
AVERAGE CM-VALUES OF HIGHER GREEN’S FUNCTION AND
FACTORIZATION

YINGKUN LI

Abstract. In this paper, we prove an averaged version of an algebraicity conjecture in [16]
concerning the values of higher Green’s function at CM points. Furthermore, we give the
factorization of the ideal generated by such algebraic value in the spirit of the famous work
of Gross and Zagier on singular moduli.
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1. Introduction

Let j(z) be the modular j-invariant on the modular curve XΓ := Γ\H with Γ := SL2(Z)
and H the upper-half complex plane. Its value at a CM point z ∈ H, i.e. an algebraic number
in an imaginary quadratic field K ⊂ C, is called a singular moduli. The theory of complex
multiplication tells us such a singular moduli is algebraic and generates an abelian extension
of K. This is the extension of the well-known theorem of Kronecker-Weber from Q to K,
and part of Kronecker’s Jugendtraum.

On the other hand, the modular j-invariant also plays an important role in arithmetic
intersection theory as the function G1(z1, z2) := 2 log |j(z1) − j(z2)| is the automorphic
Green’s function on X2

Γ with logarithm singularity along the diagonal T1 ⊂ X2
Γ. Values of

G1 at a divisor Z on X2
Γ\T1 then give the archimedean part of the arithmetic intersection

between T1 and Z. When Z = Zχ is the average of all pairs of CM points with discriminants
d1 and d2 (see (3.3.1)), this arithmetic intersection is related to the Fourier coefficients of
an incoherent Eisenstein series associated to Zχ. This is the essential ingredient behind the
analytic proof of the factorization of the norm of difference of singular moduli by Gross and
Zagier in [17].

The Green’s function G1 is a member of a family of higher Green’s functions Gk on X2
Γ\T1

for k ∈ N (see (4.2.3)), which are eigenfunctions under the hyperbolic Laplacians of both z1

and z2 with the same eigenvalue k(1−k). They also play an important role in the calculation
of arithmetic intersections by giving the archimedean height paring of CM-cycles in Kuga-
Sato varieties [33]. Even though complex multiplication does not apply to special values of
higher Green’s functions, one still expects them to be of algebraic nature. In [18], Gross and
Zagier made the following conjecture.

Conjecture. Let Gk,f be the higher Green’s function associated to a weakly holomorphic
modular form f ∈M !

2−2k for k ≥ 2 (see (4.2.4)). Suppose f has rational Fourier coefficients.
For a CM point Z = (z1, z2) ∈ X2

Γ not on the singularity Tf of Gk,f (see (4.2.5)), there exists

α = αχ,f ∈ Q ⊂ C such that

Gk,f (Z) = (d1d2)
1−k

2 log |α|,
where dj is the discriminant of zj.

The first instance of this conjecture was proved by Gross, Kohnen and Zagier [16], where

they consider the value of Gk,f at Zχ for k odd and
√

∆ 6∈ Q with ∆ := d1d2. In this
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case, α can be taken to be a positive rational number, and has an explicit factorization
generalizing [17]. To state this result, let F be the real quadratic field Q(

√
∆) ⊂ R with

ring of integers OF . Denote χ the genus character corresponding to the CM extension
K := Q(

√
d1,
√
d2) over F . For each integral ideal a ⊂ OF , we can attach an integral ideal

I+
χ (a) ⊂ OF given by

(1.0.1) I+
χ (a) :=

∏
b|a

(b · b′)χ(b),

where ′ denotes the real conjugation in Gal(F/Q). Notice that I+
χ (a) is Gal(F/Q)-invariant,

hence principal, and has a unique positive integer as its generator. If a = (λ) is principal,
we simply write I+

χ (λ) for I+
χ (a).

For each positive integer m, we have a finite set Sm of elements in OF defined by

(1.0.2) Sm := {λ ∈ OF : λ
√

∆� 0, λ ∈ 1
2
Z + m

2

√
∆}.

For each λ ∈ OF and integers m ∈ Z, k ≥ 1, denote

(1.0.3) Ck(λ,m) := −(−m
√

∆)k−1Pk−1

(
tr(λ)

m
√

∆

)
∈ Z,

where Pk−1(t) is the (k− 1)th Legendre polynomial (see (A.2.1)). The result of Gross-Zagier
and Gross-Kohnen-Zagier can be phrased as follows.

Theorem A (Theorem 1.3 in [17] and Theorem 2 in Section V of [16]). Suppose d1, d2 < 0
are co-prime, fundamental discriminants. For odd k ≥ 1 and f ∈M !

2−2k with integral Fourier
coefficients cf (n), let α+ = α+

χ,f ∈ Q be the unique positive generator of the ideal∏
m≥1

∏
λ∈Sm

I+
χ (λ)cf (−m)Ck(λ,m).

Then Gk,f (Zχ) = ∆(1−k)/2 log(α+).

Remark 1.1. When k = 1, the result above is the factorization of norm of difference of
singular moduli by Gross and Zagier.

Since the work of Gross-Kohnen-Zagier, there has been a lot of progress proving conjecture
1. When the discriminants ∆ = d1d2 is a perfect square, this was proved by Zhang [33]
conditional on the positivity of the height parings of Heegner cycles on Kuga-Sato varieties.
Later in [30], Viazovska gave an unconditional proof using the machinery of theta liftings.
When ∆ is not a perfect square, i.e. F is a real quadratic field, Mellit proved the conjecture
for k = 2, z1 = i, z2 arbitrary in his thesis [27]. In a recent work [5], the conjecture is proved
when one averages over all CM points (z1, z2) with z1 having discriminant d1. Most recently,
conjecture 1 is proved in [26] for any CM point Z = (z1, z2) and odd k ≥ 3. In these cases,
the algebraic number α is in an abelian extension of an imaginary quadratic field. In general,
one expects α to be in an abelian extension of the CM field K.



4 YINGKUN LI

With the (sometimes conjectural) knowledge of the algebraicity of α, it is very natural to
ask for the factorization of the ideal generated by it. For even k ≥ 2, this is not known even
when one takes the average Z = Zχ. The goal of this work is to provide a result in this
setting, which complements Theorem A dealing with the cases that k is odd. The subtlety
created by the parity of k is made clear in the following example by Mellit [27]

G2

(
i,
−1 +

√
−7

2

)
=

8√
4 · 7

log
8− 3

√
7

8 + 3
√

7
,

where d1 = −4, d2 = −7. The algebraic number 8−3
√

7
8+3
√

7
is not rational. Furthermore, it is a

unit and its norm to Q is 1. It turns out that the right modification for even k is to replace
the integral ideal I+

χ (a) with the fractional ideal

(1.0.4) I−χ (a) :=
∏
b|a

(
b

b′

)χ(b)

for every integral ideal a ⊂ OF . Since I−χ (a)′ = I−χ (a)−1, the ideal I−χ (a) is not necessarily
principal. One can overcome this by raising it to a suitable power (for example the class
number of F ). With this minor difference, we can now state the analog of Theorem A for
even k as follows.

Theorem B (Theorem 4.4). Suppose d1, d2 < 0 are co-prime, fundamental discriminants.
For even k ≥ 2 and f ∈ M !

2−2k with integral Fourier coefficients cf (n), there exists κ =
κf,F ∈ N and a positive generator α− = α−χ,f,κ ∈ F of the fractional ideal∏

m≥1

∏
λ∈Sm

I−χ (λ)cf (−m)Ck(λ,m)κ

such that κ ·Gk,f (Zχ) = ∆(1−k)/2 log(α−).

Remark 1.2. Even though the result is an existence statement, the algebraic number α− is
explicitly constructed. This theorem then also gives a constructive proof of Conjecture 1
when Zχ consists of just one point.

To give a numerical example, we take k = 4 and f(τ) = q−1 +O(1) ∈M−6. Such f exists
(and is unique) since there is no non-trivial cusp form in S8. If we take the discriminants
−7 and −23, then the CM points are (z7, z23,0), (z7, z23,1) and (z7, z23,−1), where zd = zd,0 :=
1+
√
−d

2
and z23,±1 = ±1+

√
−23

4
. Theorem B above gives us α− ∈ F and κ ∈ N such that∑

j=−1,0,1

G4,f (z7, z23,j) =
1

1613/2κ
log(α−).
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The factorization tells us that α− generates the fractional ideal((
p5

p′5

)−2878(
p17

p′17

)−3580(
p19

p′19

)2628
)κ

,

where p` = (π`) are prime ideals in F = Q(
√

161) with

π5 = 38 + 3
√

161, π17 = 12 +
√

161, π19 = 25 + 2
√

161.

Numerically, we have computed the left hand side to be −4.157888612785.. and bounded κ
explicitly. This helps us to see that we can take κ = 1 and

α− =

(
π5

π′5

)−2878(
π17

π′17

)−3580(
π19

π′19

)2628

ε1168
F ,

where εF = 11775 + 928
√

161 is the fundamental unit of F .
In [16], the authors proved Theorem A by expressing the special value of higher Green’s

function at CM points as linear combinations of the holomorphic part Fourier coefficients
of certain real-analytic Eisenstein series, which are incoherent in the sense of Kudla [21].
These Fourier coefficients can be computed exactly and are rational multiples of logarithms
of integers.

Comparing the theorems above, it is then clear that one does not expect the value Gk,f (Zχ)
to be directly related to these Fourier coefficients when k is even. In fact, the method in [16]
applies to all k ≥ 1 with Gk,f replaced by a function which is odd under the Atkin-Lehner
involution when k is even (see page 502 in [16]). For level one, this returns the trivial
equation.

To prove Theorem B, we take this analytic approach and replace the incoherent Eisenstein
series with the O(2, 2) theta lift of a weight one real-analytic modular form on SL2 over Q.
In the context of the Siegel-Weil formula [24, 25], the incoherent Hilbert Eisenstein series
used in [17] and [12] lies on SL2 over the real quadratic field F and is the integral of a theta
function over the orthogonal group, i.e. sum of big CM points. Even though our lift goes in
the opposite direction, the exceptional isomorphism between O(2, 2) over Q and SL2 over F
makes it a viable idea. The key step then is to find the right input and theta kernel.

The input is a weight one modular form, which was studied in [14] and used to construct
weight one harmonic Maass forms associated to real quadratic fields. The form is constructed
by deforming a theta integral from O(1, 1) to SL2, and has no singularity. Therefore, it can
be fed into the theta lifting machinery without regularization and the output will have no
singularity either. Unlike the incoherent Eisenstein series in [16], our replacement will not
behave nicely under the Laplacian. Fortunately, it still has a holomorphic part, which can
be explicitly calculated. This, along with an error term arising from the non-holomorphic
part, equals to Gk,f (Zχ) (see Theorem 4.3). One then needs to carefully analyze the error
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term to see that it contributes a rational multiple of log εF with εF the fundamental unit of
F . This is the reason we need κ in Theorem B.

The theta kernel we used are also quite interesting. For each k ∈ 2N, we use a different
Schwartz function formed from the Gaussian with a suitable polynomial p̃k−1 in the sense
of [3] (see section 5.3). They are easy to describe in the polynomial Fock space, and particular
cases are related to the Schwartz forms studied by Kudla and Millson [23]. To evaluate such
a theta lift, we require a formula by Borcherds [3, Theorem 7.1] with polynomials in both the
plus and minus parts. In addition, we also need the recent work [1] on the Fourier expansion
of Millson theta lifts.

It would be interesting to see how our formula fits into the context of arithmetic intersec-
tion theory, i.e. Gross-Zagier formula and various generalizations [2, 7, 8, 13, 31, 33]. In the
Gross-Zagier type formulas, one has an equality between a special value of the derivative of
a suitable L-function and an appropriate arithmetic intersection number, which has contri-
butions from the archimedean and non-archimedean parts. The former are special values of
Green’s functions and the latter are local intersection numbers. After explicit calculations,
one can match the non-archimedean part with Fourier coefficients of incoherent Eisenstein
series. When the L-function is identically zero, e.g. attached to the trivial cusp form, then
one obtains an equality (up to sign) between the archimedean and non-archimedean contri-
butions. This, for example, gives the factorization of singular moduli. Our result suggests
that there should be a similar interpretation of Fourier coefficients of our replacement in this
setting, with which one can then prove a Gross-Zagier type formula by replacing f with a
harmonic Maass form. It would then be interesting to generalize our proof to the cases when
f has higher level.

We organize the paper into three parts. The first part consists of sections 2 and 3, where
we discuss some preliminary notions about theta lifts, real quadratic fields and the deformed
theta integral studied in [14]. The main results are the two counting propositions 3.11
and 3.13. This can be considered as an analysis of the information contained in the non-
archimedean component of the theta lift. The archimedean component is contained in the
last part of the paper. It consists of the last section and the appendix, where we give the
relevant theta functions and study in details various theta lifts involved. Between these two
technical parts is section 4, which is the middle part of the paper. It consists of information
about higher Green’s function, the main result (Theorem 4.4), and its proof. Assuming the
first and last parts, the reader can read through the middle part to get the rough idea of the
proof.

Acknowledgement. We thank Don Zagier for informing us about this conjecture and
providing us with the unpublished note [32]. We also thank Jan Bruinier for helpful con-
versations and providing us with a preliminary draft of [5], Richard Borcherds for helpful
communication concerning [3], and Stephan Ehlen for helpful exchanges about numerical
computations.
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2. Preliminary Facts

2.1. Weil Representation and Modular Forms. We first follow the convention of [3]
to recall the Weil representation arising from finite quadratic modules. Let Mp2(R) be the
metaplectic two-fold cover of SL2(R) consisting of elements (A, φ(τ)) with A = ( a bc d ) ∈
SL2(R) and φ : H → C holomorphic function satisfying φ(τ)2 = cτ + d. Let Mp2(Z) ⊂
Mp2(R) be the inverse image of SL2(Z) ⊂ SL2(R). It is generated by T := (( 1 1

0 1 ) , 1) and
S = (( 0 −1

1 0 ) ,
√
τ), where

√
· denotes the principal branch of the holomorphic square root.

Let Γ ⊂ Mp2(Z) be a subgroup of finite index and ρ : Γ→ GL(W ) a representation on a
finite dimensional C-vector space W . A real-analytic function f : H→ W is called modular
with respect to ρ and weight k ∈ 1

2
Z if

(2.1.1) (f |k (A, φ))(τ) := φ(τ)−2kf(A · z) = ρ((A, φ)) · f(τ)

for all (A, φ) ∈ Γ and τ ∈ H. We denote the space of all such functions and the usual subspace
of weakly holomorphic, holomorphic and cuspidal forms by Ak,ρ(Γ),M !

k,ρ(Γ),Mk,ρ(Γ), Sk,ρ(Γ)
respectively. We sometimes omit ρ, resp. Γ, if it is trivial, resp. Mp2(Z). Given f ∈ Ak,ρ(Γ),
we denote

(2.1.2) f c(τ) := vkf(τ) ∈ A−k,ρ(Γ)

for convenience.
The representations that we are mainly interested in come from arithmetic. Let L be an

even, integral lattice with quadratic form Q of signature (n+, n−), the dual lattice L∨ and
the associated finite quadratic module

(2.1.3) AL := L∨/L,

on which Q becomes a quadratic form valued in Q/Z. Let B(·, ·) be the associated bilinear
form. The vector space C[AL] :=

⊕
h∈AL Ceh is naturally an Mp2(Z)-module via the Weil

representation ρL defined by

ρL(T )(eh) := e(Q(h))eh,

ρL(S)(eh) :=
e(−(n+ − n−)/8)√

|AL|

∑
µ∈AL

e(−B(h, µ))eµ.
(2.1.4)

Despite the notation, ρL only depends on the finite quadratic module AL. There is a natural
hermitian pairing 〈, 〉 on C[AL] given by 〈eh1 , eh2〉 := 1 if h1 = h2 and zero otherwise. With
respect to this pairing ρL is a unitary representation. When n+ + n− is even, ρL factors
through Γ := SL2(Z). To understand AL, it is sometimes useful to consider the p-component

(2.1.5) AL,p := AL ⊗Z Zp
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with Zp the p-adic integers for a prime p ∈ N. It is a finite quadratic module with value in
Z[1

p
]/Z. Through the natural map AL → AL,p given by h 7→ h⊗ 1, we have

(2.1.6) AL =
⊕
p prime

AL,p

as finite quadratic modules.
Suppose M ⊂ L is a sublattice of finite index and s : L∨/M → AL the natural surjection.

Then L∨ ⊂M∨ and there is a linear map ψ : C[AM ]→ C[AL] defined by

(2.1.7) ψ(eh) :=

{
es(h), h ∈ L∨/M,

0, otherwise.

The adjoint of ψ with respect to the hermitian pairing 〈·, ·〉 is

φ : C[AL]→ C[AM ]

eh 7→
∑

µ∈L∨/M,s(µ)=h

eµ.(2.1.8)

It is straightforward to check that ψ and φ are Γ-linear with respect to the Weil representa-
tions above and ψ ◦ φ is [L : M ] times the identity map on C[AL].

2.2. Symmetric Space and Theta Function. We will now introduce the two-variable
theta function associated to a suitable Schwartz function (see (2.2.4)). This can be done
either adelically as in [24] or classically as in [3], and the connection between the two are
spelled out clearly in section 1 of [22]. We take an approach closer to that of Borcherds,
while keeping the adelic perspective visible in the setup as well.

