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Abstract. We extend the recent work of Chong et al., 2022 [10] to the critical
case. More precisely, we prove global in time, uniform in N estimates for the
solutions ϕ, Λ and Γ of a coupled system of Hartree–Fock–Bogoliubov type
with interaction potential 1

N
VN (x− y) = N2v(N(x− y)). We assume that the

potential v is small which satisfies some technical conditions, and the initial
conditions have finite energy. The main ingredient is a sharp estimate for the
linear Schrödinger equation with potential in 6+1 dimension, which may be of
interest in its own right.

1. Introduction.

Consider the N–body linear Schrödinger equation which governs the time-
evolution of N boson systems

(1.1)
(1
i

∂

∂t
−

N∑
j=1

∆xj +
1

N
VN (xi − xj)

)
ψN (t, ·) = 0,

where xi ∈ R3, N is large and VN (x) = N3v(Nx) for some Schwarz class potential
v. The conditions on the potential will be discussed below. A physically appeal-
ing case concerns initial data forming a tensor product of the same one–particle
state, in spirit of the Bose-Einstein condensation. We refer to [30] for extensive
background on Bose-Einstein condensation.

The goal is to find a rigorous, simple approximation to ψN which is consistent
with

(1.2) ψapprox(t, x1, . . . , xN ) ∼ ϕ(t, x1)ϕ(t, x2) . . . ϕ(t, xN )

in an appropriate sense, where ϕ is often called the mean–field limit.

In the stationary case, a survey of results concerning the ground state properties
of the dilute bosonic gases can be found in [30]. In the time dependent case, in
the work of Erdös, Schlein and Yau [14, 15, 16], by using the BBGKY hierarchies
and the density matrix γN,t formalism, the convergence of the exact dynamics to
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2 GLOBAL ESTIMATES FOR HFB

the mean–field limit is asserted in the trace norm as N → ∞, provided that the
the mean–field limit ϕ(t, x) satisfies the Gross–Pitaevskii equation

(1.3)
1

i

∂

∂t
ϕ−∆ϕ+ 8πa0|ϕ|2ϕ = 0.

Here a0 is the scattering length of the potential v, physically, the scattering
length measures the effective range of the potential V , see e.g., [16] for a precise
definition of scattering length. Also in the recent work of Pickl [32], the Gross–
Pitaevskii equation is derived using a different method. We refer to reader to
[2, 3, 6, 13, 34] for more backgrounds on the problem of approximating the many-
body Schrödinger dynamics and related results in the Gross–Pitaveskii regime.

The Fock space approach to study the problem originated in physics, with the
papers by Bogoliubov [7], Lee, Huang and Yang [29] in the static case, and Wu
[35] in the time dependent case. In the mathematical literature, it originates in
the of work Hepp [24], Ginibre and Velo [18] and more recently by Rodnianski
and Schlein [34] and Grillakis, Machedon and Margetis [22].

The Hartree-Fock-Bogoliubov type equations are derived in Fock space, which
describes additional second order corrections (given by a Bogoliubov transforma-
tion) to the right hand side of the approximation (1.2). We briefly review the
background of Focks space for the reader’s convenience, see for instance [19] for
more details and comments. The elements in F are vectors of the form

ψ =
(
ψ0 , ψ1(x1) , ψ2(x1, x2) , . . .

)
where ψ0 ∈ C and {ψk}k∈N are symmetric complex-valued L2 functions. The
vacuum state is the vector defined by

Ω := (1, 0, 0 . . .)

which models a state with no particles, . The symmetric Fock space F has a
norm induced by the inner product

(1.4) ⟨φ,ψ⟩ = φ0 ψ0 +
∞∑
n=1

∫
φn ψn

The creation and annihilation distribution-valued operators at x ∈ R3, denoted
by a∗x and ax, are defined by actions on vectors of the form (0, · · · , ψn−1, 0, · · · )
and (0, · · · , ψn+1, 0, · · · ) respectively as follow

a∗x(ψn−1) :=
1√
n

n∑
j=1

δ(x− xj)ψn−1(x1, . . . , xj−1, xj+1, . . . , xn),

ax(ψn+1) :=
√
n+ 1ψn+1([x], x1, . . . , xn),

with [x] indicating that the variable x is frozen.
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For every ϕ ∈ L2(R3), the creation and annilihation operators associated to ϕ
are defined by

a(ϕ) :=

∫
dx
{
ϕ(x) ax

}
and a∗(ϕ) :=

∫
dx {ϕ(x) a∗x}

where by convention we associate a with ϕ and a∗ with ϕ. Let us also define the
skew-Hermitian operator

(1.5) A(ϕ) :=

∫
dx
{
ϕ(x)ax − ϕ(x)a∗x

}
which is the Weyl operator used by Rodnianski and Schlein in [34]. The corre-
sponding coherent state is

(1.6) ψ(ϕ) := e−
√
NA(ϕ)Ω .

Here ϕ is called the condensate wave function. It is not hard to check that

ψ(ϕ) := e−
√
NA(ϕ)Ω =

· · · cn
n∏

j=1

ϕ(xj) · · ·

 with cn =
(
e−N∥ϕ∥2

L2Nn/n!
) 1

2

Also consider the following skew-Hermitian quadratic operator

B(k(t)) := 1

2

∫
dxdy

{
k(t, x, y)axay − k(t, x, y)a∗xa

∗
y

}
.(1.7)

Here k is a symmetric wave function, i.e. k(t, x, y) = k(t, y, x), called the pair
exicitation function. This particular construction and the corresponding unitary
operator

M(t) := e−
√
NA(ϕ(t))e−B(k(t)) = e−

√
NA(t)e−B(t)

were introduced in Grillakis, Machedon and Margetis [22]. The construction is in
the spirit of Bogoliubov theory in physics, and the Segal–Shale–Weil representa-
tion in mathematics.

Consider the Fock Hamiltonian

(1.8) H =

∫
dxdy {a∗x∆xδ(x− y) ay} −

1

2N

∫
dxdy

{
vN (x− y)a∗xa

∗
yayax

}
,

where

vN (x) = N3βv
(
Nβx

)
.

It can readily be checked that H is a diagonal operator on Fock space and it acts
as a differential operator in n variables

Hn,PDE =

n∑
j=1

∆xj −
1

N

n∑
i<j

N3βv
(
Nβ(xj − xk)

)
on the nth sector of F .
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The goal is to study the evolution of coherent initial conditions of the form

ψexact(t) = eitHe−
√
NA(ϕ0)e−B(k0)Ω(1.9)

In the papers [20, 23, 22], Grillakis, Machedon and Margetis proposed an approx-
imation of the form

(1.10) ψappr(t) := e−
√
NA(ϕ(t))e−B(k(t))Ω

The strategy to study the approximation is to first evolve forward in time by
the exact dynamics and then backward by the approximation dynamics. That is,
to consider the reduced dynamics

ψred(t) = eB(t)e
√
NA(t)eitHe−

√
NA(0)e−B(0)Ω(1.11)

and compute the “reduced Hamiltonian”

Hred =
1

i

(
∂tM∗)M+M∗HM(1.12)

so that

(1.13)
1

i
∂tψred = Hredψred .

In [22], Grillakis, Machedon and Margetis imposed some Schrödinger type
equations on ϕ (the Hartree equation), k, and proved the following results for
0 < β < 1/3 by using an energy estimate based approach in Fock space and
decay properties of ϕ

(1.14)
∥∥∥ψexact(t)− eiNχ(t)ψappr(t)

∥∥∥
F
≤ P (t)N

3β−1
2 .

Here χ is some real phase function, and P (t) is of polynomial growth in time.

This result was extended to β < 1/2 in Kuz [28], where the author also argued
that the equations used in [22] can not provide an approximation for β > 1/2.
The Hartree-Fock-Bogoliubov equations was later introduced in [19], in the hope
of obtaining an approximation for higher values of β. There are several equivalent
ways of writing these equations. Broadly speaking, the equations ensure that after
Wick reordering, the reduced Hamiltonian has neither a or a∗ linear terms, nor
aa or a∗a∗ quadratic terms.

The Hartree-Fock-Bogoliubov equations were also introduced independently in
a different context in [1], and they were studied in [4, 10, 21]. In particular, local
in time, uniform in N estimates for solutions to the HFB system were obtained
in [21], and they were used in [12] to give a Fock space approximation of the form

(1.15)
∥∥∥ψexact(t)− eiNχ(t)ψappr(t)

∥∥∥
F
≤ CeP (t)N

β−1
2 ,

for a polynomial P (t) and 0 < β < 1. The global in time estimate for HFS system
in [10], as well as the main results in this paper, is in the hope of improving the

eP (t) in (1.15) to some polynomial P (t), and possibly extending to the case β = 1,
we wish to address this problem in a future work [25].
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We also mention that in Benedikter, de Oliveira and Schlein [2], a similar
approach is considered, where the authors impose the Gross–Pitaevskii equation
equation for ϕ and define k by an explicit formula, and give a rate of convergence
result in terms of the marginal density.

In the remaining of this paper, we shall focus on the analysis of the systems
of PDEs. The functions described by these equations are: the condensate ϕ(t, x)
and the density matrices

(1.16) Γ(t, x1, x2) =
1

N

(
sh(k) ◦ sh(k)

)
(t, x1, x2) + ϕ̄(t, x1)ϕ(t, x2)

(1.17) Λ(t, x1, x2) =
1

2N
sh(2k)(t, x1, x2) + ϕ(t, x1)ϕ(t, x2)

where

(1.18)
sh(k) = k +

1

3!
k ◦ k̄ ◦ k + . . .

ch(k) = δ(x− y) +
1

2!
k̄ ◦ k + . . .

Here (u◦v)(x, y) =
∫
u(x, z)v(z, y)dz, the pair excitation function k is an auxiliary

function, which does not explicitly appear in the system.

There are several equivalent ways of expressing the equations, in this section we
shall use a compact, matrix formulation as in [10]. We separate the condensate
part from the pair interaction part: define Γc = ϕ̄ ⊗ ϕ, Λc = ϕ ⊗ ϕ, Γp =
1
N sh(k) ◦ sh(k) and Λp =

1
2N sh(2k). Also denote ρ(t, x) = Γ(t, x, x)

To write the Hartree-Fock-Bogoliubov equations in matrix notation, denote

VN (x− y) = N3v(N(x− y))

for some Schwarz class potential which will be discussed below. Define

Ω =

(
−Γ −Λ̄
Λ Γ

)
= Ψ+Φ

where

Ψ =

(
−Γp −Λ̄p

Λp Γp

)

Φ =

(
−Γc −Λ̄c

Λc Γc

)
Finally, let

S3 =

(
−I 0
0 I

)
where I is the identity operator.
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The evolution equations for Ψ and Φ are

1

i
∂tΦ− [∆xδ(x− y)S3,Φ]

= −[
(
VN ∗ ρ(t, x)

)
δ(x− y)S3,Φ]− [VNΨ∗,Φ](1.19)

1

i
∂tΨ− [∆xδ(x− y)S3,Ψ]

= −[
(
VN ∗ ρ(t, x)

)
δ(x− y)S3,Ψ]− 1

2N
[S3, VNΨ](1.20)

− [VNΩ∗,Ψ]− 1

2N
[S3, VNΦ]

In addition, the condensate ϕ satisfies

(1.21)

{1
i
∂t −∆x1

}
ϕ(x1)

= −
∫
dy{VN (x1 − y)Γ(y, y)}ϕ(x1)

−
∫
dy{VN (x1 − y)Γp(y, x1)}ϕ(y)

+

∫
dy{VN (x1 − y)Λp(x1, y)}ϕ̄(y)

Here A∗(x, y) = Ā(y, x), [A,B] = A ◦B −B ◦A and VN acts as pointwise multi-
plication by VN (x− y). See (5.1)-(5.4) for a scalar form of the above equations.

The solutions ϕ, Λp, Λc, Γp and Γc all depend on N . This has been suppressed
to simplify the notation. However, we will always keep track of dependence on N
in our estimates.

Next we review the conserved quantities of these equations, see [19] for more
details. The first conserved quantities is the total number of particles (normalized
by division by N):

(1.22) tr{Γ(t)} = ∥ϕ(t, ·)∥2L2(dx) +
1

N
∥sh(k)(t, ·, ·)∥2L2(dxdy) = 1

From here we see that

(1.23) ∥Λ(t, ·, ·)∥L2(dxdy) ≤ C
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The second conserved quantity is the energy per particle

(1.24)

E(t) =tr{∇x1 · ∇x2Γ(t)}

+
1

2

∫
dx1dx2

{
VN (x1 − x2)|Λ(t, x1, x2)|2

}
+

1

2

∫
dx1dx2

{
VN (x1 − x2)|Γ(t, x1, x2)|2

}
+

1

2

∫
dx1dx2

{
VN (x1 − x2)Γ(t, x1, x1)Γ(t, x2, x2)

}
−
∫
dx1dx2

{
VN (x1 − x2)|ϕ(t, x1)|2|ϕ(t, x2)|2

}
We shall assume that

(1.25) v is Schwarz sup
1≤p≤∞

∥v∥Lp < ε, and supp v̂ ⊂ B1(0).

In addition, we also assume

(1.26)

v is spherically symmetric and

v ≥ 0,
∂v

∂r
(r) ≤ 0.

Here v̂ denotes the Fourier transform and B1(0) denotes the unit ball in R3, and ε
is a fixed small constant to be specified later (see (5.32)) which is independent of
N . The condition (1.26) allows us to use a priori estimates for Γ (the interaction
Morawetz estimate, Lemma 6.2 in [10]), which is part of our main strategies in
treating the HFB system, i.e., We regard the equation for Λ as a linear equation
with non-local “coefficients” given by Γ and a forcing term involving ϕ. For Γ
and ϕ, we will only use a priori estimates, given by conserved quantities and the
interaction Morawetz estimate. It is still open to us if we can analysis the Γ
directly without using the a priori estimates, the main difficulties come from the
fact that the linear part −∆x + ∆y of the Γ equation that is anti-symmetric in
x, y, see (1.39).

The smallness assumption on the potential is due to the perturbation based
arguments we used in analysing the linear and nonlinear Schrödinger equations.
The smallness and spherically symmetric assumptions on the interacting potential
were also used in earlier work of Erdös, Schlein and Yau [16] and Boccato, Bren-
necke, Cenatiempo and Schlein [5] in the Gross–Pitaevskii regime, and Grillakis,
Machedon and Margetis [22] in the mean field regime.

Despite the smallness assumption, the case β = 1 is strictly harder than β < 1,
which allows large potentials if the parameter N is sufficiently large. For instance,
in the case β < 1, one has additional regularity in using Sobolev estimate, while in
the case β = 1, the criticalness of the scaling forces us to use and also develop new
sharp estimates in the arguments, see the end of this section for more discussions
on the difficulties in the critical setting.
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The assumption supp v̂ ⊂ B1(0) is only used in section 4, it is essentially not
required for our proof, but it simplify the arguments greatly, see the beginning of
section 4 for a brief discussion on how to remove this assumption.

For the initial conditions, we assume that

(1.27)
tr{Γ(0)} ≤ C0

E(0) ≤ C0

The size of the initial condition C0 is important, as we shall see in the end of
section 5, our assumption on the size of the potential v depends on the size of
initial data. Thus, we keep track of the constant C0 from now on.

Note that the kinetic energy is

(1.28)

tr{∇x1 · ∇x2Γ(t)} =

∫
dx
{
|∇xϕ(t, x)|2

}
+

1

2N

∫
dx1dx2

{
|∇x1sh(k)(t, x1, x2)|2 + |∇x2sh(k)(t, x1, x2)|2

}
If we assume E ≤ C0, then we have an H1 estimate for Λ, uniformly in time

(and N):

(1.29)

∫
dx1dx2

{
|∇x1Λ(t, x1, x2)|2 + |∇x2Λ(t, x1, x2)|2

}
≤ CC0

1

N

∫
dx1dx2

{
|∇x1,x2sh(2k)(t, x1, x2)|2

}
≤ CC0

Also, Γ satisfies the H2 type estimate

(1.30) ∥|∇x1 ||∇x2 |Γ(t)∥L2(dxdy) ≤ CC0

See [20], [19], as well as [1] for these conserved quantities.

By Plancherel theorem, we see that (1.29) implies that for all time t

(1.31) ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λp(t)∥L2(dxdy) ≤ CC0.

as well as

(1.32) ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λc(t)∥L2(dxdy) ≤ CC0.

Here, and also later on, ⟨∇x⟩
1
2 means (1 − ∆x)

1
4 , which is a Fourier multiplier

with symbol (1 + |ξ|2)
1
4 , and similarly for ⟨∇y⟩

1
2 .

Similarly, by (1.28) and Plancherel, we also have

(1.33) ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Γp(t)∥L2(dxdy) ≤ CC0.

as well as

(1.34) ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Γc(t)∥L2(dxdy) ≤ CC0.
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In order to state the main result for this paper in the simplest possible form,
we define the following partial Strichartz norms:

(1.35)

∥Λ∥Sx,y

= sup
(p,q) admissible

∥Λ∥Lp(dt)Lq(dx)L2(dy)

+ sup
(p,q) admissible

∥Λ∥Lp(dt)Lq(dy)L2(dx)

Recall (p, q) are admissible in 3 + 1 dimensions if 2
p + 3

q = 3
2 , 2 ≤ p ≤ ∞.

The main result of this paper is

Theorem 1.1. Let Λ = Λp+Λc, Γ = Γp+Γc be solutions of (1.19), (1.20), while
the potential satisfies (1.25) and (1.26), and the initial conditions satisfy (1.27).
Then we have

(1.36) ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λ∥Sx,y + ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Γ∥Sx,y ≤ C

for some constant C independent of N . The above estimate still hold if we replace
Λ by Λc or Λp, or replace Γ by Γc or Γp.

We also have a theorem for sh(2k) (without dividing by N).

Theorem 1.2. Let Λ, Γ, ϕ be solutions of (1.19), (1.20), while the potential
satisfies (1.25) and (1.26), and the initial conditions satisfy (1.27). Assume also
that

∥sh(2k)(0, ·, ·)∥L2 + ∥sh(k) ◦ sh(k)(0, ·, ·)∥L2 ≤ C

Then we have

(1.37) ∥sh(2k)∥Sx,y + ∥sh(k) ◦ sh(k)∥Sx,y ≤ C

Remark 1.3. Here (1.37) improves the results in [10, Theorem 1.3] in two ways.
First, the potential N2v(N(x − y)) we considered here represents a stronger in-
teraction between particles, compared with the N3β−1v(Nβ(x − y)), β < 1 type
potentials considered in [10]. Second, the ∥sh(2k)∥Sx,y norm stays bounded uni-
formly in N , compared with the logN growth in [10]. Although our argument
is written for the case where the potential is N2v(N(x − y)), it also works for
the N3β−1v(Nβ(x − y)) case. For example, it can be shown that the uniform
in N estimates in (1.37) still hold for the case where the potential is equal to
N3β−1v(Nβ(x− y)), β < 1.

