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Abstract. We reinterpret renormalized volume as the asymptotic difference of the isoperimetric
profiles for convex co-compact hyperbolic 3-manifolds. By similar techniques we also prove a sharp
Minkowski inequality for horospherically convex sets in H3. Finally, we include the classification
of stable constant mean curvature surfaces in regions bounded by two geodesic planes in H3 or in
cyclic quotients of H3.

1. Introduction

Renormalized volume is a geometric quantity motivated by the AdS/CFT correspondence and
the calculation of gravitational action (see Witten [38]). For a convex co-compact hyperbolic
3-manifold, one can use the duality done by Epstein [13] between conformal metrics at infinity
(∂∞H3) and immersions into H3 to construct a submanifold N ⊂M so that VR(M) is equal to the
volume of N minus half of the integral of the mean curvature of ∂N . In this setup, renormalized
volume can be characterized as the antiderivative of a 1-form defined by the Schwarzian derivative
of the uniformization maps at infinity. See Section 3 for precise definition of renormalized volume
addressed here and further discussion. This present work reinterprets renormalized volume of an
acylindrical hyperbolic manifold M as the asymptotic difference between the isoperimetric profile
of M and the isoperimetric profile of the representative with totally geodesic convex core in the
deformation space of M . An isoperimetric profile of a given manifold is a function that for each
number V > 0 assigns the optimal perimeter of a region of volume V . There are two profiles
we consider: IM (V ) and JM (V ), the outermost isoperimetric profile and the isoperimetric profile,
respectively. While JM (V ) is taken without restriction, IM (V ) is defined taking optimal perimeters
between regions containing all compact minimal surfaces in M . This requires the competitor for
IM (V ) to contain a region with minimal boundary, which we call the outermost region of M.

Theorem 1.1. Let M be a convex co-compact hyperbolic 3-manifold that is either acylindrical or
quasifuchsian and let Ω0 be its outermost region. If IM , ITG denote the outermost isoperimetric
profiles of M and MTG (the quasiconformal deformation of M with Fuchsian ends) respectively,
then

VR(M)− |Ω0| =
1

2
lim
V→∞

(
ITG(V )− IM (V )

)
.

See Section 2 for precise definitions and properties of IM , JM ,MTG and Ω0.
It is well known that convex co-compact hyperbolic 3-manifolds have near infinity a foliation with
CMC leaves [25]. In Theorem 5.2 we show that such foliation is in fact isoperimetric. Using this

FVP was supported by the Minerva Research Foundation and by NSF grant DMS-2001997. Part of this material
is also based upon work supported by the National Science Foundation under Grant No. DMS-1928930 while FVP
participated in a program hosted by the Mathematical Sciences Research Institute in Berkeley, California, during the
Fall 2020 semester.

1



2 FRANCO VARGAS PALLETE AND CELSO VIANA

fact we prove that the renormalized volume is determined by the geometric data of that CMC
foliation:

Theorem 1.2. Let M be a convex co-compact hyperbolic 3-manifold. If JM is the isoperimetric
profile of M , then

VR(M) +
π

2
χ(∂M) = lim

V→∞

(
V − 1

2
JM (V ) + πχ(∂M) log

√
2 JM (V )

π|χ(∂M)|

)
.

The volume-comparison interpretation of renormalized volume is on a similar spirit to the notions
defined for asymptotically hyperbolic manifolds, see for instance the one studied by Brendle and
Chodosh [5] (see also [22]). The work [22] also proves a sharp isoperimetric comparison result for AH
3-manifolds with scalar curvature R ≥ −6. We prove the following comparison for the isoperimetric
profile ITG of the convex-co compact hyperbolic 3-manifold with totally geodesic convex core:

Theorem 1.3. Let M be a convex co-compact hyperbolic 3-manifold that is either acylindrical or
quasifuchsian and Ω0 its outermost region. If VR(M) > |Ω0|, then IM (V ) < ITG(V ) for every
volume V ≥ 0.

If M contains only one minimal surface, then IM (V ) < ITG(V ) for every volume V ≥ 0.

The authors in [22] use inverse mean curvature flow to produce a candidate profile that obeys
the comparison inequality; the positivity of the Hawking mass plays an important role in their
proof. Theorem 1.3 is based on the analytic features of the isoperimetric profile. One fundamental
difference is the change of sign of the Euler characteristic of the boundary, and subsequently of the
Hawking mass, since this changes the convexity/concavity properties we have at our disposal. On
one side, we notice that the Hawking mass, being negative in our setting, allows the difference of
profiles to have a positive local maximum. On the other hand, it forbids a negative local minimum.
Hence one of our challenges is to successfully use these inverted properties for the Hawking mass
in order to conclude a profile camparison. In some perspective Theorem 1.3 reflects a result proved
in [6, 37] concerning the infimum of the renormalized volume as a functional in the moduli space
of convex co-compact hyperbolic 3-manifolds.

We apply the duality [13], relating horospherically convex sets in H3 with conformal metrics at
infinity, and the renormalized Ricci flow to also prove a sharp Minkowski type inequality that
characterizes geodesic balls in H3.

Theorem 1.4. If Σ is an horospherically convex surface bounding a compact region Ω ⊂ H3, then∫
Σ
H dΣ− 2|Ω| ≥ 2π log

(
1 +

1

2π

∫
Σ

(H + 1)dΣ

)
with equality if, and only if, Σ is a geodesic sphere.

This inequality is not new. It was proved by J. Natário [30] via an asymptotic analysis at infinity
for the normal flow and an application of the isoperimetric inequality. The rigidity statement is
not obtained in [30].

Outline. The article is organized as follows. In Section 2 we define an isoperimetric problem for
manifolds with outermost minimal surfaces. We present basic properties and then describe the
behavior of the Hawking mass function on convex co-compact hyperbolic manifolds that will be
needed in Section 6. In Section 3 we introduce renormalized volume, following the correspondence
between equidistant foliations and metrics at the conformal infinity. In Sections 4 and 5 we de-
scribe how boundaries of isoperimetric regions foliate the ends of convex co-compact hyperbolic
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manifolds. Section 6 is where we prove one of the main results by relating renormalized volume
to the asymptotic behavior of isoperimetric profiles. In Section 7 we apply similar techniques to
prove a Minkowski inequality. In the Appendix we describe the isoperimetric profile for the region
between two geodesic planes and for cyclic quotients of H3. Although it is a parallel discussion from
the article’s main content, this was the starting of the authors collaboration and we include for
completeness sake. We show that geodesic spheres and tubes about geodesics are the only stable
constant mean curvature surfaces.
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2. Isoperimetric regions in convex co-compact hyperbolic 3-manifolds

A complete hyperbolic 3-manifold M is called convex co-compact if there exist a compact convex
set U such that the exponential map from ∂U to the conformal infinity ∂M is a diffeomorphism.
Each component of ∂M is assumed to be incompressible in M and has negative Euler characteristic.
In particular, ∂M is always disconnected. Moreover, we say M is acylindrical if any map (S1 ×
[0, 1], S1 × {0, 1})→ (M,∂M) is homotopic relative to S1 × {0, 1} into ∂M .

An important class of convex co-compact hyperbolic 3-manifold are the quasi-Fuchsian metrics.
A Fuchsian 3-manifold is simply Σ × R with the metric g = dr2 + cosh2(r)gΣ where Σ is a closed
orientable hyperbolic surface of genus g > 1. One can observe that the surface Σ × {0} is totally
geodesic and that each boundary at infinity has a conformal structure that can be identified to Σ
(after reversing orientation for one of the ends). A quasi-Fuchsian 3-manifold is a convex co-compact
manifold of the form H3/G, where G is a quasi-conformal deformation of a Fuchsian group. This
corresponds to having potentially distinct conformal structures at the boundaries, with equality
(after reversing the orientation of one component) if and only if the manifold is Fuchsian. If M
is a convex co-compact manifold with ∂M incompressible, then the covering associated to each
boundary is quasi-Fuchsian.

For M acylindrical hyperbolic 3-manifold, there exists unique hyperbolic structure so that each
end is Fuchsian (see for instance [26, Corollary 4.3]). This will be the model hyperbolic structure in
M we will use to compare isoperimetric profiles for M acylindrical (we will use Fuchsian structure as
models for quasi-Fuchsian structures). To see the existence of the acylindrical hyperbolic structure
with Fuchsian ends (following [26]) one uses that the map from the conformal boundary of M
to the opposite side of the boundary coverings (also referred as skinning map) is a contraction,
so one can use a fixed point argument to find the unique hyperbolic structure in M where each
end has matching conformal boundaries, hence Fuchsian. We will denote such manifold by MTG.
This notation comes from the fact that the convex core (smallest convex set containing all closet
geodesics) of MTG has totally geodesic boundary.

Let Ω0 be the largest volume compact region in M with the property that the boundary ∂Ω0

is a minimal surface which is homologous and diffeomorphic ∂M . Such region exist since ∂M
is incompressible, convex (see [27]). Observe as well that there exists a unique minimal surface
configuration when the metric has totally Fuchsian ends. In particular, ∂Ω0 is connected in each
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end of M . We call the surface ∂Ω0 the outermost minimal surface. If M contains only one minimal
surface, then Ω0 has zero volume.

