GLOBAL UNIFORM IN N ESTIMATES FOR SOLUTIONS OF A
SYSTEM OF HARTREE-FOCK-BOGOLIUBOV TYPE IN THE
GROSS-PITAVESKII REGIME.

XIAOQI HUANG

ABSTRACT. We extend the recent work of Chong et al., 2022 [10] to the critical
case. More precisely, we prove global in time, uniform in N estimates for the
solutions ¢, A and I' of a coupled system of Hartree—Fock—Bogoliubov type
with interaction potential Vi (z —y) = N?v(N(z —y)). We assume that the
potential v is small which satisfies some technical conditions, and the initial
conditions have finite energy. The main ingredient is a sharp estimate for the
linear Schrodinger equation with potential in 6+1 dimension, which may be of
interest in its own right.

1. Introduction.

Consider the N-body linear Schrodinger equation which governs the time-
evolution of NV boson systems

10 & 1
(L.1) GG~ ; B, + V(i — ;) )t ) =0,
where z; € R3, N is large and Vi (z) = N3v(Nx) for some Schwarz class potential
v. The conditions on the potential will be discussed below. A physically appeal-
ing case concerns initial data forming a tensor product of the same one—particle
state, in spirit of the Bose-Einstein condensation. We refer to [30] for extensive

background on Bose-Einstein condensation.
The goal is to find a rigorous, simple approximation to 1n which is consistent
with
(1'2) ¢approx(t7 Llye-- ,xN) ~ gf)(t, $1)¢(ta x2) cee ¢(t> xN)
in an appropriate sense, where ¢ is often called the mean—field limit.

In the stationary case, a survey of results concerning the ground state properties
of the dilute bosonic gases can be found in [30]. In the time dependent case, in
the work of Erdds, Schlein and Yau [14, 15, 16], by using the BBGKY hierarchies
and the density matrix vy formalism, the convergence of the exact dynamics to
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2 GLOBAL ESTIMATES FOR HFB

the mean—field limit is asserted in the trace norm as N — oo, provided that the
the mean—field limit ¢(¢, x) satisfies the Gross—Pitaevskii equation

10
(1.3) gad) — A¢ + 8mag|o*¢ = 0.

Here ag is the scattering length of the potential v, physically, the scattering
length measures the effective range of the potential V', see e.g., [16] for a precise
definition of scattering length. Also in the recent work of Pickl [32], the Gross—
Pitaevskii equation is derived using a different method. We refer to reader to
[2, 3, 6, 13, 34] for more backgrounds on the problem of approximating the many-
body Schrédinger dynamics and related results in the Gross—Pitaveskii regime.

The Fock space approach to study the problem originated in physics, with the
papers by Bogoliubov [7], Lee, Huang and Yang [29] in the static case, and Wu
[35] in the time dependent case. In the mathematical literature, it originates in
the of work Hepp [24], Ginibre and Velo [18] and more recently by Rodnianski
and Schlein [34] and Grillakis, Machedon and Margetis [22].

The Hartree-Fock-Bogoliubov type equations are derived in Fock space, which
describes additional second order corrections (given by a Bogoliubov transforma-
tion) to the right hand side of the approximation (1.2). We briefly review the
background of Focks space for the reader’s convenience, see for instance [19] for
more details and comments. The elements in F are vectors of the form

V¥ = (o, i(z1), Yolz1,22), ... )

where 19 € C and {1} }ren are symmetric complex-valued L? functions. The
vacuum state is the vector defined by

Q:=(1,0,0...)

which models a state with no particles, . The symmetric Fock space F has a
norm induced by the inner product

n=1

The creation and annihilation distribution-valued operators at € R3, denoted
by a and ay, are defined by actions on vectors of the form (0,--- ,9,_1,0,---)
and (0, ,%n41,0,---) respectively as follow

« 1 O
ay(Pn—1) = N ;5(1‘ — Zj)p—1(T1, - Tj—1, Tty - -5 Tn)s
ar(Vns1) == Vn+ Wppi([x], 21, .., 20),

with [z] indicating that the variable z is frozen.
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For every ¢ € L?(R3), the creation and annilihation operators associated to ¢
are defined by

am:/mwm%}aM<m@:/mww@}

where by convention we associate a with ¢ and a* with ¢. Let us also define the
skew-Hermitian operator

(1.5) Aww—/dwwm%—¢umﬁ

which is the Weyl operator used by Rodnianski and Schlein in [34]. The corre-
sponding coherent state is

(1.6) () 1= e VNALIQ

Here ¢ is called the condensate wave function. It is not hard to check that

=

(6) i= e VVAOQ = |, T o) o | with e = (¢ M2 Nm)
j=1

Also consider the following skew-Hermitian quadratic operator
1 _
(1.7) B(k(t)) :== 5 /dxdy {k(t,z,y)ara, — k(t,z,y)a;a;

Here k is a symmetric wave function, i.e. k(t,z,y) = k(t,y,z), called the pair
exicitation function. This particular construction and the corresponding unitary
operator

M(t) := e~ VNA($(1) o~ B(k(t)) — ,~VNA(t),~B(t)

were introduced in Grillakis, Machedon and Margetis [22]. The construction is in
the spirit of Bogoliubov theory in physics, and the Segal-Shale—Weil representa-
tion in mathematics.

Consider the Fock Hamiltonian
* 1 * %
(1.8) H= /dxdy {a3 Azd(x —y)ay} — 2N/clacdy {on(z —y)asayayas}
where
uy(z) = N3BU(N63}).

It can readily be checked that H is a diagonal operator on Fock space and it acts
as a differential operator in n variables

n n
1
H, ppE = ZA% N ZN?’BU(NB(%’ — zy))
j=1 i<j
on the nth sector of F.
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The goal is to study the evolution of coherent initial conditions of the form
(19) wexact(t) - €itH€_\/N‘A(¢0)€_B(kO)Q

In the papers [20, 23, 22], Grillakis, Machedon and Margetis proposed an approx-
imation of the form

(1.10) Yappr (t) 1= e VNAW@D) ~B(D) )

The strategy to study the approximation is to first evolve forward in time by
the exact dynamics and then backward by the approximation dynamics. That is,
to consider the reduced dynamics

(1.11) Yrea(t) = B VNA() jitH ,—VNA(0) ,~B(0) ()
and compute the “reduced Hamiltonian”

(1.12) Hyed = %(&M*)M + M*HM

so that

(1.13) %atwred = HredVred -

In [22], Grillakis, Machedon and Margetis imposed some Schrodinger type
equations on ¢ (the Hartree equation), k, and proved the following results for
0 < B < 1/3 by using an energy estimate based approach in Fock space and
decay properties of ¢

(1.14) ‘ =N

Yexact (t) — eiNx(twappr(t)Hf < P(t)N "z

Here x is some real phase function, and P(¢) is of polynomial growth in time.

This result was extended to 5 < 1/2 in Kuz [28], where the author also argued
that the equations used in [22] can not provide an approximation for 5 > 1/2.
The Hartree-Fock-Bogoliubov equations was later introduced in [19], in the hope
of obtaining an approximation for higher values of 3. There are several equivalent
ways of writing these equations. Broadly speaking, the equations ensure that after
Wick reordering, the reduced Hamiltonian has neither a or a* linear terms, nor
aa or a*a* quadratic terms.

The Hartree-Fock-Bogoliubov equations were also introduced independently in
a different context in [1], and they were studied in [4, 10, 21]. In particular, local
in time, uniform in N estimates for solutions to the HFB system were obtained
in [21], and they were used in [12] to give a Fock space approximation of the form

(1.15) ’

i B-1
Yeract(t) = X Ope(t)| < CPONTT,

for a polynomial P(t) and 0 < 8 < 1. The global in time estimate for HF'S system
in [10], as well as the main results in this paper, is in the hope of improving the
eP® in (1.15) to some polynomial P(t), and possibly extending to the case 8 = 1,
we wish to address this problem in a future work [25].
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We also mention that in Benedikter, de Oliveira and Schlein [2], a similar
approach is considered, where the authors impose the Gross—Pitaevskii equation
equation for ¢ and define k by an explicit formula, and give a rate of convergence
result in terms of the marginal density.

In the remaining of this paper, we shall focus on the analysis of the systems
of PDEs. The functions described by these equations are: the condensate ¢(t, z)
and the density matrices

(1.16) F(t, X1, .%'2) = % <M o Sh(k))) (t, x1, .%'2) + (E(t, $1)¢(t, .%'2)
(1.17) Aty 21, 9) = %Sh@lﬁ)(t,xl,xz) + o(t, 21)0(t, 22)
where

1. -
sh(k) =k+ jkokok+...
(1.18) S
ch(k)zé(a;—y)—kgkok—k...

Here (uov)(z,y) = [u(x, z)v(z,y)dz, the pair excitation function k is an auxiliary
function, which does not explicitly appear in the system.

There are several equivalent ways of expressing the equations, in this section we
shall use a compact, matrix formulation as in [10]. We separate the condensate
part from the pair interaction part: define I'. = ¢ ® ¢, A, = ¢ @ o, r, =
+sh(k) osh(k) and A, = 5xsh(2k). Also denote p(t,z) = I'(t,z, x)

To write the Hartree-Fock-Bogoliubov equations in matrix notation, denote
Viv(z —y) = N*u(N(z - y))

for some Schwarz class potential which will be discussed below. Define

- —A
a- (7 M -vee

where

Finally, let

10
=0 1)

where [ is the identity operator.
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The evolution equations for ¥ and ¢ are

%&g@ — [Az0(x — y)Ss, D]
(1.19) — (Vi % plt )3 — )5, @] — [Vard*, @

%atqz —[AuS(z — )Ss, U]
(1.20) = (Vi plt,2)) 5 — )Ss, W] — 515, V]

1
— LU - — o
In addition, the condensate ¢ satisfies

{Zo -2, )o(m)
:—/ﬁmwwm—yW@wHMM)

(1.21)
— /dy{VN(l‘l =)y, z1)}o(y)

+ /dy{VN(ml —y)Ap(71, ) }o(y)

Here A*(x,y) = A(y,z),[A,B] = Ao B— Bo A and Vy acts as pointwise multi-
plication by Viy(z — y). See (5.1)-(5.4) for a scalar form of the above equations.

The solutions ¢, Ap, A, I'y, and I'; all depend on N. This has been suppressed
to simplify the notation. However, we will always keep track of dependence on N
in our estimates.

Next we review the conserved quantities of these equations, see [19] for more
details. The first conserved quantities is the total number of particles (normalized
by division by N):

1
(122) (T} = 160 ) gy + ISR gy = 1
From here we see that

(1'23) HA(t7'7')”L2(d;tdy) <C
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The second conserved quantity is the energy per particle
E(t) :tr{vfﬂl : V$2F(t)}

1
+ 2/dl‘1d$2{VN($1 — $2)|A(t,$1,$2)‘2}

1
(1.24) + Q/dxld@{VN(ﬂ?l - $2)|F(75,$1,$2)|2}

+ ;/dxldmg{VN(a:l — $2)F(t,x1,1‘1)r(t,x2,1‘2)}
—/dmdl‘z{VN(ﬂCl —xz)\¢(t7$1)|2|¢(t,$2)’2}

We shall assume that

(1.25) v is Schwarz  sup ||v||zr <€, and suppv C B;(0).
1<p<oo

In addition, we also assume

v is spherically symmetric and

(1.26) Jv
v >0, ar(r) <0.

Here 9 denotes the Fourier transform and B;(0) denotes the unit ball in R?, and e
is a fixed small constant to be specified later (see (5.32)) which is independent of
N. The condition (1.26) allows us to use a priori estimates for I' (the interaction
Morawetz estimate, Lemma 6.2 in [10]), which is part of our main strategies in
treating the HFB system, i.e., We regard the equation for A as a linear equation
with non-local “coefficients” given by I' and a forcing term involving ¢. For I
and ¢, we will only use a priori estimates, given by conserved quantities and the
interaction Morawetz estimate. It is still open to us if we can analysis the I’
directly without using the a priori estimates, the main difficulties come from the
fact that the linear part —A, + A, of the I' equation that is anti-symmetric in
x,y, see (1.39).

The smallness assumption on the potential is due to the perturbation based
arguments we used in analysing the linear and nonlinear Schrédinger equations.
The smallness and spherically symmetric assumptions on the interacting potential
were also used in earlier work of Erdés, Schlein and Yau [16] and Boccato, Bren-
necke, Cenatiempo and Schlein [5] in the Gross—Pitaevskii regime, and Grillakis,
Machedon and Margetis [22] in the mean field regime.

Despite the smallness assumption, the case g = 1 is strictly harder than 8 < 1,
which allows large potentials if the parameter N is sufficiently large. For instance,
in the case 8 < 1, one has additional regularity in using Sobolev estimate, while in
the case 8 = 1, the criticalness of the scaling forces us to use and also develop new
sharp estimates in the arguments, see the end of this section for more discussions
on the difficulties in the critical setting.
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The assumption supp© C B1(0) is only used in section 4, it is essentially not
required for our proof, but it simplify the arguments greatly, see the beginning of
section 4 for a brief discussion on how to remove this assumption.

For the initial conditions, we assume that

tr{T'(0)} < Cy
(1.27)
E(0) < Cy

The size of the initial condition C{ is important, as we shall see in the end of
section 5, our assumption on the size of the potential v depends on the size of
initial data. Thus, we keep track of the constant Cy from now on.

Note that the kinetic energy is

{ Vs, - Vo, (1)} = /dx{yvm(t,x)\?}

1
+ o d:nldxg{\vxlsh(k:)(t,:nl,:cg)\Q + |Vx2sh(k)(t,a:1,x2)|2}

(1.28)

If we assume E < Cp, then we have an H' estimate for A, uniformly in time
(and N):

[ dmdea{Vaih a2 + VoAt 0} < CC
(1.29)

1

= / dxldx2{|vwsh(2k)(t,xl,xg)\Q} < CC,

Also, T satisfies the H? type estimate

(1.30) 1V ar ][ Vas [T (@)l L2 (dedy) < CCo

See [20], [19], as well as [1] for these conserved quantities.

By Plancherel theorem, we see that (1.29) implies that for all time ¢

1 1
(1.31) (V)2 (V) 2 Ap(t) | L2 (dwdy) < CCo0-
as well as
1 1
(1.32) 192)% (V)3 Aolt) | 2 (tnay) < CCo.

Here, and also later on, <VI)% means (1 — Am)%, which is a Fourier multiplier
with symbol (1+ [¢[2)3, and similarly for (Vy)%.
Similarly, by (1.28) and Plancherel, we also have
1 1
(1.33) (V)2 (V)2 Tp(8) | 22 (dway) < CCo-
as well as

1
(1.34) 1(V2)2 (V) 3T ()]| 2 (dzay) < CCo-
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In order to state the main result for this paper in the simplest possible form,
we define the following partial Strichartz norms:

1Al ,
= sup A VL2
(135) (p,q) admissible ” HLp(dt)Lq(d YA )
+ sup Al e (atyLa(dy) 22 (de)

(p,q) admissible
Recall (p, q) are admissible in 3 + 1 dimensions if % + 3 = %, 2 <p<oo.
The main result of this paper is

Theorem 1.1. Let A = A+ A, I' =T, + T be solutions of (1.19), (1.20), while
the potential satisfies (1.25) and (1.26), and the initial conditions satisfy (1.27).
Then we have

(1.36) (V)2 (V)2 A|s,, + (V)2 (V,)2T|s,, < C

for some constant C independent of N. The above estimate still hold if we replace
A by Ac or Ay, or replace I by T'c or IT'),.