For n ∈ N, let Rn be the Euclidean space with the metric

|x|2 :=
∑

1≤j≤n

x2
j

for x = (x1, x2, . . . , xn) ∈ Rn. With respect to the quadratic form Qn(x) := 1
2
|x|2, the space

Rn becomes a real quadratic space. Let ∆R :=
∑

j ∂
2
xj

be the Laplacian on Rn and define
for α > 0 the following operator

(2.2.1) Hα(f) := e−∆R/(8πα)f.

on a smooth function f : Rn → C. In particular, we consider f = p a polynomial homoge-
neous of degree m. It is easy to check that

(2.2.2) H1(p)(α · x) = αmHα2(p)(x).

for any α ∈ R, x ∈ Rn. Using such a polynomial, we define the following Schwartz function
on Rn

(2.2.3) ϕ(x; p) := H1(p)(x)e−π|x|
2

,
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which is an eigenfunction of eigenvalue in with respect to Fourier transform on Rn.
Suppose n+, n− ∈ N with n = n+ + n−. Let Rn+,n− := Rn+ ⊕ Rn− be the real quadratic

space with the quadratic form Q0 := Qn+ −Qn− . Suppose p is a polynomial on Rn homoge-
neous of degrees m+ and m− on x+ ∈ Rn+

and x− ∈ Rn− respectively. Then we can form
the Schwartz function

(2.2.4) ϕ(x; p) := H1(p)(x)e−2πQ0(x) ∈ S (Rn+,n−)

for x ∈ Rn+,n− , which is also an eigenfunction under the Fourier transform on Rn+,n− .
Furthermore, it is in the subspace of S (Rn+,n−) called the polynomial Fock space [23].

For a real quadratic space (V,Q) with signature (n+, n−), denote DV the oriented Grass-
mannian of V , i.e. the set of oriented, positive definite n+-dimensional subspaces of V . Then
every w ∈ DV induces an isometry

νw : VR → Rn+,n−(2.2.5)

by projecting λ ∈ V to w and its orthogonal complement w⊥ ⊂ V . We denote these
projections by λw and λw⊥ . For any function f : Rn+,n− → C, we use fw : VR → C to denote
the composition f ◦νw. The quadratic form Qw := Q0 ◦νw is half the majorant (·, ·)w defined
by

(2.2.6) (λ, λ)w := (λ, λ)− 2(λw⊥ , λw⊥)

for λ ∈ V . Given τ = u+ iv ∈ H, we can now define a Schwartz function

ϕ(λ; τ, w; p) := vn/4−k/2ϕw(
√
vλ; p)e(Q(λ)u)

= vn
−/2+m−e−∆R/(8πv)(p)(νw(λ))e (Q(λw)τ +Q(λw⊥)τ)

(2.2.7)

for λ ∈ V with k := n+−n−
2

+m+ −m−.
Let L ⊂ V be an even, integral lattice of rank n with dual lattice L∨ and finite quadratic

module AL := L∨/L. We can define the theta function ΘL(τ, w, p) valued in C[AL] by

(2.2.8) ΘL(τ, w; p) =
∑
h∈AL

eh
∑
λ∈L+h

ϕ(λ; τ, w; p),

and denote the eh component of ΘL by ΘL,h. We omit p in the notation if it is the constant
1. Let ΓL be the kernel of the surjection SO(L) → Aut(AL). Then ΘL(τ, w; p) is clearly
ΓL invariant in w ∈ DV . By Poisson summation, one can show that ΘL(τ, w; p) ∈ Ak,ρL
(see [3, Theorem 4.1]). For m ∈ Q and h ∈ AL, denote as usual

(2.2.9) Lm,h := {λ ∈ L+ h : Q(λ) = m}, L(m,h) := ΓL\Lm,h.
Then ΘL,h has the Fourier expansion

ΘL,h(τ, w; p) = vn/4−k/2
∑
m∈Q

e(mu)
∑

λ∈Lm,h

ϕw(
√
vλ; p)
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For a finite index sublattice M ⊂ L, it is easy to check that

(2.2.10) ψ(ΘM(τ, w; p)) = ΘL(τ, w; p),

where ψ is the map in (2.1.7).

Example 2.1. Suppose V = R1,0 and p(x) = pb(x) = xb for b ∈ N. Then the polynomial in
the theta function above can be expressed in terms of the Hermite polynomials. In particular,
we have

(2.2.11) H1(pb)(x)e−πx
2

= (−4π)−b(∂x − 2πx)be−πx
2

.

For N ∈ N, the lattice Z is even integral with respect to the quadratic form QN(x) :=
Nx2, and its dual lattice is given by 1

2N
Z. We denote this lattice and the associated Weil

representation by PN and ρN respectively. Since PN is definite, the Grassmannian consists
of one point o, which induces

νo : PN ⊗ R→ R1,0

r 7→
√

2Nr.

Using this lattice, we can form the theta series

(2.2.12) θN(τ ; b) := ΘPN (τ, o; pb) =
∑

h∈ 1
2N

Z/Z

eh
∑
r∈Z+h

Hv(pb)(
√

2Nr)e(Nr2τ) ∈ Ab+1/2,ρN .

For b = 0, 1, θN(τ ; b) is holomorphic in M1/2,ρN and S3/2,ρN respectively. If P−N denotes the
lattice (Z,−QN), then ΘP−N

(τ, o; pb) = θcN(τ ; b).

Example 2.2. Let (V,Q) = (M2(R), det) be the real quadratic space of signature (2, 2)
with M2(R) the vector space of 2 by 2 matrices with entries in R. The Grassmannian DV is
identified with H2 via

(2.2.13) z = (z1, z2) ∈ H2 7→ w(z) := R<Z(z)⊕ R=Z(z) ∈ DV ,
where we denote
(2.2.14)

Z(z) = X(z)+iY (z) :=
1√

2y1y2

(
z1z2 z2

z1 1

)
, Z⊥(z) = X⊥(z)+iY ⊥(z) :=

1√
2y1y2

(
z1z2 z2

z1 1

)
.

It will also be important later for us to consider the diagonally embedded H in H × H. In
that case, we use z ∈ H to denote its image (z, z) ∈ H×H and also the point w((z, z)) ∈ DV .
The vector Y := Y (z) = 1√

2
( 0 −1

1 0 ) is independent of z and the isometry νz : V → R2,2 is

then given by

(2.2.15) νz(Λ) := (Λz,B(Λ, Y ),<(Λz⊥),=(Λz⊥)) ∈ R2,2,

where we denote

(2.2.16) Λz := B(Λ, X(z)), Λz⊥ := B(Λ, Z⊥(z)).
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The lattice L = M2(Z) ⊂ V is even and unimodular. The theta function ΘL(τ, w(z)) has
the explicit form

(2.2.17) ΘL(τ, w(z)) = v
∑

a,b,c,d∈Z

e

(
|az1z2 + bz1 + cz2 + d|2τ − |az1z2 + bz1 + cz2 + d|2τ

4y1y2

)
.

From the result above, we know that ΘL(τ, w(z)) ∈ A0 as a function of τ ∈ H for any z ∈ H2.

Suppose f(τ) ∈ Ak,ρL is regular on Γ\H and has sufficient decay near the cusp, then one
can integrate 〈f(τ),ΘL(τ, w; p)〉vkdµ(τ) on Γ\H to obtain a function on DV . If f is allowed
to have linear exponential growths at the cusps and be nearly holomorphic, i.e. Lnτ f = 0 for
n� 0, then Borcherds defined regularized theta integral

ΦL(w; p, f) =

∫ reg

Γ\H
〈f(τ),ΘL(τ, w; p)〉vkdµ(τ)

:= Consts=0 lim
T→∞

∫
FT
〈f(τ),ΘL(τ, w; p)〉vk−sdµ(τ)

(2.2.18)

following the regularization idea of Harvey and Moore [19]. This is defined by integrating first
over the truncated fundamental domain FT := {τ = u+ iv ∈ H : |τ | > 1, |u| < 1/2, v < T},
before taking the limit T → ∞ for <(s) � 0, analytically continuing this to s ∈ C and
taking the constant term in the Laurent expansion in s ∈ C. The same integral can be
defined for harmonic Maass forms as well [4, 6].

On the other hand, one could also integrate orthogonal modular forms in the variable w to
produce symplectic modular forms on H. In [20], Hecke computed one of the first such theta
integral and associated weight one cusp forms to real quadratic fields. This is a special case
of the Siegel-Weil formula [24, 25]. In the next section, we will review Hecke’s construction
along with its deformation.

2.3. Real Quadratic Field. From now on, let F ⊂ R be a real quadratic field with
fundamental discriminant ∆ > 1. Its ring of integer and inverse different are given by

OF := Z+Zω∆, ω∆ := ∆+
√

∆
2

and d−1 := 1√
∆
OF respectively. We also denote ∆0 the square-

free part of ∆, i.e. ∆ = ∆0 · c2 for some c ∈ N. Since ∆ is fundamental, it is in one of the
following forms

• ∆ ≡ 1 mod 4 and ∆ = ∆0,
• ∆ ≡ 0 mod 4 and ∆/4 = ∆0 ≡ 2, 3 mod 4.

We denote the (narrow) class group of F by Cl(+)(F ), which is the quotient of

(2.3.1) Id := {OF -fractional ideal a ⊂ F : a and d are relatively prime to each other.}
by its subgroup of principal ideals (with totally positive generators). By the Chebotarev
density theorem, every class in Cl+(F ) has infinitely many prime representatives in Id. For
each prime p | ∆, let dp denote the unique (ramified) prime ideal in OF above p. They are
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the only prime ideals dividing d. We use ′ to denote the non-trivial Galois conjugation, with
which we can define the norm map Nm(α) := αα′ on F . Denote

(2.3.2) Nm(F )± := {m ∈ Q : ±m > 0 and there exists α ∈ F with Nm(α) = m}.

If F does not have an element of norm −1, then Nm(F )+ and Nm(F )− are disjoint. This
happens when ∆ is divisible by a prime congruent to 3 modulo 4.

The group of units O×F is generated by the fundamental unit εF > 1. If ∆ is divisible
by a prime congruent to 3 modulo 4, then εF is totally positive, and the canonical map
Cl+(F )→ Cl(F ) is a 2-1 surjection. Besides the usual norm map, we will also need the map
on OF -fractional ideals

(2.3.3) Nm−(a) :=
a

a′
,

whose image is exactly the kernel of Nm.
Suppose Q = Nm is the quadratic form. Then OF is an even integral lattice of signature

(1, 1), whose discriminant kernel is denoted by Γ∆. The Galois conjugation is an element in
O(OF ). On the finite quadratic module

(2.3.4) A∆ := d−1/OF ,

which is identified with Z/(∆/ gcd(∆, 2))Z× Z/(gcd(∆, 2))Z by the map

(2.3.5)
a+ bω∆√

∆
7→ (a, b),

the Galois conjugation acts as the map sending h ∈ A∆ to −h. The multiplication on F also
induces a multiplication A∆×A∆ → A∆. For us later, it will be convenient to work with the
p-components A∆,p. If p - ∆, then A∆,p is trivial. When p | ∆ is an odd prime, it is easily
seen that

(2.3.6) A∆,p
∼= (Z/pZ, a 7→ α∆,p

a2

p
).

for some α∆,p ∈ (Z/pZ)× depending on ∆. For p = 2 | ∆, there are two possibilities

(2.3.7) A∆,2
∼=

{
((Z/2Z)2, (a, b) 7→ a2+b2

4
), ord2(∆) = 2,

(Z/4Z× Z/2Z, (a, b) 7→ ±a2+6b2

8
), ord2(∆) = 3,

since ∆ is a fundamental discriminant. Note that the ±’s must be chosen consistently and
the choices depend on ∆.

For every prime p | ∆, we define an automorphism σp on A∆,p by

(2.3.8) σp(h) :=

{
(b, a), if p = 2, ord2(∆) = 2, and h = (a, b) ∈ (Z/2Z)2 ∼= A∆,2,

−h, otherwise,
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which has order 2. It is easy to check that for every prime p | ∆ and distinct h, h̃ ∈ A∆,p

(2.3.9) Qp(h) = Qp(h̃)⇔ σp(h) = h̃.

Since A∆ = ⊕p|∆ primeA∆,p as a finite quadratic modules in (2.1.6), we also use σp to denote
the isometry on A∆ that acts as σp on A∆,p, and trivially on the other components. These
automorphisms all have order 2 and commute with each other. We denote the group they
generate by G∆, which contains the subgroup

(2.3.10) G∆,h := {σ ∈ G∆ : σ(h) = h}
and has the following property.

Lemma 2.3. In the notations above, h is in dpd
−1/OF ⊂ A∆ if and only if σp fixes h.

Suppose Q(h) = n
∆

with n ∈ Z/∆Z, then |G∆,h| = 2ω(gcd(n,∆)), where ω(n) is the number of

distinct prime factors of n ∈ Z. Furthermore, if there exists h̃ ∈ A∆ satisfying Q(h) = Q(h̃),

then h̃ = σ(h) for some σ ∈ G∆.

Remark 2.4. For convenience, we define

(2.3.11) G∆ := {|d| : d fundamental discriminant dividing ∆ and gcd(d,∆/d) = 1},
which has a group structure under the multiplication d1 · d2 := d1d2/ gcd(d1, d2)2. We
canonically identify it with G∆ via the map

(2.3.12) d ∈ G∆ 7→ σd :=
∏

p|d prime

σp ∈ G∆.

Consider the subgroups of G∆ of the form

(2.3.13) G∆,d :=
{
d̃ ∈ G∆ : d̃ | d

}
for some d ∈ G∆. For any h ∈ A∆, σd ∈ G∆,h if and only if σp ∈ G∆,h for all primes p | d.
Therefore, we can define a function d : A∆ → G∆ such that

(2.3.14) G∆,d(h) = G∆,h,

i.e. d(h) and gcd(∆, n) have the same prime factors. For any prime p | ∆ and h ∈ A∆, we
have

(2.3.15) d(ph) = lcm(d(h), p).

Remark 2.5. The following set

(2.3.16) A∗∆ := {h ∈ A∆ : #G∆,h = 1} = {h ∈ A∆ : d(h) = 1}
will be useful for us later.

Remark 2.6. One can check that σ∆0(h) = −h, where ∆0 is the square-free part of ∆.
Therefore, 2h = 0 ∈ A∆ if and only if σ∆0 ∈ G∆,h, i.e. ∆0 | d(h).
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Proof. The first claim can be verified directly, though one needs to be slightly careful when
p = 2 divides ∆. The second claim follows from the first since h ∈ dpd

−1/OF if and only if

p | m. For the last claim, notice that Q(h) = Q(h̃) is equivalent to Qp(hp) = Qp(h̃p) for all

primes p | ∆, where hp and h̃p are the p-components of h and h̃ respectively. Therefore, h̃p
is either hp or σp(hp) by (2.3.9), and we are done after setting σ :=

∏
p|∆ prime, h̃p=σp(hp) σp ∈

G∆. �

We can now replace OF with any fractional OF -ideal a ⊂ F to obtain an even integral
lattice La with Qa = Nm/Nm(a) and L∨a = ad−1. We denote the finite quadratic module
(L∨a /La, Qa) and the Weil representation associated to it by Aa and ρa respectively. Their
isomorphism classes only depend on the class of a in Cl+(F ). The finite abelian groups Aa

and A∆ are always isomorphic. Furthermore, suppose that a, b ∈ Id with b ⊂ a. Then
one can use this inclusion to canonically identify the abelian groups Aa and Ab. By taking
b = a ∩ OF , we then have the canonical identification.

(2.3.17) A∆ = Aa∩OF = Aa.

However, the quadratic form is given by Qa = Nm(a)−1Q under this group isomorphism.
Since the quadratic forms only differ by a factor invertible in Z/∆Z, one can define the
automorphism σp on Aa,p and Aa as in (2.3.16) and (2.3.8) respectively. Therefore the group
G∆ = G∆ also acts Aa, and one can define the subgroup G∆,h for h ∈ Aa and the subset
A∗a ⊂ Aa as in (2.3.10) and (2.3.16) respectively.

We are in a particularly nice situation if Qa = Q, i.e. a ∈ ker(Nm) = im(Nm−) , since
(2.3.17) is an equality of finite quadratic modules, which is Γ-linear on C[Aa] = C[A∆] with
respect to ρa and ρ∆ after extending by linearity. On the other hand, if a = (α) for some
α ∈ F coprime to d, then there is another group isomorphism

A∆ = d−1/OF ∼= Aa = ad−1/a

h 7→ αh.
(2.3.18)

When A∆ is equipped with the quadratic form Qα := Nm/Nm(α), this is an isomorphism
between finite quadratic modules. If Nm(α) = 1, then Aa = A∆ and (α) = Nm−(b) with
b ∈ Id having order at dividing 2 in Cl+(F ). When [b] is trivial in Cl+(F ), i.e. b = (β) with
β ∈ F totally positive, then Nm−(β) = 1 mod d and the composition A∆

∼= Aa = A∆ is the
identity map. Therefore, the composition A∆

∼= Aa = A∆ only depends on the class of b in
Cl+(F ). It is straightforward to verify that this is the automorphism σp defined in (2.3.8)
when [b] = [dp] for any prime p | ∆.

2.4. Genus Theory. We make a quick digression to the genus theory of quadratic fields.
The map Nm− defined in (2.3.3) induces the squaring map on Cl+(F ), whose kernel and
image are denoted by

(2.4.1) Cl+2 (F ) := ker(Nm−) ⊂ Cl+(F ), Cl+,2(F ) := im(Nm−) ⊂ Cl+(F )
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respectively. Then Cl+2 (F ) is exactly the group of 2-torsion elements in Cl+(F ) and is
isomorphic to (Z/2Z)ω(∆)−1 by genus theory. It is easy to see that [dp] ∈ Cl+2 (F ) for every
prime p | ∆. With the group G∆ defined in (2.3.11) from the previous section, we can now
describe Cl+2 (F ) precisely in the following lemma.