We will introduce the related isoperimetric problems which are relevant to the discussion in the
next sections. For each V > 0 we consider

R1
V = {Ω : Ω ⊂M is a compact region with Ω0 ⊂ Ω and vol(Ω− Ω0) = V }
R2
V = {Ω : Ω ⊂M is a compact region with and vol(Ω) = V }

and let

(2.1) IM (V ) = inf{area(∂Ω) : Ω ∈ R1
V } and JM (V ) = inf{area(∂Ω) : Ω ∈ R2

V }.
In order to distiguish both notations, we will refer to IM (V ) as the outermost isoperimetric

profile of M , while we refer to JM (V ) as the usual isoperimetric profile.
For any sequence of points xi diverging to infinity the injective radius injxiM becomes unbounded.
In particular, M has bounded geometry. For each volume V there exists a minimizing sequence
for the isoperimetric problem (2.1) that does not drift off to infinity. For the regularity near the
outermost boundary ∂Ω0 see [12, Section 4]. In the following lemma we summarize well known
existence and regularity results [1, 28, 34].

Lemma 2.1. For every V > 0, there exists an isoperimetric region Ω ∈ RiV , i = 1, 2, with
vol(Ω) = V . The surface ΓΩ = ∂Ω is a volume preserving stable constant mean curvature surface.
Namely, ∫

Γ
|∇f |2 − (−2 + |A|2)f2 dΓ ≥ 0 whenever

∫
Γ
f dΓ = 0.

Let us discuss the analytical properties of the isoperimetric profile. Let Ω be an isoperimetric region
in M such that vol(Ω) = V . Let I denote both IM and JM in what follows. We first note that
in our setting I is absolutely continuous and twice differentiable almost everywhere, see [16]. In
particular, the function I(V ) has left and right derivatives I ′−(V ) and I ′+(V ) and if H is the mean
curvature (average of principal curvatures) of Γ = ∂Ω in the direction of the inward unit vector,
then

(I)′+(v) ≤ 2H ≤ (I)′−(v).(2.2)

The second derivative exists weakly in the sense of comparison functions. More precisely, we say
f ′′ ≤ h weakly at x0 if there exists a smooth function g such that f ≤ g, f(x0) = g(x0), and g′′ ≤ h.
In this sense we have

I(v)2 I ′′(v) +

∫
Γ

(
Ricg(N,N) + |A|2

)
dΓ ≤ 0.(2.3)

Let us sketch the proof of (2.2) and (2.3):
Let Γv be the variation Γt = expΓ(tN) of Γ re-parametrized in terms of the enclosed volume

v(t) and let φ0(t) (resp. φV (v)) be the area of Γt (resp. Γv). Note that φV (v) ≥ I(v) and
φV (V ) = I(V ). By the first variation formula for the area and volume we have φ′0(0) = 2H |Γ| and
v′(0) = |Γ| respectively. Since φ′0(t) = φ′V (v)v′(t), we conclude that φ′V (v(0)) = 2H and also that
v′(0)2φ′′V (v(0)) = φ′′0(0)− φ′V (v(0))v′′(0). On the other hand, it follows from the second derivative
of area for general variations that

φ′′0(0) = −
∫

Γ
1L 1 dΓ + 2H v′′(0)

= −
∫

Γ

(
Ricg(N,N) + |A|2

)
dΓ + 2H v′′(0).
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Hence, in the sense of comparison functions, (2.3) follows from:

φV (v(0))2 φ′′V (v(0)) +

∫
Γ

(
Ricg(N,N) + |A|2

)
dΓ = 0.(2.4)

One of the main reasons to require that the outermost minimal core is contained in each candidate
region is so that the profile IM is monotone non-decreasing. We quickly justify this in the following
lemma.

Lemma 2.2. The isoperimetric profile IM (V ) is a strictly increasing function.

Proof. Since IM satisfies (2.2) it is enough to show I ′M (V ) > 0 at volumes V for which I ′M (V )
exists. Arguing by contradiction, we assume that I ′M (V ) < 0. It follows from (2.2) that M − Ω is
mean convex. On the other hand, the equidistant surfaces Σt = exp∂M (tN) bounds convex regions
for sufficiently large t. By Meeks-Simon-Yau [27], there exists a compact minimal surface strictly
between ∂Ω0 and Σt which is homologous to ∂M . This contradicts the assumption that Ω0 is the
outermost region. �

Let us now discard spherical and tori components as boundaries of isoperimetric regions for the
outermost isoperimetric problem IM . This will be useful to study the sign and monotonicity for
the Hawking mass below.

Lemma 2.3. If Ω is an isoperimetric region with respect to IM , then each connected component of
∂Ω has genus at least two. Moreover, χ

(
∂Ω
)
≤ χ(∂M).

Proof. If ∂Ω contains a spherical or a torus component, then such component is either a geodesic
sphere by Hopf’s Theorem or a tube about a geodesic by Ritoré-Ros [32]. In particular, ∂Ω is
disconnected and its mean curvature satisfies H > 1, see equation (8.2) in Subsection 6.3. Let us
choose two components Γ1 and Γ2. We consider the function f ∈ C∞(Γ), such that f = |Γ2| on Γ1

and f = −|Γ1| on Γ2 and f = 0 otherwise. Hence,
∫

Γ fdΓ = 0. By the stability inequality we have

0 ≤ −
∫

Γ
fLf dΓ = −|Γ2|2

∫
Γ1

(−2 + |A|2)− |Γ1|2
∫

Γ2

(−2 + |A|2)

≤ −2

(
|Γ1|2|Γ2|+ |Γ2|2|Γ1|

)
(−1 +H2) < 0.

With this contradiction, we conclude that each component of ∂Ω has genus at least two. If we
minimize area in the isotopy class of ∂Ω with respect to the model metric where the outermost
region is totally geodesic following [27], then we obtain the unique connected minimal surface S
with multiplicity m such that g(∂M) = mg(S) ≤ g(∂Ω). Since each component of ∂Ω has genus
greater than one, we obtain χ(∂M) ≥ χ(∂Ω). �

In order to study the behavior of the isoperimetric profile, it is convenient to define the Hawking
mass function, see [8, 22, 24].

Definition 2.4. The Hawking mass function mH : (0, ,∞)→ R is defined in terms of the outermost
isoperimetric profile IM :

(2.5) mH(V ) =
√
IM (V )

(
2πχ(∂M) + IM (V )− 1

4
I ′+M (V )2 IM (V )

)
.

The quantity mH(V ) is monotone and has a sign as shown below. Theses facts will be useful in
the description and comparison for the isoperimetric profile in Section 4.

Lemma 2.5. The Hawking mass function mH(V ) is a monotone non-decreasing function.
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Proof. Let Ω be an isoperimetric region of volume V and Γ = ∂Ω. Recall the Gauss equation

Ric(N) + |A|2 =
R

2
−K + 3H2 +

|Å|2

2
.(2.6)

Using (2.6) we can rewrite inequality (2.4) as follows

I ′′M (V ) ≤ φ′′V (V ) ≤ 1

φV (V )2

∫
Γ

(
3 +K − 3H2 − |Å|

2

2

)
dΓ

≤
∑l

i=1 4π(1− g(Γi))

I(V )2
+

3

I(V )
− 3I ′(V )2

4I(V )
.(2.7)

The last inequality follows from the Gauss-Bonnet Theorem applied to each component of Γ. Next
we compute m′H in the distribution sense following similar computation in [11, Lemma 3]:

For this we need the quotient difference operator ∆δf(V ) = δ−1
(
f(V + δ) − f(v)

)
, δ 6= 0. Let

ϕ ∈ C1
0 (0,∞), then

−
∫
ϕ′mH = − lim

δ→0

∫
ϕ′
√
IM

(
2πχ(∂M) + IM −

1

4
(∆δIM )2 IM

)
−
∫
ϕ′mH = lim

δ→0

∫
ϕ∆−δ

(√
IM
(
2πχ(∂M) + IM −

1

4
(∆δIM )2 IM

))
−
∫
ϕ′mH = lim

δ→0

∫
ϕ

(
I ′M −

1

2
IM I ′M ∆−δ(∆δIM )−

(I ′M )2

4
I ′M

)√
IM

+ ϕ

(
πχ(∂M) +

IM
2
−

(I ′M )2

8
IM

)
I ′M√
IM

=

∫
ϕ
I ′M I

3
2
M

2

(
(I ′M )2

4IM
+

2πχ(∂M)

I2

)
− lim
δ→0

∫
ϕ
I ′M I

3
2
M

2
∆−δ(∆δIM ).

we used in above formulas that I ′+M = I ′−M except at possibly countable many points. Using that
lim supδ→0 ∆−δ∆δIM ≤ φ′′V (V ) and applying inequality 2.7, we obtain:

−
∫
ϕ′m′H ≥

∫
ϕ
I ′M (V ) I

3
2
M (V )

I2
M (V )

(
πχ(∂M)−

lV∑
i=1

2π(1− g(Γi))

)
≥ 0,

by Lemma 2.2 and Lemma 2.3. Hence, m′H(V ) ≥ 0 in the distribution sense. It follows from
(2.2) that at every discontinuity point of I ′M (V ), the Hawking mass mH(V ) jumps up. Therefore,
mH(V ) is monotone non-decreasing. �

Remark 2.6. If Me is a connected component of M − Ω0, then the isoperimetric problem for
this end is defined as follows. In the class R0

V = {Ω : Ω ⊂ Me is a compact region with ∂Me ⊂
Ω and vol(Ω) = V }, we set the isoperimetric profile Ie as

Ie(V ) = inf{area(∂Ω) : Ω ∈ R0
V } − area(∂Me)

The results in this section and their proofs extended naturally to the profile Ie(V ). The only
relevant change needed is in the definition of the Hawking mass mH(V ).
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3. Renormalized volume

The convex co-compact hyperbolic 3-manifolds (M, g) are particular examples of conformally
compact manifolds. Namely, there exists on a compact manifold with boundary M a defining
function x (i.e., x > 0 on M , x = 0 on ∂M , and dx 6= 0 on ∂M) such that M = int(M) and
the conformal metric g = x2g extends smoothly to the boundary ∂M . The restriction of g to ∂M
defines a well defined conformal structure [∂M ] on ∂M which we will refer to as the conformal
infinity (or conformal boundary) of M .