The above estimates also imply some estimates for sh(k). In particular,

∥sh(k)∥Lp(dx)L2(dy) ≤ C∥sh(2k)∥Lp(dx)L2(dy)

This is because sh(k) = 1
2sh(2k) ◦ ch(k)−1 and ch(k)−1 has bounded operator

norm.

Finally, we also have estimates for ϕ. Define the standard Strichartz spaces

∥ϕ∥S = sup
(p,q) admissible

∥ϕ∥Lp(dt)Lq(dx).
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Corollary 1.4. Under the assumptions of Theorem 1.1, and the additional as-

sumption ∥⟨∇⟩
1
2ϕ(0, ·)∥L2 ≤ C , we have

(1.38) ∥⟨∇⟩
1
2ϕ∥S ≤ C.

We shall now brief describe the difficulties in the critical case β = 1 along with
the strategies employed in addressing them in our arguments. Denote

S =
1

i

∂

∂t
−∆x −∆y

S± =
1

i

∂

∂t
−∆x +∆y

Schematically, if we treat VN as the δ potential and ignore the constants, the
equations become
(1.39)

SΛc = Γ(t, x, x)Λc(t, x, y) + Λp(t, x, x)Γc(t, x, y)

S±Γc = Γ(t, x, x)Γc(t, x, y) + Λ̄p(t, x, x)Λc(t, x, y)

SΛp +
VN
N

Λp = Γ(t, x, x)Λp(t, x, y) + Λp(t, x, x)Γp(t, x, y)−
VN
N

Λc

+ Λc(t, x, x)Γp(t, x, y)

S±Γp = Γ(t, x, x)Γp(t, x, y) + Λp(t, x, x)Λp(t, x, y) + Λ̄c(t, x, x)Λp(t, x, y)(
1

i
∂t −∆x1

)
ϕ(x1) = −Γ(x1, x1)ϕ(x1)− Γp(x1, x1)ϕ(x1) + Λ(x1, x1)ϕ̄(x1)

Since Γc = ϕ̄ ⊗ ϕ, Λc = ϕ ⊗ ϕ, one can view that ϕ satisfies the cubic nonlinear
Schrödinger equations with additional corrections.

Recall that VN (x) = N3v(Nx), thus VN
N in the Λp equation satisfies the critical

scaling in the sense that VN
N ∈ L3/2 uniformly inN ≥ 1. For Schrödinger operators

−∆Rn + V , it is known that V ∈ L
n/2
loc for dimension n ≥ 3 is almost the minimal

condition to ensure the Schrödinger operators −∆ + V is bounded from below
and self-adjoint. There is a vast amount of literature in the study of Schrödinger
operators −∆+ V with critically singular potentials from different aspects, e.g.,
Strichartz estimates, unique continuation and dispersive estimates, see [8, 26, 27,
33, 36].

It is known in the study of cubic nonlinear Schrödinger equations that 1/2
derivative is the minimal regularity required on the initial data in order to have
local or global well-poseness results (see [9]). Similarly, our arguments in treating
the nonlinear terms require the Strichartz estimates for ⟨∇x⟩α⟨∇y⟩αΛp or c and

⟨∇x⟩α⟨∇y⟩αΓp or c with α ≥ 1
2 . In the case β = 1, the ⟨∇x⟩

1
2 ⟨∇y⟩

1
2 derivative is

the threshold for the linear equation in the sense that if we apply ⟨∇x⟩α⟨∇y⟩α
to VN

N Λp or VN
N Λc in the Λp equation, we get a singularity which is essentially

N2α−1VNΛ. And since ∥N2α−1VN∥Lp → ∞ as N → ∞ for any 1 ≤ p ≤ ∞ if
α > 1/2, it would be hard to obtain any uniform in N estimates in this setting.
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For the same reason, in order to get Strichartz type estimate for ⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λp,

we need to handle an inhomogeneous forcing term like N3v(N(x− y))Λp(x, y), if

β = 1 and N4β−1v(Nβ(x−y))Λp(x, y) if β < 1. As N → ∞, N3v(N(x−y)) → δ,
the delta function up to some constant. Thus, to use a perturbative argument, we
have to develop Strichartz estimate involving the L1 norm in the x− y direction,
and a collapsing estimate which involves the L∞ norm in the x − y direction,
see Theorem 3.2 and Lemma 3.8–3.9 respectively. The collapsing estimate (see
(2.8) for the definition of the collapsing norm) is a natural generalization of the
Morawetz inequalities in the study of nonlinear Schrödinger equations, see [31].

Theorem 3.2 generalizes Proposition 4.7 [10] by removing the frequency as-
sumption there. The main difficulty in the proof is the lack of square function
estimate, or equivalently sharp Sobolev estimate in the L1 norm setting. The
main idea is to use Littlewood–Paley estimate in the x − y direction on the left
hand side, and add up different frequency pieces in the x + y or t directions on
the right side. To do this, we need to keep track of the size of frequency variables,

including their ratios and make explicit use of the magnitude of ⟨∇x+y⟩
1
2 and

|∂t|
1
4 derivatives. The proof of Lemma 3.8–3.9 is based similar ideas along with

the use of Christ–Kiselev lemma, and they are essentially a dual version of the
Strichartz estimate in Theorem 3.2.

Another main difficulty lies in the proof of Theorem 2.1, i.e., the proof of
Strichartz type estimates for linear Schrödinger equations with interacting po-
tentials. We need to choose the norms for the perturbation arguments properly
under various frequency support assumptions, see section 4 case 1–case 3. We
divide the cases based on the frequency support in the x+ y direction, since mul-
tiplication by an interacting potential may enlarge the frequency support in the
x− y direction after each iteration. The norms within each case may depend on
each other. Due to the failure of sharp Sobolev estimates at L∞ and the shift
in frequency support after multiplications by the potential, it is hard to bound
these norms independently, without the frequency support assumption or the use
of other norms, for instance, the full collapsing norm and the full Strichartz norm
including the endpoint pair (p, q) in the x − y direction. Similar difficulties also
arise in the analysis of full nonlinear equations, where we need to define the norms
appropriately under various frequency support assumptions in order to close the
bootstrap argument. In the case of β < 1, however, this can be remedied by the
allowance of additional derivatives as discussed above.

The proof of Theorem 2.1 for different cases also relies on a collapsing esti-
mate for the linear equations with interacting potentials under low frequency
assumptions, which is Theorem 4.1. The low frequency assumptions allow us to
use Bernstein type inequality at L∞ instead of classical Sobolev estimate, which
requires additional regularity. However, as discussed above, after each iteration
step, the frequency support may expand due to multiplication by the potential,
the main idea in the proof of Theorem 4.1 is to exploit the gain of small constant
coming from the smallness assumption on the potential at each iteration step and
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use crude estimates after finitely many steps of iterations. Also, we prove a full
collapsing norm estimates in the last section assuming the forcing term H = 0 in
(2.11), which is based on Theorem 2.1 and the analysis of the wave operator W
for the Schrödinger operators −∆+ V as in the work of Yajima [36].

The structure of the rest of the paper is the following. In section 2, we list the
notations used in this paper and state our main estimate, Theorem 2.1 for the
linear Schrödinger equation in 6 + 1 dimension. In sections 3 and 4, we prove
Theorem 2.1. In section 5, we prove Theorem 1.1 using the linear estimate Theo-
rem 2.1. In section 6 and section 7, we use prove Theorem 1.2 and Corollary 1.4.
In the last section, we use Theorem 2.1 to prove a “collapsing estimate” for the
linear equation involving the interaction potential, which may be of interest on
its own right.

Acknowledgements. The author is indebted to Manoussos Grillakis and Matei
Machedon for both suggesting the problem and for many discussions and com-
ments on various stages of this work, their roles on this work is no less than the
author’s one. The author would also like to thank Jacky Chong and Zehua Zhao
for comments on an earlier version of this paper. The author is supported in part
by an AMS–Simons Travel Grant.

2. List of notations and statement of the main linear estimates.

Let us define the partial Strichartz norms

∥Λ∥Sx,y(2.1)

= sup
(p,q) admissible

∥Λ∥Lp(dt)Lq(dx)L2(dy)

+ sup
(p,q) admissible

∥Λ∥Lp(dt)Lq(dy)L2(dx).

where the pair (p, q) is admissible in 3 + 1 dimension if 2
p + 3

q = 3
2 , 2 ≤ p ≤ ∞.

Define the full Strichartz norm

∥Λ∥S(2.2)

= sup
(p,q) admissible

∥Λ∥Lp(dt)Lq(dx)L2(dy)

+ sup
(p,q) admissible

∥Λ∥Lp(dt)Lq(dy)L2(dx)

+ sup
(p,q) admissible

∥Λ∥Lp(dt)Lq(d(x−y))L2(d(x+y)).

And define the restricted dual Strichartz norm, excluding the end-points p′ = 2,
p′ = 1: let p1 large and p0 > 2 but close to 2, for admissible pairs (p, q), define

∥G∥S′
r
= inf

p1≥p≥p0
{∥G∥Lp′ (dt)Lq′ (dx)L2(dy), ∥G∥Lp′ (dt)Lq′ (dy)L2(dx)}.(2.3)
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Let us also recall the standard Littlewood-Paley decomposition. Let ϕ(x) such

that ϕ̂ ∈ C∞
0 and ϕ̂(ξ) = 1 in |ξ| < 1, ϕ̂(ξ) = 0 in |ξ| > 2. Define the ϕk for k ≥ 0

by ϕ̂k(ξ) = ϕ̂( ξ
2k
) and denote

(2.4) P|ξ|<2kf = f ∗ ϕk

so that the inverse Fourier transform of ϕ̂( ξ
2k
)f̂ is P|ξ|<2kf .

Next let ψ0 = ϕ and define ψk for k ≥ 1 by ψ̂k(ξ) = ϕ̂( ξ
2k
)− ϕ̂( ξ

2k−1 ). We also
denote

(2.5) P|ξ|∼2kf = f ∗ ψk

For later use, we shall also abuse our notation a bit and define, for an arbitrary
positive constant M ,

(2.6) P|ξ|<Mf = f ∗ ϕ(Mx),

for any fixed constant M . And define,

(2.7) P|ξ|≥Mf = f − P|ξ|<Mf.

So for any two fixed constants 0 < M < N ,

PN≤|ξ|<Mf = P|ξ|<Mf − P|ξ|<Nf.

Now we can define the following two “collapsing norms”. Let

∥Λ∥collapsing =
∥∥Λ∥∥

L∞(d(x−y))L2(dt)L2(d(x+y))
.(2.8)

And define

(2.9)
∥Λ∥low collapsing =

∥∥P|ξ−η|<20NΛ
∥∥
collapsing

+
∥∥P|ξ|<20NΛ

∥∥
collapsing

+
∥∥P|η|<20NΛ

∥∥
collapsing

.

If A ≲ B, there is a constant C such that A ≤ CB, and we use A ∼ B to
denote the case when A ≲ B and B ≲ A.

Define ⟨∇x⟩
1
2 f = (1 − ∆x)

1
4 f such that the Fourier transform of ⟨∇x⟩

1
2 f is

(1+ |ξ|2)
1
4 f̂ , and similarly the Fourier transform of ⟨∇y⟩

1
2 f is (1+ |η|2)

1
4 f̂ for any

f ∈ L2(R6).

Let x, y ∈ R3, define

(2.10)
S =

1

i

∂

dt
−∆x −∆y

S± =
1

i

∂

∂t
−∆x +∆y
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Consider the equation

(2.11)

SΛ(t, x, y) = N2v
(
N(x− y)

)
Λ(t, x, y) +G(t, x, y)

+N2v
(
N(x− y))H(t, x, y)

Λ(0, ·) = Λ0

The simplest form of theorem is

Theorem 2.1. Let Λ satisfy (2.11), and assume v satisfy (1.25), we have

(2.12)

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λ∥Sx,y + ∥⟨∇x+y⟩

1
2Λ∥low collapsing + ∥|∂t|

1
4Λ∥low collapsing

≲ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G∥S′

r
+ ε∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2H∥L2(dt)L6(x−y)L2(d(x+y))

+ ε∥⟨∇x+y⟩
1
2H∥collapsing + ε∥|∂t|

1
4H∥collapsing

+ ε∥⟨∇x⟩
1
2H∥collapsing + ε∥⟨∇y⟩

1
2H∥collapsing + ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ0∥L2 .

Remark 2.2. The main difficulty in proving the theorem is the presence of the
term N2v

(
N(x − y)

)
Λ(t, x, y), where N2v

(
N(x − y) ∈ L3/2 satisfies the critical

scaling. The term N2v
(
N(x − y)

)
H(t, x, y) in (2.11) is a technical term which

arises from the term N2v
(
N(x − y)

)
Λ(t, x, y), since in our application, we split

Λ = Λp+Λc and take Λ = Λp andH = Λc in (2.11). And the presence ofH(t, x, y)
does not lead to any essential difficulty in the proof of the above theorem.

We also remark that in the case H = 0, by using the above theorem plus an
abstract argument, one can replace the ∥ · ∥low collapsing norm on the left side of
(2.12) by the ∥ ·∥collapsing norm and the same result still holds. See the discussion
in section 8 for more details.

All the implicit constants in ≲ are independent of N and ε, and the choice of
the small constant ε in (1.25) will depend on the implicit constants and C0 in
(1.27).

3. Preliminary estimates for solutions to the linear Schrödinger equa-
tion.

We will use the following Strichartz estimate. In 6+1 dimensions,

Theorem 3.1 (Theorem 2.4, 2.5 of [11]). Let Su = f + g, u(0, ·) = u0. Then

∥u∥S ≲ ∥f∥
L2(dt)L

6
5 (x−y)L2(d(x+y))

+ ∥g∥S′
r
+ ∥u0∥L2 .

Now we shall present the main theorem of this section.

Theorem 3.2. Let Su = f u(0, ·) = 0 Then

∥u∥Sx,y ≲
∥∥⟨∇x+y⟩

1
2 f
∥∥
L1(d(x−y))L2(dt)L2(d(x+y))

+
∥∥|∂t| 14 f∥∥L1(d(x−y))L2(dt)L2(d(x+y))

.
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Remark 3.3. A frequency localized version of the above Theorem appears in [10,
Proposition 4.7], , which is also a motivation of the above theorem. The Sx,y

norm is crucial here, we do not expect the above estimate to be true if we replace
it by the full Strichartz norm S as in (2.2).

Proof. The main ideas is to divide the frequency support of u into several regions,
and use Strichartz estimate for the regions where τ ∼ |ξ|2+ |η|2, and use Sobolev
for the remaining regions. As we shall see later, the proof of Theorem 3.4-3.5
below uses essentially the same idea.

To begin with, we shall use the decomposition u =
∑∞

k=0 P|ξ−η|∼2ku, where for
the case k = 0, we are abusing notations a bit by letting P|ξ−η|∼1u to denote the
operator P|ξ−η|<1u. We have the square function estimate(see e.g., Lemma 3.5 in
[10]).

(3.1)

∥u∥Sx,y ∼ ∥
( ∞∑

k=0

|P|ξ−η|∼2ku|2
) 1

2 ∥Sx,y

≲
( ∞∑

k=0

∥P|ξ−η|∼2ku∥2Sx,y

) 1
2
.

We shall focus on the dyadic pieces where k ≥ 1, since by the Strichartz estimate
and the Sobolev estimate, one can easily show that

∥P|ξ−η|<1u∥Sx,y ≲
∥∥⟨∇x+y⟩

1
2 f
∥∥
L1(d(x−y))L2(dt)L2(d(x+y))

.

Now let uk = P|ξ−η|∼2ku, fk = P|ξ−η|∼2kf , and decompose uk = u1k + u2k + u3k,
where

(3.2)

Su1k = P
10|τ |

1
2≥2k

fk, with initial conditions 0

F u2k =
F
(
P
10|τ |

1
2≤2k

fk

)
τ + |ξ|2 + |η|2

, this no longer has initial conditions 0

Su3k = 0, a correction so that u2k + u3k has initial condition 0.

For u1k, by the Strichartz estimate

∥u1k∥S ≲ ∥fk∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

≲ ∥fk∥
L

6
5 (d(x−y))L2(dt)L2(d(x+y))

≲ 2
k
2 ∥fk∥L1(d(x−y))L2(dt)L2(d(x+y)),

where in the last line we used the fact that fk is frequency supported in |ξ−η| ∼ 2k

and Bernstein’s inequality, which is a (elementary) generalization of the classical
Bernstein’s inequality to L2 valued functions.
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Now we make another dyadic decomposition, write

(3.3) fk =
∑
ℓ≥0

P|τ |∼22k+ℓfk =
∑
ℓ

fk,ℓ.

Note that for each fixed ℓ, k, we have

∥fk,ℓ∥L1(d(x−y))L2(dt)L2(d(x+y)) ∼2−
ℓ
4
− k

2 ∥|∂t|
1
4 fk,ℓ∥L1(d(x−y))L2(dt)L2(d(x+y))

≲2−
ℓ
4
− k

2 ∥|∂t|
1
4P|τ |∼22k+ℓf∥L1(d(x−y))L2(dt)L2(d(x+y))

where in the first line we used Bernstein’s inequality, and in the second line we
used the fact that

(3.4) ∥P|ξ−η|∼2kf∥L1(d(x−y))L2(dt)L2(d(x+y)) ≲ ∥f∥L1(d(x−y))L2(dt)L2(d(x+y)),

which can be proved, for example, using the generalized Young’s inequality on
the space of L2 valued functions.

Thus, by Minkowski’s inequality( ∞∑
k=0

∥u1k∥2Sx,y

) 1
2
≲
( ∞∑

k=0

2k∥
∑
ℓ

fk,ℓ∥2L1(d(x−y))L2(dt)L2(d(x+y))

) 1
2

≲
∑
ℓ

( ∞∑
k=0

2k∥fk,ℓ∥2L1(d(x−y))L2(dt)L2(d(x+y))

) 1
2

≲
∑
ℓ

2−
ℓ
4

(∑
k

∥|∂t|
1
4P|τ |∼22k+ℓf∥2L1(d(x−y))L2(dt)L2(d(x+y))

) 1
2

≲
∑
ℓ

2−
ℓ
4

(
∥
(∑

k

||∂t|
1
4P|τ |∼22k+ℓf |2

) 1
2 ∥2L1(d(x−y))L2(dt)L2(d(x+y))

) 1
2

≲ ∥|∂t|
1
4 f∥L1(d(x−y))L2(dt)L2(d(x+y)),

where in the last line we used the square function estimate in t variable.