Lemma 2.7. There is a unique d0 ∈ G∆\{1} such that the class of

(2.4.2) d0 :=
∏

p|d0 prime

dp

in Cl+(F ) is trivial. Let ε+
F > 1 be the generator of the subgroup of totally positive units in

O×F . Then multiplying by ε+
F induces the automorphism σd0 on Aa. The discriminant kernel

Γ∆ of La is generated by

(2.4.3) ε∆ := (ε+
F )2

and the quotient group SO(La)/Γ∆ is isomorphic to (Z/2Z)2 with generators ε+
F and −1.

Proof. For every d ∈ G∆, define

(2.4.4) dd :=
∏

p|d prime

dp.

Then d, d̃ ∈ G∆ are equal if and only if dd = dd̃. The unit ε+
F is either εF or ε2

F depending on
whether εF has norm 1 or −1. By Hilbert’s Theorem 90, there exists an α0 ∈ OF such that
ε+
F = α0/α

′
0. Since ε+

F is a unit, we can choose α0 such that (α0) = dd0 for some d0 ∈ G∆\{1}.
Suppose d ∈ G∆ such that dd = (αd) with αd totally positive, then α′d/αd = (ε+

F )r = (α0/α
′
0)r

for some r ∈ Z, which implies αr0αd ∈ Z. If r is even, then dd has a generator in Z, meaning
d must be 1. If r is odd, then dd0dd has a generator in Z, implying that dd and dd0 have the
same prime factors, hence are the same. This proves the uniqueness of d0. Note that d0 = ∆
if εF has norm −1. We denote d0 := dd0 . Using ε+

F = α0/α
′
0 with (α0) = d0 and α0−α′0 ∈ d,

it is straightforward to verify the congruence

(2.4.5) ε+
F ≡ 1 mod d/d0, ε

+
F ≡


−1 mod dp, p | d0 odd,

−1 mod d2, 2 | d0, ord2(∆) = 2,

−1 mod d3
2, 2 | d0, ord2(∆) = 3,

which implies the second claim. Note that ord2(∆) = 2 implies ∆0 ≡ 3 mod 4 and ∆ is
divisible by a prime congruent to 3 modulo 4. In that case, the fundamental unit εF has
norm 1, i.e. ε+

F = εF . Since d0 6= 1, d0 is non-trivial and ε+
F 6∈ Γ∆. As the group SO(La) is

the subgroup of units in O×F with norm 1, the quotient SO(La)/Γ∆ contains ±1 and ±ε+
F .

This proves the last claim. �

Corollary 2.8. The map sending d ∈ G∆ to dd defined in (2.4.4) is a surjective group
homomorphism from G∆ to Cl+2 (F ). Its kernel is generated by d0 ∈ G∆ satisfying dd0 = d0.
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Let G∆ = G∆ denote the quotient by the subgroup generated by d0. Since the group G∆

acts on A∆, we can consider define an equivalence relation ∼d0 such that h1 ∼d0 h2 if and
only if h1 = σd0(h2) for h1, h2 ∈ A∆. Then Cl+2 (F ) acts on the set

(2.4.6) A∆ := A∆/ ∼d0 .

For h ∈ A∆, we also use h to denote its image in A∆, and G∆,h the stabilizer of h or σd0(h)
in G∆.

Using the embedding F ⊂ R fixed in the beginning of the section, we can make sense of
the sign function on SO(La), which factors through the discriminant kernel. For h ∈ Aa, we
define

(2.4.7) sh :=
∑

s∈SO(La)/Γ∆,s·h=h

sgn(s).

Since the group SO(La)/Γ∆ is isomorphic to (Z/2Z)2, the only possible values of sh are 0, 1
and 2. Using Lemma 2.7, we can explicitly determine them as follows.

Lemma 2.9. Let d be the function defined in (2.3.14), ∆0 the square-free part of ∆ and
d0 ∈ G∆ the fundamental discriminant in Lemma 2.7. Then we have

(2.4.8) sh =


0, ∆0 | d(h),

2, d0 | d(h) and ∆0 - d(h),

1, otherwise.

Remark 2.10. Since d0,∆0 6= 1, we have sh = 1 for h ∈ A∗a.

Proof. It is clear sh = 0 if and only if 2h = 0 ∈ Aa, which is equivalent to ∆0 | d(h) by
Remark 2.4. Now suppose ∆0 - d(h), then sh = 2 if and only if ε+

Fh = h, which is equivalent
to σd0 ∈ G∆,h by Lemma 2.7. This is then the same as d0 | d(h) by (2.3.14). In all other
cases, sh = 1 and we are finished with the proof. Note that it is possible that both d0

and ∆0 divides d(h) for non-trivial h ∈ Aa. For example, if ∆ = 12 = d0, a = OF and
h = (1 +

√
3)/2 ∈ A∆, then d(h) = ∆. �

Now we can attach an element of the group ring Z[Cl+(F )] to an ideal a ⊂ OF and h ∈ A∆

as follows

(2.4.9) sqrt(a, h) :=
∑

B=[b]∈Cl+(F )
a=Nm−(b)(µ) for a positive

µ√
∆
∈OF+h⊂d−1

B ∈ Z[Cl+(F )].

Since α
α′
≡ 1 mod d whenever α ∈ F is relatively prime to d, we know that the condition in

the definition is independent of the choice of the representative b ∈ Id. However, there is
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a choice between µ and ε+
Fµ for the positive generator. Since Lemma 2.7 tells us that the

multiplication by ε+
F induces σd0 on Aa, we have

(2.4.10) sqrt(a, h) = sqrt(a, σd0(h))

for every a and h. For other distinct h1, h2 ∈ A∆, the supports of sqrt(a, h1) and sqrt(a, h2)
(when viewed as functions on Cl+(F )) are disjoint. The action of an element d ∈ G∆ =
G∆
∼= Cl+2 (F ) on Cl+(F ) via multiplication with [dd] induces an isomorphism on Z[Cl+(F )],

which sends sqrt(a, h) to sqrt(a, σd(h)). This implies

(2.4.11) sqrt(a, σd(h)) = [dd] · sqrt(a, h).

When sqrt(a, h) is non-zero, its support is a regular G∆,d(h)-set and has size 2ω(gcd(Nm(a),∆)).

In particular, it has exactly one element for h ∈ A∗∆ if Nm(a)
∆

= Q(h) and [a] ∈ Cl+,2(F ).
For any positive α, it is clear that

(2.4.12) supp(sqrt(a, h)) ⊂ supp(sqrt((α)a, αh)),

which is an equality if α is relatively prime to d. Using the analysis above, we have the
following precise result.

Lemma 2.11. For any positive α ∈ OF and integral ideal a ⊂ OF , let d ∈ G∆ be the smallest
element such that gcd(Nm(α),∆/d) = 1. Then for any h ∈ A∆, we have

(2.4.13) sqrt((α)a, αh) =
1

#(G∆,d ∩G∆,h)

∑
σ∈G∆,d

sqrt(a, σ(h)).

Proof. The choice of d implies that ασ(h) = σ(αh) = αh for all σ ∈ G∆,d. In fact, every

h̃ ∈ A∆ with the property αh̃ = αh is of the form σd̃(h) for some d̃ | d by (2.3.9). On
the other hand, sqrt(a, h) = sqrt(a, σ(h)) if and only if σ(h) = h or σd0(h), i.e. σ ∈ G∆,h.
Therefore, we have an equality of both sides. �

Finally, recall that the genus field Fgen of F is the maximal abelian, unramified extension
of F that is obtained from the composite of an abelian extension K/Q and F . By class field
theory, Gal(Fgen/F ) is identified as a quotient of Cl+(F ), and a genus character is a character
of Cl+(F ) that factors through this quotient. We can also view it as a homomorphism from
Z[Cl+(F )] to Z. If we factor ∆ into ∆1 ·∆2 with ∆1,∆2 co-prime, fundamental discriminants,
then there is a genus character χ∆1,∆2 on Cl+(F ) corresponding to it defined by

(2.4.14) χ∆1,∆2(A) =
(

∆1

A

)
=
(

∆2

A

)
with A = [a] and A = Nm(a) relatively prime to ∆. Note that for any χ∆1,∆2 , we have

(2.4.15) χ∆1,∆2([d]) = sgn(∆1) = sgn(∆2).

By genus theory for quadratic field, these are all the genus characters of F . We call a genus
character χ even, resp. odd, if χ([d]) is positive, resp. negative. There exists an odd genus
character if and only if ∆ is divisible by a prime congruent to 3 modulo 4.
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3. Deformation of Theta Integral

3.1. Hecke’s Cusp Form. We continue using the notation from the previous section and
set (L,Q) := (a,Nm/A) to be an even integral lattice of signature (1, 1) for a fractional
OF -ideal a ⊂ F with norm A.

By identifying F ⊗ R with R2 through the embedding F ⊂ R and its Galois conjugate,
we can view the Grassmannian DF as the parabola, whose components are parametrized by
R via w 7→ (ew, e−w) and w 7→ (−ew,−e−w) respectively. We identify R with the connected
component of DF in the first quadrant. Each w ∈ R gives an isometry between L⊗R = R2

and R1,1 by sending (λ1, λ2) to (λ1e
−w + λ2e

w, λ1e
−w − λ2e

w)/(
√

2A). The generator ε∆ of
Γ∆ acts on R by sending w to w + log ε∆, and dw is the invariant measure.

In [20], Hecke constructed a holomorphic cusp form ϑa ∈ S1,ρa by integrating the theta
kernel

(3.1.1) Θa(τ, w) :=
√
v
∑
h∈Aa

eh
∑
λ∈a+h

λe−w + λ′ew√
A

e

(
(λe−w + λ′ew)2

4A
τ − (λe−w − λ′ew)2

4A
τ

)
against the constant function on Γ∆\R. Here, Θa(τ, w) equals ΘL(τ, w; p) with the poly-
nomial p : R1,1 → R given by p(x1, x2) :=

√
2x1. He also explicitly calculated the Fourier

expansion of ϑa, which is given as follows (see Satz 3 and Satz 4 in [20]).

Proposition 3.1. Let a, L,Q,Γ∆ be as above. For h ∈ Aa, the following function

ϑa,h(τ) :=

∫
Γ∆\R

Θa,h(τ, w; p)dw =
∑

m∈Q,m>0

ca(m,h)qm,

ca(m,h) :=
∑

λ∈L(m,h)

sgn(λ) =
∑

λ∈〈ε∆〉\a+h
Nm(λ)=Am

sgn(λ), when m > 0,
(3.1.2)

is the eh-component of a cusp form ϑa(τ) ∈ S1,ρa.

Remark 3.2. Let L− denote the lattice L with −Q as the quadratic form and

(3.1.3) Θ−a (τ, w) =
√
v
∑
h∈Aa

eh
∑
λ∈a+h

λe−w − λ′ew√
A

e

(
(λe−w − λ′ew)2

4A
τ − (λe−w + λ′ew)2

4A
τ

)
the corresponding theta kernel. The same construction above applies and produces a cusp
form ϑ−a ∈ S1,ρa . If we denote its Fourier coefficients by c−a (m,h), then c−a (m,h) = ca(µ)(m,µh)
for all m ∈ Q, h ∈ ad−1/a, and any relatively prime to d element µ ∈ F× satisfying µ > 0
and µ′ < 0.

Remark 3.3. By changing λ to −λ, we have ϑa,−h = −ϑa,h for any a and h ∈ Aa.

For each fractional ideal b ∈ Id, recall the equality ANm−(b) = A∆ in (2.3.17). From the

discussion there, we know that this only depends on the class B of b in Cl+(F ). Therefore,
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we can define

(3.1.4) ϑB := ϑNm−(b), ϑ
−
B := ϑ−

Nm−(b)

It is then easy to check that

(3.1.5) ϑB[d] = σ∆(ϑB) = −ϑB, ϑ
−
B[d] = −ϑ−B,

where σ∆ is the automorphism defined in (2.3.12). Let χ be a genus character of F . By
summing ϑ−B over the classes B ∈ Cl+(F ) with the twist by χ, we can now define a cusp
form that only depends on χ

(3.1.6) ϑχ(τ) :=
∑

B∈Cl+(F )

χ(B)ϑ−B(τ) =
∑
h∈A∆

eh
∑

m∈Q,m>0

cχ(m,h)qm ∈ S1,ρ∆
.

By 3.3, we know that the coefficient cχ(m,h) satisfies

(3.1.7) cχ(m,h) = −cχ(m,−h) = −cχ(m,h′)

for all m ∈ Q and h ∈ A∆. The form ϑχ(τ) can be produced by integrating the theta kernel

(3.1.8) Θχ(τ, w;SF ) :=
∑
b∈SF

χ(b)Θ−
Nm−(b)

(τ, w) ∈ A1,ρ∆
,

with respect to dw over Γ∆\R, where SF ⊂ Id is any set of representatives of classes in
Cl+(F ). Even though ϑχ(τ) does not depend on the choice of SF , both Θχ(τ, w;SF ) and the
following theta function do

(3.1.9) θχ(τ ;SF ) := Θχ(τ, 0;SF ) ∈ A1,ρ∆
.

The Fourier coefficient cχ(m,h) can now be rewritten as follows.

Proposition 3.4. Let χ be a genus character. For n ∈ N and h ∈ A∆, the Fourier coefficient
cχ(m,h) of ϑχ can be written as

(3.1.10) cχ

( n
∆
, h
)

=

2sh
∑

a⊂OF , Nm(a)=n

χ(sqrt(a, h)), if n ∈ Nm(F )+ and χ is odd,

0, otherwise.

where Nm(F )+, sh and sqrt(a, h) are defined in (2.3.2), (2.4.7) and (2.4.9) respectively.

Proof. We can use the definition of ϑχ to write

cχ

( n
∆
, h
)

=
∑

[b]∈Cl+(F )

χ(b)
∑

λ∈Γ∆\Nm−(b)+h
Nm(λ)=−n/∆

sgn(λ) = sh
∑

[b]∈Cl+(F )

χ(b)
∑

(µ)⊂Nm−(b)
µ√
∆

=h∈A∆

Nm(µ)=n

sgn(µ).
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By the definition of Nm(F )+ in (2.3.2), it is clear that the sum above is empty if n 6∈ Nm(F )+.
Therefore, we restrict to the case n ∈ Nm(F )+, where Nm(µ) = n implies Nm((µ)) = n.
Using this and χ(b) = χ(b′), we can continue to write

cχ

( n
∆
, h
)

= sh
∑

[b]∈Cl+(F )

χ(b′)

 ∑
(µ)⊂Nm−(b), Nm((µ))=n

µ√
∆

=h∈A∆, µ>0

1−
∑

(µ)⊂Nm−(b), Nm((µ))=n
µ√
∆

=h∈A∆, µ<0

1



= sh
∑

[b]∈Cl+(F )

χ(b′)


∑

a⊂OF , Nm(a)=n
a=(µ)Nm−(b′) with
µ√
∆

=h∈A∆and µ>0

1−
∑

a⊂OF , Nm(a)=n
a=(µ)Nm−(b′) with
µ√
∆

=−h∈A∆and µ>0

1



= sh
∑

a⊂OF , Nm(a)=n


∑

[b]∈Cl+(F )
a=(µ)Nm−(b′) with
µ√
∆

=h∈A∆and µ>0

χ(b′)−
∑

[b]∈Cl+(F )
a=(µ)Nm−(b′) with
µ√
∆

=−h∈A∆and µ>0

χ(b′)


= sh

 ∑
a⊂OF , Nm(a)=n

χ(sqrt(a, h))−
∑

a⊂OF , Nm(a)=n

χ(sqrt(a,−h))


If χ is even, i.e. χ([d]) = 1, then cχ(m,h) vanishes identically by (2.4.11) as −h = σ∆0(h)
and [d∆0 ] = [d]. This finishes the proof. �

From this proposition, we can deduce some the following properties of the coefficient
cχ(m,h).

Corollary 3.5. Let p | ∆ be a prime such that χ([dp]) = −1 with dp the unique prime ideal
in OF above p. Then cχ(m,h) = 0 for all m ∈ Q and h ∈ A∆ satisfying p | d(h), where d is
the function defined in (2.3.14).

Proof. This easily follows from the proposition above and (2.4.11). �

Proposition 3.6. Let ` ∈ N be a prime such that there is only one prime l in OF above it.
Then

(3.1.11) cχ

(
`2n

∆
, `h

)
=

{
cχ
(
n
∆
, h
)
, if ` - ∆ or ` | gcd(∆, n),

(1 + χ([l]))cχ
(
n
∆
, h
)
, if ` | ∆ and ` - n,
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for all n ∈ Z and h ∈ A∆.

Proof. By Prop. 3.4, we can suppose that n ∈ Nm(F )+ and χ is odd, otherwise both sides
are identically zero. Applying Prop. 3.4 gives us

cχ

(
`2n

∆
, `h

)
= 2s`h

∑
`a⊂OF , Nm(`a)=`2n

χ(sqrt(`a, `h))

since there is only one prime in OF above `. If ` is inert, i.e. ` - ∆, then s`h = sh and
sqrt(`a, `h) = sqrt(a, h) by Lemma 2.11, which completes the proof. Suppose ` is ramified,
i.e. ` | ∆, then Lemma 2.11 implies that

cχ

(
`2n

∆
, `h

)
=

2s`h
#(G∆,` ∩G∆,h)

∑
a⊂OF

Nm(a)=n

∑
σ∈G∆,`

χ(sqrt(a, σ(h))).