By works of Epstein [13] and Graham [17], for each metric h on the conformal infinite [∂M ]
there exist a unique defining function x defined in a collar neighborhood of ∂M with the special
property that the level sets {x = r} yield an equidistant foliation of the ends of M by convex sets.
Moreover,

g =
1

x2

(
dx2 + h0 + h2x

2 + h3x
3 + . . .

)
,

where hi are tensors in ∂M . We now look for the quantity V ol({x > ε}) as ε approaches zero. One
can check that

V ol({x > ε}) = c0 ε
2 − L log(ε) + V + o(1).

The constants c0 e L depend only on the metric h ∈ [∂M ] uniquely associated to the equidistant
foliation {x = ε}. The quantity V is the renormalized volume associated to the metric h.

In the context of hyperbolic metrics, the work [23] provided a renormalization procedure for
computing V in terms of the geometric data associated to equidistant foliation was proposed. Let
Mr, r ≥ 0, be an equidistant foliation at infinity of M by convex sets. This foliation induces a
Riemannian metric at the conformal infinity ∂M as follows:

h = lim
r→∞

e−2rgr,(3.1)

where gr is the induced Riemannian metric on ∂Mr. Using the unique correspondence between
metrics in the conformal class [∂M ] and equidistant foliations as above [17], we define theW-volume
with respect to h as

(3.2) W (M,h) := vol(Mr)−
1

2

∫
∂Mr

H da+ rπX (∂M).

One can show that the value on the right hand side is independent of r, see [23]. Among all
metrics h ∈ [∂M ] of fixed area, say A0 = Area(∂M, h), the W-volume is maximized by the unique
hyperbolic metric h0 having that area, see Proposition 8.2 in the Appendix. This motivates the
following:

Definition 3.1. The Renormalized volume of M is defined as VR(M) = W (M,hhyp) where hhyp
is the hyperbolic metric of Gauss curvature −4.

Example 3.2 (Renormalized volume of Fuchsian manifolds). Let (M, g) be a Fuchsian 3-manifold.
Recall that M = Σ× R where Σ is a closed orientable surface of genus g and

g = dr2 + cosh2(r)gΣ

where gΣ is the hyperbolic metric (Gauss curvature −1) on Σ. With the warped metric g one can
check that the slices Σr form a global equidistant foliation of Σ×R by totally umbilical surfaces. A
simple computation gives that the metric at infinity via the limit procedure (3.1) is the hyperbolic
metric hhyp of Gauss curvature −4. Because the W-volume W (Σ×R, ghyp) does not depend of the
choice of slice Σr, we obtain that Vr(M) = 0 by choosing Mr = Σ× [−r, r] with r sufficiently closed
to zero in (3.2).
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The following theorem studies the minimum of VR along a moduli class of hyperbolic 3-manifolds.

Theorem 3.3 (Bridgeman-Brock-Bromberg [6], Vargas Pallete [36]). Let M be a convex co-compact
hyperbolic 3-manifold. Then VR(M) ≥ v3

2 ‖DM‖, where v3 is the volume of a regular ideal tetrahe-
dra, ‖.‖ denotes the Gromov norm of a 3-manifold, and DM is the double of M . Moreover, equality
VR(M) = v3

2 ‖DM‖ occurs if and only if the convex core of M has totally geodesic boundary, in
which case M needs to be either acylindrical with Fuchsian ends or Fuchsian.

4. Foliation at infinity for hyperbolic ends

As discussed above, for any metric h in the conformal boundary ∂M there exists the unique special
defining function x whose level sets form a equidistant foliation of the ends of M and we write

g =
1

x2

(
dx2 + h0 + h2x

2 + h3x
3 + . . .

)
,

where hj are tensors on ∂M . It is known that the tensor h2 is formally undetermined but it satisfies
trh0h2 = K where K is the scalar curvature of h0. The mean curvature of Σr satisfies

Hr = 1 +
trh0h2

4
r2 + o(r2).

In particular, if h0 has negative Gauss curvature, which is always possible since χ(∂M) < 0 at each
component, then Hr is almost constant and Hr < 1 when r is sufficiently close to 0.

It is possible to perturb these level sets to to have constant mean curvature. A direct application
of the main result of [25] gives:

Theorem 4.1 (Mazzeo-Pacard [25]). Let M be a convex co-compact hyperbolic 3-manifold with
χ(∂M) < 0. There exists a compact subset K such that M −K has an unique monotone increasing
foliation by constant mean curvature surfaces.

Given that the mean curvature is monotone increasing along the foliation, we obtain the following
corollary concerning CMC surfaces in the foliated region.

Corollary 4.2. If Σ is an connected constant mean curvature surface embedded in M − K and
homologous to ∂(M −K), then Σ is a leaf of the canonical foliation.

Proof. Note that Σ is tangent to the outer radius leaf ∂ΩA and the inner radius leaf ∂ΩB of the
canonical foliation with mean curvature vectors having the same orientations. By the Maximum
Principle, HA ≤ H ≤ HB. Since the foliaton’s mean curvature is strictly increasing for large
volumes, we have that Σ = ∂ΩA = ∂ΩB. �

The next two results strengthen the variational characterization of each leaf of the canonical folia-
tion. Corollary 4.4 will be used in the proof of Theorem 5.2.

Proposition 4.3. There exist an embedded strongly stable constant mean curvature closed surface
Σ with mean curvature H for each H ∈ (0, 1).

Proof. We consider sets Ω such that ∂Ω = Γ is homologous to ∂M . In this class, let FH be the
brane action functional FH(Ω) = |Ω|− 1

2H |Γ|, see [3]. Recall that the volume element of M satisfies

dM = dΛ for some n−1 form Λ. In particular, FH is a functional of Γ and FH(Γ) =
∫

Γ Λ− 1
2HA(Γ)

where A(Γ) is the area of Γ. Note the form of FH is to agree with the inequality V − 1
2A > 0

for large volumes V , see Lemma 5.1 below. We remark that we do not have a sign for FH . If Ωr
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is such that Γr is a connected CMC leaf of the canonical foliation far out at infinity, then Γr is a
barrier for FH in that sense that

δFH(Ωr)(fN) =

∫
Γ
(−1 +

Hr

H
)f dΓ > 0

where Hr is the mean curvature of Γr with respect to the inward unit normal vector N of Ωr and
f is a positive function. In other words, the functional FH decreases as one approaches ∂M (in
fact, limr→∞Fr(Ωr) = −∞.) We consider the maximization problem sup{FH(Ω)}, Ω as described
above, inside the compact set Ωr. By maximization arguments using barriers, see [27], there exist a
maximizer ΩH for the functional FH which does not intersect ∂Ωr. We need to show that Ω is non-
trivial, i.e., Ω has non-zero volume: this only happens if Ω = S where S us a surface homologous
to one component of ∂M . In particular, it must be the homological non-trivial surface of least area
in M . On the other hand these surfaces are also barrier for maximizing the functional FH . Indeed,

δFH(Ω)(fN) =

∫
Γ
(1− 0

H
)f dS > 0

where f is a positive function on S and N is the outward unit normal vector to Ω. Moreover, the
first and second variation for ΓΩH , see [3], implies it has constant mean curvature H and

δ2F(ΩH)(f, f) = − 1

2H

∫
Γ
|∇f |2 + (2− |A|2)f2 dΓH ≤ 0,(4.1)

for all function f ∈ C∞(Γ). In other words, the surface ΓH is a strongly stable constant mean
curvature surface. �

This construction can be made in each end of M − Ω0, where Ω0 is the outermost region.

Corollary 4.4. There are no embedded cmc surface Σ ⊂M −Ω0 homologous to ∂M with constant
mean curvature H = 1.

Proof. Let Ω be the region bounded by Σ. Following Proposition 4.3, we can use Σ as a barrier for
maximizing the brane action functional FH=1 inside Ω among competitors homologous to Σ. Note
that the maximizer Γ is non-trivial by the same argument in Proposition 4.3 (in other words, Γ
must enclose some volume.) Consequently, we obtain that either Σ is strongly stable (in the sense
(4.1)) or we can replace Σ by a strongly stable compact surface Γ with constant mean curvature

H = 1. Since H = 1, the Jacobi operator becomes L = ∆ + |Å|2. Therefore, applying the test
function f = 1 in the stability inequality (4.1) yields a contradiction. �

5. Uniqueness of isoperimetric regions

We start with a simple lemma providing an useful inequality between the enclosed volume and
area of equidistant surfaces.

Lemma 5.1. Let Ω be a strongly convex set in a convex co-compact hyperbolic 3-manifold M such
that ∂Ω is homologous to ∂M . Then Area(∂Ωr) < 2 vol(Ωr), where Ωr = {x ∈ M : d(x,Ω) ≤ r}
and r sufficiently large.