We also have a theorem for sh(2k) (without dividing by N).

Theorem 1.2. Let A, T', ¢ be solutions of (1.19), (1.20), while the potential
satisfies (1.25) and (1.26), and the initial conditions satisfy (1.27). Assume also
that

[sh(2k)(0, -, )l 2 + lIsh(k) o sh(k)(0, -, )| L2 < C

Then we have

(1.37) [sh(2k) ls.., + [S(F) o sh(k)ls,., < C

z,y —

Remark 1.3. Here (1.37) improves the results in [10, Theorem 1.3] in two ways.
First, the potential N?v(N(x — y)) we considered here represents a stronger in-
teraction between particles, compared with the N3*~1y(N8(z — y)), 8 < 1 type
potentials considered in [10]. Second, the ||sh(2k)|s, , norm stays bounded uni-
formly in N, compared with the log N growth in [10]. Although our argument
is written for the case where the potential is N2v(N(z — y)), it also works for
the N35~1y(NB8(x — y)) case. For example, it can be shown that the uniform
in N estimates in (1.37) still hold for the case where the potential is equal to
N38-1y(NB(x —y)), B < 1.

The above estimates also imply some estimates for sh(k). In particular,
ISh(E) || o (dz)22(ay) < ClISh(2K) || Lo (da) L2 (ay)
This is because sh(k) = 1sh(2k) o ch(k)™! and ch(k)~' has bounded operator
norm.
Finally, we also have estimates for ¢. Define the standard Strichartz spaces

lolls = sup 9l 2r (at)La (da)-
(p,q) admissible
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Corollary 1.4. Under the assumptions of Theorem 1.1, and the additional as-
1
sumption ||(V)2¢(0,-)||r2 < C , we have

(1.38) (V)2 glls < C.

We shall now brief describe the difficulties in the critical case 5 = 1 along with
the strategies employed in addressing them in our arguments. Denote

10
S=-——A,—A
i ot Y
10
— A+ A
R TR

Schematically, if we treat Vi as the § potential and ignore the constants, the
equations become
(1.39)

SAc =T(t,z,x)Ac(t,z,y) + Ap(t, z, 2)(t, 2, )

Sile=T(t,,2)Te(t,z,y) + Ap(t, 2, 2)Ac(t, 2,y)

V V
SA, + WNA:D =TIt z,2)Ap(t,z,y) + Ap(t, z, )T (¢ 2, y) — WNAC
+ Ac(t,z, 2)Tp(t, x,y)

SiT'y =T (t,z, )t x,y) + Ap(t,z, 2)Ap(t, 2, y) + At x, z)Ap(t, z,y)
(30— A ) otn) = ~Tlere0)oten) = Tyfor, ool + Aan,o)dlen)

Since I'. = ¢ ® ¢, A, = ¢ ® ¢, one can view that ¢ satisfies the cubic nonlinear
Schrodinger equations with additional corrections.

Recall that Viy(z) = N3v(Nz), thus VWN in the A, equation satisfies the critical
scaling in the sense that VWN e L3/2 uniformly in N > 1. For Schrédinger operators

—Agn +V, it is known that V € Lﬁ)/cz for dimension n > 3 is almost the minimal
condition to ensure the Schrédinger operators —A + V' is bounded from below
and self-adjoint. There is a vast amount of literature in the study of Schrédinger
operators —A + V with critically singular potentials from different aspects, e.g.,
Strichartz estimates, unique continuation and dispersive estimates, see [8, 26, 27,
33, 36].

It is known in the study of cubic nonlinear Schrédinger equations that 1/2
derivative is the minimal regularity required on the initial data in order to have
local or global well-poseness results (see [9]). Similarly, our arguments in treating
the nonlinear terms require the Strichartz estimates for (V;)*(Vy)“Ap or « and
(Vi) (V)T or ¢ with v > . In the case 3 = 1, the <vm>%<vy>% derivative is
the threshold for the linear equation in the sense that if we apply (V) (Vy)®
to VWNAP or VWNAC in the A, equation, we get a singularity which is essentially
N29=1YyA. And since |[N2*"'Wy|» — 0o as N — oo for any 1 < p < oo if
a > 1/2, it would be hard to obtain any uniform in N estimates in this setting.



GLOBAL ESTIMATES FOR HFB 11

For the same reason, in order to get Strichartz type estimate for (V) 3 (Vy)%Ap,
we need to handle an inhomogeneous forcing term like N3v(N (z — y))Ap(z, ), if
B =1and N*¥~1y(NB(z—y))A,(z,y) if 3 < 1. As N = oo, N3u(N(z—y)) — 6,
the delta function up to some constant. Thus, to use a perturbative argument, we
have to develop Strichartz estimate involving the L' norm in the x — y direction,
and a collapsing estimate which involves the L® norm in the x — y direction,
see Theorem 3.2 and Lemma 3.8-3.9 respectively. The collapsing estimate (see
(2.8) for the definition of the collapsing norm) is a natural generalization of the
Morawetz inequalities in the study of nonlinear Schrédinger equations, see [31].

Theorem 3.2 generalizes Proposition 4.7 [10] by removing the frequency as-
sumption there. The main difficulty in the proof is the lack of square function
estimate, or equivalently sharp Sobolev estimate in the L' norm setting. The
main idea is to use Littlewood—Paley estimate in the z — y direction on the left
hand side, and add up different frequency pieces in the = + y or t directions on
the right side. To do this, we need to keep track of the size of frequency variables,
including their ratios and make explicit use of the magnitude of (V)2 and

|8t|i derivatives. The proof of Lemma 3.8-3.9 is based similar ideas along with
the use of Christ—Kiselev lemma, and they are essentially a dual version of the
Strichartz estimate in Theorem 3.2.

Another main difficulty lies in the proof of Theorem 2.1, i.e., the proof of
Strichartz type estimates for linear Schrodinger equations with interacting po-
tentials. We need to choose the norms for the perturbation arguments properly
under various frequency support assumptions, see section 4 case 1-case 3. We
divide the cases based on the frequency support in the x + y direction, since mul-
tiplication by an interacting potential may enlarge the frequency support in the
x — y direction after each iteration. The norms within each case may depend on
each other. Due to the failure of sharp Sobolev estimates at L°° and the shift
in frequency support after multiplications by the potential, it is hard to bound
these norms independently, without the frequency support assumption or the use
of other norms, for instance, the full collapsing norm and the full Strichartz norm
including the endpoint pair (p, ¢) in the z — y direction. Similar difficulties also
arise in the analysis of full nonlinear equations, where we need to define the norms
appropriately under various frequency support assumptions in order to close the
bootstrap argument. In the case of 8 < 1, however, this can be remedied by the
allowance of additional derivatives as discussed above.

The proof of Theorem 2.1 for different cases also relies on a collapsing esti-
mate for the linear equations with interacting potentials under low frequency
assumptions, which is Theorem 4.1. The low frequency assumptions allow us to
use Bernstein type inequality at L™ instead of classical Sobolev estimate, which
requires additional regularity. However, as discussed above, after each iteration
step, the frequency support may expand due to multiplication by the potential,
the main idea in the proof of Theorem 4.1 is to exploit the gain of small constant
coming from the smallness assumption on the potential at each iteration step and
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use crude estimates after finitely many steps of iterations. Also, we prove a full
collapsing norm estimates in the last section assuming the forcing term H = 0 in
(2.11), which is based on Theorem 2.1 and the analysis of the wave operator W
for the Schrodinger operators —A 4 V' as in the work of Yajima [36].

The structure of the rest of the paper is the following. In section 2, we list the
notations used in this paper and state our main estimate, Theorem 2.1 for the
linear Schrodinger equation in 6 + 1 dimension. In sections 3 and 4, we prove
Theorem 2.1. In section 5, we prove Theorem 1.1 using the linear estimate Theo-
rem 2.1. In section 6 and section 7, we use prove Theorem 1.2 and Corollary 1.4.
In the last section, we use Theorem 2.1 to prove a “collapsing estimate” for the
linear equation involving the interaction potential, which may be of interest on
its own right.

Acknowledgements. The author is indebted to Manoussos Grillakis and Matei
Machedon for both suggesting the problem and for many discussions and com-
ments on various stages of this work, their roles on this work is no less than the
author’s one. The author would also like to thank Jacky Chong and Zehua Zhao
for comments on an earlier version of this paper. The author is supported in part
by an AMS-Simons Travel Grant.

2. List of notations and statement of the main linear estimates.

Let us define the partial Strichartz norms

= sup  |[Allzear)Lade) L2 (dy)
(p,q) admissible

+  sup Al zear) La(dy) L2 (de)-
(p,q) admissible

where the pair (p, ¢) is admissible in 3 + 1 dimension if % + g =3,2<p< .
Define the full Strichartz norm
(2.2) [A]ls

- Sup HA”LP dt)La(dz)L2(d
(p,q) admissible (dt)L9(dx)L?(dy)

+ sup Al Lo () La(dy) L2 (a
(p,q) admissible P LA(dy) L (d)

+ sup A e,
(p,q) admissible” ||Lp(d'f)Lq(d( y))L2(d(z+y))

And define the restricted dual Strichartz norm, excluding the end-points p’ = 2,
p' = 1: let p; large and py > 2 but close to 2, for admissible pairs (p, ¢), define

(23) 1Glls; = inf SG Lo a2y |Gl o iy a2y
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Let us also recall the standard Littlewood-Paley decomposition. Let ¢(x) such
that ¢ € Cg° and ¢(¢) = 1 in |¢] < 1, ¢(€) = 0 in |¢] > 2. Define the ¢y, for k > 0
by éx(€) = ¢(5) and denote

(2.4) Pejcorf = f* b

so that the inverse Fourier transform of QE(Q%) fis BPejcor f-

Next let 1y = ¢ and define ¢y, for k > 1 by 5 (€) = 45(2%) — 45(2,5,
denote

(2.5) Blejuar f =[x Ur

7). We also

For later use, we shall also abuse our notation a bit and define, for an arbitrary
positive constant M,

(2.6) Pecmf = [+ d(Mz),
for any fixed constant M. And define,
(2.7) Pesmf = — Pe<mlf-

So for any two fixed constants 0 < M < N,
Pn<igj«mf = Pej<msf — Pej<n -

Now we can define the following two “collapsing norms”. Let

(2'8) HAHcollapsing = HA"L°°(d(a:—y))LQ(dt)L2(d(a:+y))'
And define
(2 9) ”AHlow collapsing :H‘PK—WKQONAHcollapsing + HP|€‘<2ONAHcollapsing

+ || Byj<2on A

collapsing”

If A < B, there is a constant C such that A < C'B, and we use A ~ B to
denote the case when A < B and B < A.

Define <Vm>%f =(1- AI)%f such that the Fourier transform of (V >
(1+ \5]2)%3, and similarly the Fourier transform of (V, ) fis (1+n? )%
f € L3(RY).

Let z,y € R3, define

or any

szlg—Ax—Ay

(2.10) i dat
S ~ A+ A,
=T 0ot +
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Consider the equation
SA(t,z,y) = N*u(N(z — y))A(t,z,y) + G(t, 2,y)
(2.11) +N2U(N(:r—y))H(t,x,y)

The simplest form of theorem is

Theorem 2.1. Let A satisfy (2.11), and assume v satisfy (1.25), we have

(V2)Z(Vy) 2 Alls,., + [(Vaty) 2 Mltow cottapsing + 11017 Aliow coltapsing
< V)2 (V) 2G sy + ell{Va) 2 (V)2 H | L2ty 16 2y 12(d(w4+0))
+ &l (V)2 H | cottapsing + 111063 H | cottapsing
+ €V 2 Hl|cottapsing + €l (Vy) 2 Hlcottapsing + (V) (V) 2 Aol 2.

(2.12)

Remark 2.2. The main difficulty in proving the theorem is the presence of the
term N%v(N(z — y))A(t,z,y), where N?v(N(z — y) € L*/? satisfies the critical
scaling. The term N2v(N(z —y))H(t,2,y) in (2.11) is a technical term which
arises from the term N2v(N(z — y))A(t, z,y), since in our application, we split
A = Ap+Acand take A = A, and H = A, in (2.11). And the presence of H (¢, z,y)
does not lead to any essential difficulty in the proof of the above theorem.

We also remark that in the case H = 0, by using the above theorem plus an
abstract argument, one can replace the || - ||jow collapsing nOrm on the left side of
(2.12) by the || - ||cotiapsing norm and the same result still holds. See the discussion
in section 8 for more details.

All the implicit constants in < are independent of N and e, and the choice of
the small constant ¢ in (1.25) will depend on the implicit constants and Cp in
(1.27).

3. Preliminary estimates for solutions to the linear Schrodinger equa-
tion.

We will use the following Strichartz estimate. In 641 dimensions,
Theorem 3.1 (Theorem 2.4, 2.5 of [11]). Let Su = f + g, u(0,-) = ug. Then

Julls 1151 |+ lgllsy + ol

L2(d) L8 (z—y) L2 (d(a+y

Now we shall present the main theorem of this section.

Theorem 3.2. Let Su= f u(0,-) =0 Then

1 1
lulls,., < H<Vr+y>2f|’Ll(d($—y))L2(dt)L2(d(:c+y)) + /10 4f||L1(d(m—y))L2(dt)L2(d(;r+y))'
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Remark 3.3. A frequency localized version of the above Theorem appears in [10,
Proposition 4.7], , which is also a motivation of the above theorem. The S, ,
norm is crucial here, we do not expect the above estimate to be true if we replace
it by the full Strichartz norm S as in (2.2).

Proof. The main ideas is to divide the frequency support of u into several regions,
and use Strichartz estimate for the regions where 7 ~ [£|? + |n|?, and use Sobolev
for the remaining regions. As we shall see later, the proof of Theorem 3.4-3.5
below uses essentially the same idea.

To begin with, we shall use the decomposition u =Y 77, Pe_p|~aru, where for
the case k = 0, we are abusing notations a bit by letting P, ~1u to denote the
operator P¢_, -ju. We have the square function estimate(see e.g., Lemma 3.5 in
110)).

o0

ey ~ 1 (D2 1Pesnzetl?) s,

k=0
o0
< (X 1Pegpeaul,, )
k=0

We shall focus on the dyadic pieces where k > 1, since by the Strichartz estimate
and the Sobolev estimate, one can easily show that

N[

(3.1)

[N

1
HP\&—nKl“HSx,y S H<Vfﬂ+y>2fHLl(d(z—y))L2(dt)L2(d(z+y))'

Now let uy = Pie_portt; fo = Ple_p|~orf, and decompose uy, = u,l€ + ui + ui,
where

1 _ . e s e
Suyp = P10\7|%22k fx, with initial conditions 0
P (Poppenft)
(3.2) Fui= L0l |22 =2 5 this no longer has initial conditions 0
T+ &7 + [n]

Swuj =0, a correction so that uj + uj has initial condition 0.

