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Abstract

This is the first step in an attempt at a deformation theory for G2−instantons with
1−dimensional conic singularities. Under a set of model data, the linearization yields a
Dirac operator P on a certain bundle over S5, called the link operator. As a dimension
reduction, the link operator also arises from Hermitian Yang-Mills connections with
isolated conic singularities on a Calabi-Yau 3-fold.

Using the quaternion structure in the Sasakian geometry of S5, we describe the set of
all eigenvalues of P , denoted by SpecP . We show that SpecP consists of finitely many
integers induced by certain sheaf cohomologies on P2, and infinitely many real numbers
induced by the spectrum of the rough Laplacian on the pullback endomorphism bundle
over S5. The multiplicities and the form of an eigensection can be described fairly
explicitly.

In particular, there is a relation between the spectrum on S5 to certain sheaf coho-
mologies on P2.

Moreover, on a Calabi-Yau 3−fold, the index of the linearized operator for admissible
singular Hermitian Yang-Mills connections is also calculated, in terms of these sheaf
cohomologies.

Using the representation theory of SU(3) and the subgroup S[U(1)×U(2)], we show
an example in which SpecP and the multiplicities can be completely determined.
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1 Introduction

1.1 Overview

G2−instantons and projective G2−instantons are the analogue of both flat connections
in dimension 3, and anti self-dual connections in dimension 4. Understanding their singulari-
ties is important for the programs proposed by Donaldson-Thomas [12] and Donaldson-Segal
[10]. In conjunction with Jacob-Walpuski [20], to construct (projective) G2−instantons with
1−dimensional singularities on twisted connected-sum G2−manifolds via gluing, an impor-
tant step is a Fredholm theory for the linearized operator. In [42], it is shown that a Fredholm
theory and consequently a deformation theory always exist for instantons with isolated sin-
gularities. However, instantons with 1−dimensional singularities are expected to be different.
The linearized operator yields a self-adjoint elliptic operator P on the domain bundle over S5.
It is also referred to as the link operator. The set of all eigenvalues of P , denoted by SpecP ,
is crucial in the construction of a deformation theory. It determines the indicial roots.

In this paper we describe SpecP and the multiplicities. We relate the eigenvalues and
eigenspaces of P on S5 to certain sheaf cohomologies on P2.

1.2 Context and motivations

1.2.1 Gauge theoretic moduli spaces and gluing constructions

The Donaldson-Thomas invariant [12] on a Calabi-Yau 3−folds “counts” the Gieseker
stable sheaves in a certain sense. The definition by Thomas [37] employs the virtual moduli
cycle theory constructed by Li-Tian [24]. Please also see Behrend-Fantechi [3] theory via the
intrinsic normal cone. In the 7−dimensional G2−setting, Donaldson-Segal [10] propose to
“count” G2−instantons, which can be viewed as a perspective generalization of the Casson
invariant for 3−manifolds and Donaldson-Thomas invariant. Also see the work of Walpuski
[41]. The lack of general algebraic geometry in this setting means that we have to rely to
a large extent on differential geometry. However, the moduli of smooth G2−instantons is
not expected to be compact. According to the compactification by Tian [40], besides the
bubbling along an associative rectifiable “submanifolds”, essential singularities of dimension
1 and 0 are expected to appear. Tian conjectured that their Hausdorff co-dimension is
≥ 6. This possible phenomenon should be based on the removal of singularities by Tao-
Tian [39]. Please also see the work of Smith-Uhlenbeck [34] on Yang-Mills Higgs equations.
A step in understanding the ‘boundary” of the compactified moduli is a Fredholm theory
for G2−instantons with 1−dim conic singularities. However, no example is known except
product ones. A Fredholm theory is also inevitable toward a gluing construction of such
examples. Please see the discussion by Jacob-Walpuski [20].

The difficulty is that the linearization is expected to have infinite dimensional co-kernel
caused by non-regularizable indicial roots. Please see the work of Chen [8]. On singular
G2−instantons, we expect a relation between the essential obstruction and the eigenspace of
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the eigenvalue −1 of the link operator. For classical literature, please see the work conducted
by Lockhart-McOwen [25], Melrose-Mendoza [28], Mazzeo [26], and Mazzeo-Vertman [27]. In
order to construct a “remedial” deformation, it is necessary to understand the eigenvalues of
the link operator P and the eigenspaces. This is our purpose here.

1.2.2 Spectral theory and Sasakian geometry

Given a Dirac operator i.e. the square is a generalized Laplacian (see [30]), it is tempting
to know the precise values for some of the eigen-values, and also to describe some of the
eigen-sections. For example, we know explicitly the eigenvalues and eigen-functions of the
fundamental Dirac operator i ∂

∂θ
on the circle differentiating complex valued functions. More

generally, under appropriate homogeneous conditions, the spectrum can be satisfactorily
understood, thanks to the Peter-Weyl formulation. The scheme uses representation theory
and Casimir operators of certain Lie groups. For Hodge Laplacians on spheres and complex
projective spaces, pleasee see for example the work of Ikeda-Taniguchi [18] and Gallot-Meyer
[14]. Beyond the homogenous setting, in general, it is challenging.

There are more recent investigations that are closer related to our theme here. Moroianu–
Semmelmann [29] calculated the deformation space of homogeneous nearly Kähler 6−folds. In
their work, the nearly Kähler deformations are identified with co-closed forms in an eigenspace
of the Hermitian Laplace operator. The spectrum and eigenspaces of this operator are cal-
culated for homogeneous examples. Via spinorial point of view on nearly Kähler 6−folds,
Charbonneau-Harland [7] identified the deformation space of nearly Kähler instantons with a
subspace of the kernel of an index 0 Dirac operator. They showed that abelian instantons are
rigid. Via Peter-Weyl formalism, they characterized deformations of canonical connections
on homogeneous nearly Kähler 6−folds and also other eigenvalues and eigen-spaces.

There are numerical algorithms for the spectrum of Laplace-Beltrami operators. For
example, please see the work of Braun-Brelidze-Douglas-Ovrut [5] on certain Calabi-Yau
3−folds. This is related to the goal in computing all the observable quantities of particle
physics in certain physics settings.

Our link operator lives on a domain bundle DomS5 over S5, induced by a holomorphic
Hermitian vector bundle E → P2. The quaternion structure in the Sasakian geometry

U(1)→ S5 → P2

yields a fairly explicit characterization of all the eigen-values and eigen-sections of P , with-
out assuming homogeneity of E. We wonder whether the relation we established, between the
spectrum of P on S5 and sheaf cohomologies on P2, can be generalized to more operators
on regular or even quasi regular Sasakian manifolds in general dimensions. The idea under-
pin the above spectral reduction is called the Sasakian Fourier-Series. It is the orbit-wise
Fourier series under the Reeb-action on S5, even if the U(1)− bundle is non-trivial. The
“Fourier-co-efficients” are no longer functions, but are sections of the twisted bundles over
P2. Particularly, a smooth complex-valued function on S5 can be represented by such a series.
Though we do not address it here, we are not surprised if it works in general dimensions.

If E → P2 is a twisted tangent bundle, we can determine all the eigen-values and eigen-
sections of P on S5. This can be understood as of “co-homogeneity 1”. The calculation
requires both representation theory and the spectral reduction.

1.2.3 Cohomologies and Ext groups

The link operator also appears in the linearization of singular Hermitian Yang-Mills con-
nections on a Calabi-Yau 3−fold. Our index calculation (Theorem B) suggests that the
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difference between Ext1OCY 3
(F ,F) and H1[CY 3, EndF ] might be related to the cohomolo-

gies of the twisted endomorphism bundles on P2 for the model of F near each singular point.
Please see the work of Jacob-Sá Earp-Walpuski [19]. Moreover, it is tempting to ask whether
Ext1OCY 3

(F ,F) and H1[CY 3, EndF ] are related to kernel of the linearized operator �CY 3 in
certain weighted spaces. These questions can be generalized to reflexive sheaves with more
complicated singularities. Please see the work of Chen-Sun [9].

1.3 Main result

Given a holomorphic Hermitian vector bundle E on P2 with the Chern connection A, let
∇?∇|S5 denote the rough Laplacian on the pullback adjoint bundle on S5 associated to the
standard round metric and pullback connection. We define the following subsets of R.

• S∇?∇ , {µ|(µ2 + 2µ− 3) ∈ Spec(∇?∇|S5)} ∪ {µ|µ2 + 4µ ∈ Spec(∇?∇|S5)}.

• Scoh , {l|l is an integer and H1[P2, (EndE)(l)] 6= 0}.

The set S∇?∇ is infinite and given by the bundle rough Laplacian on S5. The set Scoh
is finite and given by the sheaf cohomologies on P2. Intuitively speaking, under natural
assumptions, our main theorem says SpecP is their union.

Theorem A. Let (E,A) → P2 be a non-projectively flat Hermitian Yang-Mills bundle of
rank r ≥ 2. Let P be the link operator of the linearization of G2−instantons with circle
singularities, defined in Lemma 4.3 below under the model setting.

Spectrum

• If (E, ∂A) is stable, then
SpecP = S∇?∇ ∪ Scoh. (1)

• If (E, ∂A) is poly-stable but not stable, then

SpecP = [S∇?∇ \ {0,−3}] ∪ Scoh. (2)

Consequently, in both cases,

• the set (SpecP ) ∩ (−3, 0) contains and only contains the two numbers −1, −2.

• Let l0 be the smallest positive integer such that H0[P2, (EndE)(l0)] 6= {0}. For any
integer l ≥ l0, the integers

l + 1, −l − 3, l, −l − 4

are eigenvalues of P .

Multiplicities
There is an isometry I on the domain bundle of P that induces an almost complex struc-

ture on an arbitrary eigen-space. A real number µ is an eigenvalue of P if and only if −3−µ
is, and their eigen-spaces are conjugate complex isomorphic. Suppose µ ∈ SpecP .

• If µ is not an integer, then EigenµP is isomorphic to

[Eigenµ2+2µ−3(∇?∇|S5)]⊕2 ⊕ [Eigenµ2+4µ(∇?∇|S5)]2.

• If 1 and −4 are eigenvalues of P , then

Mult1P = Mult−4P = 2dimKer(∇?∇|S5) + 2Mult5(∇?∇|S5) + 2c2(EndE)− 6(r2 − 1).
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• If m = 0, −1, −2, or −3, then the eigenspace EigenmP is complex isomorphic to

H1[P2, (EndE)(m)].

• Suppose µ is an integer and µ 6= 1, 0, −1, −2, −3 or −4.

If µ ∈ Scoh but µ /∈ S∇?∇, then EigenµP is complex isomorphic to

H1[P2, (EndE)(µ)].

If µ ∈ S∇?∇ but µ /∈ Scoh, then

MultµP = 2Multµ2+2µ−3(∇?∇|S5) + 2Multµ2+4µ(∇?∇|S5)
−2h0[P2, (End0E)(µ)]− 2h0[P2, (End0E)(−µ− 3)].

If µ ∈ S∇?∇ ∩ Scoh, then

MultµP = 2Multµ2+2µ−3(∇?∇|S5) + 2Multµ2+4µ(∇?∇|S5) + 2c2(EndE)

−(r2 − 1)(µ+ 1)(µ+ 2).

Notation Convention 1.1. We abbreviate the multiplicity to Multa(operator). This is the
dimension of the eigenspace Eigena(operator) , Ker(operator − a · Id). The real number
a does not have to be an eigenvalue but it is if and only if the eigenspace is non-trivial
i.e. Multa 6= 0. Most of the time we abbreviate Eigena(operator) even more compactly to
Ea(operator).

The link operator has infinitely many positive and negative integer eigenvalues. In the
description of multiplicities, the binomial

−c2(EndE) +
(r2 − 1)(µ+ 1)(µ+ 2)

2

is the Hilbert polynomial of the twisted traceless endomorphism bundle. The Hermitian
Yang-Mills condition implies that the holomorphic bundle structure (E, ∂A) must be (slope)
poly-stable. Some of our intermediate results also hold for projectively flat connections or
Hermitian Yang-Mills connections on line bundles. These are regarded as trivial (Section 16).

The splittings (1) and (2) are due to that the domain Hilbert space of the link operator is
the direct sum of a finite dimensional subspace given by the cohomologies and Ker∇?∇S5 , and
an infinite-dimensional orthogonal complement (Definition 9.1). The binomials µ2 + 2µ − 3
and µ2 + 4µ are given by the Bochner formulas for P 2 + 2P − 3 and P 2 + 4P , respectively
(Lemma 5.4). They “correspond” to each other via the Serre duality

µ↔ −µ− 3 : H1[P2, (EndE)(µ)] = H1[P2, (EndE)(−µ− 3)].

The Hermitian Yang-Mills condition is also required for these formulas. Non-projective flat-
ness is required for the Chern number inequality (84) that implies −1 and −2 must be
eigenvalues. Via the two binomials, any eigenvalue λ ∈ Spec(∇?∇|S5) generates the following
4 numbers

µλ,+ , −1 +
√

4 + λ, µλ,− , −1−
√

4 + λ, µ
λ,+

= −2 +
√

4 + λ, µ
λ,− = −2−

√
4 + λ. (3)

Our theorem means that when λ 6= 0, all of them are eigenvalues of P . However, if 0 is an
eigenvalue of ∇?∇|S5 i.e. if E is strictly poly-stable, it only generates eigenvalues 1 and −4
among {1,−4, 0,−3}. The other two numbers 0, −3 can only be generated by co-homologies
H1[P2, EndE] and H1[P2, (EndE)(−3)] if non-trivial.

Remark 1.2. The eigensections of P admit an explicit form (92) in terms of the eigensections
of ∇?∇|S5 (Remark 10.4 and Lemma 10.2).
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1.4 The index

On a stable reflexive sheaf over a Calabi-Yau 3−fold, using weighted analysis, we can
formulate a deformation problem for admissible Hermitian Yang-Mills connections. It is
supposed to preserve the singular points and tangent cones (Section 15). While we do not
establish the full package here, the index can be calculated with the help of Theorem A.
The existence of admissible Hermitian Yang-Mills connections is proved by Bando-Siu [2],
generalizing Donaldson-Uhlenbeck-Yau theorem [11, 38] on stable vector bundles. Jacob-Sá
Earp-Walpuski [19] and Chen-Sun [9] characterized the tangent cone connections when the
singularities are isolated and admissible.

Theorem B. On a compact Calabi-Yau 3−fold, let F be a non-locally free reflexive sheaf
with finitely-many non-trivial and admissible isolated singularities. Then at an admissible
Hermitian connection, the index of the linearized operator (144) equals

−2Σjh
1[P2, EndEj(−1)]− 2Σjh

1[P2, EndEj]

where the summation is over the singular points of the sheaf. Particularly, the index is always
negative.

The appearance of the dimension of deformation space h1[P2, EndEj] is consistent with
that our setup (144) is supposed to preserve the tangent connections at the singularities.

This negative index and the discussion in [17] on vanishing of c3 suggest that, at least for
rank 2, we can ask whether these reflexive sheaves appear generically in the gauge theoretic
compactification of the moduli space.

1.5 The example

As another application, if E is a twisted holomorphic tangent bundle of P2, we can
completely determine SpecP .

Theorem C. Let (E,A) be a twisted holomorphic tangent bundle T 1,0P2(k) with the twisted
Fubini-Study connection and metric. Then

Scoh = {−1} ∪ {−2}.

Consequently, SpecP = S∇?∇ ∪ {−1} ∪ {−2}. The first row of the following table con-
tains all the eigenvalues of P in the closed interval [−4, 1]. The second row addresses the
multiplicity of each.

eigenvalue
of P

−4 −2
√

2− 1 -2 -1 2
√

2− 2 1

multiplicity 12 16 6 6 16 12
(4)

The other eigenvalues and their multiplicities are also determined by Theorem A and D.

Theorem D below determines the spectrum of the rough Laplacian. Though we do not
know a direct homogeneous formulation on S5, we have a homogeneous formulation on P2

thanks to the spectral reduction in Lemma 8.3 below. Moreover, both Fubini-Study connec-
tion and the Chern connection of the standard metric on O(l)→ P2 are SU(3)−homogeneous
and given by the same horizontal distribution in the Lie algebra su(3) (Lemma 12.1,12.2, and
Proposition 12.3). Then Peter-Weyl theory applies. A little bit of algebraic geometry (Lemma
14.2) determines Scoh.
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1.6 Sketch of the proof for Theorem A

• We establish a fine formula for the link operator (Lemma 4.3) according to the Sasaki-
quaternion structure on S5. This is a special case of a Sasaki-Einstein SU(2)−structure
mentioned in [13, 4.1]. We need more explicit information.

• Then we establish two Bochner formulas (Lemma 5.4) for the link operator using the
Hermitian Yang-Mills condition. The observation is that the first and second rows of
P 2 + 2P are “autonomous” i.e. they are independent of the unknowns corresponding
to the other rows. The same is true for the third and fourth rows of P 2 + 4P .

• We found two finite dimensional invariant subspaces of P . One is identified with di-
rect sum of sheaf cohomologies and the other one is generated by kernel of the rough
Laplacian on adE → S5 i.e. bundle of trace-less skew-Hermitian endomorphisms of
E. It suffices to calculate SpecP on the orthogonal complement. Then a “spectral
separation” identifies it with the S0

∇?∇ below.

• For multiplicities, we construct a projection map (Definition 10.1) from a direct sum of
two eigen-spaces of the bundle rough Laplacian to a given eigen-space of the restricted
P . This map admits an explicit formula (92) as well, leading to its surjectivity and
that the kernel is isomorphic to a direct sum of H0 of certain twisted endomorphism
bundles.

The paper is organized as follows. In Sections 2—4, we fully employ the Sasaki-Quaternion
structure of (C3 \O)→ S5 to prove the fine formula (Lemma 4.3) for the operator P . We es-
tablish the Bochner formulas in Section 5 regarding the two binomials. The Sasakian-Fourier
series is defined in Section 6. We identify the finite dimensional P−invariant subspace to
a directly sum of cohomologies in Section 7. In Section 8 we prove the spectral reduction
for the bundle rough Laplacian on S5. We prove Theorem A (spectrum) in Section 9, and
determine the multiplicities in Section 10. In Sections 11—14, we employ the spectral re-
duction and representation theory for SU(3) to determine SpecP assuming E is a twisted
tangent bundle of P2, and prove Theorem C, D. Section 15 is devoted to the Fredholm index
on a Calabi-Yau 3−fold. The Appendix collects some results obtained by routine calculations.

Acknowledgements: The author would like to thank Simon Donaldson for his guidance,
encouragement, and helpful discussions on this project. The author would like to thank Xinyi
Yuan for helpful discussions.

Part of the work is done in Simons Center for Geometry and Physics, Stony Brook Univer-
sity, NY, USA, under the support of Simons Collaboration on Special Holonomy in Geometry,
Analysis, and Physics. The author would like to thank SCGP for their hosting and the ex-
cellent research environment.

2 The Sasakian geometry of S5

The purpose of this section, aiming at our fine formula for the link operator, is to collect
some pedestrian facts on the Sasakian geometry of S5 in an elementary way. For more
sophisticated monographs, please see [36] and [4].

2.1 General conventions

We have a chain of natural fibration maps

(C3 \O)× R or (C3 \O)× S1 → C3 \O → S5 → P2. (5)
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Except the Hopf fibration represented by the last arrow, the others are all topologically trivial
fibrations. To avoid heavy notations, we adopt the following.

Convention 2.1. Unless otherwise specified, all pullback bundles, connections, (bundle-
valued) forms are denoted the same.

For example, the contact form

η , dc log r ,
√
−1(∂̄ − ∂) log r (6)

originally defined on C3 \O also means the one on S5. Throughout, we consider the Fubini-
Study form dη

2
on P2, the standard round metric on S5, and the Euclidean metrics on C3×S1

and C3.
Similar abusing of notations also applies to differential operators. For example, in (23)

below, the exterior derivative on P2, denoted by dP2 , also means the local pullback operator
on S5.

Definition 2.2. Let m, n be two integers among 7, 6, 5, 4 and m > n. Let πm,n denote the
right-bound fibration map in (5) from the m dimensional manifold and the n−dimensional
therein, where m and n mean the real dimensions. For example, the map π5,4 is the Hopf-
fibration map S5 → P2.

Given a Riemannian manifold (M, g), for any tangent vector vx ∈ TxM , let v]Mx denote
the metric dual form in T ?xM . Conversely, for any 1−form θx ∈ T ?xM , let θx,]M denote the
metric dual vector in TxM . Given a 1−form h ∈ T ?xM and a p−form Ω ∈ ∧pT ?xM , p ≥ 1, we
define the metric contraction by hygΩ , h]MyΩ.

The superscript C on a (real) vector-bundle (vector space) means the complexification.
Associated with the Riemannian metric, in the below, the tensor operators y (contraction),
] (pulling up), ] (pushing down), ‖X (projection onto a real vector field X), PX⊥ (projection
onto the orthogonal complement of a real vector field X), and the star operators ?0, ?P2 etc
are all extended C−linearly to the complexified tangent and co-tangent bundle.

2.2 Sasakian coordinate system

The purpose of this section is to define the Sasakian coordinate.
We denote the contact distribution Kerη by D, and call D? , η⊥ the contact co-

distribution. Let ξ denote the standard Reeb vector field on S5 that is tangential to orbit of
the U(1)−multiplications.

The Fubini-Study form dη
2

=
√
−1
2
∂∂̄ log(|Z0|2 + |Z1|2 + |Z2|2) induces the Fubini-Study

metric on P2, and also the pullback metric on the contact co-distribution D?. Henceforth,
we unanimously call the metrics on P2, D, D? the Fubini-Study metric.

The contact co-distribution D? is equal to the pullback of the (real) co-tangent bundle
T ?P2. On the other hand, because π5,4 is a Riemannian submersion, the tangent map π5,4,?

is an isometry D → TP2. We split orthogonally the tangent bundle of C3 \O as

TC(C3 \O) = span(
∂

∂r
, ξ)⊕ π?6,4DC. (7)

Similarly, the tangent bundle of the 7−dimensional (C3 \O)× S1 splits orthogonally as

TC[(C3 \O)× S1] = span(
∂

∂s
,
∂

∂r
, ξ)⊕ π?7,4DC. (8)
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The coordinate neighborhoods

For any β = 0, 1, or 2, let Uβ,P2 , Uβ,S5 , Uβ,C3 be the subset of P2, S5, C3 respectively
defined by Zβ 6= 0. We recall the complex coordinate functions:

Coordinate neigh-
borhoods

Part of the coordinate
functions

U0,P2 , U0,S5 , U0,C3 u1 = Z1

Z0
, u2 = Z2

Z0

U1,P2 , U1,S5 , U1,C3 v0 = Z0

Z1
, v2 = Z2

Z1

U2,P2 , U2,S5 , U2,C3 w0 = Z0

Z2
, w1 = Z1

Z2

(9)

In U0,S5 , the complexification D?,C is spanned by du1, du2, dū1, dū2 everywhere. Define
the real coordinates (xi, i = 1, 2, 3, 4) by u1 = x1 +

√
−1x2, u2 = x3 +

√
−1x4. Both the

real vector bundle D? and the complex bundle D?,C are spanned by dx1, dx2, dx3, dx4. The
same holds in U1,S5 and U2,S5 .

The coordinate maps

Based on the above table, on C3 \O, we define the Sasakian coordinate.