Proof. Let Σr = ∂Ωr. The induced metric on the level set Σr is

gr = g0

(
cosh(r)I + sinh(r)A , cosh(r)I + sinh(r)A

)
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where I and A is the identity and the second fundamental form of Σ0. The metric is well define
since Σ0 is strongly convex. Hence,

|Σr| =

∫
Σ

det
(

cosh(r)I + sinh(r)A
)
dΣ

=

∫
Σ

(
cosh(2r) + sinh(2r)H +K

(cosh(2r)− 1

2

))
dΣ.

On the other hand,

|Ωr| = |Ω|+
∫ r

0

∫
Σ

(
cosh(2ρ) + sinh(2ρ)H +K

(cosh(2ρ)− 1

2

))
dΣ dρ

= |Ω|+ 1

2

∫
Σ

(
sinh(2r) +

(
cosh(2r)− 1

)
H +K

sinh(2r)− 2r

2

)
dΣ

Hence,

2|Ωr| − |Σr| = 2|Ω| +

∫
Σ

(cosh(2r)− sinh(2r))(H − 1) dΣ−
∫

Σ
H dΣ

+
π

2
X (Σ)(sinh(2r)− cosh(2r))− πX (Σ)(2r − 1).

Therefore, limr→∞(2|Ωr| − |Σr|) = +∞ since X (Σ) < 0. �

We are now ready to show that leaves of the cmc foliation at infinity are in fact isoperimetric, for
leaves sufficiently deep into the end. We will use this result in the next section for the isoperimetric
comparison results and characterization of the Renormalized Volume.

Theorem 5.2. Let M be a convex co-compact hyperbolic 3-manifold and {ΣH}H∈R the cmc foliation
at infinity parametrized by constant mean curvature H. If H is sufficiently close to one, then ΣH

is uniquely isoperimetric (with respect to either IM or JM ) for the volume it encloses in M .

Proof. Let ΩVi be an isoperimetric region of volume Vi. Let us study first the case ∂ΩVi ∩K 6= ∅,
where K ⊂ M is some fixed compact set and {Vi} is a sequence of volumes satisfying Vi → ∞.
By compactness theorem for isoperimetric surfaces, ∂ΩVi converges in the graphical sense and with
multiplicity one to a non-compact stable constant mean curvature surface Σ∞ in M . Note that the
mean curvature of Σ∞ satisfies H ≥ 1. Indeed, by the maximum principle the mean curvature of
∂ΩVi is greater than the mean curvature HRi of ΣRi , where ΣRi is a leaf of the cmc foliation that
encloses ΩVi and it is tangent to ∂ΩVi . On the other hand, limi→∞HRi = 1. It follows from H ≥ 1

that the operator P = ∆ + |Å|2 satisfies

0 ≤ −
∫

Σ∞

fP (f) dΣ∞ for every

∫
Σ∞

f dΣ∞ = 0.

By the monotonicity formula, Σ∞ is either compact or has infinite area. We will deal with the
latter case first. In that case, Σ∞ is also conformally equivalent to a closed Riemann surface
with finite points removed by Fisher-Colbrie [15]. Theorem 1.6 in Da Silveira [10] applied to the

operator P = ∆ + |Å|2 implies that Å ≡ 0 and Σ∞ is totally umbilical. As Σ∞ is a non-compact
surface with mean curvature H ≥ 1, then it has to be an embedded oriented horosphere H0 in
M . Similarly, by the strong compactness properties for sequences of isoperimetric surfaces, any
sequence of basepoints in ∂ΩVi will locally converge (after a subsequence) to a horosphere in M
or in H3 under the Cheeger-Gromov convergence for manifolds. And since horospheres are strictly
convex, we have that ∂ΩVi will be locally convex for i large enough.
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In general, isoperimetric regions might not be connected. Nevertheless, each connected compo-
nent is also isoperimetric. By our assumptions, at least one component will have large volume and
passing through a compact region, say ΩVi . Following the prove of [35, Theorem 3.3], we can use
the local convexity of ∂ΩVi and the normal geodesic flow to see that the covering of M associ-
ated to ΩVi (with the induced hyperbolic metric) is obtained by gluing ΩVi to ∂ΩVi × R+

0 , where
∂ΩVi ×R+

0 has a metric so that ∂ΩVi ×{t} is locally convex for any t ≥ 0. We denote this covering

by M̃Vi , and it follows from the normal geodesic flow construction that the surfaces ∂ΩVi ×{t} are

equidistant to one another. From this description of M̃Vi it follows that ΩVi is geodesically convex

in M̃Vi , meaning that any geodesic in M̃Vi with endpoints in ΩVi is contained in ΩVi . Since M̃Vi is
the covering associated to i∗ : π1(ΩVi)→ π1(M), it follows that any homotopically trivial geodesic
segment γ : ([0, 1], {0, 1}) → (M,ΩVi) (i.e. homotopic into ΩVi relative to ΩVi) has image in ΩVi .

We will use this to show in fact that i∗ : π1(ΩVi)→ π1(M) has trivial image and hence M̃Vi is H3.
Assume that g ∈ π1(M) is a nontrivial element in the image of i∗ : π1(ΩVi)→ π1(M). Hence we

have a homotopically trivial geodesic segment γ of (M,ΩVi) which, for i sufficiently large, lies close
to the orthogeodesic of Σ∞ = H0 associated to g. But then such homotopically trivial geodesic
segment γ will not be contained in ΩVi , which is a contradiction.

Since ΩVi lifts to H3, then it must be a hyperbolic geodesic ball. This is impossible for the
outermost isoperimetric profile IM , as ΩVi should contain Ω0. For the isoperimetric profile JM , we
saw on Lemma 5.1 we can construct sets Ωr so that limr→∞(2|Ωr|−|∂Ωr|) = +∞. Such competitors
will beat hyperbolic geodesic balls for sufficiently large volumes, so we have a contradiction for the
profile JM as well.

Now we deal with the case when Σ∞ is compact. In this case ∂ΩV is disconnected which implies
by the proof of Lemma 2.3 that HVi < 1 for large i. Hence, Σ∞ has mean curvature H = 1. This
contradicts Corollary 4.4 and, hence, ∂ΩV diverges to infinite as V →∞.

Let us assume now that the outermost region Ω0 ⊂ ΩVi and that ∂ΩVi is drifting towards infinity.
Since ∂ΩVi is homologous to ∂Ω0, Corollary 4.2 implies at least one component of ∂ΩVi in a fixed
end is a leaf of the foliation. But this implies ΩVi is connected since other components would
have larger mean curvature. Hence, each component of ∂ΩVi is a leaf of the canonical foliation.
The argument so far shows that the leafs of the canonical foliation are uniquely isoperimetric with
respect to the outermost isoperimetric profile IM (the characterization also holds at any end of
M). Next we assume that Ω0 ⊂ Ωc

V . Let us show that such configuration is not isoperimetric.
Note that all components must be drifting off to infinity. By previous argument, we can deduce
that |∂ΩVi | > |ΣRi | − |ΣRj |, where the enclosed volume of the leaf ΣRj is Vj and the enclosed
volume of ΣRi is Vi+Vj . By the Fundamental Theorem of Calculus, |ΣRi |− |ΣRj | = 2Hs0 Vi, where
s0 ∈ (Rj , Ri). In particular, |ΣRi | − |ΣRj | > 2HRj Vi. Hence,

|∂ΩVi | > |ΣRj |
2HRj Vi

|ΣRj |
.

Now choose Rj such that Vj = Vi. One can check that the profile IM (V ) associated to the foliation

ΣH satisfies 2HV = I ′M (V ) > IM (V )
V for large V . Indeed, this is equivalent showing that ln

( IM (V )
V

)
is an increasing function for large volume V . For this just notice that limV→∞

IM (V )
V = 2, that

|ΣRk | < |Γr|, where Γr is equidistant to a fixed cmc leaf Γ0 and encloses the same volume as ΣRk ,
and that |Γr| < 2Vk by Lemma 5.1. Therefore, |∂ΩVi | > |ΣRj |. �

Remark 5.3. Alternatively, we could have worked with the minimizers ΣH of FH , so that if we
follow the same steps in the proof above we would obtain that for H sufficiently close to 1 that ΣH

is equal to the cmc leafs of the canonical foliation. Standard comparison implies that minimizers of



12 FRANCO VARGAS PALLETE AND CELSO VIANA

F are isoperimetric with respect to the outermost profile IM . As a result, the leafs of the canonical
foliation are strongly stable in the sense (4.1).

Now we strengthen Lemma 2.5 by showing that the Hawking mass is non-positive.

Lemma 5.4. The Hawking mass satisfies mH(V ) < 0 for every V unless the ends of M are
Fuchsian where mH(V ) ≡ 0.

Proof. If V is sufficiently large, then ΓV is connected on each end by Theorem 5.2 and have the
topology of ∂M . Note also that by Theorem 5.2, the isoperimetric profile IM (V ) is differentiable
for V sufficiently large. Integrating the Gauss equation and applying the Gauss-Bonnet Theorem
on each component of ΓV gives

2πχ(∂M) =

∫
ΓV

KV dΓ =

∫
ΓV

(−1 + det(AV )) dΓ =

∫
ΓV

(−1 +H2
V −

1

2
|ÅV |2 dΓ

≤
∫

ΓV

(−1 +H2
V ) dΓ = −IM (V ) +

1

4
I ′M (V )2IM (V ).

Therefore, mH(V ) ≤ 0. Since mH(V ) is non-decreasing, we conclude that mH(V ) ≤ 0 for all
volumes. If mH(V ) = 0, then ΓV is totally umbilical and each end of M is Fuchsian. �

6. Isoperimetric profile comparison

Since our goal is to relate VR to the isoperimetic profile, we start with an expression of VR in terms
of volume and area only. We achieve this by using the fact that for an equidistant foliation Mr,
the mean curvature H approaches 1 exponentially on r. We recall that the equidistant foliation
Mr corresponds to the hyperbolic metric at infinity of Gauss curvature −4.