For u}ﬁ, by the Strichartz estimate
luills < NLfxl

Sl e

L2(dt)L 8 (d(a—y)) L2(d(a-+y))
d(z—y))L2(dt) L2 (d(z+y))
S 23 kaHL1(d(z—y))Lz(dt)LQ(d(z-i-y))a

where in the last line we used the fact that f;, is frequency supported in € —n| ~ 2%
and Bernstein’s inequality, which is a (elementary) generalization of the classical
Bernstein’s inequality to L? valued functions.
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Now we make another dyadic decomposition, write

(3.3) fe =" Pjaszssefi = Y frr-

>0 1
Note that for each fixed ¢, k, we have

ek
[ feell L1 (d@—y)) L2 (@) L2 (d(ety)) ~27 1 21Ol T frell L1 (d(e—y)) L2 (a0 L2 (d(aty))
e ko
S27 47 2 ||0| 1 Pppogzrre fl L1 (d(a—y)) L2 (d0) L2 (d(a4y))

where in the first line we used Bernstein’s inequality, and in the second line we
used the fact that

(34) N Pepmar Fllr@da—y)) 220 22 (da+y)) S WL (d@—y)L2(d0) L2 (d(@4y))

which can be proved, for example, using the generalized Young’s inequality on
the space of L? valued functions.

Thus, by Minkowski’s inequality

0 1 0
(Z ||“11c||?>‘w,y) s (Z 21> fk,f||%1(d(x—y))L?(dt)L?(d(m)))
k=0 k=0 ¢

<> (Z 2k”fk,ﬁH%1(d(x—y))L2(dt)L2(d(:c+y)))
¢ k=0

[NIES

NI

N

14

[N

_t 1
S 2 (Y10 Prrpmise I atomypy22an 2ot
k
S
l

_ £ 1 1
> 27 (H (D 1106l Prpoganse f2) 2 ”%1(d(z—y))L?(dt)L?(d(w)))
k

1
S 102 Fl L1 (aga—y)) 2 (de) L2 (d(a49))

where in the last line we used the square function estimate in ¢ variable.

For u?, the denominator is comparable with |£ — 5| + [¢ + n|* > 22% > 1007.
Thus, by Sobolev’s estimates at an angle, which is Lemma 3.2 in [10], we have
HUiHLZ’(dt)Lfi(dx)LQ(dy) + HuiHLQ(dt)LG(dy)LQ(dz)

(3.5) Sl <vw+y>u%||L2(dt)L2(da:)L2(dy)

S <<Vz—y> + <V:c+y>> (Vary) fell L2(at) 12 (dw) 12 ()

This is also the place where we require the norm on the left side to be S, ,, since
we do not have Sobolev-type estimates like

il 22 ()26 (aa—y) 22 (@C+)) S IV ety )R L2 (a0 L2 (d2) L2 (dy) -
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Let us first assume [£ + 7| < |£ — 7|, and make the decomposition
(36) fk - ZP|§+77|~21€ Jfk - Z fk,y
7=0

Then for each fixed k, j, we have

1((Vam) + (Vasad) (Vg Fri 2 z2am) 2y

272 [(Vary) ™ (Vary) 2 fig | n20at) 22 00) 22a)

273 |[(Vay) 2 ol 1 (o)) 22 ) 22 ()

273 <Vz+y>%P|f+n|~zwfHLl(d(z;—y))L2(dt)L2(d(z+y))7

where in the third line we used Bernstein’s inequality, and in the last line we used
the fact that

| fell 2 (de—y)) 22 (@) 2 (d@+y)) S N Ltd@—y) £2(d) 2 (d@+y)) -

Thus, by Minkowski’s inequality

D=

(Z 9172 a6 ) 22 ) + HuiH%Q(dt)LG(dy)L?(dm))
k=0

S (Z | Z (<Vm—y> + <v$+y>)72<v$+y>fk’7jH%2(d(w—y))LQ(dt)LQ(d($+y))>
k=0

<> (Z | ((Va—y) + <vx+y>)_2<V:v+y>fl~c,€H%Q(d(x—y))LQ(dt)LQ(d(w—l-y)))
7 k

V) \

1
) :
S (Z” Vs P atis ooy 22y 2o

J

22 : (H Z| x+y 2 |€+n|~2k— Jf| ) ||%1(d(mfy))Lz(dt)L2(d(z+y)))

J

w\
[T

S Vagy)? fHLl d(z—y)) L2 (dt) L2 (d(x+y))
where in the last line we used the square function estimate in x + y variable.
The case € +n| > |£ — 1| is similar.
For the other endpoint p = oo, define

(3.8) uj = Z }Dl,r‘w22k—£u% = Zu%e
¢

0<(<k/2

D=

N|=
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and similarly

(3.9) fe= > Prozcfi = far
0<e<k/2 ¢
Note that for each fixed £, k, we have
||U1g e||L°° dt) L2 (dz) L2 (dy) Sl / ‘m)dTHLZ d€)L2(dn)
P I 6P A+ Inf? !
~2F 2 (T )™ 2|8t’Zfk,f”L2(dt)L2(dx)L2(dy)

(310 ~2 (T, )

<270y

(dt)L?(dx) L2 (dy)

(d(z—y))L2(dt) L2 (d(z+y))
_ 1
27100 Py SNl 1 (ata ) 2t 12 )

where in the third line we used Bernstein’s inequality, and in the last line we used
the fact that

[ fellLr @e—y)) 2 (a0 L2 (d(aty)) S NIt (d@—y)) L2 () L2 (d(a4y))-

By Minkowski’s inequality

(e 9]

( kz HuiH%w(dt)Lz(dx)L?(dy))
=0
<kzo 1Y i gll7 e dt)m(dx)L?(dy))
<> ( > ||u%,e\|ioo(dt)L?(d@L?(dy))

N

[SIES

N

=0 k:k>2¢
- 1
) 1 ’
S22 MO e -y 2y o)
/=0 k:k>2¢

1
S 1O Fl L1 (d(a—y)) L2 (d0) L2 (d(a44))
where in the last line we used the square function estimate in ¢ variable.

To deal with u%, note that since u% is solution to free Schrédinger,
ulls,., < (0, )l z2(any 22 (ay)
(3.11) = [ (0, - )| £2(dw) £2(dy)
< (il oo (a2 ()12 (dy) -

Thus it can be treated as in the previous case.
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Theorem 3.4. Let Su= f u(0,-) =0. Then

(Vaey)2ulls,., S|[(Vasy) 2 /]
+ |17 £]]

(3.12) 12(dr) L8 (d(w—y)) L2 (d(x+))

L2( dt)L5(d(z y))L2(d(z+y))

Proof. We shall use the decomposition u = > 72, P|§,77|N2ku, and the square
function estimate

[e.e]

1
2
lulls.n, ~ (3 1Pecgozeul?) ls..,

k=0

e 1
2
S (X 1Peyerul?,)
k=0

Since the right side of (3.12) only involves L3-norm in the z — y direction, we can
add up the dyadic pieces in the right side using the square function estimate, thus
it suffices to prove the Theorem for a single dyadic piece where | — 7| ~ 2¥(which
would simplify our argument compare with the previous theorem). Here again for
the case k = 0, we are abusing notations a bit by letting P¢_,~1u to denote the
operator P¢_, <1u, and the case k = 0 is easy to handle by just using Strichartz.

Now let uy = Pe_pworw and fi, = P, or f. We shall use the same decom-

position as in (3.2), write ug = uj, + uj + uj.

For u,lg, by Strichartz and Bernstein’s inequality

(Vo) 2tk s < 1V amy) ? il

S 11901 i

L2(dt)L ?<d<x—y>>L2<d<x+y>>'

For u?, the denominator is comparable with |¢ — 5| + [€ + n|? > 22% > 1007.
Thus, by Sobolev estimates at an angle, we have

1 1
IV a—y) 2| L2 ()15 (a) 22 () T 1V —y) 203 22 (1) 16 () 12 ()

1
S {Va—y)? <Vx+y>ui | 22 (dt) L2 (da) L2 (dy)

(3.14) -1 1
| ((Vm—y> + (Vm+y>) (Vary) 2 frll L2 (de) 12 (de) 12 (dy)

S
S

{Vaty)2 fk”m (d1)L8 (d(z—y)) L2 (d(z+y))’
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For the other endpoint p = oo, since we are in the region 1O\T|% < 2F we have

1
(Va—y) 2t 1 dt)L?(da:)L‘Z(dy)

Qk/g”/‘ 10|T|2<2 f)

T+ €] + [nl?

(3.15) ‘dT”L?(ds L2(dn)

<2k”|3t |5 (Vay) " frll L2 (a0 22 (A —) L2 (d(4y))

<
S llas kaL2 (d0) L8 (d(a—y)) L2 (d(a+y))

To deal with u3, if we repeat the argument in (3.11), we have

65, S Nl Lo (at) 22 ()12 (dy) -

Thus it can be treated as in the previous case.

Theorem 3.5. Let

Su = f, U(Oa'):uo

We have
1
11012 | L2 (at) L6 (d(2—y)) L2 (d(+1))
1
o 1
S min { H ol fH 2(dt) L8 (d(a—y)) L2 (d(a+y))’
1 1

(3.16) 1(Vay)? + (Vary)2) f HLQ(dt)Lg(d(:fcfy))L2(d(x+y))7

(Vm+y>%)f|
+ | (Vamy) 2 + (Vi) o) -

s

Proof. For simplicity, we shall only treat the case where |£ + 7| < | — 7|, the
case |£ + n| > |€ — n| is similar and to some extent simpler. We shall use the
decomposition u = > 77, Pie_yjmort, by using the square function estimate, It

suffices to prove the Theorem for a single dyadic piece where |¢ — 5| ~ 2¥. The
argument below also works for k£ < 0.

Now let ug, = P|E_T7|N2ku and fr = P‘S_U‘NQkf. We decompose uy = u,l€ + ui +
u% + ui, where
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Sup = P| 3 2,cfk7 with initial conditions 0
T2~
F(Pybaoef + P00t
]-"ui = 10jr|? <2 22102 , this no longer has initial conditions 0

T+ ¢+ InP?

Swuj =0, a correction so that uf + uj has initial condition 0
4 4
Sup =0, ug(0,-) = Pe_paruo.

It is easy to handle uf, since in the case where |¢ + 1| < |€ — 7],

1
18615 w1 22 a1 L6 (a(a—y)) L (a(a-+1)
(3.17) ~ 252 AP oktiol| L2 ay 15 (d(e—y)) L2 (d(a41)-
< 1
~ H<Vm—y>zp|§—n|~2k“0HL2'

For u}, since for fg, we have |¢ — n|?> + | + 7| ~ 2%¢ and 77~ 2k it is
straightforward to check that the dual variable 7 to t for u}C is also supported
where |7|/2 ~ 2% by Strichartz estimates

1
11063 up || 2ar) L6 (d(o—y)) 22 (d(a+9)

S 2k/2Hullg”L2(dt)LG(d(ac—y))LQ(d(w-i-y))

3.18
(3.18) SRR 4 fill e

P a6 2 ) 18 (a2 (a0

S 11d]s £l

The same argument also gives

L2(dt) LS (d(z—y))L2(d(z4y)) "

11
110 T ui]l L2 (at) L6 (d(w—y)) L2 (d(a4y)) S 1{Vz—y)? fk:||L2 a6y L (d(a—y)) L2 (d(1y))’
as well as

1 1
1013wkl L2 (a6 16 (d(e—) L2 (A1) S 1H(Va—y) 2 fills:-

For u?, if 10|’7"% < 2% the denominator is comparable with € — |2+ [£ +n|? ~
22k Thus, by Sobolev’s inequality in the x — y direction, we have

1l 9 1
O wicll 22y o @ty p2 o)) S MOITFrl L2 4y 18 (a0 2o
The same argument also gives
12
110:l# uicl L2 (at) L8 (d(e—y)) L2(d(a+y)) S 1(Va—y)? kaLz dt) L8 (d(z—y) L2 (d(z-ty))”
It remains to show that, if 10|T|% < 2k

1 1
(3.19) O3 k| 2ty 2 (- L2+ S {V2—) 2 Fills.-
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By interpolation, it suffices to show that

1
(320) O3 uill r2an) L6 (da—y)) 22 (A +y)) S (Ve ) fk||L2(dt § (dm)2(dy)’
1
(3.21) 110613 uR | L2 (dt) £ (d(e—p) L2 (d(aty)) S 1{Va—y) 2 fk”LQ(dt L8 (dy) L2 (dz)’
and
1 1
(3.22) 18e| 5w | 2 a1 L5 (a(a—v)) L2 @a+)) S V=) Fell L1022 () £2 ()

which would be stronger than (3.19) since it includes two endpoint cases.

The estimates (3.20) and (3.21) follow directly by Sobolev’s estimates at an
angle. To prove (3.22), first by Sobolev in the x — y direction, we have

1 _
(3.23) 10 T U L2 () 16 (da—g)) 2 Aty S22 1l 20ty 12 -1 22 A+ 9) -
=27F2| fill 2 L2 () 22 )

and now by Bernstein’s inequality in the ¢ direction and z — y direction.
(3.24) 27F2|| fill 2y 2 any 22 dy) S 2521l 21 ey 22 ) 2 ()

: 1
S ACVa—y) 2 frll e 22 (de) 22 (dy) -

If |7"% > 10 - 2%, the denominator is comparable with 7. Thus, by Sobolev in
the z — y direction, we have

1
1106 3 | 22 (ae) L5 (d(—) L2 (d( 1))
3
(3.25) S0~ (Vamy)? fi
< 11197 fi

L2( dt)L5 (d(z—y)) L2 (d(z+y))

L2(dt) LS( (z—y))L2(d(z+y))”

The same argument also gives,

12
1101 uk |l L2 (at) L6 (d(z—y)) L2 (d(@+y)) S (Ve )3 el (@)L (d(a—y)) L2 (d(x1y))’
when |T|% > 10 - 2. Tt remains to show that (3.19) holds if \7’|5 > 10 - 2¥, which
would be a consequence of (3.20)-(3.22). And as before, the estimates (3.20) and
(3.21) in this case follow by Sobolev’s estimates at an angle.

To prove (3.22) when ‘T|% > 10- 2%, first by Sobolev in the 2 — y direction, we
have

wlw

1 _
11013 uR ]| L2 (dt) L6 (d(e—y) L2 (d(aty)) S 1008 ™3 (Vary) Fill L2(dt) L2 (d(0—0) L2 (d(at0))

= [1{00)~

=

(Va—y) fill L2 (at) 12 (de) 12 (dy)-
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Now by Minkowski’s inequality for dt integral,
_3
1€0) ™ 4 (Va—y) frll L2 (at) L2 (d) L2 (dy)

/eitT<vx—y>fk(t7 VAt L2 (ar) L2 (dw) L2 (ay)

=|r 1

(3.26)
S 22 (Vo foll 3 a2

1
S ICVa—y) 2 frll 1 () 12 (da) L2 (ay) -

To deal with u%, note that since ui is solution to free Schrodinger equation,
and since we are assuming |€ — n|? + [¢€ + n|? ~ 22F

119e] 3 2y ooy 2atory S 272 R0, ) 2anyzcan)
(3.27) = 252 (0, -, )| 22 (dw) 12(ay)
< 2k/2Hui||L°°(dt)L2(dx)L2(dy)-
Thus, it suffices to control ||ui||Loo(dt)L2(dx)L2(dy).
First, if |[7]2 > 10 2

(P tsn0n )
Ui || Lo (de) L2 (de) L2 (dy) NH/‘ MQ;IO? 5 ‘dTHLg (d€) L2 (d)
7+ (€12 + [

(3.28) 52_7|||3t|4kaL2(dt)L2(dm)L2(dy)
_ 1 _
S27 21007 (Vaomy) ™ fiell 22at) 12 (A —1)) 12 (d( 1)
<278218,)5 fi

L2(d6) L8 (d(z—y)) L2 (d(z+y))
Similarly,

( |T|%>102 f)
T+ €7 + [nl?

