T → G
such that: There exists h ∈ X that factors through i(TR) making (T , h, i) into a special point
datum, and this special point datum induces an isogeny class I ⊂ ShG,[b](Fp) with automorphism
group I containing T , such that TQp is G(Qp)-conjugate to T in GQp . In particular, TQp ∩Gder

Qp
is

isomorphic to T ∩Gder
Qp

. Since T → Iz → Gab is equal to T → G→ Gab, this implies that T ′Qp
is

isomorphic to T ∩Gder
Qp

.
The construction of T in the proof of [30]*Proposition 1.2.5 is quite flexible. They start by

choosing a maximal torus T∞ ⊂ GR such that there is an h ∈ X factoring through T∞ and
then they choose any maximal torus T0 ⊂ G that is G(R)-conjugate to T∞ and G(Qp)-conjugate
to T . Next, they choose g ∈ Gder(Q) so that the cocycle σ 7→ gσ(g)−1 lies in T ′0 (Q), where
T ′0 = T0 ∩ Gder. By [30, Lemma 1.2.1], this cocycle can be chosen such that its cohomology class
is trivial in H1(Qp,T ′0 ), and in fact the proof of the lemma shows that we can choose this cocycle
to be trivial at any finite set of places S of Q disjoint from {∞}. Then T arises as int(g−1)(T0,Q),
which is defined over Q.

By weak approximation for the variety of maximal tori of G, we can choose T0 as above with
fixed Gder(Q`)-conjugacy class for any finite set S of primes ` 6= p. By the discussion above, we can
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choose g ∈ Gder(Q) such that T ′0 has the same specified Gder(Q`)-conjugacy class for ` ∈ S. It now
follows from [46]*Theorem 1.(i) and the result of Klyachko mentioned afterwards (see [52, part (2)
of the Theorem at the end of Section 8.3]), that this gives us enough flexibility to choose T ∩Gder

to have weak approximation.

The proposition now follows from the fact that the isogeny class I surjects onto π0(ShG) and
moreover intersects every central leaf in the Newton stratum ShG,[b],Kp ; this follows from Rapoport–
Zink uniformisation of isogeny classes (which is [54, Proposition 6.5]). Indeed, if we let b correspond
to z̃ ∈ Ig[b](Fp) above z ∈ I then the isogeny class I receives the Rapoport–Zink uniformisation
map Θz̃ : G(Apf ) ×X{ν}(b)(Fp) → I ⊂ ShG,[b](Fp), which is compatible with the product formula
map π∞ : Ig[b]×X{ν}(b)→ ShG,[b]. Therefore the image of Θz̃ intersects every central leaf.

To prove that Θz̃ surjects onto π0(ShG,Kp), we argue as follows: The map G(Apf )×X{ν}(b)(Fp)→
π0(ShG) induced by Θz̃ is G(Apf ) × Jb(Qp)-equivariant, where Jb(Qp) acts on π0(ShG) via the
surjection Jb(Qp) → π1(G)σI ; this was explained in the proof of Lemma 3.1.4. We may then argue
as in the proof of Lemma 3.1.4 to show that G(Apf )×X{ν}(b)(Fp)→ π0(ShG) is surjective. �

Corollary 4.3.2. If Assumption 3.1.2 holds, then for every maximal torus T ⊂ Jb and every
connected component Z of Ig[b], we can find a maximal torus T ′′ ⊂ J ′b such that T ′′ is isomorphic
to T ∩ J ′b as algebraic groups and such that T ′′(Qp) stabilises Z.

Proof. Let W be the image of Z under Ig[b] → CJbK. Then by Proposition 4.3.1, we can find a point
z ∈W such that Iz contains a torus T with T ′Qp

isomorphic to T ∩J ′b and such that T ′(Q) is dense
in T ′(Qp). Now let z̃ ∈ Z be a point lying above z, then z̃ induces jz̃,p : Iz,Qp → Jb which sends I ′z
to J ′b. Thus T

′′ := T ′Qp
is a maximal torus of J ′b which is isomorphic to T ∩ J ′b as algebraic groups.

Corollary 4.1.3 then tells us that T ′′(Qp) acts trivially on Z. �

5. Group theory

Let G be a connected reductive group over Qp and assume that Gder is simply connected. The
goal of this section is to prove Proposition 5.0.1 below, which we will apply to G = J ′b in Section 6.