Proposition 6.1.

(6.1) lim
r→∞

V ol(Mr)−
1

2
Area(∂Mr) + πχ(∂M) log

√
2Area(∂Mr)

π|χ(∂M)|
= VR(M) +

π

2
χ(∂M)

Proof. Let us first prove that

(6.2) lim
r→∞

∫
∂Mr

(H − 1) da = πχ(∂M).

Fix s and denote the metric at ∂Ms by g, shape operator A and its principal curvatures by k1,2.
Then the metric and principal curvatures at ∂Mr are given by (see [35])

gr(u, v) = g(cosh(r − s)u+ sinh(r − s)Au, cosh(r − s)v + sinh(r − s)Av)

kr1,2 =
sinh(r − s) + cosh(r − s)k1,2

cosh(r − s) + sinh(r − s)k1,2

In particular, the volume element at ∂Mr is given by

dar = (cosh(r − s) + sinh(r − s)k1)(cosh(r − s) + sinh(r − s)k2)das

So then∫
∂Mr

(Hr − 1)dar =
1

4

∫
Σs

(−1 + k1)(1 + k2) + (−1 + k2)(1 + k1)das +O(es−r)

Applying the Gauss equation and Gauss-Bonnet Theorem:
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lim
r→∞

∫
∂Mr

(Hr − 1)dar =
1

2

∫
∂Ms

(−1 + k1k2)das = πχ(∂Ms)

The equidistant foliation is parametrized such that limr→∞ e
−2rgr = h0, where h0 is the hyperbolic

metric at infinity of Gauss curvature −4. In particular,

lim
r→∞

e−2rArea(∂Mr) =
π

2
|χ(∂M)|

This is equivalent to

(6.3) lim
r→∞

(
r − log

√
2Area(∂Mr)

πχ(∂M)

)
= 0

If we add and subtract both terms 1
2 Area(∂Mr) and log

√
2Area(∂Mr)
πχ(∂M) in the renormalized volume

formula (3.2), the proposition will follow from an application of (6.2) and (6.3). �

6.1. Isoperimetric comparison. Recall that Ω0 denotes the outermost region of the convex co-
compact hyperbolic manifold M . In what follows we will show an isoperimetric comparison for the
outermost isoperimetric profile IM

IM (V ) = inf{area(∂Ω) : Ω0 ⊂ Ω and vol(Ω− Ω0) = V }
with that of the hyperbolic metric with totally geodesic convex core. Notice that IM takes into
consideration all ends of M . The standard isoperimetric profile of M , i.e. infimum of boundary
area among all regions of a given volume, is denoted by JM . .

Theorem 6.2. Let M be a hyperbolic 3-manifold that is either acylindrical or quasi Fuchsian. Let
IM (V ) be the isoperimetric profile of M with respect to its outermost region Ω0 and ITG (resp. JTG)
the outermost isoperimetric profile (resp. standard isoperimetric profile) of the hyperbolic metric
in the deformation space of M that has totally geodesic convex core ΩTG. Then

lim
V→∞

(
JTG(V )− JM (V )

)
> 0 and IM (V ) < ITG(V + |Ω0| − |ΩTG|).

In particular, if M contains only one closed minimal surface, then IM (V ) < ITG(V ) for every
volume V > 0.

One should observe by the special case in the main theorem in [2] that |Ω0| − |ΩTG| ≥ 0.

Proof. Let Ur be the equidistant foliation of M at infinity by convex sets inducing the hyperbolic
metric h0 of Gauss curvature −4 at the conformal infinity ∂M via

h0 = lim
r→∞

e−2rgr,

where gr is the induced Riemannian metric on ∂Ur.
Proposition 6.1 and an isoperimetric comparison yields

VR(M) = lim
r→∞

(
vol(Ur)−

1

2
area(∂Ur) + πχ(∂M) log

√
2Area(∂Ur)

π|χ(∂M)|

)
− π

2
χ(∂M)

≤ lim
V→∞

(
V − 1

2
JM (V ) + πχ(∂M) log

√
2 JM (V )

π|χ(∂M)|

)
− π

2
χ(∂M)(6.4)

where we are using that the function x− πχ(∂M) log
√
x is increasing for large values of x.
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By Theorem 3.3 and Proposition 6.1, the Renormalized volume VR(M) as a functional in the
moduli space of convex co-compact 3-manifolds attains its global minimum at the geodesic class of
the conformal infinity ∂M . Using this comparison and

VR
(
gTG

)
= lim

V→∞

(
V − 1

2
JTG(V ) + πχ(∂M) log

√
2 JTG(V )

πχ(∂M)

)
− π

2
χ(∂M)

we obtain that

lim
V→∞

(
(JTG(V )−πχ(∂M) log

√
JTG(V ))−(JM (V )−πχ(∂M) log

√
JM (V ))

)
≥ VR(M)−VR(MTG).

Since x− πχ(∂M) log
√
x is increasing for large x, we have that

lim
V→∞

(
(JTG(V )− JM (V )

)
> 0.

Using for large volume V that IM (V ) = JM (V + |Ω0|) and ITG(V ) = JTG(V + |ΩTG|), we conclude
after a relabeling that the isoperimetric profile of M with respect to the outermost region Ω0

satisfies

lim
V→∞

(
ITG(V + |Ω0| − |ΩTG|)− IM (V )

)
> 0.

As observed earlier, we have as a special case of the main theorem in [2] that |Ω0| − |ΩTG| ≥ 0. In
particular, we obtain

IM (0) ≤ ITG(0) < ITG(0− |Ω0| − |ΩTG|).

The first inequality follows from the Gauss-Bonnet Theorem and the second from the monotonicity
of the isoperimetric profile. On the other hand, we have by definition of the Hawking mass function
the following equation for IM and ITG

−2πX (M)−
I ′+M (V )2IM (V )

4
+ IM (V ) =

mH(V )√
IM (V )

.

2πX (M) +
I ′TG(V + |Ω0| − |ΩTG|)2ITG(V + |Ω0| − |ΩTG|)

4
− ITG(V + |Ω0| − |ΩTG|) = 0.

By adding these two equations, we obtain

IM (V )− ITG(V + |Ω0| − |ΩTG|)−
(I ′+M )2IM (V )− (I ′+TG)2ITG(V + |Ω0)| − |ΩTG|)

4
=

mH(V )√
IM (V )

.

Therefore, the function f(V ) = IM (V )− ITG(V + |Ω0|− |ΩTG|) does not have a positive local max-
imum point since that would imply mH(V ) > 0, contradicting Lemma 5.4. While the isoperimetric
profile ITG is smooth, the graph of the isoperimetric profile IM can have corners. To deal with
this possibility at the local maximum point V0, we replace IM locally near V0 by the area profile
function f(V ) associated to the equidistant deformation of the isoperimetric surface ΓV0 . �

Theorem 6.2 brings a connection between VR and JM (V ). The following proposition shows that
VR is in fact determined by the asymptotic of the isoperimetric profile JM (V ).
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Theorem 6.3 (Theorem 1.2). Let M be a convex co-compact hyperbolic 3-manifold. Then

VR(M) +
π

2
χ(∂M) = lim

V→∞

(
V − 1

2
JM (V ) + πχ(∂M) log

√
2 JM (V )

π|χ(∂M)|

)
.

= lim
V→∞

(
V + |Ω0| −

1

2
IM (V ) + πχ(∂M) log

√
2 IM (V )

π|χ(∂M)|

)
.

Proof. Let ΩV be the isoperimetric region of volume V and Ωr its equidistant enlargement region
at distance r. Following Lemma 5.1, we have that

lim
r→∞

e−2r|∂Ωr| =
1

2
|∂ΩV |+

1

2

∫
∂ΩV

H dΣ +
π

2
X (∂M) = β(6.5)

By the computations in Lemma 5.1 and the variational characterization of the renormalized volume
in the space of metrics conformal to ∂M having area β, we obtain

|ΩV | −
1

2

∫
∂ΩV

H dΣ +
π

2
X (∂M) = lim

r→∞

(
|Ωr| −

1

2
|∂Ωr|+ rπX (∂M)

)
≤ VR(M,β) +

π

2
χ(∂M).

The notation VR(M,β) reflects the constraint on the area of the conformal metric at infinity. On
the other hand, one has

VR(M,β) = VR
(
M,

π

2
|χ(∂M)|

)
− π

2
χ(∂M) log

(
2β

π|χ(∂M)|

)
.

Therefore,
(6.6)

|ΩV |−
1

2
|∂ΩV |−

1

2

∫
∂ΩV

(H−1) dΣ+
π

2
X (∂M)+

π

2
χ(∂M) log

(
2β

π|χ(∂M)|

)
≤ VR

(
M,

π

2
|χ(∂M)|

)
+
π

2
χ(∂M).

Substituting equation (6.5) into (6.6), we obtain that

V − 1

2
JM (V ) +

π

2
X (∂M) log

(
2 JM (V )

π|χ(∂M)|
+

1

|πχ(∂M)|

∫
∂ΩV

(H − 1) da− 1

)
≤ VR

(
M,

π

2
|χ(∂M)|

)
+

1

2

∫
∂ΩV

(H − 1) da− π

2
χ(∂M) +

π

2
χ(∂M).(6.7)

Since the Hawking mass mH(V ) is monotone increasing by Lemma 2.5 and bounded by Lemma
5.4, we have

lim
V→∞

∫
ΣV

(
H − 1

)
dΣ = πX (∂M).