Let d0 and ∆0 be as in Lemma 2.9. We have now several cases

Case 1: ` | d(h).
Case 2: ` - d(h) and χ([l]) = −1.
Case 3: ` - d(h), χ([l]) = 1 and ∆0 | d(`h).
Case 4(a): ` - d(h), χ([l]) = 1, ∆0 - d(`h) and d0 | d(h).
Case 4(b): `, d0 - d(h), χ([l]) = 1, ∆0 - d(`h) and d0 | d(`h).
Case 5: Otherwise, i.e. ` - d(h), χ([l]) = 1 and d0,∆0 - d(`h).

For the elements sqrt(a, h), sqrt(a, σ`(h)) to be non-zero, we can suppose that ` | n in Case
1 and ` - n for the other cases. In Case 1, the proof of the inert case carries through since
s`h = sh and G∆,` ∩ G∆,h = G∆,`. For Case 2, the left hand side vanishes by Corollary 3.5,
and equals the right hand side. For Case 3, since χ is odd, i.e. χ([d]) = −1, there is a prime
p | ∆0 such that χ([dp]) = −1, which implies that p 6= `. Therefore, p | d(h) and both sides
vanish again by Corollary 3.5.

For the other cases, it suffices to establish the equality

2s`h
#(G∆,` ∩G∆,h)

= 2sh

and the rest follows as in the previous cases. In Case 4(a), we have s`h = sh = 2 from Lemma
2.9. The conditions ` - d(h) and d0 | d(h) | d(`h) together imply that σ`(h) 6= h = σd0(h), i.e.
G∆,`∩G∆,h is trivial. In Case 4(b), Lemma 2.9 again implies that s`h = 2sh = 2. On the other
hand, we have `h = `σd0(h) = `σ`(h), which means h, σd0(h) and σ`(h) all have the same p-
component for p 6= `. Since ` - d(h) implies that h 6= σ`(h), we must have σd0(h) = h or σ`(h)
by (2.3.9). The former cannot happen precisely since d0 - d(h). Therefore σd0(h) = σ`(h)
and σ` ∈ G∆,h by definition. In the last case, we again have s`h = sh and G∆,` ∩G∆,h being
trivial. This finishes the proof. �
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3.2. Deformed Integral. Let (L,Q) = (a,Nm/A) as in the previous section. In [14], we
considered the following deformed integral

(3.2.1) ϑ̂a(τ) :=

∫ log ε∆

0

Θa(τ, w)wdw ∈ A1,ρa .

Note that this function is real-analytic on H with exponential decay near the cusp. Further-
more, it depends on the choice of the fundamental domain. In Prop. 5.5 in [14], we have
calculated its Fourier expansion, which we recall here. For each λ ∈ F×, denote

(3.2.2) r(λ) :=

∣∣∣∣ λλ′
∣∣∣∣ .

For each Γ∆-orbit Λ ⊂ F×, choose a representative λ0 ∈ Λ such that 1 ≤ r(λ0) < ε2
∆. Now

define

(3.2.3) a(Λ) :=

{
sgn(λ0) log r(λ0), r(λ0) 6= 1,

− log ε∆, r(λ0) = 1.

These are the “holomorphic” part coefficients of ϑ̂a,h with h ∈ ad−1/a. For the non-
holomorphic part, we first define incomplete Gamma function

(3.2.4) Γ(s, x) :=

∫ ∞
x

e−tts
dt

t
.

for s ∈ C and x > 0. Then we can define the following non-holomorphic function on H

ϑ̃∗a,h(τ) :=
∑

Λ∈Γ∆\(a+h),Q(Λ)<0

sgn(Λ)Γ(0,−4πQ(Λ)v)qQ(Λ),

Θ̃∗a,h(τ) :=
∑
λ∈a+h

sgn(λ− λ′)√
π

Γ

(
1
2
,
πv|λ− λ′|2

A

)
qQ(λ).

(3.2.5)

Furthermore, under the lowering operator Lτ , these functions become modular and satisfy

(3.2.6) Lτ ϑ̃
∗
a,h(τ) = −vϑ−a,h(τ), Lτ Θ̃

∗
a,h(τ) = −vΘ−a,h(τ, 0).

They turn out to form the “non-holomorphic” part of ϑ̂a,h(τ).

Proposition 3.7 (Prop. 5.1 in [14]). The function ϑ̂a(τ) =
∑

h∈ad−1/a ehϑ̂a,h(τ) has the
Fourier expansion

(3.2.7) 2ϑ̂a,h(τ) =
∑

m∈Q>0

c̃a(m,h)qm − ϑ̃∗a,h(τ)− log ε∆ · Θ̃∗a,h(τ),

where c̃a(m,h) :=
∑

Λ∈Γ∆\L(m,h) a(Λ).
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Let χ be a genus character of F and SF as in (3.1.8). As before, we can sum χ(b)ϑ̂Nm−(b)

over b ∈ SF to define

ϑ̂χ(τ ;SF ) :=
∑
b∈SF

χ(b)ϑ̂Nm−(b)(τ) =
∑
h∈A∆

eh
∑
m∈Q×

ĉχ(m,h, v)e(mu) ∈ A1,ρ∆
,

c̃χ(m,h) := lim
v→∞

ĉχ(m,h, v)e2πmv =
1

2

∑
b∈SF

χ(b)c̃Nm−(b)(m,h) ∈ R.
(3.2.8)

The lemma below gives a bound of the Fourier coefficients ĉχ(m,h, v).

Lemma 3.8. For every h ∈ A∆ and ε > 0, we have the asymptotic

(3.2.9) ĉχ(m,h, v)e2π|m|v = c̃χ(m,h) +OF,SF ,ε

(
|m|εv + 1

v3/2

)
,

where SF is the set of ideals as in (3.1.8) and c̃χ(m,h) = 0 for m ≤ 0.

Remark 3.9. When m > 0, it is easy to check that c̃χ(m,h) = OF,ε(m
ε) for any ε > 0.

Proof. When m < 0, we see from the definition that c̃χ(m,h) = 0 and
(3.2.10)

|ĉχ(m,h, v)| �F

∑
b∈SF

(λ)⊂Nm−(b)d−1

Nm(λ)=m

Γ(0,−4πmv) +
∑
n∈Z
λn 6=λ′n

Γ
(

1
2
, πv(λn − λ′n)2

) e−2πmv,

where we have denote λn := λεn and chosen the index n such that r(λn) ≥ 1 if and only if
n ≥ 0. Using the bounds Γ(s, x)�s x

s−1e−x, we can write

Γ(0,−4πmv)e−2πmv � e−2π|m|v

|m|v
, Γ
(

1
2
, πv(λn − λ′n)2

)
e−2πmv � e−π|m|v(r(λn)+r(λn)−1)

√
v|λn − λ′n|

.

Since λn−λ′n 6= 0 and b′d(λn) ⊂ OF , we have |λn−λ′n|−1 �SF 1. Since the function x+x−1

is monotonically increasing for x ≥ 1 and , we have r(λn)+r(λn)−1−2 > C · |n| for all n ∈ Z
with some constant C = C(SF ) > 0 depending on SF . Summing over n ∈ Z gives us∑

n∈Z

Γ
(

1
2
, πv(λn − λ′n)2

)
e−2π|m|v �SF

e−2π|m|v
√
v

∑
n≥0

e−π|m|vCn �SF

v + 1

v3/2
e−2π|m|v,

since 1
1−e−x ≤

x+1
x

for x ≥ 0. The sum on the right hand side of (3.2.10) counts the number
of ideals in OF with norm ∆m, which is bounded above by Cε · (∆m)ε for any ε > 0 and
a constant Cε > 0. Putting everything together, we obtain the bound (3.2.9) for m < 0.
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When m > 0, we have

|ĉχ(m,h, v)− c̃χ(m,h)e−2πmv| �F

∑
b∈SF

(λ)⊂Nm−(b)d−1

Nm(λ)=m

∑
n∈Z

Γ
(

1
2
, πv(λn − λ′n)2

)
e−2πmv.

Proceeding as before finishes the proof. �

The function ϑ̂χ(τ, SF ) will be the input of the theta lift that constructs the preimage of
an Eisenstein series under the lowering operator since

(3.2.11) 2Lτ ϑ̂χ(τ ;SF ) = ϑcχ(τ) + log ε∆ · θcχ(τ ;SF ) ∈ A−1,ρ∆
,

where θχ(τ ;SF ) is defined in (3.1.9).

3.3. Siegel-Weil Formula. In this section, we will consider the theta function ΘL(z, w(z))

in Example 2.2 for z at CM points. Let F = Q(
√

∆) be a real quadratic field, χ = χ∆1,∆2

an odd genus character and K/F the corresponding unramified, quadratic extension. Since
χ is odd, K is a CM field and contains the imaginary quadratic fields Kj := Q(

√
∆j) for

j = 1, 2. Let Z(∆j) be the set of all CM points in Γ\H of discriminants ∆j, Clj, Uj, hj and
wj the class group, unit group in Kj and its size respectively. Then

(3.3.1) Zχ :=
4

w1w2

∑
z∈Z(∆1)×Z(∆2)

z

is a divisors on (Γ\H)2.
For an integral ideal a ⊂ OF , define the character sum σχ by

(3.3.2) σχ(a) :=
∑
a⊂b

χ(b) = ρK/F (a),

where ρK/F (a) counts the number of ideals in the ring of integers OK ⊂ K with a as their
relative norm. Since K/Q is abelian, the function ρ satisfies ρK/F (a) = ρK/F (a′). We can
now define the following function

(3.3.3) Eχ(z) :=
2h1h2

w1w2

+
∑

λ0∈d−1

λ0>0>λ′0

σχ((λ0)d)e(λ0z + λ′0z).

One can show that yEχ(z) ∈ A0 is the image of the diagonal restriction of the incoherent

Eisenstein series in [17] under the lowering operator Lτ,2. Note that Eχ(z) = Eχ(z). As an
application of the Siegel-Weil formula, we have the following result (see [8, Prop. 4.5]).

Proposition 3.10. Let ΘL(z, w(z)) be the theta function in (2.2.17). Then

(3.3.4) ΘL(z, Zχ) = 2Eχ(z)

for all z ∈ H.



AVERAGE CM-VALUES OF HIGHER GREEN’S FUNCTION AND FACTORIZATION 25

3.4. Counting Result I. In the notations of sections 2.3, 3.1 and 3.3, we can define a
quantity

(3.4.1) Cχ(µ0) =
∑

t|(µ0), t∈N

cχ

(
Nm(µ0/t)

∆
,
µ0/t√

∆

)

for any µ0 ∈ OF . This turns out to be related to the ideal counting function ρK/F ((µ0))
defined in Eq. (3.3.2).

Proposition 3.11. Let χ be an odd genus character of F and K/F the corresponding CM
extension. For any totally positive µ0 ∈ OF ,

(3.4.2) Cχ(µ0) = 2σχ((µ0)) = 2ρK/F ((µ0)),

where ρK/F (a) is the ideal-counting function defined in Eq. (3.3.2).

Proof. We will proceed by considering the prime factorization of the ideal (µ0). Let ` be a
rational prime and ord`(Nm(µ0)) = a. If ` is inert in OF , then 2 | a, χ([`]) = 1 and

Cχ(µ0) = (a+ 1)Cχ(µ0/`
a/2) = ρK/F (`a)Cχ(µ0/`

a/2)

by Prop. 3.6. If ` is ramified in OF , i.e. `OF = l2, then there are two cases depending on the
parity of a. When a is even, Prop. 3.6 again implies that

Cχ(µ0) =
∑

t|(µ0/`a/2)

a/2∑
r=0

cχ

(
Nm(µ0/(t`

r))

∆
,
µ0/(t`

r)√
∆

)

=
(a

2
(1 + χ([l])) + 1

)∑
t|µ̃0

cχ

(
Nm(µ̃0/t)

∆
,
µ̃0/t√

∆

)
= ρK/F (la)Cχ(µ̃0),

where µ̃0 := µ0/`
a/2. When a is odd and χ([l]) = −1, Corollary 3.5 implies that Cχ(µ0) =

0 = 2ρK/F ((µ0)). Suppose that a is odd and χ([l]) = 1. Applying Prop. 3.6 as before yields

(3.4.3) Cχ(µ0) =
∑
t|(µ̃0)

(a−1)/2∑
r=0

cχ

(
`rNm(µ̃0/t)

∆
,
`rµ̃0/t√

∆

)
=
a+ 1

2

∑
t|µ̃0

cχ

(
Nm(µ̃0/t)

∆
,
µ̃0/t√

∆

)
,

where µ̃0 := µ0/`
(a−1)/2 and ordl(µ̃0) = 1. Now we can apply the Chebotarev density theorem

to choose a prime l̃ relatively prime to µ0 in the class [l] ∈ Cl+(F ). That means l̃l = (α)
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with α ∈ OF totally positive. Mimicking the proof of Prop. 3.6, we have

cχ

( n
∆
, h
)

=
∑
a⊂OF

Nm(a)=n

χ(sqrt(a, h)) =
1

2

∑
a⊂OF

Nm(a)=n

χ(sqrt(a(α), αh)) + χ(sqrt(a(α′), α′h))

=
1

2

∑
ã⊂OF

Nm(ã)=nNm(α)

χ(sqrt(ã, αh)) =
1

2
cχ

(
nNm(α)

∆
, αh

)

for any n ∈ Z and h ∈ A∆ with σ`(h) = h. Note that the second step follows from Lemma
2.11 and αh = α′h ∈ A∆ since σ`(h) = h. Substituting this into (3.4.3) gives us

Cχ(µ0) =
a+ 1

4

∑
t|µ̃0

cχ

(
Nm(µ̃0α/t)

∆
,
µ̃0α/t√

∆

)
=
a+ 1

2

∑
t|µ̃0α/`

cχ

(
Nm(µ̃0α/t)/`

2

∆
,
µ̃0α/(t`)√

∆

)

=
ρK/F (la)

ρK/F (̃l)
Cχ(µ̃0α/`).

Notice that (µ̃0α/`) is not divisible by l.
From this, we can suppose that µ0 is only divisible by split primes in OF , i.e.

(3.4.4) (µ0) =
∏

la(l′)b

where l = (lj)1≤j≤J with Nm(l) = ` = (`j)1≤j≤J a set of distinct rational primes and a, b ∈ NJ .
Here, the operations on vectors are carried out componentwisely and

∏
sends a vector to

the product of its components. WLOG, we take a ≤ b. Then the divisors of µ0 in N are of
the form

t(s) :=
∏

`s, s ≤ a.

For each such t(s), the ideals with norm Nm(µ0/t(s)) are exactly given by

(3.4.5) a(r) :=
(µ0)

(t(s))

∏
Nm−(lr) =

∏
la−s+r(l′)b−s−r, s− a ≤ r = (rj)1≤j≤J ≤ b− s,

and

χ

(
sqrt

(
a(r),

µ0/t(s)√
∆

))
=
∏

χ(l)r.

Therefore, we can write

Cχ(µ0) = 2
∑
s∈NJ
s≤a

∑
r∈ZJ

s−a≤r≤b−s

χ

(
sqrt

(
a(r),

µ0/t(s)√
∆

))
= 2

∏
1≤j≤J

 aj∑
sj=0

bj−sj∑
rj=sj−aj

χ(lj)
rj

 .
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Since χ is a genus character, χ(lj) = χ(l′j) = ±1. It is straightforward to verify that

a∑
s=0

b−s∑
r=s−a

εr = ρK/F (la(l′)b)

for any a, b ∈ N and l with χ(l) = ε. Therefore, we have Cχ(µ0) = 2ρK/F ((µ0)) and finished
the proof. �

3.5. Counting Result II. Recall that SF ⊂ Id is a set of ideal representing classes in
Cl+(F ) as in (3.1.8). By replacing the coefficients cχ of ϑχ in Cχ from the previous section

with the coefficients c̃χ of ϑ̂χ in (3.2.8), we can define

(3.5.1) C̃χ(λ0;SF ) =
∑

t|
√

∆λ0, t∈N

c̃χ (Nm(λ0/t), λ0/t)

for any λ0 ∈ d−1. This quantity appears later in the Fourier expansion of a theta lift (see
Prop. 5.9) and the special value of the higher Green’s function (see Theorem 4.3). From
definition, it is clear that there exists α(λ0, SF ) ∈ F× ⊂ R× unique up to sign such that

(3.5.2) C̃χ(λ0) = log |α(λ0, SF )|.
A good understanding of the factorization of α(λ0, SF ) directly leads to Theorem 4.4. If
Nm(λ0) ≤ 0, then Lemma 3.8 implies that C̃χ(λ0) = 0, and hence α(λ0, SF ) = ±1. Therefore
we will focus the case Nm(λ0) > 0. In this section, we will factor the algebraic number
α(λ0, SF ) into two parts. The factorization of the first part is nice and independent of SF .
The second part eventually vanishes when substituted into the expression (4.3.1) for the
special value of the higher Green’s function. The result is as follows.