Definition 2.3. Let Zβ = |Zβ|e
√
−1θβ , θβ ∈ S1 , R/2πZ. On Uβ,C3 , the Sasakian coordinate

is defined to be the functions (r, θβ, uj, uk) which is a homeomorphism from Uβ,C3 to
R+×S1×C2. Similarly, we also call the homeomorphism (θβ, uj, uk) from Uβ,S5 to the trivial
circle bundle S1 × C2 the Sasakian coordinate.

The Reeb vector field can be described satisfactorily.

Fact 2.4. Let β = 0, 1, or 2. The Reeb vector field ξ equals the coordinate vector field ∂
∂θβ

in Uβ,S5 under the Sasakian coordinate.

Proof of Fact 2.4: For any point Z = (r, θβ, uj, uk) ∈ Uβ,C3 , the scalar multiplication e
√
−1tZ

is the translation in the angular variable: e
√
−1t · (r, θβ, uj, uk) = (r, θβ + t, uj, uk).

2.3 The Sasaki-quaternion structure

Preliminary

We introduce a formula for the contact form under a Sasakian coordinate chart. We shall
mainly work in U0,S5 , because U0,S5 is dense and open in C3 \ O, so it suffices to prove the
desired identities therein.

For any β = 0, 1, or 2, let the function

φβ ,
r2

|Zβ|2
=
|Z0|2 + |Z1|2 + |Z2|2

|Zβ|2

be the Kähler potential of the Fubini-Study form dη
2

on Uβ,P2 . The complex coordinate
function Zβ satisfies the following.

|Zβ| =
r√
φβ
, Zβ =

r√
φβ
e
√
−1θβ . (10)

Formula 2.5. For any β = 0, 1, or 2, η = dθβ +
dc log φβ

2
in Uβ,S5 .

The proof is deferred to Appendix 17.1.
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The semi-basic forms G and H

We call a form θ semi-basic if ξyθ = 0. A section of D? is a semi-basic 1−form. On the
cone C3 \ O, the vector field 1

2r3
(r ∂

∂r
−
√
−1ξ) is (1, 0). Contracting it with the standard

(3, 0)−form on C3, we obtain a (2, 0) semi-basic form.

Lemma 2.6. There are smooth real semi-basic 2−forms H and G with the following prop-
erties. Let ΩC3 , dZ0dZ1dZ2 be the standard holomorphic volume form on C3, we have

ΩC3 = (r2dr +
√
−1r3η) ∧H + (r3η −

√
−1r2dr) ∧G, (11)

ReΩC3 = r2dr ∧H + r3η ∧G, ImΩC3 = r3η ∧H − r2dr ∧G, and (12)

[
1

2r3
(r
∂

∂r
−
√
−1ξ)]yΩC3 , Θ = H −

√
−1G. (13)

Θ is (2, 0) semi-basic, and Θ = H+
√
−1G is (0, 2) semi basic. Under the Sasakian coordinate

in U0,S5 , U1,S5 , U2,S5 respectively, the following holds for G, H, and Θ.

In U0,S5 G = − 1
2
√
−1

(Z3
0du1du2 − Z̄3

0dū1dū2), H = 1
2
(Z3

0du1du2 + Z̄3
0dū1dū2),

Θ = Z3
0du1du2.

In U1,S5 G = 1
2
√
−1

(Z3
1dv0dv2 − Z̄3

1dv̄0dv̄2), H = −1
2
(Z3

1dv0dv2 + Z̄3
1dv̄0dv̄2),

Θ = −Z3
1dv0dv2.

In U2,S5 G = − 1
2
√
−1

(Z3
2dw0dw1 − Z̄3

2dw̄0dw̄1), H = 1
2
(Z3

2dw0dw1 + Z̄3
2dw̄0dw̄1),

Θ = Z3
2dw0dw1.

(14)

The proof is routine and is also deferred to Appendix 17.1. Schematically speaking, the
role of Θ is analogous to the holomorphic volume form on a K3−surface.

We search for more properties of the forms G and H. Let ?0 denote the Hodge star
operator of the Fubini-Study metric on the exterior algebra of D?. Because H and G are
both in (∧(2,0) ⊕ ∧(0,2))DC,?, they are ?0−self-dual i.e.

?0G = G, ?0H = H. (15)

At the point (1, 0, 0) ∈ S5,

G = −Im(du1du2), H = Re(du1du2). (16)

For any point [Z] ∈ P2, let χ ∈ SU(3) map [Z] to [1, 0, 0]. The pullback coordinate
z1 = χ?u1, z2 = χ?u2 is called a Sasaki-quaternion coordinate of the Reeb orbit π−1

5,4[Z].

Because the Fubini-Study metric, the (1, 0) vector field 1
2r3

(r ∂
∂r
−
√
−1ξ), and the standard

(3, 0)−form dZ0dZ1dZ2 on C3 are SU(3)−invariant, so are G and H. As forms on S5, they
must equal the standard form

G = −Im(dz1dz2), H = Re(dz1dz2)

everywhere on the orbit π−1
5,4[Z]. This coordinate also yields transverse geodesic coordinate

in the sense of Lemma 17.1 below.

The Quaternion structure

Before proceeding, we stipulate the following.

Convention 2.7. Let y denote the contraction between two forms on S5 under the standard
round metric. The same notation might also denote the usual contraction between a tangent
vector and a form (without involving the Riemannian metric). Our rationale is that if a
tensor operation or operator has no subscript for the domain, then it is on S5.
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We now get into the crucial properties of G and H. At an arbitrary point on S5, it is
straight forward to verify the following (for example, under the Sasakian-quaternion coordi-
nate so that G and H is of the canonical form (16)).

(ayG)yG = −a, (ayH)yH = −a. (17)

Consequently, both yG and yH are almost complex structures on D?. Henceforth, let JG, JH
denote yG, yH. Let J0 denote ydη

2
. They are all isometries. The complex structures on D

are defined by the metric pulling up and down i.e.

J0(X) , [J0(X]0)]]0 , JH(X) , [JH(X]0)]]0 , JG(X) , [JG(X]0)]]0 . (18)

Hence the Sasaki-quaternion structure applies to the contact distribution D as well.
Based on the above, we routinely verify our main Lemma in the underlying section.

Lemma 2.8. (The Sasaki-quaternion structure) On the contact co-distribution D? → S5 and
its pullbacks (complexification), the following holds.

JGJH = J0, JHJ0 = JG, J0JG = JH , J
2
0 = J2

H = J2
G = −Id. (19)

Moreover, the Fubini-Study metric on D and D? is preserved by each of J0, JH , JG.
In the general setting of the first sentence in Lemma 8.3, the identities in (19) hold for

an endomorphism-valued semi-basic 1−form.

2.4 The Reeb Lie derivative and the transverse exterior derivative

To describe certain eigensections of the operator P , we need the two first order differential
operators in Formula 2.9 and Definition 2.11.

Formula 2.9. Let Lξ denote the Lie derivative in the direction of the Reeb vector field.
Then the followings is true.

LξH = 3G, LξG = −3H, Lξ(
dη

2
) = 0. (20)

Proof of Formula 2.9: Differentiating (14) with respect to θ0, the equalities hold everywhere
in U0,S5 , therefore everywhere in C3 \O by continuity.

In the general setting of the first sentence in Lemma 8.3, let a0 be a pullback EndE−valued
semi-basic 1−form on S5. The following holds by the formula for G and H (Lemma 14) and
the local formula for the Reeb vector field (Fact 2.4).

JGLξ(a0) = LξJG(a0) + 3JH(a0), JHLξ(a0) = LξJH(a0)− 3JG(a0) (21)

Notation Convention 2.10. Most of the time, to avoid heavy notation, for an differential
operator on the bundle, we shall suppress the subscript for the connection.

We now turn to the definition of a derivative operator with respect to the contact co-
distribution D?.

Definition 2.11. In the general setting of the first sentence in Lemma 8.3, on the pullback
bundle ∧pD? ⊗ EndE → S5 of endomophism-valued semi-basic p−forms, the transverse
exterior derivative operator d0 is defined by

d0 , d− η ∧ Lξ. (22)

It turns out that if θ is semi-basic, so is d0θ. The Lie derivative Lξ is well defined because
the endomorphism bundle is pulled back from P2.

11



The operator d0 admits a local splitting in the following sense.
For any β = 0, 1, 2, let “b” be a section (form) of ∧pD?,C ⊗ EndE → Uβ,S5 . For any

θβ ∈ [0, 2π), the restriction b(·, θβ) onto the θβ−slice is a form on Uβ,P2 . We define dP2b to
be the (partial) exterior derivative in the direction of Uβ,P2 . A priori, this partial exterior
derivative is not defined globally on S5 because it is not the product manifold P2 × S1.
However, the open set Uβ,S5 is a trivial S1−bundle over Uβ,P2 ⊂ P2. Employing Formula 2.5
for η, this leads to the following splitting of d0 in Uβ,S5 .

d0b = db− η ∧ Lξb = dP2b+ dθβ ∧ Lξb− η ∧ Lξb

= dP2b− 1

2
(dc log φβ) ∧ Lξb. (23)

In view of the above decomposition, we have the further splitting

d0 = ∂0 + ∂̄0, where

∂0 = ∂P2 +

√
−1

2
(∂P2 log φβ) ∧ Lξ, and ∂̄0 = ∂̄P2 −

√
−1

2
(∂̄P2 log φβ) ∧ Lξ. (24)

Given an arbitrary semi-basic (p, q)−form b, ∂0b = (d0b)
p+1,q, ∂̄0b = (d0b)

p,q+1. Hence,
both of the two operators are globally defined on S5.

For any β, let xi, i = 1, 2, 3, 4 be the Euclidean coordinate functions on Uβ,S5 = S1 × C2.
The identity

η − dθβ = η(
∂

∂xj
)dxj

is verified on the basis (ξ = ∂
∂θβ
, ∂
∂xj
, j = 1, 2, 3, 4). Given an endomorphism u, we have

d0u = [
∂u

∂xj
− ξ(u)η(

∂

∂xj
)]dxj. (25)

Similarly, given a semi-basic endomorphism-valued 1−form a0 = Σ4
i=1aidx

i, we have

d0a0 = [
∂ai
∂xj
− ξ(ai)η(

∂

∂xj
)]dxj ∧ dxi. (26)

Remark 2.12. Our calculation for the bundle-valued forms remains true for usual forms, unless
the irreducible condition is required. This is because we can simply let it be the trivial line
bundle. For example, Definition 2.11 and its subsequent calculations hold for usual forms.

3 The fine splitting for the domain bundle of the lin-

earized operator

3.1 The linearized operator under the model data

Suppose A is not flat on P2, the pullback connection on (C3 \O)×S1 has conic singularity
along the circle O×S1. This is the prototype of what we are interested in. The model linear
problem for G2−instantons with conic singularities along a circle is as follows.

On C3, let ωC3 =
√
−1
2

(dZ0dZ̄0 + dZ1dZ̄1 + dZ2dZ̄2) be the standard Kähler form, and let
ΩC3 = dZ0dZ1dZ2 be the standard holomorphic volume form. The standard G2−structure
on C3 × S1 is defined by

φC3×S1 , ds ∧ ωC3 +ReΩC3 .

The standard co-associative 4−form is ψC3×S1 ,
ω2
C3
2
− ds ∧ ImΩC3 .
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Given a Chern connection (E,A) on P2, the model linearized operator is defined as follows.

LA,φC3×S1
[

σ
aC3×S1

] = [
d
?C3×S1

A,C3×S1aC3×S1

dA,C3×S1σ + ?C3×S1(dA,C3×S1aC3×S1 ∧ ψC3×S1)
], (27)

where σ ∈ C∞[(C3 \O)× S1,Ω0
adE] is a section of the pullback adjoint bundle, and

aC3×S1 ∈ C∞[(C3 \O)× S1,Ω1
adE] is a pullback adjoint bundle-valued 1−form.

Remark 3.1. We do not deal with the global deformation problem for G2−instantons on a
complete manifold, thus we do not need the global linearization. We only address the local
model. However, we would calculate the index of the linearization of singular Hermitian Yang-
Mills connections on a Calabi-Yau 3−fold, which certainly requires a global formulation, as
in Section 15 below.

A section aC3×S1 of Ω1
adE → (C3 \O)× S1 can be split into

aC3×S1 = asds+ aC3 , (28)

where as is a section of the pullback adE, and aC3 is a pullback adjoint bundle-valued 1−form
without ds−component.

3.2 The fine splitting

We define the finer splitting of a section in the domain of the linearized operator. In view
of formulas (27) and (28), let u , rσ, as , ras, we find

aC3 = ar
dr

r
+ (aη)η + a0, (29)

where

• ar and aη are sections of the pullback adE,

• a0 is an adjoint bundle-valued semi-basic 1−form i.e. a 1−form with no ds, dr, or
η−component.

For further calculation, we let aS5 , aη(η) + a0. Fixing r and s, both aS5 and a0 are forms
on S5. We then obtain the splitting of the domain bundle of the linearized operator.

Ω0
adE ⊕ Ω1

adE = [π?7,4(adE)]⊕4 ⊕ [π?7,5(D?)⊗ π?7,4(adE)] :

[
σ
a

] =

[
1
r

0 0 0 0
0 ds

r
dr
r

η 1

]
u
as
ar
aη
a0

 . (30)

Definition 3.2. Henceforth, let DomS5 denote [π?5,4(adE)]⊕4⊕ [D?⊗ (π?5,4adE)], the further
pullbacks, and the space of smooth sections of the same bundle on S5. They are the “domain”
of the link operator P , and also of the linearized operator in (27).

4 The fine formula for the link operator

The purpose of this section is to state the formula (Lemma 4.3) for the linearized operator
of the G2−instanton equation under the model data defined in (27).
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Formula 4.1. ([33, Proposition 3.13]) In view of the splitting in (28), we have

LA,φC3×S1
[1, ds, 1] ·

 σ
as
aC3

 = [1, ds, 1] · {( ∂
∂s

 0 −1 0
1 0 0
0 0 JC3

+�)

 σ
as
aC3

} (31)

where �

 σ
as
aC3

 =

 d?C3aC3

(dC3aC3)yC3ωC3

dC3σ − JC3(dC3as) + (dC3aC3)yC3ReΩC3 .

.

To obtain a finer splitting, we need to generalize the Sasaki-quaternion structure on S5

in Lemma 2.8 to the domain bundle on the 7−dimensional manifold (C3 \O)× S1.

Lemma 4.2. (The “Quaternion” structure on (C3 \O)× S1) Under the setting from (29) to

(30) above, let the column vector


u
as
ar
aη
a0

 represents the 5 components of DomS5 respectively.

Let

I =


0 −1 0 0 0
1 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 J0

 , K =


0 0 −1 0 0
0 0 0 1 0
1 0 0 0 0
0 −1 0 0 0
0 0 0 0 JH

 , (32)

T =


0 0 0 −1 0
0 0 −1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 JG

 , and T =


0 0 0 −1 0
0 0 −1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 −JG

 (33)

be the isometries of DomS5 (and Dom7) acting on the column vector (by left multiplica-
tion). Then I,K, T form an quaternion structure. i.e. all the pairwise multiplications anti-
commute, and the following is true.

KT = I, IK = T , TI = K, and I2 = K2 = T 2 = −IdDomS5
. (34)

Under Convention 2.7 on the tensor contractions, we state our main Lemma.

Lemma 4.3. Let (E,A)→ P2 be a Hermitian Yang-Mills bundle. The following formula for
the model linearized operator holds true.

LA,φC3×S1

[
1
r

0 0 0 0
0 ds

r
dr
r

η 1

]
· ϕ =

[
1
r

0 0 0 0
0 ds

r
dr
r

η 1

]
[
∂

∂s
◦ I +K ◦ (

∂

∂r
− P

r
)] · ϕ, (35)

where P is the following Dirac operator on the bundle DomS5 (Definition 3.2).

P


u
as
ar
aη
a0

 =


1 −Lξ 0 0 −(d0·)yH
Lξ 1 0 0 (d0·)yG
0 0 −4 −Lξ d?00

0 0 Lξ −4 −(d0·)ydη2
JHd0 −JGd0 d0 J0d0 −LξJ0



u
as
ar
aη
a0

 , and ϕ ,


u
as
ar
aη
a0

 (36)

denotes a general section in the domain.
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Under the tools established in Section 2, and the generalized Quaternion structure in
the above Lemma 4.2, the proof of the above Lemma is a routine and fairly tedious tensor
calculation. We defer it to Appendix 17.3.

Convention 4.4. A semi-basic pullback adE−valued 1−form a0 can be viewed as in DomS5 .

The corresponding vector under the basis in (30) is


0
0
0
0
a0

 i.e. the first 4 components are

zero.

We note again that Lemma (4.3) does not require the connection A to be Hermitian
Yang-Mills, but the Bochner formulas in the following section do i.e. it is not known whether
they remain true if A is not Hermitian Yang-Mills.

5 Bochner formula for the link operator

Both I, K commute with ∂
∂r

and ∂
∂s

. Using the quaternion identities (34), we routinely
verify the following formula for commutators between the operator P and I, K, T .

PI = IP, KP + PK = −3K, TP + PT = −3T . (37)

These lead to the formula for the square of the linearized operator.

5.1 The square of the linearized operator

Consequently, we straight-forwardly verify the following formula for the square of LA,φC3×S1
.

L2
A,φC3×S1

= − ∂2

∂s2
− ∂2

∂r2
− 3

r

∂

∂r
+
P 2 + 2P

r2
. (38)

There is another formula for L2
A,φC3×S1

than the above. Because the linearized operator

only depends on the projective connection induced, we denote the curvature form of the
projective connection by F 0

A (or F 0
A0

).
On the Euclidean space Rn \O of dimension n ≥ 4, let A0 be a pullback connection from

Sn−1, and let �dimnA0
, ∇?∇ + 2F 0

A0
⊗Rn be the operator acting on Ω1(EndE) → Rn \ O,

where EndE is the pullback endomorphism bundle. It is the “linearized” operator for the
Yang-Mills equation with gauge fixing (cf. [43, 6.1]). Using formula [42, Lemma 3.2] for the
rough Laplacian ∇?,Rn∇Rn on 1−forms, we find

�dimnA0
= − ∂2

∂r2
− n− 3

r

∂

∂r
+
B̂dimn

0

r2
, (39)

where

B̂0,dimn

[
ar
a

]
,

[
∇Sn−1,?∇Sn−1

ar − 2d?a+ 2(n− 2)ar
∇Sn−1,?∇Sn−1

a− 2dsar + (n− 2)a+ 2F 0
A0
⊗Sn−1 a

]
. (40)

Comparing formulas (38) and (40) yields the desired Bochner formula for the link operator.

Formula 5.1. Let (E,A)→ P2 be a Hermitian Yang-Mills bundle. In view of formula (4.3),
still let ∇?∇ denote the rough Laplacian on the pullback adE → S5. The following identity
holds

P 2 + 2P = B0,dim6,
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where

B0,dim6


u
as
ar
a

 ,


∇?∇u+ 3u
∇?∇as + 3as

∇?∇ar − 2d?a+ 8ar
∇?∇a− 2dar + 4a+ 2F 0

A0
⊗S5 a

 . (41)

In relation to the remark under Theorem A, we need the Hermitian Yang-Mills condition
in Lemma 5.1 but not in 4.3 because the formula [42, (33)] needs the pullback connection on
(C3 \O)× S1 to be a projective G2−instanton.

Proof of Formula 5.1: The observation is that, using the usual Euclidean coordinates on
C3 × S1 (induced from R7), we have a another way to compute L2

A,φC3×S1
that yields

L2
A,φC3×S1

= − ∂2

∂s2
− ∂2

∂r2
− 3

r

∂

∂r
+
B0,dim6

r2
. (42)

The proof is complete comparing (42) with (38).
It remains to show (42). It directly follows from the identities in [42]. In view of the

splitting in (28), the Bochner formula [42, (146)], which holds for projective G2−instantons
(because locally the connection form acts on endorphisms-valued forms via Lie-bracket),
yields

L2
A,φC3×S1

[
1

r
, 1]

[
u
aC3

]
=

[
∇?,C3×S1∇C3×S1(u

r
)

∇?,C3×S1∇C3×S1aC3 + 2F 0
A0
⊗C3 a

]
. (43)

We note that the proof of [42, (146)] is by Euclidean coordinates for the model G2−structure,
thus it also holds in our case as C3×S1 possesses such coordinates for the standardG2−structure
φC3×S1 .

The point is that ∇?,C3×S1∇C3×S1 = − ∂2

∂s2
+ ∇?,C3∇C3

, and ds is ∇C3×S1−parallel. We
then compute

∇?,C3×S1∇C3×S1(
asds

r
) = [∇?,C3×S1∇C3×S1(

as
r

)]ds = [− ∂2

∂s2
(
as
r

) +∇?,C3∇C3

(
as
r

)]ds,

and the similar identity holds for ∇?,C3×S1∇C3×S1(u
r
) i.e.

∇?,C3×S1∇C3×S1(
u

r
) = − ∂2

∂s2
(
u

r
) +∇?,C3∇C3

(
u

r
).

Hence, in view of the splitting in (29), we find

L2
A,φC3×S1

[
1

r
,
ds

r
, 1]

 u
as
a

 , − ∂2

∂s2
[
1

r
,
ds

r
, 1]

 u
as
a

+[
1

r
,
ds

r
, 1]

 r∇?,C3∇C3
(u
r
)

r∇?,C3∇C3
(as
r

)

∇?,C3∇?,C3
a+ 2F 0

A0
⊗C3 a

 .
(44)

Now we view C3 \ {O} as the real 6−dimensional flat cone over S5. Using the formulas [42,
(29) and Lemma 3.2] (let n = 6 therein) for the rough Laplacians ∇?,C3∇C3

a, r∇?,C3∇C3
(as
r

),

and r∇?,C3∇C3
(u
r
), the proof for (42) is complete.

5.2 The 3−forms of the quaternion structure are transverse har-
monic

The following formula says the 3 forms yielding the Sasaki-quaternion structure are all
d0−harmonic.
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Formula 5.2. The following vanishing holds.

d0(
dη

2
) = d0G = d0H = d0Θ = d0Θ̄ = 0. (45)

Consequently, because they are all ?0 self-dual,

d?00 (
dη

2
) = d?00 G = d?00 H = d?00 Θ = d?00 Θ̄ = 0.

Proof of Formula 5.2: Routine calculation shows that the two individual terms in formula
(23) for d0 are

dP2(Z3
0du1du2) = −3

2
∂̄ log φ0 ∧ (Z3

0du1du2),

and

−1

2
[(dcP2) log φ0] ∧ Lξ(Z3

0du1du2) =
3

2
[∂̄ log φ0] ∧ (Z3

0du1du2).

Then (23) says that d0(Z3
0du1du2) = 0. Taking complex conjugate, we find

d0(Z̄3
0dū1dū2) = 0.

Using the expression of G, H, and Θ in (14), (45) holds in U0,S5 . Because they are both
smooth forms, by continuity, (45) holds true everywhere on S5.

The ?0 self-duality of the forms dη
2

, G, H also yields the following identities.

Formula 5.3. d?00 J0(a0) = d0(a0)yω0, d?00 JG(a0) = d0(a0)yG, d?00 JH(a0) = d0(a0)yH.