By Taking the limit as V →∞ in both sides of (6.7) and applying this identity, we obtain

lim
V→∞

(
V − 1

2
JM (V ) + πχ(∂M) log

√
2 JM (V )

π|χ(∂M)|

)
≤ VR(M) +

π

2
χ(∂M).

The reverse inequality, obtained in (6.4), is a straightforward isoperimetric comparison for the
terms in the expression of VR(M,h0). �
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Remark 6.4. The following isoperimetric inequality for strongly convex regions Ω ⊂ M such
that ∂Ω ∈ [∂M ] follows from the definition of the renormalized isoperimetric constant VR(M) and
Proposition 6.3:

|Ω| − 1

2

∫
∂Ω
H da ≤ VR(M) +

π|χ(∂M)|
2

log

(
1

π|χ(∂M)|

∫
∂Ω
H da+

|∂Ω| − π|χ(∂M)|
π|χ(∂M)|

)
.

Corollary 6.5 (Theorem 1.1). Let M be a convex co-compact 3-manifold that is either acylindrical
or quasifuchsian, and let Ω0 be its outermost region. If IM , ITG denote the outermost isoperimetric
profiles of M and MTG (the quasiconformal deformation of M with Fuchsian ends) respectively,
then

1

2
lim
V→∞

(
ITG(V )− IM (V )

)
= VR(M)− |Ω0|.

Equivalently,

VR(M) =
1

2
lim
V→∞

(
JTG(V )− JM (V )

)
.

Proof. Using Theorem 6.3 for M with V = V ′ + |Ω0| and for MTG with V = V ′ + |ΩTG| and then
relabeling V ′ by V we obtain

(6.8) VR(M)− VR(MTG) = lim
V→∞

(
|Ω0| − |ΩTG|+

1

2
(ITG(V )− IM (V )) + πχ(∂M) log

√
ITG(V )

IM (V )

)
Since VR(MTG) = |ΩTG| then this reduces to

VR(M) = |Ω0|+ lim
V→∞

(
1

2
(ITG(V )− IM (V )) + πχ(∂M)(log

√
ITG(V )− log

√
IM (V ))

)
This in particular implies that lim supV→∞ |ITG(V ) − IM (V )| < +∞, since otherwise the left-

side of (6.8) would not converge. We also have limV→∞ ITG(V ) = limV→∞ IM (V ) = +∞, then

limV→∞ log(
√
ITG(V ))− log(

√
IM (V )) = 0. Hence we have

(6.9) VR(M) = |Ω0|+ lim
V→∞

1

2
(ITG(V )− IM (V ))

which finishes the proof. �

Remark 6.6. Observe that in Corollary 6.5 MTG is not uniquely defined if M is quasifuchsian,
but since ITG is independent from the Fuchsian model considered, we proceed as normal. This
remark remains valid for later statements.

Corollary 6.7 (Theorem 1.3). Let M be a convex co-compact hyperbolic 3-manifold that is either
acylindrical or quasifuchsian and Ω0 its outermost region. If VR(M) > |Ω0|, then IM (V ) < ITG(V )
for every volume V ≥ 0.

Proof. If VR(M) > |Ω0|, then limV→∞ IM (V )− ITG(V ) > 0. We also have ITG(0)− IM (0) > 0 by
an application of the Gauss-Bonnet Theorem. The proof of Theorem 6.2 applies verbatim when
ITG(V + |Ω0|) is replaced by ITG(V ) to show that ITG − IM cannot have a non-negative local
maximum. Therefore, IM (V ) < ITG(V ) for every V . �
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Remark 6.8. In order to see that Corollary 6.7 is not an empty statement, observe that Theorem
3.3 ([6],[36]) implies VR(M) > 0 when M is quasi Fuchsian (but not Fuchsian) and contains a
unique compact minimal surface. This last condition (unique minimal surface) is non-empty, since
it contains in its interior the set of almost-Fuchsian manifolds (studied by Uhlenbeck [35]) , which
are manifolds that contain a minimal surface with principal curvatures |k1,2| < 1.

Question 6.9. It is natural to ask what is the reach of Corollary 6.7, particularly since the com-
parison between VR(M) and Ω0 answers if IM ever surpasses ITG or not. For which M convex
co-compact hyperbolic 3-manifold we have that VR(M) > |Ω0|?

Remark 6.10. Results up until this Section hold for relatively acylindrical hyperbolic manifolds
(M3, S ⊆ ∂M) when one considers the definitions of isoperimetric profile and renormalized volume
for the set of ends S ⊆ ∂M (for example one can consider the case of a Bers slice). Similarly,
one can write the results for convex co-compact manifolds with incompressible boundary (but
not necessarily acylindrical of quasifuchsian), with the caviat that the isoperimetric model ITG is
replaced by a disjoint union of Fuchsian ends. If the boundary is not incompressible, the existence
of an outermost minimal core needs to be assumed for the results to work. We focused in the
acylindrical/quasifuchsian case to illustrate the isoperimetric features of renormalized volume while
avoiding the technical setup required to establish a more general statement.

7. Minkowski inequality for Horospherically convex sets

In this section we are interested in studying the geometric objects in H3 that, according to Epstein’s
description, correspond to conformal metrics in ∂∞H3 = S2.

Definition 7.1 ([14]). A hypersurface Σ in H3 is said to be horospherically convex (h-convex) if
at every point Σ lies locally on one side of its tangential horosphere.

An oriented surface Σ ⊂ H3 is horospherically convex at p ∈ Σ if, and only if, all the principal
curvatures of Σ at p verify simultaneously κi(p) < −1 or κi(p) > −1, see [14]. Here we assuming
that the orientation of Σ coincide with the outward orientation of the horosphere tangent to Σ at
p. This definition is more general than geodesic convexity. If Σ is closed and lies in the concave
side of the tangential horosphere at each point for example, then the principal curvatures satisfy
κi > −1.

If Σ is horospherically convex bounding a compact region Ω, then the outward exponential map ψ :
Σ× [0,∞)→ H3−Ω, given by ψ(p, r) = exp(p, rN), is a diffeomorphism. The family Σr = ψ(Σ, r)
are called the normal flow of Σ . The foliation {Σr} induces a metric h at the conformal boundary
∂∞H3 = S2 by

h = lim
r→∞

e−2rgr

where gr is the first fundamental form of the parallel surface Σr. More importantly, for each
metric h in the conformal class at infinity there exist an unique equidistant foliation such that the
associated metric at infinity is h. This well known result has its root in the work of C. Epstein [13]
through the envelopes of horospheres construction which we briefly describe:

Consider the Poincare ball model for H3. For any x ∈ H3 define its visual metric vx as a metric in
the conformal ∂∞H3 = S2 by

(1) v0 is the canonical round metric in S2.
(2) If γ is an isometry of H3 so that γ(x) = 0, then vx = γ∗(v0)
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Observe that vx is well defined because isometries of H3 fixing the origin 0 are the isometries
of the round metric in S2. It is not a hard exercise to see that for x ∈ H3, b ∈ S2 the set
H(b, vx(b)) := {y ∈ H3 | vy(b) = vx(b)} is the horosphere tangent at b passing through x.

Epstein [13] shows that given a C1 conformal metric ρ in a open set U ⊆ S2, there exists a unique
continuous map Yρ : U → T 1H3 so that Y (b) is a unit normal vector to H(b, ρ(b)) oriented towards
b. This map satisfies that for t constant, Yetρ is equal to Yρ after translating t units by the geodesic
flow. Moreover, if ρ is smooth and we fix some compact K ⊂ U , we have that Yet |K is an embedding
for sufficiently large t. Hence if we take a convex co-compact manifold M and a metric h in the
conformal boundary ∂∞M , the maps Yeth(∂M) are well defined, and define a equidistant foliation
of the ends of M when t is sufficiently large.

In the rest of this section we will see that the W -volume is maximized among metrics of fixed area
by constant curvature metrics. This result can also be established from the work of Osgood, Phillips
and Sarnak [31], where they show that constant curvature metrics in S2 maximize log(Det(∆)), the
logarithm of the determinant of the Laplace-Beltrami operator. The result for W -volume follows
because its first variation formula is a constant multiple (3π in fact) of the first variation formula
of log(Det(∆)). Our proof is based on the renormalized Ricci flow for surfaces.

7.1. Minkowski-type inequality. The following Minkowski-type inequality is obtained by com-
paring the quantity |Ω|− 1

2

∫
∂ΩH da for a given compact region with horospherically convex bound-

ary with that of a geodesic ball via the Renormalized Ricci flow for conformal metrics in ∂∞H3 = S2

(as done in [31, Section 3, Theorem 2.A], [37, Section 4] for χ(Σ) ≤ 0).

Theorem 7.2. If Σ is an horospherically convex surface bounding a compact region Ω ⊂ H3, then∫
Σ
H dΣ− 2|Ω| ≥ 2π log

(
1 +

1

2π

∫
Σ

(H + 1)dΣ

)
with equality if, and only if, Σ is a geodesic sphere.

The result without the rigidity statement was also obtained by J. Natário [30].

Proof. Given a horospherically convex domain Ω ⊂ H3, we consider the W -volume functional

W (Ω) = |Ω| − 1

2

∫
Σ
H dΣ.