Proposition 3.12. For λ0 ∈ d−1 with positive norm, there exists cb ∈ R independent of λ0

and γ(λ0;SF ) ∈ OF such that

(3.5.3) C̃χ(λ0) =
1

2hF
log

∣∣∣∣ γ(λ0;SF )

γ(λ0;SF )′

∣∣∣∣+
∑
b∈SF

cb
∑

t|
√

∆λ0

cNm−(b) (Nm(λ0/t), λ0/t) ,

where hF is the class number of F , and for any prime l of OF

(3.5.4)
1

2hF
ordl(γ(λ0;SF )) =

{
ρK/F ((λ0)dl)(a+ 1), χ(l) = −1, l 6= l′, ordl((λ0)d) = a,

0, otherwise,

where ρK/F is the ideal counting function in (3.3.2).

In order to prove this proposition, we need the following analogues of Prop. 3.4 and 3.6
for c̃χ(m,h). To state them, it is convenient to fix generators µa of the principal ideal ahF

for every ideal a ⊂ OF such that

(3.5.5) µab = µaµb, µa′ = µ′a
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for every a, b ⊂ OF .

Proposition 3.13. Let χ be an odd genus character, n ∈ N and h ∈ A∆. Then there exist
constants cb ∈ R independent of n or h for each b ∈ SF , and r ∈ 1

hF
Z ⊂ Q such that

(3.5.6) c̃χ

( n
∆
, h
)

= r log εF + c̃χ

( n
∆
, h
)

+
∑
b∈SF

cbcNm−(b)

( n
∆
, h
)

where

(3.5.7) c̃χ

( n
∆
, h
)

:=
sh
hF

∑
a⊂OF , Nm(a)=n

χ(sqrt(a, h)) log

∣∣∣∣µa

µ′a

∣∣∣∣ .
Proof. As in the proof of Prop. 3.4, we can write

c̃χ

( n
∆
, h
)

=
sh
2

∑
b∈SF

χ(b)
∑

(µ)⊂Nm−(b)
µ√
∆

=h∈A∆

Nm((µ))=n

sgn(µ) log

∣∣∣∣ µµ′
∣∣∣∣ ,

where the generator µ is chosen appropriately as in the definition of a(Λ) in (3.2.3). Continue
as in the proof of Prop. 3.4, we have

c̃χ

( n
∆
, h
)

=
sh
2

∑
b∈SF

χ(b′)


∑

a⊂OF , Nm(a)=n
a=(µ)Nm−(b′) with
µ√
∆

=h∈A∆and µ>0

log

∣∣∣∣ µµ′
∣∣∣∣− ∑

a⊂OF , Nm(a)=n
a=(µ)Nm−(b′) with
µ√
∆

=−h∈A∆and µ>0

log

∣∣∣∣ µµ′
∣∣∣∣


Given an ideal a ⊂ OF satisfying the conditions in the summand, the principal ideal ahF is

generated by µhF
µ′b
µb

, which then differs from the fixed generator µa by a unit inO×F . Therefore∑
a⊂OF , Nm(a)=n

a=(µ)Nm−(b′) with
µ√
∆

=h∈A∆and µ>0

log

∣∣∣∣ µµ′
∣∣∣∣ = 2rb,n,h log |εF |+

1

hF

∑
a⊂OF , Nm(a)=n

a=(µ)Nm−(b′) with
µ√
∆

=h∈A∆and µ>0

log

∣∣∣∣µa

µ′a

∣∣∣∣

+
2

hF
log

∣∣∣∣µb

µ′b

∣∣∣∣ ∑
(µ)⊂Nm−(b)
µ√
∆

=h∈A∆

Nm((µ))=n, µ>0

1

for rb,n,h ∈ 1
hF

Z ⊂ Q. Summing over b ∈ SF , we obtain (3.5.6) with r := sh
∑

b∈SF χ(b)(rb,n,h−
rb,n,−h) and cb := χ(b)

hF
log
∣∣∣µbµ′b ∣∣∣. �
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Using the proposition above, we can deduce the following analogue of Prop. 3.6.

Corollary 3.14. Let ` ∈ N be a prime such that there is only one prime l in OF above it.
Then

(3.5.8) c̃χ

(
`2n

∆
, `h

)
=

{
c̃χ
(
n
∆
, h
)
, if ` - ∆ or ` | gcd(∆, n),

(1 + χ([l]))c̃χ
(
n
∆
, h
)
, if ` | ∆ and ` - n,

for all n ∈ Z and h ∈ A∆.

Proof. We have µal = µaµl by (3.5.5) and are done by proceeding as in the proof of Prop.
3.6. �

Proof of Prop. 3.12. Prop. 3.13 implies that

C̃χ(λ0;SF ) = r̃ log εF + C̃χ(λ0) +
∑
b∈SF

cb
∑

t|
√

∆λ0

cNm−(b) (Nm(λ0/t), λ0/t)

for some r ∈ 1
hF

Z, where

(3.5.9) C̃χ(λ0) :=
∑

t|
√

∆λ0

c̃χ(Nm(λ0/t), λ0/t).

Therefore,

C̃χ(λ0;SF ) =
1

hF
log |α|+

∑
b∈SF

cb
∑

t|
√

∆λ0

cNm−(b) (Nm(λ0/t), λ0/t)

for some α ∈ F satisfying α′ = 1/α. Even though α depends on SF , the factorization of
the fractional ideal (α) only depends C̃χ(λ0), which is independent of the set SF . To finish
proving the proposition, we need to analyze this part.

Suppose the principal ideal generated by µ0 :=
√

∆λ0 has the factorization a
∏

la(l′)b with
a consisting of exactly the inert and ramified primes in µ0. Here l = (lj)1≤j≤J are the split
primes in µ0, and we have adopted the notations in the proof of Prop. 3.11, along which we
obtain

(3.5.10) C̃χ(λ0) =
ρK/F (a)

hF

∑
s≤a

∑
s−a≤r≤b−s

χ
(∏

lr
)

log

∣∣∣∣∣µa(r)

µ′a(r)

∣∣∣∣∣ .
Using the definition of the ideal a(r) in (3.4.5), we can rewrite the equation above as

C̃χ(λ0) =
∑

1≤j≤J

ρK/F ((µ0)/(l
aj
j (l′j)

bj))

hF
log

∣∣∣∣∣µlj

µ′lj

∣∣∣∣∣ ∑
sj≤aj

sj−aj≤rj≤bj−sj

χ(lj)
rj(aj − bj + 2rj).
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By the lemma below, the last sum vanishes unless χ(lj) = −1 and 2 - (a− b). Therefore, we

can further simply C̃χ(λ0) to

C̃χ(λ0) =
∑

1≤j≤J, χ(lj)=−1
2|gcd(aj+1,bj)

ρK/F ((µ0)/(l
aj
j (l′j)

bj))(aj + 1)

hF
log

∣∣∣∣∣µlj

µ′lj

∣∣∣∣∣
+

∑
1≤j≤J, χ(l′j)=−1

2|gcd(aj ,bj+1)

ρK/F ((µ0)/(l
aj
j (l′j)

bj))(bj + 1)

hF
log

∣∣∣∣µ′ljµlj

∣∣∣∣
=

∑
1≤j≤J
χ(lj)=−1

ρK/F ((µ0)lj)(aj + 1)

hF
log

∣∣∣∣∣µlj

µ′lj

∣∣∣∣∣+
ρK/F ((µ0)l′j)(bj + 1)

hF
log

∣∣∣∣µ′ljµlj

∣∣∣∣ .
By setting

γ(λ;SF ) := εhF r̃F

∏
1≤j≤J, χ(lj)=−1

µ
ρK/F ((µ0)lj)(aj+1)

lj
(µ′lj)

ρK/F ((µ0)l′j)(bj+1),

we obtain the claim in (3.5.4). �

Lemma 3.15. For ε = ±1 and integers 0 ≤ a ≤ b, we have

(3.5.11)
∑
s≤a

s−a≤r≤b−s

εr(a− b+ 2r) =


a+ 1, if ε = −1 and 2 | gcd(a+ 1, b),

−(b+ 1), if ε = −1 and 2 | gcd(a, b+ 1),

0, otherwise.

4. Higher Green’s Function

In this section, we will state and prove the main result (Theorem 4.4). The basic idea is
to express the higher Green’s function as a theta integral. At the cycle Zχ, the theta kernel
becomes the Eisenstein series yEχ(z) by the Siegel-Weil formula (see Prop. 3.10). The key
idea then is to use theta lift to construct a suitable real-analytic modular form, whose image
under the lowering operator is related to the image of yEχ(z) under the raising operator.
This construction, along with necessary calculations, are postponed until section 5.

4.1. Differential Operators. For any k ∈ 1
2
Z and τ = u + iv ∈ H, define the following

differential operators on real-analytic C-valued function f on H

Rτ,k = 2i∂τ +
k

v
, Lτ,k = −2iv2∂τ ,

∆τ,k = −Rτ,k−2Lτ,k = −Lτ,k+2Rτ,k − k = −v2
(
∂2
u + ∂2

v

)
+ ikv(∂u + i∂v).

(4.1.1)
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We omit the subscript τ when it is clear from the context. For any n ∈ N, we also know that

(4.1.2) Rn
kf := Rk+2n−2 ◦Rk+2n−4 ◦ · · · ◦Rkf =

n∑
r=0

(2i)r
(
n

r

)
(k + r)n−r
vn−r

(∂rτf)(τ),

from equation (56) in [11]. Suppose that f ∈ Ak,ρ(Γ) for any Γ ⊂ Mp2(Z) of finite index and
representation ρ : Γ→ GL(V ). Then applying the differential operators Rk and Lk compo-
nentwisely to f preserves its modularity by raising and lowering the weight by 2 respectively,
i.e. Rk(f) ∈ Ak+2,ρ(Γ), Lk(f) ∈ Ak−2,ρ(Γ). Furthermore, it is a simple consequence of the
commutation of differential operators that

(4.1.3) ∆k+2nR
n
kf = (k + n− 1)nRn

kf

if ∆kf = 0. For N, n ∈ N, recall the unary theta function θN(τ, n) ∈ An+1/2(ρN) from
(2.2.12). It is easy to check that

(4.1.4) Rn+1/2θN(τ ;n) = −2πθN(τ ;n+ 2).

From Stokes’ theorem, we can deduce the following consequence.

Lemma 4.1. Let f, g be smooth functions on H and S ⊂ H a compact domain. Then∫
S

f(R−2−kg)dµ(τ) +

∫
S

(Rkf)gdµ(τ) = −
∮
∂S

fg

v2
dτ ,∫

S

f(Lk1g)dµ(τ) +

∫
S

(Lk2f)gdµ(τ) = −
∮
∂S

fgdτ,

(4.1.5)

with counterclockwise orientation on ∂S for any k, k1, k2 ∈ 1
2
Z.

Proof. Note that 2i∂(fg/v2)
∂τ

= R−2(fg)
v2 = v−2((Rkf)g + f(R−k−2g)). Integrate this against

du ∧ dv and using 2idu ∧ dv = dτ ∧ dτ along with Stokes’ theorem proves the first equality.
The second one follows similarly by considering

∫
S
d(fgdτ). �

In order to maintain both holomorphicity and modularity of derivatives of modular forms,
one can take linear combinations of products of repeatedly raised modular forms. This is the
idea behind the following operation (see e.g. section 5.2 of part 1 of [11]). For j = 1, 2, let
Γj ⊂ Mp2(Z) be finite index subgroups and ρj representations of Γj on C[Aj]. For k, ` ∈ 1

2
Z

and r ∈ N, we can define the Rankin-Cohen bracket on two real-analytic modular forms
f ∈ Ak,ρ1(Γ1), g ∈ A`,ρ2(Γ2) by

[f, g]r :=
r∑
s=0

(−1)s
(
k + r − 1

s

)(
`+ r − 1

r − s

) ∑
h1∈A1,h2∈A2

f
(r−s)
h1

g
(s)
h2
,

= (−4π)−r
r∑
s=0

(−1)s
(
k + r − 1

s

)(
`+ r − 1

r − s

) ∑
h1∈A1,h2∈A2

Rr−s
k fh1R

s
`gh2 ,

(4.1.6)
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whereG(j) := 1
(2πi)j

∂jτG for any real-analytic functionG on H and
(
m
n

)
:= m(m−1)(m−2)...(m−n+1)

n!

is the binomial coefficient. Then one can check that

[f, g]r ∈ Ak+`+2r,ρ1⊗ρ2(Γ)

with Γ = Γ1∩Γ2. Furthermore, if f and g are holomorphic with rational Fourier coefficients,
so is [f, g]r.

4.2. Higher Green’s Function. For <(s) > 1, let

(4.2.1) Qs−1(t) :=

∫ ∞
0

(t+
√
t2 − 1 cosh v)−sdv

be the Legendre function of the second kind, which satisfies the ordinary differential equation

(1− t2)F ′′(t)− 2tF ′(t) + s(s− 1)F (t) = 0.

Define a function gs on H2 by

(4.2.2) gs(z) := −2Qs−1(cosh d(z)) = −2Qs−1

(
1 +
|z1 − z2|2

2y1y2

)
for z = (z1, z2) ∈ H2 with d(z) the hyperbolic distance between z1 and z2. By averaging over
the Γ-translates of the second variable, we obtain a function

(4.2.3) Gs(z) :=
∑

γ∈PSL2(Z)

gs(z1, γz2)

on (PSL2(Z)\H)2. Since linear fractional transformation is an isometry with respect to the
hyperbolic distance, the function Gs(z) is symmetric in z1 and z2. Furthermore, it is an
eigenfunction of the hyperbolic Laplacian ∆zj ,0 of eigenvalue s(1− s) for j = 1, 2.

Fix a positive integer k ≥ 2 and let f(τ) =
∑

m≥−∞ cf (m)qm ∈ M !
2−2k be a weakly

holomorphic modular form. By the residue theorem, we have∑
m≥1

cf (−m)ag(m) = 0

for all g(τ) =
∑

m≥1 ag(m)qm ∈ S2k. Define the higher Green’s function with respect to f by

(4.2.4) Gk,f (z) :=
∑
m≥1

cf (−m)mk−1Gk(z) | Tm

with Tm the mth Hecke operator acting on z2 (see §IV.4 of [18]). The singularity of Gk,f is

(4.2.5) Tf :=
⋃

m≥1, cf (−m) 6=0
z∈H

(z, Tmz) ⊂ H2.

It was shown in [30] that

(4.2.6) 2Gk,f (z) = (−4π)1−kΦM2(Z)(w(z), 1, Rk−1
2−2kf),
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where w(z) is the identification in Example 2.2. This is essentially a direct consequence of
Theorem 6.2 in [3], which implies that the right hand side has the same singularity on H2

as the left hand side. There is an extra factor of 2 here since SL2(Z) was used in [30] in
defining the higher Green’s function. By Lemma 4.1, we can obtain the following simple
consequence.

Proposition 4.2. Let L = M2(Z) and ΘL(τ, w(z)) the theta function in (2.2.17). Then we
have

(4.2.7) Gk,f (z)=(4π)1−k
∫ reg

Γ\H
f(τ)Rk−1

τ,0 (ΘL(τ, w(z)))dµ(τ).

for all z ∈ H2.

Proof. Suppose z1, z2 ∈ H. Then |az1z2 + bz1 + cz2 + d|2 + |az1z2 + bz1 + cz2 + d|2 ≥ 1 for all
a, b, c, d ∈ Z not all zero. Therefore, one can check inductively that

lim
T→∞

∫
∂FT

(Rk−1−j
2−2k f)(z)Rj

z,0(vΘL(z, w(z)))
dz

y2
= 0

for all 0 ≤ j ≤ k − 1. Then applying Lemma 4.1 (k − 1) times finishes the proof. �

4.3. Main Theorems and Proofs. Let ∆ > 0 be a fundamental discriminant, ε∆ ∈ O×F
the generator of the discriminant kernel Γ∆ as in (2.4.3), χ = χ∆1,∆2 an odd genus character,
and Zχ the associated 0-cycle of CM points on (Γ\H)2 as in (3.3.1). Suppose k ∈ 2N
and f(z) =

∑
m≥−m0

cf (m)e(mz) ∈ M !
2−2k, we will now state and prove the two theorems

concerning Gk,f (Zχ).

Theorem 4.3. Let SF ⊂ Id be as in (3.1.8) and c(f, SF ) ∈ C the constant defined in (5.4.1).
Then we have

Gk,f (Zχ)− c(f, SF ) log ε∆ = −
√

∆
1−k

2

∑
1≤m≤m0

∑
µ0∈Sm

cf (−m)Ck(µ0,m)C̃χ

(
µ0√
∆

)
,(4.3.1)

where Ck(µ0,m) ∈ Z is the integer defined in (1.0.3) and C̃χ is defined in (3.5.1).

Proof. By the Siegel-Weil formula in Prop. 3.10 and the integral representation of the higher
Green’s function in Prop. 4.2, we can rewrite

Gk,f (Zχ) = (4π)1−k lim
T→∞

∫
FT
f(z)Rk−1

z,0 (yEχ(z))dµ(z).
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In Prop. 5.8, we use theta lift to construct essentially a preimage of Rk−1
z,0 (yEχ(z)) under the

lowering operator. Substituting this into the equation above yields

Gk,f (Zχ) =
1

4
√

2
lim
T→∞

∫
FT
f(z)

(
Lz((y

kΦ(z; p̃k−1, ϑ̂
c
χ))c) + (yk−1Φ(z; p̌k−1, θχ))c log ε∆

)
dµ(z)

= c(f, SF ) log ε∆ +
1

4
√

2
lim
T→∞

∫
FT
f(z)Lz((y

kΦ(z; p̃k−1, ϑ̂
c
χ))c)dµ(z)

= c(f, SF ) log ε∆ +
1

4
√

2
lim
T→∞

∫ 1

0

f(x+ iT )(T kΦ(x+ iT ; p̃k−1, ϑ̂
c
χ))cdx,

where the second step follows from the definition of c(f, SF ) in (5.4.1) and the last step is
a consequence of Lemma 4.1. Now Prop. 5.9 tells us the mth Fourier coefficient âχ(m, y) of

(ykΦ(z; p̃k−1, ϑ̂
c
χ))c. It decays as y−1/2(1 + |m|)k+3e−2π|m|y when m ≤ 0 and has a main term

ãχ(m)e−2πmy when m > 0. Putting these together, we see that

Gk,f (Zχ)− c(f, SF ) log ε∆ =
1

4
√

2

∑
1≤m≤m0

cf (−m)ãχ(m).