For u2k, the denominator is comparable with |ξ − η|2 + |ξ + η|2 ≥ 22k ≥ 100τ .
Thus, by Sobolev’s estimates at an angle, which is Lemma 3.2 in [10], we have

(3.5)

∥u2k∥L2(dt)L6(dx)L2(dy) + ∥u2k∥L2(dt)L6(dy)L2(dx)

≲ ∥⟨∇x+y⟩u2k∥L2(dt)L2(dx)L2(dy)

≲ ∥
(
⟨∇x−y⟩+ ⟨∇x+y⟩

)−2
⟨∇x+y⟩fk∥L2(dt)L2(dx)L2(dy).

This is also the place where we require the norm on the left side to be Sx,y, since
we do not have Sobolev-type estimates like

∥u2k∥L2(dt)L6(d(x−y))L2(d(x+y)) ≲ ∥⟨∇x+y⟩u2k∥L2(dt)L2(dx)L2(dy).
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Let us first assume |ξ + η| ≤ |ξ − η|, and make the decomposition

(3.6) fk =
k∑

j=0

P|ξ+η|∼2k−jfk =
∑
j

fk,j .

Then for each fixed k, j, we have

(3.7)

∥
(
⟨∇x−y⟩+ ⟨∇x+y⟩

)−2
⟨∇x+y⟩fk,j∥L2(dt)L2(dx)L2(dy)

∼ 2−
j
2 ∥⟨∇x−y⟩−

3
2 ⟨∇x+y⟩

1
2 fk,j∥L2(dt)L2(dx)L2(dy)

≲ 2−
j
2 ∥⟨∇x+y⟩

1
2 fk,j∥L1(d(x−y))L2(dt)L2(d(x+y))

≲ 2−
j
2 ∥⟨∇x+y⟩

1
2P|ξ+η|∼2k−jf∥L1(d(x−y))L2(dt)L2(d(x+y)),

where in the third line we used Bernstein’s inequality, and in the last line we used
the fact that

∥fk∥L1(d(x−y))L2(dt)L2(d(x+y)) ≲ ∥f∥L1(d(x−y))L2(dt)L2(d(x+y)).

Thus, by Minkowski’s inequality( ∞∑
k=0

∥u2k∥2L2(dt)L6(dx)L2(dy) + ∥u2k∥2L2(dt)L6(dy)L2(dx)

) 1
2

≲
( ∞∑

k=0

∥
∑
j

(
⟨∇x−y⟩+ ⟨∇x+y⟩

)−2⟨∇x+y⟩fk,j∥2L2(d(x−y))L2(dt)L2(d(x+y))

) 1
2

≲
∑
j

(∑
k

∥
(
⟨∇x−y⟩+ ⟨∇x+y⟩

)−2⟨∇x+y⟩fk,ℓ∥2L2(d(x−y))L2(dt)L2(d(x+y))

) 1
2

≲
∑
j

2−
j
2

(∑
k

∥⟨∇x+y⟩
1
2P|ξ+η|∼2k−jf∥2L1(d(x−y))L2(dt)L2(d(x+y))

) 1
2

≲
∑
j

2−
j
2

(
∥
(∑

k

|⟨∇x+y⟩
1
2P|ξ+η|∼2k−jf |2

) 1
2 ∥2L1(d(x−y))L2(dt)L2(d(x+y))

) 1
2

≲ ∥⟨∇x+y⟩
1
2 f∥L1(d(x−y))L2(dt)L2(d(x+y))

where in the last line we used the square function estimate in x+ y variable.

The case |ξ + η| ≥ |ξ − η| is similar.

For the other endpoint p = ∞, define

(3.8) u2k =
∑

0≤ℓ≤k/2

P|τ |∼22k−ℓu2k =
∑
ℓ

u2k,ℓ
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and similarly

(3.9) fk =
∑

0≤ℓ≤k/2

P|τ |∼22k−ℓfk =
∑
ℓ

fk,ℓ.

Note that for each fixed ℓ, k, we have

(3.10)

∥u2k,ℓ∥L∞(dt)L2(dx)L2(dy) ≲∥
∫ ∣∣∣ F

(
fk,ℓ
)

τ + |ξ|2 + |η|2
∣∣∣dτ∥L2(dξ)L2(dη)

∼2k/2−ℓ/4∥⟨∇x−y⟩−2|∂t|
1
4 fk,ℓ∥L2(dt)L2(dx)L2(dy)

∼ 2−ℓ/4∥⟨∇x−y⟩−
3
2 |∂t|

1
4 fk,ℓ∥L2(dt)L2(dx)L2(dy)

≲ 2−ℓ/4∥|∂t|
1
4 fk,ℓ∥L1(d(x−y))L2(dt)L2(d(x+y))

≲ 2−ℓ/4∥|∂t|
1
4P|τ |∼22k−ℓf∥L1(d(x−y))L2(dt)L2(d(x+y)),

where in the third line we used Bernstein’s inequality, and in the last line we used
the fact that

∥fk∥L1(d(x−y))L2(dt)L2(d(x+y)) ≲ ∥f∥L1(d(x−y))L2(dt)L2(d(x+y)).

By Minkowski’s inequality( ∞∑
k=0

∥u2k∥2L∞(dt)L2(dx)L2(dy)

) 1
2

=
( ∞∑

k=0

∥
∑
ℓ

u2k,ℓ∥2L∞(dt)L2(dx)L2(dy)

) 1
2

≲
∞∑
ℓ=0

( ∑
k:k≥2ℓ

∥u2k,ℓ∥2L∞(dt)L2(dx)L2(dy)

) 1
2

≲
∞∑
ℓ=0

2−ℓ/4
( ∑

k:k≥2ℓ

∥|∂t|
1
4P|τ |∼22k−ℓf∥2L1(d(x−y))L2(dt)L2(d(x+y))

) 1
2

≲ ∥|∂t|
1
4 f∥L1(d(x−y))L2(dt)L2(d(x+y))

where in the last line we used the square function estimate in t variable.

To deal with u3k, note that since u3k is solution to free Schrödinger,

(3.11)

∥u3k∥Sx,y ≲ ∥u3k(0, ·, ·)∥L2(dx)L2(dy)

= ∥u2k(0, ·, ·)∥L2(dx)L2(dy)

≤ ∥u2k∥L∞(dt)L2(dx)L2(dy).

Thus it can be treated as in the previous case.

□
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Theorem 3.4. Let Su = f u(0, ·) = 0. Then

(3.12)
∥⟨∇x−y⟩

1
2u∥Sx,y ≲

∥∥⟨∇x+y⟩
1
2 f
∥∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

+
∥∥|∂t| 14 f∥∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

.

Proof. We shall use the decomposition u =
∑∞

k=0 P|ξ−η|∼2ku, and the square
function estimate

∥u∥Sx,y ∼ ∥
( ∞∑

k=0

|P|ξ−η|∼2ku|2
) 1

2 ∥Sx,y

≲
( ∞∑

k=0

∥P|ξ−η|∼2ku∥2Sx,y

) 1
2
.

Since the right side of (3.12) only involves L
6
5 -norm in the x−y direction, we can

add up the dyadic pieces in the right side using the square function estimate, thus
it suffices to prove the Theorem for a single dyadic piece where |ξ−η| ∼ 2k(which
would simplify our argument compare with the previous theorem). Here again for
the case k = 0, we are abusing notations a bit by letting P|ξ−η|∼1u to denote the
operator P|ξ−η|<1u, and the case k = 0 is easy to handle by just using Strichartz.

Now let uk = P|ξ−η|∼2ku and fk = P|ξ−η|∼2kf . We shall use the same decom-

position as in (3.2), write uk = u1k + u2k + u3k.

For u1k, by Strichartz and Bernstein’s inequality

(3.13)
∥⟨∇x−y⟩

1
2u1k∥S ≲ ∥⟨∇x−y⟩

1
2 fk∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

≲ ∥|∂t|
1
4 fk∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

.

For u2k, the denominator is comparable with |ξ − η|2 + |ξ + η|2 ≥ 22k ≥ 100τ .
Thus, by Sobolev estimates at an angle, we have

(3.14)

∥⟨∇x−y⟩
1
2u2k∥L2(dt)L6(dx)L2(dy) + ∥⟨∇x−y⟩

1
2u2k∥L2(dt)L6(dy)L2(dx)

≲ ∥⟨∇x−y⟩
1
2 ⟨∇x+y⟩u2k∥L2(dt)L2(dx)L2(dy)

≲ ∥
(
⟨∇x−y⟩+ ⟨∇x+y⟩

)−1
⟨∇x+y⟩

1
2 fk∥L2(dt)L2(dx)L2(dy)

≲ ∥⟨∇x+y⟩
1
2 fk∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

.
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For the other endpoint p = ∞, since we are in the region 10|τ |
1
2 ≤ 2k, we have

(3.15)

∥⟨∇x−y⟩
1
2u2k∥L∞(dt)L2(dx)L2(dy)

≲2k/2∥
∫ ∣∣∣F

(
P
10|τ |

1
2≤·2k

fk

)
τ + |ξ|2 + |η|2

∣∣∣dτ∥L2(dξ)L2(dη)

≲ 2k∥|∂t|
1
4 ⟨∇x−y⟩−2fk∥L2(dt)L2(d(x−y))L2(d(x+y))

≲ ∥|∂t|
1
4 fk∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

.

To deal with u3k, if we repeat the argument in (3.11), we have

∥u3k∥Sx,y ≲ ∥u2k∥L∞(dt)L2(dx)L2(dy).

Thus it can be treated as in the previous case.

□

Theorem 3.5. Let

Su = f, u(0, ·) = u0

We have

(3.16)

∥|∂t|
1
4u∥L2(dt)L6(d(x−y))L2(d(x+y))

≲ min
{∥∥|∂t| 14 f∥∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

,∥∥(⟨∇x−y⟩
1
2 + ⟨∇x+y⟩

1
2
)
f
∥∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

,∥∥(⟨∇x−y⟩
1
2 + ⟨∇x+y⟩

1
2
)
f
∥∥
S′
r

}
+
∥∥(⟨∇x−y⟩

1
2 + ⟨∇x+y⟩

1
2
)
u0
∥∥
L2 .

Proof. For simplicity, we shall only treat the case where |ξ + η| < |ξ − η|, the
case |ξ + η| ≥ |ξ − η| is similar and to some extent simpler. We shall use the
decomposition u =

∑∞
k=0 P|ξ−η|∼2ku, by using the square function estimate, It

suffices to prove the Theorem for a single dyadic piece where |ξ − η| ∼ 2k. The
argument below also works for k < 0.

Now let uk = P|ξ−η|∼2ku and fk = P|ξ−η|∼2kf . We decompose uk = u1k + u2k +

u3k + u4k, where



GLOBAL ESTIMATES FOR HFB 21

Su1k = P
|τ |

1
2∼2k

fk, with initial conditions 0

F u2k =
F
(
P
10|τ |

1
2≤2k

fk + P
|τ |

1
2≥10·2k

fk

)
τ + |ξ|2 + |η|2

, this no longer has initial conditions 0

Su3k = 0, a correction so that u2k + u3k has initial condition 0

Su4k = 0, u4k(0, ·) = P|ξ−η|∼2ku0.

It is easy to handle u4k, since in the case where |ξ + η| < |ξ − η|,

(3.17)

∥|∂t|
1
4u4k∥L2(dt)L6(d(x−y))L2(d(x+y))

∼ 2k/2∥eit∆P|ξ−η|∼2ku0∥L2(dt)L6(d(x−y))L2(d(x+y)).

≲
∥∥⟨∇x−y⟩

1
2P|ξ−η|∼2ku0

∥∥
L2 .

For u1k, since for fk, we have |ξ − η|2 + |ξ + η| ∼ 22k and τ
1
2 ∼ 2k, it is

straightforward to check that the dual variable τ to t for u1k is also supported

where |τ |1/2 ∼ 2k, by Strichartz estimates

(3.18)

∥|∂t|
1
4u1k∥L2(dt)L6(d(x−y))L2(d(x+y))

≲ 2k/2∥u1k∥L2(dt)L6(d(x−y))L2(d(x+y))

≲ 2k/2∥P
|τ |

1
2∼2k

fk∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

≲ ∥|∂t|
1
4 fk∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

.

The same argument also gives

∥|∂t|
1
4u1k∥L2(dt)L6(d(x−y))L2(d(x+y)) ≲ ∥⟨∇x−y⟩

1
2 fk∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

,

as well as

∥|∂t|
1
4u1k∥L2(dt)L6(d(x−y))L2(d(x+y)) ≲ ∥⟨∇x−y⟩

1
2 fk∥S′

r
.

For u2k, if 10|τ |
1
2 ≤ 2k, the denominator is comparable with |ξ−η|2+ |ξ+η|2 ∼

22k. Thus, by Sobolev’s inequality in the x− y direction, we have

∥|∂t|
1
4u2k∥L2(dt)L6(d(x−y))L2(d(x+y)) ≲ ∥|∂t|

1
4 fk∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

.

The same argument also gives

∥|∂t|
1
4u2k∥L2(dt)L6(d(x−y))L2(d(x+y)) ≲ ∥⟨∇x−y⟩

1
2 fk∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

.

It remains to show that, if 10|τ |
1
2 ≤ 2k,

∥|∂t|
1
4u2k∥L2(dt)L6(d(x−y))L2(d(x+y)) ≲ ∥⟨∇x−y⟩

1
2 fk∥S′

r
.(3.19)



22 GLOBAL ESTIMATES FOR HFB

By interpolation, it suffices to show that

∥|∂t|
1
4u2k∥L2(dt)L6(d(x−y))L2(d(x+y)) ≲ ∥⟨∇x−y⟩

1
2 fk∥

L2(dt)L
6
5 (dx)L2(dy)

,(3.20)

∥|∂t|
1
4u2k∥L2(dt)L6(d(x−y))L2(d(x+y)) ≲ ∥⟨∇x−y⟩

1
2 fk∥

L2(dt)L
6
5 (dy)L2(dx)

,(3.21)

and

∥|∂t|
1
4u2k∥L2(dt)L6(d(x−y))L2(d(x+y)) ≲ ∥⟨∇x−y⟩

1
2 fk∥L1(dt)L2(dx)L2(dy),(3.22)

which would be stronger than (3.19) since it includes two endpoint cases.

The estimates (3.20) and (3.21) follow directly by Sobolev’s estimates at an
angle. To prove (3.22), first by Sobolev in the x− y direction, we have

(3.23)
∥|∂t|

1
4u2k∥L2(dt)L6(d(x−y))L2(d(x+y)) ≲2−k/2∥fk∥L2(dt)L2(d(x−y))L2(d(x+y)).

=2−k/2∥fk∥L2(dt)L2(dx)L2(dy)

and now by Bernstein’s inequality in the t direction and x− y direction.

(3.24)
2−k/2∥fk∥L2(dt)L2(dx)L2(dy) ≲ 2k/2∥fk∥L1(dt)L2(dx)L2(dy)

≲ ∥⟨∇x−y⟩
1
2 fk∥L1(dt)L2(dx)L2(dy).

If |τ |
1
2 ≥ 10 · 2k, the denominator is comparable with τ . Thus, by Sobolev in

the x− y direction, we have

(3.25)

∥|∂t|
1
4u2k∥L2(dt)L6(d(x−y))L2(d(x+y))

≲ ∥|∂t|−
3
4 ⟨∇x−y⟩2fk∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

≲ ∥|∂t|
1
4 fk∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

.

The same argument also gives,

∥|∂t|
1
4u2k∥L2(dt)L6(d(x−y))L2(d(x+y)) ≲ ∥⟨∇x−y⟩

1
2 fk∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

,

when |τ |
1
2 ≥ 10 · 2k. It remains to show that (3.19) holds if |τ |

1
2 ≥ 10 · 2k, which

would be a consequence of (3.20)-(3.22). And as before, the estimates (3.20) and
(3.21) in this case follow by Sobolev’s estimates at an angle.

To prove (3.22) when |τ |
1
2 ≥ 10 · 2k, first by Sobolev in the x− y direction, we

have

∥|∂t|
1
4u2k∥L2(dt)L6(d(x−y))L2(d(x+y)) ≲ ∥⟨∂t⟩−

3
4 ⟨∇x−y⟩fk∥L2(dt)L2(d(x−y))L2(d(x+y))

= ∥⟨∂t⟩−
3
4 ⟨∇x−y⟩fk∥L2(dt)L2(dx)L2(dy).
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Now by Minkowski’s inequality for dt integral,

(3.26)

∥⟨∂t⟩−
3
4 ⟨∇x−y⟩fk∥L2(dt)L2(dx)L2(dy)

= ∥τ−
3
4

∣∣∣ ∫ e−itτ ⟨∇x−y⟩fk(t, ·)dt
∣∣∣∥L2(dτ)L2(dx)L2(dy)

≲ 2−k/2∥⟨∇x−y⟩fk∥L1(dt)L2(dx)L2(dy)

≲ ∥⟨∇x−y⟩
1
2 fk∥L1(dt)L2(dx)L2(dy).

To deal with u3k, note that since u3k is solution to free Schrödinger equation,

and since we are assuming |ξ − η|2 + |ξ + η|2 ∼ 22k

(3.27)

∥|∂t|
1
4u3k∥L2(dt)L6(d(x−y))L2(d(x+y)) ≲ 2k/2∥u3k(0, ·, ·)∥L2(dx)L2(dy)

= 2k/2∥u2k(0, ·, ·)∥L2(dx)L2(dy)

≤ 2k/2∥u2k∥L∞(dt)L2(dx)L2(dy).

Thus, it suffices to control ∥u2k∥L∞(dt)L2(dx)L2(dy).

First, if |τ |
1
2 ≥ 10 · 2k

(3.28)

∥u2k∥L∞(dt)L2(dx)L2(dy) ≲∥
∫ ∣∣∣F

(
P
|τ |

1
2≥10·2k

fk

)
τ + |ξ|2 + |η|2

∣∣∣dτ∥L2(dξ)L2(dη)

≲2−
3k
2 ∥|∂t|

1
4 fk∥L2(dt)L2(dx)L2(dy)

≲ 2−k/2∥|∂t|
1
4 ⟨∇x−y⟩−1fk∥L2(dt)L2(d(x−y))L2(d(x+y))

≲ 2−k/2∥|∂t|
1
4 fk∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

.

Similarly,

(3.29)

∥u2k∥L∞(dt)L2(dx)L2(dy) ≲∥
∫ ∣∣∣F

(
P
|τ |

1
2≥10·2k

fk

)
τ + |ξ|2 + |η|2

∣∣∣dτ∥L2(dξ)L2(dη)

≲2−k∥fk∥L2(dt)L2(dx)L2(dy)

≲ 2−k/2∥⟨∇x−y⟩
1
2 fk∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

.