Proof of Formula 5.3: We only prove the second identity, the other two are similar. We
calculate

d?00 (JGa0) , − ?0 d0 ?0 (a0yG) = − ?0 d0 ?0 ?0(a0 ∧G) = ?0d0(a0 ∧G)

= ?0[(d0a0) ∧G] (by the d0 − closeness in Formula (5.2)).

= (d0a0)yG.

5.3 Bochner formulas and the two binomials

Lemma 5.4. (Bochner formulas for P ) Let (E,A)→ P2 be a Hermitian Yang-Mills bundle.
Still in view of the 5 component separation in (29) and Lemma 4.3, the following holds.

(P 2 + 2P )


u
as
ar
aη
a0

 =


∇?∇u+ 3u
∇?∇as + 3as

∇?∇ar − 2d?00 a0 + 2Lξaη + 8ar
∇?∇aη − 2Lξar + 8aη + 2d?00 J0(a0)

∇?∇a0 − 2d0ar − 2J0(d0aη) + 4a0 + 2F 0
A ⊗S5 a0

 . (46)

Consequently,

(P 2 + 4P )


u
as
ar
aη
a0

 =


∇?∇u+ 5u− 2Lξas − 2d?00 JH(a0)
∇?∇as + 5as + 2Lξu+ 2d?00 JG(a0)

∇?∇ar
∇?∇aη

∇?∇a0 + 4a0 + 2F 0
A ⊗S5 a0 + 2JH(d0u)− 2JG(d0as)− 2Lξ(J0a0)

 .
(47)
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We need the Hermitian Yang-Mills condition because we want the pullback connection to
be a projective G2−instanton. Please see [42, reduction from (32) to (33)].

Proof of Lemma 5.4: We employ the identity P 2 + 2P = B0,dim6 and the fine formula for P .
Formula (47) is obtained simply by adding twice of P to (46) which we shall prove.

Formula (177) below for the operator d
?S5
S5 yields that row 3 of (41) is equal to row 3 of

the desired formula (46). On row 4,

• formula 17.2 below says that the η component of ∇?∇a0 is [2d?00 J0(a0)]η;

• the η−component of −2dsar is −2η ∧ Lξar, and that of 4a is apparently 4aηη;

• Formula 17.3 below says that the η−component of ∇?∇(ηaη) is 4aη +∇?∇aη.

The above facts amount to that the η−component of row 4 in (41) is

η[∇?∇aη − 2Lξar + 8aη + 2d?00 J0(a0)],

which exactly gives row 4 of the desired formula (46) as co-efficient of η.
For row 5, by similar idea, we only have to observe that Formula 17.3 below also says that

the semi-basic component of ∇?∇(ηaη) is −2J0(d0aη). This completes the proof of (46).

6 Sasakian Fourier Series: the expansion with respect

to the Reeb vector field

We show that any sufficiently regular endomorphism on the pullback bundle over S5

admits a global “Fourier series” in terms of the trivializations s−k of the pullback O(−k)→ S5

(Lemma 6.3). The “Fourier”-co-efficient of s−k is a section of (EndE)(k) over P2.
Let ν ∈ C1[S5, EndE]. For any β = 0, 1 or 2, the usual Fourier expansion

ν = Σk∈Zνβ(k)e
√
−1kθβ (48)

converges uniformly in Uβ,S5 under the Hermitian metric (see Lemma 17.7 below). For any
k, vβ(k) is a section of the pullback EndE → Uβ,S5 .

On the overlap Uβ,S5 ∩ Uα,S5 , the function e
√
−1θβ

e
√
−1θα

is equal to
Zβ
Zα
·
√

φβ
φα

which is pullback

from Uβ,P2 ∩ Uα,P2 in P2. Therefore, the k−th terms of the two Fourier-Series match:

νβ(k)e
√
−1kθβ = να(k)e

√
−1kθα . (49)

Definition 6.1. The standard Hermitian metric on the universal bundle O(−1) → P2 is
|Z0|2 + |Z1|2 + |Z2|2. It induces uniquely a Hermitian metric hO(l) on O(l) for any integer
l 6= 0. The Chern connection is called the standard connection. Though O(k), k 6= 0 is not
trivial on P2, the pullback to S5 are trivial. Let s−1 , (X0, X1, X2) be the standard unitary
trivialization of the pullback O(−1)→ S5. For any integer l, the section

sl ,


s⊗−l−1 when l < 0
1 when l = 0

s∨,⊗l−1 when l > 0

(50)

is the unitary trivialization of the pullback O(l)→ S5 under the standard metric.
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Let sk ⊗ s−k trivializes the tensor product O(k)⊗O(−k) over S5, we find

νβ(k)e
√
−1kθβ = [νβ(k)e

√
−1kθβsk]⊗ s−k. (51)

By the transition condition (49), the section νk of (EndE)(k)→ S5, defined piece-wisely
by νβ(k)e

√
−1kθβsk on Uβ,S5 , is independent of θβ or the coordinate chosen. Thus it descends

to a global section on P2, and we find the global series:

ν = Σk∈Zνk ⊗ s−k. (52)

The negative sign in “−k” is to be consistent with the usual local Fourier-Series in (48) i.e.
for any integer k, and any β among 0, 1, 2, the following is true in Uβ,S5 .

νβ(k)e
√
−1kθβ = νk ⊗ s−k. (53)

Definition 6.2. The series (52) is called the Sasakian-Fourier series of ν.

The main lemma of this section summarizes our discussion.

Lemma 6.3. In the general setting of the first sentence in Lemma 8.3, let ν ∈ C10(S5, EndE).
For any k ∈ Z, there is an unique section νk of (EndE)(k) such that the following holds.

Under the pullback Hermitian metric, the Sasaki-Fourier series Σkνk ⊗ s−k converges
uniformly to ν on S5. Moreover, it can be differentiated term by term by the Reeb Lie
derivative Lξ and the rough Laplacian ∇?∇|S5 i.e.

• ΣkLξ(νk ⊗ s−k) is the Sasaki-Fourier series of Lξν, and converges uniformly on S5 to
Lξν.

• Σk∇?∇|S5(νk ⊗ s−k) is the Sasaki-Fourier series of ∇?∇ν, and converges uniformly on
S5 to ∇?∇ν.

The Sasaki-Fourier co-efficients are traceless if ν is.

Not every operator can differentiate the Series term by term (see above Claim 17.9).

Proof of Lemma 6.3: It is a direct consequence of the uniform convergence in Lemma 17.7
and the term by term-wise differentiation in Claim 17.9 below.

7 The P−invariant subspaces and sheaf cohomologies

on P2

In this section, we study the special class of eigensections of the operator P consisted
of pullback adE−valued semi-basic 1−forms i.e. an eigensection of which the first 4 endo-
morphism components are 0 (regarding the decomposition in (30)). These turn out to be a
“building-block” of SpecP (as in Theorem A above, also see Theorem 9.2 below).

Definition 7.1. Let Vl , {a0 ∈ C10[S5, D? ⊗ adE]|Pa0 = la0}. This means

Vl (54)

= {a0 ∈ C10[S5, D? ⊗ adE]|d0a0yH = d0a0yG = d?00 a0 = d0a0y
dη

2
= 0,

Lξ(J0a0) = −la0},
= {a0 ∈ C10[S5, D? ⊗ adE]|d?00 JH(a0) = d?00 JG(a0) = d?00 a0 = d?00 J0(a0) = 0,

Lξ(J0a0) = −la0}.
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The above definition says that Vl is a subspace of the eigenspace ElP . Elliptic regularity
implies that any a0 ∈ Vl is smooth.

This subsection is devoted to the proof of the following characterization of Vl.

Proposition 7.2. In the general setting of the first sentence in Lemma 8.3, for any integer
l, the sub space Vl (of the eigenspace) is isomorphic to

H0,1[P2, (End0E)(l)] (space of ∂̄ − harmonic forms).

Consequently, with respect to the complex structure J0, Vl is complex isomorphic to the sheaf
cohomology H1[P2, (End0E)(l)].

To prove the above proposition and for other purposes, it is useful to set the following
convention.

Notation Convention 7.3. When the two vector spaces are complex vector spaces of sec-
tions of a complex vector bundle (like the twisted endomorphism bundles), or when they
are sheaf cohomologies etc, the “=” means a complex isomorphism. Otherwise, to say it is
a complex isomorphism, the complex structure should be specified in a manner similar to
Proposition 7.2.

7.1 The two term Sasaki-Fourier series for elements in Vl

We decompose any pullback adE−valued semi-basic 1−form a0 into the (1, 0) and
(0, 1)−components

a0 = a1,0
0 + a0,1

0 . (55)

Then the condition
−LξJ0(a0) = la0 (which is part of (54)) (56)

yields that

la1,0
0 + la0,1

0 = la0 = −LξJ0(a0) = −Lξ(−
√
−1a1,0

0 +
√
−1a0,1

0 ) =
√
−1Lξa

1,0
0 −

√
−1Lξa

0,1
0 .

Comparing (1, 0) and (0, 1)−part of both sides, we find

Lξa
0,1
0 =

√
−1la0,1

0 , Lξa
1,0
0 = −

√
−1la1,0

0 . (57)

Consider the Fourier-expansions

a0,1
0 = Σka

0,1
0 (k)s−k, a

1,0
0 = Σka

1,0
0 (k)s−k. (58)

where the summations are over all integers, and each coefficient is a End0E−valued 1−form
pulled back from P2. Since

Lξs−k =
√
−1ks−k, (59)

the following holds.

Lξa
0,1
0 = Σk

√
−1ka0,1

0 (k)s−k, Lξa
1,0
0 = Σk

√
−1ka1,0

0 (k)s−k. (60)

Compare the Sasaki-Fouriercoefficients of the first equation in (60) with the first identity in
(57), we find that the eigenvalue l must be an integer, and a0,1

0 (k) = 0 if k 6= l. Consequently,

a0,1
0 = a0,1

0 (l)s−l. Similarly, a1,0
0 = a1,0

0 (−l)sl.

In summary, we have found
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Claim 7.4. Suppose a0 ∈ C10[S5, D? ⊗ adE] satisfies equation (56) and a0 6= 0, then the l
therein is an integer. Moreover, in view of the (1, 0)⊕ (0, 1)−decomposition (55), we have

a1,0
0 = c1,0sl + c0,1s−l, (61)

where c1,0 is an (End0E)(−l)−valued (1, 0)−form on P2, and c0,1 is an (End0E)(l)−valued
(0, 1)−form on P2.

The above claim particularly means that there are only two non-zero terms in the Sasaki-
Fourier series of a0 (if it satisfies (56)).

7.2 Equivalence between the conditions on d0b and that b0,1 is
∂̄0−harmonic

In this section we prove Lemma 7.6 on the equivalent characterization of the defining
conditions in (54). The semi-basic form Θ is (2, 0) and nowhere vanishing, and the complex
rank of D?,(1,0) is 2. The following simple algebraic fact inherits that on a Kähler surface.

Fact 7.5. At a point on S5, et θ1 and θ2 be (0, 2) and (2, 0) semi-basic forms. Then θ1yΘ = 0
if and only if θ1 = 0. θ2yΘ if and only if θ2 = 0.

The contraction between two (2, 0)−forms ((0, 2)−forms) vanish.
On semi-basic 1−forms, we define

d?00 , − ?0 d0?0, ∂?00 , − ?0 ∂0?0; ∂̄?00 , − ?0 ∂̄0 ?0 . (62)

Then the adjoint ∂̄0 with respect to the Hermitian inner-product is ∂?00 , and that of ∂0 is ∂̄?00 .

Lemma 7.6. In the general setting of the first sentence in Lemma 8.3, let b be a smooth
section of D? ⊗ adE → S5, the following holds true.

d0byH = d0byG = 0 ⇔ ∂̄0b
0,1 = ∂0b

1,0 = 0; (63)

d?00 b = d0by
dη

2
= 0 ⇔ ∂?00 b

0,1 = ∂̄?00 b
1,0 = 0. (64)

Proof of Lemma 7.6: It is a comparison of the types of forms. We split d0b into the (0, 2),
(2, 0), and (1, 1) components.

d0b = ∂̄0b
0,1 + ∂0b

1,0 + (∂0b
0,1 + ∂̄0b

1,0). (65)

Among the 4 terms, only the (0, 2)−component ∂̄0b
0,1 might have non-zero contraction with

Θ, the contractions between the other 3 terms and Θ vanish. Employing Fact 7.5, we find
d0byΘ = 0⇔ ∂̄0b

0,1 = 0. Similarly, d0byΘ = 0⇔ ∂0b
1,0 = 0. The proof of (63) is complete.

To prove (64), we first observe that

∂?00 b
1,0 = 0, ∂̄?00 b

0,1 = 0. (66)

To prove the first identity in (66), it suffices to notice that ?0b
1,0 is a (2, 1)−form and the

complex rank of D?,(1,0) (D?,(0,1)) is 2, then ∂0 ?0 b
1,0 = 0. The other one is similar. Therefore

d?00 b = ∂?00 b
0,1 + ∂̄?00 b

1,0. (67)

Contracting d0b with dη
2

, still using the decomposition (65) and the vanishing (66), we
find

d0by
dη

2
= d?00 J0b = d?00 (

√
−1b0,1 −

√
−1b1,0) =

√
−1∂?00 b

0,1 −
√
−1∂̄?00 b

1,0. (68)

Via the two different identities (67) and (68), the condition d?00 b = d0by
dη
2

= 0 is equivalent

to that
√
−1∂?00 b

0,1 = 0 =
√
−1∂̄?00 b

1,0. The sign difference between (67) and (68) caused by
the complex structure J0 is crucial. The proof for (64) is complete.
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7.3 Transverse parallel of the trivialization of the pullback O(−1)→
S5, and the proof of Proposition 7.2

We show that the map sending a0 to c0,1 in Claim 7.4 is the desired isomorphism in
Proposition 7.2. The trivialization s−l of the pullback O(l) → S5 is d0−closed (parallel). It
is not parallel under the (full) connection unless l = 0.

Lemma 7.7. Under the pullback standard connection on the pullback O(l)→ S5, the standard
trivialization sl (see (50) and Definition 6.1) is d0−closed i.e.

∂0sl = ∂̄0sl = 0, and d0sl = 0.

Proof of Lemma 7.7: We only prove it when l = −1. When l = 1, it follows by dualizing.
For arbitrary integer l, it follows by Leibniz-rule with respect to tensor product.

It suffices to prove ∂0s−1 = ∂̄0s−1 = 0 in U0,S5 . The vanishing on the whole S5 follows by
continuity. Via formula (10) for Z0 (which particularly says LξZ0 =

√
−1Z0), Fact 2.4 on

the Reeb vector field, and formula (24) for ∂0, ∂̄0 etc, we routinely verify the following.

∂0Z0 = −Z0∂P2 log φ0, ∂̄0Z0 = 0.

The trivialization (1, u1, u2) of the pullback O(−1) descends to U0,P2 in P2. Then, under
the Chern-connection of the standard metric, we find

∂̄0(1, u1, u2) = ∂̄P2(1, u1, u2) = 0,

and
∂0(1, u1, u2) = ∂P2(1, u1, u2) = (∂P2 log φ0)(1, u1, u2).

Therefore, both the ∂̄0 and ∂0 of s−1 vanish.

∂̄0(Z0, Z1, Z2) = ∂̄0[Z0(1, u1, u2)] = (∂̄0Z0)(1, u1, u2) + Z0[∂̄P2(1, u1, u2)] = 0.

∂0(Z0, Z1, Z2) = ∂0[Z0(1, u1, u2)] = (∂0Z0)(1, u1, u2) + Z0[∂P2(1, u1, u2)] = 0.

The proof is complete.

It is helpful, for example to Proposition 7.2 and 10.5 below, to extend the usual conjugate
transpose of endomorphisms to twisted endomorphisms.

Notation Convention 7.8. For any integer k, let denote the conjugate linear map from
the pullback O(k) to O(−k) defined by sk , s−k.

In the general setting of the first sentence in Lemma 8.3, let the transpose only applies
to the EndE−part but not the line bundle part, the t of any twisted endomorphism is
defined.

The conventions and equations established so far are at our disposal to characterize the
P−invariant subspaces Vl.

Proof of Proposition 7.2: We show that the map

Γ(b) , b0,1sl (69)

is the desired isomorphism Vl → H0,1[P2, (End0E)(l)]. Because J0 acts on a (0, 1) semi-basic
form by the scalar multiplication of

√
−1, the map is complex linear.
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Let a0 = b in Claim 7.4 , Γ(b) is the “c0,1” in the splitting (61).

Step 1: Γ(b) is a priori a (EndE)(l)-valued (0, 1)−form. We show that it is ∂̄P2−harmonic.
By the ∂0 and ∂̄0−closeness of sl in Lemma 7.7, we compute

∂̄0(b0,1sl) = (∂̄0b
0,1)sl + b0,1(∂̄0sl) = 0, (70)

and

∂?00 (b0,1sl) = − ?0 ∂0[sl ?0 (b0,1)] = − ?0 (∂0sl) ∧ ?0(b0,1)− sl[?0∂0 ?0 (b0,1)]

= −sl[?0∂0 ?0 (b0,1)] = sl∂
?0
0 b

0,1

= 0.

Because b0,1sl descends to P2, the above vanishing implies that

∂̄P2(b0,1sl) = ∂
?P2
P2 (b0,1sl) = 0 i.e. Γ(b) ∈ H0,1[P2, O(l)⊗ End0E].

Step 2: We show that the following map Γ : H0,1[P2, O(l) ⊗ End0E] → Vl is the (two-
sided) inverse of Γ.

Γ(d0,1) , d0,1 ⊗ s−l − [d0,1 ⊗ s−l]
t
, (71)

where d0,1 ⊗ s−l is viewed as a pullback End0E−valued semi-basic 1−form on S5.
A pullback endomorphism-valued semi-basic 1−form α is adE−valued if and only if

α1,0 = −α0,1
t
(cf. [21, (2.15) VII]).

Hence Γ is injective. By definition, ΓΓ = Id automatically holds true. Then for any b ∈ Vl,
we find (ΓΓ)b− b ∈ KerΓ = {0}, which means ΓΓ = Id as well.

8 General spectral reduction for ∇?∇|S5

In this section we reduce the spectrum of the rough Laplacian from S5 to P2. This relies
on the following formula for the rough Laplacian acting on sections of adE → S5:

∇?∇u = −L2
ξ + d?00 d0. (72)

This is verified by a transverse geodesic frame (vi, i = 1, 2, 3, 4) on an arbitrary Reeb-orbit
together with the Reeb vector field ξ. The vanishing ∇vivi = 0 and ∇ξξ = 0 on the Reeb
orbit yields

−(∇?∇u)|π−1
5,4p

= [∇vi(∇viu)]|π−1
5,4p

+ (L2
ξu)|π−1

5,4p
= −d?00 d0u|π−1

5,4p
+ (L2

ξu)|π−1
5,4p
.

Now we define the spectrum with multiplicities.

Definition 8.1. Let Specmul( · ) denote the set of eigenvalues counted with real multiplicity.
This means if µ is an eigenvalue and the real dimension of the eigenspace is mµ, µ appears
mµ times in Specmul(·).

Similarly, when the operator is∇?∇|End0E→S5 or∇?∇|(End0E)(l)→P2 , let SpecmulC( · ) denote
the set of eigenvalues counted with complex multiplicity. This means if µ is an eigenvalue
and the complex dimension of the eigenspace is mµ, µ appears mµ times in SpecmulC(·).
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Remark 8.2. The complex bundle End0E is the complexification of adE. Hence, for any
λ ∈ Spec∇?∇|S5 , Eλ∇?∇|End0E→S5 is the complexification of

Eλ∇?∇|adE→S5 , Eλ∇?∇|S5 .

The real dimension of a vector space is equal to the complex dimension of its complexification.
Therefore

Specmul∇?∇|adE→S5 = SpecmulC∇?∇|End0E→S5 . (73)

We now proceed to our goal in this section.

Lemma 8.3. Let (E,A)→ P2 be a Hermitian Yang-Mills bundle. Then

Specmul∇?∇|S5 = SpecmulC∇?∇|End0E→S5

= {αl + l2 | αl ∈ SpecmulC∇?∇|(End0E)(l)→P2}. (74)

Consequently, without counting multiplicity,

Spec∇?∇|S5 = {αl + l2 | αl ∈ Spec∇?∇|(End0E)(l)→P2}.

Let l0 be the smallest positive integer such that H0[P2, (End0E)(l0)] 6= {0}. Then for any
integer l ≥ l0, the integer 4l + l2 is an eigenvalue of ∇?∇|S5.

As the spectrum of the Laplace-Beltrami operator on S5 are integers of the form 4l+l2, l ∈
Z≥0, the above means that for a general holomorphic vector bundle over P2 of rank ≥ 2, the
Laplace Beltrami and our bundle rough Laplacian ∇?∇|S5 on S5 contain infinitely many
mutual eigenvalues.

Proof of Lemma 8.3: To prove the first part of the statement, in view of identity (73), it
suffices to show

SpecmulC∇?∇|End0E→S5 = {αl + l2 | αl ∈ SpecmulC∇?∇|(End0E)(l)→P2}. (75)

Suppose u ∈ C10[S5, End0E], the Fourier-expansion u = Σl∈Zul ⊗ s−l converges point-
wisely on S5. Moreover, the Laplacian can be taken term by term. Using that d0s−l = 0 and
that ul descends to P2 so on which the actions of ?0 and d0 equal the actions of ?P2 and dP2

respectively, we find

d?00 d0u = Σl(∇?,P2∇P2

ul)⊗ s−l.

Using Lξul = 0, the decomposition (72) of the rough laplacian on S5, and L2
ξs−l = −l2s−l,

we find
∇?∇u = Σl[(∇?,P2∇P2

+ l2)ul]⊗ s−l. (76)

Then the desired result (74) follows by plugging an arbitrary eigensection u into (76) and
comparing the Sasaki-Fourier series of both hand sides. For the reader’s convenience, we still
provide the full detail.

Let λ ∈ Spec∇?∇|End0E→S5 , and uλ is a (non-zero) eigenvector. Then (76) yields that

λuλ = Σluλ,lsl = Σl[(∇?,P2∇P2

+ l2)uλ,l]⊗ s−l. (77)

Then either uλ,l = 0 or ∇?,P2∇P2
uλ,l = (λ− l2)uλ,l. Therefore, we obtain a linear injection

i : Eλ(∇?∇|End0E→S5)→ ⊕l,λ−l2∈Spec∇?∇|(End0E)(l)→P2
(Eλ−l2∇?∇|(End0E)(l)→P2)
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sending uλ to its Sasaki-Fourier co-efficients. By non-negativity of the rough laplacians on
the twisted endomorphism bundles over P2, only finitely many l yield non-zero eigenspace
Eλ−l2∇?∇|(End0E)(l)→P2 .

The map i is obviously surjective because for any set of Sasaki-Fourier co-efficients

⊕luλ,l ∈ ⊕l,λ−l2∈Spec∇?∇|(End0E)(l)→P2
(Eλ−l2∇?∇|(End0E)(l)→P2),

we have
Σluλ,ls−l ∈ Eλ(∇?∇|End0E→S5) and i(Σluλ,ls−l) = ⊕luλ,l.