Substituting the definition for ãχ(m) in (5.3.4) and we are done. �

We can now combine formula (4.3.1) with Prop. 3.12 to prove Theorem B.

Theorem 4.4. If f(τ) =
∑

m≥−m0
cf (m)qm ∈ M !

2−2k has rational Fourier coefficients, then

there exists κ = κf,F ∈ N and γf ∈ F× such that

(4.3.2) κGk,f (Zχ) = −∆
1−k

2 · log

∣∣∣∣∣γfγ′f
∣∣∣∣∣ .

Furthermore, for every prime ideal l of OF satisfying χ(l) = −1, l 6= l′,

(4.3.3)
ordl(γf )

κ
=

∑
1≤m≤m0

cf (−m)
∑
µ0∈Sm

Ck(µ0,m)

2
ρK/F ((µ0)l)(1 + ordl((µ0))).

and ordl(γf ) = 0 for every other prime ideal l of OF , where Ck(µ0,m) is the quantity defined

in (1.0.3). In particular, the fractional ideal generated by
γ′f
γf

has the factorization∏
m≥1

∏
µ0∈Sm

I−χ (µ0)cf (−m)Ck(µ0,m),

where I−χ (a) was defined in (1.0.4).

Remark 4.5. The result above still holds if γf above is replaced by nγf for any n ∈ N.
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Proof. First, we can substitute (3.5.3) into (4.3.1) to obtain

Gk,f (Zχ) = c(f, SF ) log ε∆ −
√

∆
1−k ∑

1≤m≤m0

∑
µ0∈Sm

cf (−m)Ck(µ0,m)

4hF
log

∣∣∣∣∣ γ(µ0/
√

∆;SF )

γ(µ0/
√

∆;SF )′

∣∣∣∣∣
− 1

2

∑
b∈SF

cb
∑

1≤m≤m0

cf (−m)cΦ,b,k(m),

where cΦ,b,k(m) is defined by

cΦ,b,k(m) :=
√

∆
1−k ∑

µ0∈Sm

Ck(µ0,m)
∑
t|µ0

cNm−(b)

(
Nm(µ0/(

√
∆t)), λ0/(

√
∆t)
)

and is the mth Fourier coefficient of the holomorphic cusp form −1
2
√

2
(ykΦ(z; p̃k−1, ϑ

c
Nm−(b)

))c

in S2k by Prop. 5.11. The sum
∑

1≤m≤m0
cf (−m)cΦ,b,k(m) is then the constant term of the

−f
2
√

2
(ykΦ(z; p̃k−1, ϑ

c
Nm−(b)

))c ∈M !
2, which is zero. Now Prop. 5.12 tells us that

√
∆c(f, SF ) ∈

Q. Since k ∈ 2N, the Legendre polynomial Pk−1 is odd and
√

∆
k−1

Pk−1((λ0 − λ′0)/m) ∈ Q
for λ0 ∈ F . We can now choose κ ∈ N such that

κ∆(k−1)/2c(f, SF ), κ
cf (−m)Ck(µ0,m)

4hF
∈ Z

for all µ0 ∈ Sm and 1 ≤ m ≤ m0. We then obtain equation (4.3.3) by the factorization

of γ(λ0;SF ) in Prop. 3.12. To see the factorization of the fractional ideal generated by
γ′f
γf

,

notice that

(4.3.4)
∏

l|µ0 prime, χ(l)=−1

lρK/F ((µ0)l)(1+ordl((µ0))) =
∏
a|(µ0)

a−2χ(a).

This finishes the proof. �

5. Three Theta Lifts

This section contains the construction of the preimage of the kernel Rk−1
0 (yEχ(z)) under

the lowering operator L2k. It consists of several theta lifts. We will first present the basic
setup and some technical calculations, before moving on to the construction in 5.3.

5.1. Basic Setup. Let F = Q(
√

∆) ⊂ R be a real quadratic field with fundamental dis-
criminant ∆ > 0. Consider the lattice M ⊂M2(F ) defined by

(5.1.1) M :=

{(
a λ
λ′ b

)
∈M2(F ) : a, b ∈ Z, λ ∈ OF

}
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with determinant as the quadratic form. The dual lattice M∨ is given by

M∨ :=

{(
a λ
λ′ b

)
∈M2(F ) : a, b ∈ Z, λ ∈ d−1

}
.

Then the lattice L− = (OF ,−Nm) embeds isometrically into M via λ 7→
(

0 λ
λ′ 0

)
, through

which AM ∼= AL− as Γ-modules with respect to the Weil representation ρM ∼= ρ∆ in section
3.1. We also denote Q(λ) := Q

((
0 λ
λ′ 0

))
= −Nm(λ) for λ ∈ F .

Via the two embeddings of F into R, the real quadratic space V := M ⊗Z R is isomorphic
to (M2(R), det). As in section A, we identify M2(R) with R2,2 and the symmetric space DV
with H2. For our purpose, it suffices here to consider the diagonal H ⊂ H×H. For a, b, c ∈ N,
consider the polynomial pa,b,c on R2,2 defined in (A.1.9). The function y−cΘM(τ, z; pa,b,c) is
in Aa+b−c,ρM and A2c as a function in τ and z respectively. Suppose

f(τ) =
∑
h∈AM

eh
∑
m∈Q×

c(m,h, v)e(mu) ∈ Aa+b−c,ρM

is regular on H and decays sufficiently fast near the cusp such that the following limit exists

(5.1.2) Φ(z; pa,b,c, f) := lim
T→∞

∫
FT
〈f(τ),ΘM(τ, z; pa,b,c)〉va+b−cdµ(τ).

We would like to express its Fourier expansion in terms of c(m,h, v) by specializing Theorem
7.1 in [3]. The result is as follows.

Proposition 5.1. In the notations above, the function y−1Φ(z; pa,b,c, f) has the expansion

y−1Φ(z; pa,b,c, f) = c(f ; pa,b,c) +
∑

0≤h≤h−≤c
0≤r≤j≤(b+c−h−)/2
d≥1,λ∈d−1\{0}

(
c
h−

)(
a
h

)(
h−

h

)
h!(2j)!

(
j
r

)(
b
2r

)(
c−h−
2j−2r

)
(−1)a+b+c+j

j!
(

2j
2r

)
2(a+b+c)/2+2j+h−1πh+j

× e(−d(λ+ λ′)x)(dy)a+b−h−j−1/2(λ− λ′)b−2r(λ+ λ′)c−h
−−2j+2r

×
∫ ∞

0

c(−λλ′, λ, dyv) exp

(
−πdy

(
1

v
+ (λ2 + (λ′)2)v

))
vb+h−h

−−j−1/2dv

v
,

(5.1.3)

where c(f ; pa,b,c) is a constant.

Later, we will evaluate the integral in v, which becomes the K-Bessel function for holo-
morphic input f . The following standard estimate is then useful.

Lemma 5.2. For α ∈ C and r ∈ R, let Kα(r) be the K-Bessel function defined by

(5.1.4) Kα(r) :=
1

2

(r
2

)−α ∫ ∞
0

exp

(
−t− r2

4t

)
tα
dt

t
.
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It has the following asymptotic expansion

(5.1.5) Kα(r) =

√
π

2r
e−r +Oα(r−3/2e−r)

for r large.

5.2. Lift 1. Now, we are ready to apply the above result to (a, b, c) = (0, 1, 0) and f = ϑχ
for χ = χ∆1,∆2 an odd genus character of F . The theta lift turns out to be the function
yEχ(z), which is a finite sum of the theta kernels.

Proposition 5.3. Let χ be an odd genus character and ϑχ ∈ S1,ρ∆
be the cusp form defined

in (3.1.6). Then

(5.2.1) Φ(z; p0,1,0, ϑχ) = Φ(z; p0,1,0, ϑχ) = −4
√

2yEχ(z)

for all z ∈ H.

Proof. We will compare the Fourier expansions of both sides. The parameters h, h−, j, r in
the summation of (5.1.3) are all zero, and Prop. 5.1 implies that

Φ(z; p0,1,0, ϑχ) = −
√

2y


2c0 +

∑
λ∈d−1

λ>0>λ′

cχ(−λλ′, λ)
∑
n≥1

e(n(−λz − λ′z))

−
∑
λ∈d−1

λ′>0>λ

cχ(−λλ′, λ)
∑
n≥1

e(n(−λz − λ′z))


,

with c0 ∈ C and cχ(m,h) the Fourier coefficients of ϑχ. By (3.1.7), we know that cχ(m,λ) =
−cχ(m,−λ′) = −cχ(m,λ′). Therefore, the equation above becomes

Φ(z; p0,1,0, ϑχ) = −2
√

2y

c0 +
∑

λ0∈d−1

λ0>0>λ′0

Cχ(λ0

√
∆)e(λ0z + λ′0z)

 ,

where we have substituted λ0 = −nλ′ and Cχ is defined in (3.4.1). Prop. 3.11 now directly

implies that Φ(z; p0,1,0, ϑχ)+4
√

2yEχ(z) = yc1 for some constant c1 ∈ C. Since this difference
is in A0, we must have c1 = 0, therefore proving (5.2.1). �

5.3. Lift 2. In the first theta lift, we have already expressed yEχ(z) as a theta lift. Since the
value of the higher Green’s function Gk,f (z1, z2) at Zχ is related to Rk−1

z,0 yEχ(z) for k ∈ N, we
want to realize this function also as a suitable theta lift. Let M be the lattice in the previous
section and pa,b,c the polynomial on R2,2 defined in (A.1.9). Our first result is as follows.
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Proposition 5.4. Let b ∈ N be an odd, positive integers with b < k and χ an odd genus
character of F . Then we have

(5.3.1) (4π)k−1(yk−1Φ(z; pk−b,b,k−1, ϑχ))c = −4
√

2Rk−1
z,0 yEχ(z)

for all z ∈ H.

Remark 5.5. The same proof shows that Φ(z; p1,0,0, ϑχ) vanishes identically.

Proof. First, we denote a := k − b and show that Φ(z; pa,b,k−1, f) only depends on b modulo
2 when f ∈ S1,ρM is holomorphic. In this case, it is easy to first check that Rτ,−1f

c(τ) = 0.
By Lemma 4.1 and the first equation in Corollary A.4, we see that

Φ(z; pa,b+2,k−1, f)− Φ(z; pa+2,b,k−1, f) = (2π)−1 lim
T→∞

∫
FT
〈f c(τ), Rτ,−1ΘM(τ, z; pa,b,k−1)〉dµ(τ)

= −(2π)−1 lim
T→∞

∫
∂FT
〈f c(τ),ΘM(τ, z; pa,b,k−1)〉dτ

v2
= 0.

Now to prove (5.3.1), we can use Prop. 5.3 and apply the raising operator Rk−1
z,0 to the theta

integral Φ(z; p0,1,0, ϑχ) to obtain

−4
√

2Rk−1
z,0 yEχ(z) = Rk−1

z,0 Φ(z; p0,1,0, ϑχ) =

∫
Γ\H
〈ϑχ(τ), Rk−1

z,0 ΘM(τ, z; p0,1,0)〉dµ(τ)

= (4π/y)k−1Φ(z; pk−1,1,k−1, ϑχ) = (4πy)k−1(Φ(z; pk−1,1,k−1, ϑχ))c,

where we used Rk−1
z,0 ΘM(τ, z; p0,1,0) = (4π/y)k−1ΘM(τ, z; pk−1,1,k−1) from Corollary A.4. �

As an immediate consequence of this proposition and Eq. (3.2.11), we can use the poly-
nomial p̌k−1 to produce a theta kernel that could reproduce Rk−1

z,0 yEχ(z).

Theorem 5.6. For a positive, even integer k ∈ N, let p̌k−1 be the polynomial on R2,2 defined
in (A.2.3). Then

(5.3.2) − 4
√

2Rk−1
z,0 (yEχ(z)) = (4π)k−1(yk−1Φ(z; p̌k−1, ϑχ))c.

Remark 5.7. Similar statement holds for odd k ∈ N if yEχ(z) is replaced with Φ(z; p1,0,0, ϑχ).
But this vanishes identically by Remark 5.5.

Proof. By its definition in (A.2.3), we know that p̌k−1 =
∑

0≤b≤k−1 ck−1,bpk−b,b,k−1. Since k is
even, ck−1,b is non-zero precisely when b is odd and between 0 and k − 1. The theorem then
follows from Prop. 5.4 and the identity

∑
0≤b≤k−1 ck−1,b = Pk−1(1) = 1. �

By exploiting the relationship between ΘM(τ, z; p̌k−1) and ΘM(τ, z; p̃k−1) in Corollary A.4,
we can now use theta lift to construct a function that almost maps to Rk−1

z,0 yEχ(z) under Lz.
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Proposition 5.8. Choose a set of ideals SF as in (3.1.8), and let θχ(τ ;SF ) ∈ A1,ρM , ϑ̂χ(τ ;SF ) ∈
A1,ρ∆

be the functions defined in (3.1.9) and (3.2.8) respectively. In the notations above, we
have

(5.3.3) Lz((y
kΦ(z; p̃k−1, ϑ̂

c
χ))c) = 4

√
2(4π)1−kRk−1

z,0 (yEχ(z))− (yk−1Φ(z; p̌k−1, θχ))c log ε∆

for all z ∈ H and even k ∈ N.

Proof. We can substitute the third equation in (A.2.6) into the left hand side of (5.3.3),
apply Lemma 4.1 and (3.2.11) to obtain

Lz((y
kΦ(z; p̃k−1, ϑ̂

c
χ))c) =

∫
Γ\H
〈ϑ̂χ(τ), Lzy−kΘM(τ, z; p̃k−1)〉dµ(τ)

= 2y1−k
∫

Γ\H
〈ϑ̂χ(τ), LτΘM(τ, z; p̌k−1)〉dµ(τ)

= −2y1−k
∫

Γ\H
〈Lτ ϑ̂χ(τ),ΘM(τ, z; p̌k−1)〉dµ(τ)

= −(yk−1Φ(z; p̌k−1, ϑχ))c − (yk−1Φ(z; p̌k−1, θχ))c log ε∆ ∈ A2k−2.

Theorem 5.6 then finishes the proof. �

Now, we can again apply Prop. 5.1 to describe the Fourier expansion of Φ(z; p̃k−1, ϑ̂
c
χ).

Since the input is real-analytic and the theta kernel has a polynomial, the precise Fourier
coefficient, which is a function of y, is complicated. Fortunately, we only need the main term
that survives when y is large. Therefore, the sum in (5.1.3) greatly simplifies and yields a
nice answer.

Proposition 5.9. Suppose that the modular form (ykΦ(z; p̃k−1, ϑ̂
c
χ))c ∈ A2k has the Fourier

expansion
∑

m∈Z âχ(m, y)e(mx), then

âχ(m, y) =
(
ãχ(m) +OF,SF ,k((1 + |m|)k+3y−1/2)

)
e−2π|m|y,

ãχ(m) := −2
√

2
√

∆
1−k ∑

µ0∈Sm

Ck(µ0,m)C̃χ(µ0/
√

∆),(5.3.4)

where Sm is the set defined in (1.0.2), Ck(µ0,m) is the constant defined in (1.0.3) and C̃χ is
defined in (3.5.1)

Remark 5.10. Notice that ãχ(m) = 0 for m ≤ 0 since the sum is empty.

Proof. First, we apply Prop. 5.1 to (a, b, c) = (k − b− 1, b, k) and

f(τ) = ϑ̂cχ(τ) = v
∑

h∈d−1/OF

eh
∑
m∈Q×

ĉχ(m,h, v)e(−mu)
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to obtain

y−kΦ(z; pk−b−1,b,k, f) = y1−kc(f ; pk−b−1,b,k)+

y−h−j+1/2
∑

h,h−,j,r≥0
d≥1,λ∈d−1\{0}

ck,b,h,h−,j,rd
k−h−j−1/2(λ− λ′)k−1−2`−2r(λ+ λ′)k−h

−−2j+2r

× e(d(λ+ λ′)x)

∫ ∞
0

ĉχ(λλ′, λ, dyv) exp

(
−πdy

(
1

v
+ (λ2 + (λ′)2)v

))
vα
dv

v
,

where α = α(b, h, h−, j) := b+ h− h− − j + 1/2 and

ck,b,h,h−,j,r :=

(
k
h−

)(
k−b−1
h

)(
h−

h

)
h!(2j)!

(
j
r

)(
b
2r

)(
k−h−
2j−2r

)
(−1)1+j

j!
(

2j
2r

)
2k+2j+h−3/2πh+j

.