Let M ⊂ G be the centraliser of a maximal split torus of G, and let Mder be its derived subgroup.
Then Mder is simply connected because Gder is, see [36]*Proposition 12.14, and moreover Mder

is anisotropic by construction. Therefore, it follows from [45]*Theorem 6.5 that there are finite
extensions K1, · · · ,Km of Qp and central division algebras Di over Ki such that

Mder '
m∏
i=1

ResKi/Qp
D1
i .

Here D1
i is the algebraic group over Ki which is the kernel of the reduced norm map NmDi/Ki

:

D×i → Gm,Ki . We will write K̆i for the completion of a maximal unramified extension of Ki. We
will write P([m]) for the set of all subsets Y ⊂ {1, · · · ,m} =: [m].

Proposition 5.0.1. For each Y ∈ P([m]) let TY be a maximal torus of G such that: The torus
TY contains a maximal Qp-split torus, has maximal K̆i-split rank among maximal tori containing
a maximal Qp-split torus for i ∈ Y , and has minimal K̆i-split rank among maximal tori containing
a maximal Qp-split torus for i 6∈ Y . Then the group G(Qp) is topologically generated by Gder(Qp)
and

⋃
Y ∈P([m]) TY (Qp).

Maximal tori as in the statement of Proposition 5.0.1 exist, this will be clear from its proof.
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5.1. Semisimple anisotropic groups. Choose a finite extension K of Qp and a central division
algebra D over K of rank n2. Maximal tori of D× correspond to subfields F of degree n of
D, and each degree n field extension of K is such a subfield (see [41]*Remark IV.4.4.(c)). For
a subfield F of degree n we will write R1

F/KGm ⊂ ResF/K Gm for the kernel of the norm map
NmF/K : ResF/K → Gm,K , which gives rise to a maximal torus of D1.

Lemma 5.1.1. Let L ⊂ D be a degree n subfield that is unramified over K and let F ⊂ D be a
subfield of degree n that is totally ramified over K. Let Z be the center of D1. Then any cohomology
class α ∈ H1(K,Z) maps to zero in either H1(K,R1

L/KGm) or H1(K,R1
F/KGm).

Proof. We know that Z ' µn,K , and therefore H1(K,Z) = K×/K×,n. A standard long exact
sequence argument shows that H1(K,R1

L/KGm) = K×/NmL/K L
× and that H1(K,R1

F/KGm) =

K×/NmF/K F
×. Moreover, under these identifications the natural mapsH1(K,Z)→ H1(K,R1

L/KGm)

and H1(K,Z)→ H1(K,R1
F/KGm) correspond to the natural maps

K×/K×,n → K×/NmL/K L
×,K×/NmF/K F

×

corresponding to the inclusions

K×,n ⊂ NmL/K L
×,NmF/K F

×.

The result follows because the group generated by NmL/K L
× and NmF/K F

× is equal to K×.
Indeed, by local class field theory the group generated by NmL/K L

× and NmF/K F
× is itself equal

to NmK′/K(K ′)× for a finite abelian extension K ′ of K. Moreover, this extension K ′ is equal to
the intersection of L and F inside a maximal abelian extension Kab of K. Since L is unramified
over K and F is totally ramified, this intersection is equal to K. Therefore we have an equality
NmK′/K(K ′)× = NmK/K(K)× = K× and we are done. �

Proof of Proposition 5.0.1. Let Q ⊂ G(Qp) be the group topologically generated by Gder(Qp) and⋃
Y ∈P([m]) TY (Qp). LetK ⊂ G(Qp) be a special parahoric subgroup, then the Cartan decomposition,

see [18, Theorem 1.0.3], tells us that

G(Qp) = KM(Qp)K,

where M is the centraliser of a maximal split torus S of Qp. Thus to show that Q = G(Qp) it
suffices to show that Q contains M(Qp) and that Q contains K. Note that Mder is simply connected
since M is a Levi subgroup of G, see [36]*Proposition 12.14.
Step 1: The group Q contains M(Qp). By the vanishing of Galois cohomology for semi-simple

simply connected groups over p-adic local fields, there is a short exact sequence

1→Mder(Qp)→M(Qp)→Mab(Qp)→ 1.