The proof of (74) is complete.
To prove the second part of the statement, we notice that there is a positive integer l0

such that for any l ≥ l0, h0[P2, (End0E)(l)] > 0, and either l0 = 1 or no positive integer < l0
has this property. This is evident by

• the Riemann Roch (Lemma 17.10),

• the Enriques-Severi-Zariski Lemma [44],

• and that h0[P2, (End0E)(l)] > 0 implies h0[P2, (End0E)(k)] > 0 for all k ≥ l. This is
because a nontrivial holomorphic section tensoring a nontrivial homogeneous polyno-
mial is nowhere vanishing on a Zariski open set.

Hence the Käher identity i.e. Lemma 17.12 below says 4l is an eigenvalue of∇?∇|(End0E)(l)→P2 .
Therefore 4l + l2 is an eigenvalue of ∇?∇|S5 .

9 Describing SpecP

9.1 The orthogonal complement of the eigen cohomology space

In this section we find an orthogonal decomposition

L2(S5, DomS5) = X ⊕ Vcoh ⊕ II

such that each summand is P−invariant. Therefore SpecP can be separated.

Definition 9.1. In view of the invariant subspace Vl that is isomorphic to the cohomology
(Proposition 7.2), we define the eigen cohomology space Vcoh , ⊕l∈ZVl, which is isomorphic
to the finite dimensional vector space ⊕lH1[P2, (End0E)(l)]. We view Vcoh as a subspace of
the Hilbert space L2(S5, DomS5).

LetRowi denote the injection from L2[S5, adE] to the i−th row of the domain L2[S5, DomS5 ]
of the link operator. Define another P−invariant subspace generated by Ker∇?∇|S5 with
vanishing 5−row:

II , ⊕4
i=1Row

i(Ker∇?∇|S5) , {


u
as
ar
aη
0

 ∈ L2(S5, DomS5)|u, as, ar, aη ∈ Ker∇?∇|S5}, (78)

Such a section is said to be redundant, and it is thus called the space of redundant sections.
Let

X , (Vcoh ⊕ II)⊥ (79)
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be the orthogonal complement of the finite-dimensional subspace Vcoh⊕ II. It is P−invariant
because Vcoh⊕ II is and P is formally self adjoint. The first 4 entries of a section in X are all
perpendicular to Ker∇?∇|S5 .

A section with vanishing 5−th row i.e. vanishing semi-basic 1−form component is said
to be primitive if the first 4−entries are all perpendicular to Ker∇?∇|S5 . The space of all
such sections (denoted by {primitive sections}) is a closed subspace of L2(S5, DomS5) that
equals ⊕4

i=1Row
i[(Ker∇?∇|S5)⊥]. For any integer i among 1, 2, 3, 4, a primitive section

such that every other row than row i vanishes is said to be Rowi−primitive. This means it
lies in the range of the map Rowi.

Let ∇?∇|Ker⊥
S5

denote the restriction of the bundle rough Laplacian ∇?∇|S5 to the or-

thogonal complement in L2[S5, adE] of its kernel. Apparently, the kernel of ∇?∇|Ker⊥
S5

is

trivial.

Apparently, by the fine formula we have

SpecP |Vcoh = Scoh, and SpecP |II = {1, −4} if Ker∇?∇|S5 is non-trivial.

Moreover, any element in L2(S5, DomS5) with vanishing 5th row is perpendicular to V =coh.

9.2 The spectrum on X
We determine the spectrum of P restricted to X .

Theorem 9.2. Let (E,A) be a Hermitian Yang-Mills bundle over P2 with rank ≥ 2. let
S0
∇?∇ be all the numbers generated by the nonzero eigenvalues of ∇?∇|S5 (via (3) or the first

bullet point above Theorem A, equivalently). Then SpecP |X = S0
∇?∇.

We do not ask for non-projective flatness at this point, and aim at a general result. The
numbers −1 and −2 are not eigenvalues if and only if it is projectively flat.

Before proving it, to intuitively understand the feature of the Bochner formulas of P
(Lemma 5.4), we introduce the notion of “autonomous”.

Definition 9.3. For any i = 1, 2, 3, or 4, let vi ∈ L2[S5, adE] be the independent variable
in the i−th row of the domain DomS5 . A linear differential operator L on DomS5 is said to
be autonomous with respect to row i, if row i of L is

(∇?∇+ kId)vi

for some real constant k, and the other rows does not depend on vi.

The crucial observation is that by the Bochner formulas in Lemma 5.4, P 2 + 2P is au-
tonomous with respect to row 1, 2, and P 2 + 4P is autonomous with respect to row 3, 4. We
also need the Fourier expansion with respect to the eigen-basis of the restricted P .

Definition 9.4. Let {φµ, µ ∈ Specmul(P |X )} be an eigenbasis with respect to P |X . The
eigen expansion of any section in X is called the P |X−eigen Fourier expansion. Similar term
applies to P itself (no restriction) and the other rough Laplacians. This is not the same as
the Sasaki-Fourier series (Definition 6.2).

Proof. We first prove the direction

SpecP |X ⊆ S0
∇?∇. (80)

The idea is to inject an eigen-space of the rough Laplacian on the pullback adjoint bundle to
each among row 1–4 of the domain of the link operator. Let λ be an eigenvalue of ∇?∇|Ker⊥

S5
,

26



for any non-zero eigen-section uλ, Row
1uλ is in X i.e. perpendicular to II and Vcoh. The

P |X−eigen Fourier expansion is

Row1uλ = Σµ∈Specmul(P |X )uλ,µφµ.

Using the Bochner formula (46), we calculate that

Σµ∈Specmul(P |X )(µ
2 + 2µ)uλ,µφµ = [P 2 + 2P ]Row1uλ = Row1(∇?∇uλ + 3uλ)

= (λ+ 3)Row1uλ

= Σµ∈Specmul(P |X )(λ+ 3)uλ,µφµ. (81)

Comparing the non-zero coefficients uλ,µ (which must exist because uλ 6= 0), we find

µ2 + 2µ = λ+ 3.

The above means that for any λ ∈ Spec(∇?∇|Ker⊥
S5

),

Row1[Eλ(∇?∇|Ker⊥
S5

)] ⊆ ⊕µ2+2µ−3=λEµP |X .

Because uλ is an arbitrary non-zero eigenvector, and that the eigenbasis with respect to
∇?∇ is complete in L2[S5, adE], the following holds.

Row1[(Ker∇?∇|S5)⊥] ⊆ ⊕L2

λ∈Spec(∇?∇|
Ker⊥

S5
)Row

1(Eλ∇?∇|Ker⊥
S5

)

⊆ ⊕L2

µ2+2µ−3∈Spec(∇?∇|
Ker⊥

S5
)EµP |X .

Similarly, using (46) again, we verify that

Row2[(Ker∇?∇|S5)⊥] ⊆ ⊕L2

µ2+2µ−3∈Spec(∇?∇|
Ker⊥

S5
)EµP |X .

Using the Bochner formula (47) instead of (46), we verify

Row3[(Ker∇?∇|S5)⊥]⊕Row4[(Ker∇?∇|S5)⊥] ⊆ ⊕L2

µ2+4µ∈Spec(∇?∇|
Ker⊥

S5
)EµP |X .

In summary, by definition of S∇?∇, we find

{primitive sections} ⊆ ⊕L2

µ∈S0
∇?∇

EµP |X

Consequently, related to the orthogonal complement of the above, we find

⊕L2

µ/∈S0
∇?∇

EµP |X ⊆ {primitive sections}⊥.

= {


u
as
ar
aη
a0

 |a0 ∈ L2[S5, D? ⊗ adE], u, as, ar, aη ∈ Ker∇?∇|S5}. (82)

The equality simply follows from definition of primitive sections under (79). The above
relation means if µ is an eigenvalue of P |X and µ /∈ S0

∇?∇, row 1–4 of any eigensection of P |X
must be in Ker∇?∇|S5 . Again by the fine formula (36), because Ker∇?∇|S5 is perpendicular
to range of d?00 , if a0 does not vanish it must belong to Vcoh. Then the eigen-section is in
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Vcoh ⊕ II, but it is assumed to be in the orthogonal complement. Therefore it must vanish.
This means µ is not an eigenvalue of P |X if µ /∈ S0

∇?∇. The direction (80) is proved.
Now we prove the other direction:

SpecP |X ⊇ S0
∇?∇. (83)

It suffices to read the P |X−eigen Fourier expansion (81) deeper. Namely, it means

Row1uλ = Σµ∈Specmul(P |X ),µ=−1+
√

4+λuλ,µφµ + Σµ∈Specmul(P |X ),µ=−1−
√

4+λuλ,µφµ.

Because uλ is non-zero, the above means at least one of −1 −
√

4 + λ and −1 +
√

4 + λ is
an eigenvalue of P |X . We show by contradiction that both of them must be eigenvalues.
If not, Rowiuλ is an eigensection of P , thus d0uλ = Lξuλ = 0, which is equivalent to that
uλ ∈ Ker∇?∇|S5 . But uλ ⊥ Ker∇?∇|S5 , then uλ = 0. This contradicts the hypothesis that
uλ 6= 0. Likewise, regarding the other polynomial µ2 + 4µ, corresponding to the 3rd and 4th
row of DomS5 , Row

iuλ yields the two eigenvalues −2−
√

4 + λ and −2 +
√

4 + λ. Thus all 4
numbers in S0

∇?∇ generated by λ 6= 0 must be eigenvalues of P |X . The proof of the direction
(83) is complete.

A direct consequence of the spectral decomposition Lemma 8.3 is that the connection A is
irreducible on P2 if and only if the pullback A is irreducible on S5. Moreover, the poly-stable
bundle E is stable if and only if the Hermitian Yang-Mills connection A is irreducible on P2

([21, VII, Proposition 4.14]).
Then we proceed to the final task of this section.

Proof of Theorem A spectrum part: The eigenvalues of P in S0
∇?∇ must be either > 0 or

< 3. Those on II are 1 and −4. Hence X and II contribute

S∇?∇ \ {0,−3}

to SpecP as the Laplacian eigenvalue 0 generates the four numbers 0, −3, 1, −4 via the
two binomials. This holds even if II is trivial i.e. E is stable. Moreover, any eigenvalue
in [0, 3] must be induced by Vcoh thus is an integer. Assuming E is not projective flat (but
polystable with rank ≥ 2), the strict Bogomolov Chern number inequality, Riemann-Roch
formula (Lemma 17.10) imply

h1[P2, (EndE)(−1)] = h1[P2, (EndE)(−2)] ≥ c2(EndE) > 0. (84)

Therefore −1 and −2 must be eigenvalues of P .
Please see Uhlenbeck-Yau [38, Theorem 8.1] and Kobayashi [21, IV, Theorem 4.7] about

why c2(EndE) = 0 implies projective flatness in our case.
An eigenvalue 4l + l2, l ≥ l0 for the bundle rough Laplacian in Lemma 8.3, through (3)

or equivalently the first bullet point above Theorem A, generates the four integer eigenvalues
of P . The proof of Theorem A is complete.

10 The multiplicities

In this section we determine the multiplicities of the eigenvalues of the link operator.
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10.1 The definition of the projection map

For any µ ∈ S0
∇?∇ ⊆ SpecP , at least one of

λ1 , µ2 + 2µ− 3, λ2 = µ2 + 4µ

belongs to {0,−3}. In this section, we define the projection and give a formula for it.

Definition 10.1. Let (E,A)→ P2 be a Hermitian Yang-Mills bundle. Suppose

µ ∈ SpecP |X = S0
∇?∇.

Let ‖EµP |X denote the orthogonal projection

(Eλ1∇?∇|Ker⊥
S5

)⊕2 ⊕ (Eλ2∇?∇|Ker⊥
S5

)⊕2 → EµP |X

that is factored as follows.

(Eλ1∇?∇|Ker⊥
S5

)⊕2 ⊕ (Eλ2∇?∇|Ker⊥
S5

)⊕2 → X → L2(S5, DomS5)→ EµP |X .

From here to the end of Section 10, let ϕ ∈ EµP |X , and ζ denote a section of the form
v
h
g
w
0

 ∈ (Eλ1∇?∇|Ker⊥
S5

)⊕2 ⊕ (Eλ2∇?∇|Ker⊥
S5

)⊕2.

We start from the first entry. Suppose v ∈ Eλ1∇?∇|Ker⊥
S5

, still by the P |X−eigen Fourier

expansion, there is an (unique) orthogonal splitting
v
0
0
0
0

 =


u
as
ar
aη
a0

+


ũ
−as
−ar
−aη
−a0

 , ϕ+ ϕ̃, (85)

such that ϕ ∈ Eµλ1,+P |X and ϕ̃ ∈ Eµλ1,−P |X . By the fine formula (36) for P , the former
condition gives the left column and the latter gives the right column in the following.

u− Lξas − (d0a0)yH = µλ1,+u , ũ+ Lξas + (d0a0)yH = µλ1,−ũ.

Lξu+ as + (d0a0)yG = µλ1,+as , Lξũ− as − (d0a0)yG = −µλ1,−as.
−4ar − Lξaη + d?00 a0 = µλ1,+ar , 4ar + Lξaη − d?00 a0 = −µλ1,−ar. (86)

Lξar − 4aη − (d0a0)y
dη

2
= µλ1,+aη , −Lξar + 4aη + (d0a0)y

dη

2
= −µλ1,−aη.

JHd0u− JGd0as + d0ar
+J0d0aη − LξJ0(a0)

}
= µλ1,+a0 ,

JHd0ũ+ JGd0as − d0ar
−J0d0aη + LξJ0(a0)

}
= −µλ1,−a0.

Then the last row of (86) simply becomes the following two equations.

JHd0u− JGd0as − LξJ0(a0) = µλ1,+a0, JHd0ũ+ JGd0as + LξJ0(a0) = −µλ1,−a0. (87)

Summing them up and using v = u+ ũ (which is evident from (85)), we find

JHd0v = 2
√

4 + λ1a0 i.e. a0 =
JHd0v

2
√

4 + λ1

.
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On the other hand, summing up the two equations in the first row of (86), we find

v = µλ1,+u+ µλ1,−ũ.

Using v = u+ ũ again, we conclude that

u =
1− µλ1,−

µλ1,+ − µλ1,−
v = (

1√
4 + λ1

+
1

2
)v, ũ =

µλ1,+ − 1

µλ1,+ − µλ1,−
v = (− 1√

4 + λ1

+
1

2
)v.

Next, summing up the two equations in the second row of (86), we obtain

as =
Lξv

2
√

4 + λ1

.

Then
v
0
0
0
0


‖Eµλ1,+P |X

=


( 1√

4+λ1
+ 1

2
)v

Lξv

2
√

4+λ1

0
0

JHd0v
2
√

4+λ1

 ,

v
0
0
0
0


‖Eµλ1,−P |X

=


(− 1√

4+λ1
+ 1

2
)v

− Lξv

2
√

4+λ1

0
0

− JHd0v
2
√

4+λ1

 . (88)

The same method as above yields the following projection formulas for the other rows of
DomS5 .

• Suppose λ1 ∈ Spec(∇?∇|Ker⊥
S5

), for any h ∈ Eλ1∇?∇|Ker⊥
S5

such that h 6= 0,


0
h
0
0
0


‖Eµλ1,+P |X

=


− Lξh

2
√

4+λ1

( 1√
4+λ1

+ 1
2
)h

0
0

− JGd0h
2
√

4+λ1

 ,


0
h
0
0
0


‖Eµλ1,−P |X

=


Lξh

2
√

4+λ1

(− 1√
4+λ1

+ 1
2
)h

0
0

JGd0h
2
√

4+λ1

 . (89)

• Suppose λ2 ∈ Spec(∇?∇|Ker⊥
S5

), for any g ∈ Eλ2∇?∇|Ker⊥
S5

such that g 6= 0,


0
0
g
0
0


‖Eµ

λ2,+
P |X

=


0
0

(− 1√
4+λ2

+ 1
2
)g

Lξg

2
√

4+λ2
d0g

2
√

4+λ2

 ,


0
0
g
0
0


‖Eµ

λ2,−
P |X

=


0
0

( 1√
4+λ2

+ 1
2
)g

− Lξg

2
√

4+λ2

− d0g
2
√

4+λ2

 . (90)

• Suppose λ2 ∈ Spec(∇?∇|Ker⊥
S5

), for any w ∈ Eλ2∇?∇|Ker⊥
S5

such that w 6= 0,


0
0
0
w
0


‖Eµ

λ2,+
P |X

=


0
0

− Lξw

2
√

4+λ2

(− 1√
4+λ2

+ 1
2
)w

J0d0w
2
√

4+λ2

 ,


0
0
0
w
0


‖Eµ

λ2,−
P |X

=


0
0
Lξw

2
√

4+λ2

( 1√
4+λ2

+ 1
2
)w

− J0d0w
2
√

4+λ2

 . (91)

Summing up formulas (88)–(91), we arrive on target.
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Lemma 10.2. In the setting of Definition 10.1, for any µ ∈ S0
∇?∇ ⊂ SpecP , let

λ1 , µ2 + 2µ− 3 and λ2 , µ2 + 4µ.

Suppose v, h ∈ Eλ1∇?∇|Ker⊥
S5

and g, w ∈ Eλ2∇?∇|Ker⊥
S5

, the following projection formula is
true. 

v
h
g
w
0


‖EµP |X

=


− Lξh

2(µ+1)
+ ( 1

µ+1
+ 1

2
)v

Lξv

2(µ+1)
+ ( 1

µ+1
+ 1

2
)h

− Lξw

2(µ+2)
+ (− 1

µ+2
+ 1

2
)g

Lξg

2(µ+2)
+ (− 1

µ+2
+ 1

2
)w

− JGd0h
2(µ+1)

+ JHd0v
2(µ+1)

+ d0g
2(µ+2)

+ J0d0w
2(µ+2)

 . (92)

If λ1 /∈ Spec∇?∇|Ker⊥
S5

, then v, h must be 0. This is an advantage in defining eigenspaces

for all real numbers. The rationale is that if it is not an eigenvalue, then all “eigensections”
are 0. The same applies to λ2.

10.2 The Kernel and Co-kernel

The purpose of this section is to prove the following.

Proposition 10.3. In the setting of Definition 10.1, ‖EµP |X is surjective.

Remark 10.4. The surjectivity particularly means that any eigensection of the restricted P
must be of the form (92), respectively.

Proof of Proposition 10.3: It turns out that the co-kernel can be directly shown to vanish,
using the projection formula. The condition ϕ ⊥ ζ‖EµP |X is equivalent to that

0 = 〈u,− Lξh

2(µ+ 1)
+ (

1

µ+ 1
+

1

2
)v〉+ 〈as,

Lξv

2(µ+ 1)
+ (

1

µ+ 1
+

1

2
)h〉

+〈ar,−
Lξw

2(µ+ 2)
+ (− 1

µ+ 2
+

1

2
)g〉+ 〈aη,

Lξg

2(µ+ 2)
+ (− 1

µ+ 2
+

1

2
)w〉

+〈a0,−
JGd0h

2(µ+ 1)
+

JHd0v

2(µ+ 1)
+

d0g

2(µ+ 2)
+

J0d0w

2(µ+ 2)
〉.

Using that the adjoint of Lξ is −Lξ, and that J0d0, JHd0, JGd0 are adjoint to −d?00 J0, −d?00 JH ,
−d?00 JG respectively, we find

0 = < h,
Lξu

2(µ+ 1)
+ (

1

µ+ 1
+

1

2
)as +

d?00 JGa0

2(µ+ 1)
> (93)

+ < v,− Lξas
2(µ+ 1)

+ (
1

µ+ 1
+

1

2
)u− d?00 JHa0

2(µ+ 1)
>

+ < w,
Lξar

2(µ+ 2)
+ (− 1

µ+ 2
+

1

2
)aη −

d?00 J0a0

2(µ+ 2)
>

+ < g,− Lξaη
2(µ+ 2)

+ (− 1

µ+ 2
+

1

2
)ar +

d?00 a0

2(µ+ 2)
> .

Therefore, the condition ϕ ∈ Coker ‖EµP |X is equivalent to that (93) holds for all ζ ∈
(Eλ1∇?∇|Ker⊥

S5
)⊕2 ⊕ (Eλ2∇?∇|Ker⊥

S5
)⊕2 and ϕ ∈ EµP |X .

The eigensection condition (the left of comma in system (86)) again says that

−Lξas − (d0a0)yH = (µ− 1)u, Lξu+ (d0a0)yG = (µ− 1)as. (94)

−Lξaη + d?00 a0 = (µ+ 4)ar, Lξar − (d0a0)y
dη

2
= (µ+ 4)aη.
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Plugging (94) into (93), we find

< h, as > + < v, u > + < w, aη > + < g, ar >= 0. (95)

Because ζ ∈ (Eλ1∇?∇|Ker⊥
S5

)⊕2 ⊕ (Eλ2∇?∇|Ker⊥
S5

)⊕2 is arbitrary and the first 4 entries of ϕ is

in the same space, they must vanish i.e. u = as = ar = aη = 0. That


0
0
0
0
a0

 ∈ X implies

a0 = 0 as well, therefore ϕ = 0. This means the co-kernel is trivial.

10.3 Kernel of the projection ‖EµP |X

In the setting of Definition 10.1, the following holds.

Proposition 10.5. 1. If µ is not an integer, the orthogonal projection ‖EµP |X is injective.

2. When µ is an integer,

Ker ‖EµP |X= H0[P2, (End0E)(µ)]⊕H0[P2, (End0E)(−µ− 3)]. (96)

The observation is that a primitive section (92) being in the kernel of the projection is
equivalent to that

• the second row h and the fourth row w are two term Sasakian-Fourier series

• the Fourier co-efficient of w with respect to s−µ and that of h with respect to sµ+3 are
holomorphic sections of (End0E)(mu) and (End0E)(−mu− 3) respectively.

• the other two entries v and g are determined linearly by h and w respectively.

For the reader’s convenience, we still provide the detail.

Proof of Proposition 10.5 : It might be fairly surprising that the projection formulas also
force the kernel to be holomorphic sections. Suppose

ζ ∈ (Eλ1∇?∇|Ker⊥
S5

)⊕2 ⊕ (Eλ2∇?∇|Ker⊥
S5

)⊕2, and ζ‖EµP |X = 0. (97)

By the projection formula (92), the vanishing (97) is equivalent to

− Lξh

2(µ+ 1)
+ (

1

µ+ 1
+

1

2
)v = 0 ,

Lξv

2(µ+ 1)
+ (

1

µ+ 1
+

1

2
)h = 0,

− Lξw

2(µ+ 2)
+ (− 1

µ+ 2
+

1

2
)g = 0 ,

Lξg

2(µ+ 2)
+ (− 1

µ+ 2
+

1

2
)w = 0,

and − JGd0h

2(µ+ 1)
+

JHd0v

2(µ+ 1)
+

d0g

2(µ+ 2)
+

J0d0w

2(µ+ 2)
= 0. (98)

We note again that Theorem A says none of µ, µ+ 1, µ+ 2, µ+ 3 is 0. Hence row 1 of
(98) is equivalent to

L2
ξh = −(µ+ 3)2h, v =

Lξh

µ+ 3
. (99)

Similarly, row 2 of (98) is equivalent to

L2
ξw = −µ2w, g =

Lξw

µ
. (100)
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Part I: Suppose µ is not an integer.

Because the eigenvalues of −L2
ξ are squares of integers, but µ is not an integer, we find

by (99) and (100) that ζ = 0.

Part II: Suppose µ is an integer.

In this case, (99) and (100) do not force the eigensection to vanish. We show that this is
how the space of holomorphic sections come into play.