S27) fell 2 ar L2(dac)L2(dy)

< o9—k/2
STV f’“HLQ at) L8 (d(a—y)) L2 (d(a+y)’

[uill oo (a2 (axy 2 (ay) S| / ‘ ‘dTHL? (d€)L2(dn)

(3.29)

It remains to show that

1
(3.30) U || oo () L2y 22 () S 22 (Vamy) 2 fiolls:.

In this case, we won’t prove (3.30) by interpolation since we do not know if one
can show that

S 27w

1
(3.31) [ || oo ()2 ()12 (dy) S Va—y)? fill L1 (@) L2 (da) L2 (dy)

which is also the reason why we have the restricted norm S, in the statement of
the Theorem.
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Instead, we shall prove (3.30) by showing that

1
(3-32) Huk:HLOO (dt)L?(dx)L2(dy) ~ S 27 k/2H< = y>2fk||Lp/(dt)qu(dx)L2(dy)’
as well as

1
(3.33) [0kl o (e £2 @y L2 () S 272V ) 2 Skl 1o () L (dy) 12 ()
for all admissible pairs (p, q), with 2 % , 2<p< 0.

To prove (3.32) when ]T\i >10- 2’“, for admissible pair (p, q) with p < oo,

HUkHLoo (dt)L2(dz) L2 (dy) ||/‘ < |77>102kfk)‘dTHL2(d£)L2(d)
VL) IR P !

e
S20v !\7:<13| 10 2kfk>HL2 d€)L2 (dn) Lr (dr)

(3.34) a0 kaHLP ! (dt) L2 (dw) L (dy)

<2" 2(2 o) ||fk||Lp’(dt)LQ’(d:c)LQ(dy)
S el e (dt) LY (dz) L2 (dy)

_ 1
<2 k/QH(Vx7y>2kaLp’(dt)Lq/(d:c)LQ(dy)’

where we used Holder’s inequality in the second line, the Hausdorff-Young in-
equality in the third line, and Bernstein’s inequality at an angle in the fourth and
last line. The proof of (3.33) is similar.

If 10|7|2 < 2F,

(P10|T|%<2 f)
T+ €2 + n]?
(3.35) 52_7||\3t|4fk||L2(dt)L2(dx)L2(dy)

_ 1 _
S22 (Vomy) ™ fill L2 () 12 (d(a—)) L2 (d )
<2792 104 £

HukHLOO dt)L2(dz) L2 (dy) NH / ’ ’dTHB(df L2(dn)

L2(dt) L8 (d(z—y)) L2 (d(z+y))

The same argument also gives,

k
Ui | oo () L2y 2 (dy) S 27 PI(Vaey)2 kaL2 (@)L (d(a—y)) L2 (d(aty))’

It remains to show that
1
(3.36) [0l oo aty 22 (do) 22 () S 2721V amy) 2 ficll st

for the case 1O|T\§ < 2F which would be a consequence of (3.20)-(3.22).
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To prove (3.20),

‘7:<P|T|%210-2kfk)
T+ €2 + Inf?
S27F fll 2 any 22 (a2 )

1
S272(Vamy) 2 fil

Hui”Lw(dt)L?(d:c)LQ(dy) 5”/‘ ‘dTHLQ(d{)LQ(dn)

L2(d) L8 (dx) L2 (dy)
The proof of (3.21) is similar.

To prove (3.22), we use Bernstein’s inequality in the ¢t direction
(3.3 278 fll L2 (any 2 (deyr2ay) S el £ @y r2 e 2 ay)

: _ 1
S 2721V o) 2 fill 1 ) 22 ) 12 ) -

Now we shall present several lemmas that involve the collapsing norm.
Lemma 3.6. If Su = g,u(0,-) = ug. Then

lllcatiapsing < mind[|(V2) 2glls; + 1V2) 2ol 2, 11475) 2 glls; + (V) Zuo]l 2}

We record that the above implies
Lemma 3.7. If Su = g,u(0,-) = ug. Then

(V) 2ulcatiapsing + (V) 2ullcatapsing
S0V 2V 2glsy + (V)2 (V) 2uoll 2.

We will also need

Lemma 3.8. If Su= g,u(0,:) = ug. Then

1 1 1 1 1
(3.38) IV aty) 2tullcottapsing S (V)2 (Vy)2glls, + (V)2 (Vy)2uo] 2.

The proof of Lemma 3.6 and Lemma 3.8 are similar, for simplicity, we shall
only present the proof of Lemma 3.8 here. The proof essentially follows from
ideas in Lemma 5.1, 5.3 in [20].

Proof. We shall first prove the homogeneous estimate, let Su = 0, with «(0,-) =
ug. Our goal is to show

1 1 1
(3.39) SUp ||| Vary| 2ull L2(any 22 (d(aty) S 11 Val2[VylZuol| 2.
Ty



26 GLOBAL ESTIMATES FOR HFB

This is stronger than desired, since [||Va|2 |Vy|2uol|z2 < [[(Ve)2(V,)2ug|| 2, and
also by Lemma 3.6, we have

1 1 1
sup [|ull L2 (ary 22 (d(e+y) S 1{Va)2uollze S (V)2 (Vy) 2uol| L2
z—y

To prove (3.39) , let A denote the space-time Fourier. For fixed z — y, doing
Cauchy-Schwarz with measures,

IVasy| 7A@ =y + y) (.6 + )P
+
(3.40) S [ot—1er— r>’f§”7' e )

< /6 r €[ = )V EVE Aol ) Pd(E ).

In order to prove the estimate, we must show

sup/57—|§r2 \)'fﬂd(é <1

Without loss of generality, consider the region || < |n|. If |£] ~ |n|

l€+n « 1
» ellnl ~ 1=l
and the integral can be evaluated in polar coordinates. If |{| << |n| then [{+n| ~

1Etnl « 1 <«
|€ —n| Writing il S TS e 7I|W where 6 is the angle between £ — 7 and

&+ n, we estimate

(3.41) 5up/ / T — ;p dpsin(0)do < 1.
/1 — cos(6)

O
The inhomogeneous estimate (3.38) just follows from the homogeneous estimate

(3.39) and the Christ-Kiselev lemma. More precisely, let T} = e"(Aet24) 50
Ty : L2(R%) — LP(dt)L4(dz)L?(dy) and

Ty« L ()W (dz)H (dy) — H®(dx)H® (dy).

Fix # — y and let Ty : H*(dx)H"(dy) — L?(dt)H*(d(x + y)) be the operator
f— (eit(Az+Ay)f) (t,z —y,x +y). Then the inhomogeneous estimate follows by
applying the Christ-Kiselev lemma to 1577

Lemma 3.9. If Su= g,u(0,-) = ug. Then

1 1 1 1
(3.42) 110u15ullcottapsing S 1(V2)2 (V) 2glls; + 1{V )2 (V2o | 12

Proof. For the homogeneous estimate, it follows from the same argument as above.
However, we can not apply Christ—Kiselev lemma here to get inhomogeneous
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estimate since |8t|i does not commute with 1jp;; when we write out the solution

)

using Duhamel’s formula. Let Su = g, with (0, ) = 0, it suffices to prove

1 1 1
(3.43) 1103wl cottapsing < (V) 2(Vy) 2 glls;.-
To prove this, we shall decompose the Fourier support 7 and [£ 4+ 7| of u into
finitely many regions.
Case 1: 72 < 10(1+ €+ n)).

In this case, we have

1 1
H |8t‘ 4 u”collapsing S; H (vx+y> 2 u||collapsing7

thus the desired estimates follows from Lemma 3.8.

Case 2: If 7|2 > 2(|¢] + |n]).

Write v = u' + u?, where

f
(3.44) Ful = +|§|2f+|’2, this no longer has initial conditions 0
. T n

Su? =0, a correction so that u! + «? has initial condition 0.

In this case, it suffices to control w; since uy is only supported where |7| =
|€]2 + |n]%. The goodness about u; is that it has the same Fourier support with
f. The strategy is based on

Ff

1 1
1101 un || oo (d(w—y)) L2 (d(@4y)dt) = ||T4W||L°°(d(xfy))L2(dT)d(£+n)

¥ (f)
< /e - :
S II/IT!4’T+|€|2+W2‘ (€ = )l 22 @raceny)

It suffices to show

s I [ 1e1}

as well as

I
T+ [E[7 + [nf?

€ = )2 arace ny
1 1
< NVl IV 2 £l ) (a2

1 Ff
||/|7-’4‘7__|_|£|2—{_|T,2‘d(€_77)||L2(d7'd(€+77))

1 1
S H’VzP|Vy\2f”Lp’(dt)Lq’(dy)LQ(dw)v

(3.46)

for all admissible pairs (p, q), where 2 = 3 — %

5= 3 , 2<p<o0.
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For 2 < p < 0o, by Cauchy-Schwarz, we have

|7l
LHS(3.45) < || / | Ffld(€ =)l L2(dra
(3.47) 7l Jig—ni<irl® s

1_1 1 1_2
S All107 72 1V 12 1Val 272 F| L2y de—gyate )

where

51 a_
(348) A — Sup |T’ P / . |€‘p d(f _ T])
rétn 7] le—nl<|r|2 |7l

Changing variables, this is something like

3_1 4y
i7p / |U+U|P

L
|7| wi<|rz |u—vl

After a change of variables this is reduced to 7 = 1, and A is bounded.

D=

N

7]

A= sup

1
T, |ul<|T|2

Since by Sobolev,
1.1 1 1_2
1181772 Vy 2 1Va ™% F| L2 (aryae—yyde-ra)
11 3_3 1 1
(3.49) =[10:1272 1Vl a2 19y 2Vl £ 12 greay)

1 1
SHVa|2Vy| 2f“LP’(dt)Lq'(dx)LZ(dy)'
Thus the proof of (3.45) is complete, and the proof of (3.46) is similar.

Case 3: [¢] + |n| > 2|7|2

In this case, due to Case 1, we can assume additionally that ‘T|% > 10(1+ €+

n|). Thus [ —n| > |£ + 7], so also | —n| > |T|% As before, it suffices to show
(3.45) and (3.46).

1
7|1 Ff]
LHS(3.45) < || |5 A& — Ml L2(drd(e+
(3.50) 2le—nl>le+nl+lr2 €=l (drd(&+m)

1_1 1 1_2
S AH|8t|p 2| Vy|2| Va2 prL2(dt)d(rfy)d(a:+y)

In this case,

323 qepp!
(3.51) A? = Sup/ Ll GO S T

e+t J2)e—n|>lenl+ir2 1€ =1t [n]

Again we scale to |T|% + |€ + n| = 1 and have to estimate

1 fut o]t
P
/ A ol ©
|

o1 [0t Ju—v]
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This is bounded uniformly in |u| < 1. As before, the rest of the proof follow from
Sobolev’s inequality, and the proof of (3.46) is similar.

Case 4 :3(|¢| + n]) < |7'|% < 2(|&] + |n]), In this case, due to Case 1, we can
assume additionally that |T’% > 10(1 + |£ + n|) so in this case |T‘% ~ €~ |n| ~
1€ = nl.

We shall use the decomposition v = Y2, Bi;|~oru, and the square function
estimate

1
1107wl Loo (d(z—y)) L2 (d(aty)dt)
1

o ) 1
(3.52) ~| (Z [Plriae 1] 4“|2> e (e L2t
' k=0

1

2k 2 2
S (X 221 P et ooyt pay)
k=0

For each fixed dyadic piece P, oru, in the current case, we have
Plrjngrtt = Plrjok Pleorr2 Py g/t
which implies
1
1| Pzt tellcottapsing S 1V 2) 2 Prjanrz Py anr2ull L2 (at) 16 (d(e—y)) L2 (d(a-+1)
—k 1 1
S 27 2[(Va) 2 (V) 2 By orr2tll p2(at) L6 (d(o—y) L2 (d(a+1)

where we used Bernstein’s inequality in rotated coordinates twice, see e.g., Lemma
3.1 in [10] for more details.

Thus,

1
11061 ull oo (a2 —y)) L2 (d(a-+y)dt)

> 1 1
S (Z (V)2 (Vy) 2P|n\~2’€/2uH%2(dt)L6(d(x—y))LQ(d(x-i-y)))
k=0

S

(3.53)

[N

< (Z H<Vz>§<Vy>5P|n~2k/sz%/>
k=0

S V)2 (Vy)2 flls:

where we used Strichartz (Theorem 3.1) in the second line, and square function
estimates in y the the last line.

g
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4. Proof of Theorem 2.1.

In this section, we shall see how we can apply the theorems in the previous
section to prove Theorem 2.1. Throughout this section, we shall use extensively
the fact that

supp ¥ C B1(0)

This assumption implies that, the multiplication operator T'u = vyu can at most
enlarge the Fourier support of u by a set of size N, which will greatly simplify our
proof, especially the proof of Theorem 4.1 below. If we assume v satisfies (1.25)
without this condition, one can follow similar steps in this section to get the same
conclusion. In that case, the multiplication operator T'w = vyu can enlarge the
Fourier support of u by a set of arbitrary large size, but with a rapidly decay
constant if the new Fourier support deviates from the Fourier support of u by a
large distance. For the sake of simplicity, we do not present the full details here
for this general case.

To begin with, we shall first prove the following theorem involving collapsing
norms at low frequency

Theorem 4.1. Let A satisfy (2.11), we have

1 1
” <Va:+y>§AHlow collapsing + H ’at|ZAHlow collapsing
1 1 1 1
(A1) SIKVa)2(Vy)2Glls; + ell{Vasy) 2 H colapsing + €110 1 H || cottapsing
1 1
+ (V) 2(Vy) 2 Aol 2

where the norms || - ||cotiapsing and || - ||iow collapsing @re defined as in (2.8) and
(2.9), and € is defined as in (1.25).

Remark 4.2. Due to the criticalness of the potential N2v(N(z —y)) in (2.11),
it is still open to us if one can prove the above theorem without the frequency
assumption on A, i.e., to replace on the left side the || - ||iow collapsing by the full
collapsing norm. However, in the case where A satisfy (2.11) with H = 0, we do
know how to control the full collapsing norm

1 1
|| <V:B+y> 2 AHcollapsing + H |at‘ 4 AHcollapsing

by using a different argument, the details are given in Section 8. Also in [10], a
stronger version of the theorem is proved for the case when one replace N2v(N (z—
y)) by N33=Ly(NB(x — 5)) for some f < 1.