Moreover since Mder is semisimple, we see that Mder ⊂ Gder and thus Mder(Qp) ⊂ Q.
For each Y ∈ P([m]), the torus TY contains the maximal split torus of G by assumptions, which

is Gder(Qp) to S. Since TY (Qp) ⊂ Q and since Q contains Gder(Qp), we may assume without loss
of generality that TY contains S and is thus contained in M for all Y . To complete the proof of step
1, it thus suffices to show that the group (topologically) generated by

⋃
Y ∈P([m]) TY (Qp) surjects

onto Mab(Qp).
The short exact sequences (for Y ∈ P([m]))

1 TY ∩Mder TY Mab 1,

induce long exact sequences (for Y ∈ P([m]))

1 (TY ∩Mder)(Qp) TY (Qp) Mab(Qp) H1(Qp, TY ∩Mder) · · ·
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We deduce that it is enough to prove that every element of Mab(Qp) maps to zero in H1(Qp, TY ∩
Mder) for some Y . Recall the notation from the beginning of Section 5.1. By our assumptions on
the tori TY , we find that

TY ∩Mder =
∏
i∈Y

ResKi/Qp
R1
Li/Ki

Gm ×
∏
i 6∈Y

ResKi/Qp
R1
Fi/Ki

Gm,

where Li ⊂ Di is a maximal subfield that is unramified over Ki, and Fi ⊂ Di is a maximal subfield
that is totally ramified over Ki. Now we note that the natural maps (for Y ∈ P([m]))

Mab(Qp)→ H1(Qp, TY ∩Mder)

factor through Mab(Qp) → H1(Qp, ZMder), where ZMder denotes the center of Mder. But by
Lemma 5.1.1 in combination with Shapiro’s lemma, every element of H1(Qp, ZMder) maps to zero in
H1(Qp, TY ∩Mder) for some Y ∈ P([m]). We conclude that Q surjects onto Mab(Qp) and therefore
contains M(Qp).
Step 2: The group Q contains a special parahoric subgroup. For Y = [m], by the

description of TY ∩Mder above, we see that it has maximal Q̆p-split rank. It follows that TY ∩M

has maximal Q̆p-split rank, which means that TY has maximal Q̆p-split rank among maximal tori
that have maximal Qp-split rank; we deduce that TY has maximal Q̆p-split rank among all maximal
tori of G. This moreover means that TY ⊗ Q̆p is a maximal Q̆p-split torus. Because Gder is simply
connected, we see that X∗(TY ∩ Gder) is an induced Galois module for the action of the inertia
group I, see [4]*Proposition 4.4.16, and so X∗(TY ∩Gder)I is torsion free.

Let TY be the connected Néron-model of TY and let T der
Y be the connected Néron-model of

TY ∩Gder. Then since X∗(TY ∩Gder)I is torsion free, it follows from [44, Lemma 6.7] that there is
a short exact sequence

1→ T der
Y → TY → D → 1,

where D is the connected Néron model of Gab. Since T der
Y has connected special fibre, it follows

from Lang’s lemma that TY (Zp) ⊂ TY (Qp) surjects onto D(Zp). Thus the image of Q in Gab(Qp)

contains D(Zp), and since Gder(Qp) ⊂ Q it follows that Q contains the inverse image of D(Zp).
Parahoric subgroups of G(Qp) map to D(Zp) by Proposition 2.6.2 and hence Q contains every
parahoric subgroup of G(Qp). �

6. Main theorems

In this section we will state the main theorems in full generality, giving Theorems 1 and 2 as
special cases. We first recall our running assumptions and some notation.