Similarly to the proof of the two term expansion in Claim 7.4, equation (99) implies that
the Sasaki-Fourier series of h only has 2−terms i.e.

h = hµ+3s−(µ+3) + h−(µ+3)sµ+3. (101)

Moreover, because Lξsk = −
√
−1ksk, we find

v =
Lξh

µ+ 3
=
√
−1[hµ+3s−(µ+3) − h−(µ+3)sµ+3]. (102)

Consequently, the transverse differential of h is

d0h = [dP2hµ+3]s−(µ+3) + [dP2h−(µ+3)]sµ+3, (103)

and that of v is
d0v =

√
−1{[dP2hµ+3]s−(µ+3) − [dP2h−(µ+3)]sµ+3}. (104)

Hence,

J0d0v =
√
−1{[JP2dP2hµ+3]s−(µ+3) − [JP2dP2h−(µ+3)]sµ+3}.

= [∂P2hµ+3 − ∂̄P2hµ+3]s−(µ+3) − [∂P2h−(µ+3) − ∂̄P2h−(µ+3)]sµ+3. (105)

Equation (103) and (105) amount to

d0h+ J0d0v = 2[(∂P2hµ+3)s−(µ+3) + (∂̄P2h−(µ+3))sµ+3]. (106)

Because G is minus the imaginary part of the form Θ i.e. G = Θ−Θ
2
√
−1

, we calculate that

−JGd0h+ JHd0v = −JG(d0h+ J0d0v)

= −2{[(∂P2hµ+3)yG]s−(µ+3) + [(∂̄P2h−(µ+3))yG]sµ+3}
=
√
−1{[(∂P2hµ+3)yΘ̄]s−(µ+3) − [(∂̄P2h−(µ+3))yΘ]sµ+3}. (107)

In the above, we used again that the contraction between a (1, 0)−form and a (2, 0)−form
vanishes, and that the contraction between a (0, 1)−form and a (0, 2)−form vanishes.

Using (100), the following two term expansions hold as well.

w = wµs−µ + w−µsµ, g =
√
−1(wµs−µ − w−µsµ). (108)

By similar derivation as of (106), we find

d0g + J0d0w = 2
√
−1[(∂̄P2wµ)s−µ − (∂P2w−µ)sµ]. (109)

In the light of (107) and (109), the last equation in (98) reads
√
−1

2(µ+ 1)
{[(∂P2hµ+3)yΘ̄]s−(µ+3) − [(∂̄P2h−(µ+3))yΘ]sµ+3} (110)

+

√
−1

(µ+ 2)
[(∂̄P2wµ)s−µ − (∂P2w−µ)sµ]

= 0.
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The (1, 0) and (0, 1) part of (110) should both vanish. This yields the following.

−[(∂̄P2h−(µ+3))yΘ]sµ+3 −
2(µ+ 1)

(µ+ 2)
(∂P2w−µ)sµ = 0; (111)

[(∂P2hµ+3)yΘ̄]s−(µ+3) +
2(µ+ 1)

(µ+ 2)
(∂̄P2wµ)s−µ = 0. (112)

Using that

• d0Θ = d0Θ̄ = 0 (see Formula 5.2),

• any power of s−1 or its conjugation is d0−closed (Lemma 7.7),

• and that the curvature form FA is (1, 1),

we find that

[(∂̄P2h−(µ+3))yΘ]sµ+3 = ?0[(∂̄P2h−(µ+3)) ∧Θ]sµ+3 is ∂̄?00 − closed,

and
[(∂P2hµ+3)yΘ̄]s−(µ+3) = ?0[(∂P2hµ+3) ∧ Θ̄]s−(µ+3) is ∂?00 − closed.

Plugging the above into (111) and (112), we see that

(∂P2w−µ)sµ is ∂̄?00 − closed, and (∂̄P2wµ)s−µ is ∂?00 − closed.

Because both ∂P2w−µ and ∂̄P2wµ are forms on P2, and ∂?00 (∂̄?00 ) are equal to the usual ∂
?P2
P2

(∂̄
?P2
P2 ) on such forms, we find ∂̄

?P2
P2 ∂P2w−µ = 0 and ∂

?P2
P2 ∂̄P2wµ = 0. Integrating by parts on P2

shows
∂P2w−µ = 0 and ∂̄P2wµ = 0. (113)

Plugging (113) back into (111) and (112), because the (2, 0)−form Θ is no-where vanishing
(its real and imaginary parts are both complex structures), we find ∂̄P2h−(µ+3) = 0 = ∂P2hµ+3.
Then wµ ∈ H0[P2, (End0E)(µ)] and h−(µ+3) ∈ H0[P2, (End0E)(−µ − 3)]. The derivation so
far has given a map

Q : Ker ‖EµP |X→ H0[P2, (End0E)(µ)]⊕H0[P2, (End0E)(−µ− 3)]

defined by Qζ , (wµ, h−(µ+3)).
In a similar manner to (71), reversing the above arguments yields the obvious inverse of

Q. For the reader’s convenience, we still give the detail. For any

wµ ∈ H0[P2, (End0E)(µ)] and h−(µ+3) ∈ H0[P2, (End0E)(−µ− 3)],

let
w−µ , wtµ, hµ+3 , h

t

−(µ+3).

The inverse Q−1(wµ, h−(µ+3)) is simply the ζ defined by conditions (101), (102), and (108):

• the spectral reduction in Formula 8.3 and the identification in Lemma 17.12 below says
that

v and h ∈ Eµ2+2µ−3(∇?∇|Ker⊥
S5

) = Eλ1(∇?∇|Ker⊥
S5

),

g and w ∈ Eµ2+4µ(∇?∇|Ker⊥
S5

) = Eλ2(∇?∇|Ker⊥
S5

);

When µ 6= 1 or −4 the Laplacian eigenvalues λ1 and λ2 are never 0, thus the above four
Laplacian eigen-sections are all perpendicular to the kernel. But there is an interesting
subtlety when µ is indeed 1 or −4. Assume it is −1, then vanishing of holomorphic
section of a Hermitian Yang-Mills bundle of negative degree already says h−µ+3 therefore
also h and v are 0. The claim that they are perpendicular to kernel of Laplacian still
holds. Similar argument applies to −4.
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• ζ satisfies conditions (99) and (100), therefore it satisfies the whole system (98) which
means ζ ∈ Ker ‖EµP |X .

The desired identification (96) is proved.

We are ready to achieve the goal.

Proof of Theorem A multiplicities: According to the commutators (37), that P com-
mutes with I makes I a complex structure of the eigenspaces of P . For any eigenvalue
µ of P , −µ− 3 is also an eigenvalue, and both K and T are isomorphisms

Eigenµ(P )→ Eigen−(µ+3)(P )

that anti-commute with the complex structure I. This is consistent with that the Serre-
duality map is conjugate linear.

The idea for multiplicities is to separately consider P on each of the invariant subspaces
X , Vcoh, and II. The multiplicity of an eigenvalue µ ∈ S0

∇?∇ is completely determined by the
surjective map

‖EµP |X : (Eλ1∇?∇|Ker⊥
S5

)⊕2 ⊕ (Eλ2∇?∇|Ker⊥
S5

)⊕2 → EµP |X in Definition 10.1. (114)

When µ is not an integer, the vanishing of Ker ‖EµP |X (Proposition 10.5) says it is an
isomorphism. Because λ1 and λ2 should both be non-zero if µ is not an integer, the restricted
Laplacian coincides with the Laplacian on the eigenspaces. This rationale applies below as
well for non-zero eigenvalue of the Laplacian. The first bullet point is proved.

In addition to our characterizations of P |X and P |Vcoh , if Ker∇?∇∇|S5 is non-trivial, the
eigenvalues of P |II are 1 and −4. In view of Definition 9.1 and the characterization of Vl in
Proposition 7.2, SpecP |Vcoh are those integers l such that Vl = H1[P2, (End0E)(l)] is nonzero,
and the eigenspace is Vl. It suffices to determine the multiplicities of P |X . The contribution
of II to Mult1P is 2dimKer∇?∇|S5 . The Vcoh component contributes 2h1[P2, (EndE)(1)].
The X−component contributes

2Mult5(∇?∇|S5)− 2h0[P2, (End0E)(1)].

Then Mult1P equals

2dimKer∇?∇|S5 + 2Mult5(∇?∇|S5) + 2h1[P2, (EndE)(1)]− 2h0[P2, (End0E)(1)].

Using Riemann-Roch (Lemma 17.10) and vanishing of holomorphic section to Hermitian
Yang-Mills bundle of negative degree, the last two terms above equals −2 times the Hilbert
polynomial of the bundle (End0E)(1). The multiplicity of −4 is the same. The second bullet
point is proved .

The four integers 0, −1, −2, −3 can never be generated by the restrictions P |X or P |II.
They can only be generated by Vcoh isomorphic to the cohomologies. The proof of the third
bullet point is complete by the identification in Proposition 7.2 between Vl and the subspace
of EigenlP .

That µ is not among the aforementioned six integers implies that it can never be generated
by II. Consequently, saying that it is in or not in S∇?∇ is equivalent to saying that it is in or
not in S0

∇?∇, respectively. If µ /∈ S∇?∇ i.e. not generated by X , then it can only be generated
by Vcoh. By the same reason as the above paragraph the eigenspace must be isomorphic to
the cohomology.
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In the other way, if it is not generated by Vcoh (i.e. µ /∈ Scoh) but by X (i.e. µ ∈ S∇?∇),
the characterization (96) of Ker ‖EµP |X and the surjectivity of the projection establishes

MultµP = 2Multµ2+2µ−3(∇?∇|S5) + 2Multµ2+4µ(∇?∇|S5)
−2h0[P2, (End0E)(µ)]− 2h0[P2, (End0E)(−µ− 3)].

If µ is in both Scoh and S∇?∇ i.e. generated by both Vcoh and X , we find by similar reason
that

MultµP = 2Multµ2+2µ−3(∇?∇|S5) + 2Multµ2+4µ(∇?∇|S5) + 2h1[P2, (EndE)(µ)]

−2h0[P2, (End0E)(µ)]− 2h0[P2, (End0E)(−µ− 3)].

The contribution from theH1 is non-trivial. The last three terms still gives−2 times the Euler
characteristic of (End0E)(µ) so again Riemann-Roch says it equals the Hilbert polynomial.
All three cases in the third bullet point are proved.

11 Rough Laplacian on a homogeneous vector bundle,

and the interplay of the two Casimirs

In this section we determine the spectrum of the bundle rough Laplacian on S5 for the
homogeneous T 1,0P2(k). We call the Levi-Civita connection of the Fubini-Study metric on
T ′P2 the Fubini-Study connection, and denote it by ∇FS. Consequently, on the twisted
endomorphism bundles (EndT ′P2)(l), the tensor product of the Fubini-Study connection
(metric) and the standard connection (metric) on O(l) is called the twisted Fubini-Study
connection (metric), respectively. The same terms also apply to T ′P2(k). The required
representation theoretic method has been well recorded in literature. For example, see [29]
and [7].

Theorem D. In the setting of Theorem A and Corollary C, for any integer l, let the
rough Laplacian ∇?∇|(End0T ′P2)(l)→P2 be defined by the twisted Fubini-Study connection and

the Fubini-Study metric dη
2

. Then the following holds.

• (Spectrum)

Spec∇?∇|(End0T ′P2)(l)→P2 = {4

3
(a2 + b2 + ab+ 3a+ 3b)− 4

3
l2 − 8 | a, b ∈ Z; a, b ≥ 0;

max(3− a− 2b, b− a− 3) ≤ l ≤ min(2a+ b− 3, 3 + b− a)}.
(115)

Consequently, in the associated data setting,

Spec∇?∇|S5 = {4

3
(a2 + b2 + ab+ 3a+ 3b)− l2

3
− 8 | a, b, l ∈ Z; a, b ≥ 0; (116)

max(3− a− 2b, b− a− 3) ≤ l ≤ min(2a+ b− 3, 3 + b− a)}.

• (Multiplicities) for any number λ ∈ Spec∇?∇|(End0T ′P2)(l), let the set Slλ be defined by

Slλ , {(a, b) ∈ Z≥0 × Z≥0|4
3

(a2 + b2 + ab+ 3a+ 3b)− 4

3
l2 − 8 = λ, and

max(3− a− 2b, b− a− 3) ≤ l ≤ min(2a+ b− 3, 3 + b− a)}.
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The (complex) multiplicity of any λl ∈ Spec∇?∇|(End0T ′P2)(l) is

ΣSlλl

(a+ 1)(b+ 1)(a+ b+ 2)

2
. (117)

The (real) multiplicity of any λ ∈ Spec∇?∇|S5 is

Σ{l|λ−l2∈Spec∇?∇|(End0T ′P2)(l)}
ΣSl

λ−l2

(a+ 1)(b+ 1)(a+ b+ 2)

2
. (118)

In view of the spectral reduction in Lemma 8.3, it suffices to show the eigenvalues (115)
on P2. Because T ′P2 and O(l) are both SU(3)−homogeneous, Peter-Weyl formulation and
representation theory are applicable.

• The numbers 4
3
(a2 + b2 + ab+ 3a+ 3b) and −8 therein arise from the Casimir operators

of su(3) and su(2) on certain irreducible representations respectively. The number −4l2

3

arises from the action of a certain element in the Cartan sub-algebra of su(3). Please
see (138) and Formula 13.5, 14.1 below. We have to add l2 to the eigenvalue on P2 to
obtain the corresponding eigenvalue on S5.

These 3 terms are all the contributions from the representation theoretic quantities.

• The condition on a, b in (115) is the equivalence condition of that a certain irreducible
SU(3)−representation appears as a summand in a certain infinite dimensional repre-
sentation (see Fact 13.9 below).

Some geometric Laplacians (not the rough Laplacian) corresponds to a single Casimir
operator. For example, see the Hodge Laplacian in [18, Proposition 2.3], and the “∆” in [29,
Lemma 5.2].

To be self-contained, we recall the pedestrian background tailored for our purpose.

11.1 Killing reductive homogeneous spaces

Our references for this section are [23, Section 2: geometry of homogeneous spaces] and
[35, Section 5, page 13]. All the group actions below will be smooth left actions unless
otherwise specified. The “ ·” between a group element and a vector in a representation space
means the underlying action, which should be clear from the context.

Definition 11.1. (Reductive homogeneous space) Let G be a compact semi-simple matrix
Lie group, and K be a closed matrix Lie subgroup of G. Let g and k denote the Lie algebras
of G and K respectively. Let m be a subspace of g such that g = m ⊕ k. The manifold
M = G/K is called a reductive homogenous space with respect to m if AdKm ⊆ m (which
means that for any k ∈ K and X ∈ m, AdkX ∈ m).

In practice, we suppress the “m” and abbreviate it to reductive homogeneous space.

At an arbitrary point gK ∈M , any X ∈ g generates a tangent vector X? in the following
way.

X?(gK) =
d

dt
|t=0(exp tX)gK. (119)

Let E be a homogeneous bundle over a reductive homogeneous space M = G/K. Let e
denote the identity element in G (and K). Let the base point o ∈ M be eK. The natural
map ρ : G×K Eo → E defined by ρ(g, v) = g · v is a G−equivariant isomorphism (covering
identity diffeomorphism of M).
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On the tangent bundle, let τ denote the natural isomorphism G×K,ad m → TM defined
by

τ(g,X) , g?[X
?|eK ] = (AdgX)?|gK . (120)

The tautological isomorphism τtaut : m→ ToM is defined by τtaut(X) = X?|o.
The set of G−invariant Riemannian metrics on M is bijective to the set of AdK−invariant

inner products on m. For example, under the semi-simple condition on G, the restriction to
m of a negative scalar multiple of the Killing form of G yields a G−invariant metric on M .

Definition 11.2. A reductive homogeneous space M = G/K with a G−invariant Rieman-
nian metric ( , ) is called a Killing reductive homogeneous space with respect to ( , ) and m
if the following holds.

• Let B be the Killing form on g. With respect to the inner product −B, m is perpen-
dicular to the Lie algebra k of K.

• The restriction of −B on m is a (constant) real scalar multiple of the inner product
〈, 〉m corresponding to ( , ).

We usually abbreviate it to Killing reductive homogeneous space, and denote it by [M, 〈, 〉m].

The following frames relate the bundle rough Laplacian to a proper Casimir operator.

Lemma 11.3. Let [M, 〈, 〉m] be a Killing reductive homogeneous space equipped with the
Levi-Civita connection, and let (ei, i = 1, ..., dimM) be an orthonormal basis of m. Then for
any i,

∇e?i
e?i = 0 at o = eK. (121)

Consequently, for any g ∈ G, [Adg(ei)]
? = g?(e

?
i ) is an orthonormal frame at gK such that

∇[Adg(ei)]? [Adg(ei)]
? = 0 at gK. (122)

We do not know whether this holds without the Killing condition. The proof is deferred
to Appendix 17.7 below.

11.2 Homogeneous vector bundles

We briefly recall the homogeneous bundles.

Definition 11.4. Let M = G/K be a reductive homogeneous space. A (smooth) vector-
bundle E →M is said to be G−homogeneous if the left action of G on G/K can be lifted to
a compatible action of G on E.

We usually suppress the “G” and call it a homogeneous vector bundle.

The space of smooth sections of a homogeneous vector bundle can be identified to an
∞−dimensional G−representation.

Definition 11.5. (Sections of a homogeneous bundle) Let ρE : K → GL(E) be a (real or
complex) K−representation. We consider the associated vector bundle E = G×K,ρE E .

Let C∞(G, E) denote the space of all smooth E−valued functions on G, and let C∞K,ρE (G, E)
be the subspace of K−invariant functions i.e. the functions f such that

f(gk) = ρE(k
−1)f(g) , k−1 · f(g). (123)

We sometimes suppress the representation ρE in the notation C∞K,ρE (G, E).
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A section u of E defines uniquely a K−invariant function in C∞K (G, E), denoted by ũ.
The converse is also true. The correspondence between u and ũ is given by

u(gK) = (g, ũ) for any g ∈ G. (124)

The same correspondence also holds pointwisely: for any u ∈ E|gK , there is an unique
K−invariant function ũ defined on the K−orbit passing through g such that u = (g, ũ).

The left regular representation of G on C∞K (G, E) is defined by

[L(a) · f ](g) , f(a−1g) for any a, g ∈ G.

Similarly, the right regular representation of G on C∞(G, E) is [R(a) · f ](g) = f(ga).

We expect that the subspace C∞K (G, E) in C∞(G, E) is not necessarily invariant under
the right regular representation, though it is under the left. For further references, see [29,
Section 5.1] and [6, III.6].

We keep the following routine convention in mind.
Convention on the G−equivariant isomorphism: from here to the end of Section

14.2, the equal signs “=” between reductive homogeneous spaces or sections of homogeneous
bundles, and any correspondence/identification between homogeneous connections, or be-
tween sections of homogeneous bundles, or between reductive homogeneous spaces are via
the underlying G−equivariant isomorphism or diffeomorphism.

11.3 A useful identity

For any X ∈ m, we calculate the invariant function corresponding to the vector field X?.
Let [ · ]m be the projection to m with respect to the directly sum g = m⊕ k.

Lemma 11.6. In the setting of Definition 11.1, let m̃ denote the linear map m→ C∞(G,m)
defined by [m̃(X)](g) , [g−1Xg]m. Then for any X ∈ m, m̃(X) is AdK−invariant i.e. m̃ is
a linear map m→ C∞K,Ad(G,m). Via the isomorphism (120), m̃(X) corresponds to the vector
field X? i.e. X?(gK) = [Adgm̃(X)]?(gK) = τ(g, [m̃(X)](g)) at any point gK ∈M.

Proof of Lemma 11.6: Because (AdK)m ⊆ m, AdK preserves the splitting Y = Ym + Yk i.e.

[(Adk)Y ]m = (Adk)[Y ]m for any k ∈ K. (125)

Thus [m̃(X)](gk) = [k−1g−1Xgk]m = Adk−1 [g−1Xg]m.
To prove the second part, for any Y ∈ g, let Y = [Y ]m+[Y ]k where [Y ]k is the k−component

of Y , we calculate

{Adg[m̃(X)]}(g) = g[g−1Xg]mg
−1 = gg−1Xgg−1 − g[g−1Xg]kg

−1 = X − g[g−1Xg]kg
−1.

Because [g−1Xg]k ∈ k, the tangent vector {g[g−1Xg]kg
−1}? at gK is equal to 0. The proof is

complete

11.4 Formula for the Rough Laplacians

The purpose of this section is to show Formula 11.10 of the rough Laplacian in terms of
the Casimir operator.
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Definition 11.7. (Casimir operator associated with a basis) Let g be a Lie algebra, and
B = (ei, i = 1...dimg) be a basis of g. Let ρ : g→ gl(E) be a representation of g. Then we
define the Casimir operator with respect to the basis B by

CasBg,ρ , Σdimg
i=1 ρ(ei)ρ(ei).

We do not require G to be semi-simple, though it indeed is in the case of interest. We do
not need the Killing form either. All we need is a basis of the Lie algebra.

Definition 11.8. Let M = G/K be a reductive homogeneous space with respect to m. We
view G as a K−principal bundle over M . We define the left invariant principal connection
of m to be the connection of which the horizontal distribution at g ∈ G is gm (viewed
as subspace of left invariant vector fields). On an associated bundle, the connection given
by this horizontal distribution is called the connection induced by m, or simply the induced
connection.

Definition 11.9. Let (M, 〈, 〉m) be a Killing reductive homogeneous space. A basis

Bg = (ei, i = 1...dimg)

for the Lie algebra g is called triply orthonormal if

• Bg is orthonormal with respect to a negative real scalar multiple of the Killing-form;

• the set of vectors Bk = (ei, i = 1 + dimm, ..., dimg) form a basis for the Lie algebra k
of K;

• the set of vectors Bm = (ei, i = 1, ..., dimm) form an orthonormal basis of m with
respect to 〈, 〉m.

In view of the above 3 definitions and the notation .̃ in Definition 11.5 for the invariant
function in terms of a section, we prove the formula for the rough Laplacian.

Formula 11.10. Let (M, 〈, 〉m) be a Killing reductive homogeneous space with a triply
orthonormal basis Bg for the Lie algebra g. Let ρ : K → GL(E) be a (real or complex)
representation of K. On the homogeneous bundle G×K,ρ E , the following holds with respect
to induced connection.

− ˜(∇?∇u) = (Cas
Bg
g,L − Cas

Bk
k,ρ)ũ.

Remark 11.11. The second operator CasBkk,ρ acts on the value of ũ.

Proof of Formula 11.10: Let Ỹ denote the horizontal lift of a tangent vector Y , the Kobayashi-
Nomizu formula [22, Vol I, Chap III, page 115] says that

[Ỹ (ũ)](g) = [∇̃Y u|gK ](g). (126)

For any ei ∈ m, the vector gei (the value of the left invariant vector field) at g is the horizontal
lift of [Adg(ei)]

? at gK, using the vanishing (122), we compute

− ˜(∇?∇u)(g) = ΣdimM
i=1 {[Adg(ei)]? · [Adg(ei)]?]ũ}(g) = ΣdimM

i=1 [R?(ei)R?(ei)ũ](g)

= ΣdimG
i=1 [R?(ei)R?(ei)ũ](g)− ΣdimG

i=1+dimM [R?(ei)R?(ei)ũ](g)

= [Cas
Bg
g,Rũ](g)− [CasBkk,Rũ](g). (127)
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For any g and ũ ∈ C∞(G, E), we compute

(Cas
Bg
g,R · ũ)(g) = [ΣdimG

i=1 R?(ei)R?(ei)ũ](g) =
d2

dsdt
|t=s=0ũ(g expsei exptei)

=
d2

dsdt
|t=s=0ũ(g expsei g−1 · g exptei g−1 · g) = ΣdimG

i=1 {[L?(Adgei)L?(Adgei)]ũ}(g)

= ΣdimG
i=1 {[L?(ei)L?(ei)]ũ}(g) (because Adg is an orthogonal transformation of g)

= (Cas
Bg
g,Lũ)(g) (128)

This means that on C∞(G, E) (not requiring K−invariance), the Casimir operator of the
right regular representation coincides with the Casimir of the left regular representation.