1 1
Proof. We shall focus on [||0¢|4 Al|10w coltapsing, the proof for the term || (Vaiy) 2 Alliow coliapsing
is similar. And we will first show that
1
H‘P|5*TI‘<2ON |8t| * AHcollapsing

(4'2) 1 1 1 1 1
5 |’<vm>§<vy>§GHS,ﬁ + 5|Hat|ZH”collapsing + H(vm>§<vy>§A0HL2-
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Let p € C§°(R?) be a smooth partition of unity, which satisfies
D pE—)=1VEER,
jez?

We also assume that 0 < p <1, p=1if [¢| < 5 , and supp p € B1(0), the unit

ball in R? centered at origin. Let 1;(z — y) be the inverse Fourier transform of

p(io;]@ —4). For each fixed j € Z3, 1; is Fourier supported in a ball of radius 40N

centered at 40N - j. Denote
Pif == f

so that the Fourier transform of P;f = p( don —J) f. In particular, let Pyf denote
projection onto ball of radius 40NV centered at origin, so that the Fourier transform

of Pf = P(40N)f
Define

(4.3) H’at 4A||N 22_ ( Z HPJ'|at‘iAHcollapsing>'
k<|j|<k+1

It is clear that

;
H})|5_77|<20N‘8t|4 Hcollapsmg ~ HPO|at’ AHcollapszng ~ |||at|4A”N
Thus it suffices to show that
1
(4.4) 11065 Al w
° 1 1 1 1 1
N H<Vm>§<vy>§G”84 + 5|||8t’ZHHcollapsing + H<vm>§<vy>§A0HL2-

We shall first deal with the last term in the norm, where £k = N. Note that for

each fixed j € Z3, the Fourier transform in x —y direction of P; |8tﬁA is supported
in a ball of radius 40N, by Bernstein’s inequality,

1
P50 2 All Loo (d(a—y)) L2 (dt) L2 (d(a41))
1 1
(4.5) SN2 || Pj[0]% Al 16 (d(o—y)) L2 (dt) L2 (d(a+y))
1 1
SN2 |10k 2 Al L2 de) L6 (d(w—y)) L2 (d(a+y)) -
Recall that

SA(t,z,y) = N2’U(N($ —y))A(t,z,y) + G(t,z,y)
+ NQU(N(JU —y)H(t,z,y)
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By Theorem 3.5, we have

1
1961% Al L2 (ar) L6 (d(2—v)) L2 (d(a+1))

2 1
< CNFo(N( —y ))|8t|4AHLZ(dt)Lg(d(m—y))LQ(d(z—&-y))’

T CHNZU(N( )) lat‘ I_IHL2 dt)L g(d(:rfy))LQ(d(achy))7
1

+ )| ((Vamy)® + (Vary) D) Gl
(4.6) el ) + (Vary) ) Aol o

< Cel||ai1 A"L2(dt)LG(d(xfy))LQ(d(ery))’

~1/2 1
+CeNTY H|at’4HHL°°(d(z—y))LQ(dt)LQ(d(z+y))’

+C[| ((Vay)? + <Vx+y>%)GH$;
+ C[ ((Vay) 2 + (Vary)2) Aol 21

where we used Holder in the second inequality. By choosing € small enough such
that C'e < 1/2, we have

1
11015 Al L2 (at) L6 (d(w—y)) L2 (d(a+1))

_ 1
< CeN72|||0y| 4HHLoo(d(;g—y))LQ(dt)LQ(d(l’-i-y))’

+O)|((Vamy)? + (Vauy)2)G

(4.7) 5

+C[|((Va—y)? +<Vx+y>%)U0HL2,

< CeN™ 1/2H!<9t 4H"Loo(d(x_y))LQ(dt)L2(d($+y))’

+ C(T2) 3 (V)G g, + Cl[(Va) E(Vy) 2o o

If we combine (4.5) and (4.7), we get

1
1 P50 |3 Al oo (d(a—y)) L2 (dt) L2 (d(2+y))

1
(4.8) < Cel||04] 3 HI| oo (aay) 12 (aty 2 (a1
1

+0N%||<vx>%<vy>l +C’N2H 22 (Vy) 7ug|| -
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Since the number of j € Z3 such that N < |j| < N + 1 is bounded by CN?, we

have

Z 2_NHPj|at|iAHcollapsing

N<|jI<N+1
—N ar2 1
<C2°°N 5“ 0] 4HHLOO(d(x—y))L2(dt)LQ(d(:v-l-y))’

+C2NNE[(V2)2 (V)26 ,

+C2NNE||(V4) 2 (V) Fug |-

1
< CEH ’at‘ ‘ IJHL"O(d(aj—y))L2 (dt)L2(d(z+y))’
+C|[(V2)2 (V)26 g, + Cl[(Va)2 (V) 2o -

Now we shall control the terms 0 < k < N — 1 using a bootstrap argument.
Write A = A1 + Ay + A3, where

SA =G, M(0,:) =Ao
SAy = N*o(N(x —y))H(t,x,y), with initial conditions 0
SA3 = N*o(N(z —y))A(t,x,y), with initial conditions 0.

By Lemma 3.9, we have

N-1

— 1
DIER (D D LTI N
k=0 E<|j|<k4+1
N-1 .
Y2 (0 9 A tapaing)
(410) kZ:() bl collapsing
N-1

_ 1 1 1 1
SY 27 Y (V39,3 Glls, + 1(92)3 (V)5 Aol )
k=0 k<|j|<k+1

1
SINV2)2 (V) 2Gllsy + (V)3 (V)2 Aol 2.

And if we repeat the argument in (4.5)-(4.8), for each fixed j, we have

1

(4.11) |P5[0] 2 Aol Loo (d(a—y)) L2 (dt) L2 (d(2+4))
. 1
< Cel||oy] HHLOO(d(m—y))L2 (dt)L2(d(z+y))"
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Thus,
N—-1 )
> S IR el i)
k=0 k<|j|<k+1
(4.12) Pl B
5252 k( Z H‘at|4HHcollapsing)
k=0 k<|j|<k+1
1
56|H8t|4HHcollapsing'

It remains to control the terms involving As, note that since ¢ is supported in the
unit ball centered at origin, we have

S PjAs = PjNQQ}(N(.%' —y))At,z,y)

= PjN2U(N(ZE —y)) Z PyA(t,z,y).
3l =51<1

Thus we have the following analog of (4.11)

1
(| P50 2 As| Loo (d(a—y)) L2 (dt) L2 (d(a+y))

4.13 1
( ) <C Z EHPJ’@’4A||Loo(d(x—y))L2(dt)L2(d(x+y))’
3’3 —j1<1

Thus,

N-1 L

ZQ_k( Z ||Pj|at’ZA3Hcollapsing>

k=0 k<|jl<k+1
(4.14) Nl 1

g Z 52_k( Z Z Hpj”at‘ZAHcollapsing>'
k=0 k<|jl<k+14":|5'—j|<1

By choosing e small enough, the right hand side of (4.14) is bounded by |||, | %AHN,
thus the proof of (4.4) is complete.

To prove (4.2) when P¢_, coon is replace by Pecoon or Piyjcoon, We use a
complete similar argument, the only necessary change is to replace the use of
Bernstein’s inequality in (4.5) by Bernstein’s inequality in rotated coordinates.

O

Proof of Theorem 2.1.

To prove Theorem 2.1, it remains to control || (V@é <Vy>%AH3x,y, where ||-||s,.,
is defined as in (2.1).

Case 1. Let us first assume [ + 7| > 1—1\6, the norms we are going to control are

different for the case |€ + 7| < 1—1\6, but in both cases the norms contains ||A|s,
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In this case, the norm with respect to which the potential is a perturbation should
be

1 1
(4.15) Al = [{V2)2(Vy) 2Alls
1
(4.16) + | Pej=10n8 Pl <108 (V) 2 Al cottapsing
1
(417) + HP\§|<10NP|77|210N<VZU> 2A||collaps7jng
where || - [|s is defined in (2.2) and || - ||cotapsing is defined as in (2.8). Here we

are abusing notations a bit by using A to denote P|5 >N A. The projection on
=10

€+ nl = % is necessary, as we shall see later in the proof, we do not know how
to control the collapsing norms in (4.16) and (4.17) without this assumption.

Let’s first control the low frequency, let Py = P¢j<cionPyj<10v and Psy =
I — P_.n. Note that

1 1

S(Va)2 (V)2 Py
=Py (V)2 (V) 2N?0(N (2 — ) Pe_y <caon A
+ (V)2 (V)2 PnG(t, 2, y)
(4.18) + Pen(Va) 2 (V)2 N?0(N(z — y)) H(t,z,y)
~P.NyN*u(N(z — y))Pe_pj<aon A
+ (V)2 (V)2 PayG(t,2,y)
+ PayN*u(N(z — y) H(t,z,y)

Here we are abusing the notation a bit by writing
1 1
Pon (V)2 (Vy)2 N*u(N(z — Y)) Ple—pj<20n ~ P_yN3(N(z — Y)) Pe_pj<20n

since, as a result of Bernstein’s inequality, for all 1 < p,q < oo, we have

1 1
1P<n (V)2 (V)2 N*0(N (2 — 9)) Pe g <20n A 102y Lo (1)

(4.19)
SIP<NN?0(N (2 = y)) Pe—yj<20N Al 10 (20— L9 (24)

which is harmless for our purposes. We shall use the same notation ~ repeatly
in the later arguments. Also, strictly speaking,

P<NN2U(N(35 —y)A = P<NN2U(N(33 - y))P|£—n|<21NA,

instead of Pe_,<20nA, due to the fact that convolution with ¢ will shift the
frequency support. But it will not make a essential difference in our argument.
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By Strichartz estimate (Theorem 3.1), we have

1(V.)2 (V)2 PeyAlls

rg Hp‘f—n‘<20NN3’U(N(x - y))AHLQ(dt)Lg(d(l‘fy))LQ(d(.Z#»y))

3 _
1P ey NN = D) HN L8 et
1 1 1 1
+ [(V2)2(Vy) 2 PenGlls, + (V) 2(Vy) 2 Ao 2
1 1
5 HUHL% <||P|§—77|<20N<v1‘+y> 2A||collap8ing + H <vx+y> 2 H”COllapsing)
1 1 1 1
+ (V) 2{Vy) 2 PenGlls; + [[{Va) 2 (V)2 Aol 2,
where in the second inequality we used Bernstein’s inequality and the fact that
€ + 1] > 5.
By Theorem 4.1, we have
(4.21)
1 1 1
(V)2 (Vy)2 P<nAlls S €ll{Vary) 2 H | cottapsing

+ V)2 (V)2 PanGlls + (V)2 (V)2 Aol 2

(4.20)

At high frequency, write

PonA =Pe>108 P> 108N + Plej>108 Pyj<10nA
(4.22) + Pej<ion Pp>10nA
=TI+ 1T+ 1II.

To handle the first term I, note that
1 1
S(V1)2(Vy)2 Pe>108 Py j>108 A
1 1
~N?0(N (2 = 9))(Va)2(Vy)? Pejson Pzon A
1 1
+(V2)2(Vy)2 Pe> 108 P> 108G (1t 2, Y)
2 1 1
+ N*0(N(z — y))(Va)2(Vy) 2 Pej>on Py >on H.

(4.23)

The lower bounds on [¢| and |n| changed slightly due to convolution with oy,
since ¥y is compact supported in a set of size V.

Using Strichartz(Theorem 3.1) and Holder’s inequality, it is not hard to see
that

1

1
(V) 2(Vy)2 Pe>10n P> 108 Alls

(4.24) S el{Va)2(Vy)2Alls

1 1
+ €l{Va) 2 (Vy) 2 H || 12(dt) L6 (d(2—y)) L2 (d(-+y))
Y 11
+ (V) 2(Vy) 2Glls; + [[(Va)2(Vy) 2 Aol 2,
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where the £ comes from |[|v]|;3/2 when applying Hélder’s inequality.

To handle the second term 17,
S(Vxﬁ(Vy)% el>108 Py <10n A
NN%U(N(UU - y))<vx>%P|§\210NP|n\<10NA
+ N20(N (& = ))(V2) (V)2 Pz 1o Pron<pyi<1in A
+ N30(N(z — y)) Pon<|e|<108 Plyj<1on A
+ NgU(N(fU —yNV >2 ej>oN Plnj<tinH
+ <vw>%<vy>% e|>10N Plnj<10nG (t, 2, Y).

Again the bounds on |¢| and |n| changed slightly due to convolution with ox. By
using Strichartz and Holder’s inequality,

1 1
(V)2 (Vy)2 P> 108 Py<ionAlls

1
S ell{Va) 2 Piej>10n Plnj< 10N Al oo (d(—y)) L2 (dt) L2 (d(2+1))

(4.25)

1 1
+ €l{Va) 2(Vy) 2 All L2 (a0) L6 (d(2—y)) L2 (d(2+v))

(4.26)
+ [N*o(N(z — y)) Pan<j¢|<10n Pyj<10n Al

L2( dt)Lf’(d(ﬁU y))L2(d(z+y))
+el(V >2HHL°° (d(z—y)) L2 (dt) L2 (d(a+))

1
(V)2 (V)2 ls; + [[(Va) 2 (V)2 Aol 2

Again, since we are assuming |£ + 7| >N 10> by Bernstein’s inequality and Holder’s
inequality, the third term on the right side can be controlled by
3
[Nv(N(z — y)) Pon<|e| <108 Pl <108 Al 2(a1) 1675 (a(z—y)) 12 (d(44))
1
,S ”Pléfn\<20N<vx+y> 2 A”collapsing~
The third term II1 can be handled in a similar way as the second term.

To finish to discussion for the case [ +n| > & we are reduced to estimate

10°

(4 27) HP|§|210N[)\77|<10N<vx>§AHcollapsing

1
+ |1 Pej<108 Plnj> 108 {Vy) 2 Al coltapsing-

We shall focus on the first term, since the other term involving (Vy)% can be
dealt with similarly.

Write A = Ay + Ay + A3, where
SA =G, A3(0,-) =Ap
(4.28) SAy = N?v(N(z —y))H(t,z,y), with initial conditions 0
SAs; = NQv(N(ac —y))A(t,z,y), with initial conditions 0.
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By Lemma 3.7, we have

1
HP|£|210NP|77|<10N<vx> A Hcollapsing;

(429) 1 1 1 1
S IKV2)2(Vy)2 Glis; + (V)2 (Vy) 2 Mol 2.

To handle Ag, since |n| < 10N, by Bernstein’s inequality at an angle, we have,

1
(4.30)  ||1Piej>108 Pinj<108 (V) 2 A2l coltapsing

1
< NY2|| P> 108 Pyj<108 (V) 2 Al 12 dt) 16 (d(w—y) L2 (d(z9)-
Note that

1
S(Va)2 N2 P> 108 Pyj<ion Az

(4.31) o 1
~ N/2y(N(z — Y))(Vz)2 Peson Pyj<1invH.