6.0.1. Let (G,X) be a Shimura datum of Hodge type with reflex field E and assume that Gder

is simply connected. Let p > 2 be a prime number such that GQp is quasi-split and splits over a
tamely ramified extension. Let Kp ⊂ G(Apf ) be a sufficiently small compact open subgroup and let
Kp ⊂ G(Qp) be a connected very special parahoric subgroup, where “connected” is used in the sense
of [54, start of Section 2]. (Note that hyperspecial parahoric subgroups are automatically connected,
see [31, Remark 4.2.14.b)]. In particular, we don’t have to worry about this assumption when
deducing the main theorems of the introduction.) Choose a Hodge embedding (G,X)→ (GV ,HV )
and Z(p)-lattice V(p) ⊂ V on which ψ is Z(p)-valued, such that Kp is the stabiliser of Vp in G(Qp);
this is always possible by the discussion in [30, Section 1.3.2]. Let v|p be a prime of E and let
ShG,Kp be the geometric special fiber of the integral model of the Shimura variety of level KpKp,
see Section 2.1.
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6.0.2. Let [b] ∈ B(G, {µ−1}) be aQ-non-basic element as defined in Section 3. Let x ∈ ShG,[b],Kp(Fp)
be an element contained in a distinguished central leaf (such x exist by Lemma 2.5.3) and let b = bx
be as in the first paragraph of Section 3. Let Ig[b],Kp → CJbK,Kp be the Igusa variety associated
to x as constructed in Section 2.2. For y ∈ X{ν}(b)(Fp), we will also consider the Igusa variety
as a pro-étale Hy-torsor over Cperf

JbyK,Kp using Corollary 2.3.5. In this notation, the Igusa variety
Ig[b],Kp → CJbK,Kp corresponds to y = 1 ∈ X{ν}(b)(Fp), and we will write H = H1 ⊂ Jb(Qp) for its
stabiliser.

We write Jb for the σ-centraliser of b. Note that Jder
b is simply connected since Jb is an inner

form of a Levi subgroup of GQp , see [36]*Proposition 12.14.

Assumption 6.0.3. The group Jder
b has no compact factors.

This assumption means that if we write Jder
b as a product of Qp-almost-simple groups G1×· · ·×

Gn, then Gi(Qp) is not compact in the p-adic topology for any i. Since Jder
b is simply connected,

this is equivalent to asking the same for Jad
b .

Recall the subgroup J ′′b (Qp) ⊃ J ′b(Qp), which is the inverse image of Gab(Zp) ⊂ Gab(Qp) under
Jb(Qp) → Gab(Qp). Since Hy is contained in a parahoric subgroup of Jb(Qp), for example by the
proof of Lemma 2.5.4, it is contained in J ′′b (Qp) by Proposition 2.6.1. We can now state our main
theorem.

Theorem 6.0.4. Let (G,X) and [b] be as above. If Assumptions 3.1.2 and 6.0.3 hold, then for
y ∈ X{ν}(b)(Fp) the natural map

π0(Ig[b],Kp ×{y})→ π0(ShG,Kp)

is surjective with fibers in bijection with Gab(Zp), equivariant for the action of J ′′b (Qp) (which sta-
bilises the fibers by Lemma 3.1.4). In particular, the identification is Hy-equivariant for the natural
action of Hy on the fibers.

Assumption 3.1.2 holds true if GQp splits over an unramified extension by [24]*Theorem 4.5.2;
the assumption in [24]*Theorem 4.5.2 that [24, Conjecture 4.3.1] holds is satisfied when GQp is
unramified, see [24, Remark 4.3.2]. In particular, Theorem 6.0.4 implies Theorem 1. Moreover,
Assumption 3.1.2 also holds when ShKpKp(G,X) is proper, by [24, Theorem 4.5.2].

Remark 6.0.5. When [b] is the µ-ordinary element (see Section 2.1.3 for the definition), then Jb is
quasi-split, which implies that Assumption 6.0.3 holds. Moreover, Assumption 3.1.2 holds because
in this case CJbK,Kp = ShG,[b],Kp and ShG,[b],Kp ⊂ ShG,Kp is dense by [30, Theorem 3]. Indeed, the
assumption that ShG,Kp is locally integral in the statement of [30, Theorem 3] holds because Kp is
very special, see [31, Corollary 4.6.26].

Proof of Theorem 6.0.4. Step 1: The group J ′b(Qp) acts trivially on V . Fix a connected
component V of Ig[b],Kp . By Proposition 3.4.4 and Assumption 3.1.2, the group Jder

b,iso(Qp) acts
trivially on π0(Ig[b],Kp). By Assumption 6.0.3 we have Jder

b,iso = Jder
b and so Jder

b (Qp) acts trivially
on π0(Ig[b],Kp). By Corollary 4.3.2 we can find, for every isomorphism class of maximal tori of J ′b,
a representative T ′ ⊂ J ′b such that T ′(Qp) stabilises V .