Because of the K−invariance of ũ, we have R(ei)ũ = −ρ(ei)ũ (acting on the value of ũ).
Hence

CasBkk,R · ũ = ΣdimK
i=1 R?(ei)R?(ei)ũ = ΣdimK

i=1 ρ?(ei)ρ?(ei)ũ = CasBkk,ρũ. (129)

Applying (128) and (129) to the two individual terms in (127), the desired formula is proved.

12 The standard connection on the homogeneous bun-

dle

[EndT 1,0(P2)](l)

The purpose of this section is to interpret EndT ′P2(l) as a homogeneous bundle over the
homogeneous space P2, and show that the twisted Fubini-Study connection corresponds to
the standard horizontal distribution mP2 defined in Section 12.0.1. Please see Proposition
12.3 for the main statement of this section.

12.0.1 The horizontal distribution mP2

Recall that P2 = SU(3)/S[U(1) × U(2)]. Let the subspace mP2 ⊂ su(3) be spanned by
the following 4 matrices.

e1 , X1 ,

 0 1 0
−1 0 0
0 0 0

 , e2 , Y1 ,

 0 i 0
i 0 0
0 0 0

 , (130)

e3 , X3 ,

 0 0 1
0 0 0
−1 0 0

 , e4 , Y3 ,

 0 0 i
0 0 0
i 0 0

 .
It admits a natural complex structure

JX1 = −Y1, JY1 = X1, JX3 = −Y3, JY3 = X3. (131)

Then mP2 is naturally isomorphic to m
(1,0)

P2 (the (1, 0)−part of the complexification of mP2).
The isomorphism is given by the natural injection mP2 → mP2⊗C composed by the projection
to the (1, 0)−part. m

(1,0)

P2 is spanned by the vectors

s1 =
1

2
(X1 + iY1), s2 =

1

2
(X3 + iY3). (132)

It is routine to verify that mP2 is preserved by AdS[U(1)×U(2)]. Thus, with respect to the
Fubini-Study metric and mP2 , P2 is a Killing reductive homogeneous space.

As complex vector bundles, the homogeneous bundle SU(3)×S[U(1)×U(2)],ad m
(1,0)

P2 is
SU(3)−equivariantly isomorphic to the holomorphic tangent bundle T 1,0(P2).
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12.1 Interpreting the line bundle O(l)→ Pn as an associated bundle

SU(n + 1) acts on Cn+1 \ O i.e. the total space of O(−1). Let S[U(1) × U(n)] denote

the subgroup of block-diagonal matrices of the form


e
√
−1θ 0 ... 0
0 . . .
... . . .
0 . . .

. A natural group

homorphism τS : S[U(1)×U(n)]→ U(1) maps a matrix in S[U(1)×U(n)] to its (1, 1)−entry.
For any integer l, let ρl denote the 1−dimensional complex representation of U(1) i.e.

ρl(e
√
−1θ) = e

√
−1lθ ∈ GL(1,C). Abusing notation, we still let ρl denote the S[U(1) × U(n)

representation ρl · τS.
As a homogeneous space, SU(n+1)/S[U(1)×U(n)] is Pn, via the action of SU(n+1) on the

base point o ,

 1
...
0

 ∈ Pn. The universal bundle O(−1)→ Pn is SU(n + 1)−equivariantly

isomorphic to the homogeneous bundle

SU(n+ 1)×S[U(1)×U(n)],ρ1 C.

For any integer l, O(l)→ Pn is SU(n+ 1)−equivariantly isomorphic to

SU(n+ 1)×S[U(1)×U(n)],ρ−l C.

12.2 Characterizing the connection of interest

The main proposition of Section 12 is a direct corollary of the following two lemmas
addressing the horizontal distribution corresponding to the standard SU(3)−invariant con-
nections.

Lemma 12.1. Via the SU(3)−equivariant isomorphism

SU(3)×S[U(1)×U(2)],ρ1 C = O(−1)→ P2,

the connection induced by mP2 corresponds to the standard connection (see Definition 6.1).

Lemma 12.2. Via the SU(3)−equivariant isomorphism

SU(3)×S[U(1)×U(2)],Ad m
(1,0)

P2 = T ′P2,

the connection induced by mP2 corresponds to the Fubini-Study connection.

The proof of the above two Lemmas is deferred to Appendix 17.8 and 17.9. We are ready
for our main proposition about the standard connection on [EndT 1,0(P2)](l), which indicates
that P2 is the natural one to work on.

Proposition 12.3. On the homogeneous bundle [EndT 1,0(P2)](l), the tensor product of the
Fubini-Study connections (on T 1,0(P2) and its dual) and the standard connection on O(l) is
induced by the horizontal distribution mP2.

Proof of Proposition 12.3: Using Lemma 12.1, the standard connection on O(l) → P2, ob-
tained by the dual and/or tensor product of the standard connection on O(−1), is induced
by mP2 . Using Lemma 12.2, the associated connection on the holomorphic co-tangent bundle
Ω1

P2 , therefore the (tensor product) Fubini-Study connection on [EndT 1,0(P2)], are induced
by mP2 . Then the tensor product connection on [EndT 1,0(P2)](l) is induced by mP2 .
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13 Representation theory of SU(3) and S[U(1)× U(2)]
From here to the end of Section 13, given a vector space V , the symbol |V means “as an

endomorphism of V ” or “as a representation on V ”.

13.1 The representation of S[U(1)× U(2)] on End0m
(1,0)
P2 ⊗ C and its

“Casimir” operator

The purpose of this section is to prove Formula 13.5 on the Casimir operator of the
subgroup S[U(1)× U(2)] of SU(3) (see Section 12.1 for the definition of the subgroup).

As a subgroup of SU(3), the Lie algebra of S[U(1)× U(2)] is spanned by

e5 , Ĥ1 ,
1√
3

 2i 0 0
0 −i 0
0 0 −i

 , e6 , H2 ,

 0 0 0
0 i 0
0 0 −i

 , (133)

e7 , X2 ,

 0 0 0
0 0 1
0 −1 0

 , e8 , Y2 ,

 0 0 0
0 0 i
0 i 0

 .
Definition 13.1. Let Bs[u(1)×u(2)] , {e5, e6, e7, e8} be the basis for the Lie algebra
s[u(1)× u(2)] of S[U(1)× U(2)].

Remark 13.2. SU(2) is isomorphic to the subgroup in S[U(1) × U(2)] of block diagonal
matrices with (1, 1)−entry equal to 1. Henceforth, let SU(2) denote this subgroup, whose
Lie algebra is spanned by H2, X2, Y2 (e6, e7, e8). We denote this basis by Bsu(2).

The first columns of (e1, e2, e3, e4) form an orthonormal set of vectors in R6 (see (130)).
Thus in view of the formula for the Euclidean metric (Kähler form) ωC3 in Table (173), it is
straight forward to verify that the quadruple (e1, e2, e3, e4) is an orthonormal basis of the
inner product 〈 , 〉mP2

induced by the Fubini-Study form dη
2

.
Let Bsu(3) denote the basis (ei, i = 1...8) of su(3). According to the previous paragraph,

it is triply orthonormal on P2. That Ĥ1 is of the form in (133) is important for this triple
orthogonality.

Let Vd be the space of all degree 2 homogeneous polynomials of 2−complex variables. Let
ρVd : su(2) → gl(Vd) be the irreducible representation of su(2) on Vd. With respect to the
notation convention in Definition 11.7, the Casimir operator obeys the following formula

Cas
Bsu(2)
su(2),Vd

= −(d2 + 2d)Id|Vd . When d = 2, Cas
Bsu(2)
su(2),V2

= −8Id|V2 . (134)

We routinely verify the following identities on adsu(2)|m(1,0)

P2
.

[H2, s1] = is1, [H2, s2] = −is2, [X2, s1] = −s2, [X2, s2] = s1, [Y2, s1] = is2, [Y2, s2] = is1.
(135)

Therefore, under the basis (s1, s2) of m
(1,0)

P2 , the representation adsu(2) is given by

adH2 · (s1, s2) = (s1, s2)

[
i 0
0 −i

]
, adX2 · (s1, s2) = (s1, s2)

[
0 1
−1 0

]
(136)

adY2 · (s1, s2) = (s1, s2)

[
0 i
i 0

]
.

Let an element in su(2) be represented by its lower block 2×2 (which is exactly the standard
form of su(2)), the above identities mean that under the basis (s1, s2), adsu(2)|m(1,0)

P2
is the

standard representation of su(2).

Based on the above discussion, we can characterize End0m
(1,0)

P2 as an su(2)−representation.
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Lemma 13.3. In view of Remark 13.2, the su(2) representation on End0m
(1,0)

P2 inherited
from s[u(1)× u(2)] is 3−dimensional and irreducible. Consequently, it is equivalent to ρV2.

Proof of Lemma 13.3: Because adsu(2)|m(1,0)

P2
is equivalent to the standard representation of

su(2) (see (136)), it suffices to show that the su(2)−representation on End0C2 induced by
the standard representation is irreducible. Firstly, it extends complex linearly to the adjoint
representation of sl(2,C) which is simple. Thus the adjoint action must be irreducible, and
is so as a su(2)−representation.

To find the Casimir operator of S[U(1) × U(2)], it remains to understand the adjoint

action of e5 = Ĥ1 on m
(1,0)

P2 .

Lemma 13.4. adĤ1
|
m

(1,0)

P2
= −
√

3iId|
m

(1,0)

P2
.

Proof of Lemma 13.4: We straight-forwardly verify the following.

[Ĥ1, X1] =
√

3Y1, [Ĥ1, Y1] = −
√

3X1, [Ĥ1, X3] =
√

3Y3, [Ĥ1, Y3] = −
√

3X3.

Then [Ĥ1, s1] = −
√

3is1, [Ĥ1, s2] = −
√

3is2.

The representation of su(2) on C is trivial, we compute the su(2)−Casimir on the repre-
sentation of interest.

Σ8
i=6[(ad⊗ ρ−l)?(ei)(ad⊗ ρ−l)?(ei)]|End0m(1,0)

P2
⊗C = −8Id|

End0m
(1,0)

P2
⊗C.

Elementary calculation yields the action of e5 via ρl:

ρ−l(e5)|C = − 2li√
3
Id|C, consequently [ρ−l(e5)ρ−l(e5)]|C = −4l2

3
Id|C. (137)

On the other hand, Lemma 13.4 says that ade5 |m(1,0)

P2
is a (complex) scalar multiple of the

identity. Thus ade5|End0m(1,0)

P2
= 0. We obtain

[(ad⊗ ρ−l)?(e5)(ad⊗ ρ−l)?(e5)]|
End0m

(1,0)

P2
⊗C = Id

End0m
(1,0)

P2
⊗ [ρ−l,?(e5)ρ−l,?(e5)C]

= −4l2

3
Id|

End0m
(1,0)

P2
⊗C. (138)

Combining (137) and (138), we arrive at the desired Casimir.

Formula 13.5.

Cas
Bs[u(1)×u(2)]
s[u(1)×u(2)],ad⊗ρ−l |End0m(1,0)

P2
⊗C , Σ8

i=5[(ad⊗ ρ−l)?(ei)(ad⊗ ρ−l)?(ei)]|End0m(1,0)

P2
⊗C

= (−8− 4l2

3
)Id|

End0m
(1,0)

P2
⊗C. (139)

13.2 The translation between two conventions of SU(3)−representations

Let W1,0 be the standard representation of su(3) on C3, and W0,1 be the dual represen-
tation of W1,0. Let Wa,b be the irreducible representation generated by the highest weight
vector in the tensor product representation W⊗a

1,0 ⊗W⊗b
0,1 (see [16, II.5]). Any irreducible rep-

resentation of su(3) is equivalent to Wa,b for some integer a, b ≥ 0 (W0,0 is the 1−dimensional
trivial representation).
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Notation Convention 13.6. In [18], a SU(3) irreducible representation is labelled by an

integer linear combination of the two weights x?1, x
?
2. We denoted it by V

SU(3)
m1x?1+m2x?2

, and this

is said to be the Ikeda-Taniguchi convention. In [18], such integer linear combinations also

label the irreducible S[U(1)× U(2)]−representations. We denote it by V
S[U(1)×U(2)]
k1x?1+k2x?2

.

We need the following translation from the Ikeda-Taniguchi convention to the (usual)
Wa,b−convention.

Lemma 13.7. The irreducible representation Wa,b of SU(3) is isomorphic to Ikeda-Taniguchi’s

V
SU(3)

(a+b)x?1+bx?2
.

Proof of Lemma 13.7: It is an algebra exercise to verify that in Ikeda-Taniguchi convention,
the standard representation W1,0 of su(3) has highest weight x?1, the dual representation W0,1

has highest weight −x?3, which is equal to x?1 +x?2. The highest weight of a (possibly multiple)
tensor product of irreducible su(3)−representations is the sum of the highest weight of each
one. Thus, the highest weight of W⊗a

1,0 ⊗W⊗b
0,1 (in Ikeda-Taniguchi convention) is ax?1 − bx?3,

which equals (a+ b)x?1 + bx?2. Because Wa,b is the irreducible representation generated by the
highest weight vector in W⊗a

1,0 ⊗W⊗b
0,1 , the highest weight of Wa,b is the same i.e. (a+b)x?1+bx?2.

13.3 The irreducible S[U(1)×U(2)]−representation End0m
(1,0)
P2 ⊗C in

Ikeda-Taniguchi convention

The Cartan sub-algebra Υsu(3) of su(3) consists of diagonal traceless matrices with purely
imaginary diagonal entries. Let x?i maps any matrix in Υsu(3) to its i−th diagonal entry.
Then x?1, x

?
2, x

?
3 are roots. They are subject to the relation x?1 + x?2 + x?3 = 0. According to

[18, Section 5, Page 529], the partial ordering is determined by

x?1 > x?2 > 0 > x?3.

Moreover, m
(1,0)

P2 has highest weight x?2 − x?1, and the dual m
(1,0),?

P2 has highest weight x?1 − x?3
(see [18, page 532, (iii)]). Then the highest weight of Endm

(1,0)

P2 = m
(1,0)

P2 ⊗m
(1,0),?

P2 is x?1 + 2x?2:

the sum of the highest weights of m
(1,0)

P2 and m?
P2 .

Lemma 13.8. The tensor product representation

Ad⊗ ρ−l : S[U(1)× U(2)]→ GL(End0m
(1,0)

P2 ⊗ C)

is equivalent to V
S[U(1)×U(2)]

(−l+1)x?1+2x?2
.

Proof of Lemma 13.8: Because S[U(1)×U(2)] is a subgroup of SU(3) having the same Cartan

sub-algebra Υsu(3), the highest weight on End0m
(1,0)

P2 is the same as the highest weight as a
SU(3)−representation, which is equal to x?1 + 2x?2. Because C is 1−dimensional, the only
weight for ρ−l is −lx?1. Then in Ikeda-Taniguchi convention, the representation Ad ⊗ ρ−l is

denoted by V
S[U(1)×U(2)]

(−l+1)x?1+2x?2
.

13.4 The infinite dimensional SU(3)−representation of invariant
functions

Using the translation in (13.7) between two different conventions, we re-state the result
of Ikeda-Taniguchi in the following.
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Fact 13.9. (Ikeda-Taniguchi [18, Proposition 5.1, Proposition 1.1])
Let l be an integer, and let a, b be nonnegative integers. Wa,b appears as an irreducible

summand in C∞S[U(1)×U(2)],Ad⊗ρ−l(SU(3), End0m
(1,0)

P2 ⊗ C) if and only if

max(3− a− 2b, b− a− 3) ≤ l ≤ min(2a+ b− 3, 3 + b− a). (140)

Proof of Fact 13.9: The representation SU(3)−representation Wa,b is also a representation of
the subgroup S[U(1)×U(2)] by restriction. The Frobenius reciprocal theorem (for example,
see [18, Proposition 1.1])) implies that the following two conditions are equivalent.

• As SU(3)−representations, Wa,b appears as an irreducible summand in

C∞S[U(1)×U(2)],Ad⊗ρ−l(SU(3), End0m
(1,0)

P2 ⊗ C).

• As S[U(1)×U(2)]−representations, (End0m
(1,0)

P2 ⊗C, Ad⊗ρ−l) appears as an irreducible
summand in Wa,b.

It suffices to determine for which a, b the latter happens.
[18, Proposition 5.1] states that V

S[U(1)×U(2)]
k1x?1+k2x?2

appear as an irreducible summand in V
SU(3))
m1x?1+m2x?2

if and only if the following holds.

m1 ≥ k2 + k ≥ m2 ≥ k ≥ 0, and k1 = m1 +m2 − k2 − 3k. (141)

Because of Lemma 13.7 and 13.8, to verify the second bullet point above, it suffices to let
m1 = a+ b, m2 = b, k1 = −l + 1, k2 = 2. Then the second bullet point holds if and only if

a+ b ≥ 2 + k ≥ b ≥ k ≥ 0, and 3k = a+ 2b− 3 + l. (142)

Elementary calculation shows (142) is equivalent to (140).

14 Proof of Theorem C and D

In conjunction with the notation convention in Definition 11.7 above, the known formula
for the quadratic Casimir operator of su(3) states:

Formula 14.1. Cas
Bsu(3)
su(3),Wa,b

= Σ8
i=1(ei|Wa,b

) · (ei|Wa,b
) = (−4

3
a2 − 4

3
b2 − 4a− 4b− 4

3
ab)Id.

The tools at our disposal now can be assembled to achieve our goal.

14.1 Theorem D

Proof of Theorem D. We first prove Theorem D.(115). It is a direct corollary of Fact
13.9 on the irreducible summand of the infinite dimensional representation, Formula 14.1 for

the Casimir operator of su(3), Formula 13.5 for Cas
Bs[u(1)×u(2)]
s[u(1)×u(2)],ad⊗ρ−l , and the general Formula

11.10 for rough Laplacian on a homogeneous bundle over a Killing reductive homogeneous
space.

Because of the SU(3)−equivariant isomorphism:

(End0T
′P2)(l)→ SU(3)×S[U(1)×U(2)],Ad⊗ρ−l [(End0m

(1,0)

P2 )⊗ C],

the general formula 11.10 for G = SU(3), K = S[U(1)× U(2)], and ρ = Ad⊗ ρ−l says that
the spectrum of the rough Laplacian is equal to the spectrum of

−CasBsu(3)su(3),L + Cas
Bs[u(1)×u(2)]
s[u(1)×u(2)],Ad⊗ρ−l (143)
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on the space C∞S[U(1)×U(2)],Ad⊗ρ−l(SU(3), End0m
(1,0)

P2 ⊗ C) of invariant functions.

On the whole C∞S[U(1)×U(2)],Ad⊗ρ−l(SU(3), End0m
(1,0)

P2 ⊗ C), by Formula 13.5,

Cas
Bs[u(1)×u(2)]
s[u(1)×u(2)],Ad⊗ρ−l acts by −(4

3
l2 + 8)Id. In the Peter-Weyl formulation (see the presenta-

tion in [29, Section 5.1]), as SU(3)−representations, on each irreducible summand Wa,b of

C∞S[U(1)×U(2)],Ad⊗ρ−l(SU(3), End0m
(1,0)

P2 ⊗C), Formula 14.1 says that the action of −CasBsu(3)su(3),L

is the scalar multiplication by 4
3
(a2 + b2 + ab+ 3a+ 3b)Id. Then on the irreducible summand

Wa,b, the action of the Casimir (143) is the scalar multiplication by

4

3
(a2 + b2 + ab+ 3a+ 3b)− 4

3
l2 − 8.

Fact 13.9 says that Wa,b appears as an irreducible summand if and only if the condition
on the right side of (115) holds. The proof of Theorem D.(115) is complete.

Hence, Theorem D.(116) directly follows from the spectral splitting in Formula 8.3 and
Theorem D.(115): we only need to add l2 to the 4

3
(a2 + b2 + ab+ 3a+ 3b)− 4

3
l2 − 8 in (115).

Next, we address the multiplicities. It is evident from the first 4 paragraphs in the
underlying proof that the eigenspace of any λl ∈ Spec∇?∇|(End0T ′P2)(l)→P2 is isomorphic to
the direct sum of all those Wa,b such that

• Wa,b is a summand in C∞S[U(1)×U(2)],Ad⊗ρ−l(SU(3), End0m
(1,0)

P2 ⊗C) i.e. the conditions for

a, b, on the right side of (115) holds;

• the value of 4
3
(a2 + b2 + ab+ 3a+ 3b)− 4

3
l2 − 8 is equal to λl.

In the terminology of Theorem D , the above means that (a, b) ∈ Slλl . The proof of Theorem
D .(117) is complete.

Hence, Theorem D .(118) follows by (117), and the spectral splitting (74) counting mul-
tiplicity.

14.2 Theorem C

Theorem C can be proved using Theorem D, A, and the following Lemma on cohomology.

Lemma 14.2. h1[P2, (EndT ′P2)(l)] =

{
3 if l = −1 or − 2,
0 otherwise.

Consequently, h0[P2, (End0T
′P2)(l)] =

{
3l(l+3)

2
if l > 0,

0 if l ≤ 0.

The proof of Lemma 14.2 is completely routine via Euler sequence and Bott formula for
sheaf cohomology on Pn (see [31]). We defer it to Appendix 17.5.

Proof of Theorem C:. Under the setting of Theorem A,EndE = End(T ′P2) (as pullbacks)
is equipped with the pullback Fubini-Study connection. Lemma 14.2 means that except when
l 6= −1 or −2, the sheaf cohomology has no contribution to SpecP . On the other hand, The-
orem D addresses the source Spec∇?∇|S5 of the other part of SpecP .

We need the fact that any Wa,b appears in the infinite-dimensional representation at most
once. This is because the representation of the associated bundle is irreducible (see Lemma
13.8). Please see the Frobenius reciprocal theorem (stated in [18, Proposition 1.1]), and also
[18, Proposition 5.1].

We seek for those eigenvalues of ∇?∇|S5 that is strictly less than 8. When l ≥ 3, because
of the “+l2” in Formula 8.3.(74), the eigenvalues of ∇?∇|S5 generated are ≥ 9. Thus, it
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suffices to assume −2 ≤ l ≤ 2 and seek for those eigenvalues of ∇?∇|(End0T ′P2)(l)→P2 that is
strictly less than 8.

Under the conditions on a, b in Theorem D.(115), elementary calculation shows that this
can only happen for the following values of l, a, b.

• l = 0, (a, b) = (1, 1). In this case, the corresponding eigenvalue of ∇?∇|End0T ′P2 is 4,
the eigenspace is isomorphic to W1,1.