By Strichartz and Holder’s inequality

1
N2 P> 108 Plyj<10n (V) 2 A2l 12 (a6 16 (d(a—y)) 12 (d(-+3)

5
(430 SINHON@ = ) Pason Pateay Hl a8 a0 i2idoson

1
S ell{Va) 2 H|| Lo (d—y)) L2 (dt) L2 (d(a+9)) -

To handle As, since |n| < 10N, by Bernstein’s inequality at an angle, we still
have,

1
(4.33)  ||1Piej>108 Pinj<108 (V) 2 A3l coltapsing

1
< NY2|| P> 108 Pinj<10n (V) 2 Asll 12 (de) 16 (d(e—y)) L2 (d(-ty)) -
Note that

S<vz>%N1/2P|§\210NP|77\<10NA3
~ N3o(N(z - y))<vx>%P\§|210NP\n|<10NA
+ N2o(N(z —))(Va)? el>108 Pron<|p <11 A
+ N30(N(z — y)) Poyn<je|<10n Py <108 A

(4.34)
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By Strichartz and Holder’s inequality

1 1
N2 (V)2 Pej>108 Py <108 A3l 22 (d8) L6 (d(@—y)) L2 (d(241))
1
S ell{Va) 2 Piej>10n Plnj< 10N Al oo (d(o—y)) L2 (dt) L2 (d(2+1))
1 1
+eNZ|[(Va) 2 Al £2(4t) 16 (d(w—y)) L2 (d(2-+v))

(4.35) + HN?)U(N(x - y))P9N§|§|<10NP|n|<10NAHLQ(dt)Lg(d(%y))m(d(ﬂy))?

1
S ell{Va) 2 Piej>108 Plnj< 10N Al oo (d(o—y)) L2 (dt) L2 (d(2+v))
1

1 1
+ &l(Va) 2 (Vy) 2 Al L2 () L6 (d(2—y)) L2 (d(z+2))
1
+ ||P|§*7]|<20N<vx+y> 2 AHcollapsmg,

where for the second term on the right side we used Bernstein’s inequality and the
fact that |n| > 10N , and for the third term in the right side, we used Bernstein’s
inequality and the fact that |£ + 7| > %.

Case 2. [+ 1| < %, |€ —n] < 10N.

In this case, we are only able to control ||(V) 2 (Vy) %AHSW instead of || <V$)% <Vy>%AH5,
recall that || - [|s, , is defined as in (2.1). Note that

1 1
S<vx> 2 <Vy> 2 P|g+77|<%P|£—77|<10NA
NP|g+n|<%P|£—n|<10NN3U(N($ —y))Pe_nj<20nA
1 1
+ (V)2 (Vy)? P|g+77|<%P|§fn|<10NG(ta z,y)

t Py ¢—nj<1onN°0(N(z — y))H(t, 2,y)

(4.36)

By using Theorem 3.2 for the first and third term, and the Strichartz estimate
(Theorem 3.1) for the second term on the right side of (4.36), we have

10V2)2 (V)2 Pe 5 Pepj<ronAls..,
<N Pe—ni<20n NP0 (N (2 = 1)) (Varry) 2 All 11 (da—y)) £2(a0) L2 ((049))
+ HP\S—nKQONNSU(N(x - y))’8t|%AHLl(d(xfy))L2(dt)L2(d(:Jc+y))
+ | Pe—pj<aon N*0(N (z — y))<vx+y>%HHLl(d(z—y))LQ(dt)LQ(d(z+y))
4.37)  + [1Pen<2on N0 (N (x = )0 TH| 12 (do—y)) 2200 L2 (049))
+1(V2)2 (V)2 Gy + (V)2 (V)2 Aol 2
S 1022 (1 Pie—ni<20n (Va4 Mllcottapsing + [1Pe <2014 Allcotapsing
{24 Hlcottapsing + 11041 Hcottapsing )
+1(V2)2(V,) 3G sy + (V) 2(V,)3 Aol 2,
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By Theorem 4.1, we have

1 1 1
(4 38) H <VI> 2 <Vy> 2 P|§+n|<%P|§—77|<10NAHS S 5” <V:L”+y> 2H||collapsing

1 1 1 1 1
+ el[|0:]% H [ cottapsing + (V)2 (V) 2 Glis; + [[{(Va) 2 (Vy) 2 Ao L.

Case 3. [+ 1| < &, |€ —n| > 10N.

In this case, || ~ |n| ~ | — 1|, define P~y = P|€+n\<% ¢—y/>10n The norm
with respect to which the potential is a perturbation should be

1 1
(4.39) Al =[1(V2)2(Vy) 2 PonAlls,,
1 1~
(4.40) + 111015 (Va—y) 2 Po N Al L2(at) 16 (d(2—y)) L2 (d(+y))
1 1~
(4.41) + [[{Vaty) 2 (Va—y) 2 Po N Al 2(d0) 16 (d(2—y)) L2 (d(2+y))

where Poy = P, x Ple_yi>on
In this case,
S(Va)2 (V)2 PoyA
(4.42) ~ N2u(N(z — y))(Vae_y) PsyA
+(Va)2(Vy) 2 PanG(t, 2, y) + N20(N (@ = y)(Vary) Po v H.

Using Strichartz for the second and third terms on the right side, Theorem 3.4
for the first term on the RHS, and Hélder’s inequality, we get

1(V2)2(V,)2 PonAlls, ,

< el T (Vamy) 2 Pon Al 120ty 6 (d(e—y)) 22 (d(249))
+el[(Vory) 2 <vx—y>%ﬁ>NA”L2(dt)LG(d(x*y))LQ(d(achy))
+(V2)2(V,)2 PonGlls;

(4.43) + (Vg Po v H| 12(a1) 16 (d(o—) L2 (d(4)

< el <Vw—y>%]3>NAHLQ(dt)LG(d(x—y))LQ(d(a;—&-y))
+ (V) 2 (Vamy) 2 Po N Al 2 (a0 L6 (da—y)) 12 e -1)
+ (V)2 (V,)2 PonGlls,
+ell(Va)3 (vy>%H||L2(dt)LG(d(x—y))LQ(d(w-i-y))‘

Thus, it suffice to control
1
1101 (Va—y)

(4.44) (Vg
=] +1I.

Nl

PN Al L2 (a6) 1 (d(a—y)) L2 (d(a1))

=

l ~
(Va—y) 2 PoN Al L2006 16 (d(—y)) L2 (d(24+))
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For simplicity, we shall only give the details for the first term I, the second term
is easier and can be handled in a similar way.

Note that
1
S{Va—y)2 Pe—y>on P |e+nl< % A
1
~N*0(N (& = 9)){Vay) 2 Ple_pzon Ple < 8 A
5
(4.45) + N20(N(2 = y)) Pan<je—n<on Py« 5 A
1
+ (Va—y) 2 Pe_y>on P le+n|< G(t,2,y)

1
+ NQU(N(x - y))(Vx,y> 2 \5—77\28N letnl< X H,
where the bounds on |£ — 7| changed slightly due to convolution with 0.

By Theorem 3.5 and Holder’s inequality, we have
(4.46)

1 1
1106 ¥V 2~y Plenjzon Ple 4 pj< 2 Al 2(at) 26 (a0 =) 22 (a0 49))
1 1
S elll0e)#(Vay)? Plenzon Ple g i< 2 Al L2 (at) 26 (d(0—9)) 22 (d(0+9))

+|[IN3 (N (z — y))P8N§|£fn\<9NP|§+T]|<%‘at|ZAHL2(dt)Lﬁ(d(x—y))L2(d(z+y))
+ H<vx*y>P\§—n\29NP|§+,7|<%G”S;
+ el <vzfy>f~)|£—n|28NP\5+m<ﬂH”L2 ) L6 (d(z—y)) L2 (d(z+y))
+ [{(Vaey) Pe_pzon P <X Aollz2
Sell |at|i<v$*y>%P>NA|’L2(dt)LG(d(zfy))LQ(d(ery))
+ el ’at‘iPlf—n|§20NA”Loo(d(x—y))LQ (dt) L2 (d(z+y))
V)2 (V)2 Glls; +€ll{V2) 2 (V)2 H | 12ty e 22 a0
+ [V2)2 (V)2 Aol 2,

where the first two terms on the right side of the first inequality corresponds to
the first term on the right side of (3.16), and the last three terms on the right

side of the first inequality corresponds to the remaining terms on the right side
of (3.16).

5. Estimates for the nonlinear equation.

Recall the notation

19
AL+ A,
S+ =75

From now on, Vy(z — y) = N3v(N(z — y)).

Define I' = T, + Ty, A = Ac + Ay, where I, = ¢ ®@ ¢, A\e = ¢ @6, T
+sh(k) osh(k), and A, = 5sh(2k). Let p(t,z) = ['(t,z, z).
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The four relevant equations are

y
(5.1)  SA+ (Vi p Mg} + oAy
+ ((VNFP) oAy + (VNA,) o Fp)symm

— VNA

+ (<VNFC) °© AP + (VNAC) °© I‘1”)53/mm N
(5.2) Sal'p + VN * p, Fp] + ((VNFP) ol'p + (VN]\;D) © Ap)
+ ((VNFC) o Fp =+ (VN/_\C) oA )skew =0
(5.3) SAc + {Viv * p, Ack + (WTp) 0 Ae + (Vvp) o Te)

(Vn
(5.4) SiTe+ [V xp,Te) + (VaTp) o Te + (VA,) o
y)

Here (A(x, y))symm = A(z,y) + Ay, x), ( (z,

skew

=0
)skew =0.

)skew - (J? y) A(y,x),

(Viv s p A} vy) = [ de V(o = 2) + V(o = 2)) p(2)A ),
and
Va #p.T)wg) = [ d2 Vvl = 2) = Viy = 2) oL (20).
The norm used for A, is called N7 (A) and is
1 1 1
HAHN1(A) - H<V$>2 <Vy> 2AH8w,y + H<V:c+y> 2A”low collapsing
+ H ’atﬁAHlow collapsing
1 1
(5.5) + [[(V2) 2 (V)2 Pz 108 Pni=108 Pie 1 5 All 2 gy ooy 2 (aa)
1
+ H oty) <foy>2plf—n|210N &-+n|< 2L HL2(dt)Lﬁ(d(acfy))LZ(d(:ery))

1 1
+ H |0 i <Vx*y> ? P|§—77|210NP|£+17|<%AHL2(dt)LG(d(acfy))LQ(d(:ery))’

where the norm || - ||iow collapsing is defined as in (2.9). The last three norms in
(5.5) does not appear in the statement of Theorem 2.1, but as one can see from
the proof of Theorem 2.1 in the previous section, they satisfy the same bounds
as the first three norms on the right side of (5.5).

The norm used for A, is called N3(A) and is
1 1 1
HAHNQ(A) = [(V)2(Vy) 2A||Sz,y + (Vaity) 2 || cottapsing
1 1
(56) + |||8t|4A”collapsing + H< >2A||collapsing

+ (V) 2 Allcottapsing + [[(V 2AHL? dt) LY (d(w—y)) L (d(z+y))"

We will use the following a priori estimates for I'(¢, z, ) (proved in Lemma 6.2

n [10)).
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Lemma 5.1. Let the potential v satisfies (1.26), and the initial conditions satisfy
(1.27), we have for all0 < o <1,

< 1.

(57) H <Vfc+y> FHLS(dt)LOO (d(xfy))L% (d(z+y)) ~

The above estimates also hold for I'y, I'. and A, separately.

We need to use a continuity argument, we have to localize our estimates to
intervals [0,7], where the right end of the interval must be a variable T'. De-
fine Acr, Ap1,Tp 1, e to be solutions to the standard equations with the RHS
multiplied by x(o,77:

y
(58) SAp,T + WNAP,T
=X (= (Vv 2. A} = (VWTp) o Ay + (Vi) 0 Ty)

F 1%
— ((WwLe) o Ap + (VvAe) o Tp) o — WN Ac)

skew

(5.9 SiTpr = xpr ( — [Viy % p, Ty — ((VaTp) o Ty + (VivAy) o A,)
- ((VNFC) °© Fp + (VNAC) © Ap)skew>
(510)  SAcr = X1 ( — (Vi % py At — (VaTyp) o Ac+ (ViA,) o rc)symm)

(511) S:EFC,T = X[O,T] ( - [VN * 0, FC] - ((VNFP) o PC + (VNAP) ° AC)skew)

with A.7(0,-) = Ac(0,-), and similarly for the other three functions. Also, we
Acr = Ac in [0,7] (but not outside this interval), and similarly for the other
three functions.

Theorem 5.2. Let [0,T] be as above, there exist a universal constant C' such that

1 1
v < ClIV2)2(Vy)2Ap(0, )| 22 + Cel|Aprllag (a)
+Ce|Tyrlls,, + CellApr

HAI%T

(5.12)

A ITprlls,, + CellAerlng(a)-
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The proof is based on Theorem 2.1, there exists a constant C' such that

1Ay,

7lln ()
< c(u<vx>%<v )2x0,11 ({Viv # 9 Ay} + (VWTp) © Ay + (VivAy) o T
+ ((VaTe) o Ay + (VA 0 Tp) ) sy
2 (V

1
+ €ll{V2) 2 (Vy) 2 X (0,11 Al L2 (dt) L8 (2 —y) L2 (d(+1))
(5.13)

1 1
+ 5” <V:v+y> 2 XJo,T) ACHcollapsing + 5” ‘8t| 4X[0,1 Achollapsing

p) symm

1 1

+ 5” <vx> 2 X[0,T7] Achollapsing + 5” <vy> 2 X[0,T7] Ac”collapsing
1 1

+ C(Va) 3 (V) 3050, 12 )

For all terms other than |||at|iX[0,T] Acl|cotiapsing, the subscript T' can be trivially
added to A, T on the RHS. And we also have

1
119617 x 10,77 Al Lo (d(z—y)) L2 () L2 (d(z+-)

1
(5.14) = 1119 “Xpo A7l oo (d(a—y)) 12 (dt) L2 (d(a+4))
S0 % A,
S Al sy

—y))L?(dt) L2 (d(z+y))

where in the third line we used the fact that

1 1
11015 X 0,71 F'[| Loo (d(@—y)) L2 (a6 L2 (d(a+y)) S IO F || oo (d(w—y)) 22 (dt) L2 (d(a+y))

for any interval [0,7]. As remarked in [10], this can be shown by using the
equivalent definition

_ Ju(t)
(5.15) Hat“*UHLQ—// ” —5|1+2 dtd

and the generalized Hardy’s inequality from [37].

In the lemma that follow, we estimate the norm of the nonlinear terms in
suitable dual Strichartz norms, using the bound (5.1) whenever possible.

Lemma 5.3. Let [0,T] be as above, there exist a universal constant C' such that
1 1 —
1V (V)7 ({Viv 5 o, Mgk + (VD) 0 Ay ) s

1 1
< Cell(Va)2(Vy) 2 Aprlls,. -

(5.16) 18 ([0, 2.3 (dx)L2(dy)’

Here I' can be I'), or I'c. The result depends on the a priori bounds for I', but is
true with Ay 1 replaced with any other function.
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Proof. In this case, we essentially view Vxy as a d distribution, by Minkowski
integral inequality, and it suffices to show that

1 1
x 2 2 F t) ) A tv ) e 5
s PO ()3 (Dt 2+ DAz (b +29)) |5 000014 oz

1 1
< Cl(V2) 2 {(Vy)2 Ap s,
where the extra € factor in (5.3) can be remedied by the smallness of ||V |[z1.