By mean of the correspondence between equidistant foliation and metrics at infinity, one can prove
that the function W (Ω) depends only on the metric h ∈ [∂H3]. The first variation for W for
conformal deformations of h was computed in [23]:

δW (ĥ) =
1

4

∫
S2
δK(ĥ) dvolh,

where K is the Gauss curvature of (S2, h). In other words, the Ricci flow is the gradient-like flow
for the functional W . In particular, if ∂tht = ( 8π

area(h) − 2K)ht is the Renormalized Ricci Flow that

keeps the area of h constant, then

δW (h) =
1

4

∫
S2

(
∆K +K

(
2K − 8π

area(h)

))
dvolh =

1

2

∫
S2
K2 dvolh −

1

2area(h)

(∫
S2
K dvolh

)2

.

It follows from the Cauchy-Schwarz inequality that δW (h) ≥ 0. By the strong convergence results
for the Renormalized Ricci flow [21], we conclude that the W -functional has a global maximum
among conformal metrics of a fixed area in the conformal boundary [∂M ] at constant curvature
metrics. These round metrics correspond to the normal flow of geodesic spheres in H3.
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If h is the conformal metric at infinity for the equidistant foliation associated to Ω, then Lemma
5.1 implies that

area(h) =
1

2
|Σ|+ 1

2

∫
Σ
H dΣ + π.

Therefore, if Br is a geodesic ball such that |∂Br|+
∫
∂Br

Hr = |Σ|+
∫

ΣH dΣ = 4πλ, then∫
Σ
H dΣ− 2|Ω| ≥

∫
∂Br

Hr dSr − 2|Br|.

Note that Hr = cosh(r)
sinh(r) , |∂Br| = 4π sinh2(r), and |Br| = π sinh(2r)− 2πr. Using these formulas we

obtain ∫
∂Br

Hr dSr − 2|Br| = 4πr

and λ = cosh(r) sinh(r) + sinh2(r). From this last equality we deduce that r = sinh−1
(

λ√
1+2λ

)
.

Since sinh−1(x) = log
(√

1 + x2 + x
)
, we conclude that r = 1

2 log(1 + 2λ). Therefore,∫
Σ
H dΣ− 2|Ω| ≥ 2π log

(
1 +

1

2π

∫
Σ

(
H + 1

)
dΣ

)
,

with equality if, and only if, Σ is up to a rigid motion the geodesic sphere ∂Br. �

Remark 7.3. For an horospherically convex surface surface Σ bounding a compact region Ω ⊂ H3,
there is another sharp Minkowski inequality [18]:

(7.1)

∫
Σ
H dΣ ≥ 2π

√
|Σ|2
4π2

+
|Σ|
π

Combining (7.1) with the inequality in Theorem 7.2, we obtain

(7.2)

∫
Σ
H dΣ ≥ 2|Ω|+ 2π log

(
1 +
|Σ|
2π

+

√
|Σ|2
4π2

+
|Σ|
π

)
,

with equality if, and only if, Σ is a geodesic sphere.

In contrast with Theorem 7.2, whose poof relies on 2-dimensional features of the renormalized
volume, the proof of the Minkowski inequality (7.1) involves a mean curvature type flow and
generalizes to higher dimensions [18, Theorem 6.1].

7.2. Polyakov-type formula. As stated in [19] we have the following Polyakov type formula for
conformal metrics in the sphere

(7.3) W (e2ωh0)−W (h0) = −1

4

∫
S2

|∇ω|2h0 + Scalh0ωdvolh0 .

This formula follows, as in the geometrically finite case, by applying the Fundamental Theorem
of Calculus and the first variation formula for the W -volume to the 1-parameter family of metrics
ht = e2tωh0, see Proposition 8.2 in the Appendix.

As done in [33, Proposition 3.11] for the convex co-compact case with χ(∂M) < 0, we have
the following monotonicity for the W -volume. In this case W -volume is monotone decreasing,
contrary to [33, Proposition 3.11], which boils down to the signature of the Euler characteristic of
the boundary.
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Proposition 7.4. Let h0, h1 be non-negatively curved conformal metrics on ∂∞H3 = S2 so that
h0 ≤ h1 pointwise. Then

W (h0) ≥W (h1).

Moreover, equality occurs if and only if h0 = h1 pointwise.

Proof. Define ω : S2 → R so that h1 = e2ωh0. Since h0 ≤ h1, then ω ≥ 0. Hence, we have
Scalh0ω ≥ 0 pointwise. By the Polyakov-type formula (7.3)

(7.4) W (h1)−W (h0) = −1

4

∫
S2

|∇ω|2h0 + Scalh0ω dvolh0 ≤ 0,

so the inequality follows.
For the equality, note that

∫
S2 |∇ω|2h0dvolh0 =

∫
S2 Scalh0ωdvolh0 = 0. Hence ω is a constant

function, which by the Gauss-Bonnet yields
∫
S2 Scalh0ωdvolh0 = 8πω. Therefore, ω = 0 and

h0 = h1 pointwise. �

Proposition 7.4 can be written in terms of horospherically convex spheres in H3.

Corollary 7.5. Let Σ0,Σ1 be horospherically convex spheres in H3 bounding regions Ω0,Ω1 so that
Ω0 ⊂ Ω1. If ScalΣ0 ≥ 0, then ∫

Σ0

HdΣ0 − 2|Ω0| ≤
∫

Σ1

HdΣ1 − 2|Ω1|,

where equality occurs if and only if Σ0,Σ1 are the same surface.

Proof. Let h0, h1 be the conformal metrics in ∂∞H3 = S2 corresponding to Σ0,Σ1, respectively.
Since Σ0 ⊂ Ω1 then h0 ≤ h1, because any outer-tangent horosphere to Σ1 will not intersect Σ0.

If k1,2(p) are the principal curvatures of Σ0, then the scalar curvature at p+ (point at infin-

ity whose outer-tangent horosphere to Σ0 is tangent at p) is given by −1+k1(p)k2(p)
(1+k1(p))(1+k2(p)) . Hence

Scalh0(p+) ≥ 0 if and only if (−1 + k1(p)k2(p)) ≥ 0, which by Gauss equation is equivalent to
ScalΣ0(p) ≥ 0.

Hence we have met the conditions of Proposition 7.4, from which the result follows. �

Finally, let’s observe how the Polyakov formula (7.3) relates to Theorem 7.2. Assume that h0 is
a conformal metric in ∂∞H3 = S2 with constant scalar curvature K > 0 and take ω : S2 → R so
that

∫
S2(e2ω − 1)dvolh0 = 0. In other words, the conformal metric h1 = e2ωh0 and the constant

curvature metric h0 have the same area. As detailed in [9, Lemma7], this assumption implies that∫
S2 ωdvolh0 ≤ 0. The proof of Theorem 7.2 show for h1 = e2ωh0 that W (h1) ≤W (h0) with equality

if, and only if, h1 has constant scalar curvature K. Note that unlike the convex co-compact case,
this fact does not follow from (7.3). Consequently, the Polyakov formula (7.3) yields:

Corollary 7.6. Let h0 be the round metric in ∂∞H3 = S2 with constant Gauss curvature 1, and
take ω : S2 → R so that

∫
S2(e2ω − 1)dvolh0 = 0. Then∣∣∣∣∣

∫
S2

2ω dvolh0

∣∣∣∣∣ ≤
∫
S2
|∇ω|2h0 dvolh0

Moreover, equality occurs if and only if h1 = e2ωh0 has constant Gauss curvature 1, or equivalently,
e2ω is given by the derivative of a Möbius transformation.
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Remark 7.7. A complete proof of this result with the line of reasoning mentioned above is done in
[31, Section 2.3] using the log(Det(∆)) functional. As mentioned earlier, the first variation formula
of log(Det(∆)) is a constant multiple of the first variation formula of the W -volume.

8. Appendix

8.1. Polyakov formula for the W -volume. In this section we prove the Polyakov formula from
the first variation formula for the W -volume as a functional on the conformal boundary class at
infinity.

Proposition 8.1. The W -volume of a convex set Ω inside a convex co-compact hyperbolic 3-
manifold M depends only on the metric at infinity h associated to Ω. Moreover, the first variation
among conformal deformations is

δW (ĥ) =
1

4

∫
∂M

δK(ĥ) dh.

Proof. See Krasnov-Schlenker [23, Section 7]. �

Proposition 8.2. The W -volume satisfies the Polyakov-type formula:

W (e2ωh0)−W (h0) = −1

4

∫
∂M
|∇ω|2h0 + Scalh0ω dvolh0 .

Proof. Let ht = e2tωh0 and t ∈ [0, 1]. Applying the Fundamental Theorem of Calculus and Propo-
sition 8.1, we obtain

W (e2ωh0)−W (h0) =

∫ 1

0
δW (ht)(2ω ht) dt =

1

4

∫ 1

0

∫
∂M

δKht(2ω ht)dht dt

=
1

4

∫ 1

0

∫
∂M

(
− 2ωe−2tωK + 2ωe−2tω∆(tω)− e−2tω∆ω

)
dht dt

=
1

4

∫ 1

0

∫
∂M

(
− 2ωK + 2t ω∆ω

)
dh0 dt

=
1

4

∫
∂M

(
− 2ωK − |∇ω|2

)
dh0.