• l = 1, (a, b) = (2, 0). In this case, the corresponding eigenvalue of ∇?∇|(End0T ′P2)(1) is
5, the eigenspace is isomorphic to W2,0.

• l = −1, (a, b) = (0, 2). In this case, the corresponding eigenvalue of ∇?∇|(End0T ′P2)(−1)

is 5, the eigenspace is isomorphic to W0,2.

Then, still according to Formula 8.3.(74), the above three cases generate the numbers 4
and 5 in Spec∇?∇|S5 . The multiplicity of 4 is equal to dimW1,1 = 8, the multiplicity of 5 is
equal to dimW2,0 + dimW0,2 = 12. The former generates the following values in SpecP .

2
√

2− 1, 2
√

2− 2, −1− 2
√

2, −2− 2
√

2,

The latter generates the following values in SpecP .

1, 2, −4, −5.

Among the above 8 numbers, 2
√

2− 2 and 1 are the only ones in the interval (0, 1]. Because
2
√

2−2 is not an integer, its multiplicity is 16 i.e. twice of the multiplicity of 4 ∈ Spec∇?∇|S5 .
The other number 1 is an integer, in view of Lemma 14.2, the multiplicity is

2dimE5(∇?∇|S5)− 2h0[P2, (End0T
′P2)(1)] = 24− 12 = 12.

The proof of Table (4) is complete. This is a sample of how the multiplicity of each
eigenvalue of P is determined.

15 Index of the deformation of a stable reflexive sheave

on a Calabi-Yau 3−fold

The operator P and Hermitian Yang-Mills connections with isolated singularities

In general dimensions, we do not know whether the linearization of Hermitian Yang-Mills
connection is formally self-adjoint. Neverthelessr, there is a self adjoint formulation on a
compact Calabi-Yau 3−fold (X,ω,Ω).

On a Hermitian vector bundle over the Calabi-Yau, a triple (A, σ, u) consisted of a smooth
unitary connection A and two smooth sections σ and u of the adjoint bundle is called a
Hermitian Yang-Mills monopole if it satisfies the following equations.

FAyReΩ + dAσ − J(dAu) = 0, FAyω = 0.

The global linearized operator is

�CY 3

 σ
u
a

 =

 d?Aa
dAayω

dAσ − J(dAu) + (dAa)yReΩ

 ,
which is apparently self-adjoint because Ω is closed.
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Let F be an admissible stable reflexive sheaf over the Calabi-Yau 3−fold, such that that
near any possible singular point, under a punched coordinate neighborhood biholomorphic
to BO(1) \ O, the sheaf is locally free and is the pullback of a non-projective flat polystable
holomorphic vector bundle E over P2. Bando-Siu [2] proved the existence of an admissible
Hermitian Yang-Mills connection on such a sheaf. Jacob-Sá Earp-Walpuski [19] showed
that the induced projective connection is asymptotic to a projective Hermitian Yang-Mills
connection on E → P2.

Near a (nontrivial) singular point defined as above, with gauge fixing and two monopole
terms and under model data, the model linearized operator on EndE → C3 \O is

� = K ◦ (
∂

∂r
− P

r
) (see (4.1)).

This is part of the linearization of G2−instantons (see Formula 4.1 and (181)). Under the
cylindrical coordinate

t = − log r, r is the distance to the origin O,

we find

� = −etK ◦ (
∂

∂t
+ P ).

This fits into the setting of translation-invariant operators considered classically by Atiyah-
Patodi-Singer [1].

Index of the operator between weighted Schauder spaces

Under the usual weighted Schauder spaces on adE⊕2⊕Ω1(adE)→ CY 3 \∪jOj (see [42]),
let δ > 0, the linearized operator

� : C
1, 1

2
1−δ → C

0, 1
2

2−δ (suppressing the bundles) is bounded. (144)

Then convention is that |ξ|euc = O( 1
r1−δ

) if ξ belongs to the domain C
1, 1

2
1−δ. This deformation

is supposed to preserve the tangent connection at the singular point.
The inner product between 1−forms under the Euclidean metric on C3 is 1

r2
times that

under the cylindrical metric dt2+gS5 on C3\O. Hence, the domain C
1, 1

2
1−δ is equal to C

1, 1
2

δ,cyl under

cylindrical coordinate and norm in which sections decay as O(e−δt). The conformal changed

target space r · C0, 1
2

2−δ is equal to C
0, 1

2
δ,cyl in which sections decay also as O(e−δt). Comparing

to the weight change in (144), the advantage of cylindrical theory is that the weight for the
domain and target Schauder spaces are the same. Please see the Definition in [43, Section
2]. Namely,

r� = e−t� : C
1, 1

2
δ,cyl → C

1
2
δ,cyl is bounded under cylindrical coordinate (145)

with an unanimous weight eδt.
Using the regularity for harmonic sections [43, Proposition 4.5], the index of (145) there-

fore also of (144) is the same as that of the following simple weighted Sobolev-theory

e−t� : W 1,2
δ,cyl → L2

δ,cyl. (146)

The space of W k,2
δ,cyl is simply the conformal change eδtW k,2

cyl if we extend t to the interior by
0 (r by 1). Let gCY 3 be the metric of the Kähler form ω. The metric of conformal change

gcyl , r2gCY 3 = e−2tgCY 3
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is asymptotic cylindrical at the singular points of the sheaf. It has volume form

−e−6tdvolgcyl = dvolgCY 3 .

Proof of Theorem B. We calculate via the cylindrical coordinate change (144) that∫
CY 3\∪jOj

〈�CY 3·, ·〉gCY 3dvolgCY 3 =

∫
CY 3\∪jOj

〈e−t�CY 3 ·, ·〉gcyle−3tdvolgcyl (147)

That �CY 3 is formally self-adjoint is equivalent to that the conformal change e−t�CY 3 is
formally self-adjoint with respect to the inner product∫

CY 3\∪jOj
〈·, ·〉gcyle−3tdvolgcyl .

This means that in the cylindrical setting, the weight −3
2

is the one under which e−t�CY 3

is formally self adjoint. We notice that SpecmulP is indeed symmetric with respect to −3
2

in the sense of Theorem A multiplicities. Therefore, by the Lockhart-McOwen index change
formula [25, Theorem 6.2] and the observation for formally self adjoint asymptotic cylindrical
operators [25, proof of Theorem 7.4], if δ is positive and small enough with respect to the
gaps of SpecP , we find

Index|(146) = Σj{−2h1[P2, EndE(−1)]− 2h1[P2, EndE]}. (148)

Namely, formal self adjointness of e−t� with respect the measure e−3tdvolgcyl says

Index for weight eδt = − Index for weight e(−3−δ)t.

The index change formula says their difference

Index for weight e(−3−δ)t − Index for weight eδt

is the sum of the multiplicities of all eigenvalues between the two weights −3 − δ and
δ. Therefore Index|(146) is minus the half sum. Our Theorem A says the only possi-
ble eigen values in (−3 − δ, δ) are −1, −2 and 0,−3. Theorem A multiplicities says the
R−multiplicities of the former two are both Σj2h

1[P2, (EndEj)(−1)], and those of the latter
two are Σj2h

1[P2, (EndEj)] (R−dimension of the deformation space of E → P2). The sum of
the multiplicities of these 4 eigenvalues is Σj{4h1[P2, EndE(−1)] + 4h1[P2, EndE]}. Divide
it by 2, the proof of (148) is complete. Recall that

Index|(146) = Index|(144).

The proof of Theorem B is then complete.

16 Some remark on the projectively flat case

In our main Theorems A—D, non-projective flatness is assumed. However, in the gener-
ating force Theorem 9.2, we do not assume it. We are more interested in the non-projective
flatness of (E,A), because they represent nontrivial singularities.

If E,A is projectively flat and with rank ≥ 2, Vcoh = {0} i.e. the co-homologies vanish.
Moreover, EndE is just the trivial bundle with rank equal to the square of that of E, the
induced connection is trivial. Therefore, Spec∇?∇|S5 are just the spectrum of the usual
Laplace-Beltrami on P2 with Fubini-Study metric: the integers of the form

ι2 + 4ι, ι ∈ Z≥0.

We can obtain this formula via the tools herein, applied to the trivial bundle (connection)
and the one dimensional S[U(1)× U(2)] representations ρ−l that acts through U(1).
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17 Appendix

17.1 Elementary Sasakian geometry

Formula 2.5 and Lemma 2.6

Elementary calculations establish the formulas for η, G, H.

Proof of Formula 2.5: It suffices to check it in U0,C3 , the proof is similar in U1,C3 and

U2,C3 . We first have Z0
∂
∂Z1

= Z0Z̄1

2r
∂
∂r

+ ∂
∂u1

and Z0
∂
∂Z2

= Z0Z̄2

2r
∂
∂r

+ ∂
∂u2

. Using

η =
1

2
dc log(|Z0|2 + |Z1|2 + |Z2|2) (see definition (6)),

we find

η(
∂

∂u1

) = η(Z0
∂

∂Z1

) = −
√
−1ū1

2φ0

= −
√
−1

2

∂ log φ0

∂u1

. (149)

Similarly, we have η( ∂
∂u2

) = −
√
−1
2

∂ log φ0
∂u2

. Taking conjugation, we then obtain

η(
∂

∂ū1

) =

√
−1

2

∂ log φ0

∂ū1

, η(
∂

∂ū2

) =

√
−1

2

∂ log φ0

∂ū2

.

The proof is complete by observing that η coincides with dθ0 + dc log φ0
2

on the basis

∂

∂θ0

,
∂

∂u1

,
∂

∂u2

,
∂

∂ū1

,
∂

∂ū2

for TCS5.

Proof of Lemma 2.6: We routinely verify in U0,C3 that

dZ0

Z0

=
1

Z0

d(
re
√
−1θ0

√
φ0

) =
dr

r
− d log φ0

2
+
√
−1dθ0

=
dr

r
− d log φ0

2
+
√
−1η −

√
−1

2
(dc log φ0) by Formula 2.5.

When i = 1, 2, we calculate dZi
Z0

= d(Z0ui)
Z0

= dui + ui(
dZ0

Z0
). Then

ΩC3 = dZ0dZ1dZ2 = Z3
0 ·

dZ0

Z0

dZ1

Z0

dZ2

Z0

= Z3
0 ·

dZ0

Z0

∧ [du1 + u1(
dZ0

Z0

)] ∧ [du2 + u2(
dZ0

Z0

)].

= Z3
0 ·

dZ0

Z0

∧ du1 ∧ du2

= Z3
0 ·

dr

r
∧ du1 ∧ du2 +

√
−1Z3

0 · η ∧ du1 ∧ du2.

The last inequality above uses that d log φ0, d
c log φ0 are both pulled back from U0,P2 ⊂ P2,

therefore d log φ0 ∧ du1 ∧ du2 = dc log φ0 ∧ du1 ∧ du2 = 0.
In U0,C3 , the proof of (11) and the first row in (14) is complete. The proof is similar in

U1,C3 and U2,C3 .
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Transverse geodesic frame

For any point p ∈ S5 and X, Y ∈ D|p, the following is true.

∇Xξ = J0(X), ∇Xη = [J0(X)]], (∇2ξ)(X, Y ) = − < X, Y > ξ, (150)

(∇2η)(X, Y ) = − < X, Y > η. Consequently, ∇?∇η = 4η.

For the point-wise calculations in the proof of Lemma 4.3 and others, it is helpful to have
a transverse geodesic frame in the following sense.

Lemma 17.1. (Properties of a transverse geodesic frame) Let (xi, i = 1, ..., 4) be a Kähler
geodesic coordinate with respect to the Fubini-Study metric induced by dη

2
at (near) an ar-

bitrary point [p] ∈ P2. Then, for any β among 0, 1, 2 such that [p] ∈ Uβ,P2, the following
vector fields

[ξ; vi ,
∂

∂xi
− η(

∂

∂xi
)ξ, i = 1, 2, 3, 4]

is a frame near the Reeb orbit π−1
5,4[p], and is orthonormal on π−1

5,4[p]. Moreover, the following
holds on the Reeb orbit.

(∇vivi)|π−1
5,4[p] = 0, [∇vi(J0vi)]|π−1

5,4[p] = −ξ.

Near the Reeb orbit, we call the (vi, i = 1, 2, 3, 4) above a transverse geodesic frame. It
is generated by the geodesic coordinate on P2.

Proof of Lemma 17.1: We first show

[vi, vj] = [dη(
∂

∂xj
,
∂

∂xi
)]ξ. (151)

Because the Reed vector-field ξ is a coordinate vector field in Uβ,θβ for any β = 0, 1, or 2, we
have the vanishing

[ξ,
∂

∂xi
] = 0 for any i. (152)

Then we calculate

[vi, vj] = [
∂

∂xi
− η(

∂

∂xi
)ξ,

∂

∂xj
− η(

∂

∂xj
)ξ] = [− ∂

∂xi
η(

∂

∂xj
) +

∂

∂xj
η(

∂

∂xi
)]ξ

= [dη(
∂

∂xj
,
∂

∂xi
)]ξ. (153)

The proof of (151) is complete.
The vanishing (152) above implies the following vanishing.

[ξ, vi] = 0 for any i. (154)

The identity (151) implies that the Lie bracket of vi and vj is perpendicular to both vi and
vj. Then, using the Koszul formula [32, page 25], we find

2〈∇vivj, vk〉 = vi〈vj, vk〉 − vk〈vi, vj〉+ vj〈vk, vi〉. (155)

We recall the following formula for the standard metric on S5.

gS5 = π?5,4gFS + η ⊗ η. (156)
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Then (155) implies

2〈∇vivj, vk〉 =
∂

∂xi
〈 ∂
∂xj

,
∂

∂xk
〉P2 − ∂

∂xk
〈 ∂
∂xi

,
∂

∂xj
〉P2 +

∂

∂xj
〈 ∂
∂xk

,
∂

∂xi
〉P2

= 2〈∇FS
∂
∂xi

∂

∂xj
,
∂

∂xk
〉P2 = 2〈∇FS

π5,4,?vi
π5,4,?vj, π5,4,?vk〉P2

= 2〈(π?5,4∇FS)vivj, vk〉 (157)

Moreover, the Lie bracket identity (154) and the Koszul formula yield that

2〈∇vivj, ξ〉 =< [vi, vj], ξ >= dη(
∂

∂xj
,
∂

∂xi
). (158)

Thus the identities (157) and (158) yield

∇vivj = (π?5,4∇FS)vivj + ξ[
dη

2
(vj, vi)]. (159)

Via the tangent map π5,4,?D → TP2 which is an isometry, we verify that J0 = π?5,4JP2 .

This implies that J0v1 = v2, J0v3 = v4, because JP2
∂
∂x1

= ∂
∂x2
, JP2

∂
∂x3

= ∂
∂x4

. Using that

(∇FS
∂
∂xi

∂
∂xj

)|[p] = 0, the following holds true.

∇vi(J0vi) = (π?5,4∇FS)viJ0vi + ξ[
dη

2
(J0vi, vi)] = ∇FS

∂
∂xi

(JP2

∂

∂xi
) + ξ[

dη

2
(J0vi, vi)]

= −ξ on the Reeb orbit π−1
5,4[p]. (160)

Similarly, we compute

(∇vivi)|q = 0 + ξ[
dη

2
(vi, vi)]|q = 0.

The proof is complete.

The transverse geodesic frame helps in proving the following two formulas which are
applied in the proof of the Bochner formulas (see Lemma 5.4 above).

Formula 17.2. In the setting of Lemma 5.4, (∇?∇a0)(ξ) = 2d?00 J0(a0).

Proof of Formula 17.2. : Using that a0 is semi-basic i.e. a0(ξ) = 0, Leibniz-rule yields

0 = (∇?∇)[a0(ξ)] = (∇?∇a0)(ξ)− 2tr(∇a0 ⊗∇ξ) + a0(∇?∇ξ). (161)

Because ∇?∇ξ = 4ξ (see (151)), we find a0(∇?∇ξ) = 0, hence

(∇?∇a0)(ξ) = 2tr(∇a0 ⊗∇ξ). (162)

Therefore, at an arbitrary p ∈ S5, let vi be a transverse geodesic frame given by Lemma
17.1, using ∇ξξ = 0, we compute

2tr(∇a0 ⊗∇ξ)|p = 2Σ4
i=1(∇via0)(∇viξ)|p = 2Σ4

i=1(∇via0)(J0vi)|p
= (2Σ4

i=1∇vi [a0(J0vi)]− 2a0[Σ4
i=1∇vi(J0vi)])|p = 2Σ4

i=1∇vi [a0(J0vi)]|p
= −2Σ4

i=1∇vi [(J0a0)(vi)]|p
= 2d?00 J0(a0)|p. (163)

The proof is complete by the above two identities.
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Formula 17.3. In the setting of Lemma 5.4, [∇?∇(ηaη)] = η(4aη +∇?∇aη)− 2J0(d0aη).

Proof of formula 17.3: We still work with a transverse geodesic frame vi (i = 1, 2, 3, 4) at an
arbitrary p ∈ S5. Using the fundamental identities (151), we calculate

∇?∇(aηη) = (∇?∇aη)η + aη∇?∇η − 2tr(∇aη ⊗∇η) (164)

= (∇?∇aη)η + 4aηη − 2tr(∇aη ⊗∇η).

In view of the local formula (25) for d0aη, the transverse geodesic frame yields

(∇viaη)dx
i|p = (d0aη)|p. (165)

Using the vanishing ∇ξη = 0 and the formula ∇Xη = [J0(X‖0)]], the trace term in the above
identity can be additionally analyzed as follows.

tr(∇aη ⊗∇η)|p = [Σ4
i=1∇viaη ⊗∇viη + Lξaη ⊗∇ξη]|p = [Σ4

i=1∇viaη ⊗∇viη]|p
= J0(dxi)(∇viaη)|p
= J0(d0aη)|p by (165).

The desired identity follows.

17.2 The usual separation of variable: proof of Formula 4.1

Proof of Formula 4.1. It is completely routine. To be self-contained, we still show the
detail. In view of the splitting (28), we find

dC3×S1aC3×S1 = (dC3as) ∧ ds+ dC3aC3 − ∂aC3

∂s
∧ ds (166)

and d
?C3×S1

C3×S1 aC3×S1 = −∂as
∂s

+ d
?C3
C3 aC3 . Using

?C3×S1 [dC3×S1aC3×S1 ∧ ψC3×S1 ] = (dC3×S1aC3×S1)yC3×S1φC3×S1 ,

it suffices to calculate the right side of (166) term-wisely as follows.

(dC3×S1aC3×S1)yC3×S1(ωC3 ∧ ds) = −(dC3as)yC3ωC3 + (dC3aC3yC3ωC3)ds+
∂aC3

∂s
yC3ωC3 . (167)

(dC3×S1aC3×S1)yC3×S1ReΩ = (dC3aC3)yC3ReΩ. (168)

The contraction yC3ωC3 is the complex- structure JC3 on Ω1[ad(E)]. Summing (167) and
(168) up, we arrive at the following.

(dC3×S1aC3×S1)yC3×S1φC3×S1

= −JC3(dC3as) + (dC3aC3yC3ωC3)ds+ JC3(
∂aC3

∂s
) + (dC3aC3)yC3ReΩ.

Using the above, the easy identity dC3×S1σ = (∂σ
∂s

)ds+dC3σ, and definition (27) of LA,φC3×S1
,

we obtain the following.

LA,φC3×S1

[
σ

asds+ aC3

]
=

 −∂as
∂s

+ d
?C3
C3 aC3

{∂σ
∂s

+ (dC3aC3)yC3ωC3}ds+
JC3(

∂aC3
∂s

) + dC3σ − JC3(dC3as) + (dC3aC3)yC3ReΩ

 .
The desired formula follows.
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17.3 The fine separation of variable: proof of Lemma 4.3

We prove Lemma 4.3 by computing each row in the operator � (see Formula 4.1). We
first recall the following splitting.

aC3 = a0 + (aηη) + ar
dr

r
. (169)

Given a section a of ∧pT ?S5 and a section b of ∧qT ?S5 such that 5 ≥ q ≥ p, we need the
following identity.

ayC3b =
1

r2p
ayS5b.

Employing the splitting

dC3 = d0 + η ∧ Lξ + dr ∧ L ∂
∂r
, (170)

we find

dC3aC3 = d0a0 + (2aη)
dη

2
+ η ∧ (Lξa0 − d0aη) +

dr

r
∧ (r

∂a0

∂r
− d0ar)

+(
dr

r
∧ η)(r

∂aη
∂r
− Lξar). (171)

Via the splitting (170), using σ = u
r
, as = as

r
, we routinely verify the following two

identities.

dC3σ =
d0u

r
+
η ∧ Lξu

r
+ (

∂u

∂r
− u

r
)
dr

r
; dC3as =

d0as
r

+
η ∧ Lξas

r
+ (

∂as
∂r
− as

r
)
dr

r
. (172)

Employing the table for the forms:

ωC3 = rdr ∧ η + r2dη
2

dV olP2 = 1
2
(dη

2
)2

dV olS5 = η ∧ dV olP2

dV olC3 = r5dr ∧ η ∧ dV olP2

(173)

via (172), the contraction is

(dC3as)yC3ωC3 =
1

r
d0asy

dη

2
− Lξas

r

dr

r
+ (

∂as
∂r
− as

r
)η.

Employing the commutators (21) and formula (171) for dC3aC3 , we verify

dC3aC3yC3ReΩC3 (174)

=
dr

r
· d0a0yH

r
+ η · d0a0yG

r
+

1

r
[Lξ(JGa0) + 3JH(a0)− JG(d0aη)] + (

∂

∂r
JHa0)− JH(d0ar)

r
.

Assembling i (172), (174), (174), we describe row 3 of the operator �.

Formula 17.4. In view of Formula 4.1, on the third row of the operator �, we have

dC3σ − (dC3as)yωC3 + dC3aC3yC3ReΩC3

=
dr

r
· [∂u
∂r
− u

r
+
Lξas
r

+
d0a0yH

r
] + η · [−∂as

∂r
+
as
r

+
Lξu

r
+
d0a0yG

r
]

+
1

r
[d0u− J0(d0as) + Lξ(JGa0) + 3JH(a0)− JG(d0aη) + r

∂

∂r
(JHa0)− JH(d0ar)].
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Next, we calculate the first and second row of �.

Formula 17.5. The following two identities hold.

d
?C3
C3 aC3 = −1

r

∂ar
∂r
− 4ar

r2
− Lξaη

r2
+
d?00 a0

r2
. (175)

dC3aC3yC3ωC3 =
1

r2
d0a0y

dη

2
− Lξar

r2
+

1

r

∂aη
∂r

+
4aη
r2
. (176)

In particular, under the splitting aS5 = aηη + a0,

d
?S5
S5 aS5 = −Lξaη + d?00 a0. (177)

Proof of Formula 17.5: The volume forms in table (173) imply the following two identities.

?C3η = −r3dr ∧ dV olP2 , ?C3a0 = r3dr ∧ η ∧ ?0a0. (178)

Since dη is a section of ∧(1,1) ⊗D?, but G is a section of [∧(2,0) ⊕∧(0,2)]⊗D?−valued, we
find the following vanishing

(dη)y(G ∧ η) = 0. (179)

Using the above 3 elementary identities, we calculate d
?C3
C3 aC3 according to the 3−terms

in the fine splitting (169). First, we verify

d
?C3
C3 (ar

dr

r
) = − ?C3 dC3 ?C3 (ar

dr

r
) = −1

r

∂ar
∂r
− 4ar

r2
.