Using the fractional Leiniz rule from Theorem 5.1 in [10], we have the following
estimate, uniformly in z:

1001
(V)2 (V)2 (F(t’ vz +2)Apr(t, 2 + 2, y)) HL%([O,T})L%(dx)L?(dy)

< O(Va)3D(t 2,2 + 2)]| V) A,

Lo L+ (¢ | L2 (aty oo~ (da) L2 (ay)

1 1
(5.18) +CO|T(t,z, = + Z)HLg(dt)L¥(da:)H<vz> 2(Vy) 2 Ap 7l 228 16 (dw) 12 (dy)

1 1
< CI(V) T (t, 2,2 + 2)| (V)2 (Vy) 2 Ap 1l £2(dt) 16 (dw) 1.2 (ay)

L8(dt) L3 (dx)
1 1
< CI(Va)2(Vy) 2 Apr(t, @ + 2, Y) L2 (dt) 16 (de) 12 (dy) -

Here « is can be any number in (1, 1], %—i— is a number that is bigger than but can

2
be arbitrary close to %, similarly co— is any finite number but can be arbitrary
large. We use co— since we do not have the sharp Sobolev estimate from L° to

L. In the last inequality we used Lemma 5.1. U

Since A, satisfies the same a priori estimates as I', by the exact same argument
we get

Lemma 5.4. Let [0,T] be as above, there exist a universal constant C' such that

N

1V (V)7 ((Vivhe) o Ty
< Cel(V2)2(Vy)2Tprls,, -

(5.19) 24 017028 @y 2

The result depends on the a priori bounds for A, but is true with I'yr replaced
with any other function.

We continue estimating nonlinear terms.

Lemma 5.5. Let [0,T] be as above, there exist a universal constant C' such that

1 1
(V)2 (Vy)> ((VNAp,T) ° Fp,T> 124 o123 (@) 22(ay)
1 1
< CellAprllnwll{Va)2(Vy) 2 Dy 1ls, -

The result is still true if we replace I'y, 7 with any other function.

(5.20)
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Proof. In this case, we shall not treat Viy as a § distribution. Recall that
1 1
(Va)¥ (9,0 ((ViApr) 0 T )

(5.21) = (V)V} / NOu(N (e — 2)Apr (@, )Tz, y)d

For fixed z, the following holds, uniformly in z

4
3

L3 ([0,7])L3 (de) L2 (dy)

1 1
||<vx>§<vy>§(Ap,T<t,z,x+z>rp,T<t,x+z,y>)|| (
1
< CI(Va)2Apr(t, @ 37+Z)HL2(dt)L2 ) [[{Vy)? FILT(tamvy)"L‘l(dt)LG(dm)L?(dy)
1
+ CllApr(t 2,2 + 2) | 2y oan (V) (V)
)3

1
< ClV2)2 Apr(t, 2,2 + 2) || L2 at) L2 (da) | (V)

N

Ly (t 2z, y) L4 (ae) 3 (de) L2 (ay)
)

Wl

1
(V)2 Lpr(t, 2, y) | pa(ae) 13 (dw) 12 (dy) -

Thus, by Minkowski integral inequality it suffices to show that

1
(5.22) /|N3U(NZ)|H<vx>2AP,T(t7$7x +2) L2 (a2 (de) 4z < Cel|Ap il a),

which is equivalent to

1

3 1
(5.23) /‘N IN{Vaty) 2 Apr (2, 9)| 1220y 12 1) & — V)
< CEHAp,THNl(A)-

To see this, note that if for A, 7, we have |£ —n| < 20N, |{] < 20N or |n| < 20N,
then the left side of (5.23) is easily controlled by

(5.24) /|N3 |H wty) 2 Apr(t 2,y HL2 (dt)L2(d (xﬂ,))d(fﬁ' =),

< Cg”Ap,THlow collapsing-
Thus if we denote Py = P¢_y>20nFl¢j>20nFly|>20n, We are further reduced to
showing that
3 1
(5.25) / |IN“v(N(z — 3/))‘“ <Vx+y> 2P>NAP7T<t7 z, y)HL2(dt)L2(d(a:+y))d<$ )
< Cel[Ap,rllnvg (a)-

As in the proof of main theorem for the linear equation, we shall divide our
discussion into two cases.

Case 1: |+ 1| < 55.
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In this case, by Holder’s inequality,

/|N3 ‘H x4y 2P>NAP r(t, @,y HL2 dt)L2(d(z+y))d(z—y)

< CeN|(Vayy) 2 Pon Pyt Do 2 (6 29| 1o (aayy 12ty 22 (ot )

< CEN?H z+y 2P>N \5+n\<NAp Tty HL2(dt)L6(d(:C*y))L2(d(x+y))

1
< CEH a4y) <vx—y>2P|£*?7|210NP\§+77|<%AP,T(@xv y)}|LQ(dt)LG(d(x*y))LQ(d(:t:+y))
< CE”Ap HN1(A)

where in the third inequality we used Bernstein’s inequality along with the fact
that [ —n| > 20N.

Case 2: [€+n| > 1—]\6
In this case, by Holder’s inequality,

1
[ 1N = TPy At () 2ty 2t

1 1
< CeN2[[(Vary)2 Pon Figo 26 Ap (1 2 )| ooy 2 a2 ate)

1 1
< CeN2 (Va2 Pon By s 5 Apr (82, 9) || a6y L2 (w49

+C€N2H W2 Py P> nApr(t, 2y HL2 dt) LS (d(z—y)) L2 (d(z+))

1 1
305”<Vz>2<vy>2 =108 Plyj>108 |g+n|z%Ap’T(tv~’“’y HL2(dt)LG(d(:vfy))LQ(d(:Jc+y))
< Cel[Ap,rllnvg (a)

where in the third inequality we used Bernstein’s inequality in rotated coordinates
along with the fact that |{| > 20N and |n| > 20N.

O
We continue with estimates for [|Ac7|[a(a). This is an easy version of the
previous theorem. Using Lemma 3.7-Lemma 3.9 and Strichartz estimates (Theo-

rem 3.1), and then applying Lemma 5.3-5.5 in this section to handle the nonlinear
terms, we get

Theorem 5.6. Let [0,T] be as above, there exist a universal constant C' such that

1 1
[Aerlne@) < CllVE)2(Vy)2 Ac(0, )| L2 + Cel| A rllana)

(5.26)
+ CelAprlnyiTerls..,-

Using Strichartz estimates for S; and Lemma 5.3-5.5, we get
Theorem 5.7. Let [0,T] be as above, there ezist a universal constant C' such that
1 1
ITerlls,,, < ClVe)2(Vy)2Te(0, )2 + CellTer|s,,
+ Cel[Aprllan () [ Al a)

(5.27)
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1 1
ITp7lls.., < Cl(V2)2(Vy)2Tp(0,-)][ 2 + Cel[Tprls.,

(5.28)
+ Cel|Aprllng a) + CellAprllag () [ Ap I ni (a)-

For later use, let us denote
X(T) =[[Aerllnvgay + ITerllss,,
Y(T) =[[Aprllava) + ITprls,, -

We want to show that X (T'), Y(T') depends continuously on 7. To see this, for
any fixed T' > 0, we have

(5.29)

IAerlingi) = e rslng]| S 1erss = Aerlng.
And note that A, 745 — Ao 7 satisfy

S(Aeirs— Aerr) = Xprrsa (— Vi Ak = (VeTp) o Ao (Vie) o))
with 0 initial condition. It is not hard to see that, by crude energy estimates
(5.30) [Acrts — Aerllavga) S 0C(T, N)

for some constant C (T, N) that depend on T, N, which implies the continuity of
[Aerllam(a)- The continuity of other norms in X(7) and Y(T') can be proved
similarly.

We can now state and prove the main theorem of this section

Theorem 5.8. Assume A, I' and ¢ are smooth solutions to the HFB system,
with finite energy per particle, uniformly in N (see (1.27)), which implies (1.31)-
(1.34), we have

[Acllanay + [ITells,, <C

531
(5:31) IApllns ) + [Tolls,, < C.

Proof. By Theorem 5.2, 5.6, 5.7, and the size of initial conditions (1.31)-(1.34),
we have

X(T) <CCy+ CeX(T)Y(T)
Y (T) <CCy + CeY (T)* + CeX (T).

At this stage, we will need to assume ¢ is small, where the smallness may depend

on Cp. Without loss of generality, let’s assume CCy = 1 and Ce < %, then we

have the following simplified version of (5.32)

(5.32)

X(T) <1+ %OX(T)Y(T)

1 , 1
Y(T) <1+ 1OY(T) + 10X(T).
If Y(T) < 4, by the first line, we have X(7T') < 2, and if we plug this into the
second line, we get Y (7') < 3. By continuity, since Y (0) < 1, we always have
Y (T) < 3, and thus X(7') < 2, for all T' > 0, which concludes our proof. O

(5.33)
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6. Estimates for sh(2k), po = sh(k) osh(k) and sh(k).

The equations for sh(2k) = NA, and ps = NT', are
Wy
2

Ssh(2k) + {Vn * p,sh(2k)} + ((VNT) o sh(2k) + (VNA) o )symm =——A

S+ pa + [V * p,pa] + (VNT) 0 pa + (VwA) o sh(2k)) , . = 0.
To handle the inhomogeneous term —V—NA, we shall need the following lemma.

Lemma 6.1. Let Su = ——A with u(0,-) =0, we have
lulls,, < I1Apllay
where || - ||ay is defined as in (5.5).

Note that the above result also hold if one replace A, by A, and replace ||Ap||a;
by || Ac||a;, which is a direct consequence of Theorem 3.2 and Hoélder’s inequality.

Proof. First note that if for A, we have | —n| < 20N, [£] < 20N or |5 < 20N,
then by Theorem 3.2 and Hoélder’s inequality, we have

Hu”sx,y < CgHAleow collapsing-

Thus if we denote P~y = Ple_y>20n Fle|>208 Ply|>20n, if suffices to prove Lemma 6.1
with A replaced by P~ yA. Asin the proof of main theorem for the linear equation,
we shall divide our discussion into two cases.

Case 1: [€+n| < 1—]\6.
In this case, by Theorem 3.2 and Hoélder’s inequality, we have
ulls,,

<C

Vi (Vaiy) 2 Pan P Pyt 3 Mol 1 oy 2200y 22 (o 0)
+ CHVN|8t iP>N |§+77|< v A HLl(d(aﬁ—y))LQ(dt)LQ(d(x-i-y))
< CeN H z+y 2P>NP|§+77|<NA HL" d(z—y))L2(dt)L2(d(z+y))
+ CeN3||[0,]1Psy Blerpg<n iy | 26 oy 2200y 2w+ 9))
< CeN? [{Vasy )2 Pay Blepp<nAp HL2 dt) L5 (d(z—y)) L2 (d(z+y))
+ CeNa |||y Poy Bleppen iy | 2 aty 26 () 22+ 9))
< OEH‘&? i (Ve >;P|£fn|210N \£+n\<NA HL2 dt) L8 (d(z—y)) L2 (d(z+y))

1
+ 05H aty) <Vw—y>2P|£fn\210N |§+n|<NA HL2 (dt)LE(d(z—y)) L2 (d(z+y))
< Ce|[Apliaya)

where in the fourth inequality we used Bernstein’s inequality along with the fact
that | —n| > 20NV.
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Case 2: €+ 1| > 10
In this case, by Strichartz (Theorem 3.1) and Holder’s inequality,

[ulls,.,

< CHVNP>N &+n> 55 P||L2(dt)L%(d(a:fy))LQ(d(Hy))

(6.2) <CeN|PsyP letn> 2 Ap|l L2 a5 (e —y) L2 9)
1 1
= CEH (Va)2(Vy)2 P|f|210NP|77|210NP|§+77|<%AP"L2(dt)L6(d(m—y))LQ(d(x—i—y))

< CellAplia

where in the third inequality we used Bernstein’s inequality in rotated coordinates
along with the fact that |{| > 20N and |n| > 20N. O

Now we shall estimate the other nonlinear terms in dual Strichartz norms
(Vi plt, ) sh(R) (62, )l
+[((VWT) o sh(2k)|l s 4

(6.3) (dz) L2(dy)
<Ce Sup 1Ttz + 2, o) HSh(Qk)HL? dt) L6 (dz) L2 (dy)

dt)L3 (de) L2 (dy)

L8(dt)L
< C€HSh(2k)HL?(dt)LG(da;)m(dy),

where we used Sobolev and Lemma 5.1 in the last inequality. The above estimate
still hold if we replace I' by A.. Similarly

(Vv * p(t, z))pa(t, @ y)”Ls(dt L3 (dw) L2 (dy)
(6.4) + 1 (VaT) o pa|| s

< Celpall2(at) L6 (de) L2 (dy)-

L3 (d6) L3 (dz)L2(dy)

And the above estimate still hold if we replace I' by A.. Also, since for fixed z,
the following holds, uniformly in z

[A(t, 2,2+ 2)p2(t, 2z + 2 y)Hm(dt)LQ(d:C)p(dy)
(6.5) < |A® 22 + 2)|| L2 () L3 (do) P2t 2, Y) | L2 () £3 (d) 22 ()
1
< CIVa)2 At 2,2 + 2) || L2 (d0) 22 () P2 (s T3 W) L4 () 13 (de) 12 () -

If we repeat the argument in the proof of Lemma 5.5 and using (5.23), we have

”(VNA ) Op2HL5 (dt L3(dm)L2(dy)

< C'/ IN30(N2)[[(Va) 2 Ap(t, 2, + 2)| L2 d) 12 (de) 1P2 )| L4 () 3 (d) L2 (ay) 42

< Cel|Allaq ) lIp2ll L4 (de) 23 (da) 12 (dy) -
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Similarly, we also have

[(VvAyp) o Sh(2k)”L5 (dt)L3 (dw) L2 (dy)

< C/ |N3U(NZ)|H<Vx>§Ap(t7 T, %+ 2) || 12 () 2 (da) IS0 (2K L4 (dr) 13 (do) 12 (dy) 47

< Ce||Al| oy ) lISh(2F) || 4 () 13 (d) 2 (dy) -

If we choose € small enough such that eC' < 1—10, combing the above estimates,
and using the fact that ||Ap||a;a) + [Acllana) S 1 from the main theorem of the
last section, we get, by Strichartz

Ish(2k)ls..., + [Ip2lls..,

(6.6) < C(1Ish(2k)(0, )|z + 17200, )12 ) +C.

7. Estimates for the condensate ¢.

The non-linear equation for ¢ can be regarded as a linear equation on a back-
ground given by I'" and A, for which we already have estimates:

{202, o)
. / dy{Vi (21 — 9)0(y,9)}é(a1)
— /dy{VN(:m —y)Typ(y, 21)} o (y)

+ /dy{VN(xl —y)Ap(x1, ) }o(y).