It remains to show that

∥u2k∥L∞(dt)L2(dx)L2(dy) ≲ 2−k/2∥⟨∇x−y⟩
1
2 fk∥S′

r
.(3.30)

In this case, we won’t prove (3.30) by interpolation since we do not know if one
can show that

∥u2k∥L∞(dt)L2(dx)L2(dy) ≲ 2−k/2∥⟨∇x−y⟩
1
2 fk∥L1(dt)L2(dx)L2(dy),(3.31)

which is also the reason why we have the restricted norm S ′
r in the statement of

the Theorem.
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Instead, we shall prove (3.30) by showing that

∥u2k∥L∞(dt)L2(dx)L2(dy) ≲ 2−k/2∥⟨∇x−y⟩
1
2 fk∥Lp′ (dt)Lq′ (dx)L2(dy),(3.32)

as well as

∥u2k∥L∞(dt)L2(dx)L2(dy) ≲ 2−k/2∥⟨∇x−y⟩
1
2 fk∥Lp′ (dt)Lq′ (dy)L2(dx),(3.33)

for all admissible pairs (p, q), with 2
p = 3

2 − 3
q , 2 ≤ p <∞.

To prove (3.32) when |τ |
1
2 ≥ 10 · 2k, for admissible pair (p, q) with p <∞,

(3.34)

∥u2k∥L∞(dt)L2(dx)L2(dy) ≲∥
∫ ∣∣∣F

(
P
|τ |

1
2≥10·2k

fk

)
τ + |ξ|2 + |η|2

∣∣∣dτ∥L2(dξ)L2(dη)

≲2
− 2k

p ∥F
(
P
|τ |

1
2≥10·2k

fk

)
∥L2(dξ)L2(dη)Lp(dτ)

≲2
− 2k

p ∥fk∥Lp′ (dt)L2(dx)L2(dy)

≲2
− 2k

p 2
( 3
2
− 3

q
)k∥fk∥Lp′ (dt)Lq′ (dx)L2(dy)

≲∥fk∥Lp′ (dt)Lq′ (dx)L2(dy)

≲ 2−k/2∥⟨∇x−y⟩
1
2 fk∥Lp′ (dt)Lq′ (dx)L2(dy),

where we used Hölder’s inequality in the second line, the Hausdorff-Young in-
equality in the third line, and Bernstein’s inequality at an angle in the fourth and
last line. The proof of (3.33) is similar.

If 10|τ |
1
2 ≤ 2k,

(3.35)

∥u2k∥L∞(dt)L2(dx)L2(dy) ≲∥
∫ ∣∣∣F

(
P
10|τ |

1
2≤·2k

fk

)
τ + |ξ|2 + |η|2

∣∣∣dτ∥L2(dξ)L2(dη)

≲2−
3k
2 ∥|∂t|

1
4 fk∥L2(dt)L2(dx)L2(dy)

≲ 2−k/2∥|∂t|
1
4 ⟨∇x−y⟩−1fk∥L2(dt)L2(d(x−y))L2(d(x+y))

≲ 2−k/2∥|∂t|
1
4 fk∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

.

The same argument also gives,

∥u2k∥L∞(dt)L2(dx)L2(dy) ≲ 2−k/2∥⟨∇x−y⟩
1
2 fk∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

.

It remains to show that

∥u2k∥L∞(dt)L2(dx)L2(dy) ≲ 2−k/2∥⟨∇x−y⟩
1
2 fk∥S′

r
,(3.36)

for the case 10|τ |
1
2 ≤ 2k, which would be a consequence of (3.20)-(3.22).
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To prove (3.20),

∥u2k∥L∞(dt)L2(dx)L2(dy) ≲∥
∫ ∣∣∣F

(
P
|τ |

1
2≥10·2k

fk

)
τ + |ξ|2 + |η|2

∣∣∣dτ∥L2(dξ)L2(dη)

≲2−k∥fk∥L2(dt)L2(dx)L2(dy)

≲ 2−k/2∥⟨∇x−y⟩
1
2 fk∥

L2(dt)L
6
5 (dx)L2(dy)

.

The proof of (3.21) is similar.

To prove (3.22), we use Bernstein’s inequality in the t direction

(3.37)
2−k∥fk∥L2(dt)L2(dx)L2(dy) ≲ ∥fk∥L1(dt)L2(dx)L2(dy)

≲ 2−k/2∥⟨∇x−y⟩
1
2 fk∥L1(dt)L2(dx)L2(dy).

□

Now we shall present several lemmas that involve the collapsing norm.

Lemma 3.6. If Su = g, u(0, ·) = u0. Then

∥u∥collapsing ≲ min{∥⟨∇x⟩
1
2 g∥S′

r
+ ∥⟨∇x⟩

1
2u0∥L2 , ∥⟨∇y⟩

1
2 g∥S′

r
+ ∥⟨∇y⟩

1
2u0∥L2}.

We record that the above implies

Lemma 3.7. If Su = g, u(0, ·) = u0. Then

∥⟨∇x⟩
1
2u∥collapsing + ∥⟨∇y⟩

1
2u∥collapsing

≲ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2 g∥S′

r
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2u0∥L2 .

We will also need

Lemma 3.8. If Su = g, u(0, ·) = u0. Then

∥⟨∇x+y⟩
1
2u∥collapsing ≲ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2 g∥S′

r
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2u0∥L2 .(3.38)

The proof of Lemma 3.6 and Lemma 3.8 are similar, for simplicity, we shall
only present the proof of Lemma 3.8 here. The proof essentially follows from
ideas in Lemma 5.1, 5.3 in [20].

Proof. We shall first prove the homogeneous estimate, let Su = 0, with u(0, ·) =
u0. Our goal is to show

sup
x−y

∥|∇x+y|
1
2u∥L2(dt)L2(d(x+y) ≲ ∥|∇x|

1
2 |∇y|

1
2u0∥L2 .(3.39)
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This is stronger than desired, since ∥|∇x|
1
2 |∇y|

1
2u0∥L2 ≲ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2u0∥L2 , and

also by Lemma 3.6, we have

sup
x−y

∥u∥L2(dt)L2(d(x+y) ≲ ∥⟨∇x⟩
1
2u0∥L2 ≲ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2u0∥L2 .

To prove (3.39) , let Λ̃ denote the space-time Fourier. For fixed x − y, doing
Cauchy-Schwarz with measures,

(3.40)

||∇x+y|
1
2 ˜Λ(t, x− y, x+ y)(τ, ξ + η)|2

≲
∫
δ(τ − |ξ|2 − |η|2) |ξ + η|

|ξ||η|
d(ξ − η)

≲
∫
δ(τ − |ξ|2 − |η|2)|

̂
∇

1
2
x∇

1
2
y Λ0(ξ, η)|2d(ξ − η).

In order to prove the estimate, we must show

sup
τ,ξ

∫
δ(τ − |ξ|2 − |η|2) |ξ + η|

|ξ||η|
d(ξ − η) ≲ 1.

Without loss of generality, consider the region |ξ| ≤ |η|. If |ξ| ∼ |η|, |ξ+η|
|ξ||η| ≲

1
|ξ−η|

and the integral can be evaluated in polar coordinates. If |ξ| << |η| then |ξ+η| ∼
|ξ−η| Writing |ξ+η|

|ξ||η| ≲
1
|ξ| ≲

1

|ξ−η|
√

1−cos(θ)
where θ is the angle between ξ−η and

ξ + η, we estimate

sup
τ

∫ π

0

∫
δ(τ − ρ2)

1

ρ
√

1− cos(θ)
ρ2dρ sin(θ)dθ ≲ 1.(3.41)

□

The inhomogeneous estimate (3.38) just follows from the homogeneous estimate

(3.39) and the Christ–Kiselev lemma. More precisely, let T1 = eit(∆x+∆y), so
T1 : L

2(R6) → Lp(dt)Lq(dx)L2(dy) and

T ∗
1 : Lp′(dt)Wα,q′(dx)Hα(dy) → Hα(dx)Hα(dy).

Fix x − y and let T2 : Hα(dx)Hα(dy) → L2(dt)Hα(d(x + y)) be the operator

f →
(
eit(∆x+∆y)f

)
(t, x− y, x+ y). Then the inhomogeneous estimate follows by

applying the Christ–Kiselev lemma to T2T
∗
1 .

Lemma 3.9. If Su = g, u(0, ·) = u0. Then

∥|∂t|
1
4u∥collapsing ≲ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2 g∥S′

r
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2u0∥L2 .(3.42)

Proof. For the homogeneous estimate, it follows from the same argument as above.
However, we can not apply Christ–Kiselev lemma here to get inhomogeneous
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estimate since |∂t|
1
4 does not commute with 1[0,t] when we write out the solution

using Duhamel’s formula. Let Su = g, with u(0, ·) = 0, it suffices to prove

∥|∂t|
1
4u∥collapsing ≲ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2 g∥S′

r
.(3.43)

To prove this, we shall decompose the Fourier support τ and |ξ + η| of u into
finitely many regions.

Case 1: τ
1
2 ≤ 10(1 + |ξ + η|).

In this case, we have

∥|∂t|
1
4u∥collapsing ≲ ∥⟨∇x+y⟩

1
2u∥collapsing,

thus the desired estimates follows from Lemma 3.8.

Case 2: If |τ |
1
2 > 2(|ξ|+ |η|).

Write u = u1 + u2, where

(3.44)
F u1 =

Ff
τ + |ξ|2 + |η|2

, this no longer has initial conditions 0

Su2 = 0, a correction so that u1 + u2 has initial condition 0.

In this case, it suffices to control u1 since u2 is only supported where |τ | =
|ξ|2 + |η|2. The goodness about u1 is that it has the same Fourier support with
f . The strategy is based on

∥|∂t|
1
4u1∥L∞(d(x−y))L2(d(x+y)dt) = ∥τ

1
4

Ff
τ + |ξ|2 + |η|2

∥L∞(d(x−y))L2(dτ)d(ξ+η)

≲ ∥
∫

|τ |
1
4

∣∣∣ F
(
f
)

τ + |ξ|2 + |η|2
∣∣∣d(ξ − η)∥L2(dτd(ξ+η)).

It suffices to show

(3.45)
∥
∫

|τ |
1
4

∣∣∣ Ff
τ + |ξ|2 + |η|2

∣∣∣d(ξ − η)∥L2(dτd(ξ+η))

≲ ∥|∇x|
1
2 |∇y|

1
2 f∥Lp′ (dt)Lq′ (dx)L2(dy),

as well as

(3.46)
∥
∫

|τ |
1
4

∣∣∣ Ff
τ + |ξ|2 + |η|2

∣∣∣d(ξ − η)∥L2(dτd(ξ+η))

≲ ∥|∇x|
1
2 |∇y|

1
2 f∥Lp′ (dt)Lq′ (dy)L2(dx),

for all admissible pairs (p, q), where 2
p = 3

2 − 3
q , 2 ≤ p <∞.
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For 2 ≤ p <∞, by Cauchy-Schwarz, we have

(3.47)
LHS(3.45) ≲ ∥|τ |

1
4

|τ |

∫
|ξ−η|<|τ |

1
2

|Ff |d(ξ − η)∥L2(dτd(ξ+η))

≲ A
∥∥|∂t| 1p− 1

2 |∇y|
1
2 |∇x|

1
2
− 2

p f
∥∥
L2(dt)d(x−y)d(x+y)

where

(3.48) A = sup
τ,ξ+η

|τ |
3
4
− 1

p

|τ |

(∫
|ξ−η|<|τ |

1
2

|ξ|
4
p
−1

|η|
d(ξ − η)

) 1
2

.

Changing variables, this is something like

A = sup

τ,|u|<|τ |
1
2

|τ |
3
4
− 1

p

|τ |

(∫
|v|<|τ |

1
2

|u+ v|
4
p
−1

|u− v|
dv

) 1
2

.

After a change of variables this is reduced to τ = 1, and A is bounded.

Since by Sobolev,

(3.49)

∥∥|∂t| 1p− 1
2 |∇y|

1
2 |∇x|

1
2
− 2

p f
∥∥
L2(dt)d(x−y)d(x+y)

=
∥∥|∂t| 12− 1

p |∇x|
3
q
− 3

2 |∇y|
1
2 |∇x|

1
2 f
∥∥
L2(dtdxdy)

≲∥|∇x|
1
2 |∇y|

1
2 f∥Lp′ (dt)Lq′ (dx)L2(dy).

Thus the proof of (3.45) is complete, and the proof of (3.46) is similar.

Case 3: |ξ|+ |η| > 2|τ |
1
2

In this case, due to Case 1, we can assume additionally that |τ |
1
2 > 10(1+ |ξ+

η|). Thus |ξ − η| > |ξ + η|, so also |ξ − η| > |τ |
1
2 . As before, it suffices to show

(3.45) and (3.46).

(3.50)
LHS(3.45) ≲ ∥

∫
2|ξ−η|>|ξ+η|+|τ |

1
2

| |τ |
1
4 |Ff |

|ξ − η|2
d(ξ − η)∥L2(dτd(ξ+η))

≲ A
∥∥|∂t| 1p− 1

2 |∇y|
1
2 |∇x|

1
2
− 2

p f
∥∥
L2(dt)d(x−y)d(x+y)

In this case,

A2 = sup
ξ+η,τ

∫
2|ξ−η|>|ξ+η|+|τ |

1
2

|τ |
3
2
− 2

p

|ξ − η|4
|ξ|

4
p
−1

|η|
d(ξ − η)(3.51)

Again we scale to |τ |
1
2 + |ξ + η| = 1 and have to estimate∫

|v|>1

1

|v|4
|u+ v|

4
p
−1

|u− v|
dv
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This is bounded uniformly in |u| < 1. As before, the rest of the proof follow from
Sobolev’s inequality, and the proof of (3.46) is similar.

Case 4 :12(|ξ| + |η|) < |τ |
1
2 < 2(|ξ| + |η|), In this case, due to Case 1, we can

assume additionally that |τ |
1
2 > 10(1 + |ξ + η|) so in this case |τ |

1
2 ∼ |ξ| ∼ |η| ∼

|ξ − η|.
We shall use the decomposition u =

∑∞
k=0 P|τ |∼2ku, and the square function

estimate

(3.52)

∥|∂t|
1
4u∥L∞(d(x−y))L2(d(x+y)dt)

∼ ∥
( ∞∑

k=0

|P|τ |∼2k |∂t|
1
4u|2

) 1
2 ∥L∞(d(x−y))L2(d(x+y)dt)

≲
( ∞∑

k=0

22k∥P|τ |∼2ku∥2L∞(d(x−y))L2(d(x+y)dt)

) 1
2
.

For each fixed dyadic piece P|τ |∼2ku, in the current case, we have

P|τ |∼2ku = P|τ |∼2kP|ξ|∼2k/2P|η|∼2k/2u,

which implies

∥
∣∣P|τ |∼2ku∥collapsing ≲ ∥⟨∇x⟩

1
2P|ξ|∼2k/2P|η|∼2k/2u∥L2(dt)L6(d(x−y))L2(d(x+y))

≲ 2−k/2∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|η|∼2k/2u∥L2(dt)L6(d(x−y))L2(d(x+y))

where we used Bernstein’s inequality in rotated coordinates twice, see e.g., Lemma
3.1 in [10] for more details.

Thus,

(3.53)

∥|∂t|
1
4u∥L∞(d(x−y))L2(d(x+y)dt)

≲
( ∞∑

k=0

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|η|∼2k/2u∥

2
L2(dt)L6(d(x−y))L2(d(x+y))

) 1
2

≲

( ∞∑
k=0

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|η|∼2k/2f∥

2
S′

) 1
2

≲ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2 f∥S′

where we used Strichartz (Theorem 3.1) in the second line, and square function
estimates in y the the last line.

□
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4. Proof of Theorem 2.1.

In this section, we shall see how we can apply the theorems in the previous
section to prove Theorem 2.1. Throughout this section, we shall use extensively
the fact that

supp v̂ ⊂ B1(0)

This assumption implies that, the multiplication operator Tu = vNu can at most
enlarge the Fourier support of u by a set of size N , which will greatly simplify our
proof, especially the proof of Theorem 4.1 below. If we assume v satisfies (1.25)
without this condition, one can follow similar steps in this section to get the same
conclusion. In that case, the multiplication operator Tu = vNu can enlarge the
Fourier support of u by a set of arbitrary large size, but with a rapidly decay
constant if the new Fourier support deviates from the Fourier support of u by a
large distance. For the sake of simplicity, we do not present the full details here
for this general case.

To begin with, we shall first prove the following theorem involving collapsing
norms at low frequency

Theorem 4.1. Let Λ satisfy (2.11), we have

(4.1)

∥⟨∇x+y⟩
1
2Λ∥low collapsing + ∥|∂t|

1
4Λ∥low collapsing

≲ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G∥S′

r
+ ε∥⟨∇x+y⟩

1
2H∥collapsing + ε∥|∂t|

1
4H∥collapsing

+ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λ0∥L2

where the norms ∥ · ∥collapsing and ∥ · ∥low collapsing are defined as in (2.8) and
(2.9), and ε is defined as in (1.25).

Remark 4.2. Due to the criticalness of the potential N2v(N(x − y)) in (2.11),
it is still open to us if one can prove the above theorem without the frequency
assumption on Λ, i.e., to replace on the left side the ∥ · ∥low collapsing by the full
collapsing norm. However, in the case where Λ satisfy (2.11) with H = 0, we do
know how to control the full collapsing norm

∥⟨∇x+y⟩
1
2Λ∥collapsing + ∥|∂t|

1
4Λ∥collapsing

by using a different argument, the details are given in Section 8. Also in [10], a
stronger version of the theorem is proved for the case when one replaceN2v(N(x−
y)) by N3β−1v(Nβ(x− y)) for some β < 1.

Proof. We shall focus on ∥|∂t|
1
4Λ∥low collapsing, the proof for the term ∥⟨∇x+y⟩

1
2Λ∥low collapsing

is similar. And we will first show that

(4.2)

∥∥P|ξ−η|<20N |∂t|
1
4Λ
∥∥
collapsing

≲ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G∥S′

r
+ ε∥|∂t|

1
4H∥collapsing + ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ0∥L2 .
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Let ρ ∈ C∞
0 (R3) be a smooth partition of unity, which satisfies∑

j∈Z3

ρ(ξ − j) ≡ 1, ∀ ξ ∈ R3.

We also assume that 0 ≤ ρ ≤ 1, ρ ≡ 1 if |ξ| ≤ 1
2 , and supp ρ ∈ B1(0), the unit

ball in R3 centered at origin. Let ψj(x − y) be the inverse Fourier transform of

ρ( ξ−η
40N − j). For each fixed j ∈ Z3, ψj is Fourier supported in a ball of radius 40N

centered at 40N · j. Denote

Pjf = ψj ∗ f

so that the Fourier transform of Pjf = ρ( ξ−η
40N − j)f̂ . In particular, let P0f denote

projection onto ball of radius 40N centered at origin, so that the Fourier transform
of P0f = ρ( ξ−η

40N )f̂ .