On the contact form component, we verify

d
?C3
C3 (aηη) = ?C3dC3(aηr

3dr ∧ dV olP2) = Lξaη ?C3 (r3η ∧ dr ∧ dV olP2) = −Lξaη
r2

.

On the semi-basic 1−form a0, we verify

d
?C3
C3 a0 = − ?C3 dC3(r3dr ∧ η ∧ ?0a0) = − ?C3 (r3dr ∧ η ∧ d0 ?0 a0) =

d?00 a0

r2
.

Identity (175) follows simply by summing up the above 3.
Because dC3aC3yC3ωC3 = d

?C3
C3 JC3aC3 , using

JC3(ar
dr

r
+ aηη + a0) = arη − aη

dr

r
+ J0a0,

identity (176) follows from (175) replacing aη by ar, ar by −aη, and a0 by J0a0 therein.

The formulas established so far can be assembled into the desired formula of P .

Proof of Lemma 4.3: Still in view of Formula 4.1, it is natural to classify the terms in
the fine splitting of � into 3 kinds of terms: those only involving ∂

∂r
(derivative in r), those

only involving Lξ (derivative along the Reeb vector field), and those only involving d0.
We carry out the above scheme. Using

• the formula for the isometries K and T in Lemma 4.2,

• Formula 17.5 for the first and second row of �,

• Formula 17.4 for the third row of �,
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we find the following fine splitting � = ∂
∂r
K +

LξT

r
+

B0

r
, where

B0


u
as
ar
aη
a0

 =


0 0 −4 0 d?00

0 0 0 4 (d0·)ydη2
−1 0 0 0 (d0·)yH
0 1 0 0 (d0·)yG
d0 −J0d0 −JHd0 −JGd0 3JH

 . (180)

It is then routine to verify, with the help of the second commutator identity in (21), that
P , K(B0 + LξT ) is equal to the one given by (36). Hence

� = K(
∂

∂r
− P

r
). (181)

The proof is complete.

17.4 Fourier series re-visited

We recall an elementary fact on uniform convergence of the usual Fourier series.

Lemma 17.6. There exists a positive function [ε(N), N ∈ Z+] such that limN→∞ ε(N) = 0
and the following holds. Let f ∈ W 1,2(S1) and let its Fourier series be Σkfke

√
−1kθ, then

Σ|k|≥N |fke
√
−1kθ| ≤ ε(N) +

1√
N
|f |2W 1,2(S1). (182)

Proof of Lemma 17.6: Cauchy-Schwartz inequality implies that

|fke
√
−1kθ| ≤ 1

k
3
2

+
k

3
2f 2

k

2
. (183)

Then, ξ(N) , ΣN≥1
1

k
3
2

satisfies the desired conditions. The other term in (183) satisfies

ΣN≥1k
3
2f 2

k ≤ 1√
N

ΣN≥1k
2f 2
k ≤ 1√

N
|f |2W 1,2(S1). The desired estimate (182) follows.

Under the assumption f ∈ W 1,2(S1), it is well known that the Fourier-series converges
uniformly to f . Based on the above bound on the remainder, we provide an ingredient for
Lemma 6.3.

Lemma 17.7. In the setting of Lemma 6.3, let ν ∈ C1(S5, π?5,4EndE). Under the pull-
back Hermitian metric on π?5,4EndE, for any β = 0, 1, or 2, the Sasaki-Fourier Series

Σkvβ(k)e
√
−1kθβ converges uniformly to ν on Uβ,S5. The equivalent global series Σkνk ⊗ s−k

converges uniformly to ν on S5.

Proof of Lemma 17.7: Under the pullback connection from EndE → P2, Lξ = ∇ξ on the
sections of π?5,4EndE. Thus the C1−condition implies that Lξν ∈ C0(S5, EndE). Because

ξ = ∂
∂θβ

in Uβ,S5 , fixing u1, u2 in the Sasakian coordinate, under a unitary trivialization,

ν ∈ W 1,2(θβ) (as a function of θβ ∈ S1). The estimate in Lemma 17.6 says that

Σ|k|≥N |νβ(k)e
√
−1kθβ |π?5,4EndE ≤ ε(N) +

|ν|2W 1,2(θβ)√
N

≤ ε(N) +
[|ν|2C0(θβ) + |∇ξν|2C0(θβ)]√

N
.

This means the “remainder” Σ|k|≥N |νβ(k)e
√
−1kθβ |π?5,4EndE is bounded uniformly in β and

p ∈ Uβ,S5 . The desired uniform convergence is proved.
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Remark 17.8. Let (ν)−k denote the −k−th term νk ⊗ s−k in the Fourier-series. The value of
(ν)−k on an arbitrary Reeb orbit only depends on the value of ν on the same Reeb orbit.

In the setting of Lemma 17.6, let c(θ) be a smooth function, the operator c(θ) ∂
∂θ

in general
can not differentiate the Sasaki-Fourierseries terms by term i.e. in general

[c(θ)
∂f

∂θ
]k 6= [c(θ)

∂

∂θ
]fk,

where the subscript ·k means the k−th Fourier-coefficient. The next result shows that this
is not the case for the two operators we are interested in.

Claim 17.9. Still in the setting of Lemma 6.3, for any ν ∈ C3(S5, π?5,4EndE), in view of the
notation (, )−k in Remark 17.8 for the Sasaki-Fourier coefficients,

(∇?∇ν)k = ∇?∇(ν)k, and (Lξν)k = Lξ(ν)k.

Proof of Claim 17.9: It suffices to prove the two identities under the local Fourier-Series i.e.
the left hand side of (52). We only need to work near each Reeb orbit.

The identity for Lξ holds because ξ = ∂
∂θβ

in Uβ,S5 , and the usual Fourier Series in θβ can

be differentiated term by term with respect to θβ.
To prove the identity for ∇?∇, for any [Z] ∈ P2, we need a transverse geodesic frame

[vi = ∂
∂xi
− η( ∂

∂xi
)ξ, i = 1, 2, 3, 4] near the Reeb orbit π−1

5,4[Z]. Because ξ[η( ∂
∂xi

)] = 0 i.e. η( ∂
∂xi

)

is independent of θβ, and that the connection is also pullback from P2, for each i, we find

(∇viν)−k = (∇[ ∂
∂xi
−η( ∂

∂xi
)ξ]ν)−k = ∇[ ∂

∂xi
−η( ∂

∂xi
)ξ]νk = ∇viνk in the domain of vi.

Because ∇?∇ν = ∇vi∇viν on the Reeb orbit π−1
5,4[Z], in view of Remark 17.8,

(∇?∇ν)−k|π−1
5,4|[Z]

= (∇?∇ν|π−1
5,4[Z])−k = (∇vi∇viν|π−1

5,4[Z])−k

= (∇vi∇viν)−k|π−1
5,4[Z] = [∇vi∇vi(ν)−k]|π−1

5,4[Z]

= [∇?∇(ν)−k]|π−1
5,4[Z].

The proof is complete.

17.5 Some algebro-geometric calculations

Let ωO(1) be
√
−1

2π
times the curvature form of the standard metric on O(1) → P2. Then

ωO(1) represents c1[O(1)], and dη
2

= πωO(1) (cf. [15, page 142 and 30], watch out the difference

of our scaling from the one therein). Throughout this article, we call πωO(1) (dη
2

) the Fubini-

Study form, and denote it by ωFS. The same applies to Pn as well (still let η , dc log r, r is
the distance to the origin in Cn+1).

We need the formula for the sheaf cohomologies for Theorem A and 9.2.

Lemma 17.10. Let E be a holomorphic Hermitian vector bundle on P2. For any integer k,
we have

h1[P2, (EndE)(k)] = h0[P2, (EndE)(k)] + h0[P2, (EndE)(−k − 3)]

+2rc2(E)− (r − 1)c2
1(E)− r2(k + 1)(k + 2)

2
.
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Proof of Lemma 17.10: Since c1(EndE) = 0, by [21, II, (1.10)], we compute

ch[P2, (EndE)(k)] = ch[P2, O(k)] · ch[P2, EndE] (184)

= {1 + c1[O(k)] +
c2

1[O(k)]

2
}{r2 + c1(EndE) +

1

2
[c2

1(EndE)− 2c2(EndE)]}.

= r2 + kr2[ωO(1)]− c2(EndE) +
r2k2

2
[ωO(1)]

2.

The well known formula for Todd class states (for example, see [21, page 288]):

Td(P2) = 1 +
3[ωO(1)]

2
+ [ωO(1)]

2. (185)

We compute

Td(P2) · ch[(EndE)(k)]

= r2 + (
3r2

2
+ kr2)[ωO(1)]− c2(EndE) + [

r2k2

2
+ r2 +

3kr2

2
][ωO(1)]

2. (186)

Because
∫
P2 [ωO(1)]

2 =
∫
P2{c1[O(1)]}2 = 1, using Hirzebruch Riemann-Roch theorem, we

integrate (186) over P2 to obtain

χ[P2, (EndE)(k)] =

∫
P2

Td(P2) · ch[P2, (EndE)(k)] =
r2k2

2
+ r2 +

3kr2

2
− c2(EndE).

Proof of Lemma 14.2: We only prove the formula for h1[P2, (EndT ′P2)(l)], the formula
for h0[P2, {End0(T ′P2)}(l)] thereupon follows by Riemann-Roch (see Lemma 17.10).

On P2, we tensor the Euler-Sequence

0→ O → O⊕3(1)→ T ′P2 → 0

by the sheaf Ω1(l), the local freeness of Ω1(l) yields the exactness of the following.

0→ Ω1(l)→ [Ω1(l + 1)]⊕3 → (EndT ′P2)(l)→ 0. (187)

Hence we have the following exact sequence of cohomologies

...→ H1[P2,Ω1(l + 1)]⊕3]→ H1[P2, (EndT ′P2)(l)]→ H2[P2,Ω1(l)]→ ... (188)

By Bott formula of sheaf cohomology on complex projective spaces (see [31, Section 1.1]),
when l ≥ 0, both H1[P2,Ω1(l + 1)]⊕3] and H2[P2,Ω1(l)] vanish. Then H1[P2, (EndT ′P2)(l)]
vanishes if l ≥ 0.

When l = −1, H1[P2, (Ω1)⊕3] = {H1[P2,Ω1]}⊕3 = C3, H2[P2,Ω1(−1)] = 0. Thus
H1[P2, (EndT ′P2)(−1)] = C3. By Serre-duality, we find H1[P2, (EndT ′P2)(−2)] = C3 and
H1[P2, (EndT ′P2)(l)] = 0 if l ≤ −3.

17.6 Kähler identity for vector bundles

The usual Kähler identity says that on a Kähler manifold, the Laplace-Beltrami operator
(on functions) is twice of the ∂̄−Laplacian. The Lemma below is a straight-forward general-
ization to bundle case. Though we do not know whether it is stated explicitly in literature,
the proof is completely routine. Please see a related calculation in [21, III.1].
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Lemma 17.11. Let Ξ be a holomorphic Hermitian vector bundle over a Kähler manifold
(X,ω) and A denote the Chern connection. Then

∇?
A∇A = 2∂?A∂̄A + 2π ·

√
−1

2π
FAyω. (189)

Consequently, in the setting of the first sentence in Theorem A and the convention for
the Kähler metric in the first paragraph of Appendix 17.5 (above the proof of Lemma 17.10),
we consider the Fubini-Study form ωFS. On the twisted endomorphism bundle (EndE)(l),
under the tensor product of A and the standard connection on O(l) (the twisted connection),
suppressing the subscripts for the connection as usual, we have

∇?∇ = 2∂?∂̄ + 2nl · Id. (190)

In particular, when n = 2,
∇?∇ = 2∂?∂̄ + 4l · Id. (191)

Proof of Lemma 17.11: At an arbitrary point p ∈ X, let (zj, j = 1, .., n) be a Kähler geodesic
coordinate for the metric ω. By definition, we have for any section ϕ of Ξ that

∇?∇ϕ = −2Σj(ϕjj̄ + ϕj̄j) = −4Σjϕj̄j + 2ΣjFA,jj̄ · ϕ = 2∂?A∂̄Aϕ+ 2ΣjFA,jj̄ · ϕ at p. (192)

Please compare it to the usual Kähler identity in [15, Chap 0.7, page 106]. To complete the

proof of (189), it suffices to observe that ΣjFA,jj̄ =
√
−1
2
FAyω.

To prove (190), based on (189), we contract the following by ωFS.

FA = [FE, ·]⊗ IdO(l) + IdE ⊗ FO(l). (193)

The Hermitian Yang-Mills condition says that [FEyωFS, ·] acts by 0−endomorphism on
EndE, using c1[O(l)] = [ωO(1)], the following holds as endomorphisms on (EndE)(l).

√
−1

2π
FAyωFS =

√
−1

2π
IdE ⊗ (FO(l)yωFS) = nId(

∫
Pn c1[O(l)] ∧ ωn−1

FS∫
Pn ω

n
FS

) =
(nl)Id

π
(

∫
Pn ω

n
O(1)∫

Pn ω
n
O(1)

)

=
(nl)Id

π
.

We should notice that the π factor in ωFS = πωO(1) produces the “π” in the denominator of
the last line above. The proof of (190) is complete.

The above Kähler identity relates the space of holomorphic sections to a certain eigenspace
of the rough Laplacian.

Lemma 17.12. (A holomorphic section is an eigensection of the rough Laplacian) In the
setting of the first sentence in Theorem A, for any nonnegative integer l,

E4l∇?∇|(End0E)(l)→P2 = H0[P2, (End0E)(l)]. (194)

Moreover, the isomorphism “=” above is an actual equality: a holomorphic section of (End0E)(l)
is an eigensection of ∇?∇|(End0E)(l)→P2 with respect to the eigenvalue 4l, and vice versa.

The proof is straight-forward by formula (191).
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17.7 On Killing reductive homogeneous spaces

Proof of Lemma 11.3: For any V,X, Y ∈ g, the usual Koszul formula [32, page 25] says

2〈∇V ?X
?, Y ?〉 = V ?〈X?, Y ?〉 − Y ?〈V ?, X?〉+X?〈Y ?, V ?〉 (195)

+〈[V ?, X?], Y ?〉 − 〈[X?, Y ?], V ?〉+ 〈[Y ?, V ?], X?〉.

Because V ?, X?, Y ? are Killing vector fields, we find

V ?〈X?, Y ?〉 = 〈[V ?, X?], Y ?〉+ 〈X?, [V ?, Y ?]〉,
Y ?〈V ?, X?〉 = 〈[Y ?, V ?], X?〉+ 〈V ?, [Y ?, X?]〉,
X?〈Y ?, V ?〉 = 〈[X?, Y ?], V ?〉+ 〈Y ?, [X?, V ?]〉.

Plugging the above into (195), we find

2〈∇V ?X
?, Y ?〉 = 〈[V ?, X?], Y ?〉 − {〈[X?, [Y ?, V ?]〉+ 〈V ?, [Y ?, X?]〉}. (196)

Next, for any V,X, Y ∈ m, we show that the condition of Killing homogeneous space
implies

〈X?, [Y ?, V ?]〉+ 〈V ?, [Y ?, X?]〉 = 0 at eK. (197)

[23, Proposition 2.1] says that [X?, Y ?] = −[X, Y ]? at eK for any X, Y ∈ g. Then at eK,

〈X?, [Y ?, V ?]〉+ 〈V ?, [Y ?, X?]〉 = −〈X?, [Y, V ]?〉 − 〈V ?, [Y,X]?〉
= −〈X, [[Y, V ]]m〉m − 〈V, [[Y,X]]m〉m
= −〈X, [Y, V ]〉g − 〈V, [Y,X]〉g (because X, Y, V ∈ m, and m ⊥ k)

= 0 (because 〈, 〉g is a scalar multiple of the Killing form). (198)

In row 2 of (198), the inner bracket [Y, V ] means the Lie bracket, while the outer means the
projection to m according to the reductive splitting. The identity (197) is proved.

For any V,X ∈ m, plugging (197) back into (196), because Y ∈ m is also arbitrary, we
find ∇V ?X

? = 1
2
[V ?, X?] at eK. Therefore, for any V ∈ m, ∇V ?V

? = 0 at eK. Because g
acts as an isometry (thus it preserves the Levi-Civita connection), equation (122) holds at
gK.

17.8 The standard connection on O(l)→ P2: proof of Lemma 12.1

To prove Lemma 12.1, we need the K−invariant function corresponding to the local
defining section of O(−1).

Lemma 17.13. In U0,P2 = {[Z0, Z1, Z2] ∈ P2|Z0 6= 0}, the trivialization s0 , (1, u1, u2) of
O(−1) corresponds to the Span[1, 0, 0]−valued function α = ( 1

g11
, 0, 0) on SU(3), where g11 is

the (1, 1)−entry of g ∈ SU(3). This means s0([g]) = (g, α) for all g ∈ π−1U0,P2 .

Remark 17.14. α is obviously S[U(1)× U(2)]−invariant i.e. α(gk) = k−1α(g) for any
k ∈ S[U(1)× U(2)]. Moreover, U0,P2 is invariant under the action of S[U(1)× U(2)].

Proof of Lemma 17.13: For any g ∈ SU(3), it suffices to compute at g

 1
0
0

 =

 g1
1

g2
1

g3
1

 that

(g, α) = g ·

 1
g11

0
0

 =

 g1
1 g1

2 g1
3

g2
1 g2

2 g2
3

g3
1 g3

2 g3
3

  1
g11

0
0

 =

 1
g21
g11
g31
g11

 ,
 1
u1

u2

 .
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Proof of Lemma 12.1: On the universal bundle, the induced connection dinduced is SU(3)
invariant, so is the standard connection dChern. It suffices to verify that they coincide at the
base point o ∈ P2. The standard connection on O(−1) yields that dCherns0 = (∂ log φ0)s0.
Consequently, by the Kähler potential φ0 above (10), we find dCherns0 = 0 at o. All the
elements in mP2 have vanishing (1, 1)−entry (see (130)). Therefore, for any X ∈ mP2 ,

α(etX) =

 1 +O(t2)
0
0

 . This implies X(α) = 0 at e ∈ SU(3). Lemma 17.13 means that

s0 = (g, α). Because mP2 is horizontal, we find dinduced,Xs0 = 0 at o for any X ∈ mP2 as well.
Thus, the induced connection coincides with the Chern connection at the base point.

17.9 The horizontal distribution of the Fubini-Study connection
on the holomorphic tangent bundle: proof of Lemma 12.2

For any X ∈ mP2 , let X?,C be the projection of the real vector field X? to T ′P2 (see the
material from (131) to (132) for the projection, and see (119) for the definition of X?). To
prove Lemma 12.2, we need another form for the vector fields X?,C

1 , Y ?,C
1 , X?,C

3 , Y ?,C
3 .

Formula 17.15. In view of the basis (130) of mP2 ,

X?,C
1 = π5,4,?(Z1

∂

∂Z0

− Z0
∂

∂Z1

). In U0,P2 , X?,C
1 = −(1 + u2

1)
∂

∂u1

− u1u2
∂

∂u2

.

Y ?,C
1 =

√
−1π5,4,?(Z1

∂

∂Z0

+ Z0
∂

∂Z1

). In U0,P2 , Y ?,C
1 =

√
−1(1− u2

1)
∂

∂u1

−
√
−1u1u2

∂

∂u2

.

X?,C
3 = π5,4,?(Z2

∂

∂Z0

− Z0
∂

∂Z2

). In U0,P2 , X?,C
3 = −u1u2

∂

∂u1

− (1 + u2
2)

∂

∂u2

.

Y ?,C
3 =

√
−1π5,4,?(Z2

∂

∂Z0

+ Z0
∂

∂Z2

). In U0,P2 , Y ?,C
3 = −

√
−1u1u2

∂

∂u1

+
√
−1(1− u2

2)
∂

∂u2

.

Consequently, s?1 = −π5,4,?(Z0
∂
∂Z1

), s?2 = −π5,4,?(Z0
∂
∂Z2

). In U0,P2 , s?1 = − ∂
∂u1
, s?2 = − ∂

∂u2
.

Proof of Formula 17.15: We verify that etX1 =

 cos t sin t 0
− sin t cos t 0

0 0 1

 . Thus, when t is suffi-

ciently small with respect to u1, the following holds on P2.

etX1

 1
u1

u2

 =

 cos t+ (sin t)u1

− sin t+ (cos t)u1

u2

 =

 1
− sin t+(cos t)u1
cos t+(sin t)u1

u2
cos t+(sin t)u1

 . (199)

Then the identity

X?,C
1 =

d

dt
|t=0e

tX1

 1
u1

u2

 =

 0
−(1 + u2

1)
−u1u2

 = −(1 + u2
1)

∂

∂u1

− u1u2
∂

∂u2

= −π5,4,?(Z0
∂

∂Z1

) + π5,4,?(Z1
∂

∂Z0

) (200)

holds in U0,P2 . While the vector “

 1
u1

u2

” above means a point in “U0,P2 ⊂ P2, the vector

“

 0
−(1 + u2

1)
−u1u2

” above means a (1, 0) tangent vector (at the point).
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By continuity of both X?,C
1 and −π5,4,?(Z0

∂
∂Z1

) + π5,4,?(Z1
∂
∂Z0

), they are identical every-

where on P2. Employing the following identities of matrix exponentials,

etY1 =

 cos t
√
−1 sin t 0√

−1 sin t cos t 0
0 0 1

 , etX3 =

 cos t 0 sin t
0 1 0

− sin t 0 cos t

 ,
etY3 =

 cos t 0
√
−1 sin t

0 1 0√
−1 sin t 0 cos t

 , (201)

similar computations as (199) and (200) show that in U0,P2 ,

Y ?,C
1 =

√
−1(1− u2

1)
∂

∂u1

−
√
−1u1u2

∂

∂u2

, X?,C
3 = −u1u2

∂

∂u1

− (1 + u2
2)

∂

∂u2

,

Y ?,C
3 = −

√
−1u1u2

∂

∂u1

+
√
−1(1− u2

2)
∂

∂u2

. (202)

As below (200), the 3 formulas respectively for Y ?,C
1 , X?,C

3 , Y ?,C
3 follow by continuity.

Proof of Lemma 12.2: Similarly to the proof of Lemma 12.1, because both connections
are left invariant, it suffices to show that they are identical at the base point o.

The Fubini-Study co-variant derivatives of both ∂
∂u1

and ∂
∂u2

are 0 at o. Using Formula
17.15, we find

∇FSs?1 = ∇FSs?2 = 0 at o. (203)

In view of the correspondence in Lemma 11.6, at e ∈ SU(3), for any X, Y ∈ mP2 , we
compute the ordinary derivative

[Y m̃P2(X)](e) = −[[Y,X]]mP2
.

On the right hand side of the above, the inner bracket is the Lie bracket, the outer one is the
projection to mP2 .

We straight-forwardly verify [mP2 ,mP2 ] ⊆ s[u(1) × u(2)]. Then [Y m̃P2(X)](e) = 0. The
correspondence (124) and Kobayashi-Nomizu formula (126) again yields that

(∇induced
Y X?)|o = 0.

On the complexification, this means for any s ∈ m
(1,0)

P2 , ∇induceds? = 0 at o.
Then∇induced coincides with∇FS at the base point o. By SU(3)−invariance, they coincide

everywhere on P2.
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