Define the standard Strichartz spaces

lolls = sup 91l £r (dt)La(da)-

p,q) admissible

Proof. We shall estimate the right hand side of the equation for ¢ in dual Strichartz
norms, if we repeat the proof of Lemma 5.3-5.5, it is not hard to show
(7.2)

19 [ aufVivtes = 9P o)l g

1
S anypd ey = CENVI2 0l L2y 25(a)

1 1
V) [ dpVivGen = 0ol 20003 4 0y < OV 2020000

(d=)
09)% [ dutViv(or = Al b, g, 0y < OV 2800500

Thus,

(dz) —

1 1 1
{V)2élls < CII(V)2(0, )|l 2 + 3Ce[[(V)2¢|s-
This gives us desired result by taking eC' < %. U
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8. Remarks on the collapsing norm of A.

In this section, we shall see how we can use Theorem 2.1 to prove the following

Theorem 8.1. Let A satisfy
(81)  SA(t,z,y) + N?u(N(z — y))Alt, 2, y) = G(t, 2,y), AO,-) = Ao

where we assume v satisfy (1.25), we have

1 1
|| <vx+y> §AHcollapsing + H lat‘ ZA/\Hcollapsing

(8‘2) 1 1 1 1
S IV2)2(Vy)2 Glis, + (V)2 (Vy) 2 Aol 2.

Recall that we already have desired estimates if we replace || - ||coliapsing bY
|| - lliow coliapsing> by using the results in Theorem 2.1.

Proof. We shall first treat the homogeneous equation, let

(8.3) SA(t,z,y) + NZ’U(N(.T —y))A(t,z,y) =0
' A(0,-) = Ay.

Let H = —A; — Ay + N?v(N(z —y)), Ho = —A; — Ay If we let W denote
the wave operator in Yajima’s paper [36], acting in x — y direction, we have
et — WeltHoy)/*  where * denotes the dual operator. We also have, for the
potential v satisfying (1.25), W is a bounded operator from LP — LP for any
1 < p < o0, with bound independent of N (see [15] Proposition 5.1). Moreover,
by calculating the integral kernel of W explicitly, the LP — LP boundness of W
extends to the space of L? valued function, ). Thus,

l —i 8 —i
SUp [[(Vary) 2e ™ Ao|| L2 (rd(arty)) + SUP H||a|1/46 ol L2(dtd(aty))
T—y T—y

1 * a ) *
= sup |[W(Vary) 2" OW* Aol 12 (ard(aty)) + SUP HW\QW% W Aol 2 (atd(a-t))
z—y z—y
1 * 9 % *
< sup [[(Vagy) 2 OW* Ao | 12 (ata(aty)) + SUP |||§’1/4€ POW™* Nol| L2 (atd(a-ty))
T—y Tz—y

1 1,
,S H<vz>2<vy>2w AOHLQ(d:cdy)v

where we used Lemma 3.8-3.9 in the last inequality.

Recall W* = limy_,o e?Hoe™#H where the limit exists in the strong operator
topology, see e.g., [15, Proposition 5.1] and also [17] for a proof of the existence of
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strong limit when v satisfy (1.25). Thus, for each fixed g € C§°(R%) with ||g|l2 = 1
1 1
((Va2)2({Vy)2W"Ag, g)
1 1
= (W0, (V)2 (Vy)2g)
= lim (e"Hoe~tH Ay (V,)2(V,)

t—o00

N[

9)

= lim (e "7 Ay, (V)2 (V)2 Ho g)
(8.4) t=o0 1 o .
= lim (V)2 (V,)2e” " Ag, e H0g)

t—o00

{Vz)
< [(Va)
< (Va)

N

IN

1 i

(Vyyze ™ Aol oo a2 (dudy)
1 .

<vy> E6_”[_11&0 ||S:L‘,y

(V)2 Aol 2

N|=

(ST

where the second equality is a consequence of the existence of strong limit, and
in the last inequality we used the special case of Theorem 2.1 with G = H = 0.
By taking supremum among all choices of g, we have

1 1o 1 1
(V)2 (V)2 W Aol 22 (dzdy) S I1KV2) 2 (Vy) 2 Ao 2
Now we shall consider the inhomogeneous equation, let
(8:5)  SA(t,z,y) + N*o(N(z —y))Alt, 2,y) = G(t,z,y), A0,-) = 0.
If we let H be defined as above, we have by Duhamel’s formula
t
A :/ e = (s, Yds.
0

We shall first show that

t
1 —i(t—s
Sup [[{Vary) /0 e~ G (s, V| 2 atato )

T—y
1 1
(8.6) S {V2)2{Vy)2Glls;.

To prove (8.6), it suffices to show that, for any fixed x — y and fixed T' > 0,

N|=

t
/0 e—z(t—S)Hg(g, )ds|| L2 (dtd(z4y))

S V)2 (V) 2G]s

IX10,71(#) (V)

which, by the Christ—Kiselev lemma, is a consequence of

N

T
1(Vasy) /0 G s, Vs 2 gandosy)

< VL) 2 (V,)2Gls;.

~

(8.7)
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If we apply the homogeneous estimates proved above, the left side of (8.7) is
bounded by

T
1 1 15
1(Va)} ()3 /0 €1 G (5, || 12 oy

T
1 L —i(T—s
(Vo) H (V) BT / TG s )] 1 anay)

(8.8) 0

N[
[NIES

T
S V)2 (Vy) /O e TG (s, ) dsl| 12 (dway)

S V22 (V)2 Gy,

where in the third line we used the special case of Theorem 2.1 with G = H =0
(estimates for the homogeneous equation), and in the last line we used the special
case of Theorem 2.1 with Ag = H = 0(inhomogeneous equation with zero initial
data).

To prove inhomogeneous estimate for ]875\% derivative, as before we can not use
the Christ—Kiselev lemma, we shall follow the ideas in the prove of Lemma 3.9.
Write A = A1 + Ao, where

SA; = G(t,z,y), with initial conditions 0

SAy = —NQU(N(.I‘ —y))A(t,z,y), with initial conditions 0.
For both Ay and As, it suffices to consider the region where
(8.9) 72 > 10(1 + € + 7)), [¢] > 20N, |n| > 20N and [¢ — | > 20N,

. . 1 1
since otherwise we have |||0]%Allcottapsing S |V a+y) 2 Al cotiapsing, or we already
know how to control collapsing norm when |£| < 20N, |n| < 20N, or |{—n| < 20N.

The estimate for Ay just follows from Lemma 3.9 directly, and for As, we claim
that it suffices to show

Proposition 8.2. Let Su = f with u(0,-) = 0, then if the Fourier support T,£,n
of u satisfy (8.9), we have

|H8t|1uHcollapsing ,S mln{H<v$>§< > fH
1
116413 (Va—y) 2 £l

Remark 8.3. Note that the 7 support of u may be different from f, so 7 support
of f may not satisfy (8.9) , but the £, n support of f does satisfy (8.9).

(8.10) L2(dt) L5(d(:p y)) L2 (d(z+y))’

L2 dt)Lg (d(z—y))L2(d(z+y)) + N_§|H8t|ZfHL2(dtd:vdy)}-

We shall first see how we can apply the Proposition to get desired results.
Case 1: [€+n| > 1—1\6.

In this case,

S Peisoon Pyj20nv A2 ~ =N?*0(N(z — y)) Pgis 198 Py 108 AL, 2, 9).
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Thus, by Proposition 8.2

1
H ‘at| 4 A2 ”collapsing

1 1
SI(V2)2 (V)2 N*0(N (@ = 9)) Ple=1on iz 100 A E 9 a1 o s2de i)

1 1
SIKV2)2(Vy) 2 Piejs198 P> 108 A 2, 9) | 2 (d0) 16 (d(a—y)) L2 (d(a+9)) 0

where in the last inequality we used the fact that when [{] > 19N, || > 19N,

<Vx>% <Vy>% essentially only fall on A, as well as Holder’s inequality. Recall that
when | + 7| > %, the last line appears as part of the norm for A in the proof of

Theorem 2.1 (see (4.15)), thus it is bounded by || <Vx>%(vy)%GH3; for A satisfying
(8.5).

Case 2: € + 1| < 15.

In this case,

2
S Py Pleyiz20n A2 ~ =N 0(N (2 = y)) Pe iy Pepz10nA(E 2, 9).

Thus, by Proposition 8.2
1
H‘at| 4A2”collapsing
1 1
5” |8t| 4 <vxfy> 2 NQU (N(l’ — y))P|£+n|<% \E—n\219NA(ta x, y)”

1 3
+ 101 N20(N(z = ) Py i< & Be 108 At 2, 9) | 22 (dtdray)

10

L2(dt) L8 (d(w—y)) L2(d(z+y))

1 1
SO T (Va—y)? P|§+77|<%P|£7n|219NA(ta z,y) HL2(dt)L6(d(ﬂc—y))L2(d(x+y))
1 1
+ N[0 5 Be gy« 5 Plenjz10n A 25 9) || L2(d1) L8 (d(@—9)) L2 (d(+9)
1 1
SO T (Va—y)? P|§+77|<%P|£7n|219NA(ta z,y) HL2(dt)L6(d(ﬂc—y))L2(d(x+y))

where in the second inequality we used the fact that when | —n| > 19N, <Vx,y)%
essentially only fall on A, as well as Holder’s inequality. And in the last inequality

we used Bernstein’s inequality and the fact that | —n| > 20N.

Recall that when [£+7| < %, the last line appears as part of the norm for A in

the proof of Theorem 2.1 (see (4.40) ), thus it is bounded by ||<Vx>%<vy>%G||g4
for A satisfying (8.5).

Thus it remains to prove Proposition 8.2, to see this, we shall follow the ideas
in the proof of Lemma 3.9.

Proof of Proposition 8.2:
Case 1: If 7|2 > 2(|¢] + |n]).
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Write u = u! + u?, where
1 Ff . o .

Fu' = ———5—5, this no longer has initial conditions 0
(8.11) T+ [§7 + [n]

Su? =0, a correction so that u! + «? has initial condition 0.
In this case, it suffices to control w; since uy is only supported where |7| =
|€2 + |n|?. The goodness about wu; is that it has the same Fourier support with
f. The strategy is based on

1 1
10| Furll oo (a(w—y)) 22 (@@ +)ary = 173

(1)

1
il N/
T+ €2 + [n]?

/ |
T+ €2+ pP"E (d(z—y))L?(drd(E+n))

(8.12)

‘d(f — M 22(drd(e+n))-

By Cauchy-Schwarz, we have

Bk
RHS(8.12) S [+ NFAAE =) 22 (arac
(8.13) 7l Jie—ni<iri? (rdicm)
S AH|V?J‘ |V |_7fHL2 dtd(z—y)d(z+y))
where
1
1 2
(8.14) A= sup 7| / Ll d(€ —n)
retn 1T \Jjemni<i73 1l

Changing variables, this is something like

|7l |u+ v :

1 u—+ v

A= sup T / ) dv
1 ’7_‘ lv<|T]2 ’u_v’

7 |ul<|T]2

After a change of variables this is reduced to 7 = 1, and A is bounded. By
Sobolev’s estimate at an angle, we have

H]V | Va ‘_7fHL2(dtdw y)d(z+y)) S Va ‘ Vy ’ fHL2 dt) Lo(d(x ) L2(d(z+y))

Similarly, by Cauchy-Schwarz, we have
|7l
RHS(8.12) < || F A€ =)l L2 arac
(8.15) 7 Jie=ni<ir/2 (dra(etm)
1
< All|0n]11Va—y| QfHLQ(dt)d(xfy)d(a:er)

where

(8.16) A= sup ~ _nlde—n)) |
S0 (/é MT'%\& nld(€ 77))

N
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which is bounded. By Sobolev’s inequality, we have

1 _1 1 1
1019172 | 2 atyaa-spacora) S MO IVasl2 £l 8 oy (e

Case 2: [¢| + |n| > 2|7-]%

In this case, since we are assuming that ’T‘% > 10(1 4+ |€ + n|). we have

|€ —n| > |£+nl|, and also | —n| > ’T‘% As before, it suffices to bound the right
hand side of (8.12). By Cauchy-Schwarz

1
T|2|Ff

Ris(s.12) < | [ A e ) s racesny

2fe—nl>l¢-+n+lr2 1§ =1

GBI S A, vl

fHLQ(dtd(x—y)d(ﬂﬂ-f-y))

< 1 1
S ANV V2 I oy 8 (o 240

where we used Sobolev’s estimate at an angle in the last inequality. In this case,

(8.18) A? = sup / 721l ),
2

e+n, Jale > et 43 1§ —nl* 0]

Again we scale to |T’% + £ + 1| =1 and have to estimate

1
/ A utoly,
ofs1 [0 Ju = 0]

This is bounded uniformly in |u] < 1.
Similarly, since we are assuming | — n| > 20N, by Cauchy-Schwarz
1

7|7 F /]

RHS(8.12) <
12 3 e—n|>20n |€ — 71>

d(§ — )l 2(drd(e+n))

_1 1
SN2 H|at‘4fHL2(dtd(a:—y)d(m+y))'

Casel4 (1€l + ) < ’7“% < 2(¢] + ]n])l, In this case, since we are assuming
that |72 > 10(1 + | + n]), this implies |7|2 ~ [¢] ~ |n| ~|§ —7].
We shall use the decomposition u = Y 7, Pir|w2ru, and the square function

estimate

1
10e[ 3 ull Lo (a e —y)) 22 (d(a+)at)

1
(DS 1P 005 0l) oo oyt
k=0

o) 1

2k 2 2

N (Z 2 ”P|7—|~2kUHLoo(d(ac—y))LQ(d(:v—i-y)dt)) :
k=0

(8.19)
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For each fixed dyadic piece P | oru, in the current case, we have
Birinart = it Pgjgrrz Py ngr/2t,
which implies
< 1
1| Pzt tll cottapsing S 11(V )2 Plej sz Py oarr2tll 2(a) 16 (d(w—y)) L2 (d(a-+y))
—k/2 1 1
S 27 2|(V2) 2 (V)2 Pyoger2l| 12dt) L6 (d(o—y) L2 (d(a)
where we used Bernstein’s inequality in rotated coordinates twice, see e.g., Lemma

3.1 in [10]. Thus,

1
1106l ull oo (a(a—y)) L2 (d(+y)ar)

N|=

1

(Z” (Y0} % Py arral oo s oy )

1
<§:|| PV Pparrn I, e DLQ(d(x“’”)
1
< (V)2 (V)2 £

where we used Strichartz (Theorem 3.1) in the second line, and square function
estimates in y the the last line.

(8.20)

1
2
L2(dt) L5(d(x y))L2(d(z+y))

Similarly, for each fixed dyadic piece Py ok |0 iu, in this case since [—n| ~ 25,
by Bernstein’s inequality, we have

1
| ’P\r|~2k |03 | cottapsing

1 1
(8.21) S0 (Va—y) 2 P 5 || 22 (dt) L6 (d(w—y)) L2 (d(24y))

je—nl~o’
1 1
<L 1
SO Va—)2 P o8N o 18 (a2

where in the last inequality we used Theorem 3.5. Thus,

1
107 ull oo (d(2—y)) L2 (d(aty)dt)

N

1
8.22 E 0|1 (V2P 2
522 (k; om t| v fH 2(dt) L8 (d(—y)) L2(d (r+y))>

jg—n|~23
< 1
SN (Vomy)2 1 228 (- 22400
where we used square function estimates in = — y the the last line. (I
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