Recall that J ′b is connected reductive by Lemma 2.1.6. It thus follows from Proposition 5.0.1 that
we can find maximal tori T1, · · · , Tn of J ′b, which can be specified up to isomorphism, such that the
group topologically generated by T1(Qp), · · · , Tn(Qp) and Jder

b (Qp) is equal to J ′b(Qp). Since the
stabiliser of V in Jb(Qp) is closed, see the proof of Lemma 4.1.3, it follows that J ′b(Qp) acts trivially
on V . Since V was chosen arbitrarily, this implies that J ′b(Qp) acts trivially on π0(Ig[b],Kp).
Step 2: The theorem for y = 1. Assumption 3.1.2 tells us that

π0(CJbK,Kp)→ π0(ShG,Kp)
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is a bijection, and therefore the fibers of π0(Ig[b],Kp)→ π0(ShG,Kp) are in bijection with the fibers of
π0(Ig[b],Kp) → π0(CJbK,Kp). Now Ig[b],Kp → Cperf

JbK,Kp is an H-torsor and the image of monodromy is

contained in H ′ = J ′b(Qp)∩H by Proposition 3.4.4. Recall that the natural map Cperf
JbK,Kp → CJbK,Kp

is a homeomorphism. The fact that H ′ acts trivially on π0(Ig[b],Kp) then implies that the fibers of
π0(Ig[b],Kp)→ π0(CJbK,Kp) are in bijection with H/H ′. Since CJbK,Kp is a distinguished central leaf, it
follows from Lemma 2.5.4 that there are parahoric subgroups J, J ′ of Jb(Qp) such that J ⊂ H ⊂ J ′.
In particular, it follows from Proposition 2.6.1 that H/H ′ ' Gab(Zp).

Now J ′′b (Qp) stabilises the fibers of π0(Ig[b],Kp)→ π0(ShG,Kp) by Lemma 3.1.4 and since J ′b(Qp) ⊂
J ′′b (Qp) acts trivially on π0(Ig[b],Kp) this action factors through an action of J ′′b (Qp)/Jb(Qp) =

Gab(Zp). Since H surjects onto Gab(Zp), we see that our identification of the fibers with Gab(Zp)
is also J ′′b (Qp)-equivariant.
Step 3: The theorem for arbitrary y. For y ∈ X{ν}(b)(Fp) we consider the morphism

π∞(−, y) : π0(Ig[b],Kp ×{y})→ π0(CJbyK,Kp)→ π0(ShG,Kp).

We note that this morphism only depends on the connected component of X{ν}(b) containing {y}.
For y ∈ X{ν}(b)(Fp) lying in the same component as 1 ∈ X{ν}(b)(Fp), the theorem therefore follows
from the discussion above. Since Jb(Qp) acts transitively on π0(X{ν}(b)) by [24, Theorem A.1.3], it
suffices to prove the result for y ∈ Orb(1), where Orb(1) ⊂ X{ν}(b)(Fp) is the Jb(Qp)-orbit of 1.

But for j ∈ Jb(Qp) we have π∞(z, j · 1) = π∞(j−1z, 1) and so the fibers of π∞(−, j · 1) can
be identified with the fibers of π∞(j−1z, 1) under the isomorphism j : Ig[b],Kp → Ig[b],Kp . This
identification of the fibers is J ′′b (Qp)-equivariant for the precomposition of the natural J ′′b (Qp)-action
on the fibers of π∞(−, j · 1) with conjugation by j (considered as an automorphism of J ′′b (Qp)).

Since the action of J ′′b (Qp) on the fibers of π∞(−, 1) identifies these fibers with principal homo-
geneous spaces for Gab(Zp), the same is true for the j-twisted action of J ′′b (Qp) on the fibers of
π∞(−, j · 1). Since Gab(Zp) is abelian, it follows that the untwisted J ′′b (Qp)-action on the fibers of
π∞(−, j · 1) also identifies these fibers with principal homogeneous spaces for Gab(Zp); the theorem
is proved. �

We now state the general version of Corollary 1.1.3.

Corollary 6.0.6. Let (G,X) and [b] be as above. If Assumptions 3.1.2 and 6.0.3 hold, then for
y ∈ X{ν}(b)(Fp), the natural map

π0(Cy,Kp)→ π0(ShG,Kp)

is surjective with finite fibers. Moreover, the fibers are in bijection with Hy\Gab(Zp).