By Lemmas 3.8, 5.2 and Remark 3.9, we have the estimate∫ ∞
0

ĉχ(λλ′, λ, dyv) exp

(
−πdy

(
1

v
+ (λ2 + (λ′)2)v

))
vα
dv

v
=

e−2πdy(|λ|+|λ′|)
√
dy(|λ|+ |λ′|)α+1/2

(
c̃χ(λλ′, λ) +OF,SF ,k

(
(d(|λ|+ |λ′|))2

√
y

(
1 + y−1

)))
,

where we have used |λλ′| � (|λ|+ |λ′|)2 and 1 ≤ d. Now, we consider the coefficient of e(mx)

in y−kΦ(z; pk−b−1,b,k, f) for a fixed m ∈ Q. When m = 0, the claimed asymptotics is clearly
true. Suppose m 6= 0. This imposes the condition m = d(λ+λ′). The sum of the terms with
h, j, r > 0, or λλ′ < 0 gives an asymptotic term of OF,SF ,k(|m|k+3y−1/2). The other terms,
namely those satisfying h = j = r = 0 and λλ′ > 0, will contribute the following main term

y1/2
∑

h−≥0, d≥1
λ∈d−1, λλ′>0
d(λ+λ′)=m

−23/2−k
(
k

h−

)
dk−1/2(λ− λ′)b(λ+ λ′)k−h

− c̃χ(λλ′, λ)e(mx)e−2π|m|y
√
dy(|λ|+ |λ′|)b−h−+1

= −23/2−bmk−b−1
∑
d≥1

λ∈d−1, λλ′>0
d(λ+λ′)=m

(d(λ− λ′))be(mx)e−2π|m|y c̃χ(λλ′, λ)
k∑

h−=0

(
k

h−

)
sgn(λ)k−h

−

= −2
√

2mk−1e(mz)
∑

λ0∈d−1, λ0�0
tr(λ0)=m

(
λ0 − λ′0
m

)b ∑
d≥1, d|λ0

c̃χ(Nm(λ0/d), λ0/d)

plus an error of OF,SF ,k(|m|k+3y−1/2). Notice that the main term is present only when m > 0.
Adding this together over 0 ≤ b ≤ k− 1 with the factor ck−1,b from (A.2.2) then finishes the
proof. �
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The theta lift above becomes a classical one if ϑ̂χ ∈ A1,ρ∆
is replaced by any holomorphic

cusp form f ∈ S1,ρ∆
.

Proposition 5.11. For any cusp form f(τ) =
∑

h∈A∆
eh
∑

m∈Q>0
cf (n, h)qn ∈ S1,ρ∆

and

even k ∈ N, the theta integral (ykΦ(z; p̃k−1, f
c))c =

∑
m≥1 a(m)e(mz) is a holomorphic cusp

form in S2k with

a(m) := −2
√

2
√

∆
1−k ∑

µ0∈Sm

Ck(µ0,m)
∑

(d)|(µ0)

cf (Nm(µ0/(d
√

∆), µ0/(d
√

∆)).

Proof. The calculation from the proof of Prop. 5.8 shows that Lz annihilates ykΦ(z; p̃k−1, f
c))c,

i.e. it is holomorphic. The Fourier coefficients are calculated in the same way as in the proof
of Prop. 5.9. �

5.4. Lift 3. Let f(z) =
∑

m≥−m0
cf (m)e(mz) ∈ M !

2−2k be a weakly holomorphic modular
form with k ∈ 2N. In this section, we will analyze a constant defined by the following integral

(5.4.1) c(f, SF ) :=
1

4
√

2
lim
T→∞

∫
FT
f(z)y1−kΦ(z; p̌k−1, θχ)dµ(z) ∈ C.

The main result is as follows.

Proposition 5.12. Suppose that the principal part coefficients of f are rational. Then

(5.4.2)
√

∆c(f, SF ) ∈ 1

κ(f, SF )
Z ⊂ Q

with κ(f, SF ) ∈ N a constant depending only on f and SF .

We break the proof of this proposition into several steps. First, we will rewrite c(f, SF )
as a double integral and change the order of integration. Then, the inner integral becomes
a Millson theta lift [1] and produces a weakly holomorphic modular form of weight 3

2
− k.

By a well-known result of Shimura [29] (see also [9,28]), this form will have rational Fourier
coefficients if f does. Finally, the outer integral becomes a Borcherds’ type regularized theta
lift, which we can evaluate using the result of [10] and Stokes’ theorem.

We start by analyzing the lattice involved in Φ(z; p̌k−1, θχ). Recall that

θχ(τ ;SF ) =
∑
b∈SF

χ(b)Θ−
Nm−(b)

(τ, 0) ∈ A1,ρ∆

from (3.1.8) and (3.1.9). Given such b ∈ SF , define lattice

(5.4.3) Mb :=
{

(Λ, λ) ∈M∨ × d−1Nm−(b) : Λ = λ ∈ A∆

}
,

with the quadratic form Q((Λ, λ)) := det(Λ) + Nm(λ). This turns Mb into a unimodu-
lar lattice of signature (3, 3), which contains M ⊕ LNm−(b) as a sublattice. Let D be the
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Grassmannian associated to Mb ⊗ R. For z ∈ H, we have the following identification

νz : Mb ⊗ R = (M ⊗ R)⊕ (LNm−(b) ⊗ R) ∼= R3,3 = R2,2 ⊕ R1,1

(Λ, λ) 7→
(

Λz,B(Λ, Y ),
λ+ λ′√

2
,<(Λz⊥),=(Λz⊥),

λ− λ′√
2

)
,

(5.4.4)

where Λz and Λz⊥ are defined in (2.2.16). This gives rise to a point in D, which we also
denote by z. Then we can rewrite

√
2Φ(z; p̌k−1, θχ) =

√
2
∑
b∈SF

χ(b)

∫
Γ\H

∑
h∈A∆

ΘM,h(τ, z; p̌k−1)Θ−
Nm−(b),h

(τ, 0)vdµ(τ)

= 2
∑
b∈SF

χ(b)ΦMb
(z; p†k−1,1),

(5.4.5)

where 1 denotes the constant function on Γ\H and

p†k−1(x) := (ix1)kPk−1

(
x2

ix1

)
(ix4 + x5)k−1x6

for k ∈ N and x = (x1, . . . , x6) ∈ R3,3. Therefore, we can write

c(f, SF ) =
1

4

∑
b∈SF

χ(b)c(f, b).

with

(5.4.6) c(f, b) := lim
T→∞

∫
FT
f(z)y1−kΦMb

(z; p†k−1,1)dµ(z)

and it suffices to show that c(f, b) ∈
√

∆
κ(f,b)

Z for some κ(f, b) ∈ N.

To execute the first step, we need to find a sublattice in Mb that behaves well with respect
to the polarization in (5.4.4). Let L1 := {( a cc d ) ∈M2(Z)} be a signature (1, 2) sublattice of
M2(Z), B := Nm(b) = Nm(b′) and

(5.4.7) L2 := P∆ ⊕ PB2 ⊕ P−∆B2 ,

where PN is the positive definition lattice in Example 2.1 for N ∈ N. Then L1 ⊕ L2 embeds
isometrically into M ⊕ LNm−(b) ⊂Mb by

ι : L1 ⊕ L2 ↪→Mb

(Λ, r1, r2, r3) 7→
(

Λ + r1

√
∆

(
0 1
−1 0

)
, B(r2 + r3

√
∆)

)
.

We use M̃ to denote the image of this embedding and use it to identify M̃∨/M̃ with L∨1 /L1⊕
L∨2 /L2. By linearity ι can be extended to M̃ ⊗R and composing with it νz from (5.4.4) gives
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us

νz ◦ ι : L∨1 ⊕ L∨2 ↪→ R3,3

(Λ, r1, r2, r3) 7→
(

Λz,−r1

√
2∆,
√

2Br2,<(Λz⊥),=(Λz⊥), Br3

√
2∆
)
.

For x ∈ R1,2 and n, b,N ∈ N, let p∗n,b(x) := (ix1)n−b+1(ix2 + x3)n be a polynomial on R1,2

and θN(τ ;n) the unary theta functions in Example 2.1. Define

(5.4.8) θL2(τ ; b, B) := (−1)bθ∆(τ ; b)⊗ θB2(τ ; 0)⊗ θc∆B2(τ ; 1).

If we denote ψ : C[M̃∨/M̃ ] → C[M∨
b /Mb] and ck−1,b as in (2.1.7) and (A.2.2) respectively,

then

θMb
(τ, z; p†k−1) = ψ

(
ΘM̃(τ, z; p†k−1)

)
= ψ

(
k−1∑
b=0

ck−1,bΘL1(τ, z; p∗k−1,b)⊗ θL2(τ ; b, B)

)
.

As a function of the variable z ∈ H, y1−kΘL1(τ, z; p∗k−1,b) is a modular form in A2k−2.
When b = k − 1, this is one of the theta kernels studied by Kudla-Millson [23], and is also
known as the Millson kernel (see [1]). The theta kernel for the other odd b can be obtained
from b = k− 1 via the raising operator. One could switch to the Fock model as in section A
(or just do a straightforward computation) to verify the following result.

Lemma 5.13. For all τ, z ∈ H and b, k ∈ N, we have

(5.4.9) Rτ,−b+1/2ΘL1(τ, z; p∗k−1,b) = 2πΘL1(τ, z; p∗k−1,b+2)

where Rτ,−b+1/2 is the raising operator in (4.1.1).

Since f ∈M !
2−2k, we can use ΘL1 to define the following regularized integral

(5.4.10) I(τ, f ; b) := lim
T→∞

∫
FT
f(z)ΘL1(τ, z; p∗k−1,b)y

1−kdµ(z),

which is a modular form in A−b+1/2,ρL1
. To evaluate c(f, b), it turns out that we could change

the order of integration in τ and z.

Lemma 5.14. Let c(f, b) be the limit defined in (5.4.6). Then

(5.4.11) c(f, b) =
k−1∑
b=0

ck−1,b lim
T ′→∞

∫
FT ′

ψ (I(τ, f ; b)⊗ θL2(τ ; b, B)) dµ(τ).

Proof. Using the definition of ΘMb
, we can rewrite (5.4.6) as

c(f, b) = lim
T→∞

lim
T ′→∞

∫
FT

∫
FT ′

ψ

(
k−1∑
b=0

ck−1,bf(z)ΘL1(τ, z; p∗k−1,b)⊗ θL2(τ ; b, B)

)
y1−k dudv

v2

dxdy

y2
.
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The region FT ×FT ′ is compact and there is no problem with changing the order of integra-
tion. The sum over b is also a finite sum. Therefore, we need to argue that the limit in T
can be moved inside. To achieve this, it suffices to consider each component and prove this
with FT × FT ′ replaced by RT ×RT ′ = [−1/2, 1/2]2 × [1, T ]× [1, T ′], where RT := FT\F1.
We can first integrate in u to obtain∫ 1/2

−1/2

ΘL1,h1(τ, z; p∗k−1,b)θL2,h2(τ ; b, B)du = i2k−b−1vk+3/2
∑
d∈Z

Sd(v, x, y; b),

for h1 ∈ L∨1 /L1 and h2 ∈ L∨2 /L2, where

Sd(v, x, y; b) :=
∑

Λ=( a cc d )∈L1+h1

r=(r1,r2,r3)∈L2+h2

det(Λ)+∆r2
1+B2r2

2=∆B2r2
3

Hv(x
k−b
1 ) |x1=Λz (Λz⊥)k−1c(r, h2, v; b)

e−πv(Λ2
z+|Λ

z⊥ |
2+2∆r2

1+2B2r2
2+2∆B2r2

3)

and c(r, h2, v; b) is the rth Fourier coefficient of θL2,h2(τ ; b, B), i.e.

θL2,h2(τ ; b, B) =
∑

r=(r1,r2,r3)∈L2+h2

c(r, h2, v; b)e
(
(∆r2

1 +B2r2
2)τ −∆B2r2

3τ
)
.

From the definition, it is clear that |c(r, h2, v; b)| < p(r) for v ∈ [1,∞) with p a polynomial in
r1, r2, r3. Furthermore, c((r1, r2, 0), h2, v; b) = 0 for all r1, r2 ∈ Q and b ∈ N. Now, it suffices
to consider

(5.4.12) Id(m,T, T
′; b) :=

∫ T

1

∫ T ′

1

∫ 1/2

−1/2

e(mz)Sd(v, x, y; b)vk−1/2y−k−1dxdvdy,

since we want to bound limT→∞ limT ′→∞
∑

m≥−m0

∑
d∈Z cf (m)Id(m,T, T

′; b). For Λ = ( a cc d ) ∈
L1 ⊗ R, it is easy to check that

Λ2
z + |Λz⊥|2 = d2y2 + 2(dx− c)2 +

(dx2 − 2cx+ a)2

y2
≥ d2y2.

When d 6= 0, the integrand in (5.4.12) is bounded for any m ∈ Q and x, v, y. Furthermore,
it decays exponentially as d, v, y approaches infinity. The same holds for d = 0 and m > 0.
The sum over d ∈ Z and m > 0 weighted by cf (m) then converges uniformly and absolutely.
Therefore, we have

lim
T→∞

lim
T ′→∞

∑
m>0 or d 6=0

cf (m)Id(m,T, T
′; b) =

∑
m>0 or d6=0

lim
T→∞

lim
T ′→∞

cf (m)Id(m,T, T
′; b) =

∑
m>0 or d6=0

lim
T ′→∞

lim
T→∞

cf (m)Id(m,T, T
′; b) = lim

T ′→∞
lim
T→∞

∑
m>0 or d6=0

cf (m)Id(m,T, T
′; b).
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So it suffices to consider Id(m,T, T
′; b) with d = 0 and m ≤ 0. In this case, Sd simplifies to

S0(v, x, y; b) =
∑

c∈Z+h1
r=(r1,r2,r3)∈L2+h2

∆r2
1+B2r2

2=c2+∆B2r2
3

c(r, h2, v; b)e−2πv(∆r2
1+B2r2

2+∆B2r2
3)×

∑
a∈Z

Hv(x
k−b
1 ) |

x1=
a−2cx√

2y

(
a− 2cz√

2y

)k−1

e
−πv

(
(a−2cx)2

y2 +2c2
)
.

By Poisson summation, the inner sum becomes∑
a∈Z

Hv(x
k−b
1 ) |

x1=
a−2cx√

2y

(
a− 2cz√

2y

)k−1

e
−πv

(
(a−2cx)2

y2

)
=
∑
n∈Z

e(2ncx)
ypk,b(ny, c, v)

v2k−b−1/2
e−

πy2n2

v

for a polynomial pk,b, which can be evaluated using Corollary 3.3 of [3]. When m = 0, we
have

I0(0, T, T ′; b) =

∫ T

1

∫ T ′

1

∑
c∈Z+h1

r=(r1,r2,r3)∈L2+h2

∆r2
1+B2r2

2=c2+∆B2r2
3

pk,b(0, c, v)c(r, h2, v; b)e−2πv(∆r2
1+B2r2

2+∆B2r2
3+c2) dvdy

vk−byk
.

The sum converges absolutely and uniformly in v, y since pk(0, c, v)c(r, h2, v; b) is bounded
by a polynomial in c, v, r1, r2, r3 and c((0, 0, 0), h2, v; b) = 0. Since k ≥ 2, the limit in T also
exists and we can interchange the limits in T and T ′.

When m < 0, we have

I0(m,T, T ′; b) =

∫ T

1

∫ T ′

1

∑
c∈Z+h1, 2c|m

r=(r1,r2,r3)∈L2+h2

∆r2
1+B2r2

2=c2+∆B2r2
3

c(r, h2, v; b)e−2πv(∆r2
1+B2r2

2+∆B2r2
3)×

∑
n∈Z,2nc=m

pk,b(ny, c, v)e−
πy2n2

v
−2πmy−2πc2v dv

vk−b
dy

yk
.

We can suppose that r3 6= 0 in the sum above since c((r1, r2, 0), h2, v; b) vanishes identically.
Using the equalities ∆r2

1 +B2r2
2 = c2 + ∆B2r2

3 and m = 2nc, we can bound the exponent as

−πy
2n2

v
− 2πmy − 2πc2v − 2πv

(
∆r2

1 +B2r2
2 + ∆B2r2

3

)
= −π

v
(yn+ 2cv)2 − 4π∆B2r2

3v

< −αy
2

v
− βv < −ε1v − ε2y
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for all v, y ≥ 1 with α, β, ε1, ε2 > 0 absolute constants depending only on B,∆ and m0.
Therefore the integrand decays exponentially in v, y, and

lim
T→∞

lim
T ′→∞

∑
−m0≤m≤0

cf (m)I0(m,T, T ′; b) = lim
T ′→∞

lim
T→∞

∑
−m0≤m≤0

cf (m)I0(m,T, T ′; b).

This then finishes the proof. �

We could further simplify the formula for c(f, b) in (5.4.11) and express it using the
Rankin-Cohen bracket in (4.1.6).

Lemma 5.15. In the notations above, we have

(5.4.13) c(f, b) = −2k/2−1 lim
T ′→∞

∫
FT ′

ψ (RC(τ ; f,∆)⊗ θB2(τ ; 0)⊗ θc∆B2(τ ; 1)) dµ(τ),

where RC(τ ; f,∆) := [I(τ, f ; k − 1), θ∆(τ ; 1)]k/2−1 is a modular form of weight 1 with [·, ·]r
the Rankin-Cohen bracket defined in (4.1.6).

Proof. To deduce (5.4.13) from (5.4.11), it suffices to prove that

k−1∑
b=0

ck−1,bI(τ, f ; b)⊗ (−1)bθ∆(τ ; b) = −2k/2−1[I(τ, f ; k − 1), θ∆(τ ; 1)]k/2−1.