Define

(4.3) ∥|∂t|
1
4Λ∥N =

N∑
k=0

2−k
( ∑

k≤|j|<k+1

∥∥Pj |∂t|
1
4Λ
∥∥
collapsing

)
.

It is clear that∥∥P|ξ−η|<20N |∂t|
1
4Λ
∥∥
collapsing

≲
∥∥P0|∂t|

1
4Λ
∥∥
collapsing

≲ ∥|∂t|
1
4Λ∥N .

Thus it suffices to show that

(4.4)
∥|∂t|

1
4Λ∥N

≲ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G∥S′

r
+ ε∥|∂t|

1
4H∥collapsing + ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ0∥L2 .

We shall first deal with the last term in the norm, where k = N . Note that for

each fixed j ∈ Z3, the Fourier transform in x−y direction of Pj |∂t|
1
4Λ is supported

in a ball of radius 40N , by Bernstein’s inequality,

(4.5)

∥Pj |∂t|
1
4Λ∥L∞(d(x−y))L2(dt)L2(d(x+y))

≲N
1
2 ∥Pj |∂t|

1
4Λ∥L6(d(x−y))L2(dt)L2(d(x+y))

≲N
1
2 ∥|∂t|

1
4Λ∥L2(dt)L6(d(x−y))L2(d(x+y)).

Recall that

SΛ(t, x, y) = N2v
(
N(x− y)

)
Λ(t, x, y) +G(t, x, y)

+N2v
(
N(x− y))H(t, x, y)

Λ(0, ·) = Λ0.
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By Theorem 3.5, we have

(4.6)

∥|∂t|
1
4Λ∥L2(dt)L6(d(x−y))L2(d(x+y))

≤ C
∥∥N2v

(
N(x− y)

)
|∂t|

1
4Λ
∥∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

,

+ C
∥∥N2v

(
N(x− y)

)
|∂t|

1
4H
∥∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

,

+ C
∥∥(⟨∇x−y⟩

1
2 + ⟨∇x+y⟩

1
2
)
G
∥∥
S′
r

+ C
∥∥(⟨∇x−y⟩

1
2 + ⟨∇x+y⟩

1
2
)
Λ0

∥∥
L2 ,

≤ Cε
∥∥|∂t| 14Λ∥∥L2(dt)L6(d(x−y))L2(d(x+y))

,

+ CεN−1/2
∥∥|∂t| 14H∥∥L∞(d(x−y))L2(dt)L2(d(x+y))

,

+ C
∥∥(⟨∇x−y⟩

1
2 + ⟨∇x+y⟩

1
2
)
G
∥∥
S′
r

+ C
∥∥(⟨∇x−y⟩

1
2 + ⟨∇x+y⟩

1
2
)
Λ0

∥∥
L2 ,

where we used Hölder in the second inequality. By choosing ε small enough such
that Cε < 1/2, we have

(4.7)

∥|∂t|
1
4Λ∥L2(dt)L6(d(x−y))L2(d(x+y))

≤ CεN−1/2
∥∥|∂t| 14H∥∥L∞(d(x−y))L2(dt)L2(d(x+y))

,

+ C
∥∥(⟨∇x−y⟩

1
2 + ⟨∇x+y⟩

1
2
)
G
∥∥
S′
r

+ C
∥∥(⟨∇x−y⟩

1
2 + ⟨∇x+y⟩

1
2
)
u0
∥∥
L2 ,

≤ CεN−1/2
∥∥|∂t| 14H∥∥L∞(d(x−y))L2(dt)L2(d(x+y))

,

+ C
∥∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2G
∥∥
S′
r
+ C

∥∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2u0
∥∥
L2 .

If we combine (4.5) and (4.7), we get

(4.8)

∥Pj |∂t|
1
4Λ∥L∞(d(x−y))L2(dt)L2(d(x+y))

≤ Cε
∥∥|∂t| 14H∥∥L∞(d(x−y))L2(dt)L2(d(x+y))

,

+ CN
1
2

∥∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G
∥∥
S′
r
+ CN

1
2

∥∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2u0
∥∥
L2 .
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Since the number of j ∈ Z3 such that N ≤ |j| < N +1 is bounded by CN2, we
have

(4.9)

∑
N≤|j|<N+1

2−N
∥∥Pj |∂t|

1
4Λ
∥∥
collapsing

≤ C2−NN2ε
∥∥|∂t| 14H∥∥L∞(d(x−y))L2(dt)L2(d(x+y))

,

+ C2−NN
5
2

∥∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G
∥∥
S′
r

+ C2−NN
5
2

∥∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2u0
∥∥
L2 .

≤ Cε
∥∥|∂t| 14H∥∥L∞(d(x−y))L2(dt)L2(d(x+y))

,

+ C
∥∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2G
∥∥
S′
r
+ C

∥∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2u0
∥∥
L2 .

Now we shall control the terms 0 ≤ k ≤ N − 1 using a bootstrap argument.
Write Λ = Λ1 + Λ2 + Λ3, where

SΛ1 = G, Λ1(0, ·) = Λ0

SΛ2 = N2v
(
N(x− y)

)
H(t, x, y), with initial conditions 0

SΛ3 = N2v
(
N(x− y)

)
Λ(t, x, y), with initial conditions 0.

By Lemma 3.9, we have

(4.10)

N−1∑
k=0

2−k
( ∑

k≤|j|<k+1

∥∥Pj |∂t|
1
4Λ1

∥∥
collapsing

)

≲
N−1∑
k=0

2−k
( ∑

k≤|j|<k+1

∥∥|∂t| 14Λ1

∥∥
collapsing

)

≲
N−1∑
k=0

2−k
∑

k≤|j|<k+1

(
∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2G∥S′

r
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ0∥L2

)
≲∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2G∥S′

r
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ0∥L2 .

And if we repeat the argument in (4.5)-(4.8), for each fixed j, we have

(4.11)
∥Pj |∂t|

1
4Λ2∥L∞(d(x−y))L2(dt)L2(d(x+y))

≤ Cε
∥∥|∂t| 14H∥∥L∞(d(x−y))L2(dt)L2(d(x+y))

.
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Thus,

(4.12)

N−1∑
k=0

2−k
( ∑

k≤|j|<k+1

∥∥Pj |∂t|
1
4Λ2

∥∥
collapsing

)

≲
N−1∑
k=0

ε2−k
( ∑

k≤|j|<k+1

∥∥|∂t| 14H∥∥collapsing)
≲ε
∥∥|∂t| 14H∥∥collapsing.

It remains to control the terms involving Λ3, note that since v̂ is supported in the
unit ball centered at origin, we have

SPjΛ3 = PjN
2v
(
N(x− y)

)
Λ(t, x, y)

= PjN
2v
(
N(x− y)

) ∑
j′:|j′−j|≤1

Pj′Λ(t, x, y).

Thus we have the following analog of (4.11)

(4.13)

∥Pj |∂t|
1
4Λ3∥L∞(d(x−y))L2(dt)L2(d(x+y))

≤ C
∑

j′:|j′−j|≤1

ε
∥∥Pj′ |∂t|

1
4Λ
∥∥
L∞(d(x−y))L2(dt)L2(d(x+y))

,

Thus,

(4.14)

N−1∑
k=0

2−k
( ∑

k≤|j|<k+1

∥∥Pj |∂t|
1
4Λ3

∥∥
collapsing

)

≲
N−1∑
k=0

ε2−k
( ∑

k≤|j|<k+1

∑
j′:|j′−j|≤1

∥∥Pj′ |∂t|
1
4Λ
∥∥
collapsing

)
.

By choosing ε small enough, the right hand side of (4.14) is bounded by 1
2∥|∂t|

1
4Λ∥N ,

thus the proof of (4.4) is complete.

To prove (4.2) when P|ξ−η|<20N is replace by P|ξ|<20N or P|η|<20N , we use a
complete similar argument, the only necessary change is to replace the use of
Bernstein’s inequality in (4.5) by Bernstein’s inequality in rotated coordinates.

□

Proof of Theorem 2.1.

To prove Theorem 2.1, it remains to control ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λ∥Sx,y , where ∥·∥Sx,y

is defined as in (2.1).

Case 1. Let us first assume |ξ + η| ≥ N
10 , the norms we are going to control are

different for the case |ξ + η| < N
10 , but in both cases the norms contains ∥Λ∥Sx,y .
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In this case, the norm with respect to which the potential is a perturbation should
be

∥Λ∥N = ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λ∥S(4.15)

+ ∥P|ξ|≥10NP|η|<10N ⟨∇x⟩
1
2Λ∥collapsing(4.16)

+ ∥P|ξ|<10NP|η|≥10N ⟨∇y⟩
1
2Λ∥collapsing(4.17)

where ∥ · ∥S is defined in (2.2) and ∥ · ∥collapsing is defined as in (2.8). Here we
are abusing notations a bit by using Λ to denote P|ξ+η|≥N

10
Λ. The projection on

|ξ + η| ≥ N
10 is necessary, as we shall see later in the proof, we do not know how

to control the collapsing norms in (4.16) and (4.17) without this assumption.

Let’s first control the low frequency, let P<N = P|ξ|<10NP|η|<10N and P>N =
I − P<N . Note that

(4.18)

S⟨∇x⟩
1
2 ⟨∇y⟩

1
2P<NΛ

=P<N ⟨∇x⟩
1
2 ⟨∇y⟩

1
2N2v(N(x− y))P|ξ−η|<20NΛ

+ ⟨∇x⟩
1
2 ⟨∇y⟩

1
2P<NG(t, x, y)

+ P<N ⟨∇x⟩
1
2 ⟨∇y⟩

1
2N2v(N(x− y))H(t, x, y)

∼P<NN
3v(N(x− y))P|ξ−η|<20NΛ

+ ⟨∇x⟩
1
2 ⟨∇y⟩

1
2P<NG(t, x, y)

+ P<NN
3v(N(x− y))H(t, x, y)

Here we are abusing the notation a bit by writing

P<N ⟨∇x⟩
1
2 ⟨∇y⟩

1
2N2v(N(x− y))P|ξ−η|<20N ∼ P<NN

3v(N(x− y))P|ξ−η|<20N ,

since, as a result of Bernstein’s inequality, for all 1 ≤ p, q ≤ ∞, we have

(4.19)
∥P<N ⟨∇x⟩

1
2 ⟨∇y⟩

1
2N2v(N(x− y))P|ξ−η|<20NΛ∥Lp(x−y)Lq(x+y)

≲∥P<NN
3v(N(x− y))P|ξ−η|<20NΛ∥Lp(x−y)Lq(x+y),

which is harmless for our purposes. We shall use the same notation ∼ repeatly
in the later arguments. Also, strictly speaking,

P<NN
2v(N(x− y))Λ = P<NN

2v(N(x− y))P|ξ−η|<21NΛ,

instead of P|ξ−η|<20NΛ, due to the fact that convolution with v̂ will shift the
frequency support. But it will not make a essential difference in our argument.
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By Strichartz estimate (Theorem 3.1), we have

(4.20)

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P<NΛ∥S

≲ ∥P|ξ−η|<20NN
3v(N(x− y))Λ∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

+ ∥P|ξ−η|<20NN
3v(N(x− y))H∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

+ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P<NG∥S′

r
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ0∥L2

≲ ∥v∥
L

6
5

(
∥P|ξ−η|<20N ⟨∇x+y⟩

1
2Λ∥collapsing + ∥⟨∇x+y⟩

1
2H∥collapsing

)
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2P<NG∥S′

r
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ0∥L2 ,

where in the second inequality we used Bernstein’s inequality and the fact that
|ξ + η| ≥ N

10 .

By Theorem 4.1, we have
(4.21)

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P<NΛ∥S ≲ ε∥⟨∇x+y⟩

1
2H∥collapsing

+ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P<NG∥S′

r
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ0∥L2 .

At high frequency, write

(4.22)

P>NΛ =P|ξ|≥10NP|η|≥10NΛ + P|ξ|≥10NP|η|<10NΛ

+ P|ξ|<10NP|η|≥10NΛ

=I + II + III.

To handle the first term I, note that

(4.23)

S⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|ξ|≥10NP|η|≥10NΛ

∼N2v(N(x− y))⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|ξ|≥9NP|η|≥9NΛ

+ ⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|ξ|≥10NP|η|≥10NG(t, x, y)

+N2v(N(x− y))⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|ξ|≥9NP|η|≥9NH.

The lower bounds on |ξ| and |η| changed slightly due to convolution with v̂N ,
since v̂N is compact supported in a set of size N .

Using Strichartz(Theorem 3.1) and Hölder’s inequality, it is not hard to see
that

(4.24)

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|ξ|≥10NP|η|≥10NΛ∥S

≲ ε∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λ∥S

+ ε∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2H∥L2(dt)L6(d(x−y))L2(d(x+y))

+ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G∥S′

r
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ0∥L2 ,
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where the ε comes from ∥v∥L3/2 when applying Hölder’s inequality.

To handle the second term II,

(4.25)

S⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|ξ|≥10NP|η|<10NΛ

∼N
5
2 v(N(x− y))⟨∇x⟩

1
2P|ξ|≥10NP|η|<10NΛ

+N2v(N(x− y))⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|ξ|≥10NP10N≤|η|<11NΛ

+N3v(N(x− y))P9N≤|ξ|<10NP|η|<10NΛ

+N
5
2 v(N(x− y))⟨∇x⟩

1
2P|ξ|≥9NP|η|<11NH

+ ⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|ξ|≥10NP|η|<10NG(t, x, y).

Again the bounds on |ξ| and |η| changed slightly due to convolution with v̂N . By
using Strichartz and Hölder’s inequality,

(4.26)

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|ξ|≥10NP|η|<10NΛ∥S

≲ ε∥⟨∇x⟩
1
2P|ξ|≥10NP|η|<10NΛ∥L∞(d(x−y))L2(dt)L2(d(x+y))

+ ε∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λ∥L2(dt)L6(d(x−y))L2(d(x+y))

+ ∥N3v(N(x− y))P9N≤|ξ|<10NP|η|<10NΛ∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

+ ε∥⟨∇x⟩
1
2H∥L∞(d(x−y))L2(dt)L2(d(x+y))

+ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G∥S′

r
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ0∥L2 .

Again, since we are assuming |ξ+ η| ≥ N
10 , by Bernstein’s inequality and Hölder’s

inequality, the third term on the right side can be controlled by

∥N3v(N(x− y))P9N≤|ξ|≤10NP|η|≤10NΛ∥L2(dt)L6/5(d(x−y))L2(d(x+y))

≲ ∥P|ξ−η|<20N ⟨∇x+y⟩
1
2Λ∥collapsing.

The third term III can be handled in a similar way as the second term.

To finish to discussion for the case |ξ + η| ≥ N
10 , we are reduced to estimate

(4.27)
∥P|ξ|≥10NP|η|<10N ⟨∇x⟩

1
2Λ∥collapsing

+ ∥P|ξ|<10NP|η|≥10N ⟨∇y⟩
1
2Λ∥collapsing.

We shall focus on the first term, since the other term involving ⟨∇y⟩
1
2 can be

dealt with similarly.

Write Λ = Λ1 + Λ2 + Λ3, where

(4.28)

SΛ1 = G, Λ3(0, ·) = Λ0

SΛ2 = N2v
(
N(x− y)

)
H(t, x, y), with initial conditions 0

SΛ3 = N2v
(
N(x− y)

)
Λ(t, x, y), with initial conditions 0.
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By Lemma 3.7, we have

(4.29)
∥P|ξ|≥10NP|η|<10N ⟨∇x⟩

1
2Λ1∥collapsing,

≲ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G∥S′

r
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ0∥L2 .

To handle Λ2, since |η| < 10N , by Bernstein’s inequality at an angle, we have,

(4.30) ∥P|ξ|≥10NP|η|<10N ⟨∇x⟩
1
2Λ2∥collapsing

≲ N1/2∥P|ξ|≥10NP|η|<10N ⟨∇x⟩
1
2Λ2∥L2(dt)L6(d(x−y))L2(d(x+y)).

Note that

(4.31)
S⟨∇x⟩

1
2N1/2P|ξ|≥10NP|η|<10NΛ2

∼ N5/2v(N(x− y))⟨∇x⟩
1
2P|ξ|≥9NP|η|<11NH.

By Strichartz and Hölder’s inequality

(4.32)

N1/2∥P|ξ|≥10NP|η|<10N ⟨∇x⟩
1
2Λ2∥L2(dt)L6(d(x−y))L2(d(x+y))

≲ ∥N
5
2 v(N(x− y))P|ξ|≥9NP|η|<11NH∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

≲ ε∥⟨∇x⟩
1
2H∥L∞(d(x−y))L2(dt)L2(d(x+y)).

To handle Λ3, since |η| < 10N , by Bernstein’s inequality at an angle, we still
have,

(4.33) ∥P|ξ|≥10NP|η|<10N ⟨∇x⟩
1
2Λ3∥collapsing

≲ N1/2∥P|ξ|≥10NP|η|<10N ⟨∇x⟩
1
2Λ3∥L2(dt)L6(d(x−y))L2(d(x+y)).

Note that

(4.34)

S⟨∇x⟩
1
2N1/2P|ξ|≥10NP|η|<10NΛ3

∼ N
5
2 v(N(x− y))⟨∇x⟩

1
2P|ξ|≥10NP|η|<10NΛ

+N
5
2 v(N(x− y))⟨∇x⟩

1
2P|ξ|≥10NP10N≤|η|<11NΛ

+N3v(N(x− y))P9N≤|ξ|<10NP|η|<10NΛ.



GLOBAL ESTIMATES FOR HFB 39

By Strichartz and Hölder’s inequality

(4.35)

N
1
2 ∥⟨∇x⟩

1
2P|ξ|≥10NP|η|<10NΛ3∥L2(dt)L6(d(x−y))L2(d(x+y))

≲ ε∥⟨∇x⟩
1
2P|ξ|≥10NP|η|<10NΛ∥L∞(d(x−y))L2(dt)L2(d(x+y))

+ εN
1
2 ∥⟨∇x⟩

1
2Λ∥L2(dt)L6(d(x−y))L2(d(x+y))

+ ∥N3v(N(x− y))P9N≤|ξ|<10NP|η|<10NΛ∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

,

≲ ε∥⟨∇x⟩
1
2P|ξ|≥10NP|η|<10NΛ∥L∞(d(x−y))L2(dt)L2(d(x+y))

+ ε∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λ∥L2(dt)L6(d(x−y))L2(d(x+y))

+ ∥P|ξ−η|<20N ⟨∇x+y⟩
1
2Λ∥collapsing,

where for the second term on the right side we used Bernstein’s inequality and the
fact that |η| ≥ 10N , and for the third term in the right side, we used Bernstein’s
inequality and the fact that |ξ + η| ≥ N

10 .

Case 2. |ξ + η| < N
10 , |ξ − η| < 10N .