Proof. Let π0(Ig[b],Kp) → π0(Cy,Kp) be the map induced from Ig[b],Kp ×{y} → Cperf
y,Kp . Then the

fibers of this map are a subset of the fibers of the composition π0(Ig[b],Kp) → π0(ShG,Kp) of our
map with π0(Cy,Kp)→ π0(ShG,Kp). To determine this subset, we observe that

Ig[b],Kp ×{y} → Cperf
y,Kp

is a Hy-torsor by Corollary 2.3.5. Moreover, Hy ⊂ J ′′b (Qp) acts on the fibers of π0(Ig[b],Kp) →
π0(ShG,Kp) with stabiliser H ′y := Hy ∩ J ′b(Qp), by the J ′′b (Qp)-equivariance of Theorem 6.0.4.

Therefore the fibers of π0(Ig[b],Kp) → π0(Cy,Kp) can be identified with Hy/H
′
y ⊂ Gab(Zp) and

the fibers of π0(Cy,Kp)→ π0(ShG,Kp) can be identified with Hy\Gab(Zp). �

Now we state the generalisation of Theorem 2. If Kp is hyperspecial, then the representation-
theoretic constant DimV Ĥ

µ (λb)rel is equal to DimVµ(λb)rel from the statement of Theorem 2. If GQp

is moreover split, then DimVµ(λb)rel = 1; this is a straightforward consequence of the definition
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of Vµ(λb)rel in [55, Section 2.6] and the fact that {µ} is minuscule. In particular, Theorem 6.0.7
implies Theorem 2.

Theorem 6.0.7. Let (G,X) and [b] be as above. If Assumptions 3.1.2 and 6.0.3 hold, then for
y ∈ X{ν}(b)(Fp) the natural map, then the natural map

π0(ShG,[b],Kp)→ π0(ShG,Kp)

is a bijection. Moreover, the number of irreducible components in each connected component of
ShG,[b],Kp is given by the representation-theoretic constant

DimV Ĥ
µ (λb)rel,

introduced in [55, Section A.3].

Proof. By Proposition 2.3.4 there is a commutative diagram

Ig[b],Kp ×Orb(1) Ig[b],Kp ×X{ν}(b)

Cperf
JbK,Kp Shperf

G,[b],Kp Shperf
G,Kp .

Assumption 3.1.2 tells us that the composite map CJbK,Kp → ShG,Kp induces a bijection

π0(CJbK,Kp)→ π0(ShG,Kp).

To prove the first part of the theorem, it thus suffices to prove that π0(CJbK,Kp)→ π0(ShG,[b],Kp) is
a bijection, and since the injectivity follows from the injectivity of π0(CJbK,Kp) → π0(ShG,Kp), it is
enough to show that π0(CJbK,Kp) → π0(ShG,[b],Kp) is surjective. Using the Jb(Qp)-torsor structure
of Ig[b],Kp ×Orb(1) → Cperf

JbK,Kp and Ig[b],Kp ×X{ν}(b) → Shperf
G,[b],Kp , see Section 2.3 and Proposition

2.3.4, this comes down to showing that the map

Ig[b],Kp ×Orb(1)→ Ig[b],Kp ×X{ν}(b)

induces a surjection on connected components. By [24, Theorem A.1.3], the group Jb(Qp) acts
transitively on π0(X{ν}(b)), thus Orb(1) → X{ν}(b) induces a surjection on π0 which implies that
Ig[b],Kp ×Orb y → Ig[b],Kp ×X{ν}(b) induces a surjection on π0. We deduce that the natural maps
π0(CJbK,Kp) → π0(ShG,[b],Kp) → π0(ShG,Kp) are all bijections. If we moreover let StabX ⊂ Jb(Qp)
be the stabiliser of a connected component X of X{ν}(b), then StabX acts on π0(Ig[b],Kp) and it
follows from the above reasoning that the natural map

StabX \π0(Ig[b],Kp)→ π0(ShG,[b],Kp)(6.0.1)

is a bijection.
For the second part of the theorem, we need to compute the set of Jb(Qp)-orbits of irreducible

components of Ig[b],Kp ×X{ν}(b). By [55, Theorem A.3.1], the number of Jb(Qp)-orbits of irreducible
components in X{ν}(b) is given by

N := DimV Ĥ
µ (λb)rel.