�

8.2. Free boundary stability for cmc surfaces between two parallel geodesic planes. In
this section we study the isoperimetric problem for regions bounded by two geodesic planes in H3.
In contrast with previous works for slabs, the Alexandrov reflection principle is not available in
this setting. Instead, we exploit the reflections across the geodesic boundary and a result of Hsiang
[21] to reduce the problem to rotationally invariant surfaces. With this simplification, we are able
to extend a characterization result of Ritoré-Ros [32] to the free boundary case discussed here. As
the classical result for slabs in R3, we will show that geodesic spheres and tubes about geodesics
are the only solutions. The isoperimetric problem in cyclic quotients of H3 is also treated.
We start describing the basic cyclic actions in H3 by isometries and the main model for the slabs
between geodesic planes. Let Ga and Gλ be cyclic subgroups of Iso(H3) generated respectively by
the isometries

γ1(x, y, z) = (x+ a1, y + a2, z) and γ2(x, y, z) = (λ(x− x0), λ(y − y0), λz).

Let M denote either the slab bounded by two vertical planes with Euclidean distance a or the slab
bounded by two concentric hemispheres perpendicular to ∂R3

+ with Euclidean distance λ. Without
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loss of generality, we can assume that M is the fundamental domain of the cyclic group Ga or Gλ,
respectively.

Theorem 8.3. Let Σ be a free boundary stable constant mean curvature surface in M . If the
distance between the geodesic planes of ∂M is positive, then Σ is either a geodesic hemisphere or a
tube about a free boundary geodesic connecting the two planes. If the distance is zero, then Σ is a
geodesic hemisphere.

Proof. If ∂Σ has only one component, then Σ is a geodesic hemisphere by Alexandrov’s Theorem.
Since ∂M is totally geodesic, we can apply a hyperbolic reflection across one boundary component
to obtain another free boundary surface between hyperbolic planes. This compact extended surface
can now be iterated infinity many times, using the isometry γi ◦ γi, i = 1, 2, to obtain a complete
cmc surface Σ̂ properly embedded in H3 that is cylindrically bounded. By Hsiang [21], Σ̂ is a
rotationally invariant surface and so does Σ. The result will follow from Ritoré-Ros [32] as sketched
below:

The Hopf holomorphic quadractic differential applied to (Σ, ds2) implies that the metric ds2
0 =

b|A2,0|, b2 = 4(−1 +H2), is flat and conformal do the metric ds2. Note by the maximum principle
comparison with a flat tube that H > 1. If G is the cyclic subgroup generated by γi ◦ γi, then
Σ̂/G has genus one in H3/G and, hence, is without umbilical points. In particular, ds2

0 is a smooth

metric. If we write ds2 = e2ω

b2
ds2

0, then it is well known that ω satisfies the Sinh-Gordon equation

∆0ω + sinh(ω) cosh(ω) = 0

It is noted in [32] that ω and the Gauss curvature K of Σ share the same sign. Arguing by con-
tradiction, let us assume that Ω1 and Ω2 are the sign components of ω. Ritoré-Ros [32] considered
the test function f = a1 sinh(ω) in Ω1 and f = a2 sinh(ω) in Ω2; a1 and a2 are chosen so that f
has mean zero on Σ. Hence,

(8.1) 0 ≤ I(f, f) = −
∫

Σ
f∆f + (−2 + |A|2)f2dA+

∫
∂Σ
f
∂f

∂ν
dσ −

∫
∂Σ

Π∂M (N,N)f2 dσ

The last integral in (8.1) is zero since ∂M is totally geodesic. Since Σ can be reflected across ∂M
and ω depends only at the geometric data of Σ, the second integral is also zero. For the first
integral, we follow computation in [32] to obtain

0 ≤ I(f, f) = −
∫

Σ
f∆0f + (cosh2(ω) + sinh2(ω))f2dA0

= −
2∑
i=1

∫
Ωi

a2
i sinh2(ω)

(
sinh2(ω) + |∇0ω|2

)
dA0 < 0.

Hence, the Gauss curvature of Σ has a sign and by the Gauss-Bonnet Theorem we conclude that
Σ is flat. �

Corollary 8.4. If Σ is a compact embedded stable cmc surface in H3/Gλ, then Σ is either a geodesic
sphere or a tube about a closed geodesic. If Σ is a compact embedded stable cmc surface in H3/Ga,
then Σ is a geodesic sphere.

Remark 8.5. The isoperimetric problem between horospheres is studied in [7]. Building on the
symmetries of this setting and the Alexandrov reflection method, the authors show that isoperi-
metric surfaces are rotationally invariant and classified those that meet the boundary orthogonally.
The stability of these surfaces is not investigated and the possibility of onduloids be isoperimetric
for certain volumes is left open.
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8.3. Stability of tubes. Let φ(r, θ) = (er cos(θ), er sin(θ), a er) be the parametrization of a tube

T of radius R = log
(

1+
√
a2+1
a

)
about the z-axis in H3. The metric and the second fundamental

form of T are

(8.2) g =

(
1+a2

a2
0

0 1
a2

)
and A =

(√
a2 + 1 0

0 1√
a2+1

)
Note that the mean curvature of T satisfies H > 1. The Jacobi operator in this coordinate system
is

L =
a2

1 + a2
∂rr + a2∂θθ +

(
a2 +

1

a2 + 1
− 1
)
.

Let’s look at the free boundary stability of T between the hyperbolic planes z =
√

1− x2 + y2

and z =
√
e2λ − x2 − y2. For this we look at the eigenvalue problem:(
a2

1 + a2
∂rr + a2∂θθ

)
ϕ+

(
a2 +

1

a2 + 1
− 1
)
ϕ = −λϕ and

∂ϕ

∂r
(0, θ) =

∂ϕ

∂r
(λ, θ) = 0

The constant functions are the first eigenfunctions with eigenvalue λ1 = 1 − a2 − a2

a2+1
< 0. The

stability of T is then equivalent to have the second eigenvalue λ2 ≥ 0. Eigenfunctions of the
form ϕ(r, θ) = ϕ(θ) contribute positive eigenvalues for the Jacobi operator. An analysis of the
eigenfunctions ϕ(r, θ) = ϕ(r) shows that λ2 ≥ 0 if, and only if, a ≤ π

λ . Note that the distance
between those two planes is dH = λ. Therefore, the tube T is stable if, and only if,

(8.3) R ≥ log

(
dH
π

+

√
d2
H
π2

+ 1

)
.

Let’s look now at the volume preserving stability of T in the cyclic quotient H3/Geλ . For this we
look at the eigenvalue problem:(

a2

1 + a2
∂rr + a2∂θθ

)
ϕ+

(
a2 +

1

a2 + 1
− 1
)
ϕ = −λϕ and ϕ(0, θ) = ϕ(kλ, θ) ∀k ∈ Z

Following the discussion above, we have that λ1 = 1− a2− a2

a2+1
< 0 corresponding to the constant

functions. The stability of T in H3/Geλ is then equivalent to λ2 ≥ 0. As before, it is enough to
consider eigenfunctions of the form ϕ(r, θ) = ϕ(r) which under the constraint above implies that
a ≤ 2π

λ .

8.4. Isoperimetric regions between two parallel geodesic planes. Up to a hyperbolic re-
flection, any region bounded by two parallel geodesic planes of positive distance apart is congruent

to the slab M bounded by the hyperbolic planes z =
√

1− x2 + y2 and z =
√
e2λ − x2 − y2 for

some λ.

Let us now discuss the existence of isoperimetric regions in M . We follow Morgan [29]. Let Ωα

be a minimizing sequence for a fixed volume V . First we take a partition of H3 into congruent
polyhedron Qj and consider only those such that Qj ∩ M 6= ∅. Moreover, we choose Qj large
enough so that Ωα does not contain any Qj . Through hyperbolic reflections across the boundary of
M , we can extend ∂Ωα such that its boundary does not intersect Qj . The number of reflections is
independent of Ωα. The key observation is that Qj satisfies a relative isoperimetric inequality for
some constant γ. As detailed in Morgan [29], this isoperimetric inequality implies the existence of
a number δ = δ(γ, I(V )) (I is the isoperimetric profile of M) such that vol(Ωα∩Qi) > δV for some
of the Qi. Choose a rigid motion in H3 (not necessarily preserving ∂M) that brings the center of
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Qi to a fixed point O ∈ H3. Standard compactness and regularity applied to the sequence ∂Ωα

passing through O imply it will converge to a constant mean curvature surface ∂Ω enclosing volume
V0 ≥ δV . By the monotonicity formula, ∂Ω must be bounded in H3 since it has finite area. It is
enough to repeat the process finitely many times to recover the volume V ; this also folows from the
monotonicity formula since the value of the constant mean curvature at each repetition does not
change. Therefore, the minimizing sequence Ωα can be replaced by another which does not drift
off to infinity.

The situation is different when the hyperbolic distance between the planes is zero. For the region
bounded by two vertical planes in the half-space model of H3 for example, there are no isoperimetric
regions. If such set existed, it would be either a half geodesic ball or a tube about a geodesic. The
latter is ruled out since there is no free boundary geodesic connecting the two planes. Moreover,
half geodesic spheres of a given radius can always be constructed so that it is centered at one of the
planes and tangent to the other. Such configuration is not a critical point of the area functional
under volume constraints. In particular, there are no isoperimetric regions H3/Ga (Ga composed of
horizontal translations). This argument also shows that half geodesic balls cannot be isoperimetric
for all volumes in the slab bounded by two geodesic planes of positive distance apart. Therefore,
there exists a critical volume V0 for which tubes about geodesics are the isoperimetric surfaces when
the enclosing volume satisfies V ≥ V0.
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