In this case, we are only able to control ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λ∥Sx,y instead of ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ∥S ,

recall that ∥ · ∥Sx,y is defined as in (2.1). Note that

(4.36)

S⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|ξ+η|<N

10
P|ξ−η|<10NΛ

∼P|ξ+η|<N
10
P|ξ−η|<10NN

3v(N(x− y))P|ξ−η|<20NΛ

+ ⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|ξ+η|<N

10
P|ξ−η|<10NG(t, x, y)

+ P|ξ+η|<N
10
P|ξ−η|<10NN

3v(N(x− y))H(t, x, y)

By using Theorem 3.2 for the first and third term, and the Strichartz estimate
(Theorem 3.1) for the second term on the right side of (4.36), we have

(4.37)

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|ξ+η|<N

10
P|ξ−η|<10NΛ∥Sx,y

≲ ∥P|ξ−η|<20NN
3v(N(x− y))⟨∇x+y⟩

1
2Λ∥L1(d(x−y))L2(dt)L2(d(x+y))

+ ∥P|ξ−η|<20NN
3v(N(x− y))|∂t|

1
4Λ∥L1(d(x−y))L2(dt)L2(d(x+y))

+ ∥P|ξ−η|<20NN
3v(N(x− y))⟨∇x+y⟩

1
2H∥L1(d(x−y))L2(dt)L2(d(x+y))

+ ∥P|ξ−η|<20NN
3v(N(x− y))|∂t|

1
4H∥L1(d(x−y))L2(dt)L2(d(x+y))

+ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G∥S′

r
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ0∥L2

≲ ∥v∥L1

(
∥P|ξ−η|<20N ⟨∇x+y⟩

1
2Λ∥collapsing + ∥P|ξ−η|<20N |∂t|

1
4Λ∥collapsing

+ ∥⟨∇x+y⟩
1
2H∥collapsing + ∥|∂t|

1
4H∥collapsing

)
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2G∥S′

r
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ0∥L2 ,
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By Theorem 4.1, we have

(4.38)
∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2P|ξ+η|<N

10
P|ξ−η|<10NΛ∥S ≲ ε∥⟨∇x+y⟩

1
2H∥collapsing

+ ε∥|∂t|
1
4H∥collapsing + ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2G∥S′

r
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ0∥L2 .

Case 3. |ξ + η| < N
10 , |ξ − η| ≥ 10N .

In this case, |ξ| ∼ |η| ∼ |ξ − η|, define P>N = P|ξ+η|<N
10
P|ξ−η|≥10N The norm

with respect to which the potential is a perturbation should be

∥Λ∥N =∥|⟨∇x⟩
1
2 ⟨∇y⟩

1
2P>NΛ∥Sx,y(4.39)

+ ∥||∂t|
1
4 ⟨∇x−y⟩

1
2 P̃>NΛ∥L2(dt)L6(d(x−y))L2(d(x+y))(4.40)

+ ∥⟨∇x+y⟩
1
2 ⟨∇x−y⟩

1
2 P̃>NΛ∥L2(dt)L6(d(x−y))L2(d(x+y)),(4.41)

where P̃>N = P|ξ+η|<N
10
P|ξ−η|≥9N .

In this case,

(4.42)

S⟨∇x⟩
1
2 ⟨∇y⟩

1
2P>NΛ

∼ N2v(N(x− y))⟨∇x−y⟩P̃>NΛ

+ ⟨∇x⟩
1
2 ⟨∇y⟩

1
2P>NG(t, x, y) +N2v(N(x− y)⟨∇x−y⟩P̃>NH.

Using Strichartz for the second and third terms on the right side, Theorem 3.4
for the first term on the RHS, and Hölder’s inequality, we get

(4.43)

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P>NΛ∥Sx,y

≲ ε∥|∂t|
1
4 ⟨∇x−y⟩

1
2 P̃>NΛ∥L2(dt)L6(d(x−y))L2(d(x+y))

+ ε∥⟨∇x+y⟩
1
2 ⟨∇x−y⟩

1
2 P̃>NΛ∥L2(dt)L6(d(x−y))L2(d(x+y))

+ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P>NG∥S′

r

+ ε∥⟨∇x−y⟩P̃>NH∥L2(dt)L6(d(x−y))L2(d(x+y))

≲ ε∥|∂t|
1
4 ⟨∇x−y⟩

1
2 P̃>NΛ∥L2(dt)L6(d(x−y))L2(d(x+y))

+ ε∥⟨∇x+y⟩
1
2 ⟨∇x−y⟩

1
2 P̃>NΛ∥L2(dt)L6(d(x−y))L2(d(x+y))

+ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P>NG∥S′

r

+ ε∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2H∥L2(dt)L6(d(x−y))L2(d(x+y)).

Thus, it suffice to control

(4.44)

∥|∂t|
1
4 ⟨∇x−y⟩

1
2 P̃>NΛ∥L2(dt)L6(d(x−y))L2(d(x+y))

+ ∥|⟨∇x+y⟩
1
2 ⟨∇x−y⟩

1
2 P̃>NΛ∥L2(dt)L6(d(x−y))L2(d(x+y))

=I + II.
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For simplicity, we shall only give the details for the first term I, the second term
is easier and can be handled in a similar way.

Note that

(4.45)

S⟨∇x−y⟩
1
2P|ξ−η|≥9NP|ξ+η|<N

10
Λ

∼N2v(N(x− y))⟨∇x−y⟩
1
2P|ξ−η|≥9NP|ξ+η|<N

10
Λ

+N
5
2 v(N(x− y))P8N≤|ξ−η|<9NP|ξ+η|<N

10
Λ

+ ⟨∇x−y⟩
1
2P|ξ−η|≥9NP|ξ+η|<N

10
G(t, x, y)

+N2v(N(x− y))⟨∇x−y⟩
1
2P|ξ−η|≥8NP|ξ+η|<N

10
H,

where the bounds on |ξ − η| changed slightly due to convolution with v̂N .

By Theorem 3.5 and Hölder’s inequality, we have
(4.46)

∥|∂t|
1
4 ⟨∇x−y⟩

1
2P|ξ−η|≥9NP|ξ+η|<N

10
Λ∥L2(dt)L6(d(x−y))L2(d(x+y))

≲ ε∥|∂t|
1
4 ⟨∇x−y⟩

1
2P|ξ−η|≥9NP|ξ+η|<N

10
Λ∥L2(dt)L6(d(x−y))L2(d(x+y))

+ ∥|N
5
2 v(N(x− y))P8N≤|ξ−η|<9NP|ξ+η|<N

10
|∂t|

1
4Λ∥L2(dt)L6(d(x−y))L2(d(x+y))

+ ∥⟨∇x−y⟩P|ξ−η|≥9NP|ξ+η|<N
10
G∥S′

r

+ ε∥⟨∇x−y⟩P̃|ξ−η|≥8NP|ξ+η|<N
10
H∥L2(dt)L6(d(x−y))L2(d(x+y))

+ ∥⟨∇x−y⟩P̃|ξ−η|≥9NP|ξ+η|<N
10
Λ0∥L2

≲ ε∥|∂t|
1
4 ⟨∇x−y⟩

1
2 P̃>NΛ∥L2(dt)L6(d(x−y))L2(d(x+y))

+ ε∥|∂t|
1
4P|ξ−η|≤20NΛ∥L∞(d(x−y))L2(dt)L2(d(x+y))

+ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G∥S′

r
+ ε∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2H∥L2(dt)L6(d(x−y))L2(d(x+y))

+ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λ0∥L2 ,

where the first two terms on the right side of the first inequality corresponds to
the first term on the right side of (3.16), and the last three terms on the right
side of the first inequality corresponds to the remaining terms on the right side
of (3.16).

5. Estimates for the nonlinear equation.

Recall the notation

S± =
1

i

∂

∂t
−∆x +∆y

From now on, VN (x− y) = N3v(N(x− y)).

Define Γ = Γc + Γp, Λ = Λc + Λp, where Γc = ϕ̄ ⊗ ϕ, Λc = ϕ ⊗ ϕ, Γp =
1
N sh(k) ◦ sh(k), and Λp =

1
2N sh(2k). Let ρ(t, x) = Γ(t, x, x).
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The four relevant equations are

SΛp + {VN ∗ ρ,Λp}+
VN
N

Λp(5.1)

+
(
(VN Γ̄p) ◦ Λp + (VNΛp) ◦ Γp

)
symm

+
(
(VN Γ̄c) ◦ Λp + (VNΛc) ◦ Γp

)
symm

= −VN
N

Λc

S±Γp + [VN ∗ ρ,Γp] +
(
(VNΓp) ◦ Γp + (VN Λ̄p) ◦ Λp

)
skew

(5.2)

+
(
(VNΓc) ◦ Γp + (VN Λ̄c) ◦ Λp

)
skew

= 0

SΛc + {VN ∗ ρ,Λc}+
(
(VN Γ̄p) ◦ Λc + (VNΛp) ◦ Γc

)
symm

= 0(5.3)

S±Γc + [VN ∗ ρ,Γc] +
(
(VNΓp) ◦ Γc + (VN Λ̄p) ◦ Λc

)
skew

= 0.(5.4)

Here
(
A(x, y)

)
symm

= A(x, y) +A(y, x),
(
A(x, y)

)
skew

= A(x, y)− Ā(y, x),

{VN ∗ ρ,Λ}(x, y) =
∫
dz (VN (x− z) + VN (y − z)) ρ(z)Λ(x, y),

and

[VN ∗ ρ,Γ](x, y) =
∫
dz (VN (x− z)− VN (y − z)) ρ(z)Γ(x, y).

The norm used for Λp is called N1(Λ) and is

(5.5)

∥Λ∥N1(Λ) = ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λ∥Sx,y + ∥⟨∇x+y⟩

1
2Λ∥low collapsing

+ ∥|∂t|
1
4Λ∥low collapsing

+
∥∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2P|ξ|≥10NP|η|≥10NP|ξ+η|≥N

10
Λ
∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+
∥∥⟨∇x+y⟩

1
2 ⟨∇x−y⟩

1
2P|ξ−η|≥10NP|ξ+η|<N

10
Λ
∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+
∥∥|∂t| 14 ⟨∇x−y⟩

1
2P|ξ−η|≥10NP|ξ+η|<N

10
Λ
∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

,

where the norm ∥ · ∥low collapsing is defined as in (2.9). The last three norms in
(5.5) does not appear in the statement of Theorem 2.1, but as one can see from
the proof of Theorem 2.1 in the previous section, they satisfy the same bounds
as the first three norms on the right side of (5.5).

The norm used for Λc is called N2(Λ) and is

(5.6)

∥Λ∥N2(Λ) = ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λ∥Sx,y + ∥⟨∇x+y⟩

1
2Λ∥collapsing

+ ∥|∂t|
1
4Λ∥collapsing + ∥⟨∇x⟩

1
2Λ∥collapsing

+ ∥⟨∇y⟩
1
2Λ∥collapsing +

∥∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λ
∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

.

We will use the following a priori estimates for Γ(t, x, x) (proved in Lemma 6.2
in [10]).
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Lemma 5.1. Let the potential v satisfies (1.26), and the initial conditions satisfy
(1.27), we have for all 0 ≤ α ≤ 1,

(5.7) ∥⟨∇x+y⟩αΓ∥
L8(dt)L∞(d(x−y))L

4
3 (d(x+y))

≲ 1.

The above estimates also hold for Γp, Γc and Λc separately.

We need to use a continuity argument, we have to localize our estimates to
intervals [0, T ], where the right end of the interval must be a variable T . De-
fine Λc,T ,Λp,T ,Γp,T ,Γc,T to be solutions to the standard equations with the RHS
multiplied by χ[0,T ]:

SΛp,T +
VN
N

Λp,T(5.8)

= χ[0,T ]

(
− {VN ∗ ρ,Λp} −

(
(VN Γ̄p) ◦ Λp + (VNΛp) ◦ Γp

)
symm

−
(
(VN Γ̄c) ◦ Λp + (VNΛc) ◦ Γp

)
symm

− VN
N

Λc

)
S±Γp,T = χ[0,T ]

(
− [VN ∗ ρ,Γp]−

(
(VNΓp) ◦ Γp + (VN Λ̄p) ◦ Λp

)
skew

(5.9)

−
(
(VNΓc) ◦ Γp + (VN Λ̄c) ◦ Λp

)
skew

)
SΛc,T = χ[0,T ]

(
− {VN ∗ ρ,Λc} −

(
(VN Γ̄p) ◦ Λc + (VNΛp) ◦ Γc

)
symm

)
(5.10)

S±Γc,T = χ[0,T ]

(
− [VN ∗ ρ,Γc]−

(
(VNΓp) ◦ Γc + (VN Λ̄p) ◦ Λc

)
skew

)
(5.11)

with Λc,T (0, ·) = Λc(0, ·), and similarly for the other three functions. Also, we
Λc,T = Λc in [0, T ] (but not outside this interval), and similarly for the other
three functions.

Theorem 5.2. Let [0, T ] be as above, there exist a universal constant C such that

(5.12)
∥Λp,T ∥N1(Λ) ≤ C∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λp(0, ·)∥L2 + Cε∥Λp,T ∥N1(Λ)

+ Cε∥Γp,T ∥Sx,y + Cε∥Λp,T ∥N1(Λ)∥Γp,T ∥Sx,y + Cε∥Λc,T ∥N2(Λ).
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The proof is based on Theorem 2.1, there exists a constant C such that

∥Λp,T ∥N1(Λ)

≤ C
(
∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2χ[0,T ]

(
{VN ∗ ρ,Λp}+

(
(VN Γ̄p) ◦ Λp + (VNΛp) ◦ Γp

)
symm

+
(
(VN Γ̄c) ◦ Λp + (VNΛc) ◦ Γp

)
symm

)
∥S′

r

+ ε∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2χ[0,T ]Λc∥L2(dt)L6(x−y)L2(d(x+y))

+ ε∥⟨∇x+y⟩
1
2χ[0,T ]Λc∥collapsing + ε∥|∂t|

1
4χ[0,T ]Λc∥collapsing

(5.13)

+ ε∥⟨∇x⟩
1
2χ[0,T ]Λc∥collapsing + ε∥⟨∇y⟩

1
2χ[0,T ]Λc∥collapsing

+ C∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λp(0, ·)∥L2

)
.

For all terms other than ∥|∂t|
1
4χ[0,T ]Λc∥collapsing, the subscript T can be trivially

added to Λ, Γ on the RHS. And we also have

(5.14)

∥|∂t|
1
4χ[0,T ]Λc∥L∞(d(x−y))L2(dt)L2(d(x+y))

= ∥|∂t|
1
4χ[0,T ]Λc,T ∥L∞(d(x−y))L2(dt)L2(d(x+y))

≲ ∥|∂t|
1
4Λc,T ∥L∞(d(x−y))L2(dt)L2(d(x+y))

≲ ∥Λc,T ∥N2(Λ),

where in the third line we used the fact that

∥|∂t|
1
4χ[0,T ]F∥L∞(d(x−y))L2(dt)L2(d(x+y)) ≲ ∥|∂t|

1
4F∥L∞(d(x−y))L2(dt)L2(d(x+y)),

for any interval [0, T ]. As remarked in [10], this can be shown by using the
equivalent definition

(5.15) ∥|∂t|
1
4u∥L2 =

∫ ∫
|u(t)− u(s)|2

|t− s|1+
1
2

dtds,

and the generalized Hardy’s inequality from [37].

In the lemma that follow, we estimate the norm of the nonlinear terms in
suitable dual Strichartz norms, using the bound (5.1) whenever possible.

Lemma 5.3. Let [0, T ] be as above, there exist a universal constant C such that

(5.16)
∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2

(
{VN ∗ ρ,Λp,T }+ (VN Γ̄) ◦ Λp,T

)
∥
L

8
5 ([0,T ])L

4
3 (dx)L2(dy)

.

≤ Cε∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λp,T ∥Sx,y .

Here Γ can be Γp or Γc. The result depends on the a priori bounds for Γ, but is
true with Λp,T replaced with any other function.
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Proof. In this case, we essentially view VN as a δ distribution, by Minkowski
integral inequality, and it suffices to show that

(5.17)
sup
z

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2

(
Γ(t, x, x+ z)Λp,T (t, x+ z, y)

)
∥
L

8
5 ([0,T ])L

4
3 (dx)L2(dy)

≤ C∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λp,T ∥Sx,y ,

where the extra ε factor in (5.3) can be remedied by the smallness of ∥VN∥L1 .

Using the fractional Leiniz rule from Theorem 5.1 in [10], we have the following
estimate, uniformly in z:

(5.18)

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2

(
Γ(t, x, x+ z)Λp,T (t, x+ z, y)

)
∥
L

8
5 ([0,T ])L

4
3 (dx)L2(dy)

≤ C∥⟨∇x⟩
1
2Γ(t, x, x+ z)∥

L8(dt)L
4
3+(dx)

∥⟨∇y⟩
1
2Λp,T ∥L2(dt)L∞−(dx)L2(dy)

+ C∥Γ(t, x, x+ z)∥
L8(dt)L

12
7 (dx)

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λp,T ∥L2(dt)L6(dx)L2(dy)

≤ C∥⟨∇x⟩αΓ(t, x, x+ z)∥
L8(dt)L

4
3 (dx)

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λp,T ∥L2(dt)L6(dx)L2(dy)

≤ C∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λp,T (t, x+ z, y)∥L2(dt)L6(dx)L2(dy).

Here α is can be any number in (12 , 1],
4
3+ is a number that is bigger than but can

be arbitrary close to 4
3 , similarly ∞− is any finite number but can be arbitrary

large. We use ∞− since we do not have the sharp Sobolev estimate from L6 to
L∞. In the last inequality we used Lemma 5.1. □

Since Λc satisfies the same a priori estimates as Γ, by the exact same argument
we get

Lemma 5.4. Let [0, T ] be as above, there exist a universal constant C such that

(5.19)
∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2

(
(VNΛc) ◦ Γp,T

)
∥
L

4
3 ([0,T ])L

3
2 (dx)L2(dy)

≤ Cε∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Γp,T ∥Sx,y .

The result depends on the a priori bounds for Λc, but is true with Γp,T replaced
with any other function.

We continue estimating nonlinear terms.

Lemma 5.5. Let [0, T ] be as above, there exist a universal constant C such that

(5.20)
∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2

(
(VNΛp,T ) ◦ Γp,T

)
∥
L

4
3 ([0,T ])L

3
2 (dx)L2(dy)

≤ Cε∥Λp,T ∥N1(Λ)∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Γp,T ∥Sx,y .

The result is still true if we replace Γp,T with any other function.
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Proof. In this case, we shall not treat VN as a δ distribution. Recall that

(5.21)

⟨∇x⟩
1
2 ⟨∇y⟩

1
2

(
(VNΛp,T ) ◦ Γp,T

)
= ⟨∇x⟩

1
2 ⟨∇y⟩

1
2

∫
N3v(N(x− z))Λp,T (x, z)Γp,T (z, y)dz

=

∫
N3v(Nz)⟨∇x⟩

1
2 ⟨∇y⟩

1
2

(
Λp,T (x, x+ z)Γp,T (x+ z, y)

)
dz.