Let us choose representatives a1, · · · , aN of these orbits, with stabilisers Staba1 , · · · , StabaN in
Jb(Qp). Let Σ(ShG,[b],Kp) denote the set of irreducible components of ShG,[b],Kp , and also for other
schemes. By the product formula, see Section 2.3, the map

π∞ : Ig[b],Kp ×X{ν}(b)→ Shperf
G,[b],Kp
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is a Jb(Qp)-torsor. Thus we can write

Σ(ShG,[b],Kp) = Jb(Qp)\
(

Σ(Ig[b],Kp)× Σ(X{ν}(b))
)

= Jb(Qp)\
(
π0(Ig[b],Kp)× Σ(X{ν}(b))

)
= Jb(Qp)\

(
π0(Ig[b],Kp)×

N∐
i=1

Stabai \Jb(Qp)

)

=
N∐
i=1

Stabai \π0(Ig[b],Kp).

For each i we let Xai be the connected component of X{ν}(b) containing ai. Then Stabai ⊂ StabXai

and moreover the map

Σ(ShG,[b],Kp)→ π0(ShG,[b],Kp)

can be identified with the map
N∐
i=1

Stabai \π0(Ig[b],Kp)→ π0(ShG,[b],Kp)

induced by the maps (the second map comes from equation (6.0.1))

Stabai \π0(Ig[b],Kp)→ StabXai
\π0(Ig[b],Kp) = π0(ShG,[b],Kp).(6.0.2)

In particular, we see that it suffices to prove that the map in (6.0.2) is a bijection for all i. By
Assumptions 3.1.2 and 6.0.3 we may invoke Theorem 6.0.4, and we see that it suffices to show that
Stabai ⊂ Jb(Qp) surjects onto Gab(Zp) for all i. But Stabai is a parahoric subgroup by [55, Theorem
3.1.1], and therefore it surjects onto Gab(Zp) by Proposition 2.6.1.

�

6.1. A conjectural description of the connected components of Igusa varieties. By Corol-
lary 3.1.5, the group G(Apf ) × Jb(Qp) acts transitively on π0(Ig[b]). Moreover, under Assumptions
3.1.2 and 6.0.3 the group J ′b(Qp) acts trivially by the proof of Theorem 6.0.4, and the group Gder(AΣ

f )

acts trivially by Lemma 3.1.6. We have the following conjectural description of π0(Ig[b]).

Conjecture 6.1.1. There is a G(Apf )× Jb(Qp)-equivariant isomorphism of topological spaces

π0(Ig[b]) = Gab(Q)† \Gab(Af ),

where Jb(Qp) acts via Jb(Qp)→ Gab(Qp) and where Gab(Q)† is as in Section 2.4.

Remark 6.1.2. Assuming the conjecture, we get an automorphic description of H0
ét(Ig[b],Q`) as in

[34, Theorem A]. Indeed, there is a Gab(Af )-equivariant bijection

Gab(Q)† \Gab(Af ) = lim←−
K

π0(ShK,C(G,X)),

and the zeroth étale cohomology of the right-hand side has an automorphic description, as discussed
in [34, Section 5.1].

Suppose that the conclusion of Theorem 6.0.4 holds. Then Conjecture 6.1.1 would follow if the
following question had a positive answer.

Question 6.1.3. Is it true that the images of Iz(Q) in Gab(Q)†, as z̃ ranges over all the points in
Ig[b](Fp), generate Gab(Q)†?
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For the Igusa variety over the ordinary locus in the modular curve, this question asks if every
q ∈ Q×>0 = GLab

2 (Q)† is equal to the norm of an element in an imaginary quadratic field E where
our fixed prime p splits; the answer to this question is yes.

6.2. The discrete Hecke orbit conjecture. For the benefit of the reader, we recall the statement
of the discrete Hecke orbit conjecture and its stronger version from [34]. Let the notation be as in
Section 2, then the following two conjectures are [34, Question 8.2.1, last two bullet points].

Conjecture 6.2.1 (The strong discrete Hecke orbit conjecture). The natural map π0(CJbyK,Kp)→
π0(ShG,Kp) is a bijection for all y in X{ν}(b)(Fp) and all Kp ⊂ G(Apf ).

Conjecture 6.2.2 (The discrete Hecke orbit conjecture). If GQp is unramified, then G(Apf ) acts
transitively on π0(CJbyK) for all y in X{ν}(b)(Fp).