Since k is even, ck−1,b vanishes whenever b is even. By (4.1.4) and Lemma 5.13, we can
rewrite the left hand side as

−(2π)−r
r∑
s=0

(−1)sck−1,2s+1R
r−s
3/2−kI(τ, f ; k − 1)⊗Rs

3/2θ∆(τ ; 1)

after substituting s := (b− 1)/2 and r := k/2− 1. From definition, one could verify that

ck−1,2s+1 = (−1)r
(

3/2− k + r − 1

s

)(
3/2 + r − 1

k/2− 1− s

)
for all 0 ≤ s ≤ r = k/2− 1. Using the definition (4.1.6), we see that both sides agree. �

The last lemma before the proof of Prop. 5.12 concerns with the rationality of the lift
I(τ, f).

Lemma 5.16. Suppose f ∈ M !
2−2k has rational Fourier coefficients. Then the function

I(τ, f ; k − 1) defined in (5.4.10) is a weakly holomorphic modular form in M !
3/2−k,ρL1

with

rational Fourier coefficients.

Proof. The Fourier expansion of I(τ, f ; k − 1) has been calculated in [1] (see Theorem 5.1
loc. cit.). For m ∈ Q>0 and h1 ∈ L∨1 /L1, the Fourier coefficient of Ih1(τ, f) is given by

c(m,h1) :=
1

2mk/2
(4π)1−k

∑
X∈Γ\(L1+h1),det(X)=m

1

|ΓX |
(Rk−1

2−2kf)(zX),
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where Γ = SL2(Z) and zX ∈ H is the CM point associated to the positive vector X. Since
f is weakly holomorphic, the function Rk−1

2−2kf is a nearly holomorphic function. It is a well-

known result of Shimura that the values (4π)1−kRk−1
2−2kf at CM points are in the ring class

field of an imaginary quadratic field [29]. In fact, the set

{(4π)1−k(Rk−1
2−2kf)(zX) : X ∈ Γ\L1 + h1, det(X) = m}

is the union of Galois orbits (see [9, Theorem 1.1] and [28, Prop. 3.1]). Therefore, c(m,h1) ∈
Q for all m ∈ Q>0 and h1 ∈ L∨1 /L1, which implies that I(τ, f ; k− 1) has all rational Fourier
coefficients. �

Proof of Prop. 5.12. By Theorem 4.7 of [10], we know that there exists a harmonic Maass

form θ̃∆B2(τ) ∈ A1/2,ρ∆B2 such that L2θ̃∆B2(τ) = θc∆B2(τ, 1)/
√

2 and the holomorphic part

θ̃+
∆B2 has rational Fourier coefficients. Substituting this into (5.4.13) and applying (4.1.5)

yields
√

∆ · c(f, b) = lim
T ′→∞

∫
FT ′

ψ(g(τ)⊗ L2θ̃∆B2(τ))dµ(τ)

= Const(ψ(g(τ)⊗ θ̃+
∆B2(τ))),

where g(τ) :=
√

2∆ · [I(τ, f ; k − 1), θ∆(τ ; 1)]k/2−1 ⊗ θB2(τ, 0) ∈ M !
3/2,ρL1

⊗ρ∆⊗ρB2
. Since f

has rational Fourier coefficients, so does g(τ) by Example 2.1 and Lemma 5.16. Therefore,√
∆ · c(f, b) ∈ Q and the denominator only depends on f and b. This finishes the proof of

Prop. 5.12. �

Appendix A. Calculations in Fock Model

In this section, we will give some differential equations satisfied by theta kernels. Even
though these follows from straightforward calculations, the steps are long and tedious. In-
stead, we follow [23] (see also [15, Appendix]) and switch to the Fock model of the Weil
representation, where the actions of differential operators can be described elegantly using
elements in the Lie algebra sl2(C).

A.1. Fock Model. For our purpose, we restrict to the case (V,Q) = (M2(R), det). We
identify it with R2,2 with respect to the orthogonal basis

v1 := <Z(i) =
1√
2

(
1 0
0 1

)
, v2 := =Z(i) =

1√
2

(
0 −1
1 0

)
,

v3 := <Z⊥(i) =
1√
2

(
−1 0
0 1

)
, v4 := =Z⊥(i) =

1√
2

(
0 1
1 0

)
,

(A.1.1)

where Z(z) and Z⊥(z) are defined as in (2.2.14). We define V+ := Rv1⊕Rv2, V− := Rv3⊕Rv4

and can identify
∧2 V with the Lie algebra o(V ) via the isomorphism ρ :

∧2 V → o(V ) given
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by

ρ(v′ ∧ v′′)(v′) := (v, v′′)v′ − (v, v′)v′′,

where (, ) is the associate bilinear form. For 1 ≤ i < j ≤ 4, let Xij denote the image of
vi ∧ vj under ρ.

As in section 5.1, where we considered the diagonally embedded symmetric space of SL2

in that of SO(V ), we can embed the group SL2 into SO(V ) in the following compatible way

ι∆ : SL2(R)→ SO(V )

γ 7→ h(γ) : A 7→ γ · A · tγ.
(A.1.2)

The pushforward of ι∆ identifies the Lie algebra sl2(R) as a subalgebra of o(V ). On the
generating elements E := ( 0 1

0 0 ) , F := ( 0 0
1 0 ) and H := ( 1 0

0 −1 ), it is easily checked

ι∆∗(E) = X14 +X34, ι∆∗(F ) = X14 −X34, ι∆∗(H) = −2X13.

The elements R := 1
2
(H+iE+iF ), L := 1

2
(H−iE−iF ) in sl2(C) are then sent to −X13+iX14

and −X13 − iX14 respectively.
On the symplectic side, we take W = Re+ Rf to be the real vector space with the skew-

symmetric pairing 〈, 〉 satisfying 〈e, f〉 = 1, and the positive definite complex structure J :=
( 0 −1

1 0 ) with respect to the basis {e, f}. Then W⊗C = W ′+W ′′ with W ′ := Cw′, W ′′ := Cw′′
and

w′ := e− if, w′′ := e+ if

eigenvectors of J with eigenvalues i and −i respectively. For a, b ∈ W , we denote a ◦ b the
element a⊗ b+ b⊗a in the symmetric algebra Sym2(W ), and identify Sym2(W ) with sp(W )
via the R-linear map % : Sym2(W )→ sp(W ) given by

%(a ◦ b)(c) := 〈a, c〉b+ 〈b, c〉a.

Under the isomorphism SL2(R) ∼= Sp(W ) induced by left multiplication, the Lie algebras
sl2(C) and sp(W ⊗ C) are isomorphic and L,R are identified with − i

4
w′ ◦ w′, i

4
w′′ ◦ w′′

respectively.
Let W := V ⊗W be the symplectic space with the skew-symmetric form (, )⊗〈, 〉 and ω the

oscillator representation of Sp(W), which contains Sp(W ) × O(V ). Different polarizations
of W gives rise to different models ω. We recover the Schrödinger model by taking the
polarization W = V ⊗ Re+ V ⊗ Rf , where ω acts on S (V ) by

(ω(h)(ϕ))(x) := ϕ(h−1x), (ω(n(b))(ϕ))(x) := e(bQ(x))ϕ(x), (ω(m(a))(ϕ))(x) := |a|2ϕ(xa)

for n(b) := ( 1 b
0 1 ) ,m(a) :=

(
a 0
0 a−1

)
∈ SL2(R), h ∈ O(V ), ϕ ∈ S (V ) and x ∈ V .

The Lie algebra sp(W ⊗ C) now also acts on vectors in S (V ) through the infinitesimal
action dω induced by ω, which satisfies

dω(A)ω(g)ϕ := ∂tω(getA)ϕ |t=0= ω(g)dω(A)ϕ.
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for any g ∈ Sp(W) and A ∈ sp(W). For 1 ≤ r ≤ 4, define the following operators on S (V )

(A.1.3) Dr := ∂xr − 2πxr.

One can interpret sp(W) as quotients of graded pieces of the Weyl algebra W2πi of W, and
view Dj as the actions by generators of W2πi (see [23, section 6]). The subspace S(V ) ⊂ S (V )
spanned by the Gaussian

ϕ0(x1, x2, x3, x4) := e−π(x2
1+x2

2+x2
3+x2

4)

and functions of the form
∏

1≤j≤4D
rj
j ϕ0 for rj ∈ N is called the polynomial Fock space.

It is easier to describe the infinitesimal action of sp(W) if we choose the polarization
W⊗ C = W′ + W′′ with

W′ := V+ ⊗W ′ + V− ⊗W ′′, W′′ := V− ⊗W ′ + V+ ⊗W ′′

and switch to the Fock model of the Weil representation. The underlying vector space that
Sp(W) acts on now is Sym•(W′′) and we also use ω to represent this action. We introduce
the linear functionals {z1, z2, z3, z4} on Sym•(W′′) given by

(A.1.4) zr(v ⊗ w) :=

{
〈v ⊗ w, vr ⊗ w′′〉, r = 1, 2,

〈v ⊗ w, vr ⊗ w′〉, r = 3, 4,

which identifies Sym•(W′′) with P(C4), the algebra of polynomials in z1, z2, z3, z4. For con-
venience, we also denote

(A.1.5) w := z3 − iz4

in P(C4). Furthermore, there is a unique intertwining operator ι from S(V ) to P(C4) that
sends ϕ0 to 1. The following lemma describes dω in the Fock model and the effect of ι.

Lemma A.1 (Lemma A.1-A.3 [15]). In the notations above, the following elements in
sl2(C) ∼= sp(W ) ⊂ sp(W) acts on P(C4) as

(A.1.6) dω(L) = −2π(∂2
z1

+ ∂2
z2

) +
1

8π
ww, dω(R) = −8π∂w∂w +

1

8π
(z2

1 + z2
2).

Recall that ι∆ : SL2(R) ↪→ SO(V ) is the map in (A.1.2). Then

dω(ι∆∗(L)) = dω(−X13 − iX14) = 8π∂z1∂w −
1

4π
z1w,

dω(ι∆∗(R)) = dω(−X13 + iX14) = 8π∂z1∂w −
1

4π
z1w.

(A.1.7)

Under the intertwining map ι : S(V )→P(C4), the operator Dr acts as follows

(A.1.8) ιDrι
−1 =

{
izr, r = 1, 2,

−izr, r = 3, 4.
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For τ = u+ iv ∈ H, let gτ ∈ SL2(R) be any element to takes i to τ . In particular, any gτ
differs from n(u)m(

√
v) by multiplying an element in the maximal compact K := SO2(R) ⊂

SL2(R) on the right. For a, b, c ∈ N, we define a family of polynomials pa,b,c on V = R2,2 by

(A.1.9) pa,b,c(x) := (ix1)axb2(ix3 + x4)c.

It is homogeneous of degrees a+ b and c in the first two and last two variables respectively.
From this, we can construct a Schwartz function

ϕa,b,c(x) := ϕ(x; pa,b,c) ∈ S(V ) ⊂ S (V ).

By (2.2.11) and Lemma A.1, we have

(A.1.10) ι(ϕa,b,c) = (−4π)−a−b−ci2a+bza1z
b
2w

c.

Under the action of ω(rθ) with rθ :=
(

cos θ sin θ
− sin θ cos θ

)
∈ K, the function ϕa,b,c is an eigenvector

with eigenvalue eikθ and k := a + b − c. For z ∈ H, the isometry νz : V → R2,2 in (2.2.15)
is given by applying the map h(gz) ∈ SO(V ) in (A.1.2). Therefore, the Schwartz function
ϕ(λ; τ, z; pa,b,c) in (2.2.7) can be written as

(A.1.11) ϕ(λ; τ, z; pa,b,c) = v−k/2(ω(gτ )ω(h(gz)
−1)ϕa,b,c)(λ).

For κ ∈ Z, recall that Rτ,κ and Lτ,κ are the raising and lowering operators. Using Lemma
A.1, we can calculate their effects on ϕ(λ; τ, z; pa,b,c) as follows.

Lemma A.2. For any a, b, c ∈ N, let k := a+ b− c. Then we have

1

2π
Rτ,kϕ(λ; τ, z; pa,b,c) = ϕ(λ; τ, z; pa+2,b,c)− ϕ(λ; τ, z; pa,b+2,c),

Rz,2cy
−cϕ(λ; τ, z; pa,b,c) = 4πy−c−1ϕ(λ; τ, z; pa+1,b,c+1),

2Lτ,ky
−cϕ(λ; τ, z; pa+1,b,c) = ϕ(λ; τ, z; (2c+ 1− a)apa−1,b,c + b(b− 1)pa+1,b−2,c)

+ Lz,2c+2y
−c−1ϕ(λ; τ, z; pa,b,c+1)

(A.1.12)

for all λ ∈ V .

Proof. Using the relation between the differential operator Rτ,k and the action of the Lie
algebra element R, it is enough to calculate the effect of dω(R), dω(L) and dω(ι∆∗(L)) on
ϕa,b,c. For example, the equations

Rτ,kϕ(λ; τ, z; pa,b,c) = v−1−k/2(ω(gτ )ω(h(gz)
−1)dω(R)ϕa,b,c)(ϕ),

Lτ,kϕ(λ; τ, z; pa,b,c) = v1−k/2(ω(gτ )ω(h(gz)
−1)dω(L)ϕa,b,c)(ϕ),

Rz,2cy
−cϕ(λ; τ, z; pa,b,c) = −y−1−c(ω(gτ )ω(h(gz)

−1)dω(ι∆∗(R))ϕa,b,c)(ϕ),

Lz,2cy
−cϕ(λ; τ, z; pa,b,c) = −y1−c(ω(gτ )ω(h(gz)

−1)dω(ι∆∗(L))ϕa,b,c)(ϕ)
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follows from (A.1.11). The negative sign in the last equation is a result of the inversion
action by h(gz) in (A.1.11). From (A.1.6), (A.1.7) and (A.1.10), we can easily calculate that

dω(R)ϕa,b,c = 2π(ϕa+2,b,c − ϕa,b+2,c),

−2dω(L)ϕa+1,b,c = dω(ι∆∗(L))ϕa,b,c+1 − (2c+ 1− a)aϕa−1,b,c − b(b− 1)ϕa+1,b−2,c.

These then imply the lemma. �

A.2. Legendre Polynomials. For n ≥ 0, the nth Legendre polynomial Pn(x) is a polyno-
mial solution to Legendre’s differential equation. It can be defined from the recursion

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), P0(x) = 1, P1(x) = x,

and satisfies

(A.2.1)
∞∑
n=0

Pn(x)tn =
1√

1− 2xt+ t2
.

Furthermore, it has the explicit representation

(A.2.2) Pn(x) =
n∑
b=0

cn,b · xb, cn,b := 2n
(
n

b

)(
n+b−1

2

n

)
∈ Z,

where
(
a
m

)
:= a(a−1)...(a−m+1)

m!
for any m ∈ N and a ∈ R. Since n+b−1

2
∈ N is less than n when

b ≡ n + 1 mod 2, we have Pn(−x) = (−1)nPn(x). From (A.2.1), it is clear that Pn(1) = 1
for all n ≥ 0. Using the Legendre polynomial, we can now define the following polynomial
for each n ∈ N on R2,2.

p̃n := Pn

(
x2

ix1

)
(ix1)n(ix3 + x4)n+1, p̌n := Pn

(
x2

ix1

)
(ix1)n+1(ix3 + x4)n.(A.2.3)

Note that we can write p̃n and p̌n as a linear combinations of pa,b,c as

(A.2.4) p̃n :=
n∑
b=0

cn,bpn−b,b,n+1, p̌n :=
n∑
b=0

cn,bpn−b+1,b,n.

Using these two polynomials, we can form a theta function as above. The main result is as
follows.

Proposition A.3. For n ∈ N, let p̃n and p̌n be the polynomials on R2,2 defined in (A.2.3).
Then the corresponding Schwartz functions ϕ(·; τ, z; p̃n) and ϕ(·; τ, z; p̌n) satisfy the following
relation

(A.2.5) Lz,2n+2y
−n−1ϕ(λ; τ, z; p̃n) = 2Lτ,1y

−nϕ(λ; τ, z; p̌n)

for all τ, z ∈ H and λ ∈ V .
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Proof. From the third equation in lemma A.2 and (A.2.4), we see that it suffices to prove
that

n∑
b=0

cn,b ((2n+ 1− (n− b))(n− b)pn−b−1,b,n + b(b− 1)pn−b+1,b−2,n) = 0.

The left hand side can be rewritten as
n−2∑
b=0

(cn,b(n+ 1 + b)(n− b) + cn,b+2(b+ 2)(b+ 1)) pn−b−1,b,n

which vanishes identically for all 0 ≤ b ≤ n− 2 from the definition of cn,b in (A.2.2). If n is
odd, then there is an extra �

As an immediate consequence of the definition in (2.2.17), the theta function formed from
pa,b,c, p̌n and p̃n satisfy the same differential equation.

Corollary A.4. Let M ⊂ V be any even, integral lattice of full rank. Then

1

2π
Rτ,a+b−cΘM(τ, z; pa,b,c) = ΘM(τ, z; pa+2,b,c)−ΘM(τ, z; pa,b+2,c),

Rz,2cy
−cΘM(τ, z; pa,b,c) = 4πy−c−1ΘM(τ, z; pa+1,b,c+1),

Lz,2n+2y
−n−1ΘM(τ, z; p̃n) = 2Lτ,1y

−nΘM(τ, z; p̌n)

(A.2.6)

for any a, b, c, n ∈ N and τ, z ∈ H.
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