For fixed z, the following holds, uniformly in z

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2

(
Λp,T (t, x, x+ z)Γp,T (t, x+ z, y)

)
∥
L

4
3 ([0,T ])L

3
2 (dx)L2(dy)

≤ C∥⟨∇x⟩
1
2Λp,T (t, x, x+ z)∥L2(dt)L2(dx)∥⟨∇y⟩

1
2Γp,T (t, x, y)∥L4(dt)L6(dx)L2(dy)

+ C∥Λp,T (t, x, x+ z)∥L2(dt)L3(dx)∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Γp,T (t, x, y)∥L4(dt)L3(dx)L2(dy)

≤ C∥⟨∇x⟩
1
2Λp,T (t, x, x+ z)∥L2(dt)L2(dx)∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Γp,T (t, x, y)∥L4(dt)L3(dx)L2(dy).

Thus, by Minkowski integral inequality it suffices to show that∫
|N3v(Nz)|∥⟨∇x⟩

1
2Λp,T (t, x, x+ z)∥L2(dt)L2(dx)dz ≤ Cε∥Λp,T ∥N1(Λ),(5.22)

which is equivalent to

(5.23)

∫
|N3v(N(x− y))|

∥∥⟨∇x+y⟩
1
2Λp,T (t, x, y)

∥∥
L2(dt)L2(d(x+y))

d(x− y)

≤ Cε∥Λp,T ∥N1(Λ).

To see this, note that if for Λp,T , we have |ξ− η| < 20N , |ξ| < 20N or |η| < 20N ,
then the left side of (5.23) is easily controlled by

(5.24)

∫
|N3v(N(x− y))|

∥∥⟨∇x+y⟩
1
2Λp,T (t, x, y)

∥∥
L2(dt)L2(d(x+y))

d(x− y)

≤ Cε∥Λp,T ∥low collapsing.

Thus if we denote P>N = P|ξ−η|≥20NP|ξ|≥20NP|η|≥20N , we are further reduced to
showing that

(5.25)

∫
|N3v(N(x− y))|

∥∥⟨∇x+y⟩
1
2P>NΛp,T (t, x, y)

∥∥
L2(dt)L2(d(x+y))

d(x− y)

≤ Cε∥Λp,T ∥N1(Λ).

As in the proof of main theorem for the linear equation, we shall divide our
discussion into two cases.

Case 1: |ξ + η| < N
10 .
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In this case, by Hölder’s inequality,∫
|N3v(N(x− y))|

∥∥⟨∇x+y⟩
1
2P>NΛp,T (t, x, y)

∥∥
L2(dt)L2(d(x+y))d(x−y)

≤ CεN
1
2

∥∥⟨∇x+y⟩
1
2P>NP|ξ+η|<N

10
Λp,T (t, x, y)

∥∥
L6(d(x−y))L2(dt)L2(d(x+y))

≤ CεN
1
2

∥∥⟨∇x+y⟩
1
2P>NP|ξ+η|<N

10
Λp,T (t, x, y)

∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

≤ Cε
∥∥⟨∇x+y⟩

1
2 ⟨∇x−y⟩

1
2P|ξ−η|≥10NP|ξ+η|<N

10
Λp,T (t, x, y)

∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

≤ Cε∥ΛT
p ∥N1(Λ),

where in the third inequality we used Bernstein’s inequality along with the fact
that |ξ − η| ≥ 20N .

Case 2: |ξ + η| ≥ N
10 .

In this case, by Hölder’s inequality,∫
|N3v(N(x− y))|

∥∥⟨∇x+y⟩
1
2P>NΛp,T (t, x, y)

∥∥
L2(dt)L2(d(x+y))d(x−y)

≤ CεN
1
2

∥∥⟨∇x+y⟩
1
2P>NP|ξ+η|≥N

10
Λp,T (t, x, y)

∥∥
L6(d(x−y))L2(dt)L2(d(x+y))

≤ CεN
1
2

∥∥⟨∇x⟩
1
2P>NP|ξ+η|≥N

10
Λp,T (t, x, y)

∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+ CεN
1
2

∥∥⟨∇y⟩
1
2P>NP|ξ+η|≥N

10
Λp,T (t, x, y)

∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

≤ Cε
∥∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2P|ξ|≥10NP|η|≥10NP|ξ+η|≥N

10
Λp,T (t, x, y)

∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

≤ Cε∥Λp,T ∥N1(Λ)

where in the third inequality we used Bernstein’s inequality in rotated coordinates
along with the fact that |ξ| ≥ 20N and |η| ≥ 20N .

□

We continue with estimates for ∥Λc,T ∥N2(Λ). This is an easy version of the
previous theorem. Using Lemma 3.7-Lemma 3.9 and Strichartz estimates (Theo-
rem 3.1), and then applying Lemma 5.3-5.5 in this section to handle the nonlinear
terms, we get

Theorem 5.6. Let [0, T ] be as above, there exist a universal constant C such that

(5.26)
∥Λc,T ∥N2(Λ) ≤ C∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λc(0, ·)∥L2 + Cε∥Λc,T ∥N2(Λ)

+ Cε∥Λp,T ∥N1(Λ)∥Γc,T ∥Sx,y .

Using Strichartz estimates for S± and Lemma 5.3-5.5, we get

Theorem 5.7. Let [0, T ] be as above, there exist a universal constant C such that

(5.27)
∥Γc,T ∥Sx,y ≤ C∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Γc(0, ·)∥L2 + Cε∥Γc,T ∥Sx,y

+ Cε∥Λp,T ∥N1(Λ)∥Λc,T ∥N2(Λ)
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(5.28)
∥Γp,T ∥Sx,y ≤ C∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Γp(0, ·)∥L2 + Cε∥Γp,T ∥Sx,y

+ Cε∥Λp,T ∥N1(Λ) + Cε∥Λp,T ∥N1(Λ)∥Λp,T ∥N1(Λ).

For later use, let us denote

(5.29)
X(T ) =∥Λc,T ∥N2(Λ) + ∥Γc,T ∥Sx,y

Y (T ) =∥Λp,T ∥N1(Λ) + ∥Γp,T ∥Sx,y .

We want to show that X(T ), Y (T ) depends continuously on T . To see this, for
any fixed T ≥ 0, we have∣∣∣∥Λc,T ∥N2(Λ) − ∥Λc,T+δ∥N2(Λ)

∣∣∣ ≲ ∥Λc,T+δ − Λc,T ∥N2(Λ).

And note that Λc,T+δ − Λc,T satisfy

S(Λc,T+δ −Λc,T ) = χ[T,T+δ]

(
−{VN ∗ ρ,Λc}−

(
(VN Γ̄p) ◦Λc+(VNΛp) ◦Γc

)
symm

)
,

with 0 initial condition. It is not hard to see that, by crude energy estimates

(5.30) ∥Λc,T+δ − Λc,T ∥N2(Λ) ≤ δ C(T,N)

for some constant C(T,N) that depend on T,N , which implies the continuity of
∥Λc,T ∥N2(Λ). The continuity of other norms in X(T ) and Y (T ) can be proved
similarly.

We can now state and prove the main theorem of this section

Theorem 5.8. Assume Λ, Γ and ϕ are smooth solutions to the HFB system,
with finite energy per particle, uniformly in N (see (1.27)), which implies (1.31)-
(1.34), we have

(5.31)
∥Λc∥N2(Λ) + ∥Γc∥Sx,y ≤ C

∥Λp∥N1(Λ) + ∥Γp∥Sx,y ≤ C.

Proof. By Theorem 5.2, 5.6, 5.7, and the size of initial conditions (1.31)-(1.34),
we have

(5.32)
X(T ) ≤CC0 + CεX(T )Y (T )

Y (T ) ≤CC0 + CεY (T )2 + CεX(T ).

At this stage, we will need to assume ε is small, where the smallness may depend
on C0. Without loss of generality, let’s assume CC0 = 1 and Cε ≤ 1

10 , then we
have the following simplified version of (5.32)

(5.33)
X(T ) ≤1 +

1

10
X(T )Y (T )

Y (T ) ≤1 +
1

10
Y (T )2 +

1

10
X(T ).

If Y (T ) ≤ 4, by the first line, we have X(T ) ≤ 2, and if we plug this into the
second line, we get Y (T ) ≤ 3. By continuity, since Y (0) ≤ 1, we always have
Y (T ) ≤ 3, and thus X(T ) ≤ 2, for all T ≥ 0, which concludes our proof. □



GLOBAL ESTIMATES FOR HFB 49

6. Estimates for sh(2k), p2 = sh(k) ◦ sh(k) and sh(k).

The equations for sh(2k) = NΛp and p2 = NΓp are

S sh(2k) + {VN ∗ ρ, sh(2k)}+
(
(VN Γ̄) ◦ sh(2k) + (VNΛ) ◦ p2

)
symm

= −VN
2

Λ

S± p2 + [VN ∗ ρ, p2] +
(
(VNΓ) ◦ p2 + (VN Λ̄) ◦ sh(2k)

)
skew

= 0.

To handle the inhomogeneous term −VN
2 Λ, we shall need the following lemma.

Lemma 6.1. Let Su = −VN
2 Λp with u(0, ·) = 0, we have

∥u∥Sx,y ≲ ∥Λp∥N1

where ∥ · ∥N1 is defined as in (5.5).

Note that the above result also hold if one replace Λp by Λc and replace ∥Λp∥N1

by ∥Λc∥N2 , which is a direct consequence of Theorem 3.2 and Hölder’s inequality.

Proof. First note that if for Λ, we have |ξ − η| < 20N , |ξ| < 20N or |η| < 20N ,
then by Theorem 3.2 and Hölder’s inequality, we have

∥u∥Sx,y ≤ Cε∥Λp∥low collapsing.

Thus if we denote P>N = P|ξ−η|≥20NP|ξ|≥20NP|η|≥20N , if suffices to prove Lemma 6.1
with Λ replaced by P>NΛ. As in the proof of main theorem for the linear equation,
we shall divide our discussion into two cases.

Case 1: |ξ + η| < N
10 .

In this case, by Theorem 3.2 and Hölder’s inequality, we have

(6.1)

∥u∥Sx,y

≤ C
∥∥VN ⟨∇x+y⟩

1
2P>NP|ξ+η|<N

10
Λp

∥∥
L1(d(x−y))L2(dt)L2(d(x+y))

+ C
∥∥VN |∂t|

1
4P>NP|ξ+η|<N

10
Λp

∥∥
L1(d(x−y))L2(dt)L2(d(x+y))

≤ CεN
1
2

∥∥⟨∇x+y⟩
1
2P>NP|ξ+η|<N

10
Λp

∥∥
L6(d(x−y))L2(dt)L2(d(x+y))

+ CεN
1
2

∥∥|∂t| 14P>NP|ξ+η|<N
10
Λp

∥∥
L6(d(x−y))L2(dt)L2(d(x+y))

≤ CεN
1
2

∥∥⟨∇x+y⟩
1
2P>NP|ξ+η|<N

10
Λp

∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+ CεN
1
2

∥∥|∂t| 14P>NP|ξ+η|<N
10
Λp

∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

≤ Cε
∥∥|∂t| 14 ⟨∇x−y⟩

1
2P|ξ−η|≥10NP|ξ+η|<N

10
Λp

∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

+ Cε
∥∥⟨∇x+y⟩

1
2 ⟨∇x−y⟩

1
2P|ξ−η|≥10NP|ξ+η|<N

10
Λp

∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

≤ Cε∥Λp∥N1(Λ)

where in the fourth inequality we used Bernstein’s inequality along with the fact
that |ξ − η| ≥ 20N .
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Case 2: |ξ + η| ≥ N
10 .

In this case, by Strichartz (Theorem 3.1) and Hölder’s inequality,

(6.2)

∥u∥Sx,y

≤ C
∥∥VNP>NP|ξ+η|>N

10
Λp

∥∥
L2(dt)L

6
5 (d(x−y))L2(d(x+y))

≤ CεN
∥∥P>NP|ξ+η|≥N

10
Λp

∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

≤ Cε
∥∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2P|ξ|≥10NP|η|≥10NP|ξ+η|<N

10
Λp

∥∥
L2(dt)L6(d(x−y))L2(d(x+y))

≤ Cε∥Λp∥N1(Λ)

where in the third inequality we used Bernstein’s inequality in rotated coordinates
along with the fact that |ξ| ≥ 20N and |η| ≥ 20N . □

Now we shall estimate the other nonlinear terms in dual Strichartz norms

(6.3)

∥
(
VN ∗ ρ(t, x)

)
sh(2k)(t, x, y)∥

L
8
5 (dt)L

4
3 (dx)L2(dy)

+ ∥
(
(VN Γ̄) ◦ sh(2k)∥

L
8
5 (dt)L

4
3 (dx)L2(dy)

≤ Cε sup
z

∥Γ(t, x+ z, x)∥
L8(dt)L

12
7 (dx)

∥sh(2k)∥L2(dt)L6(dx)L2(dy)

≤ Cε∥sh(2k)∥L2(dt)L6(dx)L2(dy),

where we used Sobolev and Lemma 5.1 in the last inequality. The above estimate
still hold if we replace Γ̄ by Λ̄c. Similarly

(6.4)

∥
(
VN ∗ ρ(t, x)

)
p2(t, x, y)∥

L
8
5 (dt)L

4
3 (dx)L2(dy)

+ ∥
(
(VNΓ) ◦ p2∥

L
8
5 (dt)L

4
3 (dx)L2(dy)

≤ Cε∥p2∥L2(dt)L6(dx)L2(dy).

And the above estimate still hold if we replace Γ by Λc. Also, since for fixed z,
the following holds, uniformly in z

(6.5)

∥Λ(t, x, x+ z)p2(t, x+ z, y)∥
L

4
3 (dt)L

3
2 (dx)L2(dy)

≤ ∥Λ(t, x, x+ z)∥L2(dt)L3(dx)∥p2(t, x, y)∥L4(dt)L3(dx)L2(dy)

≤ C∥⟨∇x⟩
1
2Λ(t, x, x+ z)∥L2(dt)L2(dx)∥p2(t, x, y)∥L4(dt)L3(dx)L2(dy).

If we repeat the argument in the proof of Lemma 5.5 and using (5.23), we have

∥
(
VNΛp

)
◦ p2∥

L
8
5 (dt)L

4
3 (dx)L2(dy)

≤ C

∫
|N3v(Nz)|∥⟨∇x⟩

1
2Λp(t, x, x+ z)∥L2(dt)L2(dx)∥p2∥L4(dt)L3(dx)L2(dy)dz

≤ Cε∥Λ∥N1(Λ)∥p2∥L4(dt)L3(dx)L2(dy).
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Similarly, we also have

∥
(
VN Λ̄p

)
◦ sh(2k)∥

L
8
5 (dt)L

4
3 (dx)L2(dy)

≤ C

∫
|N3v(Nz)|∥⟨∇x⟩

1
2Λp(t, x, x+ z)∥L2(dt)L2(dx)∥sh(2k)∥L4(dt)L3(dx)L2(dy)dz

≤ Cε∥Λ∥N1(Λ)∥sh(2k)∥L4(dt)L3(dx)L2(dy).

If we choose ε small enough such that εC ≤ 1
10 , combing the above estimates,

and using the fact that ∥Λp∥N1(Λ) + ∥Λc∥N2(Λ) ≲ 1 from the main theorem of the
last section, we get, by Strichartz

(6.6)
∥sh(2k)∥Sx,y + ∥p2∥Sx,y

≤ C
(
∥sh(2k)(0, ·)∥L2 + ∥p2(0, ·)∥L2

)
+ C.

7. Estimates for the condensate ϕ.

The non-linear equation for ϕ can be regarded as a linear equation on a back-
ground given by Γ and Λ, for which we already have estimates:

(7.1)

{1
i
∂t −∆x1

}
ϕ(x1)

= −
∫
dy{VN (x1 − y)Γ(y, y)}ϕ(x1)

−
∫
dy{VN (x1 − y)Γp(y, x1)}ϕ(y)

+

∫
dy{VN (x1 − y)Λp(x1, y)}ϕ̄(y).

Define the standard Strichartz spaces

∥ϕ∥S = sup
(p,q) admissible

∥ϕ∥Lp(dt)Lq(dx).

Proof. We shall estimate the right hand side of the equation for ϕ in dual Strichartz
norms, if we repeat the proof of Lemma 5.3-5.5, it is not hard to show
(7.2)

∥⟨∇⟩
1
2

∫
dy{VN (x1 − y)Γ(y, y)}ϕ(x1)∥

L
8
5 (dt)L

4
3 (dx)

≤ Cε∥⟨∇⟩
1
2ϕ∥L2(dt)L6(dx)

∥⟨∇⟩
1
2

∫
dy{VN (x1 − y)Γp(y, x1)}ϕ(y)∥

L
8
5 (dt)L

4
3 (dx)

≤ Cε∥⟨∇⟩
1
2ϕ∥L2(dt)L6(dx)

∥⟨∇⟩
1
2

∫
dy{VN (x1 − y)Λp(x1, y)}ϕ̄(y)∥

L
4
3 (dt)L

3
2 (dx)

≤ Cε∥⟨∇⟩
1
2ϕ∥L4(dt)L3(dx).

Thus,

∥⟨∇⟩
1
2ϕ∥S ≤ C∥⟨∇⟩

1
2ϕ(0, ·)∥L2 + 3Cε∥⟨∇⟩

1
2ϕ∥S .

This gives us desired result by taking εC ≤ 1
10 . □
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8. Remarks on the collapsing norm of Λ.

In this section, we shall see how we can use Theorem 2.1 to prove the following

Theorem 8.1. Let Λ satisfy

(8.1) SΛ(t, x, y) +N2v
(
N(x− y)

)
Λ(t, x, y) = G(t, x, y), Λ(0, ·) = Λ0

where we assume v satisfy (1.25), we have

(8.2)
∥⟨∇x+y⟩

1
2Λ∥collapsing + ∥|∂t|

1
4Λ∥collapsing

≲ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G∥S′

r
+ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ0∥L2 .

Recall that we already have desired estimates if we replace ∥ · ∥collapsing by
∥ · ∥low collapsing, by using the results in Theorem 2.1.

Proof. We shall first treat the homogeneous equation, let

(8.3)
SΛ(t, x, y) +N2v

(
N(x− y)

)
Λ(t, x, y) = 0

Λ(0, ·) = Λ0.