If GQp is not ramified, then G(Apf ) does not necessarily act transitively on π0(ShG), see [42]
for explicit counterexamples. Therefore the assumption that GQp is unramified is necessary in
Conjecture 6.2.2. Conjecture 6.2.2 follows from Conjecture 6.1.1 using weak approximation for the
torus Gab, which holds since Gab

Qp
splits over an unramified extension by the assumptions of 6.2.2.

Note that Conjecture 6.2.2 is proved by Kret–Shin as [34, Theorem 8.2.6].
Conjecture 6.2.1 implies Conjecture 6.2.2 because G(Apf ) acts transitively on π0(ShG) when GQp

is unramified, see [29, Lemma 2.2.5] and [35, Corollary 4.1.11].

6.3. A counterexample to the strong version of the discrete Hecke orbit conjecture. The
purpose of this section is to show that Conjecture 6.2.1 is false; we will present below a counterex-
ample communicated to us by Rong Zhou. As noted in Remark 2.1.4, it would be interesting to
find a counterexample with (G,X) = (GV ,HV ).

Our counterexample involves a unitary Shimura variety of PEL type. Let F = F+E be a CM field
where F+ is totally real of degree 4 and E is an imaginary quadratic field. Let V be a Hermitian F -
vector space of rank 2 with signature (1, 1) at all infinite places of F+ and let (G,X) = (GUV , XV )
be the corresponding Shimura datum of PEL type.

Let p > 2 be a prime which splits in E and which splits as p = p1p2 in F+, such that both p1

and p2 have residual degree 2. Then

GQp ' ResK/Qp
GL2×ResK/Qp

GL2×Gm,

where K is the unique unramified quadratic extension of Qp. Let [b] ∈ B(G, {µ−1}) be the
unique element which is µ1-ordinary in the first factor and which is basic in the second factor
and third factor (see the third paragraph of Section 2.1.3 for a definition of these terms). Here
{µ} = ({µ1}, {µ2}, {µ3}) according to the product decomposition of GQp . Let b ∈ [b] and write
b = (b1, b2, b3) using the product decomposition of GQp . There is an induced product decomposition

X{ν}(b) =

3∏
i=1

X{νi}(bi),

where {νi} = {σ(µ−1
i )}. Thus an element y ∈ X{ν}(b)(Fp) has the form y = (y1, y2, y3) and so its

stabiliser Hy ⊂ Jb(Qp) = Jb1(Qp)× Jb2(Qp)× Jb3(Qp) can be written as a product

Hy = Hy1 ×Hy2 ×Hy3 .

By Corollary 6.0.6, if we can find some y2 ∈ X{ν2}(b2) such that Hy2 does not surject onto the
Zp-points of the maximal abelian quotient of ResK/Qp

GL2, then π0(CJbyK,Kp)→ π0(ShG,Kp) is not
a bijection and thus Conjecture 6.2.1 will be false.

In this case, there is an isomorphism Jb2 ' ResK/Qp
GL2 and X{ν2}(b2) is equidimensional of

dimension 1.
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Lemma 6.3.1. The irreducible components of X{ν2}(b2) are isomorphic to P1. The stabiliser of an
irreducible component is a hyperspecial subgroup of GL2(K), conjugate to GL2(OK), which acts on
P1 via the natural map GL2(OK)→ GL2(Fp2).

Proof. It follows from the main result of [17] that X{ν2}(b2) is a union of two one-dimensional
Ekedahl–Oort strata and one zero-dimensional Ekedahl–Oort stratum. The irreducible components
are the closures of the one-dimensional Ekedahl–Oort strata. It follows from [17, Section 5.10] that
the irreducible components are unions of (closures of) classical Deligne–Lusztig varieties for the
group ResFp2/Fp

GL2. Therefore, their irreducible components are isomorphic to P1 and the action
of GL2(OK) factors through the natural action of GL2(Fp2). �

A direct computation shows that we can find a point a ∈ P1(Fp) such that its stabiliser in
GL2(Fp2) is given by the group of scalar matrices. Note that this stabiliser does not surject onto
F×
p2

via the determinant map. This implies that the stabiliser of a in GL2(OK), which is the stabiliser
of a ∈ X{ν2}(b2)(Fp) in Jb(Qp), does not surject onto O×K via the determinant map.
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