Let H = −∆x − ∆y + N2v(N(x − y)), H0 = −∆x − ∆y. If we let W denote
the wave operator in Yajima’s paper [36], acting in x − y direction, we have
eitH = WeitH0W ∗, where ∗ denotes the dual operator. We also have, for the
potential v satisfying (1.25), W is a bounded operator from Lp → Lp for any
1 ≤ p ≤ ∞, with bound independent of N (see [15] Proposition 5.1). Moreover,
by calculating the integral kernel of W explicitly, the Lp → Lp boundness of W
extends to the space of L2 valued function, ). Thus,

sup
x−y

∥⟨∇x+y⟩
1
2 e−itHΛ0∥L2(dtd(x+y)) + sup

x−y
∥|| ∂
∂t

|1/4e−itHΛ0∥L2(dtd(x+y))

= sup
x−y

∥W ⟨∇x+y⟩
1
2 eitH0W ∗Λ0∥L2(dtd(x+y)) + sup

x−y
∥W | ∂

∂t
|1/4eitH0W ∗Λ0∥L2(dtd(x+y))

≲ sup
x−y

∥⟨∇x+y⟩
1
2 eitH0W ∗Λ0∥L2(dtd(x+y)) + sup

x−y
∥| ∂
∂t

|1/4eitH0W ∗Λ0∥L2(dtd(x+y))

≲ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2W ∗Λ0∥L2(dxdy),

where we used Lemma 3.8-3.9 in the last inequality.

Recall W ∗ = limt→∞ eitH0e−itH , where the limit exists in the strong operator
topology, see e.g., [15, Proposition 5.1] and also [17] for a proof of the existence of
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strong limit when v satisfy (1.25). Thus, for each fixed g ∈ C∞
0 (R6) with ∥g∥2 = 1

(8.4)

⟨⟨∇x⟩
1
2 ⟨∇y⟩

1
2W ∗Λ0, g⟩

= ⟨W ∗Λ0, ⟨∇x⟩
1
2 ⟨∇y⟩

1
2 g⟩

= lim
t→∞

⟨eitH0e−itHΛ0, ⟨∇x⟩
1
2 ⟨∇y⟩

1
2 g⟩

= lim
t→∞

⟨e−itHΛ0, ⟨∇x⟩
1
2 ⟨∇y⟩

1
2 e−itH0g⟩

= lim
t→∞

⟨⟨∇x⟩
1
2 ⟨∇y⟩

1
2 e−itHΛ0, e

−itH0g⟩

≤ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2 e−itHΛ0∥L∞(dt)L2(dxdy)

≤ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2 e−itHΛ0∥Sx,y

≤ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2Λ0∥L2

where the second equality is a consequence of the existence of strong limit, and
in the last inequality we used the special case of Theorem 2.1 with G = H = 0.
By taking supremum among all choices of g, we have

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2W ∗Λ0∥L2(dxdy) ≲ ∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2Λ0∥L2 .

Now we shall consider the inhomogeneous equation, let

(8.5) SΛ(t, x, y) +N2v
(
N(x− y)

)
Λ(t, x, y) = G(t, x, y), Λ(0, ·) = 0.

If we let H be defined as above, we have by Duhamel’s formula

Λ =

∫ t

0
e−i(t−s)HG(s, ·)ds.

We shall first show that

sup
x−y

∥⟨∇x+y⟩
1
2

∫ t

0
e−i(t−s)HG(s, ·)ds∥L2(dtd(x+y))

≲ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G∥S′

r
.(8.6)

To prove (8.6), it suffices to show that, for any fixed x− y and fixed T > 0,

∥χ[0,T ](t)⟨∇x+y⟩
1
2

∫ t

0
e−i(t−s)HG(s, ·)ds∥L2(dtd(x+y))

≲ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G∥S′

r

which, by the Christ–Kiselev lemma, is a consequence of

(8.7)
∥⟨∇x+y⟩

1
2

∫ T

0
e−i(t−s)HG(s, ·)ds∥L2(dtd(x+y))

≲ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G∥S′

r
.
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If we apply the homogeneous estimates proved above, the left side of (8.7) is
bounded by

(8.8)

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2

∫ T

0
eisHG(s, ·)ds∥L2(dxdy)

= ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2 eiTH

∫ T

0
e−i(T−s)HG(s, ·)ds∥L2(dxdy)

≲ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2

∫ T

0
e−i(T−s)HG(s, ·)ds∥L2(dxdy)

≲ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G∥S′

r
,

where in the third line we used the special case of Theorem 2.1 with G = H = 0
(estimates for the homogeneous equation), and in the last line we used the special
case of Theorem 2.1 with Λ0 = H = 0(inhomogeneous equation with zero initial
data).

To prove inhomogeneous estimate for |∂t|
1
4 derivative, as before we can not use

the Christ–Kiselev lemma, we shall follow the ideas in the prove of Lemma 3.9.
Write Λ = Λ1 + Λ2, where

SΛ1 = G(t, x, y), with initial conditions 0

SΛ2 = −N2v
(
N(x− y)

)
Λ(t, x, y), with initial conditions 0.

For both Λ1 and Λ2, it suffices to consider the region where

(8.9) τ
1
2 ≥ 10(1 + |ξ + η|), |ξ| ≥ 20N, |η| ≥ 20N and |ξ − η| ≥ 20N,

since otherwise we have ∥|∂t|
1
4Λ∥collapsing ≲ ∥⟨∇x+y⟩

1
2Λ∥collapsing, or we already

know how to control collapsing norm when |ξ| < 20N , |η| < 20N , or |ξ−η| < 20N .

The estimate for Λ1 just follows from Lemma 3.9 directly, and for Λ2, we claim
that it suffices to show

Proposition 8.2. Let Su = f with u(0, ·) = 0, then if the Fourier support τ, ξ, η
of u satisfy (8.9), we have

(8.10)
∥|∂t|

1
4u∥collapsing ≲ min

{
∥⟨∇x⟩

1
2 ⟨∇y⟩

1
2 f∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

,

∥|∂t|
1
4 ⟨∇x−y⟩

1
2 f∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

+N− 1
2 ∥|∂t|

1
4 f∥L2(dtdxdy)

}
.

Remark 8.3. Note that the τ support of u may be different from f , so τ support
of f may not satisfy (8.9) , but the ξ, η support of f does satisfy (8.9).

We shall first see how we can apply the Proposition to get desired results.

Case 1: |ξ + η| ≥ N
10 .

In this case,

SP|ξ|≥20NP|η|≥20NΛ2 ∼ −N2v
(
N(x− y)

)
P|ξ|≥19NP|η|≥19NΛ(t, x, y).
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Thus, by Proposition 8.2

∥|∂t|
1
4Λ2∥collapsing

≲∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2N2v

(
N(x− y)

)
P|ξ|≥19NP|η|≥19NΛ(t, x, y)∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

≲∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|ξ|≥19NP|η|≥19NΛ(t, x, y)∥L2(dt)L6(d(x−y))L2(d(x+y)),

where in the last inequality we used the fact that when |ξ| ≥ 19N , |η| ≥ 19N ,

⟨∇x⟩
1
2 ⟨∇y⟩

1
2 essentially only fall on Λ, as well as Hölder’s inequality. Recall that

when |ξ + η| > N
10 , the last line appears as part of the norm for Λ in the proof of

Theorem 2.1 (see (4.15)), thus it is bounded by ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G∥S′

r
for Λ satisfying

(8.5).

Case 2: |ξ + η| < N
10 .

In this case,

SP|ξ+η|<N
10
P|ξ−η|≥20NΛ2 ∼ −N2v

(
N(x− y)

)
P|ξ+η|<N

10
P|ξ−η|≥19NΛ(t, x, y).

Thus, by Proposition 8.2

∥|∂t|
1
4Λ2∥collapsing

≲∥|∂t|
1
4 ⟨∇x−y⟩

1
2N2v

(
N(x− y)

)
P|ξ+η|<N

10
P|ξ−η|≥19NΛ(t, x, y)∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

+ ∥|∂t|
1
4N

3
2 v
(
N(x− y)

)
P|ξ+η|<N

10
P|ξ−η|≥19NΛ(t, x, y)∥L2(dtdxdy)

≲∥|∂t|
1
4 ⟨∇x−y⟩

1
2P|ξ+η|<N

10
P|ξ−η|≥19NΛ(t, x, y)∥L2(dt)L6(d(x−y))L2(d(x+y))

+N
1
2 ∥|∂t|

1
4P|ξ+η|<N

10
P|ξ−η|≥19NΛ(t, x, y)∥L2(dt)L6(d(x−y))L2(d(x+y))

≲∥|∂t|
1
4 ⟨∇x−y⟩

1
2P|ξ+η|<N

10
P|ξ−η|≥19NΛ(t, x, y)∥L2(dt)L6(d(x−y))L2(d(x+y))

where in the second inequality we used the fact that when |ξ−η| ≥ 19N , ⟨∇x−y⟩
1
2

essentially only fall on Λ, as well as Hölder’s inequality. And in the last inequality
we used Bernstein’s inequality and the fact that |ξ − η| ≥ 20N .

Recall that when |ξ+η| < N
10 , the last line appears as part of the norm for Λ in

the proof of Theorem 2.1 (see (4.40) ), thus it is bounded by ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2G∥S′

r

for Λ satisfying (8.5).

Thus it remains to prove Proposition 8.2, to see this, we shall follow the ideas
in the proof of Lemma 3.9.

Proof of Proposition 8.2:

Case 1: If |τ |
1
2 > 2(|ξ|+ |η|).
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Write u = u1 + u2, where

(8.11)
F u1 =

Ff
τ + |ξ|2 + |η|2

, this no longer has initial conditions 0

Su2 = 0, a correction so that u1 + u2 has initial condition 0.

In this case, it suffices to control u1 since u2 is only supported where |τ | =
|ξ|2 + |η|2. The goodness about u1 is that it has the same Fourier support with
f . The strategy is based on

∥|∂t|
1
4u1∥L∞(d(x−y))L2(d(x+y)dt) = ∥τ

1
4

Ff
τ + |ξ|2 + |η|2

∥L∞(d(x−y))L2(dτd(ξ+η))

≲ ∥
∫

|τ |
1
4

∣∣∣ F
(
f
)

τ + |ξ|2 + |η|2
∣∣∣d(ξ − η)∥L2(dτd(ξ+η)).(8.12)

By Cauchy-Schwarz, we have

(8.13)
RHS(8.12) ≲ ∥|τ |

1
4

|τ |

∫
|ξ−η|<|τ |

1
2

|Ff |d(ξ − η)∥L2(dτd(ξ+η))

≲ A
∥∥|∇y|

1
2 |∇x|−

1
2 f
∥∥
L2(dtd(x−y)d(x+y))

where

(8.14) A = sup
τ,ξ+η

|τ |
1
4

|τ |

(∫
|ξ−η|<|τ |

1
2

|ξ|
|η|
d(ξ − η)

) 1
2

.

Changing variables, this is something like

A = sup

τ,|u|<|τ |
1
2

|τ |
1
4

|τ |

(∫
|v|<|τ |

1
2

|u+ v|
|u− v|

dv

) 1
2

.

After a change of variables this is reduced to τ = 1, and A is bounded. By
Sobolev’s estimate at an angle, we have∥∥|∇y|

1
2 |∇x|−

1
2 f
∥∥
L2(dtd(x−y)d(x+y))

≲ ∥|∇x|
1
2 |∇y|

1
2 f∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

.

Similarly, by Cauchy-Schwarz, we have

(8.15)
RHS(8.12) ≲ ∥|τ |

1
4

|τ |

∫
|ξ−η|<|τ |

1
2

|Ff |d(ξ − η)∥L2(dτd(ξ+η))

≲ A
∥∥|∂t| 14 |∇x−y|−

1
2 f
∥∥
L2(dt)d(x−y)d(x+y)

where

(8.16) A = sup
τ,ξ+η

1

|τ |

(∫
|ξ−η|<|τ |

1
2

|ξ − η| d(ξ − η)

) 1
2

,
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which is bounded. By Sobolev’s inequality, we have∥∥|∂t| 14 |∇x−y|−
1
2 f
∥∥
L2(dt)d(x−y)d(x+y)

≲ ∥|∂t|
1
4 |∇x−y|

1
2 f∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

.

Case 2: |ξ|+ |η| > 2|τ |
1
2

In this case, since we are assuming that |τ |
1
2 > 10(1 + |ξ + η|). we have

|ξ − η| > |ξ + η|, and also |ξ − η| > |τ |
1
2 . As before, it suffices to bound the right

hand side of (8.12). By Cauchy-Schwarz

(8.17)

RHS(8.12) ≲ ∥
∫
2|ξ−η|>|ξ+η|+|τ |

1
2

| |τ |
1
4 |Ff |

|ξ − η|2
d(ξ − η)∥L2(dτd(ξ+η))

≲ A
∥∥|∇y|

1
2 |∇x|−

1
2 f
∥∥
L2(dtd(x−y)d(x+y))

≲ A∥|∇x|
1
2 |∇y|

1
2 f∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

where we used Sobolev’s estimate at an angle in the last inequality. In this case,

(8.18) A2 = sup
ξ+η,τ

∫
2|ξ−η|>|ξ+η|+|τ |

1
2

|τ |
1
2

|ξ − η|4
|ξ|
|η|
d(ξ − η).

Again we scale to |τ |
1
2 + |ξ + η| = 1 and have to estimate∫

|v|>1

1

|v|4
|u+ v|
|u− v|

dv.

This is bounded uniformly in |u| < 1.

Similarly, since we are assuming |ξ − η| ≥ 20N , by Cauchy-Schwarz

RHS(8.12) ≲ ∥
∫
|ξ−η|≥20N

|τ |
1
4 |Ff |

|ξ − η|2
d(ξ − η)∥L2(dτd(ξ+η))

≲ N− 1
2

∥∥|∂t| 14 f∥∥L2(dtd(x−y)d(x+y))
.

Case 4 :12(|ξ| + |η|) < |τ |
1
2 < 2(|ξ| + |η|), In this case, since we are assuming

that |τ |
1
2 > 10(1 + |ξ + η|), this implies |τ |

1
2 ∼ |ξ| ∼ |η| ∼ |ξ − η|.

We shall use the decomposition u =
∑∞

k=0 P|τ |∼2ku, and the square function
estimate

(8.19)

∥|∂t|
1
4u∥L∞(d(x−y))L2(d(x+y)dt)

∼ ∥
( ∞∑

k=0

|P|τ |∼2k |∂t|
1
4u|2

) 1
2 ∥L∞(d(x−y))L2(d(x+y)dt)

≲
( ∞∑

k=0

22k∥P|τ |∼2ku∥2L∞(d(x−y))L2(d(x+y)dt)

) 1
2
.
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For each fixed dyadic piece P|τ |∼2ku, in the current case, we have

P|τ |∼2ku = P|τ |∼2kP|ξ|∼2k/2P|η|∼2k/2u,

which implies

∥
∣∣P|τ |∼2ku∥collapsing ≲ ∥⟨∇x⟩

1
2P|ξ|∼2k/2P|η|∼2k/2u∥L2(dt)L6(d(x−y))L2(d(x+y))

≲ 2−k/2∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|η|∼2k/2u∥L2(dt)L6(d(x−y))L2(d(x+y))

where we used Bernstein’s inequality in rotated coordinates twice, see e.g., Lemma
3.1 in [10]. Thus,

(8.20)

∥|∂t|
1
4u∥L∞(d(x−y))L2(d(x+y)dt)

≲
( ∞∑

k=0

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|η|∼2k/2u∥

2
L2(dt)L6(d(x−y))L2(d(x+y))

) 1
2

≲

( ∞∑
k=0

∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2P|η|∼2k/2f∥

2

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

) 1
2

≲ ∥⟨∇x⟩
1
2 ⟨∇y⟩

1
2 f∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

where we used Strichartz (Theorem 3.1) in the second line, and square function
estimates in y the the last line.

Similarly, for each fixed dyadic piece P|τ |∼2k |∂t|
1
4u, in this case since |ξ−η| ∼ 2

k
2 ,

by Bernstein’s inequality, we have

(8.21)

∥
∣∣P|τ |∼2k |∂t|

1
4u∥collapsing

≲ ∥|∂t|
1
4 ⟨∇x−y⟩

1
2P

|ξ−η|∼2
k
2
u∥L2(dt)L6(d(x−y))L2(d(x+y))

≲ ∥|∂t|
1
4 ⟨∇x−y⟩

1
2P

|ξ−η|∼2
k
2
f∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

,

where in the last inequality we used Theorem 3.5. Thus,

(8.22)

∥|∂t|
1
4u∥L∞(d(x−y))L2(d(x+y)dt)

≲

( ∞∑
k=0

∥|∂t|
1
4 ⟨∇x−y⟩

1
2P

|ξ−η|∼2
k
2
f∥2

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

) 1
2

≲ ∥|∂t|
1
4 ⟨∇x−y⟩

1
2 f∥

L2(dt)L
6
5 (d(x−y))L2(d(x+y))

where we used square function estimates in x− y the the last line. □
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[27] J.-L. Journé, A. Soffer, and C. D. Sogge. Decay estimates for Schrödinger operators. Com-

munications on Pure and Applied mathematics, 44(5):573–604, 1991.
[28] E. Kuz. Exact evolution versus mean field with second-order correction for bosons interact-

ing via short-range two-body potential. Differential Integral Equations, 30:587–630, 2017.
[29] T. D. Lee, K. Huang, and C. N. Yang. Eigenvalues and eigenfunctions of a Bose system of

hard spheres and its low-temperature properties. Phys. Rev., 106:1135–1145, 1957.
[30] E. H. Lieb, R. Seiringer, J. P. Solovej, and J. Yngvason. The mathematics of the Bose gas

and its condensation, volume 34. Springer Science & Business Media, 2005.
[31] C. S. Morawetz. Time decay for the nonlinear Klein-Gordon equation. Proceedings of the

Royal Society of London. Series A. Mathematical and physical sciences, 306(1486):291–296,
1968.

[32] P. Pickl. Derivation of the time dependent Gross–Pitaevskii equation with external fields.
Reviews in Mathematical Physics, 27(01):1550003, 2015.

[33] I. Rodnianski and W. Schlag. Time decay for solutions of Schrödinger equations with rough
and time dependent potentials. Inventiones mathematicae, 155(3):451–513, 2004.

[34] I. Rodnianski and B. Schlein. Quantum fluctuations and rate of convergence towards mean
field dynamics. Communications in Mathematical Physics, 291(1):31–61, 2009.

[35] T. T. Wu. Some nonequilibrium properties of a Bose system of hard spheres at extremely
low temperatures. Journal of Mathematical Physics, 2(1):105–123, 1961.

[36] K. Yajima. The Wk,p-continuity of wave operators for Schrödinger operators. Journal of
the Mathematical Society of Japan, 47(3):551–581, 1995.

[37] J. Zhang and J. Zheng. Scattering theory for nonlinear Schrödinger equations with inverse-
square potential. Journal of Functional Analysis, 267(8):2907–2932, 2014.

(X.H.) Department of Mathematics, Louisiana State University, Baton Rouge. LA
70808

Email address: xhuang49@lsu.edu


